1
|
Li H, Song C, Li Y, Zhang T, Yang X, Wang H. Genome-wide CRISPR screen reveals host factors for gama- and delta-coronavirus infection in Huh7 cells. Int J Biol Macromol 2025; 304:140728. [PMID: 39920943 DOI: 10.1016/j.ijbiomac.2025.140728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/03/2025] [Accepted: 02/04/2025] [Indexed: 02/10/2025]
Abstract
Genome-wide CRISPR screening has emerged as a powerful tool for identifying novel host factors involved in viral infections. In recent years, host factors for several Alpha- and Beta-coronaviruses have been systematically screened and characterized. However, knowledge regarding Gamma- and Delta-coronavirus infections remains limited. In this study, we conducted genome-scale CRISPR knockout (KO) screening in Huh7 cells infected with infectious bronchitis virus (IBV), a Gamma-coronavirus, and porcine deltacoronavirus (PDCoV), a Delta-coronavirus. We identified known host factors for PDCoV, including APN and TMEM41B. We confirmed that human APN does not serve as a critical host factor for IBV. Notably, SPPL3 was identified as a key factor involved in viral particle entry and S protein-induced syncytium formation through the modulation of cellular N-glycosylation. Furthermore, we performed a meta-analysis integrating all Huh7 cell-based genome-wide CRISPR screens across the four genera of coronaviruses (Alpha-, Beta-, Gamma-, and Delta-coronaviruses). Our analysis highlighted conserved host pathways, particularly those related to proteoglycans, glycoproteins, and vesicle trafficking. TMEM41B, SCAP, and FAM98A emerged as the most frequently targeted host genes. These findings provide valuable insights into the life cycles of IBV and PDCoV infections and facilitate the development of host-directed therapeutic strategies.
Collapse
Affiliation(s)
- Hao Li
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu 610064, China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610064, China
| | - Cailiang Song
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu 610064, China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610064, China
| | - Yuqing Li
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu 610064, China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610064, China
| | - Tiejun Zhang
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu 610064, China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610064, China
| | - Xin Yang
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu 610064, China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610064, China
| | - Hongning Wang
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu 610064, China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610064, China.
| |
Collapse
|
2
|
Goh E, Chavatte JM, Lin RTP, Ng LFP, Rénia L, Oon HH. Vaccines in Dermatology-Present and Future: A Review. Vaccines (Basel) 2025; 13:125. [PMID: 40006672 PMCID: PMC11860801 DOI: 10.3390/vaccines13020125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/16/2025] [Accepted: 01/18/2025] [Indexed: 02/27/2025] Open
Abstract
Dermatological vaccines have emerged as critical tools in preventing and managing a wide spectrum of skin conditions ranging from infectious diseases to malignancies. By synthesizing evidence from existing literature, this review aims to comprehensively evaluate the efficacy, safety, and immunogenicity of vaccines used in dermatology, including both approved vaccines and those currently being researched. Vaccines discussed in this paper include those targeting dermatoses and malignancies (e.g., acne vulgaris, atopic dermatitis, and melanoma); infectious diseases (e.g., human papillomavirus (HPV); varicella zoster virus (VZV); herpes zoster (HZ); warts; smallpox; mpox (monkeypox); hand, foot, and mouth disease (HFMD); candidiasis and Group B Streptococcus (GBS); and neglected tropical diseases (e.g., Buruli ulcer, leprosy, and leishmaniasis). Through this review, we aim to provide a detailed understanding of the role of vaccines in dermatology, identify knowledge gaps, and propose areas for future research.
Collapse
Affiliation(s)
- Eyan Goh
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore; (E.G.); (L.F.P.N.); (L.R.)
| | - Jean-Marc Chavatte
- National Public Health Laboratory, Singapore 308442, Singapore; (J.-M.C.); (R.T.P.L.)
| | - Raymond T. P. Lin
- National Public Health Laboratory, Singapore 308442, Singapore; (J.-M.C.); (R.T.P.L.)
- National University Hospital Singapore, Singapore 119077, Singapore
| | - Lisa F. P. Ng
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore; (E.G.); (L.F.P.N.); (L.R.)
- A*STAR Infectious Diseases Labs (A*STAR IDL), Agency for Science, Technology, and Research (A*STAR), Singapore 138648, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Laurent Rénia
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore; (E.G.); (L.F.P.N.); (L.R.)
- A*STAR Infectious Diseases Labs (A*STAR IDL), Agency for Science, Technology, and Research (A*STAR), Singapore 138648, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Hazel H. Oon
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore; (E.G.); (L.F.P.N.); (L.R.)
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- National Skin Centre and Skin Research Institute of Singapore, Singapore 308205, Singapore
| |
Collapse
|
3
|
Farooq M, Ali A, Hassan MSH, Abdul-Careem MF. Nucleotide and Amino Acid Analyses of Unique Infectious Bronchitis Virus (IBV) Variants from Canadian Poultry Flocks with Drop in Egg Production. Genes (Basel) 2024; 15:1480. [PMID: 39596680 PMCID: PMC11593648 DOI: 10.3390/genes15111480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND/OBJECTIVES Infectious bronchitis (IB) is a highly infectious avian disease caused by the infectious bronchitis virus (IBV). The disease causes lesions mainly in the respiratory, reproductive, and renal systems and has a significant economic impact on the poultry industry worldwide. METHODS We discovered two unique IBV isolates (T-62: PP737794.1 and CL-61: PP783617.1) circulating in Canada and molecularly characterized them. RESULTS The phylogenetic analysis revealed that the IBV isolates belong to genotype I and fall between lineages 25 and 7. Further analysis of the T-62 IBV isolate indicated that it is a potential recombinant of the Iowa state isolate (IA1162/2020-MW) and that the CL-61 strain of the IBV is also a recombinant IBV with the Connecticut (Conn) vaccine strain as its major parent. The S1 glycoprotein of the CL-61 and T-62 strains of the IBV had 85.7% and 73.2% amino acid (aa) identities respectively compared to the Conn vaccine strain. There were 67 and 129 aa substitutions among the S1 glycoprotein of the CL-61 and T-62 strains of the IBV compared to the Conn vaccine, respectively. Importantly, two and nineteen of these aa variations were in hypervariable regions 1 (HVR1) and HVR3. Finally, the two IBV isolates possessed a higher affinity for the sialic acid ligand compared to the DMV/1639 and Mass/SES IBV strains. CONCLUSIONS Genetic recombination in the IBV results in the continual emergence of new variants, posing challenges for the poultry industry. As indicated by our analyses, live attenuated vaccine strains play a role in the genetic recombination of the IBV, resulting in the emergence of variants.
Collapse
Affiliation(s)
- Muhammad Farooq
- Faculty of Veterinary Medicine, University of Calgary, Health Research Innovation Center 2C53, 3330 Hospital Drive, NW, Calgary, AB T2N 4N1, Canada; (M.F.); (A.A.)
| | - Ahmed Ali
- Faculty of Veterinary Medicine, University of Calgary, Health Research Innovation Center 2C53, 3330 Hospital Drive, NW, Calgary, AB T2N 4N1, Canada; (M.F.); (A.A.)
- Department of Pathology, Faculty of Veterinary Medicine, Beni-Suef University, Beni Suef 62511, Egypt
| | - Mohamed S. H. Hassan
- Department of Avian and Rabbit Medicine, Faculty of Veterinary Medicine, Assiut University, Assiut 71515, Egypt;
| | - Mohamed Faizal Abdul-Careem
- Faculty of Veterinary Medicine, University of Calgary, Health Research Innovation Center 2C53, 3330 Hospital Drive, NW, Calgary, AB T2N 4N1, Canada; (M.F.); (A.A.)
| |
Collapse
|
4
|
Shi J, Hu S, Wei H, Zhang L, Lan Y, Guan J, Zhao K, Gao F, He W, Li Z. Dipeptidyl peptidase 4 interacts with porcine coronavirus PHEV spikes and mediates host range expansion. J Virol 2024; 98:e0075324. [PMID: 38829136 PMCID: PMC11265280 DOI: 10.1128/jvi.00753-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 05/08/2024] [Indexed: 06/05/2024] Open
Abstract
Porcine hemagglutinating encephalomyelitis virus (PHEV), a neurotropic betacoronavirus, is prevalent in natural reservoir pigs and infects mice. This raises concerns about host jumping or spillover, but little is known about the cause of occurrence. Here, we revealed that dipeptidyl peptidase 4 (DPP4) is a candidate binding target of PHEV spikes and works as a broad barrier to overcome. Investigations of the host breadth of PHEV confirmed that cells derived from pigs and mice are permissive to virus propagation. Both porcine DPP4 and murine DPP4 have high affinity for the viral spike receptor-binding domain (RBD), independent of their catalytic activity. Loss of DPP4 expression results in limited PHEV infection. Structurally, PHEV spike protein binds to the outer surface of blades IV and V of the DPP4 β-propeller domain, and the DPP4 residues N229 and N321 (relative to human DPP4 numbering) participate in RBD binding via its linked carbohydrate entities. Removal of these N-glycosylations profoundly enhanced the RBD-DPP4 interaction and viral invasion, suggesting they act as shielding in PHEV infection. Furthermore, we found that glycosylation, rather than structural differences or surface charges, is more responsible for DPP4 recognition and species barrier formation. Overall, our findings shed light on virus-receptor interactions and highlight that PHEV tolerance to DPP4 orthologs is a putative determinant of its cross-species transmission or host range expansion.IMPORTANCEPHEV is a neurotropic betacoronavirus that is circulating worldwide and has raised veterinary and economic concerns. In addition to being a reservoir species of pigs, PHEV can also infect wild-type mice, suggesting a "host jump" event. Understanding cross-species transmission is crucial for disease prevention and control but remains to be addressed. Herein, we show that the multifunctional receptor DPP4 plays a pivotal role in the host tropism of PHEV and identifies the conserved glycosylation sites in DPP4 responsible for this restriction. These findings highlight that the ability of PHEV to utilize DPP4 orthologs potentially affects its natural host expansion.
Collapse
Affiliation(s)
- Junchao Shi
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Jilin University, Changchun, China
| | - Shiyu Hu
- Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Institute of Systems Biomedicine, Peking University Health Science Center, Beijing, China
| | - Hanlu Wei
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Le Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yungang Lan
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jiyu Guan
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Kui Zhao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Feng Gao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Wenqi He
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Zi Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
5
|
Jiang Y, Cheng X, Gao M, Yu Y, Dou X, Shen H, Tang M, Zhou S, Peng D. Two mutations on S2 subunit were critical for Vero cell tropism expansion of infectious bronchitis virus HV80. Vet Microbiol 2024; 294:110134. [PMID: 38820725 DOI: 10.1016/j.vetmic.2024.110134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 06/02/2024]
Abstract
Infectious bronchitis virus (IBV) restricts cell tropism. Except for the Beaudette strain, other IBVs cannot infect mammalian cell lines. The limited cell tropism of other IBVs has hindered IBV vaccine development and research on the mechanisms of IBV infection. A novel Vero cell-adapted strain, HV80, has been previously reported. In this study, we constructed recombinants expressing the chimeric S glycoprotein, S1 or S2 subunit of strain H120 and demonstrated that mutations on S2 subunit are associated with the strain HV80 Vero cell adaptation. R687P or P687R substitution recombinants were constructed with the genome backbone of strains HV80 or H120. We found that the RRRR690/S motif at the S2' cleavage site is crucial to the Vero cell adaptation of strain HV80. Another six amino acid substitutions in the S2 subunit of the recombinants showed that the Q855H mutation induced syncytium formation. A transient transfection assay demonstrated the S glycoprotein with the PRRR690/S motif at the S2' cleavage site induced low-level cell-cell fusion, while H855Q substitution hindered cell-cell fusion and blocked cleavage event with S20 product. This study provides a basis for the construction of IBV recombinants capable of replicating in Vero cells, thus contributing to the advancement in the development of genetically engineered cell-based IBV vaccines.
Collapse
Affiliation(s)
- Yi Jiang
- College of Veterinary Medicine, Yangzhou University, 225009, China; Jiangsu Institute of Poultry Sciences, Yangzhou 225125, China
| | - Xu Cheng
- Jiangsu Institute of Poultry Sciences, Yangzhou 225125, China
| | - Mingyan Gao
- Jiangsu Institute of Poultry Sciences, Yangzhou 225125, China
| | - Yan Yu
- Jiangsu Institute of Poultry Sciences, Yangzhou 225125, China
| | - Xinhong Dou
- Jiangsu Institute of Poultry Sciences, Yangzhou 225125, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Haiyu Shen
- Jiangsu Institute of Poultry Sciences, Yangzhou 225125, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Mengjun Tang
- Jiangsu Institute of Poultry Sciences, Yangzhou 225125, China
| | - Sheng Zhou
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China.
| | - Daxin Peng
- College of Veterinary Medicine, Yangzhou University, 225009, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
6
|
He Y, Miao C, Yang S, Xu C, Liu Y, Zhu X, Wen Y, Wu R, Zhao Q, Huang X, Yan Q, Lang Y, Zhao S, Wang Y, Han X, Cao S, Hu Y, Du S. Sialic acids as attachment factors in mosquitoes mediating Japanese encephalitis virus infection. J Virol 2024; 98:e0195923. [PMID: 38634598 PMCID: PMC11092328 DOI: 10.1128/jvi.01959-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/26/2024] [Indexed: 04/19/2024] Open
Abstract
The role of Culex mosquitoes in the transmission of Japanese encephalitis virus (JEV) is crucial, yet the mechanisms of JEV infection in these vectors remain unclear. Previous research has indicated that various host factors participate in JEV infection. Herein, we present evidence that mosquito sialic acids enhance JEV infection both in vivo and in vitro. By treating mosquitoes and C6/36 cells with neuraminidase or lectin, the function of sialic acids is effectively blocked, resulting in significant inhibition of JEV infection. Furthermore, knockdown of the sialic acid biosynthesis genes in Culex mosquitoes also leads to a reduction in JEV infection. Moreover, our research revealed that sialic acids play a role in the attachment of JEV to mosquito cells, but not in its internalization. To further explore the mechanisms underlying the promotion of JEV attachment by sialic acids, we conducted immunoprecipitation experiments to confirm the direct binding of sialic acids to the last α-helix in JEV envelope protein domain III. Overall, our study contributes to a molecular comprehension of the interaction between mosquitoes and JEV and offers potential strategies for preventing the dissemination of flavivirus in natural environments.IMPORTANCEIn this study, we aimed to investigate the impact of glycoconjugate sialic acids on mosquito infection with Japanese encephalitis virus (JEV). Our findings demonstrate that sialic acids play a crucial role in enhancing JEV infection by facilitating the attachment of the virus to the cell membrane. Furthermore, our investigation revealed that sialic acids directly bind to the final α-helix in the JEV envelope protein domain III, thereby accelerating virus adsorption. Collectively, our results highlight the significance of mosquito sialic acids in JEV infection within vectors, contributing to a better understanding of the interaction between mosquitoes and JEV.
Collapse
Affiliation(s)
- Yi He
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Chang Miao
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shiping Yang
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Changhao Xu
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yuwei Liu
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xi Zhu
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yiping Wen
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Sichuan Science-Observation Experimental Station for Veterinary Drugs and Veterinary Diagnostic Technology, Ministry of Agriculture, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| | - Rui Wu
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Sichuan Science-Observation Experimental Station for Veterinary Drugs and Veterinary Diagnostic Technology, Ministry of Agriculture, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| | - Qin Zhao
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Sichuan Science-Observation Experimental Station for Veterinary Drugs and Veterinary Diagnostic Technology, Ministry of Agriculture, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| | - Xiaobo Huang
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Sichuan Science-Observation Experimental Station for Veterinary Drugs and Veterinary Diagnostic Technology, Ministry of Agriculture, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| | - Qigui Yan
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Sichuan Science-Observation Experimental Station for Veterinary Drugs and Veterinary Diagnostic Technology, Ministry of Agriculture, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| | - Yifei Lang
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Sichuan Science-Observation Experimental Station for Veterinary Drugs and Veterinary Diagnostic Technology, Ministry of Agriculture, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| | - Shan Zhao
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Sichuan Science-Observation Experimental Station for Veterinary Drugs and Veterinary Diagnostic Technology, Ministry of Agriculture, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| | - Yiping Wang
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Sichuan Science-Observation Experimental Station for Veterinary Drugs and Veterinary Diagnostic Technology, Ministry of Agriculture, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| | - Xinfeng Han
- Sichuan Science-Observation Experimental Station for Veterinary Drugs and Veterinary Diagnostic Technology, Ministry of Agriculture, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| | - Sanjie Cao
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Sichuan Science-Observation Experimental Station for Veterinary Drugs and Veterinary Diagnostic Technology, Ministry of Agriculture, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| | - Yajie Hu
- Sichuan Center for Disease Control and Prevention, Chengdu, China
| | - Senyan Du
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Sichuan Science-Observation Experimental Station for Veterinary Drugs and Veterinary Diagnostic Technology, Ministry of Agriculture, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| |
Collapse
|
7
|
Chen Y, Liu X, Zheng JN, Yang LJ, Luo Y, Yao YL, Liu MQ, Xie TT, Lin HF, He YT, Zhou P, Hu B, Tian RJ, Shi ZL. N-linked glycoproteins and host proteases are involved in swine acute diarrhea syndrome coronavirus entry. J Virol 2023; 97:e0091623. [PMID: 37772826 PMCID: PMC10617469 DOI: 10.1128/jvi.00916-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/16/2023] [Indexed: 09/30/2023] Open
Abstract
IMPORTANCE Gaining insight into the cell-entry mechanisms of swine acute diarrhea syndrome coronavirus (SADS-CoV) is critical for investigating potential cross-species infections. Here, we demonstrated that pretreatment of host cells with tunicamycin decreased SADS-CoV attachment efficiency, indicating that N-linked glycosylation of host cells was involved in SADS-CoV entry. Common N-linked sugars Neu5Gc and Neu5Ac did not interact with the SADS-CoV S1 protein, suggesting that these molecules were not involved in SADS-CoV entry. Additionally, various host proteases participated in SADS-CoV entry into diverse cells with different efficiencies. Our findings suggested that SADS-CoV may exploit multiple pathways to enter cells, providing insights into intervention strategies targeting the cell entry of this virus.
Collapse
Affiliation(s)
- Ying Chen
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xi Liu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiang-Nan Zheng
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen, China
| | - Li-Jun Yang
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen, China
| | - Yun Luo
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yu-Lin Yao
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Mei-Qin Liu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ting-ting Xie
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hao-Feng Lin
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yan-Tong He
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Peng Zhou
- Guangzhou Laboratory, Guangzhou International Bio Island, Guangzhou, China
| | - Ben Hu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Rui-Jun Tian
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen, China
| | - Zheng-Li Shi
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
8
|
Wang J, Liu H, Yang Y, Tan Y, Sun L, Guo Z, Zeng X, Wang Z, Li S, Yin L, Yin D, Shen X, Dai Y, Liu X, Ruan J, Li X, Zhao S, Peng G, Pan X, Wang C, Xie S. Genome-scale CRISPR screen identifies TRIM2 and SLC35A1 associated with porcine epidemic diarrhoea virus infection. Int J Biol Macromol 2023; 250:125962. [PMID: 37499712 DOI: 10.1016/j.ijbiomac.2023.125962] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/14/2023] [Accepted: 07/19/2023] [Indexed: 07/29/2023]
Abstract
Porcine epidemic diarrhoea (PED) caused by the porcine epidemic diarrhoea virus (PEDV) is the most devastating disease in the global pig industry due to its high mortality rate in piglets. The host factors critical for PEDV replication are poorly understood. Here, we designed a pooled African green monkey genome-scale CRISPR/Cas9 knockout (VeroCKO) library containing 75,608 single guide RNAs targeting 18,993 protein-coding genes. Subsequently, we use the VeroCKO library to identify key host factors facilitating PEDV infection in Vero E6 cells. Several previously unreported genes associated with PEDV infection are highly enriched post-PEDV selection. We discovered that knocking out the tripartite motif 2 (TRIM2) and the solute carrier family 35 member A1 (SLC35A1) inhibited PEDV replication. Virtual screening and molecular docking approaches showed that chem-80,048,685 (M2) s ignificantly inhibited PEDV attachment and late replication by impeding SLC35A1. Furthermore, we found that knocking out SLC35A1 in Vero E6 cells upregulated a disintegrin and metalloprotease protein-17 (ADAM17) by splicing porcine aminopeptidase N (pAPN) and angiotensin-converting enzyme 2 (ACE2) ectodomains to reduce PEDV-infection in a CMP-Sialic Acid (CMP-SA) cell entry-independent manner. These findings provide a new perspective for a better understanding of host-pathogen interactions and new therapeutic targets for PEDV infection.
Collapse
Affiliation(s)
- Jieru Wang
- Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Hailong Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuqing Yang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Yubei Tan
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
| | - Limeng Sun
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
| | - Zishi Guo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaoyu Zeng
- Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Zichang Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Sheng Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Lei Yin
- Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Dongdong Yin
- Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Xuehuai Shen
- Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Yin Dai
- Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Xiangdong Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinxue Ruan
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Xinyun Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Shuhong Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Guiqing Peng
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China; Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China.
| | - Xiaocheng Pan
- Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China.
| | - Chonglong Wang
- Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China.
| | - Shengsong Xie
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China; Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
9
|
Yu F, Chen H, Xu J, Wang Y, Nie C, Song S, Meng L, Hao K, Zhao Z. Heparan sulfate is the attachment factor associated with channel catfish virus infection on host cells. Front Vet Sci 2023; 10:1260002. [PMID: 37745212 PMCID: PMC10514354 DOI: 10.3389/fvets.2023.1260002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/28/2023] [Indexed: 09/26/2023] Open
Abstract
Channel catfish virus (CCV; family Alloherpesviridae) infects channel catfish, causing great harm to aquaculture fisheries and economic development. Attachment is the first step in viral infection and relies on the interaction of virions with components of the extracellular matrix (ECM). The present study aimed to explored the role of the main three ECM components in CCV attachment. Western blotting and quantitative real-time PCR analysis showed that neither collagen nor hyaluronic acid treatments had significant effects on CCV attachment. When exogenous heparin was used as a competitive inhibitor, the adhesion of heparin sodium salt to CCV was dose-dependent. When the concentration of heparin sodium salt was 10 mg/mL, the inhibitory effect on CCV infection of channel catfish ovary (CCO/BB) cells was more than 90%. Heparinase I could significantly prevent CCV attachment by digesting heparan sulfate on the cell surface, and both heparin sodium salt and heparinase I could dose-dependently reduce CCV titers, suggesting that heparin plays an important role in CCV attachment. In addition, the binding experiments between heparin-agarose beads and virions showed that CCV virions could specifically bind to heparin in a dose-dependent manner. The above results suggested that heparan sulfate might be an attachment factor involved in CCV infection of CCO/BB cells. These results increase our understand of the attachment mechanism of CCV and lay the foundation for further research on antiviral drugs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Zhe Zhao
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, College of Oceanography, Hohai University, Nanjing, China
| |
Collapse
|
10
|
Park JS, Woo SJ, Song CS, Han JY. Modification of surface glycan by expression of beta-1,4-N-acetyl-galactosaminyltransferase (B4GALNT2) confers resistance to multiple viruses infection in chicken fibroblast cell. Front Vet Sci 2023; 10:1160600. [PMID: 37483287 PMCID: PMC10358734 DOI: 10.3389/fvets.2023.1160600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 06/19/2023] [Indexed: 07/25/2023] Open
Abstract
Introduction Infectious viruses in poultry, such as avian influenza virus (AIV) and Newcastle disease virus (NDV), are one of the most major threats to the poultry industry, resulting in enormous economic losses. AIVs and NDVs preferentially recognize α-2,3-linked sialic acid to bind to target cells. The human beta-1,4-N-acetyl-galactosaminyltransferase 2 (B4GALNT2) modifies α-2,3-linked sialic acid-containing glycan by transferring N-acetylgalactosamine to the sub-terminal galactose of the glycan, thus playing a pivotal role in preventing viruses from binding to cell surfaces. However, chickens lack a homolog of the B4GALNT2 gene. Methods Here, we precisely tagged the human B4GALNT2 gene downstream of the chicken GAPDH so that the engineered cells constitutively express the human B4GALNT2. We performed a lectin binding assay to analyze the modification of α-2,3-linked sialic acid-containing glycan by human B4GALNT2. Additionally, we infected the cells with AIV and NDV and compared cell survivability, viral gene transcription, and viral titer using the WST-1 assay, RT-qPCR and TCID50 assay, respectively. Results We validated human B4GALNT2 successfully modified α-2,3-linked sialic acid-containing glycan in chicken DF-1 cells. Following viral infection, we showed that human B4GALNT2 reduced infection of two AIV subtypes and NDV at 12-, 24-, and 36-hours post-infection. Moreover, cells expressing human B4GALNT2 showed significantly higher cell survivability compared to wild-type DF-1 cells, and viral gene expression was significantly reduced in the cells expressing human B4GALNT2. Discussion Collectively, these results suggest that artificially expressing human B4GALNT2 in chicken is a promising strategy to acquire broad resistance against infectious viruses with a preference for α-2,3-linked sialic acids such as AIV and NDV.
Collapse
Affiliation(s)
- Jin Se Park
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Seung Je Woo
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Chang Seon Song
- Avian Diseases Laboratory, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Jae Yong Han
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
11
|
You R, Liu K, Huang M, Tang L, Zhang X, Huang Y, Zhao J, Zhao Y, Ye L, Zhang G. Identification and Comparison of the Sialic Acid-Binding Domain Characteristics of Avian Coronavirus Infectious Bronchitis Virus Spike Protein. J Virol 2023; 97:e0048923. [PMID: 37097156 PMCID: PMC10231253 DOI: 10.1128/jvi.00489-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/26/2023] Open
Abstract
Infectious bronchitis virus (IBV) infections are initiated by the transmembrane spike (S) glycoprotein, which binds to host factors and fuses the viral and cell membranes. The N-terminal domain of the S1 subunit of IBV S protein binds to sialic acids, but the precise location of the sialic acid binding domain (SABD) and the role of the SABD in IBV-infected chickens remain unclear. Here, we identify the S1 N-terminal amino acid (aa) residues 19 to 227 (209 aa total) of IBV strains SD (GI-19) and GD (GI-7), and the corresponding region of M41 (GI-1), as the minimal SABD using truncated protein histochemistry and neuraminidase assays. Both α-2,3- and α-2,6-linked sialic acids on the surfaces of CEK cells can be used as attachment receptors by IBV, leading to increased infection efficiency. However, 9-O acetylation of the sialic acid glycerol side chain inhibits IBV S1 and SABD protein binding. We further constructed recombinant strains in which the S1 gene or the SABD in the GD and SD genomes were replaced with the corresponding region from M41 by reverse genetics. Infecting chickens with these viruses revealed that the virulence and nephrotropism of rSDM41-S1, rSDM41-206, rGDM41-S1, and rGDM41-206 strains were decreased to various degrees compared to their parental strains. A positive sera cross-neutralization test showed that the serotypes were changed for the recombinant viruses. Our results provide insight into IBV infection of host cells that may aid vaccine design. IMPORTANCE To date, only α-2,3-linked sialic acid has been identified as a potential host binding receptor for IBV. Here, we show the minimum region constituting the sialic acid binding domain (SABD) and the binding characteristics of the S1 subunit of spike (S) protein of IBV strains SD (GI-19), GD (GI-7), and M41 (GI-1) to various sialic acids. The 9-O acetylation modification partially inhibits IBV from binding to sialic acid, while the virus can also bind to sialic acid molecules linked to host cells through an α-2,6 linkage, serving as another receptor determinant. Substitution of the putative SABD from strain M41 into strains SD and GD resulted in reduced virulence, nephrotropism, and a serotype switch. These findings suggest that sialic acid binding has diversified during the evolution of γ-coronaviruses, impacting the biological properties of IBV strains. Our results offer insight into the mechanisms by which IBV invades host cells.
Collapse
Affiliation(s)
- Renrong You
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Kangchengyin Liu
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Min Huang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Lihua Tang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Xuehui Zhang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Yahui Huang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Jing Zhao
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Ye Zhao
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Lilin Ye
- Institute of Immunology, Third Military Medical University, Chongqing, People’s Republic of China
| | - Guozhong Zhang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| |
Collapse
|
12
|
Chen Y, Zhang Y, Wang X, Zhou J, Ma L, Li J, Yang L, Ouyang H, Yuan H, Pang D. Transmissible Gastroenteritis Virus: An Update Review and Perspective. Viruses 2023; 15:v15020359. [PMID: 36851573 PMCID: PMC9958687 DOI: 10.3390/v15020359] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/18/2023] [Accepted: 01/24/2023] [Indexed: 01/29/2023] Open
Abstract
Transmissible gastroenteritis virus (TGEV) is a member of the alphacoronavirus genus, which has caused huge threats and losses to pig husbandry with a 100% mortality in infected piglets. TGEV is observed to be recombining and evolving unstoppably in recent years, with some of these recombinant strains spreading across species, which makes the detection and prevention of TGEV more complex. This paper reviews and discusses the basic biological properties of TGEV, factors affecting virulence, viral receptors, and the latest research advances in TGEV infection-induced apoptosis and autophagy to improve understanding of the current status of TGEV and related research processes. We also highlight a possible risk of TGEV being zoonotic, which could be evidenced by the detection of CCoV-HuPn-2018 in humans.
Collapse
Affiliation(s)
- Yiwu Chen
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Yuanzhu Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Xi Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Jian Zhou
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Lerong Ma
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Jianing Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Lin Yang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Hongsheng Ouyang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
- Chongqing Research Institute, Jilin University, Chongqing 401120, China
- Chongqing Jitang Biotechnology Research Institute Co., Ltd., Chongqing 401120, China
| | - Hongming Yuan
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
- Chongqing Research Institute, Jilin University, Chongqing 401120, China
- Correspondence: (H.Y.); (D.P.); Tel.: +86-431-8783-6175 (D.P.)
| | - Daxin Pang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
- Chongqing Research Institute, Jilin University, Chongqing 401120, China
- Chongqing Jitang Biotechnology Research Institute Co., Ltd., Chongqing 401120, China
- Correspondence: (H.Y.); (D.P.); Tel.: +86-431-8783-6175 (D.P.)
| |
Collapse
|
13
|
Genome-Wide CRISPR/Cas9 Screen Reveals a Role for SLC35A1 in the Adsorption of Porcine Deltacoronavirus. J Virol 2022; 96:e0162622. [PMID: 36453883 PMCID: PMC9769367 DOI: 10.1128/jvi.01626-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Porcine deltacoronavirus (PDCoV), an emerging enteropathogenic coronavirus, not only causes diarrhea in piglets but also possesses the potential to infect humans. To better understand host-virus genetic dependencies and find potential therapeutic targets for PDCoV, we used a porcine single-guide RNA (sgRNA) lentivirus library to screen host factors related to PDCoV infection in LLC-PK1 cells. The solute carrier family 35 member A1 (SLC35A1), a key molecule in the sialic acid (SA) synthesis pathway, was identified as a host factor required for PDCoV infection. A knockout of SLC35A1 caused decreases in the amounts of cell surface sialic acid (SA) and viral adsorption; meanwhile, trypsin promoted the use of SA in PDCoV infection. By constructing and assessing a series of recombinant PDCoV strains with the deletion or mutation of possible critical domain or amino acid residues for SA binding in the S1 N-terminal domain, we found that S T182 might be a PDCoV SA-binding site. However, the double knockout of SLC35A1 and amino peptidase N (APN) could not block PDCoV infection completely. Additionally, we found that different swine enteric coronaviruses, including transmissible gastroenteritis coronavirus, porcine epidemic diarrhea virus, and swine acute diarrhea syndrome coronavirus, are differentially dependent on SA. Overall, our study uncovered a collection of host factors that can be exploited as drug targets against PDCoV infection and deepened our understanding of the relationship between PDCoV and SA. IMPORTANCE Identifying the host factors required for replication will be helpful to uncover the pathogenesis mechanisms and develop antivirals against the emerging coronavirus porcine deltacoronavirus (PDCoV). Herein, we performed a genome-wide clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 knockout screen, the results of which revealed that the solute carrier family 35 member A1 (SLC35A1) is a host factor required for PDCoV infection that acts by regulating cell surface sialic acid (SA). We also identified the T182 site in the N-terminal domain of PDCoV S1 subunit as being associated with the SA-binding site and found that trypsin promotes the use of cell surface SA by PDCoV. Furthermore, different swine enteric coronaviruses use SLC35A1 differently for infection. This is the first study to screen host factors required for PDCoV replication using a genome-wide CRISPR-Cas9 functional knockout, thereby providing clues for developing antiviral drugs against PDCoV infection.
Collapse
|
14
|
Al-Khalaifah H, Alotaibi M, Al-Nasser A. The relation between avian coronaviruses and SARS-CoV-2 coronavirus. Front Microbiol 2022; 13:976462. [PMID: 36312988 PMCID: PMC9608149 DOI: 10.3389/fmicb.2022.976462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/20/2022] [Indexed: 01/04/2023] Open
Abstract
The coronaviruses (CoVs) are a family of ribonucleic acid viruses that are present in both mammals and birds. SARS-CoV and MERS-CoV originated in bats, and there is a possibility that this could be the case for SARS-CoV-2 as well. There is already evidence that a probable intermediary host is responsible for the emergence of viruses in humans as was the case for SARS-CoVs and MERS-CoV. As the SARS-CoV-2 originated from a live animal market, there is always the question if domestic animals are susceptible to these viruses and the possible risk of zoonotic transmission with mammals, including humans. This uncertainty of the transmission of the COVID-19 virus between humans and animals is of great significance worldwide. Hence, this paper focuses on the avian CoVs and their possible relation and interaction with SARS-CoV-2.
Collapse
|
15
|
Quinteros JA, Noormohammadi AH, Lee SW, Browning GF, Diaz‐Méndez A. Genomics and pathogenesis of the avian coronavirus infectious bronchitis virus. Aust Vet J 2022; 100:496-512. [PMID: 35978541 PMCID: PMC9804484 DOI: 10.1111/avj.13197] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 04/25/2022] [Accepted: 05/02/2022] [Indexed: 01/05/2023]
Abstract
Infectious bronchitis virus (IBV) is a member of the family Coronaviridae, together with viruses such as SARS-CoV, MERS-CoV and SARS-CoV-2 (the causative agent of the COVID-19 global pandemic). In this family of viruses, interspecies transmission has been reported, so understanding their pathobiology could lead to a better understanding of the emergence of new serotypes. IBV possesses a single-stranded, non-segmented RNA genome about 27.6 kb in length that encodes several non-structural and structural proteins. Most functions of these proteins have been confirmed in IBV, but some other proposed functions have been based on research conducted on other members of the family Coronaviridae. IBV has variable tissue tropism depending on the strain, and can affect the respiratory, reproductive, or urinary tracts; however, IBV can also replicate in other organs. Additionally, the pathogenicity of IBV is also variable, with some strains causing only mild clinical signs, while infection with others results in high mortality rates in chickens. This paper extensively and comprehensibly reviews general aspects of coronaviruses and, more specifically, IBV, with emphasis on protein functions and pathogenesis. The pathogenicity of the Australian strains of IBV is also reviewed, describing the variability between the different groups of strains, from the classical to the novel and recombinant strains. Reverse genetic systems, cloning and cell culture growth techniques applicable to IBV are also reviewed.
Collapse
Affiliation(s)
- JA Quinteros
- Asia‐Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural SciencesThe University of MelbourneParkvilleVictoriaAustralia
- Present address:
Escuela de Ciencias Agrícolas y VeterinariasUniversidad Viña del Mar, Agua Santa 7055 2572007Viña del MarChile
| | - AH Noormohammadi
- Asia‐Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural SciencesThe University of MelbourneWerribeeVictoriaAustralia
| | - SW Lee
- Asia‐Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural SciencesThe University of MelbourneParkvilleVictoriaAustralia
- College of Veterinary MedicineKonkuk UniversitySeoulRepublic of Korea
| | - GF Browning
- Asia‐Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural SciencesThe University of MelbourneParkvilleVictoriaAustralia
| | - A Diaz‐Méndez
- Asia‐Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural SciencesThe University of MelbourneParkvilleVictoriaAustralia
| |
Collapse
|
16
|
Genotyping and In Silico Analysis of Delmarva (DMV/1639) Infectious Bronchitis Virus (IBV) Spike 1 (S1) Glycoprotein. Genes (Basel) 2022; 13:genes13091617. [PMID: 36140785 PMCID: PMC9498812 DOI: 10.3390/genes13091617] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/04/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
Genetic diversity and evolution of infectious bronchitis virus (IBV) are mainly impacted by mutations in the spike 1 (S1) gene. This study focused on whole genome sequencing of an IBV isolate (IBV/Ck/Can/2558004), which represents strains highly prevalent in Canadian commercial poultry, especially concerning features related to its S1 gene and protein sequences. Based on the phylogeny of the S1 gene, IBV/Ck/Can/2558004 belongs to the GI-17 lineage. According to S1 gene and protein pairwise alignment, IBV/Ck/Can/2558004 had 99.44–99.63% and 98.88–99.25% nucleotide (nt) and deduced amino acid (aa) identities, respectively, with five Canadian Delmarva (DMV/1639) IBVs isolated in 2019, and it also shared 96.63–97.69% and 94.78–97.20% nt and aa similarities with US DMV/1639 IBVs isolated in 2011 and 2019, respectively. Further homology analysis of aa sequences showed the existence of some aa substitutions in the hypervariable regions (HVRs) of the S1 protein of IBV/Ck/Can/2558004 compared to US DMV/1639 isolates; most of these variant aa residues have been subjected to positive selection pressure. Predictive analysis of potential N-glycosylation and phosphorylation motifs showed either loss or acquisition in the S1 glycoprotein of IBV/Ck/Can/2558004 compared to S1 of US DMV/1639 IBV. Furthermore, bioinformatic analysis showed some of the aa changes within the S1 protein of IBV/Ck/Can/2558004 have been predicted to impact the function and structure of the S1 protein, potentially leading to a lower binding affinity of the S1 protein to its relevant ligand (sialic acid). In conclusion, these findings revealed that the DMV/1639 IBV isolates are under continuous evolution among Canadian poultry.
Collapse
|
17
|
Low JS, Jerak J, Tortorici MA, McCallum M, Pinto D, Cassotta A, Foglierini M, Mele F, Abdelnabi R, Weynand B, Noack J, Montiel-Ruiz M, Bianchi S, Benigni F, Sprugasci N, Joshi A, Bowen JE, Stewart C, Rexhepaj M, Walls AC, Jarrossay D, Morone D, Paparoditis P, Garzoni C, Ferrari P, Ceschi A, Neyts J, Purcell LA, Snell G, Corti D, Lanzavecchia A, Veesler D, Sallusto F. ACE2-binding exposes the SARS-CoV-2 fusion peptide to broadly neutralizing coronavirus antibodies. Science 2022; 377:735-742. [PMID: 35857703 PMCID: PMC9348755 DOI: 10.1126/science.abq2679] [Citation(s) in RCA: 121] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 07/03/2022] [Indexed: 12/14/2022]
Abstract
The coronavirus spike glycoprotein attaches to host receptors and mediates viral fusion. Using a broad screening approach, we isolated seven monoclonal antibodies (mAbs) that bind to all human-infecting coronavirus spike proteins from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) immune donors. These mAbs recognize the fusion peptide and acquire affinity and breadth through somatic mutations. Despite targeting a conserved motif, only some mAbs show broad neutralizing activity in vitro against alpha- and betacoronaviruses, including animal coronaviruses WIV-1 and PDF-2180. Two selected mAbs also neutralize Omicron BA.1 and BA.2 authentic viruses and reduce viral burden and pathology in vivo. Structural and functional analyses showed that the fusion peptide-specific mAbs bound with different modalities to a cryptic epitope hidden in prefusion stabilized spike, which became exposed upon binding of angiotensin-converting enzyme 2 (ACE2) or ACE2-mimicking mAbs.
Collapse
Affiliation(s)
- Jun Siong Low
- Institute for Research in Biomedicine, Università della Svizzera Italiana, 6500 Bellinzona, Switzerland
- Institute of Microbiology, ETH Zürich, 8093 Zurich, Switzerland
| | - Josipa Jerak
- Institute for Research in Biomedicine, Università della Svizzera Italiana, 6500 Bellinzona, Switzerland
- Institute of Microbiology, ETH Zürich, 8093 Zurich, Switzerland
| | | | - Matthew McCallum
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Dora Pinto
- Humabs BioMed SA (subsidiary of Vir Biotechnology), 6500 Bellinzona, Switzerland
| | - Antonino Cassotta
- Institute for Research in Biomedicine, Università della Svizzera Italiana, 6500 Bellinzona, Switzerland
| | - Mathilde Foglierini
- Institute for Research in Biomedicine, Università della Svizzera Italiana, 6500 Bellinzona, Switzerland
| | - Federico Mele
- Institute for Research in Biomedicine, Università della Svizzera Italiana, 6500 Bellinzona, Switzerland
| | - Rana Abdelnabi
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, B-3000 Leuven, Belgium
| | - Birgit Weynand
- KU Leuven Department of Imaging and Pathology, Translational Cell and Tissue Research, B-3000 Leuven, Belgium
| | - Julia Noack
- Vir Biotechnology, San Francisco, CA 94158, USA
| | | | - Siro Bianchi
- Humabs BioMed SA (subsidiary of Vir Biotechnology), 6500 Bellinzona, Switzerland
| | - Fabio Benigni
- Humabs BioMed SA (subsidiary of Vir Biotechnology), 6500 Bellinzona, Switzerland
| | - Nicole Sprugasci
- Humabs BioMed SA (subsidiary of Vir Biotechnology), 6500 Bellinzona, Switzerland
| | - Anshu Joshi
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - John E. Bowen
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Cameron Stewart
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Megi Rexhepaj
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Alexandra C. Walls
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, Seattle, WA 98195, USA
| | - David Jarrossay
- Institute for Research in Biomedicine, Università della Svizzera Italiana, 6500 Bellinzona, Switzerland
| | - Diego Morone
- Institute for Research in Biomedicine, Università della Svizzera Italiana, 6500 Bellinzona, Switzerland
| | - Philipp Paparoditis
- Institute for Research in Biomedicine, Università della Svizzera Italiana, 6500 Bellinzona, Switzerland
| | - Christian Garzoni
- Clinic of Internal Medicine and Infectious Diseases, Clinica Luganese Moncucco; 6900 Lugano, Switzerland
| | - Paolo Ferrari
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland
- Department of Internal Medicine, Ente Ospedaliero Cantonale, 6500 Bellinzona, Switzerland
- Prince of Wales Hospital Clinical School, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Alessandro Ceschi
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland
- Division of Clinical Pharmacology and Toxicology, Institute of Pharmacological Sciences of Southern Switzerland, Ente Ospedaliero Cantonale, 6900 Lugano, Switzerland
- Clinical Trial Unit, Ente Ospedaliero Cantonale, 6500 Bellinzona, Switzerland
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Johan Neyts
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, B-3000 Leuven, Belgium
- Global Virus Network, Baltimore, MD 21201, USA
| | | | | | - Davide Corti
- Humabs BioMed SA (subsidiary of Vir Biotechnology), 6500 Bellinzona, Switzerland
| | - Antonio Lanzavecchia
- Humabs BioMed SA (subsidiary of Vir Biotechnology), 6500 Bellinzona, Switzerland
- National Institute of Molecular Genetics, 20122 Milano, Italy
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, Seattle, WA 98195, USA
| | - Federica Sallusto
- Institute for Research in Biomedicine, Università della Svizzera Italiana, 6500 Bellinzona, Switzerland
- Institute of Microbiology, ETH Zürich, 8093 Zurich, Switzerland
| |
Collapse
|
18
|
Doostkam A, Malekmakan L, Hosseinpour A, Janfeshan S, Roozbeh J, Masjedi F. Sialic acid: an attractive biomarker with promising biomedical applications. ASIAN BIOMED 2022; 16:153-167. [PMID: 37551166 PMCID: PMC10321195 DOI: 10.2478/abm-2022-0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
This broad, narrative review highlights the roles of sialic acids as acidic sugars found on cellular membranes. The role of sialic acids in cellular communication and development has been well established. Recently, attention has turned to the fundamental role of sialic acids in many diseases, including viral infections, cardiovascular diseases, neurological disorders, diabetic nephropathy, and malignancies. Sialic acid may be a target for developing new drugs to treat various cancers and inflammatory processes. We recommend the routine measurement of serum sialic acid as a sensitive inflammatory marker in various diseases.
Collapse
Affiliation(s)
- Aida Doostkam
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz7193635899, Iran
| | - Leila Malekmakan
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz7193635899, Iran
| | - Alireza Hosseinpour
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz7134853185, Iran
| | - Sahar Janfeshan
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz7193635899, Iran
| | - Jamshid Roozbeh
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz7193635899, Iran
| | - Fatemeh Masjedi
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz7193635899, Iran
| |
Collapse
|
19
|
Mo G, Hu B, Wei P, Luo Q, Zhang X. The Role of Chicken Prolactin, Growth Hormone and Their Receptors in the Immune System. Front Microbiol 2022; 13:900041. [PMID: 35910654 PMCID: PMC9331192 DOI: 10.3389/fmicb.2022.900041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/22/2022] [Indexed: 11/17/2022] Open
Abstract
Prolactin (PRL) and growth hormone (GH) exhibit important roles in the immune system maintenance. In poultry, PRL mainly plays its roles in nesting, hatching, and reproduction, while GH is primarily responding to body weight, fat formation and feed conversion. In this review, we attempt to provide a critical overview of the relationship between PRL and GH, PRLR and GHR, and the immune response of poultry. We also propose a hypothesis that PRL, GH and their receptors might be used by viruses as viral receptors. This may provide new insights into the pathogenesis of viral infection and host immune response.
Collapse
Affiliation(s)
- Guodong Mo
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
| | - Bowen Hu
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
| | - Ping Wei
- Institute for Poultry Science and Health, Guangxi University, Nanning, China
| | - Qingbin Luo
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
| | - Xiquan Zhang
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
| |
Collapse
|
20
|
Reynolds DL, Simpson EB. Evaluation of ivermectin antiviral activity against avian infectious bronchitis virus using a chicken embryo model. Int J Vet Sci Med 2022; 10:19-24. [PMID: 35382155 PMCID: PMC8959520 DOI: 10.1080/23144599.2022.2050077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Ivermectin is widely used in both animals and humans as an FDA-approved parasiticide. Ivermectin has also been reported to have antiviral activity against several viruses including coronaviruses. There are reports that indicate ivermectin may have some role in diminishing the disease caused by SARS-CoV-2, but the evidence is inconclusive. The objective of this study was to determine if ivermectin was efficacious in inhibiting avian infectious bronchitis virus (IBV, a coronavirus) replication in chicken embryos. Briefly, our approach was to use the Massachusetts vaccine strain of IBV in combination with various doses of ivermectin and then inoculate these preparations into chicken embryos to determine if IBV replication was inhibited. The embryos were examined for IBV lesions and samples of chorioallantoic fluid were collected for IBV RT-PCR analysis. Several trials were performed, and the results of our study indicate that ivermectin did not inhibit IBV replication in chicken embryos.
Collapse
Affiliation(s)
- Donald L. Reynolds
- School of Veterinary Medicine and Biomedical Sciences University of Nebraska – Lincoln, Lincoln, NE, USA
| | - E. Barry Simpson
- School of Veterinary Medicine and Biomedical Sciences University of Nebraska – Lincoln, Lincoln, NE, USA
| |
Collapse
|
21
|
Known Cellular and Receptor Interactions of Animal and Human Coronaviruses: A Review. Viruses 2022; 14:v14020351. [PMID: 35215937 PMCID: PMC8878323 DOI: 10.3390/v14020351] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/03/2022] [Accepted: 02/05/2022] [Indexed: 12/12/2022] Open
Abstract
This article aims to review all currently known interactions between animal and human coronaviruses and their cellular receptors. Over the past 20 years, three novel coronaviruses have emerged that have caused severe disease in humans, including SARS-CoV-2 (severe acute respiratory syndrome virus 2); therefore, a deeper understanding of coronavirus host-cell interactions is essential. Receptor-binding is the first stage in coronavirus entry prior to replication and can be altered by minor changes within the spike protein-the coronavirus surface glycoprotein responsible for the recognition of cell-surface receptors. The recognition of receptors by coronaviruses is also a major determinant in infection, tropism, and pathogenesis and acts as a key target for host-immune surveillance and other potential intervention strategies. We aim to highlight the need for a continued in-depth understanding of this subject area following on from the SARS-CoV-2 pandemic, with the possibility for more zoonotic transmission events. We also acknowledge the need for more targeted research towards glycan-coronavirus interactions as zoonotic spillover events from animals to humans, following an alteration in glycan-binding capability, have been well-documented for other viruses such as Influenza A.
Collapse
|
22
|
Kulkarni R, Wiemer EAC, Chang W. Role of Lipid Rafts in Pathogen-Host Interaction - A Mini Review. Front Immunol 2022; 12:815020. [PMID: 35126371 PMCID: PMC8810822 DOI: 10.3389/fimmu.2021.815020] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 12/31/2021] [Indexed: 12/25/2022] Open
Abstract
Lipid rafts, also known as microdomains, are important components of cell membranes and are enriched in cholesterol, glycophospholipids and receptors. They are involved in various essential cellular processes, including endocytosis, exocytosis and cellular signaling. Receptors are concentrated at lipid rafts, through which cellular signaling can be transmitted. Pathogens exploit these signaling mechanisms to enter cells, proliferate and egress. However, lipid rafts also play an important role in initiating antimicrobial responses by sensing pathogens via clustered pathogen-sensing receptors and triggering downstream signaling events such as programmed cell death or cytokine production for pathogen clearance. In this review, we discuss how both host and pathogens use lipid rafts and associated proteins in an arms race to survive. Special attention is given to the involvement of the major vault protein, the main constituent of a ribonucleoprotein complex, which is enriched in lipid rafts upon infection with vaccinia virus.
Collapse
Affiliation(s)
- Rakesh Kulkarni
- Molecular and Cell Biology, Taiwan International Graduate Program, National Defense Medical Center, Academia Sinica and Graduate Institute of Life Science, Taipei, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
- *Correspondence: Rakesh Kulkarni, ; Wen Chang,
| | - Erik A. C. Wiemer
- Medical Oncology, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, Netherlands
| | - Wen Chang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
- *Correspondence: Rakesh Kulkarni, ; Wen Chang,
| |
Collapse
|
23
|
Korath ADJ, Janda J, Untersmayr E, Sokolowska M, Feleszko W, Agache I, Adel Seida A, Hartmann K, Jensen‐Jarolim E, Pali‐Schöll I. One Health: EAACI Position Paper on coronaviruses at the human-animal interface, with a specific focus on comparative and zoonotic aspects of SARS-CoV-2. Allergy 2022; 77:55-71. [PMID: 34180546 PMCID: PMC8441637 DOI: 10.1111/all.14991] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/24/2021] [Indexed: 12/15/2022]
Abstract
The latest outbreak of a coronavirus disease in 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), evolved into a worldwide pandemic with massive effects on health, quality of life, and economy. Given the short period of time since the outbreak, there are several knowledge gaps on the comparative and zoonotic aspects of this new virus. Within the One Health concept, the current EAACI position paper dwells into the current knowledge on SARS-CoV-2's receptors, symptoms, transmission routes for human and animals living in close vicinity to each other, usefulness of animal models to study this disease and management options to avoid intra- and interspecies transmission. Similar pandemics might appear unexpectedly and more frequently in the near future due to climate change, consumption of exotic foods and drinks, globe-trotter travel possibilities, the growing world population, the decreasing production space, declining room for wildlife and free-ranging animals, and the changed lifestyle including living very close to animals. Therefore, both the society and the health authorities need to be aware and well prepared for similar future situations, and research needs to focus on prevention and fast development of treatment options (medications, vaccines).
Collapse
Affiliation(s)
- Anna D. J. Korath
- Comparative MedicineInteruniversity Messerli Research InstituteUniversity of Veterinary Medicine and Medical University ViennaViennaAustria
| | - Jozef Janda
- Faculty of ScienceCharles UniversityPragueCzech Republic
| | - Eva Untersmayr
- Institute of Pathophysiology and Allergy ResearchCenter of Pathophysiology, Infectiology and ImmunologyMedical University of ViennaViennaAustria
| | - Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF),University of ZurichZurichSwitzerland
| | - Wojciech Feleszko
- Department of Paediatric Allergy and PulmonologyThe Medical University of WarsawWarsawPoland
| | | | - Ahmed Adel Seida
- Department of Microbiology and ImmunologyFaculty of Veterinary MedicineCairo UniversityCairoEgypt
| | - Katrin Hartmann
- Medizinische KleintierklinikZentrum für Klinische TiermedizinLMUMunichGermany
| | - Erika Jensen‐Jarolim
- Comparative MedicineInteruniversity Messerli Research InstituteUniversity of Veterinary Medicine and Medical University ViennaViennaAustria
- Institute of Pathophysiology and Allergy ResearchCenter of Pathophysiology, Infectiology and ImmunologyMedical University of ViennaViennaAustria
| | - Isabella Pali‐Schöll
- Comparative MedicineInteruniversity Messerli Research InstituteUniversity of Veterinary Medicine and Medical University ViennaViennaAustria
- Institute of Pathophysiology and Allergy ResearchCenter of Pathophysiology, Infectiology and ImmunologyMedical University of ViennaViennaAustria
| |
Collapse
|
24
|
Brandão PE, Berg M, Leite BA, Silva SO, Taniwaki SA. The order of events on Avian coronavirus life cycle shapes the order of quasispecies evolution during host switches. Genet Mol Biol 2022; 45:e20220034. [PMID: 35671496 PMCID: PMC9173666 DOI: 10.1590/1678-4685-gmb-2022-0034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 05/01/2022] [Indexed: 12/02/2022] Open
Abstract
To understand the population genetics events during coronavirus host switches, the Beaudette strain of Avian coronavirus (AvCoV) adapted to BHK-21 cells was passaged 15 times in VERO cells, the virus load and the variants at each passage being determined by RT-qPCR and genome-length deep sequencing. From BHK-21 P2 to VERO P3, a trend for the extinction of variants was followed by stability up to VERO P11 and both the emergence and the rise in frequency in some variants, while the virus loads were stable up to VERO P12. At the spillover from BHK-21 to VERO cells, variants that both emerged, showed a rise in frequency or were extinguished were detected on the spike, while variants at the M gene showed the same pattern only at VERO passage 13. Furthermore, nsps 3-5, 9 and 15 variants were detected at lower passages compared to the consensus sequences, with those at nsp3 being detected in the spectra also at higher passages. This suggests that quasispecies coronavirus evolution in spillovers follows the virus life cycle, starting with the evolution of the receptor binding proteins, followed by the replicase and then proteins involved in virion assembly, keeping the general fitness of the mutant spectrum stable.
Collapse
Affiliation(s)
| | - Mikael Berg
- Swedish University of Agricultural Sciences, Sweden
| | | | | | | |
Collapse
|
25
|
Sun XL. The role of cell surface sialic acids for SARS-CoV-2 infection. Glycobiology 2021; 31:1245-1253. [PMID: 33909065 PMCID: PMC8600286 DOI: 10.1093/glycob/cwab032] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/06/2021] [Accepted: 04/12/2021] [Indexed: 12/12/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is a new virus that has higher contagious capacity than any other previous human coronaviruses (HCoVs) and causes the current coronavirus disease 2019 pandemic. Sialic acids are a group of nine-carbon acidic α-keto sugars, usually located at the end of glycans of cell surface glycoconjugates and serve as attachment sites for previous HCoVs. It is therefore speculated that sialic acids on the host cell surface could serve as co-receptors or attachment factors for SARS-CoV-2 cell entry as well. Recent in silico modeling, molecular modeling predictions and microscopy studies indicate potential sialic acid binding by SARS-CoV-2 upon cell entry. In particular, a flat sialic acid-binding domain was proposed at the N-terminal domain of the spike protein, which may lead to the initial contact and interaction of the virus on the epithelium followed by higher affinity binding to angiotensin-converting enzyme 2 (ACE2) receptor, likely a two-step attachment fashion. However, recent in vitro and ex vivo studies of sialic acids on ACE2 receptor confirmed an opposite role for SARS-CoV-2 binding. In particular, neuraminidase treatment of epithelial cells and ACE2-expressing 293T cells increased SARS-CoV-2 binding. Furthermore, the ACE2 glycosylation inhibition studies indicate that sialic acids on ACE2 receptor prevent ACE2-spike protein interaction. On the other hand, a most recent study indicates that gangliosides could serve as ligands for receptor-binding domain of SARS-CoV-2 spike protein. This mini-review discusses what has been predicted and known so far about the role of sialic acid for SARS-CoV-2 infection and future research perspective.
Collapse
Affiliation(s)
- Xue-Long Sun
- Department of Chemistry, Chemical and Biomedical Engineering and Center for Gene Regulation in Health and Disease (GRHD), Cleveland State University, 2121 Euclid Ave, Cleveland, OH 44115, USA
| |
Collapse
|
26
|
Compton SR. Overview of Coronaviruses in Veterinary Medicine. Comp Med 2021; 71:333-341. [PMID: 34412731 PMCID: PMC8594256 DOI: 10.30802/aalas-cm-21-000007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/08/2021] [Accepted: 05/10/2021] [Indexed: 11/05/2022]
Abstract
Coronaviruses infect humans and a wide range of animals, causing predominantly respiratory and intestinal infections. This review provides background on the taxonomy of coronaviruses, the functions of viral proteins, and the life cycle of coronaviruses. In addition, the review focuses on coronaviral diseases in several agriculturally important, companion, and laboratory animal species (cats, cattle, chickens, dogs, mice, rats and swine) and briefly reviews human coronaviruses and their origins.
Collapse
Key Words
- apn, aminopeptidase n
- bcov, bovine coronavirus
- fecv, feline enteric coronavirus
- fipv, feline infectious peritonitis virus
- ibv, infectious bronchitis virus
- mers-cov, middle east respiratory syndrome coronavirus
- mhv, mouse hepatitis virus
- pdcov, porcine deltacoronavirus
- pedv, porcine endemic diarrhea virus
- phev, porcine hemagglutinating encephalomyelitis virus
- prcv, porcine respiratory coronavirus
- rcv, rat coronavirus
- sars-cov, severe acute respiratory syndrome coronavirus
- seacov, swine enteric alphacoronavirus
- tgev, transmissible gastroenteritis virus
Collapse
|
27
|
Cell Entry of Animal Coronaviruses. Viruses 2021; 13:v13101977. [PMID: 34696406 PMCID: PMC8540712 DOI: 10.3390/v13101977] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 01/11/2023] Open
Abstract
Coronaviruses (CoVs) are a group of enveloped positive-sense RNA viruses and can cause deadly diseases in animals and humans. Cell entry is the first and essential step of successful virus infection and can be divided into two ongoing steps: cell binding and membrane fusion. Over the past two decades, stimulated by the global outbreak of SARS-CoV and pandemic of SARS-CoV-2, numerous efforts have been made in the CoV research. As a result, significant progress has been achieved in our understanding of the cell entry process. Here, we review the current knowledge of this essential process, including the viral and host components involved in cell binding and membrane fusion, molecular mechanisms of their interactions, and the sites of virus entry. We highlight the recent findings of host restriction factors that inhibit CoVs entry. This knowledge not only enhances our understanding of the cell entry process, pathogenesis, tissue tropism, host range, and interspecies-transmission of CoVs but also provides a theoretical basis to design effective preventive and therapeutic strategies to control CoVs infection.
Collapse
|
28
|
Facciolà A, Laganà P, Caruso G. The COVID-19 pandemic and its implications on the environment. ENVIRONMENTAL RESEARCH 2021; 201:111648. [PMID: 34242676 PMCID: PMC8261195 DOI: 10.1016/j.envres.2021.111648] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 05/06/2023]
Abstract
The emerging threat posed by COVID-19 pandemic has strongly modified our lifestyle, making urgent to re-consider the humans-environment relationships and stimulating towards more sustainable choices in our daily behavior. Scientific evidences showed that the onset of new viral pathogens with a high epidemic-pandemic potential is often the result of complex interactions between animals, humans and environment. In this context, the interest of the scientific community has also been attracted towards the potential interactions of SARS-CoV-2 with environmental compartments. Many issues, ranging from the epidemiology and persistence of SARS-CoV-2 in water bodies to the potential implications of lockdown measures on environmental quality status are here reviewed, with a special reference to marine ecosystems. Due to current sanitary emergence, the relevance of pilot studies regarding the interactions between SARS-CoV-2 spread and the direct and indirect environmental impacts of the COVID-19 pandemic, that are still a matter of scientific debate, is underlined.
Collapse
Affiliation(s)
- Alessio Facciolà
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Italy
| | - Pasqualina Laganà
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Italy.
| | - Gabriella Caruso
- Institute of Polar Sciences (ISP), National Research Council (CNR), Messina, Italy
| |
Collapse
|
29
|
Replication and vaccine protection of multiple infectious bronchitis virus strains in pheasants (Phasianus colchicus). INFECTION GENETICS AND EVOLUTION 2021; 93:104980. [PMID: 34182190 DOI: 10.1016/j.meegid.2021.104980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 06/19/2021] [Accepted: 06/24/2021] [Indexed: 11/23/2022]
Abstract
This study demonstrates that infectious bronchitis virus (IBV) strain M41, which is pathogenic for chickens, is nonpathogenic for pheasants. However, M41 replicated in the respiratory tracts of most inoculated pheasants and the virus was shed from their respiratory tracts in the early stages of infection (4 and 8 dpc). Similarly, the attenuated IBV H120 vaccine strain also replicated and the virus was shed from their respiratory tracts of most inoculated pheasants, whereas the pheasant coronavirus (PhCoV) I0623/17 replicated in the respiratory tracts of all challenged pheasants, which then shed virus for a long period of time. Strain M41 also replicated in selected tissues of the inoculated pheasants, including the lung, kidney, proventriculus, and cecal tonsil, although the viral titers were very low. Therefore, it was important to establish whether the H120 vaccine, which has a limited replication capacity in pheasants, induces a protective immune response to both "homologous" M41 and "heterologous" I0623/17 challenge. Vaccination with H120 induced humoral responses, and the replication of M41 was reduced or restricted in the tissues of the H120-vaccinated pheasants compared with its replication in unvaccinated birds. This implies that partial protection was conferred on pheasants by vaccination with the H120 vaccine. Prolonged viral replication and a large number of birds shedding virus into the respiratory tract were also observed in the unvaccinated pheasants after inoculation with M41. However, only limited protection against challenge with PhCoV I0623/17 was conferred on pheasants vaccinated with H120, largely because the replication of H120 in pheasants was limited, thus, limiting the immune responses induced by it. The low amino acid identity of the S1 subunit of the S proteins of H120 and I0623/17 might also account, at least in part, for the poor cross-protective immunity induced by H120. These results suggest that further work is required to rationally design vaccines that confer effective protection against PhCoV infection in commercial pheasant stocks.
Collapse
|
30
|
Millet JK, Jaimes JA, Whittaker GR. Molecular diversity of coronavirus host cell entry receptors. FEMS Microbiol Rev 2021; 45:fuaa057. [PMID: 33118022 PMCID: PMC7665467 DOI: 10.1093/femsre/fuaa057] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 10/24/2020] [Indexed: 12/11/2022] Open
Abstract
Coronaviruses are a group of viruses causing disease in a wide range of animals, and humans. Since 2002, the successive emergence of bat-borne severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), swine acute diarrhea syndrome coronavirus (SADS-CoV) and SARS-CoV-2 has reinforced efforts in uncovering the molecular and evolutionary mechanisms governing coronavirus cell tropism and interspecies transmission. Decades of studies have led to the discovery of a broad set of carbohydrate and protein receptors for many animal and human coronaviruses. As the main determinant of coronavirus entry, the spike protein binds to these receptors and mediates membrane fusion. Prone to mutations and recombination, spike evolution has been studied extensively. The interactions between spike proteins and their receptors are often complex and despite many advances in the field, there remains many unresolved questions concerning coronavirus tropism modification and cross-species transmission, potentially leading to delays in outbreak responses. The emergence of SARS-CoV-2 underscores the need to address these outstanding issues in order to better anticipate new outbreaks. In this review, we discuss the latest advances in the field of coronavirus receptors emphasizing on the molecular and evolutionary processes that underlie coronavirus receptor usage and host range expansion.
Collapse
Affiliation(s)
- Jean K Millet
- Université Paris-Saclay, INRAE, UVSQ, Virologie et Immunologie Moléculaires, 78352 Jouy-en-Josas, France
| | - Javier A Jaimes
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
| | - Gary R Whittaker
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
- Master of Public Health Program, Cornell University, Ithaca, NY 14853, USA
- Cornell Feline Health Center, Ithaca, NY 14853, USA
| |
Collapse
|
31
|
Kenney SP, Wang Q, Vlasova A, Jung K, Saif L. Naturally Occurring Animal Coronaviruses as Models for Studying Highly Pathogenic Human Coronaviral Disease. Vet Pathol 2020; 58:438-452. [PMID: 33357102 DOI: 10.1177/0300985820980842] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Coronaviruses (CoVs) comprise a large group of positive stranded RNA viruses that infect a diverse host range including birds and mammals. Infection with CoVs typically presents as mild to severe respiratory or enteric disease, but CoVs have the potential to cause significant morbidity or mortality in highly susceptible age groups. CoVs have exhibited a penchant for jumping species barriers throughout history with devastating effects. The emergence of highly pathogenic or infectious CoVs in humans over the past 20 years, including severe acute respiratory syndrome CoV (SARS-CoV), Middle East respiratory syndrome CoV (MERS-CoV), and most recently severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), underscores the significant threat that CoV spillovers pose to humans. Similar to the emergence of SARS-CoV-2, CoVs have been devastating to commercial animal production over the past century, including infectious bronchitis virus in poultry and bovine CoV, as well as the emergence and reemergence of multiple CoVs in swine including transmissible gastroenteritis virus, porcine epidemic diarrhea virus, and porcine deltacoronavirus. These naturally occurring animal CoV infections provide important examples for understanding CoV disease as many animal CoVs have complex pathogenesis similar to SARS-CoV-2 and can shed light on the ongoing SARS-CoV-2 outbreak. We provide an overview and update regarding selected existing animal CoVs and their primary host species, diseases caused by CoVs, how CoVs jump species, whether these CoVs pose an outbreak risk or risk to humans, and how we can mitigate these risks.
Collapse
Affiliation(s)
| | | | | | - Kwonil Jung
- 2647The Ohio State University, Wooster, OH, USA
| | - Linda Saif
- 2647The Ohio State University, Wooster, OH, USA
| |
Collapse
|
32
|
Jiang Y, Gao M, Cheng X, Yu Y, Shen X, Li J, Zhou S. The V617I Substitution in Avian Coronavirus IBV Spike Protein Plays a Crucial Role in Adaptation to Primary Chicken Kidney Cells. Front Microbiol 2020; 11:604335. [PMID: 33391226 PMCID: PMC7775488 DOI: 10.3389/fmicb.2020.604335] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/27/2020] [Indexed: 12/30/2022] Open
Abstract
The naturally isolated avian coronavirus infectious bronchitis virus (IBV) generally cannot replicate in chicken kidney (CK) cells. To explore the molecular mechanism of IBV adapting to CK cells, a series of recombinant viruses were constructed by chimerizing the S genes of CK cell-adapted strain H120 and non-adapted strain IBYZ. The results showed that the S2 subunit determines the difference in cell tropism of the two strains. After comparing the amino acid sequences of S protein of CK cell-adapted strain YZ120, with its parental strain IBYZ, three amino acid substitutions, A138V, L581F, and V617I, were identified. Using YZ120 as the backbone, one or more of the above-mentioned substitutions were eliminated to verify the correlation between these sites and CK cell tropism. The results showed that the CK cell tropism of the YZ120 strain depends on the V617I substitution, the change of L581F promoted the adaptation in CK cells, and the change at 138 position was not directly related to the CK cell tropism. Further validation experiments also showed that V617I had a decisive role in the adaptation of IBV to CK cells, but other areas of the virus genome also affected the replication efficiency of the virus in CK cells.
Collapse
Affiliation(s)
- Yi Jiang
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, China.,Jiangsu Institute of Poultry Science (CAAS), Yangzhou, China.,Laboratory of Animal Infectious Disease, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Mingyan Gao
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, China.,Jiangsu Institute of Poultry Science (CAAS), Yangzhou, China
| | - Xu Cheng
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, China.,Jiangsu Institute of Poultry Science (CAAS), Yangzhou, China
| | - Yan Yu
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, China.,Jiangsu Institute of Poultry Science (CAAS), Yangzhou, China
| | - Xinyue Shen
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, China.,Jiangsu Institute of Poultry Science (CAAS), Yangzhou, China.,Laboratory of Animal Infectious Disease, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Jianmei Li
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, China.,Jiangsu Institute of Poultry Science (CAAS), Yangzhou, China
| | - Sheng Zhou
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, China.,Jiangsu Institute of Poultry Science (CAAS), Yangzhou, China
| |
Collapse
|
33
|
Emergence of Avian coronavirus genotype GI-11 in Colombia. Braz J Microbiol 2020; 52:455-459. [PMID: 33104974 PMCID: PMC7586380 DOI: 10.1007/s42770-020-00394-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 10/17/2020] [Indexed: 11/16/2022] Open
Abstract
Avian coronavirus (AvCoV/IBV) is a virus with high morbidity, which can cause respiratory, digestive, renal, and reproductive diseases in chickens. Molecular detection and sequencing are the main tool for identification and classification of AvCoV. Thirty-six samples were collected in three broiler farms from different regions in Colombia, due to mortality increase; ten samples were positive using RT-qPCR targeted to the 5′ UTR of AvCoV, and one sample was positive and had its partial S gene sequenced. Phylogenetic analysis revealed that this strain belongs to the GI-11 lineage, similar to the Brazilian cluster. Several lineages have already been described in Colombia but, to the best of our knowledge, this is the first time that GI-11 has been detected in this country, which suggests that this subtype may be more widespread in South America than previously thought.
Collapse
|
34
|
Stevenson-Leggett P, Keep S, Bickerton E. Treatment with Exogenous Trypsin Expands In Vitro Cellular Tropism of the Avian Coronavirus Infectious Bronchitis Virus. Viruses 2020; 12:E1102. [PMID: 33003350 PMCID: PMC7600076 DOI: 10.3390/v12101102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/23/2020] [Accepted: 09/28/2020] [Indexed: 12/27/2022] Open
Abstract
The Gammacoronavirus infectious bronchitis virus (IBV) causes a highly contagious and economically important respiratory disease in poultry. In the laboratory, most IBV strains are restricted to replication in ex vivo organ cultures or in ovo and do not replicate in cell culture, making the study of their basic virology difficult. Entry of IBV into cells is facilitated by the large glycoprotein on the surface of the virion, the spike (S) protein, comprised of S1 and S2 subunits. Previous research showed that the S2' cleavage site is responsible for the extended tropism of the IBV Beaudette strain. This study aims to investigate whether protease treatment can extend the tropism of other IBV strains. Here we demonstrate that the addition of exogenous trypsin during IBV propagation in cell culture results in significantly increased viral titres. Using a panel of IBV strains, exhibiting varied tropisms, the effects of spike cleavage on entry and replication were assessed by serial passage cell culture in the presence of trypsin. Replication could be maintained over serial passages, indicating that the addition of exogenous protease is sufficient to overcome the barrier to infection. Mutations were identified in both S1 and S2 subunits following serial passage in cell culture. This work provides a proof of concept that exogenous proteases can remove the barrier to IBV replication in otherwise non-permissive cells, providing a platform for further study of elusive field strains and enabling sustainable vaccine production in vitro.
Collapse
Affiliation(s)
| | | | - Erica Bickerton
- The Pirbright Institute, Ash Road, Woking, Surrey GU24 0NF, UK; (P.S.-L.); (S.K.)
| |
Collapse
|
35
|
Hassan MSH, Abdul-Careem MF. Avian Viruses that Impact Table Egg Production. Animals (Basel) 2020; 10:E1747. [PMID: 32993040 PMCID: PMC7601732 DOI: 10.3390/ani10101747] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/09/2020] [Accepted: 09/21/2020] [Indexed: 01/12/2023] Open
Abstract
Eggs are a common source of protein and other nutrient components for people worldwide. Commercial egg-laying birds encounter several challenges during the long production cycle. An efficient egg production process requires a healthy bird with a competent reproductive system. Several viral pathogens that can impact the bird's health or induce reversible or irreversible lesions in the female reproductive organs adversely interfere with the egg industry. The negative effects exerted by viral diseases create a temporary or permanent decrease in egg production, in addition to the production of low-quality eggs. Several factors including, but not limited to, the age of the bird, and the infecting viral strain and part of reproductive system involved contribute to the form of reproductive disease encountered. Advanced methodologies have successfully elucidated some of the virus-host interactions relevant to the hen's reproductive performance, however, this branch needs further research. This review discusses the major avian viral infections that have been reported to adversely affect egg productivity and quality and aims to summarize the current understanding of the mechanisms that underlie the observed negative effects.
Collapse
Affiliation(s)
- Mohamed S. H. Hassan
- Faculty of Veterinary Medicine, University of Calgary, Health Research Innovation Center 2C53, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada;
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Assiut University, Assiut 71515, Egypt
| | - Mohamed Faizal Abdul-Careem
- Faculty of Veterinary Medicine, University of Calgary, Health Research Innovation Center 2C53, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada;
| |
Collapse
|
36
|
M. Najimudeen S, H. Hassan MS, C. Cork S, Abdul-Careem MF. Infectious Bronchitis Coronavirus Infection in Chickens: Multiple System Disease with Immune Suppression. Pathogens 2020; 9:pathogens9100779. [PMID: 32987684 PMCID: PMC7598688 DOI: 10.3390/pathogens9100779] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/21/2020] [Accepted: 09/21/2020] [Indexed: 12/11/2022] Open
Abstract
In the early 1930s, infectious bronchitis (IB) was first characterized as a respiratory disease in young chickens; later, the disease was also described in older chickens. The etiology of IB was confirmed later as being due to a coronavirus: the infectious bronchitis virus (IBV). Being a coronavirus, IBV is subject to constant genome change due to mutation and recombination, with the consequence of changing clinical and pathological manifestations. The potential use of live attenuated vaccines for the control of IBV infection was demonstrated in the early 1950s, but vaccine breaks occurred due to the emergence of new IBV serotypes. Over the years, various IBV genotypes associated with reproductive, renal, gastrointestinal, muscular and immunosuppressive manifestations have emerged. IBV causes considerable economic impacts on global poultry production due to its pathogenesis involving multiple body systems and immune suppression; hence, there is a need to better understand the pathogenesis of infection and the immune response in order to help developing better management strategies. The evolution of new strains of IBV during the last nine decades against vaccine-induced immune response and changing clinical and pathological manifestations emphasize the necessity of the rational development of intervention strategies based on a thorough understanding of IBV interaction with the host.
Collapse
|
37
|
Soheili M, Haji-allahverdipoor K, Khadem-erfan MB, Baban B, Nikkhoo B, Eliasi A, Nasseri S. Combination of C21 and ARBs with rhACE2 as a therapeutic protocol: A new promising approach for treating ARDS in patients with coronavirus infection. Med J Islam Repub Iran 2020; 34:120. [PMID: 33316002 PMCID: PMC7722962 DOI: 10.34171/mjiri.34.120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Indexed: 12/15/2022] Open
Abstract
Background: Coronavirus disease 2019 (COVID-19) is caused by a new severe acute respiratory syndrome Coronavirus. COVID-19 patients are at risk for acute respiratory distress syndrome and death from respiratory failure. Methods: In this study the complete genome of the SARS-CoV-2 reference sequence, geologically isolated types, and Coronavirus related to human diseases were compared by the Molecular Phylogenetic Maximum Likelihood method. The secondary and tertiary structures of the main protease of SARS-CoV were defined as the most similar viruses to SARS-CoV-2, aligned with chimera software. Therefore, considering ineffective antiviral medications used for SARS-CoV and the importance of preventing acute respiratory distress syndrome as the main cause of mortality, 2 strategies were adopted to acquire the most effective drug combination. Results: The results of phylogenic analysis showed that SARS-CoV is the most similar virus to SARS-CoV-2. The secondary structure and superimposing of tertiary structure did not show a significant difference between SARS and SARS-CoV-2 3C-like main protease and the root means square deviation between Cα atoms did not support the difference between the 2 protein structures. Thus, these 2 mechanisms were fostered in accordance with the correlation between acute respiratory distress syndrome-related Coronavirus, angiotensin-converting enzyme 2 on one side and the possible treatments for reducing the respiratory side effects on the other. The analysis of renin-angiotensin system as well as the tested drugs applied to acute respiratory distress syndrome cases, indicated that angiotensin II receptor blockers, angiotensin-converting enzyme inhibitors, and C21 as nonpeptide agonist might possess a promising modality of treatment for acute respiratory distress syndrome. Furthermore, implementing recombinant human ACE2 as a competitive receptor might be an effective way to trap and chelate the SARS-CoV-2 particles. Conclusion: The data suggest that combination therapy of angiotensin II receptor blockers and C21 could be a potential pharmacologic regimen to control and reduce acute respiratory distress syndrome. Moreover, rhACE2 can be recommended as an effective protective antiviral therapy in the treatment of COVID-19 and its complications.
Collapse
Affiliation(s)
- Marzieh Soheili
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
- Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Kaveh Haji-allahverdipoor
- Department of Biotechnology and Plant Breeding, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
- Young Researchers and Elites Club, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohamad Bagher Khadem-erfan
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Babak Baban
- Department of Oral Biology and Diagnostic Sciences, DCG, Augusta University, Augusta GA, USA
| | - Bahram Nikkhoo
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
- Department of Pathology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Anwar Eliasi
- Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sherko Nasseri
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| |
Collapse
|
38
|
Bennet BM, Wolf J, Laureano R, Sellers RS. Review of Current Vaccine Development Strategies to Prevent Coronavirus Disease 2019 (COVID-19). Toxicol Pathol 2020; 48:800-809. [PMID: 32926660 DOI: 10.1177/0192623320959090] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) outbreak that started in Wuhan, China, in 2019 resulted in a pandemic not seen for a century, and there is an urgent need to develop safe and efficacious vaccines. The scientific community has made tremendous efforts to understand the disease, and unparalleled efforts are ongoing to develop vaccines and treatments. Toxicologists and pathologists are involved in these efforts to test the efficacy and safety of vaccine candidates. Presently, there are several SARS-CoV-2 vaccines in clinical trials, and the pace of vaccine development has been highly accelerated to meet the urgent need. By 2021, efficacy and safety data from clinical trials are expected, and potentially a vaccine will be available for those most at risk. This review focuses on the ongoing SARS-CoV-2 vaccine development efforts with emphasis on the nonclinical safety assessment and discusses emerging preliminary data from nonclinical and clinical studies. It also provides a brief overview on vaccines for other coronaviruses, since experience gained from these can be useful in the development of SARS-CoV-2 vaccines. This review will also explain why, despite this unprecedented pace of vaccine development, rigorous standards are in place to ensure nonclinical and clinical safety and efficacy. [Box: see text].
Collapse
|
39
|
Wille M, Holmes EC. Wild birds as reservoirs for diverse and abundant gamma- and deltacoronaviruses. FEMS Microbiol Rev 2020; 44:631-644. [PMID: 32672814 PMCID: PMC7454673 DOI: 10.1093/femsre/fuaa026] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 06/30/2020] [Indexed: 12/17/2022] Open
Abstract
Wild birds interconnect all parts of the globe through annual cycles of migration with little respect for country or continental borders. Although wild birds are reservoir hosts for a high diversity of gamma- and deltacoronaviruses, we have little understanding of the ecology or evolution of any of these viruses. In this review, we use genome sequence and ecological data to disentangle the evolution of coronaviruses in wild birds. Specifically, we explore host range at the levels of viral genus and species, and reveal the multi-host nature of many viral species, albeit with biases to certain types of avian host. We conclude that it is currently challenging to infer viral ecology due to major sampling and technical limitations, and suggest that improved assay performance across the breadth of gamma- and deltacoronaviruses, assay standardization, as well as better sequencing approaches, will improve both the repeatability and interpretation of results. Finally, we discuss cross-species virus transmission across both the wild bird - poultry interface as well as from birds to mammals. Clarifying the ecology and diversity in the wild bird reservoir has important ramifications for our ability to respond to the likely future emergence of coronaviruses in socioeconomically important animal species or human populations.
Collapse
Affiliation(s)
- Michelle Wille
- WHO Collaborating Centre for Reference and Research on Influenza, at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Edward C Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
40
|
Saiada F, Gallardo RA, Shivaprasad HL, Corsiglia C, Van Santen VL. Intestinal Tropism of an Infectious Bronchitis Virus Isolate Not Explained by Spike Protein Binding Specificity. Avian Dis 2020; 64:23-35. [PMID: 32267122 DOI: 10.1637/0005-2086-64.1.23] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 10/17/2019] [Indexed: 11/05/2022]
Abstract
An infectious bronchitis virus (IBV) with an unusual enteric tropism (CalEnt) was isolated from a California broiler flock exhibiting runting-stunting syndrome. IBV was detected in the small intestine, but not in the respiratory tract or kidney. During virus isolation in embryos, it did not replicate in chorioallantoic membrane (CAM) but could be recovered from intestines. Its S1 protein showed 93% amino acid sequence identity to a California variant isolated in 1999 (Cal99). Intestinal lesions were reproduced following ocular/nasal inoculation of specific-pathogen-free chickens, but respiratory signs and lesions were also present. The virus was detected in both respiratory and intestinal tissues. To determine whether the novel tropism of IBV CalEnt was due to an increased ability of its S1 protein to bind to the intestinal epithelium, we compared the binding of soluble trimeric recombinant S1 proteins derived from CalEnt and Cal99 to chicken tissues. Contrary to expectations, the CalEnt S1 protein did not bind to small intestine and, unlike Cal99 S1, did not bind to the respiratory epithelium or CAM. Using only the CalEnt S1 N-terminal domain or including the S2 ectodomain (lacking membrane and cytoplasmic domains), which have been shown to improve ArkDPI S1 protein binding, did not lead to detectable binding at the standard protein concentration to any tissue tested. Our results indicate no/poor binding of the CalEnt spike protein to both respiratory and intestinal tissues and thus do not support better attachment to intestinal epithelial cells as a reason for CalEnt's extended tropism. These results might reflect shortcomings of the assay, including that it does not detect potential contributions of the S1 C-terminal domain to attachment. We used bioinformatic approaches to explore the possibility that the unique tropism of CalEnt might be a result of functions of the S protein in cell-entry steps subsequent to attachment. These analyses suggest that CalEnt's S2 coding region was acquired through a recombination event and encodes a unique amino acid sequence at the putative recognition site for the protease that activates the S protein for fusion. Thus, S2 activation by tissue-specific proteases might facilitate CalEnt entry into intestinal epithelial cells and compensate for poor binding by its S1 protein.
Collapse
Affiliation(s)
- Farjana Saiada
- Department of Pathobiology, 264 Greene Hall, College of Veterinary Medicine, Auburn University, Auburn, AL 36849
| | - Rodrigo A Gallardo
- Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA 95616
| | - H L Shivaprasad
- University of California, California Animal Health and Food Safety Laboratory Tulare Branch, Tulare, CA 93274
| | | | - Vicky L Van Santen
- Department of Pathobiology, 264 Greene Hall, College of Veterinary Medicine, Auburn University, Auburn, AL 36849,
| |
Collapse
|
41
|
The Characterization of chIFITMs in Avian Coronavirus Infection In Vivo, Ex Vivo and In Vitro. Genes (Basel) 2020; 11:genes11080918. [PMID: 32785186 PMCID: PMC7464837 DOI: 10.3390/genes11080918] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 01/11/2023] Open
Abstract
The coronaviruses are a large family of enveloped RNA viruses that commonly cause gastrointestinal or respiratory illnesses in the infected host. Avian coronavirus infectious bronchitis virus (IBV) is a highly contagious respiratory pathogen of chickens that can affect the kidneys and reproductive systems resulting in bird mortality and decreased reproductivity. The interferon-inducible transmembrane (IFITM) proteins are activated in response to viral infections and represent a class of cellular restriction factors that restrict the replication of many viral pathogens. Here, we characterize the relative mRNA expression of the chicken IFITM genes in response to IBV infection, in vivo, ex vivo and in vitro using the pathogenic M41-CK strain, the nephropathogenic QX strain and the nonpathogenic Beaudette strain. In vivo we demonstrate a significant upregulation of chIFITM1, 2, 3 and 5 in M41-CK- and QX-infected trachea two days post-infection. In vitro infection with Beaudette, M41-CK and QX results in a significant upregulation of chIFITM1, 2 and 3 at 24 h post-infection. We confirmed a differential innate response following infection with distinct IBV strains and believe that our data provide new insights into the possible role of chIFITMs in early IBV infection.
Collapse
|
42
|
Zhu P, Lv C, Fang C, Peng X, Sheng H, Xiao P, Kumar Ojha N, Yan Y, Liao M, Zhou J. Heat Shock Protein Member 8 Is an Attachment Factor for Infectious Bronchitis Virus. Front Microbiol 2020; 11:1630. [PMID: 32765462 PMCID: PMC7381282 DOI: 10.3389/fmicb.2020.01630] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 06/22/2020] [Indexed: 01/28/2023] Open
Abstract
Although infectious bronchitis virus (IBV) is the first coronavirus identified, little is known about which membrane protein of host cells could interact with IBV spike protein and facilitate the infection by the virus. In this study, by using a monoclonal antibody to the S1 protein of IBV M41 strain, we found that heat shock protein member 8 (HSPA8) could interact with spike protein of IBV. HSPA8 was found to be present on the cell membrane and chicken tissues, with highest expression level in the kidney. Results of co-IP and GST-pull-down assays indicated that the receptor binding domain (RBD) of IBV M41 could interact with HSPA8. The results of binding blocking assay and infection inhibition assay showed that recombinant protein HSPA8 and antibody to HSPA8 could inhibit IBV M41 infection of chicken embryonic kidney (CEK) cells. Further, we found that HSPA8 interacted with the N-terminal 19–272 amino acids of S1 of IBV Beaudette, H120 and QX strains and HSPA8 from human and pig also interacted with IBV M41-RBD. Finally the results of binding blocking assay and infection inhibition assay showed that recombinant HSPA8 protein and antibody to HSPA8 could inhibit IBV Beaudette strain infection of Vero cells that were treated with heparanase to remove heparan sulfate from the cell surface. Taken together, our results indicate that HSPA8 is a novel host factor involved in IBV infection.
Collapse
Affiliation(s)
- Pengpeng Zhu
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou, China
| | - Chenfei Lv
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou, China
| | - Chengxiu Fang
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou, China
| | - Xing Peng
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou, China
| | - Hao Sheng
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou, China
| | - Peng Xiao
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou, China
| | - Nishant Kumar Ojha
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou, China
| | - Yan Yan
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou, China
| | - Min Liao
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou, China
| | - Jiyong Zhou
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou, China
| |
Collapse
|
43
|
Abstract
Interest in coronaviruses because of the 2019 novel coronavirus (SARS-CoV-2) pandemic has generated concern about their occurrence and persistence in aquatic habitats. Coronaviruses are not quantitatively significant constituents of marine virioplankton. Members of the Nidovirales (to which human coronaviruses belong) infect marine mammals, teleosts and possibly invertebrates, and human coronaviruses may persist in marine plankton receiving wastewater effluent. However, virions likely experience significant particle and infectivity decay rates in surface seawater, similar to other enveloped RNA viruses.
Collapse
Affiliation(s)
- Gideon J. Mordecai
- Department of Earth, Ocean and Atmospheric Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Ian Hewson
- Department of Microbiology, Cornell University, Ithaca, NY, United States
| |
Collapse
|
44
|
Kim CH. SARS-CoV-2 Evolutionary Adaptation toward Host Entry and Recognition of Receptor O-Acetyl Sialylation in Virus-Host Interaction. Int J Mol Sci 2020; 21:4549. [PMID: 32604730 PMCID: PMC7352545 DOI: 10.3390/ijms21124549] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/15/2020] [Accepted: 06/22/2020] [Indexed: 02/06/2023] Open
Abstract
The recently emerged SARS-CoV-2 is the cause of the global health crisis of the coronavirus disease 2019 (COVID-19) pandemic. No evidence is yet available for CoV infection into hosts upon zoonotic disease outbreak, although the CoV epidemy resembles influenza viruses, which use sialic acid (SA). Currently, information on SARS-CoV-2 and its receptors is limited. O-acetylated SAs interact with the lectin-like spike glycoprotein of SARS CoV-2 for the initial attachment of viruses to enter into the host cells. SARS-CoV-2 hemagglutinin-esterase (HE) acts as the classical glycan-binding lectin and receptor-degrading enzyme. Most β-CoVs recognize 9-O-acetyl-SAs but switched to recognizing the 4-O-acetyl-SA form during evolution of CoVs. Type I HE is specific for the 9-O-Ac-SAs and type II HE is specific for 4-O-Ac-SAs. The SA-binding shift proceeds through quasi-synchronous adaptations of the SA-recognition sites of the lectin and esterase domains. The molecular switching of HE acquisition of 4-O-acetyl binding from 9-O-acetyl SA binding is caused by protein-carbohydrate interaction (PCI) or lectin-carbohydrate interaction (LCI). The HE gene was transmitted to a β-CoV lineage A progenitor by horizontal gene transfer from a 9-O-Ac-SA-specific HEF, as in influenza virus C/D. HE acquisition, and expansion takes place by cross-species transmission over HE evolution. This reflects viral evolutionary adaptation to host SA-containing glycans. Therefore, CoV HE receptor switching precedes virus evolution driven by the SA-glycan diversity of the hosts. The PCI or LCI stereochemistry potentiates the SA-ligand switch by a simple conformational shift of the lectin and esterase domains. Therefore, examination of new emerging viruses can lead to better understanding of virus evolution toward transitional host tropism. A clear example of HE gene transfer is found in the BCoV HE, which prefers 7,9-di-O-Ac-SAs, which is also known to be a target of the bovine torovirus HE. A more exciting case of such a switching event occurs in the murine CoVs, with the example of the β-CoV lineage A type binding with two different subtypes of the typical 9-O-Ac-SA (type I) and the exclusive 4-O-Ac-SA (type II) attachment factors. The protein structure data for type II HE also imply the virus switching to binding 4-O acetyl SA from 9-O acetyl SA. Principles of the protein-glycan interaction and PCI stereochemistry potentiate the SA-ligand switch via simple conformational shifts of the lectin and esterase domains. Thus, our understanding of natural adaptation can be specified to how carbohydrate/glycan-recognizing proteins/molecules contribute to virus evolution toward host tropism. Under the current circumstances where reliable antiviral therapeutics or vaccination tools are lacking, several trials are underway to examine viral agents. As expected, structural and non-structural proteins of SARS-CoV-2 are currently being targeted for viral therapeutic designation and development. However, the modern global society needs SARS-CoV-2 preventive and therapeutic drugs for infected patients. In this review, the structure and sialobiology of SARS-CoV-2 are discussed in order to encourage and activate public research on glycan-specific interaction-based drug creation in the near future.
Collapse
Affiliation(s)
- Cheorl-Ho Kim
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea;
- Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, Seoul 06351, Korea
| |
Collapse
|
45
|
On the Coronaviruses and Their Associations with the Aquatic Environment and Wastewater. WATER 2020. [DOI: 10.3390/w12061598] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The outbreak of Coronavirus Disease 2019 (COVID-19), a severe respiratory disease caused by betacoronavirus SARS-CoV-2, in 2019 that further developed into a pandemic has received an unprecedented response from the scientific community and sparked a general research interest into the biology and ecology of Coronaviridae, a family of positive-sense single-stranded RNA viruses. Aquatic environments, lakes, rivers and ponds, are important habitats for bats and birds, which are hosts for various coronavirus species and strains and which shed viral particles in their feces. It is therefore of high interest to fully explore the role that aquatic environments may play in coronavirus spread, including cross-species transmissions. Besides the respiratory tract, coronaviruses pathogenic to humans can also infect the digestive system and be subsequently defecated. Considering this, it is pivotal to understand whether wastewater can play a role in their dissemination, particularly in areas with poor sanitation. This review provides an overview of the taxonomy, molecular biology, natural reservoirs and pathogenicity of coronaviruses; outlines their potential to survive in aquatic environments and wastewater; and demonstrates their association with aquatic biota, mainly waterfowl. It also calls for further, interdisciplinary research in the field of aquatic virology to explore the potential hotspots of coronaviruses in the aquatic environment and the routes through which they may enter it.
Collapse
|
46
|
Decaro N, Lorusso A. Novel human coronavirus (SARS-CoV-2): A lesson from animal coronaviruses. Vet Microbiol 2020; 244:108693. [PMID: 32402329 PMCID: PMC7195271 DOI: 10.1016/j.vetmic.2020.108693] [Citation(s) in RCA: 242] [Impact Index Per Article: 48.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/10/2020] [Accepted: 04/10/2020] [Indexed: 12/16/2022]
Abstract
The recent pandemic caused by the novel human coronavirus, referrred to as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), not only is having a great impact on the health care systems and economies in all continents but it is also causing radical changes of common habits and life styles. The novel coronavirus (CoV) recognises, with high probability, a zoonotic origin but the role of animals in the SARS-CoV-2 epidemiology is still largely unknown. However, CoVs have been known in animals since several decades, so that veterinary coronavirologists have a great expertise on how to face CoV infections in animals, which could represent a model for SARS-CoV-2 infection in humans. In the present paper, we provide an up-to-date review of the literature currently available on animal CoVs, focusing on the molecular mechanisms that are responsible for the emergence of novel CoV strains with different antigenic, biologic and/or pathogenetic features. A full comprehension of the mechanisms driving the evolution of animal CoVs will help better understand the emergence, spreading, and evolution of SARS-CoV-2.
Collapse
Affiliation(s)
- Nicola Decaro
- Department of Veterinary Medicine, University of Bari, Valenzano, Bari, Italy.
| | - Alessio Lorusso
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise 'G. Caporale', Teramo, Italy
| |
Collapse
|
47
|
Jaimes JA, Millet JK, Stout AE, André NM, Whittaker GR. A Tale of Two Viruses: The Distinct Spike Glycoproteins of Feline Coronaviruses. Viruses 2020; 12:v12010083. [PMID: 31936749 PMCID: PMC7019228 DOI: 10.3390/v12010083] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/23/2019] [Accepted: 01/08/2020] [Indexed: 11/16/2022] Open
Abstract
Feline coronavirus (FCoV) is a complex viral agent that causes a variety of clinical manifestations in cats, commonly known as feline infectious peritonitis (FIP). It is recognized that FCoV can occur in two different serotypes. However, differences in the S protein are much more than serological or antigenic variants, resulting in the effective presence of two distinct viruses. Here, we review the distinct differences in the S proteins of these viruses, which are likely to translate into distinct biological outcomes. We introduce a new concept related to the non-taxonomical classification and differentiation among FCoVs by analyzing and comparing the genetic, structural, and functional characteristics of FCoV and the FCoV S protein among the two serotypes and FCoV biotypes. Based on our analysis, we suggest that our understanding of FIP needs to consider whether the presence of these two distinct viruses has implications in clinical settings.
Collapse
Affiliation(s)
- Javier A. Jaimes
- Department of Microbiology & Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA; (J.A.J.); (A.E.S.); (N.M.A.)
| | - Jean K. Millet
- Virologie et Immunologie Moléculaires, INRAE, Université Paris-Saclay, 78352 Jouy-en-Josas, France;
| | - Alison E. Stout
- Department of Microbiology & Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA; (J.A.J.); (A.E.S.); (N.M.A.)
| | - Nicole M. André
- Department of Microbiology & Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA; (J.A.J.); (A.E.S.); (N.M.A.)
| | - Gary R. Whittaker
- Department of Microbiology & Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA; (J.A.J.); (A.E.S.); (N.M.A.)
- Correspondence:
| |
Collapse
|
48
|
Brandão PE, Hora AS, Silva SOS, Taniwaki SA, Berg M. Extinction and emergence of genomic haplotypes during the evolution of Avian coronavirus in chicken embryos. Genet Mol Biol 2020; 43:e20190064. [PMID: 32338275 PMCID: PMC7249780 DOI: 10.1590/1678-4685-gmb-2019-0064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 06/20/2019] [Indexed: 11/21/2022] Open
Abstract
Avian coronavirus (AvCoV) is ubiquitously present on poultry as a multitude of virus lineages. Studies on AvCoV phenotypic traits are dependent on the isolation of field strains in chicken embryonated eggs, but the mutant spectrum on each isolate is not considered. This manuscript reports the previously unknown HTS (high throughput sequencing)-based complete genome haplotyping of AvCoV isolates after passages of two field strains in chicken embryonated eggs. For the first and third passages of strain 23/2013, virus loads were 6.699 log copies/ μL and 6 log copies/ μL and, for 38/2013, 5.699 log copies/μL and 2.699 log copies/μL of reaction, respectively. The first passage of strain 23/2013 contained no variant haplotype, while, for the third passage, five putative variant haplotypes were found, with > 99.9% full genome identity with each other and with the dominant genome. Regarding strain 38/2013, five variant haplotypes were found for the first passage, with > 99.9% full genome identity with each other and with the dominant genome, and a single variant haplotype was found. Extinction and emergence of haplotypes with polymorphisms in genes involved in receptor binding and regulation of RNA synthesis were observed, suggesting that phenotypic traits of AvCoV isolates are a result of their mutant spectrum.
Collapse
Affiliation(s)
- Paulo E Brandão
- Universidade de São Paulo, Faculdade de Medicina Veterinária e Zootecnia, Departamento de Medicina Veterinária Preventiva e Saúde Animal, São Paulo, SP, Brazil
| | - Aline S Hora
- Universidade Federal de Uberlândia, Faculdade de Medicina Veterinária, Uberlândia, MG, Brazil
| | - Sheila O S Silva
- Universidade de São Paulo, Faculdade de Medicina Veterinária e Zootecnia, Departamento de Medicina Veterinária Preventiva e Saúde Animal, São Paulo, SP, Brazil
| | - Sueli A Taniwaki
- Universidade de São Paulo, Faculdade de Medicina Veterinária e Zootecnia, Departamento de Medicina Veterinária Preventiva e Saúde Animal, São Paulo, SP, Brazil
| | - Mikael Berg
- Swedish University of Agricultural Sciences, Department of Biomedical Sciences and Veterinary Public Health, Section of Virology, Uppsala, Sweden
| |
Collapse
|
49
|
Tan CW, Huan Hor CH, Kwek SS, Tee HK, Sam IC, Goh ELK, Ooi EE, Chan YF, Wang LF. Cell surface α2,3-linked sialic acid facilitates Zika virus internalization. Emerg Microbes Infect 2019; 8:426-437. [PMID: 30898036 PMCID: PMC6455136 DOI: 10.1080/22221751.2019.1590130] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The emergence of neurotropic Zika virus (ZIKV) raised a public health emergency of global concern. ZIKV can cross the placental barrier and infect foetal brains, resulting in microcephaly, but the pathogenesis of ZIKV is poorly understood. With recent findings reporting AXL as a type I interferon antagonist rather than an entry receptor, the exact entry mechanism remains unresolved. Here we report that cell surface sialic acid plays an important role in ZIKV infection. Removal of cell surface sialic acid by neuraminidase significantly abolished ZIKV infection in Vero cells and human induced-pluripotent stem cells-derived neural progenitor cells. Furthermore, knockout of the sialic acid biosynthesis gene encoding UDP-N-acetylglucosamine-2-epimerase/N-acetylmannosamine kinase resulted in significantly less ZIKV infection of both African and Asian lineages. Huh7 cells deficient in α2,3-linked sialic acid through knockout of ST3 β-galactoside-α2,3-sialyltransferase 4 had significantly reduced ZIKV infection. Removal of membrane-bound, un-internalized virus with pronase treatment revealed the role of sialic acid in ZIKV internalization but not attachment. Sialyllactose inhibition studies showed that there is no direct interaction between sialic acid and ZIKV, implying that sialic acid could be mediating ZIKV-receptor complex internalization. Identification of α2,3-linked sialic acid as an important host factor for ZIKV internalization provides new insight into ZIKV infection and pathogenesis.
Collapse
Affiliation(s)
- Chee Wah Tan
- a Programme in Emerging Infectious Diseases , Duke-NUS Medical School , Singapore , Singapore
| | - Catherine Hong Huan Hor
- b Neuroscience Academic Clinical Programme , Duke-NUS Medical School , Singapore , Singapore
| | - Swee Sen Kwek
- a Programme in Emerging Infectious Diseases , Duke-NUS Medical School , Singapore , Singapore
| | - Han Kang Tee
- c Department of Medical Microbiology, Faculty of Medicine , University of Malaya , Kuala Lumpur , Malaysia
| | - I-Ching Sam
- c Department of Medical Microbiology, Faculty of Medicine , University of Malaya , Kuala Lumpur , Malaysia
| | - Eyleen L K Goh
- b Neuroscience Academic Clinical Programme , Duke-NUS Medical School , Singapore , Singapore
| | - Eng Eong Ooi
- a Programme in Emerging Infectious Diseases , Duke-NUS Medical School , Singapore , Singapore
| | - Yoke Fun Chan
- c Department of Medical Microbiology, Faculty of Medicine , University of Malaya , Kuala Lumpur , Malaysia
| | - Lin-Fa Wang
- a Programme in Emerging Infectious Diseases , Duke-NUS Medical School , Singapore , Singapore
| |
Collapse
|
50
|
Khan S, Roberts J, Wu SB. Genes involved in mitochondrial biogenesis and function may not show synchronised responses to mitochondria in shell gland of laying chickens under infectious bronchitis virus challenge. BMC Mol Cell Biol 2019; 20:3. [PMID: 31041887 PMCID: PMC6446503 DOI: 10.1186/s12860-019-0190-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 03/21/2019] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Egg formation takes place in the oviduct of laying hens over a 24 h period. Infectious bronchitis virus (IBV) causes pathological lesions in the chicken oviduct. In the current study, mitochondrial counts were determined in three different segments of the oviduct during egg formation in laying chickens challenged with IBV T strain. Nuclear DNA encoded genes that are involved in mitochondrial biogenesis, fission and function were studied in the shell gland of the oviduct undergoing virus multiplication. RESULTS In the shell gland, the mitochondrial count was significantly lower (P < 0.05) in the challenged group, compared with the control group. However, it did not vary in response to IBV challenge in the isthmus and magnum regions of the oviduct. The gene succinate dehydrogenase complex, subunit A, flavoprotein variant (SDHA) was down-regulated in the shell gland by IBV challenge (P < 0.05), while other genes being studied did not show responses to the challenge (P > 0.05). Differential expression of the genes was observed at different time-points of egg-shell formation. The expression levels of citrate synthase (CS), cytochrome C, somatic (CYC, S) and sodium-potassium adenosine triphosphatase (Na+-K+ATPase) genes were significantly higher, while those of SDHA and dynamin related protein 1 (Drp1) genes were significantly lower, at 15 h compared with 5 h following oviposition of the previous egg. The expression level of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) did not show significant change at different time-points. CONCLUSIONS It was concluded that IBV T strain infection in laying hens reduced mitochondrial counts only in the shell gland region of the oviduct. The genes involved in mitochondrial biogenesis or function may not show synchronised responses to that of mitochondria in the shell gland of chickens under T strain of IBV challenge.
Collapse
Affiliation(s)
- Samiullah Khan
- Animal Science, School of Environmental and Rural Science, University of New England, Armidale, New South Wales 2351 Australia
- Present address: School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia 5371 Australia
| | - Juliet Roberts
- Animal Science, School of Environmental and Rural Science, University of New England, Armidale, New South Wales 2351 Australia
| | - Shu-Biao Wu
- Animal Science, School of Environmental and Rural Science, University of New England, Armidale, New South Wales 2351 Australia
| |
Collapse
|