1
|
Kanda T, Okamoto H. Thermal Inactivation of Hepatitis E Virus: A Narrative Review. Viruses 2025; 17:702. [PMID: 40431713 PMCID: PMC12115974 DOI: 10.3390/v17050702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2025] [Revised: 05/12/2025] [Accepted: 05/12/2025] [Indexed: 05/29/2025] Open
Abstract
Hepatitis E virus (HEV) infection is an emerging infectious disease. HEV-1 and HEV-2 infect humans through contaminated water and foods, mainly in developing countries. HEV-3 and HEV-4 also infect humans through contaminated food and are thought to be zoonotic infections occurring in both developing and developed countries. A vaccine for hepatitis E is licensed in only limited countries. The inactivation of infectious HEV is very important to ensure the safety of drinking water and foods. HEV-3 and HEV-4 RNA have been detected in some pig liver products, and it is possible that these foods may represent an infectious source of HEV. In this article, previous publications on the heat inactivation and heat stability of HEV are collected, and we discuss the present assessment of the heat inactivation of HEV. The thermal stability of HEV infection in cell culture systems and pig bioassays has been demonstrated, while the efficacy of the method of thermal inactivation using plasma products has not yet been established. Here, we propose that the treatment of HEV-contaminated foods at 95 °C for 10 min is one of the safest options for the inactivation of HEV.
Collapse
Affiliation(s)
- Tatsuo Kanda
- Division of Gastroenterology and Hepatology, Uonuma Institute of Community Medicine, Niigata University Medical and Dental Hospital, Uonuma Kikan Hospital, Minami-Uonuma 949-7302, Japan
| | - Hiroaki Okamoto
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke-shi 329-0498, Tochigi, Japan;
| |
Collapse
|
2
|
Schilling-Loeffler K, Meyer D, Wolff A, Santamaría-Palacios J, Reich F, Johne R. Determination of hepatitis E virus inactivation during manufacturing of spreadable pork liver sausage and salami-like raw pork sausage. Int J Food Microbiol 2025; 429:111018. [PMID: 39700675 DOI: 10.1016/j.ijfoodmicro.2024.111018] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/25/2024] [Accepted: 12/08/2024] [Indexed: 12/21/2024]
Abstract
The zoonotic hepatitis E virus (HEV) can cause acute and chronic hepatitis in humans. Meat from domestic pigs, which represent a major animal reservoir of HEV, plays a key role in HEV transmission. Although pork meat products can contain HEV-RNA, it is unknown whether infectious HEV is still present after their manufacturing process. Here, we used a newly developed method for virus extraction from sausages and a quantitative method for detecting HEV infectivity in artificially contaminated sausages to investigate the HEV inactivation during production of spreadable pork liver sausage and salami-like raw pork sausage. The cell culture-adapted HEV genotype 3c strain 47832c was used to contaminate meat preparations intended for production of sausages, which were manufactured based on recipes commonly used in Germany. According to these recipes, spreadable liver sausages of a certain diameter are to be held in a water bath at 70 °C for 30 min. Therefore, the HEV inoculated liver sausage preparations were filled into conical tubes and heated in a 70 °C water bath. After 21 min, the sausages reached a core temperature of 70 °C and samples were taken after further incubation for up to 18 min. For the raw sausages, the HEV inoculated meat preparation was filled into natural casings and sausages were cured at 18 °C and 80 % relative humidity. Samples were taken for up to 21 days. HEV was extracted from all samples, which were quantitatively analyzed for infectious virus and viral RNA using cell culture and RT-qPCR, respectively. During liver sausage production, infectious HEV decreased by four log10 immediately after reaching the core temperature of 70 °C and was completely inactivated (>4.3 log10 decrease) 2 min later (23 min heat treatment). In contrast, the HEV-RNA amount decreased only marginally (<0.6 log10) throughout the whole incubation time. During raw sausage manufacturing, infectious HEV decreased only slightly (<1.3 log10) over three weeks of curing, while the HEV-RNA amount remained unchanged. It can be concluded that the intended heating regime during production of spreadable liver sausages leads to an inactivation of HEV, indicating a low risk of HEV infection for consumers if these sausages are manufactured properly. In contrast, HEV was only slightly inactivated during production of salami-like raw pork sausage. Therefore, raw sausage can contain infectious HEV if starting material with a high HEV amount was used for production. Viral RNA testing cannot be used to predict infectivity of HEV in meat products.
Collapse
Affiliation(s)
| | - Dirk Meyer
- German Federal Institute of Risk Assessment, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - Alexander Wolff
- German Federal Institute of Risk Assessment, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | | | - Felix Reich
- German Federal Institute of Risk Assessment, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - Reimar Johne
- German Federal Institute of Risk Assessment, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany.
| |
Collapse
|
3
|
Castagna F, Liguori G, Lombardi R, Bava R, Costagliola A, Giordano A, Quintiliani M, Giacomini D, Albergo F, Gigliotti A, Lupia C, Ceniti C, Tilocca B, Palma E, Roncada P, Britti D. Hepatitis E and Potential Public Health Implications from a One-Health Perspective: Special Focus on the European Wild Boar ( Sus scrofa). Pathogens 2024; 13:840. [PMID: 39452712 PMCID: PMC11510200 DOI: 10.3390/pathogens13100840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 10/26/2024] Open
Abstract
The hepatitis E virus (HEV) has become increasingly important in recent years in terms of risk for public health, as the main causative agent of acute viral hepatitis. It is a foodborne disease transmitted to humans through the consumption of contaminated water or contaminated food. Human-to-human transmission is sporadic and is linked to transfusions or transplants. The main reservoirs of the hepatitis E virus are domestic pigs and wild boars, although, compared to pigs, wild boars represent a lesser source of risk since their population is smaller and the consumption of derived products is more limited. These peculiarities often make the role of the wild boar reservoir in the spread of the disease underestimated. As a public health problem that involves several animal species and humans, the management of the disease requires an interdisciplinary approach, and the concept of "One Health" must be addressed. In this direction, the present review intends to analyze viral hepatitis E, with a particular focus on wild boar. For this purpose, literature data have been collected from different scientific search engines: PubMed, MEDLINE, and Google scholar, and several keywords such as "HEV epidemiology", "Extrahepatic manifestations of Hepatitis E", and "HEV infection control measures", among others, have been used. In the first part, the manuscript provides general information on the disease, such as epidemiology, transmission methods, clinical manifestations and implications on public health. In the second part, it addresses in more detail the role of wild boar as a reservoir and the implications related to the virus epidemiology. The document will be useful to all those who intend to analyze this infectious disease from a "One-Health" perspective.
Collapse
Affiliation(s)
- Fabio Castagna
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (F.C.); (B.T.); (E.P.); (P.R.); (D.B.)
- Mediterranean Ethnobotanical Conservatory, 88054 Catanzaro, Italy;
| | - Giovanna Liguori
- Local Health Authority, ASL, 71121 Foggia, Italy; (G.L.); (R.L.)
| | - Renato Lombardi
- Local Health Authority, ASL, 71121 Foggia, Italy; (G.L.); (R.L.)
| | - Roberto Bava
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (F.C.); (B.T.); (E.P.); (P.R.); (D.B.)
| | - Anna Costagliola
- Department of Veterinary Medicine and Animal Productions, University of Napoli Federico II, 80100 Naples, Italy;
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, 1900 N 12th Street, Philadelphia, PA 19122, USA;
- Department of Medical Biotechnology, University of Siena, 10100 Siena, Italy
| | | | | | - Francesco Albergo
- Department of Management, Finance and Technology, University LUM Giuseppe Degennaro, 70100 Casamassima, Italy;
| | - Andrea Gigliotti
- Interregional Park of Sasso Simone and Simoncello, 61021 Carpegna, Italy;
| | - Carmine Lupia
- Mediterranean Ethnobotanical Conservatory, 88054 Catanzaro, Italy;
| | - Carlotta Ceniti
- ASL Napoli 3 SUD, Department of Prevention, 80053 Castellammare di Stabia, Italy;
| | - Bruno Tilocca
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (F.C.); (B.T.); (E.P.); (P.R.); (D.B.)
| | - Ernesto Palma
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (F.C.); (B.T.); (E.P.); (P.R.); (D.B.)
| | - Paola Roncada
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (F.C.); (B.T.); (E.P.); (P.R.); (D.B.)
| | - Domenico Britti
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (F.C.); (B.T.); (E.P.); (P.R.); (D.B.)
| |
Collapse
|
4
|
Kinast V, Todt D. The relation of host genetics to symptomatic hepatitis E. Hepatology 2024; 79:1261-1263. [PMID: 38150272 DOI: 10.1097/hep.0000000000000749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 12/28/2023]
Affiliation(s)
- Volker Kinast
- Department of Medical Microbiology and Virology, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Daniel Todt
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
- European Virus Bioinformatics Center, Jena, Germany
| |
Collapse
|
5
|
Tene SD, Diouara AAM, Kane A, Sané S, Coundoul S, Thiam F, Nguer CM, Diop M, Mbaye MN, Mbengue M, Lo S, Diop Ndiaye H, Toure Kane C, Ayouba A. Detection of Hepatitis E Virus (HEV) in Pork Sold in Saint-Louis, the North of Senegal. Life (Basel) 2024; 14:512. [PMID: 38672782 PMCID: PMC11050832 DOI: 10.3390/life14040512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
The hepatitis E virus (HEV) is a zoonotic pathogen with various hosts, including pigs, which act as reservoirs. In industrialized countries, sporadic cases caused by genotype 3, contracted by ingesting contaminated uncooked or undercooked meat, have been reported. However, in developing countries, HEV infection is mainly dominated by genotype 2 and often associated with poor hygiene conditions and drinking water supplies. HEV infection and its circulation in domestic fauna in West Africa are poorly documented. This study aimed to assess the presence of HEV in pork sold in Saint-Louis, Senegal. Meat products (250 g samples, n = 74) were purchased in August 2022 from three locations. Then, 2 g/sample was minced to extract total nucleic acids using the Purelink™ Viral DNA/RNA kit. RT-PCR reactions were performed using the One-Taq™ One-Step RT-PCR kit targeting the HEV ORF2 genomic region. The products obtained were visualized on a 1% agarose gel. Of a total of 74 samples, divided into pork meat (n = 65) and pork liver (n = 9), 5.4% (n = 4) tested positive for HEV. In both cases, two samples were positive, representing a rate of 3.1% and 22.2% for meat and pork liver, respectively. All new viral sequences were obtained from a monophyletic group within HEV genotype 3. This study is the first to report the presence of HEV in pork sold in Senegal and the results reveal a potential circulation of HEV in the pig population. The high proportion of contamination in the pork liver samples highlights a major risk associated with their consumption.
Collapse
Affiliation(s)
- Sophie Deli Tene
- Groupe de Recherche Biotechnologies Appliquées & Bioprocédés Environnementaux (GRBA-BE), École Supérieure Polytechnique (ESP), Université Cheikh Anta Diop, Dakar 5085, Senegal; (S.D.T.); (S.S.); (S.C.); (F.T.); (C.M.N.); (M.D.); (M.N.M.)
| | - Abou Abdallah Malick Diouara
- Groupe de Recherche Biotechnologies Appliquées & Bioprocédés Environnementaux (GRBA-BE), École Supérieure Polytechnique (ESP), Université Cheikh Anta Diop, Dakar 5085, Senegal; (S.D.T.); (S.S.); (S.C.); (F.T.); (C.M.N.); (M.D.); (M.N.M.)
| | - Alé Kane
- Laboratoire des Sciences Biologiques, Agronomiques, Alimentaires et de Modélisation des Systèmes Complexes (LABAAM), UFR S2ATA, Université Gaston Berger, Saint-Louis 234, Senegal;
| | - Sarbanding Sané
- Groupe de Recherche Biotechnologies Appliquées & Bioprocédés Environnementaux (GRBA-BE), École Supérieure Polytechnique (ESP), Université Cheikh Anta Diop, Dakar 5085, Senegal; (S.D.T.); (S.S.); (S.C.); (F.T.); (C.M.N.); (M.D.); (M.N.M.)
| | - Seynabou Coundoul
- Groupe de Recherche Biotechnologies Appliquées & Bioprocédés Environnementaux (GRBA-BE), École Supérieure Polytechnique (ESP), Université Cheikh Anta Diop, Dakar 5085, Senegal; (S.D.T.); (S.S.); (S.C.); (F.T.); (C.M.N.); (M.D.); (M.N.M.)
| | - Fatou Thiam
- Groupe de Recherche Biotechnologies Appliquées & Bioprocédés Environnementaux (GRBA-BE), École Supérieure Polytechnique (ESP), Université Cheikh Anta Diop, Dakar 5085, Senegal; (S.D.T.); (S.S.); (S.C.); (F.T.); (C.M.N.); (M.D.); (M.N.M.)
| | - Cheikh Momar Nguer
- Groupe de Recherche Biotechnologies Appliquées & Bioprocédés Environnementaux (GRBA-BE), École Supérieure Polytechnique (ESP), Université Cheikh Anta Diop, Dakar 5085, Senegal; (S.D.T.); (S.S.); (S.C.); (F.T.); (C.M.N.); (M.D.); (M.N.M.)
| | - Mamadou Diop
- Groupe de Recherche Biotechnologies Appliquées & Bioprocédés Environnementaux (GRBA-BE), École Supérieure Polytechnique (ESP), Université Cheikh Anta Diop, Dakar 5085, Senegal; (S.D.T.); (S.S.); (S.C.); (F.T.); (C.M.N.); (M.D.); (M.N.M.)
| | - Mame Ndew Mbaye
- Groupe de Recherche Biotechnologies Appliquées & Bioprocédés Environnementaux (GRBA-BE), École Supérieure Polytechnique (ESP), Université Cheikh Anta Diop, Dakar 5085, Senegal; (S.D.T.); (S.S.); (S.C.); (F.T.); (C.M.N.); (M.D.); (M.N.M.)
| | - Malick Mbengue
- Laboratoire de Microbiologie Appliquée et de Génie Industriel, École Supérieure Polytechnique (ESP), Université Cheikh Anta Diop, Dakar 5085, Senegal;
| | - Seynabou Lo
- Unité de Formation et de Recherche Science de la Santé (UFR 2S), Université Gaston Berger, Saint-Louis 234, Senegal;
| | - Halimatou Diop Ndiaye
- Laboratoire de Bactériologie Virologie CHU Aristide le Dantec, Université Cheikh Anta DIOP, Dakar 5005, Senegal;
| | - Coumba Toure Kane
- Institut de Recherche en Santé, de Surveillance Épidémiologique et de Formation (IRESSEF), Pole Urbain Diamniadio, Dakar 7325, Senegal;
- Université Sine Saloum El Hadj Ibrahima Niass (USSEIN), Kaolack 55, Senegal
| | - Ahidjo Ayouba
- Recherches Translationnelles sur le VIH et Maladies Infectieuses, Institut de Recherche pour le Développement, Université de Montpellier/INSERM U1175, 34000 Montpellier, France;
| |
Collapse
|
6
|
Milojević L, Velebit B, Janković V, Mitrović R, Betić N, Simunović S, Dimitrijević M. Prevalence, Genetic Diversity, and Quantification of the RNA Genome of the Hepatitis E Virus in Slaughtered Pigs in Serbia. Animals (Basel) 2024; 14:586. [PMID: 38396554 PMCID: PMC10886375 DOI: 10.3390/ani14040586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
The goal of this study conducted in Serbia was to detect HEV in pig liver samples from slaughterhouses, retail outlets, and environmental swabs over the course of a year. All positive HEV samples were measured and expressed as HEV gene copy numbers per gram of sample, and a representative number of samples were sequenced using the Sanger approach. A total of 45 HEV-positive samples were re-amplified using nested RT-PCR employing CODEHOP primers targeting ORF2 (493 nucleotides). The average prevalence of the HEV genotype 3 in all pig liver samples from the slaughterhouses was 29%, while HEV prevalence was 44% in liver samples from animals younger than 3 months. HEV RNA was found in thirteen out of sixty (22%) environmental swab samples that were taken from different surfaces along the slaughter line. Our findings confirmed seasonal patterns in HEV prevalence, with two picks (summer and winter periods) during the one-year examination. Among HEV-positive samples, the average viral particles for all positive liver samples was 4.41 ± 1.69 log10 genome copies per gram. Phylogenetic analysis revealed the majority of HEV strains (43/45) from Serbia were grouped in the HEV-3a subtype, while two strains were classified into the HEV-3c subtype, and one strain could not be classified into any of the HEV-3 subtypes.
Collapse
Affiliation(s)
- Lazar Milojević
- Institute of Meat Hygiene and Technology, Kaćanskog 13, 11040 Belgrade, Serbia; (B.V.); (V.J.); (R.M.); (S.S.)
| | - Branko Velebit
- Institute of Meat Hygiene and Technology, Kaćanskog 13, 11040 Belgrade, Serbia; (B.V.); (V.J.); (R.M.); (S.S.)
| | - Vesna Janković
- Institute of Meat Hygiene and Technology, Kaćanskog 13, 11040 Belgrade, Serbia; (B.V.); (V.J.); (R.M.); (S.S.)
| | - Radmila Mitrović
- Institute of Meat Hygiene and Technology, Kaćanskog 13, 11040 Belgrade, Serbia; (B.V.); (V.J.); (R.M.); (S.S.)
| | - Nikola Betić
- Institute of Meat Hygiene and Technology, Kaćanskog 13, 11040 Belgrade, Serbia; (B.V.); (V.J.); (R.M.); (S.S.)
| | - Sara Simunović
- Institute of Meat Hygiene and Technology, Kaćanskog 13, 11040 Belgrade, Serbia; (B.V.); (V.J.); (R.M.); (S.S.)
| | - Mirjana Dimitrijević
- Faculty of Veterinary Medicine, University of Belgrade, Bulevar Oslobođenja 18, 11000 Belgrade, Serbia
| |
Collapse
|
7
|
Turlewicz-Podbielska H, Augustyniak A, Wojciechowski J, Pomorska-Mól M. Hepatitis E Virus in Livestock-Update on Its Epidemiology and Risk of Infection to Humans. Animals (Basel) 2023; 13:3239. [PMID: 37893962 PMCID: PMC10603682 DOI: 10.3390/ani13203239] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/09/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Hepatitis E virus (HEV) is a public health problem worldwide and an important food pathogen known for its zoonotic potential. Increasing numbers of infection cases with human HEV are caused by the zoonotic transmission of genotypes 3 and 4, mainly by consuming contaminated, undercooked or raw porcine meat. Pigs are the main reservoir of HEV. However, it should be noted that other animal species, such as cattle, sheep, goats, and rabbits, may also be a source of infection for humans. Due to the detection of HEV RNA in the milk and tissues of cattle, the consumption of infected uncooked milk and meat or offal from these species also poses a potential risk of zoonotic HEV infections. Poultry infected by avian HEV may also develop symptomatic disease, although avian HEV is not considered a zoonotic pathogen. HEV infection has a worldwide distribution with different prevalence rates depending on the affected animal species, sampling region, or breeding system.
Collapse
Affiliation(s)
- Hanna Turlewicz-Podbielska
- Department of Preclinical Sciences and Infectious Diseases, Poznan University of Life Sciences, Wolynska 35, 60-637 Poznan, Poland; (H.T.-P.); (A.A.)
| | - Agata Augustyniak
- Department of Preclinical Sciences and Infectious Diseases, Poznan University of Life Sciences, Wolynska 35, 60-637 Poznan, Poland; (H.T.-P.); (A.A.)
| | | | - Małgorzata Pomorska-Mól
- Department of Preclinical Sciences and Infectious Diseases, Poznan University of Life Sciences, Wolynska 35, 60-637 Poznan, Poland; (H.T.-P.); (A.A.)
| |
Collapse
|
8
|
Hakze-van der Honing RW, van Oort S, Dirks RAM, van der Poel WHM. Development of an Ex Vivo Assay for Identification of Infectious Hepatitis E Virus in Different Kinds of Food Samples. Pathogens 2023; 12:1231. [PMID: 37887746 PMCID: PMC10610002 DOI: 10.3390/pathogens12101231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/26/2023] [Accepted: 10/09/2023] [Indexed: 10/28/2023] Open
Abstract
Hepatitis E virus (HEV) is a positive-sense single-stranded RNA virus and a major cause of acute viral hepatitis. HEV is responsible for 20 million infections worldwide in humans every year. HEV-3 and HEV-4 are zoonotic and are responsible for most of the HEV cases in developed countries. Consumption of contaminated pig meat or pig products is considered to be the main transmission route of HEV HEV-3 in Europe. Prevalence studies for HEV generally use PCR methods to detect the presence or absence of genomic RNA. However, these methods do not discriminate infectious virus particles from non-infectious material. Previously developed HEV cell culture systems only worked with high efficiency after cell line adaptation of the subjected virus strains. In this manuscript, the development of a culture system for the detection of infectious HEV strains is described. For this purpose, we optimized the isolation and the growth of primary hepatocytes from young piglets. Subsequently, the isolated hepatocytes were used to culture HEV of different origins, such as liver tissue samples and sausage samples. This method can be applied to better assess the risk of infection through consumption of food products associated with HEV RNA contamination.
Collapse
Affiliation(s)
- Renate W. Hakze-van der Honing
- Wageningen Bioveterinary Research (WBVR), Wageningen University and Research, Houtribweg 39, 8221 Lelystad, The Netherlands; (S.v.O.); (W.H.M.v.d.P.)
| | - Sophie van Oort
- Wageningen Bioveterinary Research (WBVR), Wageningen University and Research, Houtribweg 39, 8221 Lelystad, The Netherlands; (S.v.O.); (W.H.M.v.d.P.)
| | - René A. M. Dirks
- Wageningen Food Safety Research (WFSR), Wageningen University and Research, Akkermaalsbos 2, 6708 Wageningen, The Netherlands
| | - Wim H. M. van der Poel
- Wageningen Bioveterinary Research (WBVR), Wageningen University and Research, Houtribweg 39, 8221 Lelystad, The Netherlands; (S.v.O.); (W.H.M.v.d.P.)
| |
Collapse
|
9
|
Akpoigbe K, Culpepper-Morgan J, Akpoigbe O, Santogade P. Acute Hepatitis E Infection Associated With Deer Meat in the United States. ACG Case Rep J 2023; 10:e01068. [PMID: 37389196 PMCID: PMC10306433 DOI: 10.14309/crj.0000000000001068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 05/10/2023] [Indexed: 07/01/2023] Open
Abstract
Acute hepatitis E virus (HEV) infection in the United States of America (U.S.A) is low. However, seroprevalence rate is about of 6%. Most cases of HEV infection have been reported from travelers from endemic countries with poor sanitary conditions. Evidence of HEV as a zoonotic infection has been reported from developed countries from swine and wild animals including boar and deer. There is no reported case of direct transmission from wild game to humans in the U.S.A. We report a case of HEV from butchering of deer meat.
Collapse
Affiliation(s)
- Kesiena Akpoigbe
- Division of Gastroenterology, Columbia University Medical Center, Health + Hospitals/Harlem Affiliation, New York, NY
| | - Joan Culpepper-Morgan
- Division of Gastroenterology, Columbia University Medical Center, Health + Hospitals/Harlem Affiliation, New York, NY
| | - Okeoghene Akpoigbe
- Division of Gastroenterology, Columbia University Medical Center, Health + Hospitals/Harlem Affiliation, New York, NY
| | - Peter Santogade
- Division of Gastroenterology, Columbia University Medical Center, Health + Hospitals/Harlem Affiliation, New York, NY
| |
Collapse
|
10
|
Locus T, Lambrecht E, Peeters M, Suin V, Verhaegen B, Van Hoorde K, Lamoral S, Vanwolleghem T, Van Gucht S. Hepatitis E virus in pork meat products and exposure assessment in Belgium. Int J Food Microbiol 2023; 397:110198. [PMID: 37086528 DOI: 10.1016/j.ijfoodmicro.2023.110198] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/24/2023]
Abstract
Zoonotic hepatitis E virus (HEV) genotype 3 infections are the predominant cause of acute viral hepatitis in Europe, mostly associated with the consumption of HEV contaminated pork meat. In this study we looked at the HEV RNA positivity rate of pork meat products readily available from Belgian supermarkets and evaluated the overall HEV consumer exposure in a Belgian context. Two basic assessments were performed in a 'worst-case' scenario setting: one solely focusing on the contamination level of the product itself (ingredients and processing parameters) and another estimating the overall consumer exposure, taking into account consumption habits in Belgium. Non-thermal-processed ready-to-eat (i.e. ready for consumption without additional cooking step by consumer) pork meat products (e.g. raw dried sausages), had a high estimated HEV contamination level, while thermal-processed ready-to-eat pork meat products (e.g. pork liver pâté) had the highest overall consumer exposure estimates. Following these assessments, pork liver pâtés, raw dried hams and raw dried sausages (n = 54) were purchased from Belgian supermarkets (n = 3) and analyzed for HEV RNA by RT-PCR. In total, 31 % (n = 17) products tested positive. HEV RNA was found in 65 % of the pork liver pâtés, 15 % of raw dried hams and 0 % of raw dried sausages. Phylogenetic analysis of four isolates (all gt3c) from pork liver pâté samples showed similarities with human clinical cases from Germany and Belgium.
Collapse
Affiliation(s)
- Tatjana Locus
- Sciensano, Infectious Diseases in Humans, Viral Diseases, Engelandstraat 642, 1180 Ukkel, Belgium; ILVO, Flemish Research Institute for Agriculture, Fisheries and Food, Technology and Food Unit, Brusselsesteenweg 370, 9090 Melle, Belgium; University of Antwerp, Laboratory of Experimental Medicine and Pediatrics, Viral Hepatitis Research Group, Drie Eikenstraat 655, 2650 Edegem, Belgium
| | - Ellen Lambrecht
- ILVO, Flemish Research Institute for Agriculture, Fisheries and Food, Technology and Food Unit, Brusselsesteenweg 370, 9090 Melle, Belgium
| | - Michael Peeters
- Sciensano, Infectious Diseases in Humans, Viral Diseases, Engelandstraat 642, 1180 Ukkel, Belgium
| | - Vanessa Suin
- Sciensano, Infectious Diseases in Humans, Viral Diseases, Engelandstraat 642, 1180 Ukkel, Belgium
| | - Bavo Verhaegen
- Sciensano, Infectious Diseases in Humans, Foodborne Pathogens, Juliette Wytsmanstraat 14, 1050 Elsene, Belgium
| | - Koenraad Van Hoorde
- Sciensano, Infectious Diseases in Humans, Foodborne Pathogens, Juliette Wytsmanstraat 14, 1050 Elsene, Belgium
| | - Sophie Lamoral
- Sciensano, Infectious Diseases in Humans, Viral Diseases, Engelandstraat 642, 1180 Ukkel, Belgium
| | - Thomas Vanwolleghem
- University of Antwerp, Laboratory of Experimental Medicine and Pediatrics, Viral Hepatitis Research Group, Drie Eikenstraat 655, 2650 Edegem, Belgium
| | - Steven Van Gucht
- Sciensano, Infectious Diseases in Humans, Viral Diseases, Engelandstraat 642, 1180 Ukkel, Belgium.
| |
Collapse
|
11
|
Geng Y, Shi T, Wang Y. Transmission of Hepatitis E Virus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1417:73-92. [PMID: 37223860 DOI: 10.1007/978-981-99-1304-6_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Transmission of hepatitis E virus (HEV) occurs predominantly by the fecal-oral route. Large epidemics of hepatitis E in the developing countries of Asia and Africa are waterborne and spread through contaminated drinking water. The reservoir of HEV in developed countries is believed to be in animals with zoonotic transmission to humans, possibly through direct contact or the consumption of undercooked contaminated meat. And HEV transmission through blood transfusion, organ transplantation, and vertical transmission has been reported.
Collapse
Affiliation(s)
- Yansheng Geng
- Key Laboratory of Public Health Safety of Hebei Province, School of Public Health, Hebei University, Baoding, China
| | - Tengfei Shi
- Key Laboratory of Public Health Safety of Hebei Province, School of Public Health, Hebei University, Baoding, China
| | - Youchun Wang
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, China.
| |
Collapse
|
12
|
A genetically novel avian Hepatitis E virus in China. Virus Genes 2022; 58:589-593. [PMID: 36183048 DOI: 10.1007/s11262-022-01937-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/25/2022] [Indexed: 10/07/2022]
Abstract
Hepatitis E virus (HEV) infection has a global distribution with diverse hosts, including mammals and avians. In this study, an avian Hepatitis E virus (aHEV) strain with a high mortality rate of about 30%, designated as SDXT20, was obtained from the liver of 30-week-old Hubbard chickens with severe hepatosplenomegaly in 2020 in Eastern China and HEV was proved to be the only pathogen by next-generation sequencing. Its complete genome, which encodes three open reading frames (ORFs), is 6649 nt in length. ORF1-3 encodes three proteins with lengths of 1532 aa, 606 aa, and 82 aa, respectively, and ORF2 and ORF3 overlap with each other. BLAST-based similarity analysis of the complete viral genome demonstrated that SDXT20 had merely 80.5-92.2% similarity with avian Avihepevirus magniiecur strains and 50.4%-54.8% lower similarity with Paslahepevirus balayani, Rocahepevirus ratti, and Chirohepevirus eptesici species. Further genetic evolution analysis of the complete genome and ORF2 revealed that the isolate was genetically distinct from known aHEVs, and it belonged to a novel genetically distinct aHEV. This study provides data for further analysis of the multi-host and cross-host genetic evolution of HEVs.
Collapse
|
13
|
Kinast V, Klöhn M, Nocke MK, Todt D, Steinmann E. Hepatitis E virus species barriers: seeking viral and host determinants. Curr Opin Virol 2022; 56:101274. [PMID: 36283248 DOI: 10.1016/j.coviro.2022.101274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 11/03/2022]
Abstract
The intimate relationship between virus and host cell can result in highly adapted viruses that are restricted to a single host. However, some viruses have the ability to infect multiple host species. Remarkably, hepatitis E viruses (HEV) comprise genotypes that are either 'single-host' or 'multi-host' genotypes, a trait that raises fundamental questions: Why do different genotypes differ in their host range, despite a high degree of genomic similarity? What are the underlying molecular determinants that shape species barriers? Here, we review the current knowledge of viral and host determinants that may affect the evolutionary trajectories of HEV. We also provide a perspective on techniques and methods that address open questions of HEV host range and adaptation.
Collapse
Affiliation(s)
- Volker Kinast
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany; Department of Medical Microbiology and Virology, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Mara Klöhn
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Maximilian K Nocke
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Daniel Todt
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany; European Virus Bioinformatics Center (EVBC), 07743 Jena, Germany.
| | - Eike Steinmann
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany; German Centre for Infection Research (DZIF), External Partner Site, Bochum, Germany.
| |
Collapse
|
14
|
Characterization of a Near Full-Length Hepatitis E Virus Genome of Subtype 3c Generated from Naturally Infected South African Backyard Pigs. Pathogens 2022; 11:pathogens11091030. [PMID: 36145462 PMCID: PMC9506134 DOI: 10.3390/pathogens11091030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/25/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022] Open
Abstract
Eight genotypes of the hepatitis E virus (Orthohepevirus A; HEV) designated HEV-1 to HEV-8 have been reported from various mammalian hosts. Notably, domestic pigs and wild boars are the natural reservoirs of HEV-3 and HEV-4 genotypes with zoonotic propensity. Since HEV infection in domestic pigs is usually subclinical, it may remain undetected, facilitating zoonotic spillover of HEV to the exposed human populations. A previous study from our group in 2021, using deep sequencing of a pooled saliva sample, generated various swine enteric virus genomes, including a near full-length swine HEV genome (7040 nt; 97.7% genome coverage) from five-month-old grower pigs at a backyard pig farm in the uMgungundlovu District, KwaZulu-Natal, South Africa. In the present study, we describe the further characterization, including genotyping and subtyping of the swine HEV isolate using phylogenetics and ‘HEVnet Typing Tool’. Our analyses confirmed that the South African swine HEV genome characterized in this study belonged to HEV genotype 3 subtype 3c (HEV-3c). While HEV-3c infections in domestic pigs have been previously reported from Brazil, Germany, Italy, and the Netherlands, they only generated partial genome sequences of open reading frame 1 (ORF1) and/or ORF2. To our knowledge, this is the first near full-length swine HEV-3c genome generated from naturally infected domestic pigs (Sus scrofa domesticus) in South Africa. However, due to the gap in the information on the HEV-3c genome sequences in various geographical locations worldwide, including South Africa, the epidemiology of the South African swine HEV genome characterized in this study remains inconclusive. Molecular and genomic surveillance of HEV in domestic pig populations in South Africa would be useful to determine their prevalence, circulating subtypes, and zoonosis risk.
Collapse
|
15
|
Boxman ILA, Verhoef L, Dop PY, Vennema H, Dirks RAM, Opsteegh M. High prevalence of acute hepatitis E virus infection in pigs in Dutch slaughterhouses. Int J Food Microbiol 2022; 379:109830. [PMID: 35908493 DOI: 10.1016/j.ijfoodmicro.2022.109830] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 05/19/2022] [Accepted: 07/03/2022] [Indexed: 11/28/2022]
Abstract
Hepatitis E is caused by hepatitis E virus (HEV), one of the causes of acute viral hepatitis. Domestic pigs are considered as the main reservoir of HEV-3. The recently reported high prevalence of HEV in liver- and meat products on the Dutch market warranted a cross-sectional prevalence study on HEV infection among 5-6 months old pigs slaughtered in the Netherlands (n = 250). For this, liver, caecum content and blood samples were analyzed for the presence of genomic HEV RNA by RT-PCR. In addition, a serological test was performed to detect HEV IgG. Background information was retrieved on the corresponding farms to evaluate potential risk factors for HEV at pig slaughter age. HEV IgG was detected in sera from 167 pigs (67.6 %). HEV RNA was detected in 64 (25.6 %) caecum content samples, in 40 (16.1 %) serum samples and in 25 (11.0 %) liver samples. The average level of viral contamination in positive samples was log10 4.6 genome copies (gc)/g (range 3.0-8.2) in caecum content, log10 3.3 gc/ml (range 2.4-5.9) in serum and log10 3.2 gc/0.1 g (range 1.7-6.2) in liver samples. Sequence analyses revealed HEV-3c only. Ten times an identical strain was detected in two or three samples obtained from the same pig. Each animal in this study however appeared to be infected with a unique strain. The presence of sows and gilts and welfare rating at the farm of origin had a significant effect (p < 0.05) on the distribution over the four groups representing different stages of HEV infection based on IgG or RNA in caecum and/or serum. The observed proportion of tested pigs with viremia (16 %) was higher than in other reported studies and was interestingly often observed in combination with a high number of HEV genome copies in liver and caecum content as detected by RT-qPCR. Data provided will be useful for risk assessment for food safety of pork products, will provide baseline data for future monitoring of HEV infections in pigs and new thoughts for mitigation strategies.
Collapse
Affiliation(s)
- Ingeborg L A Boxman
- WFSR, Wageningen Food Safety Research, Wageningen University and Research, Mailbox 230, 6700 AE Wageningen, the Netherlands.
| | - Linda Verhoef
- NVWA, Netherlands Food and Consumer Product Safety Authority, Utrecht, the Netherlands
| | - Petra Y Dop
- NVWA, Netherlands Food and Consumer Product Safety Authority, Utrecht, the Netherlands
| | - Harry Vennema
- RIVM, National Institute of Public Health and the Environment, Bilthoven, the Netherlands
| | - René A M Dirks
- WFSR, Wageningen Food Safety Research, Wageningen University and Research, Mailbox 230, 6700 AE Wageningen, the Netherlands
| | - Marieke Opsteegh
- RIVM, National Institute of Public Health and the Environment, Bilthoven, the Netherlands
| |
Collapse
|
16
|
Thippornchai N, Leaungwutiwong P, Kosoltanapiwat N, Vuong C, Nguyen K, Okabayashi T, Lee A. Survey of hepatitis E virus in pork products and pig stools in Nakhon Pathom Province, Thailand. Vet Med Sci 2022; 8:1975-1981. [PMID: 35636430 PMCID: PMC9514495 DOI: 10.1002/vms3.854] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background Hepatitis E virus (HEV) is an important public health threat resulting in more than 3 million symptomatic cases and 70,000 deaths annually. HEV is classified into at least eight genotypes, and five are associated with human infection. Genotypes 1 and 2 primarily affect humans, whereas genotypes 3 and 4 circulate in both humans and swine and are considered zoonotic viruses. Previous studies in Central Thailand have reported human HEV isolates with high similarity to swine strains and high seroprevalence in pigs, suggesting the potential for pig‐to‐human transmission. Objectives This study aimed to detect and analyse HEV in pork products and pig stools collected from local markets and pig farms in Nakhon Pathom Province in Central Thailand. Methods A total of 177 pig stool and 214 pork product samples were detected for HEV by using RT–PCR amplification. Next, nucleotide sequencing and phylogenetic analysis were performed. Results We found one sample of pork products (1/214, 0.5%), which was a pig liver sample (1/51, 2.0%), and 49 HEV‐positive samples in pig stools (49/177, 27.7%). Phylogenetic analysis showed that all these HEV sequences belonged to genotype 3, with a high correlation between our samples and HEV from humans and swine was previously reported in Thailand. Conclusions This study suggested that the consumption of poorly sanitized or uncooked animal meat or food and frequent exposure to pig stools may be risk factors for HEV infections in humans.
Collapse
Affiliation(s)
- Narin Thippornchai
- Department of Microbiology and Immunology Faculty of Tropical Medicine Mahidol University Bangkok Thailand
| | - Pornsawan Leaungwutiwong
- Department of Microbiology and Immunology Faculty of Tropical Medicine Mahidol University Bangkok Thailand
| | - Nathamon Kosoltanapiwat
- Department of Microbiology and Immunology Faculty of Tropical Medicine Mahidol University Bangkok Thailand
| | - Cindy Vuong
- Department of Tropical Medicine Medical Microbiology and Pharmacology University of Hawaii at Manoa Honolulu Hawaii USA
| | - Kellyan Nguyen
- Department of Tropical Medicine Medical Microbiology and Pharmacology University of Hawaii at Manoa Honolulu Hawaii USA
| | - Tamaki Okabayashi
- Department of Veterinary Science Faculty of Agriculture University of Miyazaki Musashimurayama Japan
- Center for Animal Disease Control University of Miyazaki Musashimurayama Japan
- Mahidol Osaka Center for Infectious Diseases Osaka University Musashimurayama Japan
| | - Awapuhi Lee
- Department of Tropical Medicine Medical Microbiology and Pharmacology University of Hawaii at Manoa Honolulu Hawaii USA
| |
Collapse
|
17
|
Acosta J, Galimberti A, Marziali F, Costaguta A, Bessone F, Tanno H, Gardiol D, Reggiardo MV, Cavatorta AL. Zoonotic transmission of hepatitis E virus in a pig farmer from Argentina: A case report. Zoonoses Public Health 2022; 69:235-241. [PMID: 34941019 DOI: 10.1111/zph.12902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 11/05/2021] [Accepted: 12/02/2021] [Indexed: 11/26/2022]
Abstract
Hepatitis E virus (HEV) is a public health concern due to its zoonotic transmission to human, being pigs a highly recognized reservoir. We previously demonstrated HEV genotype 3 infections in pig herds from the highest commercial active region from Argentina. Here, we present a case of acute symptomatic hepatitis E in an elderly man with occupational exposure to pigs who referred regular consumption of pork and sausages. HEV infection in this patient was demonstrated by serological methods, as well as by HEV RNA detection in serum and stool samples using the HEV/MS2 duplex RT-qPCR, formerly optimized in our laboratory. We further detected HEV RNA in pig faeces from the patient´s farm. To confirm the potential role of swine in the transmission, we performed a phylogenetic analysis of all HEV RNA derived from both, the patient and the pig samples. A 303 nt region within the HEV 5 'ORF2 was amplified by nested RT-PCR and subsequently sequenced. Phylogenetic analysis showed that the strains isolated from the farmer and from his pigs presented a nucleotide identity of 100%. These results support the zoonotic transmission of circulating HEV strains and confirm this epidemiological association for the first time in Argentina.
Collapse
Affiliation(s)
- Julián Acosta
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Biología Molecular y Celular de Rosario-CONICET, Universidad Nacional de Rosario, Rosario, Argentina
| | - Alceo Galimberti
- Facultad de Medicina, Hospital Provincial del Centenario, Universidad Nacional de Rosario, Rosario, Argentina
| | - Federico Marziali
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Biología Molecular y Celular de Rosario-CONICET, Universidad Nacional de Rosario, Rosario, Argentina
| | | | - Fernando Bessone
- Facultad de Medicina, Hospital Provincial del Centenario, Universidad Nacional de Rosario, Rosario, Argentina
| | - Hugo Tanno
- Facultad de Medicina, Hospital Provincial del Centenario, Universidad Nacional de Rosario, Rosario, Argentina
| | - Daniela Gardiol
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Biología Molecular y Celular de Rosario-CONICET, Universidad Nacional de Rosario, Rosario, Argentina
| | - María Virginia Reggiardo
- Facultad de Medicina, Hospital Provincial del Centenario, Universidad Nacional de Rosario, Rosario, Argentina
| | - Ana Laura Cavatorta
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Biología Molecular y Celular de Rosario-CONICET, Universidad Nacional de Rosario, Rosario, Argentina
| |
Collapse
|
18
|
Hepatitis E virus genotype 3 in bovine livers slaughtered in the state of Rio Grande do Sul, Brazil. Braz J Microbiol 2022; 53:1115-1120. [PMID: 35355235 PMCID: PMC9433617 DOI: 10.1007/s42770-022-00741-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/25/2022] [Indexed: 11/02/2022] Open
Abstract
Foodborne viruses are becoming a global concern as they overwhelm the health system and have the potential to spread globally. Among them, some genotypes of hepatitis E virus (HEV), which is one of the main causes of acute hepatitis in humans, have a zoonotic potential and can be found in foods of animal origin. Infected farm animals are a possible source of the virus, either by direct contact with animal excreta or meat. In the present study, 240 bovine liver samples from slaughter carried out in Rio Grande do Sul (RS), Brazil, were analyzed and tested for the presence of HEV. After performing PCR, 5.4% of positive samples were observed. One of the samples could be identified by molecular phylogenetic analysis as belonging to genotype 3, for which pigs are natural reservoirs, but has not been reported in bovine meat and products so far.
Collapse
|
19
|
Raji YE, Toung OP, Taib NM, Sekawi ZB. Hepatitis E Virus: An emerging enigmatic and underestimated pathogen. Saudi J Biol Sci 2022; 29:499-512. [PMID: 35002446 PMCID: PMC8716866 DOI: 10.1016/j.sjbs.2021.09.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 08/31/2021] [Accepted: 09/05/2021] [Indexed: 02/07/2023] Open
Abstract
Hepatitis E virus (HEV) is an RNA virus causing hepatitis E disease. The virus is of one serotype but has diverse genotypes infecting both humans and animals. Based on evidence from seroprevalence studies, about 2 billion people are estimated to have been infected with HEV globally. HEV, therefore, poses a significant public health and economic challenge worldwide. HEV was discovered in the 1980s and was traced back to the 1955 - 1956 outbreak of hepatitis that occurred in India. Subsequently, several HEV epidemics involving thousands of individuals have occurred nearly annually in different countries in Asia and Africa. Initially, the virus was thought to be only enterically transmitted, and endemic in developing countries. Due to the environmental hygiene and sanitation challenges in those parts of the world. However, recent studies have suggested otherwise with the report of autochthonous cases in industrialised countries with no history of travel to the so-called endemic countries. Thus, suggesting that HEV has a global distribution with endemicity in both developing and industrialised nations. Studies have also revealed that HEV has multiple risk factors, and modes of transmission as well as zoonotic potentials. Additionally, recent findings have shown that HEV leads to severe disease, particularly among pregnant women. In contrast to the previous narration of a strictly mild and self-limiting infection. Studies have likewise demonstrated chronic HEV infection among immunocompromised persons. Consequent to these recent discoveries, this pathogen is considered a re - emerging virus, particularly in the developed nations. However, despite the growing public health challenges of this pathogen, the burden is still underestimated. The underestimation is often attributed to poor awareness among clinicians and a lack of routine checks for the disease in the hospitals. Thus, leading to misdiagnosis and underdiagnosis. Hence, this review provides a concise overview of epidemiology, diagnosis, and prevention of hepatitis E.
Collapse
Affiliation(s)
- Yakubu Egigogo Raji
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia 1, Malaysia
- Faculty of Natural and Applied Sciences Ibrahim Badamasi Babangida University, Lapai, Nigeria
| | - Ooi Peck Toung
- Department of Veterinary Clinical Studies Faculty of Veterinary Medicine, Universiti Putra Malaysia 2, Malaysia
| | - Niazlin Mohd Taib
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia 1, Malaysia
| | - Zamberi Bin Sekawi
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia 1, Malaysia
| |
Collapse
|
20
|
Hepatitis E virus cross-contamination on the surface of porcine livers after storage in Euro meat containers in a German pig abattoir. J Verbrauch Lebensm 2021. [DOI: 10.1007/s00003-021-01357-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AbstractHepatitis E virus (HEV) is a foodborne zoonotic pathogen and known as the causative agent of hepatitis E in humans. The specific role of porcine liver as a vehicle for human HEV infections has been highlighted in different studies. Nevertheless, gaps of knowledge still exist regarding possible HEV cross-contamination both at consumer and production level. Furthermore, people working in the food production industry, e.g. veterinarians and abattoir employees, are exposed to an increased risk of HEV infection. The aim of the present study was to investigate HEV cross-contamination on the surface of porcine liver in a German abattoir. The sample set included 250 samples of porcine liver parenchyma and the corresponding 250 superficial layer samples of the same livers, which were analyzed for the presence of HEV ribonucleic acid (RNA). Afterwards, the initial status of the tested liver parenchyma was compared with the occurrence of HEV RNA in the corresponding superficial layer. HEV RNA was detectable in 34% (85/250) of superficial layer samples, with 58% (49/85) of the samples originated from initially HEV negative livers. To our knowledge, this is the first study that provides an insight in the potential of HEV cross-contamination at abattoir level in Germany. Furthermore, it could be identified that the joint storage of livers in Euro meat containers has a significant impact on the presence of HEV RNA on the surface of porcine liver.
Collapse
|
21
|
Bigoraj E, Paszkiewicz W, Rzeżutka A. Porcine Blood and Liver as Sporadic Sources of Hepatitis E Virus (HEV) in the Production Chain of Offal-Derived Foodstuffs in Poland. FOOD AND ENVIRONMENTAL VIROLOGY 2021; 13:347-356. [PMID: 33891305 PMCID: PMC8379118 DOI: 10.1007/s12560-021-09475-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 04/09/2021] [Indexed: 05/11/2023]
Abstract
Pig's blood and liver are valuable edible slaughter by-products which are also the major ingredients of offal-derived foodstuffs. The aim of the study was an evaluation of the occurrence of hepatitis E virus (HEV) and porcine adenovirus (pAdV) as an index virus of faecal contamination in pig's blood and liver for human consumption. In total, 246 samples of retail liver (n = 100) and pooled pig's blood (n = 146) were analysed for the presence of HEV and pAdV. Blood samples were individually collected from 1432 pigs at slaughter age. Viral genomic material, including RNA of a sample process control virus was isolated from food samples using a QIAamp® Viral RNA Mini Kit. Virus-specific IAC-controlled real-time PCR methods were used for detection of target viruses. HEV RNA was found in 6 (2.4%; 95% CI: 0.9-5.2) out of 246 samples of tested foodstuffs. The virus was detected in pig's blood (3.4%; 95% CI: 1.1-7.8) and liver (1.0%; 95% CI: 0.0-5.0) with no significant differences observed in the frequency of its occurrence between the two by-products (t = 1.33; p = 0.182 > 0.05); however PAdV was detected more frequently in pig's blood than in liver (t = 4.65; p = 0.000 < 0.05). The HEV strains belonged to the 3f and 3e subtype groups and the pAdV strains were assigned to serotype 5. PAdV was detected in pigs regardless of the farm size from which they originated. The number of animals raised on the farm (the farm size) had no influence on the occurrence of HEV or pAdV infections in pigs (F = 0.81, p = 0.447 > 0.05 for HEV; F = 0.42, p = 0.655 > 0.05 for pAdV). Although HEV was detected in pig's offal only sporadically, consumers cannot treat its occurrence with disregard as it demonstrates that HEV-contaminated pig tissues can enter the food chain.
Collapse
Affiliation(s)
- E Bigoraj
- Department of Food and Environmental Virology, National Veterinary Research Institute, Al. Partyzantów 57, 24-100, Puławy, Poland
| | - W Paszkiewicz
- Department of Food Hygiene of Animal Origin, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, ul. Akademicka 12, 20-950, Lublin, Poland
| | - A Rzeżutka
- Department of Food and Environmental Virology, National Veterinary Research Institute, Al. Partyzantów 57, 24-100, Puławy, Poland.
| |
Collapse
|
22
|
Martino C, Rampacci E, Pierini I, Giammarioli M, Stefanetti V, Hyatt DR, Ianni A, Di Paolo G, Coletti M, Passamonti F. Detection of anti-HEV antibodies and RNA of HEV in pigs from a hyperendemic Italian region with high human seroprevalence. Eur J Public Health 2021; 31:68-72. [PMID: 32705126 DOI: 10.1093/eurpub/ckaa112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Pigs are considered the main reservoir of genotypes 3 and 4 of hepatitis E virus (HEV), which is the major cause of acute hepatitis of viral origin in humans worldwide. An increasing number of autochthonous HEV infections have been observed in recent years in industrialized countries, most likely as a result of zoonotic transmission through the consumption of raw or undercooked meat products. METHODS Two hundred and thirty-three blood and liver samples were collected at four different local slaughterhouses from domestic pigs bred in Abruzzo, a region of south-central Italy, where there is the highest human seroprevalence to HEV compared with the rest of Italy. An indirect enzyme-linked immunosorbent assay kit was used for detecting anti-HEV IgG in the sera, while the presence of HEV RNA was investigated by performing a real-time reverse transcriptase-polymerase chain reaction (RT-PCR). RESULTS Between 87.3% and 100% of swine serum samples collected in different slaughterhouses of Abruzzo were positive for anti-HEV antibodies. Conversely, none of the liver samples collected from the same animals were positive for HEV by real-time RT-PCR. CONCLUSIONS The hypothesis of foodborne zoonotic transmission from local pigs as responsible for the hyperendemic status of Abruzzo cannot be corroborated. However, the high seroprevalence observed in pigs indicates that HEV is highly circulating in these territories. We propose to further investigate the role of wild fauna and trade in carrier pigs, and the maintenance of HEV virulence in the environment and meat supply chain to shed light on the possible sources of human infection and the degree of occupational risk.
Collapse
Affiliation(s)
- Camillo Martino
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| | - Elisa Rampacci
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| | - Ilaria Pierini
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche, "Togo Rosati", Perugia, Italy
| | - Monica Giammarioli
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche, "Togo Rosati", Perugia, Italy
| | | | - Doreene R Hyatt
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Andrea Ianni
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | | | - Mauro Coletti
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| | | |
Collapse
|
23
|
Treagus S, Wright C, Baker-Austin C, Longdon B, Lowther J. The Foodborne Transmission of Hepatitis E Virus to Humans. FOOD AND ENVIRONMENTAL VIROLOGY 2021; 13:127-145. [PMID: 33738770 PMCID: PMC8116281 DOI: 10.1007/s12560-021-09461-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/16/2021] [Indexed: 05/04/2023]
Abstract
Globally, Hepatitis E virus (HEV) causes over 20 million cases worldwide. HEV is an emerging and endemic pathogen within economically developed countries, chiefly resulting from infections with genotype 3 (G3) HEV. G3 HEV is known to be a zoonotic pathogen, with a broad host range. The primary source of HEV within more economically developed countries is considered to be pigs, and consumption of pork products is a significant risk factor and known transmission route for the virus to humans. However, other foods have also been implicated in the transmission of HEV to humans. This review consolidates the information available regarding transmission of HEV and looks to identify gaps where further research is required to better understand how HEV is transmitted to humans through food.
Collapse
Affiliation(s)
- Samantha Treagus
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Penryn Campus, Penryn, Cornwall, UK.
- Centre for Environment Fisheries and Aquaculture Science, Barrack Road, Weymouth, Dorset, DT4 8UB, UK.
| | | | - Craig Baker-Austin
- Centre for Environment Fisheries and Aquaculture Science, Barrack Road, Weymouth, Dorset, DT4 8UB, UK
| | - Ben Longdon
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Penryn Campus, Penryn, Cornwall, UK
| | - James Lowther
- Centre for Environment Fisheries and Aquaculture Science, Barrack Road, Weymouth, Dorset, DT4 8UB, UK
| |
Collapse
|
24
|
Di Cola G, Fantilli AC, Pisano MB, Ré VE. Foodborne transmission of hepatitis A and hepatitis E viruses: A literature review. Int J Food Microbiol 2021; 338:108986. [PMID: 33257099 DOI: 10.1016/j.ijfoodmicro.2020.108986] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/19/2022]
Abstract
Foodborne viruses have been recognized as a growing concern to the food industry and a serious public health problem. Hepatitis A virus (HAV) is responsible for the majority of viral outbreaks of food origin worldwide, while hepatitis E virus (HEV) has also been gaining prominence as a foodborne viral agent in the last years, due to its zoonotic transmission through the consumption of uncooked or undercooked infected meat or derivatives. However, there is a lack of scientific reports that gather all the updated information about HAV and HEV as foodborne viruses. A search of all scientific articles about HAV and HEV in food until March 2020 was carried out, using the keywords "HAV", "HEV", "foodborne", "outbreak" and "detection in food". Foodborne outbreaks due to HAV have been reported since 1956, mainly in the USA, and in Europe in recent years, where the number of outbreaks has been increasing throughout time, and nowadays it has become the continent with the highest foodborne HAV outbreak report. Investigation and detection of HAV in food is more recent, and the first detections were performed in the 1990s decade, most of them carried out on seafood, first, and frozen food, later. On the other hand, HEV has been mainly looked for and detected in food derived from reservoir animals, such as meat, sausages and pate of pigs and wild boars. For this virus, only isolated cases and small outbreaks of foodborne transmission have been recorded, most of them in industrialized countries, due to HEV genotype 3 or 4. Virus detection in food matrices requires special processing of the food matrix, followed by RNA detection by molecular techniques. For HAV, a real-time PCR has been agreed as the standard method for virus detection in food; in the case of HEV, a consensus assay for its detection in food has not been reached yet. Our investigation shows that there is still little data about HAV and HEV prevalence and frequency of contamination in food, prevalent viral strains, and sources of contamination, mainly in developing countries, where there is no research and legislation in this regard. Studies on these issues are needed to get a better understanding of foodborne viruses, their maintenance and their potential to cause diseases.
Collapse
Affiliation(s)
- Guadalupe Di Cola
- Instituto de Virología "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Enfermera Gordillo Gomez s/n, CP: 5016 Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| | - Anabella C Fantilli
- Instituto de Virología "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Enfermera Gordillo Gomez s/n, CP: 5016 Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - María Belén Pisano
- Instituto de Virología "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Enfermera Gordillo Gomez s/n, CP: 5016 Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Viviana E Ré
- Instituto de Virología "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Enfermera Gordillo Gomez s/n, CP: 5016 Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| |
Collapse
|
25
|
Pallerla SR, Schembecker S, Meyer CG, Linh LTK, Johne R, Wedemeyer H, Bock CT, Kremsner PG, Velavan TP. Hepatitis E virus genome detection in commercial pork livers and pork meat products in Germany. J Viral Hepat 2021; 28:196-204. [PMID: 32869414 DOI: 10.1111/jvh.13396] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 02/06/2023]
Abstract
The hepatitis E virus (HEV) is one of the most common causes of hepatitis worldwide. HEV is also widespread in many developed countries, where the number of infections is steadily increasing. In those countries, the virus is transmitted mainly through consumption of undercooked or raw food or through contact with animals. Especially, pigs serve as a main reservoir of HEV. Here, we investigated the prevalence of HEV RNA in pork livers and pork meat products to assess the actual risk of HEV infection through food consumption in Germany. A total of 131 pork products were collected from grocery stores and butcher shops between October 2019 and February 2020 and screened for HEV RNA using nested PCR and subsequent sequencing. Overall, 10% of the samples were positive for HEV, including pork livers (5%), spreadable liver sausages (13%) and liver pâté samples (15%). Sequence analyses indicated that the large majority of HEV strains belonged to subtype HEV-3c, representing the most frequent subtype in Germany. One sample belonged to subtype HEV-3f. Further sequence analysis revealed large sequence variation between the samples; however, most of the mutations identified were synonymous. Although infectivity of the virus was not tested, the results suggest a considerable risk of HEV infection through food consumption. Therefore, preventive measures should be taken according to a One Health approach.
Collapse
Affiliation(s)
- Srinivas Reddy Pallerla
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- Vietnamese-German Center for Medical Research, VG-CARE, Hanoi, Vietnam
| | - Sonja Schembecker
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
| | - Christian G Meyer
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- Vietnamese-German Center for Medical Research, VG-CARE, Hanoi, Vietnam
- Medical Faculty, Duy Tan University, Da Nang, Vietnam
| | - Le Thi Kieu Linh
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- Vietnamese-German Center for Medical Research, VG-CARE, Hanoi, Vietnam
| | - Reimar Johne
- German Federal Institute for Risk Assessment, Berlin, Germany
| | - Heiner Wedemeyer
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research, Partner Hannover, Braunschweig, Germany
| | - C-Thomas Bock
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- Division of Viral Gastroenteritis and Hepatitis Pathogens and Enteroviruses, Department of Infectious Diseases, Robert Koch Institute, Berlin, Germany
| | - Peter G Kremsner
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
| | - Thirumalaisamy P Velavan
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- Vietnamese-German Center for Medical Research, VG-CARE, Hanoi, Vietnam
- Medical Faculty, Duy Tan University, Da Nang, Vietnam
| |
Collapse
|
26
|
Presence of hepatitis E virus in commercially available pork products. Int J Food Microbiol 2020; 339:109033. [PMID: 33401188 DOI: 10.1016/j.ijfoodmicro.2020.109033] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/11/2020] [Accepted: 12/17/2020] [Indexed: 12/27/2022]
Abstract
An increasing number of hepatitis E virus (HEV) infections in industrialized countries have been foodborne and linked to the consumption of undercooked pork products. To date, data on the prevalence of HEV in pork products sold in the United States is limited and no standard processing method exists for the detection of HEV in foods. In order to develop a processing method for the detection of HEV in pork products, ground pork and pork liver were selected for method development. Murine norovirus (MNV) was used as a process control. A filtration step prior to RNA detection was shown to reduce the level of PCR inhibitors in ground pork and an additional ultracentrifugation process was successful in removing PCR inhibitors in pork liver. MNV RNA was detected in ground pork and liver samples inoculated with 4.7 log10 PFU/g and 3.0 log10 PFU/g, respectively. Using the developed method for viral RNA detection in ground pork and pork liver, 20 packages of ground pork (six 1 g sub-samples per package) and 14 pork livers (four 1 g sub-samples per liver) were screened for the presence of HEV RNA. Fifteen out of 119 (12.6%) ground pork samples tested positive for HEV RNA and 13 out of 20 packages (65%) contained at least one positive sample. Twenty-five of 56 (45%) of pork liver samples were positive for HEV RNA and 6 of 14 livers (43%) had all sub-samples test positive for HEV RNA. Overall, the results indicate ground pork and pig liver as a potential source of HEV.
Collapse
|
27
|
Trojnar E, Contzen M, Moor D, Carl A, Burkhardt S, Kilwinski J, Berghof-Jäger K, Mormann S, Schotte U, Kontek A, Althof N, Mäde D, Johne R. Interlaboratory Validation of a Detection Method for Hepatitis E Virus RNA in Pig Liver. Microorganisms 2020; 8:microorganisms8101460. [PMID: 32977593 PMCID: PMC7598171 DOI: 10.3390/microorganisms8101460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/16/2020] [Accepted: 09/21/2020] [Indexed: 01/24/2023] Open
Abstract
Background: In the last years, the number of notified hepatitis E cases in humans has continuously increased in Europe. Foodborne infection with the zoonotic hepatitis E virus (HEV) genotype 3 is considered the major cause of this disease. Undercooked liver and raw sausages containing the liver of pigs and wild boar are at high risk of containing HEV. However, so far, no standardized method for the detection of HEV-RNA in pig liver is available. Methods: An international collaborative study on method reproducibility involving 11 laboratories was performed for an HEV-RNA detection method, which consists of steps of sample homogenization, RNA extraction and real-time RT-PCR detection, including a process control. Naturally contaminated pork liver samples containing two different amounts of HEV and a HEV-negative pork liver sample were tested by all laboratories using the method. Results: Valid results were retrieved from 10 laboratories. A specificity of 100% and a sensitivity of 79% were calculated for the method. False negative results were only retrieved from the sample containing very low HEV amounts near the detection limit. Conclusions: The results show that the method is highly specific, sufficiently sensitive and robust for use in different laboratories. The method can, therefore, be applied to routine food control as well as in monitoring studies.
Collapse
Affiliation(s)
- Eva Trojnar
- German Federal Institute for Risk Assessment, 10589 Berlin, Germany; (E.T.); (N.A.)
| | - Matthias Contzen
- Chemisches und Veterinäruntersuchungsamt Stuttgart, 70736 Fellbach, Germany;
| | - Dominik Moor
- Bundesamt für Lebensmittelsicherheit und Veterinärwesen, 3003 Bern, Switzerland;
| | - Anja Carl
- Bayrisches Landesamt für Gesundheit und Lebensmittelsicherheit, 91058 Erlangen, Germany;
| | | | - Jochen Kilwinski
- Chemisches und Veterinäruntersuchungsamt Westfalen, 59821 Arnsberg, Germany; (J.K.); (S.M.)
| | | | - Sascha Mormann
- Chemisches und Veterinäruntersuchungsamt Westfalen, 59821 Arnsberg, Germany; (J.K.); (S.M.)
| | - Ulrich Schotte
- Zentrales Institut des Sanitätsdienstes der Bundeswehr Kiel, 24119 Kronshagen, Germany;
| | - Anne Kontek
- Niedersächsisches Landesamt für Verbraucherschutz und Lebensmittelsicherheit, 26133 Oldenburg, Germany;
| | - Nadine Althof
- German Federal Institute for Risk Assessment, 10589 Berlin, Germany; (E.T.); (N.A.)
| | - Dietrich Mäde
- Landesamt für Verbraucherschutz Sachsen-Anhalt, 06112 Halle (Saale), Germany;
| | - Reimar Johne
- German Federal Institute for Risk Assessment, 10589 Berlin, Germany; (E.T.); (N.A.)
- Correspondence:
| |
Collapse
|
28
|
Boxman ILA, Jansen CCC, Zwartkruis-Nahuis AJT, Hägele G, Sosef NP, Dirks RAM. Detection and quantification of hepatitis E virus RNA in ready to eat raw pork sausages in the Netherlands. Int J Food Microbiol 2020; 333:108791. [PMID: 32758861 DOI: 10.1016/j.ijfoodmicro.2020.108791] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 06/24/2020] [Accepted: 07/12/2020] [Indexed: 12/27/2022]
Abstract
The aim of the present study was to assess raw pork sausages collected on the Dutch market for the presence of hepatitis E virus (HEV) RNA. 46 of 316 (14.6%) products sampled from Dutch retail stores in 2017-2019 were positive for HEV RNA. HEV RNA was detected in 10.8% of "cervelaat" (n = 74), 18.5% of salami (n = 92), 26.1% of "metworst" (n = 46), 16.3% of "snijworst" (n = 43) samples. This was significantly more often than in other raw pork sausages like dried sausages, fuet or chorizo (3.3%, n = 61). The percentage of HEV RNA positive products was not significantly different for products sold as either sliced or unsliced deli meat. The average viral load in positive tested products was 2.76 log10 genome copies per 5 g, incidentally reaching up to 4.5 log10 genome copies per 5 g. The average HEV RNA level was significantly higher in samples collected in 2017 than those in samples collected in 2018, and most of the samples in 2019. Typing by sequence analysis was successful for 33 samples, all revealing genotype 3c. The results support recent epidemiological studies that identified specific raw pork sausages as risk factor for hepatitis E virus infection in the Netherlands. Persons at risk, including Dutch transplant recipients, have been advised to avoid the consumption of raw pork sausages. The study warrants a continuation of monitoring to follow the HEV RNA levels in pork products for use in risk assessments and risk management.
Collapse
Affiliation(s)
- Ingeborg L A Boxman
- Wageningen Food Safety Research, Wageningen University and Research, Mailbox 230, 6700 AE Wageningen, the Netherlands.
| | - Claudia C C Jansen
- Wageningen Food Safety Research, Wageningen University and Research, Mailbox 230, 6700 AE Wageningen, the Netherlands
| | - Ans J T Zwartkruis-Nahuis
- Wageningen Food Safety Research, Wageningen University and Research, Mailbox 230, 6700 AE Wageningen, the Netherlands
| | - Geke Hägele
- Wageningen Food Safety Research, Wageningen University and Research, Mailbox 230, 6700 AE Wageningen, the Netherlands
| | - Nils P Sosef
- Wageningen Food Safety Research, Wageningen University and Research, Mailbox 230, 6700 AE Wageningen, the Netherlands
| | - René A M Dirks
- Wageningen Food Safety Research, Wageningen University and Research, Mailbox 230, 6700 AE Wageningen, the Netherlands
| |
Collapse
|
29
|
Dzierzon J, Oswaldi V, Merle R, Langkabel N, Meemken D. High Predictive Power of Meat Juice Serology on the Presence of Hepatitis E Virus in Slaughter Pigs. Foodborne Pathog Dis 2020; 17:687-692. [PMID: 32412857 DOI: 10.1089/fpd.2020.2797] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Hepatitis E virus (HEV) as a zoonotic agent can be responsible for an acute hepatitis in humans, which is usually self-limiting. Progression toward a chronic stage is possible, especially in immunocompromised patients. In the past decade, the number of hepatitis E cases in humans in Germany has increased enormously to 3491 cases in 2018. Domestic pigs have been identified as a main animal reservoir and the consumption of raw and undercooked pork products, that is, livers or liver products, meat or meat products, is known as a potential risk of foodborne HEV infection. The aim of this study was to determine whether serological tests are appropriate to predict the occurrence of HEV in the liver and muscle of domestic pigs in Germany. In 2018, samples of meat juice, liver, and ham muscle were collected from 250 fattening pigs at an abattoir in North West Germany. Samples were analyzed for the presence of HEV antibodies using enzyme-linked immunosorbent assay respectively for the presence of HEV RNA using real-time reverse transcription-polymerase chain reaction. In total, 62% (155/250) of the meat juice samples were positive for HEV antibodies at a single animal basis. At herd level, 72% (18/25) of the herds were seropositive. The HEV prevalence in the liver was 17.2% (43/250). Each positive liver sample originated from seropositive herds respectively from HEV seropositive pigs. This study demonstrates for the first time the significant correlation between a positive HEV serology and the occurrence of HEV RNA in the liver of slaughter pigs (χ2 = 31.83; p < 0.001), highlighting the significant predictive power of positive serological results on the occurrence of HEV RNA in the liver.
Collapse
Affiliation(s)
- Janine Dzierzon
- Institute of Food Safety and Food Hygiene, Working Group Meat Hygiene, Freie Universität Berlin, Department of Veterinary Medicine, Berlin, Germany
| | - Verena Oswaldi
- Institute of Food Safety and Food Hygiene, Working Group Meat Hygiene, Freie Universität Berlin, Department of Veterinary Medicine, Berlin, Germany
| | - Roswitha Merle
- Institute for Veterinary Epidemiology and Biostatistics, Freie Universität Berlin, Department of Veterinary Medicine, Berlin, Germany
| | - Nina Langkabel
- Institute of Food Safety and Food Hygiene, Working Group Meat Hygiene, Freie Universität Berlin, Department of Veterinary Medicine, Berlin, Germany
| | - Diana Meemken
- Institute of Food Safety and Food Hygiene, Working Group Meat Hygiene, Freie Universität Berlin, Department of Veterinary Medicine, Berlin, Germany
| |
Collapse
|
30
|
Whitsett M, Feldman DM, Jacobson I. Hepatitis E Virus Infection in the United States: Current Understanding of the Prevalence and Significance in the Liver Transplant Patient Population and Proposed Diagnostic and Treatment Strategies. Liver Transpl 2020; 26:709-717. [PMID: 32061053 DOI: 10.1002/lt.25732] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 01/28/2020] [Indexed: 02/07/2023]
Abstract
Hepatitis E virus (HEV), of the family Herpesviridae, is a virus that infects nearly 20 million people per year throughout the world. HEV is most commonly transmitted via the fecal-oral route and has long been described as a virus that afflicts only those in resource-poor countries. However, HEV has been detected in numerous animal carriers, various food sources, and even in human blood products in resource-rich regions of the world. HEV is of importance in the transplant patient population because of its ability to cause chronic viral infection in these patients can lead to graft loss and cirrhosis. In this review, we discuss the current knowledge of HEV as it pertains to the liver transplant patient population and discuss diagnosis and treatment of this infection.
Collapse
Affiliation(s)
- Maureen Whitsett
- Department of Gastroenterology and Hepatology, NYU Langone Health, NYU Grossman School of Medicine, New York University, New York, NY
| | - David M Feldman
- Department of Gastroenterology and Hepatology, NYU Langone Health, NYU Grossman School of Medicine, New York University, New York, NY
| | - Ira Jacobson
- Department of Gastroenterology and Hepatology, NYU Langone Health, NYU Grossman School of Medicine, New York University, New York, NY
| |
Collapse
|
31
|
Sooryanarain H, Meng XJ. Swine hepatitis E virus: Cross-species infection, pork safety and chronic infection. Virus Res 2020; 284:197985. [PMID: 32333941 DOI: 10.1016/j.virusres.2020.197985] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/11/2020] [Accepted: 04/17/2020] [Indexed: 12/12/2022]
Abstract
Swine hepatitis E virus (swine HEV) belongs to the species Orthohepevirus A within the genus Orthohepevirus in the family Hepeviridae. Four different genotypes of swine HEV within the species Orthohepevirus A have been identified so far from domesticated and wild swine population: genotypes 3 (HEV-3) and 4 (HEV-4) swine HEVs are zoonotic and infect humans, whereas HEV-5 and HEV-6 are only identified from swine. As a zoonotic agent, swine HEV is an emerging public health concern in many industrialized countries. Pigs are natural reservoir for HEV, consumption of raw or undercooked pork is an important route of foodborne HEV transmission. Occupational risks such as direct contact with infected pigs also increase the risk of HEV transmission in humans. Cross-species infection of HEV-3 and HEV-4 have been documented under experimental and natural conditions. Both swine HEV-3 and swine HEV-4 infect non-human primates, the surrogates of man. Swine HEV, predominantly HEV-3, can establish chronic infection in immunocompromised patients especially in solid organ transplant recipients. The zoonotic HEV-3, and to lesser extent HEV-4, have also been shown to cause neurological diseases and kidney injury. In this review, we focus on the epidemiology of swine HEV, host and viral determinants influencing cross-species HEV infection, zoonotic infection and its associated pork safety concern, as well as swine HEV-associated chronic infection and neurological diseases.
Collapse
Affiliation(s)
- Harini Sooryanarain
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Xiang-Jin Meng
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
| |
Collapse
|
32
|
Liver Transudate, a Potential Alternative to Detect Anti-Hepatitis E Virus Antibodies in Pigs and Wild Boars ( Sus scrofa). Microorganisms 2020; 8:microorganisms8030450. [PMID: 32210090 PMCID: PMC7144013 DOI: 10.3390/microorganisms8030450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 01/07/2023] Open
Abstract
In recent years, cases of hepatitis E virus (HEV) infection have increased in Europe in association with the consumption of contaminated food, mainly from pork products but also from wild boars. The animal’s serum is usually tested for the presence of anti-HEV antibodies and viral RNA but, in many cases such as during hunting, an adequate serum sample cannot be obtained. In the present study, liver transudate was evaluated as an alternative matrix to serum for HEV detection. A total of 125 sera and liver transudates were tested by enzyme-linked immunosorbent assay at different dilutions (1:2, 1:10, 1:20), while 58 samples of serum and liver transudate were checked for the presence of HEV RNA by RT-qPCR. Anti- HEV antibodies were detected by ELISA in 68.0% of the serum samples, and in 61.6% of the undiluted transudate, and in 70.4%, 56.8%, and 44.8% of 1:2, 1:10, or 1:20 diluted transudate, respectively. The best results were obtained for the liver transudate at 1:10 dilution, based on the Kappa statistic (0.630) and intraclass correlation coefficient (0.841). HEV RNA was detected by RT-qPCR in 22.4% of the serum samples and 6.9% of the transudate samples, all samples used for RT-qPCR were positive by ELISA. Our results indicate that liver transudate may be an alternative matrix to serum for the detection of anti-HEV antibodies.
Collapse
|
33
|
Sooryanarain H, Heffron CL, Hill DE, Fredericks J, Rosenthal BM, Werre SR, Opriessnig T, Meng XJ. Hepatitis E Virus in Pigs from Slaughterhouses, United States, 2017-2019. Emerg Infect Dis 2020; 26:354-357. [PMID: 31961315 PMCID: PMC6986846 DOI: 10.3201/eid2602.191348] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Hepatitis E virus (HEV) RNA was detected in 6.3% and HEV IgG in 40% of 5,033 serum samples from market-weight pigs at 25 slaughterhouses in 10 US states. The prevalent HEV genotype was zoonotic genotype 3, group 2. Blood of HEV-viremic pigs from slaughterhouses may contaminate pork supply chains.
Collapse
|
34
|
García N, Hernández M, Gutierrez-Boada M, Valero A, Navarro A, Muñoz-Chimeno M, Fernández-Manzano A, Escobar FM, Martínez I, Bárcena C, González S, Avellón A, Eiros JM, Fongaro G, Domínguez L, Goyache J, Rodríguez-Lázaro D. Occurrence of Hepatitis E Virus in Pigs and Pork Cuts and Organs at the Time of Slaughter, Spain, 2017. Front Microbiol 2020; 10:2990. [PMID: 32047480 PMCID: PMC6997137 DOI: 10.3389/fmicb.2019.02990] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 12/10/2019] [Indexed: 12/13/2022] Open
Abstract
Zoonotic hepatitis E, mainly caused by hepatitis E virus (HEV) genotype (gt) 3, is a foodborne disease that has emerged in Europe in recent decades. The main animal reservoir for genotype 3 is domestic pigs. Pig liver and liver derivates are considered the major risk products, and studies focused on the presence of HEV in pig muscles are scarce. The objective of the present study was to evaluate the presence of HEV in different organs and tissues of 45 apparently healthy pigs from nine Spanish slaughterhouses (50% national production) that could enter into the food supply chain. Anti-HEV antibodies were evaluated in serum by an ELISA test. Ten samples from each animal were analyzed for the presence of HEV RNA by reverse transcription real-time PCR (RT-qPCR). The overall seroprevalence obtained was 73.3% (33/45). From the 450 samples analyzed, a total of 26 RT-qPCR positive samples were identified in the liver (7/45), feces (6/45), kidney (5/45), heart (4/45), serum (3/45), and diaphragm (1/45). This is the first report on detection of HEV RNA in kidney and heart samples of naturally infected pigs. HEV RNA detection was negative for rib, bacon, lean ham, and loin samples. These findings indicate that pig meat could be considered as a low risk material for foodborne HEV infection.
Collapse
Affiliation(s)
- Nerea García
- VISAVET Health Surveillance Centre, Universidad Complutense Madrid, Madrid, Spain
| | - Marta Hernández
- Division of Microbiology, Department of Biotechnology and Food Science, Universidad de Burgos, Burgos, Spain
| | - Maialen Gutierrez-Boada
- Division of Microbiology, Department of Biotechnology and Food Science, Universidad de Burgos, Burgos, Spain
| | - Antonio Valero
- Department of Food Science and Technology, University of Córdoba, Córdoba, Spain
| | - Alejandro Navarro
- VISAVET Health Surveillance Centre, Universidad Complutense Madrid, Madrid, Spain
| | - Milagros Muñoz-Chimeno
- Laboratorio de Referencia e Investigación en Hepatitis Víricas, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | | | - Franco Matías Escobar
- Departamento de Microbiología e Inmunología, Universidad Nacional de Río Cuarto, Córdoba, Argentina
| | - Irene Martínez
- VISAVET Health Surveillance Centre, Universidad Complutense Madrid, Madrid, Spain
| | - Carmen Bárcena
- VISAVET Health Surveillance Centre, Universidad Complutense Madrid, Madrid, Spain
| | - Sergio González
- VISAVET Health Surveillance Centre, Universidad Complutense Madrid, Madrid, Spain
| | - Ana Avellón
- Laboratorio de Referencia e Investigación en Hepatitis Víricas, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Jose M. Eiros
- Department of Microbiology, Hospital Universitario Rio Hortega, Valladolid, Spain
| | - Gislaine Fongaro
- Laboratory of Applied Virology, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Lucas Domínguez
- VISAVET Health Surveillance Centre, Universidad Complutense Madrid, Madrid, Spain
- Department of Animal Health, Faculty of Veterinary, Universidad Complutense Madrid, Madrid, Spain
| | - Joaquín Goyache
- VISAVET Health Surveillance Centre, Universidad Complutense Madrid, Madrid, Spain
- Department of Animal Health, Faculty of Veterinary, Universidad Complutense Madrid, Madrid, Spain
| | - David Rodríguez-Lázaro
- Division of Microbiology, Department of Biotechnology and Food Science, Universidad de Burgos, Burgos, Spain
| |
Collapse
|
35
|
Lemon SM, Walker CM. Enterically Transmitted Non-A, Non-B Hepatitis and the Discovery of Hepatitis E Virus. Cold Spring Harb Perspect Med 2019; 9:a033449. [PMID: 29735576 PMCID: PMC6531376 DOI: 10.1101/cshperspect.a033449] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The recognition of hepatitis E as a discreet disease entity in the late 1970s followed the development of serological tests for hepatitis A and the discovery that large waterborne outbreaks of hepatitis in India were not caused by hepatitis A virus (HAV). These "enterically transmitted non-A, non-B hepatitis" outbreaks had distinctive epidemiologic features, including the highest attack rates among young adults, little secondary household transmission of infection, and severe disease in pregnant women. The responsible agent, hepatitis E virus (HEV), was identified several years later in extracts of feces from a self-inoculated virologist. Multiple genetically related HEV genotypes are now known to exist, two of which are common in domestic swine herds and the cause of sporadic cases of acute hepatitis in economically well-developed countries. HEV genotypes possess impressive genetic and biologic diversity, and present many unanswered questions concerning their natural host range, potential for zoonotic transmission, and disease pathogenesis.
Collapse
Affiliation(s)
- Stanley M Lemon
- Departments of Medicine and Microbiology & Immunology, Lineberger Comprehensive Cancer Center; The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7292
| | - Christopher M Walker
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital and College of Medicine, The Ohio State University, Columbus, Ohio 43205
| |
Collapse
|
36
|
Marziali F, Acosta J, Bolatti E, Mirazo S, Skejich P, Silva P, Brassard J, Costaguta A, Gardiol D, Cavatorta AL. Detection of HEV in naturally infected swine from central Argentina by an optimized HEV/MS2 duplex RT-qPCR. Zoonoses Public Health 2019; 66:729-738. [PMID: 31259469 DOI: 10.1111/zph.12620] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 05/17/2019] [Accepted: 06/01/2019] [Indexed: 12/27/2022]
Abstract
Hepatitis E virus (HEV) is currently considered as a global health concern due to the recognition of its zoonotic transmission to humans, mainly from swine, and its association with the development of severe cases of hepatitis in human risk populations. The lack of updated data on HEV state of infection in swineherds of Argentina, and the necessity of robust technologies for its detection in complex biological samples, positions HEV as an emerging issue in public health. Here, we have optimized a RT-qPCR with internal control for a more precise and accurate HEV RNA detection in swine stool samples. We implemented this optimized molecular tool to analyse the current epidemiological scenario of HEV infection in swine from the core region of commercial activity of Argentina. A total of 135 stool samples were collected from 16 different farms and tested for HEV presence, resulting in 11 positive cases (8.1%). Phylogenetic analysis demonstrated that all of them correspond to HEV genotype 3 and that different subtypes circulate in the region. Moreover, two of the detected strains presented a high nucleotide similarity with a previously identified isolate from human sewage discharges, suggesting the zoonotic transmission of HEV to humans. Collectively, this work provides a better understanding of HEV epidemiology in Argentina while contributes to the improvement of HEV detection technologies.
Collapse
Affiliation(s)
- Federico Marziali
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Biología Molecular y Celular de Rosario-CONICET, Universidad Nacional de Rosario, Rosario, Argentina
| | - Julian Acosta
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Biología Molecular y Celular de Rosario-CONICET, Universidad Nacional de Rosario, Rosario, Argentina
| | - Elisa Bolatti
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Biología Molecular y Celular de Rosario-CONICET, Universidad Nacional de Rosario, Rosario, Argentina
| | - Santiago Mirazo
- Sección Virología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Patricia Skejich
- Cátedra de Intr. A los Sistemas de Producción Agropecuarios, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Zavalla, Argentina
| | - Patricia Silva
- Cátedra de Nutrición Animal, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Zavalla, Argentina
| | - Julie Brassard
- Saint-Hyacinthe Research and Development Centre, Agriculture and Agri-Food Canada, Quebec, Quebec, Canada
| | - Alejandro Costaguta
- Servicio de Gastroenterología y Hepatología, Sanatorio de Niños/Fundación Dr. J.R.Villavicencio, Rosario, Argentina
| | - Daniela Gardiol
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Biología Molecular y Celular de Rosario-CONICET, Universidad Nacional de Rosario, Rosario, Argentina
| | - Ana Laura Cavatorta
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Biología Molecular y Celular de Rosario-CONICET, Universidad Nacional de Rosario, Rosario, Argentina
| |
Collapse
|
37
|
Hepatitis E Virus Infection in Blood Donors and Risk to Patients in the United States and Canada. Transfus Med Rev 2019; 33:139-145. [PMID: 31324552 DOI: 10.1016/j.tmrv.2019.05.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/16/2019] [Accepted: 05/26/2019] [Indexed: 12/20/2022]
Abstract
Hepatitis E virus (HEV) is the most common cause of acute hepatitis worldwide including large water-borne outbreaks, zoonotic infections and transfusion transmissions. Several countries have initiated or are considering blood donor screening in response to high HEV-RNA donation prevalence leading to transfusion-transmission risk. Because HEV transmission is more common through food sources, the efficacy of blood donor screening alone may be limited. HEV-nucleic acids in 101 489 blood donations in the United States and Canada were studied. A risk-based decision-making framework was used to evaluate the quantitative risks and cost-benefit of HEV-blood donation screening in Canada comparing three scenarios: no screening, screening blood for all transfused patients or screening blood for only those at greatest risk. HEV-RNA prevalence in the United States was one per 16 908 (95% confidence interval [CI], 1:5786-1:81987), whereas Canadian HEV-RNA prevalence was one per 4615 (95% CI, 1:2579-1:9244). Although 4-fold greater, Canadian HEV-RNA prevalence was not significantly higher than in the United States. Viral loads ranged from 20 to 3080 international units per mL; all successfully typed infections were genotype 3. No HEV-RNA false-positive donations were identified for 100 percent specificity. Without donation screening, heart and lung transplant recipients had the greatest HEV-infection risk (1:366962) versus kidney transplant recipients with the lowest (1:2.8 million) at costs of $225 546 to $561 810 per quality-adjusted life-year (QALY) gained for partial or universal screening, respectively. Higher cost per QALY would be expected in the United States. Thus, HEV prevalence in North America is lower than in countries performing blood donation screening, and if implemented, is projected to be costly under any scenario.
Collapse
|
38
|
Geng Y, Zhao C, Guo T, Xu Y, Wang X, Huang W, Liu H, Wang Y. Detection of Hepatitis E Virus in Raw Pork and Pig Viscera As Food in Hebei Province of China. Foodborne Pathog Dis 2019; 16:325-330. [DOI: 10.1089/fpd.2018.2572] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Yansheng Geng
- Health Science Center, Hebei University, Baoding, China
| | - Chenyan Zhao
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Tingyu Guo
- Health Science Center, Hebei University, Baoding, China
| | - Ying Xu
- Health Science Center, Hebei University, Baoding, China
| | - Xuanpu Wang
- Health Science Center, Hebei University, Baoding, China
| | - Weijin Huang
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Huan Liu
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Youchun Wang
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, National Institutes for Food and Drug Control, Beijing, China
| |
Collapse
|
39
|
Monitoring of pork liver and meat products on the Dutch market for the presence of HEV RNA. Int J Food Microbiol 2019; 296:58-64. [DOI: 10.1016/j.ijfoodmicro.2019.02.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 02/12/2019] [Accepted: 02/25/2019] [Indexed: 01/05/2023]
|
40
|
McGivern DR, Lin HHS, Wang J, Benzine T, Janssen HLA, Khalili M, Lisker-Melman M, Fontana RJ, Belle SH, Fried MW. Prevalence and Impact of Hepatitis E Virus Infection Among Persons With Chronic Hepatitis B Living in the US and Canada. Open Forum Infect Dis 2019; 6:ofz175. [PMID: 31139669 DOI: 10.1093/ofid/ofz175] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 04/05/2019] [Indexed: 01/02/2023] Open
Abstract
Background Patients with chronic hepatitis B virus (HBV) may experience spontaneous biochemical flares of liver disease activity. This study aimed to determine (i) the prevalence of prior and possible acute hepatitis E virus (HEV) infection among persons with chronic HBV and (ii) whether HEV infection is associated with liver disease flares among persons with chronic HBV. Methods Serum from a random sample of 600 adults in the Hepatitis B Research Network Cohort Study was tested for HEV RNA and anti-HEV IgM and IgG. Logistic regression models were used to estimate crude and adjusted odds ratios of anti-HEV prevalence for participant characteristics. Results Anti-HEV IgG and IgM seroprevalence was 28.5% and 1.7%, respectively. No participants had detectable HEV RNA. Of the 10 anti-HEV IgM+ participants, only 1 had elevated serum ALT at seroconversion. The odds of anti-HEV seropositivity (IgG+ or IgM+) were higher in older participants, males, Asians, less educated people, and those born outside the United States and Canada. Conclusions Acute HEV infection is a rare cause of serum ALT flares among persons with chronic HBV. The high seroprevalence of anti-HEV IgG among the chronic HBV patients is strongly associated with various demographic factors in this largely Asian American cohort.
Collapse
Affiliation(s)
- David R McGivern
- Lineberger Comprehensive Cancer Center and Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland
| | - Hsing-Hua S Lin
- Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Junyao Wang
- Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Tiffany Benzine
- Lineberger Comprehensive Cancer Center and Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Harry L A Janssen
- Toronto Centre for Liver Disease, University Health Network, Toronto General Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Mandana Khalili
- Department of Medicine, University of California San Francisco, San Francisco, California
| | - Mauricio Lisker-Melman
- Division of Gastroenterology, Washington University School of Medicine, St. Louis, Missouri
| | - Robert J Fontana
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Steven H Belle
- Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Michael W Fried
- UNC Liver Center, Division of Gastroenterology and Hepatology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
41
|
Hofmeister MG, Foster MA, Teshale EH. Epidemiology and Transmission of Hepatitis A Virus and Hepatitis E Virus Infections in the United States. Cold Spring Harb Perspect Med 2019; 9:a033431. [PMID: 29712684 PMCID: PMC6444696 DOI: 10.1101/cshperspect.a033431] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
There are many similarities in the epidemiology and transmission of hepatitis A virus (HAV) and hepatitis E virus (HEV) genotype (gt)3 infections in the United States. Both viruses are enterically transmitted, although specific routes of transmission are more clearly established for HAV than for HEV: HAV is restricted to humans and primarily spread through the fecal-oral route, while HEV is zoonotic with poorly understood modes of transmission in the United States. New cases of HAV infection have decreased dramatically in the United States since infant vaccination was recommended in 1996. In recent years, however, outbreaks have occurred among an increasingly susceptible adult population. Although HEV is the most common cause of acute viral hepatitis in developing countries, it is rarely diagnosed in the United States.
Collapse
Affiliation(s)
- Megan G Hofmeister
- Division of Viral Hepatitis, Centers for Disease Control and Prevention, Atlanta, Georgia 30329
- Epidemic Intelligence Service, Centers for Disease Control and Prevention, Atlanta, Georgia 30329
| | - Monique A Foster
- Division of Viral Hepatitis, Centers for Disease Control and Prevention, Atlanta, Georgia 30329
| | - Eyasu H Teshale
- Division of Viral Hepatitis, Centers for Disease Control and Prevention, Atlanta, Georgia 30329
| |
Collapse
|
42
|
Denner J. Hepatitis E virus (HEV)-The Future. Viruses 2019; 11:E251. [PMID: 30871152 PMCID: PMC6466233 DOI: 10.3390/v11030251] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/05/2019] [Accepted: 03/09/2019] [Indexed: 02/06/2023] Open
Abstract
Hepatitis (HEV) is widely distributed in pigs and is transmitted with increasing numbers to humans by contact with pigs, contaminated food and blood transfusion. The virus is mostly apathogenic in pigs but may enhance the pathogenicity of other pig viruses. In humans, infection can lead to acute and chronic hepatitis and extrahepatic manifestations. In order to stop the emerging infection, effective counter-measures are required. First of all, transmission by blood products can be prevented by screening all blood donations. Meat and sausages should be appropriately cooked. Elimination of the virus from the entire pork production can be achieved by sensitive testing and elimination programs including early weaning, colostrum deprivation, Caesarean delivery, embryo transfer, treatment with antivirals, protection from de novo infection, and possibly vaccination. In addition, contaminated water, shellfish, vegetables, and fruits by HEV-contaminated manure should be avoided. A special situation is given in xenotransplantation using pig cells, tissues or organs in order to alleviate the lack of human transplants. The elimination of HEV from pigs, other animals and humans is consistent with the One Health concept, preventing subclinical infections in the animals as well as preventing transmission to humans and disease.
Collapse
|
43
|
Althof N, Trojnar E, Böhm T, Burkhardt S, Carl A, Contzen M, Kilwinski J, Mergemeier S, Moor D, Mäde D, Johne R. Interlaboratory Validation of a Method for Hepatitis E Virus RNA Detection in Meat and Meat Products. FOOD AND ENVIRONMENTAL VIROLOGY 2019; 11:1-8. [PMID: 30465253 DOI: 10.1007/s12560-018-9360-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 11/12/2018] [Indexed: 05/25/2023]
Abstract
Increasing numbers of hepatitis E cases are currently recognized in many European countries. The zoonotic hepatitis E virus (HEV) genotype 3 mainly circulates in domestic pigs and wild boars, and can be transmitted to humans via consumption of insufficiently heated meat or meat products produced from those animals. Here, a detailed protocol for detection of HEV RNA in meat products is provided, which is based on the method originally described by Szabo et al. (Intl J Food Microbiol 215:149-156, 2015). It consists of a TRI Reagent®/chloroform-based food matrix homogenization, a silica bead-based RNA extraction and a real-time RT-PCR-based RNA detection. The method was further validated in a ring trial with nine independent laboratories using pork liver sausage samples artificially contaminated with different amounts of HEV. The results indicate sufficient sensitivity, specificity, and accuracy of the method for its broad future use in survey studies, routine food control or outbreak investigations.
Collapse
Affiliation(s)
- Nadine Althof
- German Federal Institute for Risk Assessment, Berlin, Germany
| | - Eva Trojnar
- German Federal Institute for Risk Assessment, Berlin, Germany
| | - Thomas Böhm
- Landesbetrieb Hessisches Landeslabor, Kassel, Germany
| | | | - Anja Carl
- Bayrisches Landesamt für Gesundheit und Lebensmittelsicherheit, Erlangen, Germany
| | - Matthias Contzen
- Chemisches und Veterinäruntersuchungsamt Stuttgart, Fellbach, Germany
| | - Jochen Kilwinski
- Chemisches und Veterinäruntersuchungsamt Westfalen, Arnsberg, Germany
| | | | - Dominik Moor
- Bundesamt für Lebensmittelsicherheit und Veterinärwesen, Bern, Switzerland
| | - Dietrich Mäde
- Landesamt für Verbraucherschutz Sachsen-Anhalt, Halle (Saale), Germany
| | - Reimar Johne
- German Federal Institute for Risk Assessment, Berlin, Germany.
| |
Collapse
|
44
|
Krog JS, Larsen LE, Breum SØ. Tracing Hepatitis E Virus in Pigs From Birth to Slaughter. Front Vet Sci 2019; 6:50. [PMID: 30873419 PMCID: PMC6400844 DOI: 10.3389/fvets.2019.00050] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 02/07/2019] [Indexed: 11/23/2022] Open
Abstract
Pigs are considered the main reservoir of genotypes 3 and 4 of the human pathogen hepatitis E virus (HEV). These viruses are prevalent at a high level in swine herds globally, meaning that consumers may be exposed to HEV from the food chain if the virus is present in pigs at slaughter. The aim of this study was to determine the HEV infection dynamics from birth to slaughter using 104 pigs from 11 sows in a single production system. Serum was collected from sows at 2 weeks prior to farrowing, in addition feces and serum samples were collected from the pigs every second week, from week 1 to week 17. Feces and selected organs were also sampled from 10 pigs following slaughter at week 20. All the samples were tested for HEV RNA by real-time RT-PCR and the serum samples were tested for HEV-specific antibodies using a commercial ELISA. Maternal antibodies (MAbs) were only present in pigs from sows with high levels of antibodies and all pigs, except one, seroconverted to HEV during weeks 13–17. In total, 65.5% of the pigs tested positive for HEV RNA at least once during the study (during weeks 13, 15, and/or 17) and significantly fewer pigs with a high level of MAbs became shedders. In contrast, the level of MAbs had no impact on the time of onset and duration of virus shedding. HEV was detected in feces and organs, but not in muscle, in 3 out of 10 pigs at slaughter, indicating that detection of HEV in feces is indicative of an HEV positivity in organs. In conclusion, a high proportion of pigs in a HEV positive herd were infected and shed virus during the finisher stage and some of the pigs also contained HEV RNA in feces and organs at slaughter. The presence of MAbs reduced the prevalence of HEV shedding animals, therefore, sow vaccination may be an option to decrease the prevalence of HEV positive animals at slaughter.
Collapse
Affiliation(s)
- Jesper S Krog
- National Veterinary Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Lars E Larsen
- National Veterinary Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Solvej Ø Breum
- National Veterinary Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
45
|
Tengan FM, Figueiredo GM, Nunes AKS, Manchiero C, Dantas BP, Magri MC, Prata TVG, Nascimento M, Mazza CC, Abdala E, Barone AA, Bernardo WM. Seroprevalence of hepatitis E in adults in Brazil: a systematic review and meta-analysis. Infect Dis Poverty 2019; 8:3. [PMID: 30646964 PMCID: PMC6334402 DOI: 10.1186/s40249-018-0514-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 12/25/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Hepatitis E virus (HEV) is a member of the Hepeviridae family; it has four main genotypes and one serotype. While genotypes 1 and 2 cause epidemic hepatitis and are transmitted via water and the fecal-oral route, genotypes 3 and 4 are zoonotic. In the various seroprevalence studies of hepatitis E in Brazil, the numbers reported vary widely and are difficult to interpret. The aim of this study was to analyze existing seroprevalence studies of hepatitis E in adults in Brazil. MAIN TEXT We searched the PubMed, Latin American and Caribbean Health Sciences and Embase databases for studies published from inception to May 12, 2018 concerning infection by HEV in Brazil without time period or language restrictions. We included studies that presented data concerning hepatitis E seroprevalence in adults in Brazil, had a sample size ≥50 patients and whose method used for the detection of anti-HEV was standardized and commercialized. We also evaluated the quality of the articles using a list of criteria that totalized 9 items. Of the 20 studies ultimately analyzed, 10 (50%) were from the southeast region of Brazil, 3 (15%) were from the central-west region, 3 (15%) were from the northern region, 2 (10%) were from the northeast region and 2 (10%) were from the southern region. Regarding the quality evaluation of the studies, the mean score was 5.6 (range: 4-8). The estimated overall seroprevalence of HEV infection in the adult population was 6.0% (95% CI: 5.0-7.0); in subgroup analyses, we observed that the prevalence of anti-HEV antibodies in blood donors was 7.0% (95% CI: 5.0-8.0), whereas in the general population, it was 3.0% (95% CI: 2.0-4.0). CONCLUSIONS The results of this systematic review indicate that there should be national investment in the prevention of hepatitis E virus infection in Brazil, including the implementation of improvements in basic sanitation and guidance regarding the appropriate handling of animal waste and the optimal cooking of vegetables, meat and their derivatives.
Collapse
Affiliation(s)
- Fátima Mitiko Tengan
- Department of Infectious and Parasitic Diseases, School of Medicine, University of São Paulo (Universidade de São Paulo - USP), São Paulo, SP Brazil
- Laboratory of Viral Medical Research in Hepatology (Laboratório de Investigação Médica em Hepatologia por vírus - LIM-47), Clinics Hospital, School of Medicine, USP, São Paulo, SP Brazil
| | - Gerusa M. Figueiredo
- Instituto de Medicina Tropical da Universidade de Sao Paulo, São Paulo, SP Brazil
| | - Arielle K. S. Nunes
- Laboratory of Viral Medical Research in Hepatology (Laboratório de Investigação Médica em Hepatologia por vírus - LIM-47), Clinics Hospital, School of Medicine, USP, São Paulo, SP Brazil
| | - Carol Manchiero
- Laboratory of Viral Medical Research in Hepatology (Laboratório de Investigação Médica em Hepatologia por vírus - LIM-47), Clinics Hospital, School of Medicine, USP, São Paulo, SP Brazil
| | - Bianca P. Dantas
- Laboratory of Viral Medical Research in Hepatology (Laboratório de Investigação Médica em Hepatologia por vírus - LIM-47), Clinics Hospital, School of Medicine, USP, São Paulo, SP Brazil
| | - Mariana C. Magri
- Laboratory of Viral Medical Research in Hepatology (Laboratório de Investigação Médica em Hepatologia por vírus - LIM-47), Clinics Hospital, School of Medicine, USP, São Paulo, SP Brazil
| | - Thamiris V. G. Prata
- Laboratory of Viral Medical Research in Hepatology (Laboratório de Investigação Médica em Hepatologia por vírus - LIM-47), Clinics Hospital, School of Medicine, USP, São Paulo, SP Brazil
| | - Marisa Nascimento
- Nursing Division, Clinics Hospital, School of Medicine, USP, São Paulo, SP Brazil
| | - Celso C. Mazza
- Department of Infectious and Parasitic Diseases, School of Medicine, University of São Paulo (Universidade de São Paulo - USP), São Paulo, SP Brazil
- Laboratory of Viral Medical Research in Hepatology (Laboratório de Investigação Médica em Hepatologia por vírus - LIM-47), Clinics Hospital, School of Medicine, USP, São Paulo, SP Brazil
| | - Edson Abdala
- Department of Infectious and Parasitic Diseases, School of Medicine, University of São Paulo (Universidade de São Paulo - USP), São Paulo, SP Brazil
- Laboratory of Viral Medical Research in Hepatology (Laboratório de Investigação Médica em Hepatologia por vírus - LIM-47), Clinics Hospital, School of Medicine, USP, São Paulo, SP Brazil
| | - Antonio A. Barone
- Department of Infectious and Parasitic Diseases, School of Medicine, University of São Paulo (Universidade de São Paulo - USP), São Paulo, SP Brazil
- Laboratory of Viral Medical Research in Hepatology (Laboratório de Investigação Médica em Hepatologia por vírus - LIM-47), Clinics Hospital, School of Medicine, USP, São Paulo, SP Brazil
| | - Wanderley M. Bernardo
- School of Medicine, USP, São Paulo, SP Brazil
- Brazilian Medical Association (AMB), São Paulo, SP Brazil
| |
Collapse
|
46
|
Meister TL, Bruening J, Todt D, Steinmann E. Cell culture systems for the study of hepatitis E virus. Antiviral Res 2019; 163:34-49. [PMID: 30653997 DOI: 10.1016/j.antiviral.2019.01.007] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/08/2019] [Accepted: 01/13/2019] [Indexed: 12/26/2022]
Abstract
Hepatitis E virus (HEV) is the causative agent of hepatitis E in humans and is the leading cause of enterically-transmitted viral hepatitis worldwide. Increasing numbers of HEV infections, together with no available specific anti-HEV treatment, contributes to the pathogen's major health burden. A robust cell culture system is required for virologic studies and the development of new antiviral drugs. Unfortunately, like other hepatitis viruses, HEV is difficult to propagate in conventional cell lines. Many different cell culture systems have been tested using various HEV strains, but viral replication usually progresses very slowly, and infection with low virion counts results in non-productive HEV replication. However, recent progress involving generation of cDNA clones and passaging primary patient isolates in distinct cell lines has improved in vitro HEV propagation. This review describes various approaches to cultivate HEV in cellular and animal models and how these systems are used to study HEV infections and evaluate anti-HEV drug candidates.
Collapse
Affiliation(s)
- Toni L Meister
- Ruhr-University Bochum, Faculty of Medicine, Department of Molecular and Medical Virology, Bochum, Germany
| | - Janina Bruening
- Ruhr-University Bochum, Faculty of Medicine, Department of Molecular and Medical Virology, Bochum, Germany
| | - Daniel Todt
- Ruhr-University Bochum, Faculty of Medicine, Department of Molecular and Medical Virology, Bochum, Germany.
| | - Eike Steinmann
- Ruhr-University Bochum, Faculty of Medicine, Department of Molecular and Medical Virology, Bochum, Germany.
| |
Collapse
|
47
|
Abstract
Hepatitis E virus (HEV) possesses many of the features of other positive-stranded RNA viruses but also adds HEV-specific nuances, making its virus-host interactions unique. Slow virus replication kinetics and fastidious growth conditions, coupled with the historical lack of an efficient cell culture system to propagate the virus, have left many gaps in our understanding of its structure and replication cycle. Recent advances in culturing selected strains of HEV and resolving the 3D structure of the viral capsid are filling in knowledge gaps, but HEV remains an extremely understudied pathogen. Many steps in the HEV life cycle and many aspects of HEV pathogenesis remain unknown, such as the host and viral factors that determine cross-species infection, the HEV-specific receptor(s) on host cells, what determines HEV chronicity and the ability to replicate in extrahepatic sites, and what regulates processing of the open reading frame 1 (ORF1) nonstructural polyprotein.
Collapse
Affiliation(s)
- Scott P Kenney
- Food Animal Health Research Program, The Ohio State University, Wooster, Ohio 44691
| | - Xiang-Jin Meng
- Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061
| |
Collapse
|
48
|
Yu W, Yang C, Hao X, Ma T, Huang F. Successful infection of BALB/c mice by a swine hepatitis E virus clone constructed with reverse genetics. BMC Infect Dis 2018; 18:687. [PMID: 30572833 PMCID: PMC6302442 DOI: 10.1186/s12879-018-3544-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 11/23/2018] [Indexed: 02/07/2023] Open
Abstract
Background Hepatitis E virus (HEV) is a leading cause of hepatitis worldwide. However, its infection biology and pathogenesis remain largely elusive. Furthermore, no proven medication is available for treating hepatitis E. Robust experimental models are urgently required to advance the research of HEV infection. Because of the lacking of a sophisticated small animal model, this study aimed to establish a mouse model of HEV infection. Methods We constructed a full-length swine HEV cDNA clone of genotype 4 (named as pGEM-HEV) by reverse genetics approach. And we inoculated with HEV RNA in BALB/c mice to establish small animal model for HEV infection and pathogenesis studies. Results The capped RNA transcripts of pGEM-HEV prepared in vitro were replication-competent in HepG2 cells. Importantly, BALB/c mice intravenously inoculated with RNA transcripts of pGEM-HEV developed an active infection as shown by shedding viruses in feces, detectable negative strand of HEV in the liver, spleen and kidney, and causing liver inflammation. Conclusion In this study, we successfully established of BALB/c mice-based small animal model for HEV provides an opportunity to further understand HEV pathogenesis and to develop effective antiviral medications.
Collapse
Affiliation(s)
- Wenhai Yu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 935 Jiaoling Road, Kunming, China
| | - Chenchen Yang
- Medical School, Kunming University of Science and Technology, 727 Jingming Road, Kunming, China
| | - Xianhui Hao
- Medical School, Kunming University of Science and Technology, 727 Jingming Road, Kunming, China
| | - Tianwu Ma
- Medical School, Kunming University of Science and Technology, 727 Jingming Road, Kunming, China
| | - Fen Huang
- Medical School, Kunming University of Science and Technology, 727 Jingming Road, Kunming, China.
| |
Collapse
|
49
|
Affiliation(s)
- James L. Smith
- Eastern Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Wyndmoor, Pennsylvania
| | - Pina M. Fratamico
- Eastern Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Wyndmoor, Pennsylvania
| |
Collapse
|
50
|
Abstract
Hepatitis E virus (HEV) is an important human pathogen that historically has been difficult to study. Limited levels of replication in vitro hindered our understanding of the viral life cycle. Sporadic and low-level virus shedding, lack of standardized detection methods, and subclinical infections made the development of animal models difficult. Better diagnostic techniques and understanding of the virus increased our ability to identify and characterize animal strains and animals that are amenable to model human-relevant infection. These advances are translating into the development of useful HEV animal models so that some of the greatest concerns associated with HEV infection, including host immunology, chronic infection, severe pregnancy mortality, and extrahepatic manifestations, can now be studied. Continued development of these animal models will be instrumental in understanding the many complex questions associated with HEV infection and for assessing therapeutics and prevention strategies to minimize HEV becoming a greater risk to the human population.
Collapse
Affiliation(s)
- Scott P Kenney
- Food Animal Health Research Program, College of Veterinary Medicine, Ohio State University, Wooster, Ohio 44691, USA;
| | - Xiang-Jin Meng
- Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24060, USA;
| |
Collapse
|