1
|
Grau K, Lillie-Jaschniski K, Graaf-Rau A, Harder T, Eddicks M, Zöls S, Zablotski Y, Ritzmann M, Stadler J. Effect of stabilizers on the detection of swine influenza A virus (swIAV) in spiked oral fluids over time. Porcine Health Manag 2024; 10:49. [PMID: 39529191 PMCID: PMC11552184 DOI: 10.1186/s40813-024-00386-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 09/16/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Aggregated samples such as oral fluids (OFs) display an animal friendly and time and cost-efficient sample type for swine Influenza A virus (swIAV) monitoring. However, further molecular and biological characterization of swIAV is of particular significance. The reportedly inferior suitability of aggregated samples for subtyping of swIAV presents a major drawback compared to nasal swabs, still considered the most appropriate sample type for this purpose (Garrido-Mantilla et al. BMC Vet Res 15(1):61, 2019). In addition, the viral load in the original sample, storage conditions and characteristics of different swIAV strains might further compromise the eligibility of aggregated samples for molecular detection and subtyping. Therefore, the present study aimed to evaluate the suitability of stabilizing media to minimize the degradation of viral RNA and thus increase the detection and subtyping rate of swIAV by RT-qPCR in spiked OFs under different conditions (virus strain, storage temperature and viral load in the original sample) over a time span of 14 days. RESULTS The use of stabilizing media in spiked OFs resulted in a significant higher probability to detect swIAV RNA compared to OFs without stabilizers (OR = 46.1, p < 0.001). In addition, swIAV degradation over time was significantly reduced in samples suspended with stabilizer (OR = 5.80, p < 0.001), in samples stored at 4 °C (OR = 2.53, p < 0.001) and in samples spiked with the avian derived H1N2 subtype (OR = 2.26, p < 0.01). No significant differences in swIAV RNA detection and degradation of swIAV RNA in spiked OFs over time were observed between the three different stabilizing media. CONCLUSION Addition of stabilizers and storage of samples under cooled conditions significantly improved detection and subtyping of swIAV in spiked OFs.
Collapse
Affiliation(s)
- K Grau
- Clinic for Swine at the Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität München, Oberschleißheim, Germany
| | | | - A Graaf-Rau
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald, Insel-Riems, Germany
- Helmholtz Institute for One Health, Greifswald, Germany
| | - T Harder
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald, Insel-Riems, Germany
| | - M Eddicks
- Clinic for Swine at the Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität München, Oberschleißheim, Germany
| | - S Zöls
- Clinic for Swine at the Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität München, Oberschleißheim, Germany
| | - Y Zablotski
- Clinic for Swine at the Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität München, Oberschleißheim, Germany
| | - M Ritzmann
- Clinic for Swine at the Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität München, Oberschleißheim, Germany
| | - J Stadler
- Clinic for Swine at the Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität München, Oberschleißheim, Germany.
| |
Collapse
|
2
|
Kim SC, Lee TG, Na EJ, Moon SH, Kim HJ, Jeong CG, Choi YK, Oh Y, Lee CY, Oem JK, Kim WI, Cho HS. Major Shift of Influenza A Virus of Swine (IAV-S) by Human-to-Swine Spillover of the 2009 Pandemic Virus in Korea. Transbound Emerg Dis 2024; 2024:6366170. [PMID: 40303172 PMCID: PMC12016703 DOI: 10.1155/2024/6366170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 06/26/2024] [Accepted: 07/26/2024] [Indexed: 05/02/2025]
Abstract
The 2009 influenza A H1N1 pandemic (pdm09) originated from the influenza A virus of swine (IAV-S) through multiple reassortment events with avian and human IAVs. The pdm09 reportedly reintroduced the virus to pigs, contributing to the evolution and diversity of IAV-S through frequent reassortment and drifts. Surveillance and whole-genome sequencing of IAV-S from conventional pig farms in Korea during 2021-2022 revealed that the genetic diversity of H1 and H3 IAV-S was continuously enriched after human-to-swine spillover of pdm09 viruses with long-term maintenance, persistence, and reassortment of virus lineages. Evidence of additional human-to-swine spillover of viruses that are different from the 2009 virus but close to that of the recent H1N1pdm09 human vaccine was identified in this study. The identification of swine-adapted pdm09 viruses, which have accumulated amino acid mutations with potentially altered antigenicity and a unique potential N-glycosylation site within the haemagglutinin (HA) gene, suggests the distinctive evolution of spillover pdm09 viruses in swine. The genetic constellation of the recently emerging Eurasian avian-like swine lineage and the preexisting classical swine lineage H1 viruses in Korea has been expanded through reassortment with cocirculating pdm09 viruses and/or H3N2 IAV-S harboring the pdm09 M gene (H3N2pM). Collectively, after the major shift of Korean IAV-S from the classical swine lineage to the pdm09 lineage in 2009, the frequent spillover of pdm09 viruses and the circulation of IAV-S harboring pdm09 gene segments led to the continuous diversification of IAV-S through antigenic drift and shift, raising concerns about the potential reintroduction of these viruses to humans.
Collapse
Affiliation(s)
- Seung-Chai Kim
- College of Veterinary MedicineJeonbuk National University, Iksan 54596, Republic of Korea
| | - Taek Geun Lee
- College of Veterinary MedicineJeonbuk National University, Iksan 54596, Republic of Korea
| | - Eun-Jee Na
- College of Veterinary MedicineJeonbuk National University, Iksan 54596, Republic of Korea
| | - Sung-Hyun Moon
- College of Veterinary MedicineJeonbuk National University, Iksan 54596, Republic of Korea
| | - Hwan-Ju Kim
- College of Veterinary MedicineJeonbuk National University, Iksan 54596, Republic of Korea
| | - Chang-Gi Jeong
- College of Veterinary MedicineJeonbuk National University, Iksan 54596, Republic of Korea
| | - Young Ki Choi
- College of Medicine and Medical Research InstituteChungbuk National University, Cheongju 28644, Republic of Korea
- Center for Study of Emerging and Re-Emerging VirusesKorea Virus Research InstituteInstitute for Basic Science (IBS), Daejeon 34126, Republic of Korea
| | - Yeonsu Oh
- College of Veterinary Medicine and Institute of Veterinary ScienceKangwon National University, Chuncheon 24341, Republic of Korea
| | - Chung-Young Lee
- Department of MicrobiologySchool of MedicineKyungpook National University, Daegu 41566, Republic of Korea
| | - Jae-Ku Oem
- College of Veterinary MedicineJeonbuk National University, Iksan 54596, Republic of Korea
| | - Won-Il Kim
- College of Veterinary MedicineJeonbuk National University, Iksan 54596, Republic of Korea
| | - Ho-Seong Cho
- College of Veterinary MedicineJeonbuk National University, Iksan 54596, Republic of Korea
| |
Collapse
|
3
|
Ryt-Hansen P, Krog JS, Breum SØ, Hjulsager CK, Pedersen AG, Trebbien R, Larsen LE. Co-circulation of multiple influenza A reassortants in swine harboring genes from seasonal human and swine influenza viruses. eLife 2021; 10:60940. [PMID: 34313225 PMCID: PMC8397370 DOI: 10.7554/elife.60940] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 07/21/2021] [Indexed: 12/11/2022] Open
Abstract
Since the influenza pandemic in 2009, there has been an increased focus on swine influenza A virus (swIAV) surveillance. This paper describes the results of the surveillance of swIAV in Danish swine from 2011 to 2018. In total, 3800 submissions were received with a steady increase in swIAV-positive submissions, reaching 56% in 2018. Full-genome sequences were obtained from 129 swIAV-positive samples. Altogether, 17 different circulating genotypes were identified including six novel reassortants harboring human seasonal IAV gene segments. The phylogenetic analysis revealed substantial genetic drift and also evidence of positive selection occurring mainly in antigenic sites of the hemagglutinin protein and confirmed the presence of a swine divergent cluster among the H1pdm09Nx (clade 1A.3.3.2) viruses. The results provide essential data for the control of swIAV in pigs and emphasize the importance of contemporary surveillance for discovering novel swIAV strains posing a potential threat to the human population.
Collapse
Affiliation(s)
- Pia Ryt-Hansen
- Technical University of Denmark, National Veterinary Institute, Lyngby, Denmark.,University of Copenhagen, Department of Health Sciences, Institute for Animal and Veterinary Sciences, Frederiksberg, Denmark
| | | | | | | | - Anders Gorm Pedersen
- Department of Health Technology, Section for Bioinformatics, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - Lars Erik Larsen
- Technical University of Denmark, National Veterinary Institute, Lyngby, Denmark.,University of Copenhagen, Department of Health Sciences, Institute for Animal and Veterinary Sciences, Frederiksberg, Denmark
| |
Collapse
|
4
|
Schülein A, Ritzmann M, Christian J, Schneider K, Neubauer-Juric A. Exposure of wild boar to Influenza A viruses in Bavaria: Analysis of seroprevalences and antibody subtype specificity before and after the panzootic of highly pathogenic avian influenza viruses A (H5N8). Zoonoses Public Health 2021; 68:503-515. [PMID: 33987931 DOI: 10.1111/zph.12841] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 04/01/2021] [Indexed: 01/19/2023]
Abstract
Swine influenza A viruses (S-IAV) circulate in wild boar populations worldwide. Subtypes primarily reflect those actually present within the respective pig industry. Accordingly, infections with swine H1N1, H1N2 and H3N2 have been reported for several regions of Germany. As pigs are susceptible not only to S-IAV but also to avian and human influenza A viruses, it is necessary to consider the possibility that new reassortant viruses with pandemic potential may arise in these new hosts. Therefore, in this study the impact of recent IAV epidemics on antibody prevalences in Bavarian wild boar was assessed. Important events considered were the H1N1pdm09 pandemic, which affected humans and swine, and the highly pathogenic avian influenza (HPAI) H5N8 panzootic in 2016 and 2017, affecting wild and domestic birds. IAV seroprevalences were determined analysing 1,396 samples from before and after the H5N8 panzootic, from various regions in Bavaria, a large administrative region in the South of Germany. Taken together, seroprevalences varied markedly from 1.44% to 12.59%, relative to region and time. However, no discrete correlation was found to population density either in wild boar or in pigs. Antibodies against H1N1 were the most prevalent. In addition, antibodies were detected reacting against H1N2 and against H1pdmNx reassortant viruses, already known to circulate in domestic pigs in Bavaria and notably also against the avian influenza A virus H5N8; the latter in samples taken in 2017. These results confirm the exposure of wild boar to IAV of diverse origin and the increasing variability of S-IAV present in the field. The necessity for continuous IAV surveillance not only of domestic swine but also of wildlife is emphasized.
Collapse
Affiliation(s)
- Anika Schülein
- Bavarian Health and Food Safety Authority, Oberschleissheim, Germany
| | - Mathias Ritzmann
- Clinic for Swine, Ludwig-Maximilians-Universität München, Oberschleissheim, Germany
| | | | | | | |
Collapse
|
5
|
Soli R, Kaabi B, Barhoumi M, Maktouf C, Ahmed SBH. Bayesian phylogenetic analysis of the influenza-A virus genomes isolated in Tunisia, and determination of potential recombination events. Mol Phylogenet Evol 2019; 134:253-268. [DOI: 10.1016/j.ympev.2019.01.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 12/27/2018] [Accepted: 01/22/2019] [Indexed: 11/24/2022]
|
6
|
Spatiotemporal Distribution and Evolution of the A/H1N1 2009 Pandemic Influenza Virus in Pigs in France from 2009 to 2017: Identification of a Potential Swine-Specific Lineage. J Virol 2018; 92:JVI.00988-18. [PMID: 30258006 DOI: 10.1128/jvi.00988-18] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 08/30/2018] [Indexed: 01/29/2023] Open
Abstract
The H1N1 influenza virus responsible for the most recent pandemic in 2009 (H1N1pdm) has spread to swine populations worldwide while it replaced the previous seasonal H1N1 virus in humans. In France, surveillance of swine influenza A viruses in pig herds with respiratory outbreaks led to the detection of 44 H1N1pdm strains between 2009 and 2017, regardless of the season, and findings were not correlated with pig density. From these isolates, 17 whole-genome sequences were obtained, as were 6 additional hemagglutinin (HA)/neuraminidase (NA) sequences, in order to perform spatial and temporal analyses of genetic diversity and to compare evolutionary patterns of H1N1pdm in pigs to patterns for human strains. Following mutation accumulation and fixation over time, phylogenetic analyses revealed for the first time the divergence of a swine-specific genogroup within the H1N1pdm lineage. The divergence is thought to have occurred around 2011, although this was demonstrated only through strains isolated in 2015 to 2016 in the southern half of France. To date, these H1N1pdm swine strains have not been related to any increased virulence in swine herds and have not exhibited any antigenic drift compared to seasonal human strains. However, further monitoring is encouraged, as diverging evolutionary patterns in these two species, i.e., swine and humans, may lead to the emergence of viruses with a potentially higher risk to both animal and human health.IMPORTANCE Pigs are a "mixing vessel" for influenza A viruses (IAVs) because of their ability to be infected by avian and human IAVs and their propensity to facilitate viral genomic reassortment events. Also, as IAVs may evolve differently in swine and humans, pigs can become a reservoir for old human strains against which the human population has become immunologically naive. Thus, viruses from the novel swine-specific H1N1pdm genogroup may continue to diverge from seasonal H1N1pdm strains and/or from other H1N1pdm viruses infecting pigs and lead to the emergence of viruses that would not be covered by human vaccines and/or swine vaccines based on antigens closely related to the original H1N1pdm virus. This discovery confirms the importance of encouraging swine IAV monitoring because H1N1pdm swine viruses could carry an increased risk to both human and swine health in the future as a whole H1N1pdm virus or gene provider in subsequent reassortant viruses.
Collapse
|
7
|
Meseko C, Globig A, Ijomanta J, Joannis T, Nwosuh C, Shamaki D, Harder T, Hoffman D, Pohlmann A, Beer M, Mettenleiter T, Starick E. Evidence of exposure of domestic pigs to Highly Pathogenic Avian Influenza H5N1 in Nigeria. Sci Rep 2018; 8:5900. [PMID: 29651056 PMCID: PMC5897404 DOI: 10.1038/s41598-018-24371-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 03/14/2018] [Indexed: 12/15/2022] Open
Abstract
Avian influenza viruses (AIV) potentially transmit to swine as shown by experiments, where further reassortment may contribute to the generation of pandemic strains. Associated risks of AIV inter-species transmission are greater in countries like Nigeria with recurrent epidemics of highly pathogenic AI (HPAI) in poultry and significant pig population. Analysis of 129 tracheal swab specimens collected from apparently healthy pigs at slaughterhouse during presence of HPAI virus H5N1 in poultry in Nigeria for influenza A by RT-qPCR yielded 43 positive samples. Twenty-two could be determined by clade specific RT-qPCR as belonging to the H5N1 clade 2.3.2.1c and confirmed by partial hemagglutinin (HA) sequence analysis. In addition, 500 swine sera were screened for antibodies against influenza A virus nucleoprotein and H5 HA using competition ELISAs and hemagglutination inhibition (HI) tests. Serologically, 222 (44.4%) and 42 (8.4%) sera were positive for influenza A virus NP and H5 antibodies, respectively. Sera reacted to H5N1 and A/H1N1pdm09 strains by HI suggesting exposure of the Nigerian domestic pig population to these viruses. We report for the first time in Nigeria, exposure of domestic pigs to H5N1 virus. This poses potential public health and pandemic risk due to interspecies transmission of avian and human influenza viruses.
Collapse
Affiliation(s)
- Clement Meseko
- Regional Laboratory for Animal Influenza, National Veterinary Research Institute, Vom, Nigeria.
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Insel Riems, Germany.
- Institute of Epidemiology, Friedrich-Loeffler-Institut, Insel Riems, Germany.
| | - Anja Globig
- Institute of Epidemiology, Friedrich-Loeffler-Institut, Insel Riems, Germany
| | - Jeremiah Ijomanta
- Regional Laboratory for Animal Influenza, National Veterinary Research Institute, Vom, Nigeria
| | - Tony Joannis
- Regional Laboratory for Animal Influenza, National Veterinary Research Institute, Vom, Nigeria
| | - Chika Nwosuh
- Regional Laboratory for Animal Influenza, National Veterinary Research Institute, Vom, Nigeria
| | - David Shamaki
- Regional Laboratory for Animal Influenza, National Veterinary Research Institute, Vom, Nigeria
| | - Timm Harder
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Insel Riems, Germany
| | - Donata Hoffman
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Insel Riems, Germany
| | - Anne Pohlmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Insel Riems, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Insel Riems, Germany
| | - Thomas Mettenleiter
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Insel Riems, Germany
| | - Elke Starick
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Insel Riems, Germany
| |
Collapse
|
8
|
Olson ZF, Sandbulte MR, Souza CK, Perez DR, Vincent AL, Loving CL. Factors affecting induction of peripheral IFN-γ recall response to influenza A virus vaccination in pigs. Vet Immunol Immunopathol 2017; 185:57-65. [DOI: 10.1016/j.vetimm.2017.01.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 01/13/2017] [Accepted: 01/31/2017] [Indexed: 01/12/2023]
|
9
|
|
10
|
Takemae N, Shobugawa Y, Nguyen PT, Nguyen T, Nguyen TN, To TL, Thai PD, Nguyen TD, Nguyen DT, Nguyen DK, Do HT, Le TQA, Hua PT, Van Vo H, Nguyen DT, Nguyen DH, Uchida Y, Saito R, Saito T. Effect of herd size on subclinical infection of swine in Vietnam with influenza A viruses. BMC Vet Res 2016; 12:227. [PMID: 27724934 PMCID: PMC5057248 DOI: 10.1186/s12917-016-0844-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 02/18/2016] [Indexed: 01/14/2023] Open
Abstract
Background Influenza A viruses of swine (IAV-S) cause acute and subclinical respiratory disease. To increase our understanding of the etiology of the subclinical form and thus help prevent the persistence of IAV-S in pig populations, we conducted active virologic surveillance in Vietnam, the second-largest pig-producing country in Asia, from February 2010 to December 2013. Results From a total of 7034 nasal swabs collected from clinically healthy pigs at 250 farms and 10 slaughterhouses, we isolated 172 IAV-S from swine at the weaning and early-fattening stages. The isolation rate of IAV-S was significantly higher among pigs aged 3 weeks to 4.5 months than in older and younger animals. IAV-S were isolated from 16 large, corporate farms and 6 family-operated farms from among the 250 farms evaluated. Multivariate logistic regression analysis revealed that “having more than 1,000 pigs” was the most influential risk factor for IAV-S positivity. Farms affected by reassortant IAV-S had significantly larger pig populations than did those where A(H1N1)pdm09 viruses were isolated, thus suggesting that large, corporate farms serve as sites of reassortment events. Conclusions We demonstrate the asymptomatic circulation of IAV-S in the Vietnamese pig population. Raising a large number of pigs on a farm has the strongest impact on the incidence of subclinical IAV-S infection. Given that only some of the corporate farms surveyed were IAV-S positive, further active monitoring is necessary to identify additional risk factors important in subclinical infection of pigs with IAV-S in Vietnam. Electronic supplementary material The online version of this article (doi:10.1186/s12917-016-0844-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nobuhiro Takemae
- Influenza and Prion Diseases Research Center, National Institute of Animal Health, NARO, Ibaraki, Japan.,Thailand-Japan Zoonotic Diseases Collaboration Center, Bangkok, Thailand
| | - Yugo Shobugawa
- Division of International Health, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Phuong Thanh Nguyen
- Department of Animal Health, Center for Veterinary Diagnostics, Regional Animal Health Office No. 6, Ho Chi Minh City, Vietnam
| | - Tung Nguyen
- Department of Animal Health, Epidemiology Division, Hanoi, Vietnam
| | - Tien Ngoc Nguyen
- Department of Animal Health, Epidemiology Division, Hanoi, Vietnam
| | - Thanh Long To
- Department of Animal Health, National Centre for Veterinary Diagnostics, Hanoi, Vietnam
| | - Phuong Duy Thai
- Department of Animal Health, Center for Veterinary Diagnostics, Regional Animal Health Office No. 6, Ho Chi Minh City, Vietnam
| | - Tho Dang Nguyen
- Department of Animal Health, National Centre for Veterinary Diagnostics, Hanoi, Vietnam
| | - Duy Thanh Nguyen
- Department of Animal Health, Center for Veterinary Diagnostics, Regional Animal Health Office No. 6, Ho Chi Minh City, Vietnam
| | - Dung Kim Nguyen
- Department of Animal Health, Center for Veterinary Diagnostics, Regional Animal Health Office No. 6, Ho Chi Minh City, Vietnam
| | - Hoa Thi Do
- Department of Animal Health, National Centre for Veterinary Diagnostics, Hanoi, Vietnam
| | - Thi Quynh Anh Le
- Department of Animal Health, Center for Veterinary Diagnostics, Regional Animal Health Office No. 6, Ho Chi Minh City, Vietnam
| | - Phan Truong Hua
- Department of Animal Health, Center for Veterinary Diagnostics, Regional Animal Health Office No. 6, Ho Chi Minh City, Vietnam
| | - Hung Van Vo
- Department of Animal Health, Center for Veterinary Diagnostics, Regional Animal Health Office No. 6, Ho Chi Minh City, Vietnam
| | - Diep Thi Nguyen
- Department of Animal Health, Epidemiology Division, Hanoi, Vietnam
| | - Dang Hoang Nguyen
- Department of Animal Health, National Centre for Veterinary Diagnostics, Hanoi, Vietnam
| | - Yuko Uchida
- Influenza and Prion Diseases Research Center, National Institute of Animal Health, NARO, Ibaraki, Japan.,Thailand-Japan Zoonotic Diseases Collaboration Center, Bangkok, Thailand
| | - Reiko Saito
- Division of International Health, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Takehiko Saito
- Influenza and Prion Diseases Research Center, National Institute of Animal Health, NARO, Ibaraki, Japan. .,Thailand-Japan Zoonotic Diseases Collaboration Center, Bangkok, Thailand. .,United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan.
| |
Collapse
|
11
|
Henritzi D, Zhao N, Starick E, Simon G, Krog JS, Larsen LE, Reid SM, Brown IH, Chiapponi C, Foni E, Wacheck S, Schmid P, Beer M, Hoffmann B, Harder TC. Rapid detection and subtyping of European swine influenza viruses in porcine clinical samples by haemagglutinin- and neuraminidase-specific tetra- and triplex real-time RT-PCRs. Influenza Other Respir Viruses 2016; 10:504-517. [PMID: 27397600 PMCID: PMC5059951 DOI: 10.1111/irv.12407] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2016] [Indexed: 12/26/2022] Open
Abstract
Background A diversifying pool of mammalian‐adapted influenza A viruses (IAV) with largely unknown zoonotic potential is maintained in domestic swine populations worldwide. The most recent human influenza pandemic in 2009 was caused by a virus with genes originating from IAV isolated from swine. Swine influenza viruses (SIV) are widespread in European domestic pig populations and evolve dynamically. Knowledge regarding occurrence, spread and evolution of potentially zoonotic SIV in Europe is poorly understood. Objectives Efficient SIV surveillance programmes depend on sensitive and specific diagnostic methods which allow for cost‐effective large‐scale analysis. Methods New SIV haemagglutinin (HA) and neuraminidase (NA) subtype‐ and lineage‐specific multiplex real‐time RT‐PCRs (RT‐qPCR) have been developed and validated with reference virus isolates and clinical samples. Results A diagnostic algorithm is proposed for the combined detection in clinical samples and subtyping of SIV strains currently circulating in Europe that is based on a generic, M‐gene‐specific influenza A virus RT‐qPCR. In a second step, positive samples are examined by tetraplex HA‐ and triplex NA‐specific RT‐qPCRs to differentiate the porcine subtypes H1, H3, N1 and N2. Within the HA subtype H1, lineages “av” (European avian‐derived), “hu” (European human‐derived) and “pdm” (human pandemic A/H1N1, 2009) are distinguished by RT‐qPCRs, and within the NA subtype N1, lineage “pdm” is differentiated. An RT‐PCR amplicon Sanger sequencing method of small fragments of the HA and NA genes is also proposed to safeguard against failure of multiplex RT‐qPCR subtyping. Conclusions These new multiplex RT‐qPCR assays provide adequate tools for sustained SIV monitoring programmes in Europe.
Collapse
Affiliation(s)
- Dinah Henritzi
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institute (FLI), Greifswald-Insel Riems, Germany
| | - Na Zhao
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institute (FLI), Greifswald-Insel Riems, Germany
| | - Elke Starick
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institute (FLI), Greifswald-Insel Riems, Germany
| | - Gaelle Simon
- Anses, Ploufragan-Plouzané Laboratory, Swine Virology Immunology Unit, Ploufragan, France
| | - Jesper S Krog
- National Veterinary Institute; Technical University of Denmark (DTU), Frederiksberg C, Denmark
| | - Lars Erik Larsen
- National Veterinary Institute; Technical University of Denmark (DTU), Frederiksberg C, Denmark
| | - Scott M Reid
- Department of Virology, Animal and Plant Health Agency-Weybridge, New Haw, Addlestone, Surrey, UK
| | - Ian H Brown
- Department of Virology, Animal and Plant Health Agency-Weybridge, New Haw, Addlestone, Surrey, UK
| | - Chiara Chiapponi
- Istituto Zooprofilattico Sperimentale della Lombardia ed Emilia Romagna, Parma, Italy
| | - Emanuela Foni
- Istituto Zooprofilattico Sperimentale della Lombardia ed Emilia Romagna, Parma, Italy
| | | | | | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institute (FLI), Greifswald-Insel Riems, Germany
| | - Bernd Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institute (FLI), Greifswald-Insel Riems, Germany
| | - Timm C Harder
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institute (FLI), Greifswald-Insel Riems, Germany.
| |
Collapse
|
12
|
Pippig J, Ritzmann M, Büttner M, Neubauer-Juric A. Influenza A Viruses Detected in Swine in Southern Germany after the H1N1 Pandemic in 2009. Zoonoses Public Health 2016; 63:555-568. [PMID: 27334519 DOI: 10.1111/zph.12264] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Indexed: 12/01/2022]
Abstract
Infections with influenza A viruses (IAV) are highly prevalent in swine populations, and stable cocirculation of at least three lineages has been well documented in European swine - till 2009. However, since the emergence of the human pandemic pdmH1N1 virus in 2009, which has been (re)introduced into individual swine herds worldwide, the situation has been changing. These variations in the respective IAV pools within pig populations are of major interest, and the zoonotic potential of putative emerging viruses needs to be evaluated. As data on recent IAV in swine from southern Germany were relatively sparse, the purpose of this study was to determine the major IAV subtypes actually present in this region. To this aim, from 2010 to 2013, 1417 nasal swabs or lung tissue samples from pigs with respiratory disease were screened for IAV genomes. Overall, in 130 holdings IAV genomes were detected by real-time RT-PCR targeting the matrix protein gene. For further analyses, several PCR protocols were adapted to quickly subtype between H1, pdmH1, H3, N1 and N2 sequences. Taken together, cocirculation of the three stable European lineages of IAV was confirmed for Bavaria. H1N1 sequences were identified in 59, whereas H1N2 genomes were only diagnosed in 14, and H3N2 in 9 of the holdings analysed. However, pdmH1 in combination with N1 was detected in 2010, 2012 and 2013 confirming a presence, albeit in low prevalence, likewise pdmH1N2 reassortant viruses. Interestingly, individual cases of coinfections with more than one subtype were diagnosed. Partial genome sequences were determined and phylogenetic analyses performed. Clearly other than in the human population classically circulating IAV have not been displaced by pdmH1N1 in Bavarian swine. However, some interesting viruses were detected. Further surveillance of these viruses in the Bavarian pig population will be of major importance, to monitor future developments.
Collapse
Affiliation(s)
- J Pippig
- Bavarian Health and Food Safety Authority, Oberschleissheim, Germany
| | - M Ritzmann
- Clinic for Swine, Ludwig-Maximilians-University Munich, Oberschleissheim, Germany
| | - M Büttner
- Bavarian Health and Food Safety Authority, Oberschleissheim, Germany
| | - A Neubauer-Juric
- Bavarian Health and Food Safety Authority, Oberschleissheim, Germany.
| |
Collapse
|
13
|
Novel reassortant influenza viruses between pandemic (H1N1) 2009 and other influenza viruses pose a risk to public health. Microb Pathog 2015; 89:62-72. [PMID: 26344393 DOI: 10.1016/j.micpath.2015.09.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 09/01/2015] [Accepted: 09/02/2015] [Indexed: 12/21/2022]
Abstract
Influenza A virus (IAV) is characterized by eight single-stranded, negative sense RNA segments, which allows for gene reassortment among different IAV subtypes when they co-infect a single host cell simultaneously. Genetic reassortment is an important way to favor the evolution of influenza virus. Novel reassortant virus may pose a pandemic among humans. In history, three human pandemic influenza viruses were caused by genetic reassortment between avian, human and swine influenza viruses. Since 2009, pandemic (H1N1) 2009 (pdm/09 H1N1) influenza virus composed of two swine influenza virus genes highlighted the genetic reassortment again. Due to wide host species and high transmission of the pdm/09 H1N1 influenza virus, many different avian, human or swine influenza virus subtypes may reassert with it to generate novel reassortant viruses, which may result in a next pandemic among humans. So, it is necessary to understand the potential threat of current reassortant viruses between the pdm/09 H1N1 and other influenza viruses to public health. This study summarized the status of the reassortant viruses between the pdm/09 H1N1 and other influenza viruses of different species origins in natural and experimental conditions. The aim of this summarization is to facilitate us to further understand the potential threats of novel reassortant influenza viruses to public health and to make effective prevention and control strategies for these pathogens.
Collapse
|
14
|
Lee JH, Pascua PNQ, Decano AG, Kim SM, Park SJ, Kwon HI, Kim EH, Kim YI, Kim H, Kim SY, Song MS, Jang HK, Park BK, Choi YK. Evaluation of the zoonotic potential of a novel reassortant H1N2 swine influenza virus with gene constellation derived from multiple viral sources. INFECTION GENETICS AND EVOLUTION 2015; 34:378-93. [PMID: 26051886 DOI: 10.1016/j.meegid.2015.06.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 06/02/2015] [Accepted: 06/03/2015] [Indexed: 12/09/2022]
|
15
|
Abstract
To assess the potential transmission for zoonotic influenza, sero-antibodies against two kinds of influenza viruses—classical swine H1N1 and human H1N1pdm09 virus were detected in persons whose profession involved contact with swine in Guangdong province, China. Compared to the non-exposed control group, a significantly higher proportion of subjects with occupational contact to pigs exhibited positive seroreaction against the classical H1N1 SIV. Participants aged 26–50 years were at high risk of classic swine H1N1 infections. Seropositive rate to 2009 pandemic H1N1 virus among swine workers was similar with controls. The major impact of age was apparent for younger populations. Our present study has documented evidence for swine influenza virus infection among persons with occupational swine exposures. The differences of seroreactivity for the two tested influenza subtypes emphasize the necessity of regular surveillance both in pigs and human.
Collapse
|
16
|
Ducatez MF, Awoume F, Webby RJ. Influenza A(H1N1)pdm09 virus in pigs, Togo, 2013. Vet Microbiol 2015; 177:201-5. [PMID: 25778544 PMCID: PMC4388795 DOI: 10.1016/j.vetmic.2015.02.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 02/20/2015] [Accepted: 02/23/2015] [Indexed: 11/22/2022]
Abstract
We collected 325 nasal swabs from freshly slaughtered previously healthy pigs from October 2012 through January 2014 in a slaughterhouse near Lomé in Togo. Influenza A virus genome was detected by RT-PCR in 2.5-12.3% of the pooled samples, and results of hemagglutinin subtyping RT-PCR assays showed the virus in all the positive pools to be A(H1N1)pdm09. Virus was isolated on MDCK cells from a representative specimen, A/swine/Togo/ONA32/2013(H1N1). The isolate was fully sequenced and harbored eight genes similar to A(H1N1)pdm09 virus genes circulating in humans in 2012-2013, suggesting human-to-swine transmission of the pathogen.
Collapse
Affiliation(s)
- Mariette F Ducatez
- INRA, UMR 1225, IHAP, F-31076 Toulouse, France; Université de Toulouse, INP, ENVT, UMR 1225, IHAP, F-31076 Toulouse, France.
| | - Félix Awoume
- Laboratoire National Vétérinaire de Lomé, Lomé, Togo.
| | - Richard J Webby
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
17
|
Fobian K, Fabrizio TP, Yoon SW, Hansen MS, Webby RJ, Larsen LE. New reassortant and enzootic European swine influenza viruses transmit efficiently through direct contact in the ferret model. J Gen Virol 2015; 96:1603-12. [PMID: 25701826 DOI: 10.1099/vir.0.000094] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The reverse zoonotic events that introduced the 2009 pandemic influenza virus into pigs have drastically increased the diversity of swine influenza viruses in Europe. The pandemic potential of these novel reassortments is still unclear, necessitating enhanced surveillance of European pigs with additional focus on risk assessment of these new viruses. In this study, four European swine influenza viruses were assessed for their zoonotic potential. Two of the four viruses were enzootic viruses of subtype H1N2 (with avian-like H1) and H3N2, and two were new reassortants, one with avian-like H1 and human-like N2 and one with 2009 pandemic H1 and swine-like N2. All viruses replicated to high titres in nasal wash and nasal turbinate samples from inoculated ferrets and transmitted efficiently by direct contact. Only the H3N2 virus transmitted to naïve ferrets via the airborne route. Growth kinetics using a differentiated human bronchial epithelial cell line showed that all four viruses were able to replicate to high titres. Further, the viruses revealed preferential binding to the 2,6-α-silalylated glycans and investigation of the antiviral susceptibility of the viruses revealed that all were sensitive to neuraminidase inhibitors. These findings suggested that these viruses have the potential to infect humans and further underline the need for continued surveillance as well as biological characterization of new influenza A viruses.
Collapse
Affiliation(s)
- Kristina Fobian
- 1Section of Virology, National Veterinary Institute, Technical University of Denmark, Bülowsvej 27, 1870 Frederiksberg C, Denmark
| | - Thomas P Fabrizio
- 2Division of Virology, Department of Infectious Diseases, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105-3678, USA
| | - Sun-Woo Yoon
- 2Division of Virology, Department of Infectious Diseases, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105-3678, USA
| | - Mette Sif Hansen
- 3Section of Bacteriology, Pathology and Parasitology, National Veterinary Institute, Technical University of Denmark, Bülowsvej 27, 1870 Frederiksberg C, Denmark
| | - Richard J Webby
- 2Division of Virology, Department of Infectious Diseases, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105-3678, USA
| | - Lars E Larsen
- 1Section of Virology, National Veterinary Institute, Technical University of Denmark, Bülowsvej 27, 1870 Frederiksberg C, Denmark
| |
Collapse
|
18
|
Kanehira K, Takemae N, Uchida Y, Hikono H, Saito T. Reassortant swine influenza viruses isolated in Japan contain genes from pandemic A(H1N1) 2009. Microbiol Immunol 2015; 58:327-41. [PMID: 24750464 DOI: 10.1111/1348-0421.12152] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 04/03/2014] [Accepted: 04/14/2014] [Indexed: 11/27/2022]
Abstract
In 2013, three reassortant swine influenza viruses (SIVs)-two H1N2 and one H3N2-were isolated from symptomatic pigs in Japan; each contained genes from the pandemic A(H1N1) 2009 virus and endemic SIVs. Phylogenetic analysis revealed that the two H1N2 viruses, A/swine/Gunma/1/2013 and A/swine/Ibaraki/1/2013, were reassortants that contain genes from the following three distinct lineages: (i) H1 and nucleoprotein (NP) genes derived from a classical swine H1 HA lineage uniquely circulating among Japanese SIVs; (ii) neuraminidase (NA) genes from human-like H1N2 swine viruses; and (iii) other genes from pandemic A(H1N1) 2009 viruses. The H3N2 virus, A/swine/Miyazaki/2/2013, comprised genes from two sources: (i) hemagglutinin (HA) and NA genes derived from human and human-like H3N2 swine viruses and (ii) other genes from pandemic A(H1N1) 2009 viruses. Phylogenetic analysis also indicated that each of the reassortants may have arisen independently in Japanese pigs. A/swine/Miyazaki/2/2013 were found to have strong antigenic reactivities with antisera generated for some seasonal human-lineage viruses isolated during or before 2003, whereas A/swine/Miyazaki/2/2013 reactivities with antisera against viruses isolated after 2004 were clearly weaker. In addition, antisera against some strains of seasonal human-lineage H1 viruses did not react with either A/swine/Gunma/1/2013 or A/swine/Ibaraki/1/2013. These findings indicate that emergence and spread of these reassortant SIVs is a potential public health risk.
Collapse
Affiliation(s)
- Katsushi Kanehira
- Influenza and Prion Disease Research Center, National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0856, Japan
| | | | | | | | | |
Collapse
|
19
|
European surveillance network for influenza in pigs: surveillance programs, diagnostic tools and Swine influenza virus subtypes identified in 14 European countries from 2010 to 2013. PLoS One 2014; 9:e115815. [PMID: 25542013 PMCID: PMC4277368 DOI: 10.1371/journal.pone.0115815] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 11/26/2014] [Indexed: 12/02/2022] Open
Abstract
Swine influenza causes concern for global veterinary and public health officials. In continuing two previous networks that initiated the surveillance of swine influenza viruses (SIVs) circulating in European pigs between 2001 and 2008, a third European Surveillance Network for Influenza in Pigs (ESNIP3, 2010–2013) aimed to expand widely the knowledge of the epidemiology of European SIVs. ESNIP3 stimulated programs of harmonized SIV surveillance in European countries and supported the coordination of appropriate diagnostic tools and subtyping methods. Thus, an extensive virological monitoring, mainly conducted through passive surveillance programs, resulted in the examination of more than 9 000 herds in 17 countries. Influenza A viruses were detected in 31% of herds examined from which 1887 viruses were preliminary characterized. The dominating subtypes were the three European enzootic SIVs: avian-like swine H1N1 (53.6%), human-like reassortant swine H1N2 (13%) and human-like reassortant swine H3N2 (9.1%), as well as pandemic A/H1N1 2009 (H1N1pdm) virus (10.3%). Viruses from these four lineages co-circulated in several countries but with very different relative levels of incidence. For instance, the H3N2 subtype was not detected at all in some geographic areas whereas it was still prevalent in other parts of Europe. Interestingly, H3N2-free areas were those that exhibited highest frequencies of circulating H1N2 viruses. H1N1pdm viruses were isolated at an increasing incidence in some countries from 2010 to 2013, indicating that this subtype has become established in the European pig population. Finally, 13.9% of the viruses represented reassortants between these four lineages, especially between previous enzootic SIVs and H1N1pdm. These novel viruses were detected at the same time in several countries, with increasing prevalence. Some of them might become established in pig herds, causing implications for zoonotic infections.
Collapse
|
20
|
Meiners C, Loesken S, Doehring S, Starick E, Pesch S, Maas A, Noe T, Beer M, Harder T, Grosse Beilage E. Field study on swine influenza virus (SIV) infection in weaner pigs and sows. Tierarztl Prax Ausg G Grosstiere Nutztiere 2014; 42:351-9. [PMID: 25405955 DOI: 10.15653/tpg-131130] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 08/08/2014] [Indexed: 11/22/2022]
Abstract
OBJECTIVE The aim of this field study was to explore the occurrence of and factors associated with the detection of swine influenza virus (SIV) by RTqPCR in weaner pigs and sows from herds with a history of respiratory or reproductive disorders. MATERIAL AND METHODS The sample set was based on nasal swabs from 823 sows (123 submissions) and 562 weaner pigs (80 submissions). Nasal swab samples were taken and submitted by 51 veterinary practices from all over Germany. Corresponding to the pig density most of the submissions originated from the north-western part of Germany. The nasal swabs were used to detect SIV RNA by real-time RT-PCR (RTqPCR). Subtyping of SIV RNA by conventional RT-PCR and sequencing was attempted directly from clinical samples or from isolates when available. The herd characteristics, management and housing conditions of the pig herd as well as the course of the disease were collected by a telephone questionnaire with the herd attending veterinarian. RESULTS SIV was detected by RTqPCR in 53.8% of the submissions from weaner pigs with a history of respiratory disease. Moreover SIV was detected in 10.6% of the submissions from sows. The predominant endemic subtype found in nasal swabs from sows and weaner pigs was H1N1 (60.5%) whereas subtypes H1N2 (14.0%) and H3N2 (14.0%) were detected less frequently. In addition, human pandemic H1N1 virus or reassortants thereof were found in 11.5%. CONCLUSION AND CLINICAL RELEVANCE The results underline the significance of a SIV infection in young pigs. A significant lower detection of SIV in wea- ner pigs was associated with the vaccination of piglets against por- cine circovirus type 2 (PCV2), possibly indicating an interaction of SIV and PCV2. Most of the positive samples from sows originated from gilts, whereas only two originated from sows. An association between reproductive disorders and the detection of SIV could not be confirmed.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - E Grosse Beilage
- Prof. Dr. Elisabeth grosse Beilage, University of Veterinary Medicine Hannover, Field Station for Epidemiology, Buescheler Strasse 9, 49456 Bakum, Germany,
| |
Collapse
|
21
|
Chiapponi C, Baioni L, Luppi A, Moreno A, Castellan A, Foni E. Temporal insight into the natural generation of a new reassortant porcine influenza virus in a swine holding. Vet Microbiol 2014; 174:9-15. [DOI: 10.1016/j.vetmic.2014.08.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 08/18/2014] [Accepted: 08/26/2014] [Indexed: 12/18/2022]
|
22
|
Schaefer R, Rech RR, Gava D, Cantão ME, da Silva MC, Silveira S, Zanella JRC. A human-like H1N2 influenza virus detected during an outbreak of acute respiratory disease in swine in Brazil. Arch Virol 2014; 160:29-38. [PMID: 25209152 DOI: 10.1007/s00705-014-2223-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 08/30/2014] [Indexed: 11/25/2022]
Abstract
Passive monitoring for detection of influenza A viruses (IAVs) in pigs has been carried out in Brazil since 2009, detecting mostly the A(H1N1)pdm09 influenza virus. Since then, outbreaks of acute respiratory disease suggestive of influenza A virus infection have been observed frequently in Brazilian pig herds. During a 2010-2011 influenza monitoring, a novel H1N2 influenza virus was detected in nursery pigs showing respiratory signs. The pathologic changes were cranioventral acute necrotizing bronchiolitis to subacute proliferative and purulent bronchointerstitial pneumonia. Lung tissue samples were positive for both influenza A virus and A(H1N1)pdm09 influenza virus based on RT-qPCR of the matrix gene. Two IAVs were isolated in SPF chicken eggs. HI analysis of both swine H1N2 influenza viruses showed reactivity to the H1δ cluster. DNA sequencing was performed for all eight viral gene segments of two virus isolates. According to the phylogenetic analysis, the HA and NA genes clustered with influenza viruses of the human lineage (H1-δ cluster, N2), whereas the six internal gene segments clustered with the A(H1N1)pdm09 group. This is the first report of a reassortant human-like H1N2 influenza virus derived from pandemic H1N1 virus causing an outbreak of respiratory disease in pigs in Brazil. The emergence of a reassortant IAV demands the close monitoring of pigs through the full-genome sequencing of virus isolates in order to enhance genetic information about IAVs circulating in pigs.
Collapse
Affiliation(s)
- Rejane Schaefer
- Embrapa Swine and Poultry, Genetic and Animal Health Laboratory, Rodovia BR153, Km 110, Concórdia, SC, CEP 89700-000, Brazil,
| | | | | | | | | | | | | |
Collapse
|
23
|
Kirisawa R, Ogasawara Y, Yoshitake H, Koda A, Furuya T. Genomic reassortants of pandemic A (H1N1) 2009 virus and endemic porcine H1 and H3 viruses in swine in Japan. J Vet Med Sci 2014; 76:1457-70. [PMID: 25056678 PMCID: PMC4272978 DOI: 10.1292/jvms.14-0194] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
From 2010 to 2013 in Japan, we isolated 11 swine influenza viruses (SIVs) from
pigs showing respiratory symptoms. Sequence and phylogenetic analyses showed that 6 H1N1
viruses originated from the pandemic (H1N1) 2009 (pdm 09) virus and the other 5 viruses
were reassortants between SIVs and pdm 09 viruses, representing 4 genotypes. Two H1N2
viruses contained H1 and N2 genes originated from Japanese H1N2 SIV together with internal
genes of pdm 09 viruses. Additionally, 1 H1N2 virus contained a further NP gene
originating from Japanese H1N2 SIV. One H1N1 virus contained only the H1 gene originating
from Japanese H1 SIV in a pdm 09 virus background. One H3N2 virus contained H3 and N2
genes originating from Japanese H3N2 SIV together with internal genes of pdm 09 virus. The
results indicate that pdm 09 viruses are distributed widely in the Japanese swine
population and that several reassortments with Japanese SIVs have occurred.
Collapse
Affiliation(s)
- Rikio Kirisawa
- Laboratory of Veterinary Virology, Department of Pathobiology, School of Veterinary Medicine, Rakuno Gakuen University, 582 Bunkyoudai Midori-machi, Ebetsu, Hokkaido 069-8501, Japan
| | | | | | | | | |
Collapse
|
24
|
Full-Genome Sequence of a Reassortant H1N1 Swine Influenza Virus Isolated from Pigs in Italy. GENOME ANNOUNCEMENTS 2013; 1:1/5/e00778-13. [PMID: 24092781 PMCID: PMC3790085 DOI: 10.1128/genomea.00778-13] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In this study, the full-genome sequence of a novel reassortant H1N1 swine influenza virus (SIV) is reported. The isolate has a hemagglutinin (HA) gene of the pandemic H1N1 influenza virus, but it carries the seven genome segments of the avian-origin H1N1 SIV currently circulating in European pig farms.
Collapse
|
25
|
EFSA Panel on Animal Health and Welfare (AHAW), European Centre for Disease Prevention and Control, European Medicines Agency. Scientific opinion on the possible risks posed by the influenza A (H3N2v) virus for animal health and its potential spread and implications for animal and human health. EFSA J 2013. [DOI: 10.2903/j.efsa.2013.3383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
26
|
Lange J, Groth M, Schlegel M, Krumbholz A, Wieczorek K, Ulrich R, Köppen S, Schulz K, Appl D, Selbitz HJ, Sauerbrei A, Platzer M, Zell R, Dürrwald R. Reassortants of the pandemic (H1N1) 2009 virus and establishment of a novel porcine H1N2 influenza virus, lineage in Germany. Vet Microbiol 2013; 167:345-56. [PMID: 24139631 DOI: 10.1016/j.vetmic.2013.09.024] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 09/17/2013] [Accepted: 09/19/2013] [Indexed: 11/19/2022]
Abstract
The incursion of pandemic (H1N1) 2009 virus (pdmH1N1) into the German pig population was investigated in a serosurvey and by virological means between June 2009 and December 2012. Analysis of 23,116 pig sera from a total of 2,666 herds revealed 224 herds that reacted with pdmH1N1 but not with the prevalent avian-like H1N1 swine influenza virus. Sixty-six pdmH1N1 strains and their reassortant derivatives (pdmH1huN2, huH3pdmN1) have been collected since November 2009. Sequencing of three pdmH1N1, 20 pdmH1huN2 and one huH3pdmN1 strains with conventional and next generation sequencing techniques and subsequent phylogenetic analyses with available sequence data revealed the emergence of five distinct reassortant genotypes in Europe. The most frequent genotype emerged at least three times independently, one of which (Papenburg lineage) established a stable infection chain and became more prevalent in pigs than pdmH1N1 in Germany.
Collapse
Affiliation(s)
- Jeannette Lange
- Department of Virology and Antiviral Therapy, Jena University Hospital, Friedrich Schiller University Jena, Hans-Knöll-Str. 2, 07745 Jena, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
A novel reassortant influenza A virus, H1avN2hu, has been found in Danish swine. The virus contains an H1 gene similar to the hemagglutinin (HA) gene of H1N1 avian-like swine viruses and an N2 gene most closely related to the neuraminidase (NA) gene of human H3N2 viruses from the mid-1990s.
Collapse
|
28
|
Prevalence of antibodies to European porcine influenza viruses in humans living in high pig density areas of Germany. Med Microbiol Immunol 2013; 203:13-24. [PMID: 24013183 DOI: 10.1007/s00430-013-0309-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 08/16/2013] [Indexed: 01/29/2023]
Abstract
The risk of zoonotic human infection caused by European porcine influenza virus strains was estimated in German regions with a high pig density. Sera from 622 healthy volunteers were collected between April 2009 and November 2011, mainly in Westphalia and western Lower Saxony. These included 362 subjects with occupational contact to pigs and 260 blood donors without any direct exposition to pigs. Samples were analysed by the haemagglutination inhibition (HI) assay against a panel of six swine viruses of subtypes avian-like H1N1 and human-like H3N2 as well as against human H1N1 and H3N2 viruses including the pandemic H1N1 strain of 2009. Reciprocal HI titres ≥20 were quoted as seroreactive. Compared to the control group, a significantly higher proportion of subjects with direct contact to pigs exhibited seroreactivity against porcine antigens of the avian-like H1N1 (37.0 %/7.7 %), the human-like H3N2 (59.7 %/43.1 %), the pandemic H1N1 strain of 2009 (51.7 %/26.5 %) and against a historic seasonal H3N2 strain that is closely related antigenetically to currently circulating human-like H3N2 viruses of European pigs (57.5 %/36.5 %). This trend was also observed when a reciprocal HI titre ≥40 was chosen as cut-off. Particularly, in younger subjects, the differences in seroreactivity against porcine strains between the exposed and non-exposed group were significant. The data indicate a higher risk of infection in the exposed individuals.
Collapse
|
29
|
Zhao N, Lange E, Kubald S, Grund C, Beer M, Harder TC. Distinction of subtype-specific antibodies against European porcine influenza viruses by indirect ELISA based on recombinant hemagglutinin protein fragment-1. Virol J 2013; 10:246. [PMID: 23898799 PMCID: PMC3733666 DOI: 10.1186/1743-422x-10-246] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 07/22/2013] [Indexed: 11/17/2022] Open
Abstract
Background Serological investigations of swine influenza virus infections and epidemiological conclusions thereof are challenging due to the complex and regionally variable pattern of co-circulating viral subtypes and lineages and varying vaccination regimes. Detection of subtype-specific antibodies currently depends on hemagglutination inhibition (HI) assays which are difficult to standardize and unsuitable for large scale investigations. Methods The nucleocapsid protein (NP) and HA1 fragments of the hemagglutinin protein (HA) of five different lineages (H1N1av, H1N1pdm, H1pdmN2, H1N2, H3N2) of swine influenza viruses were bacterially expressed and used as diagnostic antigens in indirect ELISA. Results Proteins were co-translationally mono-biotinylated and refolded in vitro into an antigenically authentic conformation. Western blotting and indirect ELISA revealed highly subtype-specific antigenic characteristics of the recombinant HA1 proteins although some cross reactivity especially among antigens of the H1 subtype were evident. Discrimination of antibodies directed against four swine influenza virus subtypes co-circulating in Germany was feasible using the indirect ELISA format. Conclusions Bacterially expressed recombinant NP and HA1 swine influenza virus proteins served as antigens in indirect ELISAs and provided an alternative to commercial blocking NP ELISA and HI assays concerning generic (NP-specific) and HA subtype-specific sero-diagnostics, respectively, on a herd basis.
Collapse
Affiliation(s)
- Na Zhao
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Suedufer 10, Greifswald 17493, Germany
| | | | | | | | | | | |
Collapse
|
30
|
Goodell CK, Prickett J, Kittawornrat A, Zhou F, Rauh R, Nelson W, O'Connell C, Burrell A, Wang C, Yoon KJ, Zimmerman JJ. Probability of detecting influenza A virus subtypes H1N1 and H3N2 in individual pig nasal swabs and pen-based oral fluid specimens over time. Vet Microbiol 2013; 166:450-60. [PMID: 23910522 DOI: 10.1016/j.vetmic.2013.06.029] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 06/16/2013] [Accepted: 06/24/2013] [Indexed: 11/30/2022]
Abstract
The probability of detecting influenza A virus (IAV) by virus isolation (VI), point-of-care (POC) antigen detection, and real-time reverse-transcription polymerase chain reaction (rRT-PCR) was estimated for pen-based oral fluid (OF) and individual pig nasal swab (NS) specimens. Piglets (n=82) were isolated for 30 days and confirmed negative for porcine reproductive and respiratory syndrome virus, Mycoplasma hyopneumoniae, and IAV infections. A subset (n=28) was vaccinated on day post inoculation (DPI) -42 and -21 with a commercial multivalent vaccine. On DPI 0, pigs were intratracheally inoculated with contemporary isolates of H1N1 (n=35) or H3N2 (n=35) or served as negative controls (n=12). OF (n=370) was collected DPI 0-16 and NS (n=924) DPI 0-6, 8, 10, 12, 14, 16. The association between IAV detection and variables of interest (specimen, virus subtype, assay, vaccination status, and DPI) was analyzed by mixed-effect repeated measures logistic regression and the results used to calculate the probability (pˆ) of detecting IAV in OF and NS over DPI by assay. Vaccination (p-value<0.0001), DPI (p-value<0.0001), and specimen-assay interaction (p-value<0.0001) were significant to IAV detection, but virus subtype was not (p-value=0.89). Vaccination and/or increasing DPI reduced pˆ for all assays. VI was more successful using NS than OF, but both VI and POC were generally unsuccessful after DPI 6. Overall, rRT-PCR on OF specimens provided the highest pˆ for the most DPIs, yet significantly different results were observed between the two laboratories independently performing rRT-PCR testing.
Collapse
Affiliation(s)
- Christa K Goodell
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50010, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Expanded cocirculation of stable subtypes, emerging lineages, and new sporadic reassortants of porcine influenza viruses in swine populations in Northwest Germany. J Virol 2013; 87:10460-76. [PMID: 23824819 DOI: 10.1128/jvi.00381-13] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The emergence of the human 2009 pandemic H1N1 (H1N1pdm) virus from swine populations refocused public and scientific attention on swine as an important source of influenza A viruses bearing zoonotic potential. Widespread and year-round circulation of at least four stable lineages of porcine influenza viruses between 2009 and 2012 in a region of Germany with a high-density swine population is documented here. European avian influenza virus-derived H1N1 (H1N1av) viruses dominated the epidemiology, followed by human-derived subtypes H1N2 and H3N2. H1N1pdm viruses and, in particular, recently emerging reassortants between H1N1pdm and porcine HxN2 viruses (H1pdmN2) were detected in about 8% of cases. Further reassortants between these main lineages were diagnosed sporadically. Ongoing diversification both at the phylogenetic and at the antigenic level was evident for the H1N1av lineage and for some of its reassortants. The H1avN2 reassortant R1931/11 displayed conspicuously distinct genetic and antigenic features and was easily transmitted from pig to pig in an experimental infection. Continuing diverging evolution was also observed in the H1pdmN2 lineage. These viruses carry seven genome segments of the H1N1pdm virus, including a hemagglutinin gene that encodes a markedly antigenically altered protein. The zoonotic potential of this lineage remains to be determined. The results highlight the relevance of surveillance and control of porcine influenza virus infections. This is important for the health status of swine herds. In addition, a more exhaustive tracing of the formation, transmission, and spread of new reassortant influenza A viruses with unknown zoonotic potential is urgently required.
Collapse
|
32
|
Antigenic variation of H1N1, H1N2 and H3N2 swine influenza viruses in Japan and Vietnam. Arch Virol 2013; 158:859-76. [PMID: 23435952 DOI: 10.1007/s00705-013-1616-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 12/13/2012] [Indexed: 10/27/2022]
Abstract
The antigenicity of the influenza A virus hemagglutinin is responsible for vaccine efficacy in protecting pigs against swine influenza virus (SIV) infection. However, the antigenicity of SIV strains currently circulating in Japan and Vietnam has not been well characterized. We examined the antigenicity of classical H1 SIVs, pandemic A(H1N1)2009 (A(H1N1)pdm09) viruses, and seasonal human-lineage SIVs isolated in Japan and Vietnam. A hemagglutination inhibition (HI) assay was used to determine antigenic differences that differentiate the recent Japanese H1N2 and H3N2 SIVs from the H1N1 and H3N2 domestic vaccine strains. Minor antigenic variation between pig A(H1N1)pdm09 viruses was evident by HI assay using 13 mAbs raised against homologous virus. A Vietnamese H1N2 SIV, whose H1 gene originated from a human strain in the mid-2000s, reacted poorly with post-infection ferret serum against human vaccine strains from 2000-2010. These results provide useful information for selection of optimal strains for SIV vaccine production.
Collapse
|
33
|
Influenza A(H1N1)pdm09 virus: viral characteristics and genetic evolution. Enferm Infecc Microbiol Clin 2012; 30 Suppl 4:10-7. [DOI: 10.1016/s0213-005x(12)70099-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|