1
|
Nguyen TD, Winek MA, Rao MK, Dhyani SP, Lee MY. Nuclear envelope components in vascular mechanotransduction: emerging roles in vascular health and disease. Nucleus 2025; 16:2453752. [PMID: 39827403 DOI: 10.1080/19491034.2025.2453752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/08/2025] [Accepted: 01/09/2025] [Indexed: 01/22/2025] Open
Abstract
The vascular network, uniquely sensitive to mechanical changes, translates biophysical forces into biochemical signals for vessel function. This process relies on the cell's architectural integrity, enabling uniform responses to physical stimuli. Recently, the nuclear envelope (NE) has emerged as a key regulator of vascular cell function. Studies implicate nucleoskeletal elements (e.g. nuclear lamina) and the linker of nucleoskeleton and cytoskeleton (LINC) complex in force transmission, emphasizing nucleo-cytoskeletal communication in mechanotransduction. The nuclear pore complex (NPC) and its component proteins (i.e. nucleoporins) also play roles in cardiovascular disease (CVD) progression. We herein summarize evidence on the roles of nuclear lamina proteins, LINC complex members, and nucleoporins in endothelial and vascular cell mechanotransduction. Numerous studies attribute NE components in cytoskeletal-related cellular behaviors to insinuate dysregulation of nucleocytoskeletal feedback and nucleocytoplasmic transport as a mechanism of endothelial and vascular dysfunction, and hence implications for aging and vascular pathophysiology.
Collapse
Affiliation(s)
- Tung D Nguyen
- Department of Physiology and Biophysics, The University of Illinois at Chicago - College of Medicine, Chicago, IL, USA
- The Center for Cardiovascular Research, The University of Illinois at Chicago - College of Medicine, Chicago, IL, USA
| | - Michael A Winek
- Department of Physiology and Biophysics, The University of Illinois at Chicago - College of Medicine, Chicago, IL, USA
| | - Mihir K Rao
- Department of Physiology and Biophysics, The University of Illinois at Chicago - College of Medicine, Chicago, IL, USA
| | - Shaiva P Dhyani
- Department of Physiology and Biophysics, The University of Illinois at Chicago - College of Medicine, Chicago, IL, USA
| | - Monica Y Lee
- Department of Physiology and Biophysics, The University of Illinois at Chicago - College of Medicine, Chicago, IL, USA
- The Center for Cardiovascular Research, The University of Illinois at Chicago - College of Medicine, Chicago, IL, USA
| |
Collapse
|
2
|
Zhang Z, Chang H, Hao Y, Li Z, Qin H, Yu X, Li J, Cao M, Wang L, Liang Y, Cai L, Liu R, Yang X, Wei Y, Jiang G. Small Black Phosphorus Disrupts Vascular Development and Hematopoiesis in Zebrafish Larvae. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025. [PMID: 40415268 DOI: 10.1021/acs.est.4c14490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2025]
Abstract
Black phosphorus (BP), a novel two-dimensional (2D) material, has shown promising applications in the optoelectronic, biological, and medical fields in recent years. However, its increasing use may lead to its inadvertent environmental release, creating potential ecological and health risks that remain poorly understood. In this study, wild-type and transgenic zebrafish were used to evaluate the potential developmental toxicity of small-size BP (S-BP), with a lateral particle size of 154.4 ± 34.6 nm, focusing specifically on vascular growth and hematopoiesis at relatively low concentrations of 0.025, 0.05, 0.1, and 0.2 mg/L. The results indicated that S-BP adhered to the chorion and induced developmental defects. The uninflated swim bladders and decreased heart rate were observed in S-BP-exposed larvae at 120 hpf. The angioarchitectural profiling using transgenic zebrafish showed that exposure to S-BP adversely impaired blood vessel development at 72 hpf, especially in the common cardinal vein (CCV). Moreover, erythropoiesis and the flow velocity of red blood cells (RBCs) were disturbed at 120 hpf in all of the S-BP-exposed groups. Transcriptomic analysis unveiled that S-BP exposure altered gene expression related to angiogenesis, hematopoiesis, ribosome function, and transport processes. Notably, the mRNA levels of vascular and hematopoietic markers, including clec14a, nme2b.1, klf2a, slc2a1a, csf1rb, atf3, scl, and scml4, were significantly downregulated following S-BP exposure. Our findings revealed that low concentrations of S-BP exposure caused vascular and hematologic toxicity and identified CCV and RBCs as sensitive targets. This work expands our understanding of the toxicity of 2D nanomaterials and provides critical data for environmental risk assessment.
Collapse
Affiliation(s)
- Zhuyi Zhang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Hua Chang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Hao
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Zikang Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hua Qin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xinyi Yu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Jiaorong Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Mengxi Cao
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Ling Wang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Yong Liang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Li Cai
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Runzeng Liu
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Xiaoxi Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yanhong Wei
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Mercado Soto NM, Horn A, Keller NP, Huttenlocher A, Wagner AS. Larval zebrafish burn wound infection model reveals conserved innate immune responses against diverse pathogenic fungi. mBio 2025; 16:e0348024. [PMID: 40197062 PMCID: PMC12077223 DOI: 10.1128/mbio.03480-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 03/07/2025] [Indexed: 04/09/2025] Open
Abstract
Secondary fungal infections represent a major complication following thermal injuries. However, the mechanisms of fungal colonization of burn tissue and how the host subsequently responds to fungi within this niche remain unclear. We have previously reported a zebrafish model of thermal injury that recapitulates many of the features of human burn wounds. Here, we characterize host-fungal interaction dynamics within the burn wound niche using two of the most common fungal pathogens isolated from burn injuries, Aspergillus fumigatus and Candida albicans. Both A. fumigatus and C. albicans colonize burned tissue in zebrafish larvae and induce a largely conserved innate immune response following colonization. Using drug-induced cell-depletion strategies and transgenic zebrafish lines with impaired innate immune function, we found that macrophages control fungal burden, whereas neutrophils primarily control invasive hyphal growth at the early stages of infection. However, we also found that loss of either immune cell can be compensated by the other at the later stages of infection and that fish with both macrophage and neutrophil deficiencies show more invasive hyphal growth that is sustained throughout the infection process, suggesting redundancy in their antifungal activities. Finally, we demonstrate that C. albicans strains with increased β(1,3)-glucan exposure are cleared faster from the burn wound, demonstrating a need for shielding this immunogenic cell wall epitope for the successful fungal colonization of burn tissue. Together, our findings support the use of zebrafish larvae as a model to study host-fungal interaction dynamics within burn wounds.IMPORTANCESecondary fungal infections within burn wound injuries are a significant problem that delays wound healing and increases the risk of patient mortality. Currently, little is known about how fungi colonize and infect burn tissue or how the host responds to pathogen presence. In this report, we expand upon an existing thermal injury model using zebrafish larvae to begin elucidating both the host immune response to fungal burn colonization and fungal mechanisms for persistence within burn tissue. We found that both Aspergillus fumigatus and Candida albicans, common fungal burn wound isolates, successfully colonize burn tissue and are effectively cleared in immunocompetent zebrafish by both macrophages and neutrophils. We also find that C. albicans mutants harboring mutations that impact their ability to evade host immune system recognition are cleared more readily from burn tissue. Collectively, our work highlights the efficacy of using zebrafish to study host-fungal interaction dynamics within burn wounds.
Collapse
Affiliation(s)
- Nayanna M. Mercado Soto
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program (MDTP), University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Adam Horn
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Nancy P. Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program (MDTP), University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Anna Huttenlocher
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program (MDTP), University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Pediatrics, University of Wisconsin-Madison Department of Pediatrics, Madison, Wisconsin, USA
| | - Andrew S. Wagner
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Biological Sciences, Bowling Green State University, Bowling Green, Ohio, USA
| |
Collapse
|
4
|
Chen F, Deng Z, Wang X, Liu Y, Zhao K, Zhang Y, He S, Ran R, Dong Y, Guo S, Zhou Y, Zhou B, Pang P, Ge W, Liu C, Shan H, He H. DDX24 spatiotemporally orchestrates VEGF and Wnt signaling during developmental angiogenesis. Proc Natl Acad Sci U S A 2025; 122:e2417445122. [PMID: 40339127 DOI: 10.1073/pnas.2417445122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 03/16/2025] [Indexed: 05/10/2025] Open
Abstract
Vascular development is a precisely controlled process, yet how it is spatiotemporally orchestrated remains enigmatic. We previously identified DEAD-box RNA helicase 24 (DDX24) as a pathogenic gene for multiorgan vascular anomalies. Here, we show that DDX24 is expressed in the endothelium during embryonic angiogenesis in zebrafish. DDX24 deficiency causes intersegmental vessel hyperbranching in the trunk, but inhibits central artery angiogenesis in the brain. Mechanistically, DDX24 deficiency enhances VEGFR2 expression by direct binding to its mRNA in nonbrain endothelial cells (ECs), while suppressing GPR124/RECK-mediated Wnt signaling in brain ECs. Additionally, spatial transcriptome analysis profiles DDX24-mediated crosstalk between ECs and neighboring cells. Finally, pharmacological targeting of these two pathways in a temporal manner can rescue the phenotypes induced by DDX24 deficiency. Overall, our findings highlight an essential role for DDX24 in the spatiotemporal regulation of developmental angiogenesis.
Collapse
Affiliation(s)
- Fangbin Chen
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China
- Center for Interventional Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China
| | - Zhaohua Deng
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China
| | - Xiaoming Wang
- School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Yuxuan Liu
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China
| | - Kaichen Zhao
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yue Zhang
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China
| | - Simeng He
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China
| | - Rensen Ran
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China
| | - Yingying Dong
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China
| | - Shuang Guo
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China
| | - Yitong Zhou
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China
| | - Bin Zhou
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China
- Center for Interventional Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China
| | - Pengfei Pang
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China
- Center for Interventional Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China
| | - Wei Ge
- Faculty of Health Sciences, University of Macau, Taipa 999078, Macau, China
| | - Chang Liu
- BGI Research, Shenzhen 518083, China
- Shanxi Medical University-BGI Collaborative Center for Future Medicine, Shanxi Medical University, Taiyuan 030001, China
- Shenzhen Proof-of-Concept Center of Digital Cytopathology, BGI Research, Shenzhen 518083, China
| | - Hong Shan
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China
- Center for Interventional Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China
| | - Huanhuan He
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China
| |
Collapse
|
5
|
Chen C, Liu W, Yuan F, Wang X, Xu X, Ling CC, Ge X, Shen X, Li B, Shen Y, Liu D. G protein-coupled receptor GPR182 negatively regulates sprouting angiogenesis via modulating CXCL12-CXCR4 axis signaling. Angiogenesis 2025; 28:25. [PMID: 40314798 PMCID: PMC12048421 DOI: 10.1007/s10456-025-09977-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 03/25/2025] [Indexed: 05/03/2025]
Abstract
Angiogenesis is a critical process for tumor progression, regulated by various signaling pathways. Although antiangiogenic therapies targeting the VEGF pathway have shown potential, their effectiveness is inconsistent across different tumor types. GPR182, an endothelial cell-specific G protein-coupled receptor, is frequently downregulated in hypervascular tumors, but its specific role in angiogenesis has not been well defined. Our study reveals that GPR182 expression is markedly reduced in hepatocellular carcinoma (HCC) and inversely correlates with CD31, a pan-endothelial marker. In zebrafish embryos, Gpr182 deficiency resulted in enhanced angiogenic sprouting and hypervascularization, and GPR182-deficient human umbilical vein endothelial cells (HUVECs) showed increased migration and proliferation. At the molecular level, GPR182 acts as a decoy receptor, binding CXCL12 and regulating its gradient, which in turn suppresses CXCR4-mediated angiogenesis. The pharmacological blockade of CXCR4 with AMD3100 corrected the abnormal angiogenic phenotype in Gpr182-deficient zebrafish embryos and in the livers of a zebrafish HCC model. This work uncovers GPR182 as a negative regulator of angiogenesis, a key process in tumor growth and metastasis, and proposes that targeting GPR182 may offer a novel therapeutic approach for antiangiogenic strategies in cancer treatment.
Collapse
MESH Headings
- Receptors, CXCR4/metabolism
- Receptors, CXCR4/genetics
- Animals
- Zebrafish/embryology
- Humans
- Receptors, G-Protein-Coupled/metabolism
- Receptors, G-Protein-Coupled/genetics
- Chemokine CXCL12/metabolism
- Chemokine CXCL12/genetics
- Signal Transduction
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/pathology
- Neovascularization, Pathologic/genetics
- Zebrafish Proteins/metabolism
- Zebrafish Proteins/genetics
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/blood supply
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/genetics
- Human Umbilical Vein Endothelial Cells/metabolism
- Liver Neoplasms/pathology
- Liver Neoplasms/blood supply
- Liver Neoplasms/metabolism
- Liver Neoplasms/genetics
- Neovascularization, Physiologic
- Cell Movement
- Cell Proliferation
- Angiogenesis
Collapse
Affiliation(s)
- Changsheng Chen
- School of Life Sciences, Nantong Laboratory of Development and Diseases, Nantong University, Seyuan Road 9, Nantong, Jiangsu Province, 226019, China.
| | - Wei Liu
- School of Life Sciences, Nantong Laboratory of Development and Diseases, Nantong University, Seyuan Road 9, Nantong, Jiangsu Province, 226019, China
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Medical Research Institute, Wuhan University, Wuhan, Hubei Province, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, Hubei Province, China
| | - Fang Yuan
- Medical College of Nantong University, Nantong, Jiangsu Province, China
- Huai'an TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Huai'an, Jiangsu Province, China
| | - Xiaoning Wang
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Xi Xu
- Medical College of Nantong University, Nantong, Jiangsu Province, China
| | - Chang Chun Ling
- Department of Intervention and Vascular Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Xiaojuan Ge
- School of Life Sciences, Nantong Laboratory of Development and Diseases, Nantong University, Seyuan Road 9, Nantong, Jiangsu Province, 226019, China
| | - Xiaozhong Shen
- Medical College of Nantong University, Nantong, Jiangsu Province, China
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bowen Li
- School of Life Sciences, Nantong Laboratory of Development and Diseases, Nantong University, Seyuan Road 9, Nantong, Jiangsu Province, 226019, China
| | - Yuqian Shen
- School of Life Sciences, Nantong Laboratory of Development and Diseases, Nantong University, Seyuan Road 9, Nantong, Jiangsu Province, 226019, China
- Department of Translational Medicine, IGBMC, INSERM U964, CNRS UMR7104, Université de Strasbourg, Illkirch, France
| | - Dong Liu
- School of Life Sciences, Nantong Laboratory of Development and Diseases, Nantong University, Seyuan Road 9, Nantong, Jiangsu Province, 226019, China.
- Medical College of Nantong University, Nantong, Jiangsu Province, China.
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China.
| |
Collapse
|
6
|
Alharbi S, Merkle S, Hammill AM, Waters AM, Le Cras TD. RAS Pathway Mutations and Therapeutics in Vascular Anomalies. Pediatr Blood Cancer 2025; 72:e31605. [PMID: 39984187 DOI: 10.1002/pbc.31605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/30/2024] [Accepted: 02/02/2025] [Indexed: 02/23/2025]
Abstract
Vascular anomalies (VAs) are a diverse group of vascular tumors and vascular malformations (VMs). VMs are characterized by abnormal vessel development, overgrowth, and dysfunction. Coagulopathy, edema, and effusions can cause severe morbidity and mortality in children and adults with these diseases. Germline or somatic mutations in the RAS/RAF/MAPK pathway have been identified in multiple types of VAs. RAS genes (KRAS, NRAS, and HRAS) are small GTPase proteins that play an important role in normal development and cell function. In healthy cells, RAS proteins cycle between GDP (inactive) and GTP (active) states that regulate important functions such as proliferation, migration, and survival. "Hot spot" mutations in codons 12, 13, or 61 of RAS genes are found in multiple tumor types and VAs. RAS mutations often cause excessive MAP kinase signaling, driving unchecked cell proliferation. In this review, we discuss the different RAS pathway mutations discovered in VAs and the role that these may play using insights from cell and animal models. Current therapies targeting RAS pathways are presented. In the future, a better understanding of the role of RAS pathway mutations may advance therapeutic strategies for people with VAs.
Collapse
Affiliation(s)
- Sara Alharbi
- Cancer and Cell Biology Program, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Svatava Merkle
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Division of Hematology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Adrienne M Hammill
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Division of Hematology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Andrew M Waters
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Timothy D Le Cras
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
7
|
Peng H, Du Z, Li J, Wang W, Li Z, Ru S. The sprouting angiogenesis and vascular dysfunction triggered by bisphenol S and tetrabromobisphenol S through disrupting vascular endothelial-cadherin in zebrafish. ENVIRONMENTAL RESEARCH 2025; 278:121632. [PMID: 40246265 DOI: 10.1016/j.envres.2025.121632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/31/2025] [Accepted: 04/15/2025] [Indexed: 04/19/2025]
Abstract
Exogenous chemical toxicants may be important inducers of pathological angiogenesis diseases. However, few studies have investigated the associations between pathological angiogenesis diseases and chemical toxicant exposures, and the specific mechanism by which chemical toxicants induce sprouting angiogenesis is unclear. In this study, zebrafish were exposed to bisphenol S (BPS, 1-100 μg/L) and tetrabromobisphenol S (TBBPS, 0.1 and 10 μg/L) from the embryonic stage to the larval stage to investigate how pollutants interfere with angiogenesis and the function of ectopic sprouting vessels. The results showed that BPS and TBBPS promoted ectopic sprouting angiogenesis in different types of vascular plexuses, including the posterior cardinal vein (PCV) and superficial choroidal vessels (SOVs), at different developmental time points. Proteomic analyses of eGFP-positive endothelial cells (ECs) isolated from Tg(flk1: eGFP) zebrafish revealed that both BPS and TBBPS induced ectopic angiogenesis by acting on vascular endothelial-cadherin (VE-cadherin) and activating downstream proangiogenic signaling. In ectopic sprouting vessels induced by BPS and TBBPS, increased endothelial permeability resulted in white blood cell recruitment. Human oxidized lipids also tended to deposit in these ectopic vessels following BPS and TBBPS exposure. These findings suggest that chemical toxicant-induced ectopic angiogenesis is an important cause of vascular dysfunction and related diseases.
Collapse
Affiliation(s)
- Hongyuan Peng
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Zehui Du
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Jiali Li
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Weiwei Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
| | - Ze Li
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| |
Collapse
|
8
|
Yang W, Peng M, Wang Y, Zhang X, Li W, Zhai X, Wu Z, Hu P, Chen L. Deletion of hepcidin disrupts iron homeostasis and hematopoiesis in zebrafish embryogenesis. Development 2025; 152:dev204307. [PMID: 40110772 DOI: 10.1242/dev.204307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 03/05/2025] [Indexed: 03/22/2025]
Abstract
Iron is essential for cell growth and hematopoiesis, which is regulated by hepcidin (hamp). However, the role of hamp in zebrafish hematopoiesis remains unclear. Here, we have created a stable hamp knockout zebrafish model using the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated nuclease 9 system (CRISPR/Cas9 system). Our study revealed that hamp deletion led to maternal iron overload in embryos, significantly downregulating hemoglobin genes and reducing hemoglobin content. Single-cell RNA sequencing identified abnormal expression patterns in blood progenitor cells, with a specific progenitor subtype showing increased ferroptosis and delayed development. By crossing hamp knockout zebrafish with a gata1+ line (blood cells labeled fish line), we confirmed ferroptosis in blood progenitor cells. These findings underscore the crucial role of hamp in iron regulation and hematopoiesis, offering novel insights into developmental biology and potential therapeutic targets for blood disorders.
Collapse
Affiliation(s)
- Wenyi Yang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Mingjian Peng
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Youquan Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Xiaowen Zhang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Wei Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Xue Zhai
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Zhichao Wu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Peng Hu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Liangbiao Chen
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
9
|
Lachowicz-Radulska J, Widelski J, Nowaczyński F, Serefko A, Sobczyński J, Ludwiczuk A, Kasica N, Szopa A. Zebrafish as a Suitable Model for Utilizing the Bioactivity of Coumarins and Coumarin-Based Compounds. Int J Mol Sci 2025; 26:1444. [PMID: 40003910 PMCID: PMC11855297 DOI: 10.3390/ijms26041444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/03/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
The aim of this review is to summarize the current knowledge on the use of coumarin-derived compounds in the zebrafish (Danio rerio) model. Coumarins, a class of naturally occurring compounds with diverse biological activities, including compounds such as coumarin, angelicin, and warfarin, have attracted considerable attention in the study of potential therapeutic agents for cancer, central nervous system disorders, and infectious diseases. The capabilities of coumarins as active compounds have led to synthesizing various derivatives with their own properties. While such variety is certainly promising, it is also cumbersome due to the large amount of research needed to find the most optimal compounds. The zebrafish model offers unique advantages for such studies, including high genetic and physiological homology to mammals, optical transparency of the embryos, and rapid developmental processes, facilitating the assessment of compound toxicity and underlying mechanisms of action. This review provides an in-depth analysis of the chemical properties of coumarins, their mechanisms of biological activity, and the results of previous studies evaluating the toxicity and efficacy of these compounds in zebrafish assays. The zebrafish model allows for a holistic assessment of the therapeutic potential of coumarin derivatives, offering valuable insights for advancing drug discovery and development.
Collapse
Affiliation(s)
- Joanna Lachowicz-Radulska
- Department of Clinical Pharmacy and Pharmaceutical Care, Medical University of Lublin, 7 Chodźki Street, 20-093 Lublin, Poland; (J.L.-R.); (F.N.); (A.S.); (J.S.)
| | - Jarosław Widelski
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, 1 Chodźki Street, 20-093 Lublin, Poland; (J.W.); (A.L.)
| | - Filip Nowaczyński
- Department of Clinical Pharmacy and Pharmaceutical Care, Medical University of Lublin, 7 Chodźki Street, 20-093 Lublin, Poland; (J.L.-R.); (F.N.); (A.S.); (J.S.)
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, 1 Chodźki Street, 20-093 Lublin, Poland; (J.W.); (A.L.)
| | - Anna Serefko
- Department of Clinical Pharmacy and Pharmaceutical Care, Medical University of Lublin, 7 Chodźki Street, 20-093 Lublin, Poland; (J.L.-R.); (F.N.); (A.S.); (J.S.)
| | - Jan Sobczyński
- Department of Clinical Pharmacy and Pharmaceutical Care, Medical University of Lublin, 7 Chodźki Street, 20-093 Lublin, Poland; (J.L.-R.); (F.N.); (A.S.); (J.S.)
| | - Agnieszka Ludwiczuk
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, 1 Chodźki Street, 20-093 Lublin, Poland; (J.W.); (A.L.)
| | - Natalia Kasica
- Department of Animal Anatomy, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| | - Aleksandra Szopa
- Department of Clinical Pharmacy and Pharmaceutical Care, Medical University of Lublin, 7 Chodźki Street, 20-093 Lublin, Poland; (J.L.-R.); (F.N.); (A.S.); (J.S.)
| |
Collapse
|
10
|
Jia BZ, Tang X, Rossmann MP, Zon LI, Engert F, Cohen AE. Swimming motions evoke Ca 2+ events in vascular endothelial cells of larval zebrafish via mechanical activation of Piezo1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.05.636757. [PMID: 39975374 PMCID: PMC11839014 DOI: 10.1101/2025.02.05.636757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Calcium signaling in blood vessels regulates their growth1,2, immune response3, and vascular tone4. Vascular endothelial cells are known to be mechanosensitive5-7, and it has been assumed that this mechanosensation mediates calcium responses to pulsatile blood flow8-10. Here we show that in larval zebrafish, the dominant trigger for vascular endothelial Ca2+ events comes from body motion, not heartbeat-driven blood flow. Through a series of pharmacological and mechanical perturbations, we showed that body motion is necessary and sufficient to induce endothelial Ca2+ events, while neither neural activity nor blood circulation is either necessary or sufficient. Knockout and temporally restricted knockdown of piezo1 eliminated the motion-induced Ca2+ events. Our results demonstrate that swimming-induced tissue motion is an important driver of endothelial Ca2+ dynamics in larval zebrafish.
Collapse
Affiliation(s)
- Bill Z. Jia
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Xin Tang
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Marlies P. Rossmann
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
- Stem Cell Program and Division of Hematology/Oncology, Boston Children’s Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Leonard I. Zon
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
- Stem Cell Program and Division of Hematology/Oncology, Boston Children’s Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Florian Engert
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Adam E. Cohen
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
11
|
Huang R, Liu Z, Pan Y, Ma Z, Wang H, Wan B, Li J, Chang J. Mechanistic insight into the neurodevelopmental toxicity of the novel pesticide pyrifluquinazon (PFQ) and its major metabolite in early-life stage zebrafish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 366:125469. [PMID: 39643230 DOI: 10.1016/j.envpol.2024.125469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 11/24/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
Pyrifluquinazon (PFQ), a novel insecticide containing a heptafluoroisopropyl moiety, has seen increasing use. However, limited research has been conducted on the toxicological effects and mechanisms of PFQ in aquatic organisms. To investigate the toxicity and underlying mechanisms of PFQ and its primary metabolite dPFQ in aquatic organisms, morphological, behavioral, hormonal, multi-omics analyses, and molecular docking studies were conducted on zebrafish larvae after exposure. The results showed that both PFQ and dPFQ induced developmental abnormalities, behavioral impairment, hormonal disruptions, and alterations in neurologically related metabolites and gene expression in early-stage zebrafish. Notably, delayed retinal vascular development was observed, which is also likely linked to the neurodevelopmental toxicity. Subsequently, identification and relative quantification of PFQ metabolites suggested that its toxicity might be primarily attributed to dPFQ. Finally, an Adverse Outcome Pathway (AOP) was proposed, initiating with the binding of dPFQ to the TRPV4 protein and ultimately leading to neurodevelopmental toxicity. This study delineated the neurodevelopmental toxicity of PFQ and its toxicological mechanisms in zebrafish, emphasizing the hazards posed by pesticide metabolites to non-target organisms and highlighting inherent limitations of extrapolating in vitro toxicity experiments.
Collapse
Affiliation(s)
- Rui Huang
- Laboratory for Chemical Environmental Risk Assessment, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing, 100085, China; University of Chinese Academy of Sciences, Yuquan RD 19 a, Beijing, 100049, China
| | - Zijun Liu
- Laboratory for Chemical Environmental Risk Assessment, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing, 100085, China
| | - Yunrui Pan
- Laboratory for Chemical Environmental Risk Assessment, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing, 100085, China; University of Chinese Academy of Sciences, Yuquan RD 19 a, Beijing, 100049, China
| | - Zheng Ma
- Laboratory for Chemical Environmental Risk Assessment, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing, 100085, China; University of Chinese Academy of Sciences, Yuquan RD 19 a, Beijing, 100049, China
| | - Huili Wang
- Laboratory for Chemical Environmental Risk Assessment, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing, 100085, China
| | - Bin Wan
- Laboratory for Chemical Environmental Risk Assessment, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing, 100085, China; University of Chinese Academy of Sciences, Yuquan RD 19 a, Beijing, 100049, China
| | - Jianzhong Li
- Laboratory for Chemical Environmental Risk Assessment, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing, 100085, China
| | - Jing Chang
- Laboratory for Chemical Environmental Risk Assessment, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing, 100085, China.
| |
Collapse
|
12
|
Li W, Song B, Zeng Z, Yang Z, Li F, He S, Tong J, Chen Y, Zhang C, Wang D, Li Z, Xiong W. Exploring micro(nano)plastics toxicity from an environmental management perspective: Zebrafish as a vital bridge for assessing potential human health risks. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123934. [PMID: 39740460 DOI: 10.1016/j.jenvman.2024.123934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 12/24/2024] [Accepted: 12/26/2024] [Indexed: 01/02/2025]
Abstract
The pollution stemming from the unwarranted utilization and inadequate disposal of plastic products is undergoing rapid escalation. The problem of micro(nano)plastics (MNPs) pollution has recently garnered significant attention, and the issue of human exposure to MNPs cannot be disregarded. However, the present state of research concerning human exposure to MNPs remains in its early stages. The inherent uncertainty and variability associated with MNPs pose significant obstacles to conducting related studies. In order to enhance comprehension of the potential health risks associated with human exposure to MNPs, the utilization of zebrafish as an assessment tool was deemed appropriate. Zebrafish, as one of the most effective toxicological models, assume a significant role in both environmental monitoring and health modeling. This study provides a review of the effects of exposure to MNPs on zebrafish. The findings demonstrate that such exposure can elicit behavioral and physiological alterations in zebrafish, subsequently resulting in a range of toxic consequences. Simultaneously, this study conducts a comparative analysis of the effects of human and zebrafish exposure to MNPs in physiology, exposure environment, and toxicokinetic/toxicodynamic, leveraging the shared characteristics between zebrafish and humans to augment comprehension regarding human exposure to MNPs. Zebrafish model plays a key role in exploring gene expression in human homologous pathways caused by MNPs exposure, and strengthens the understanding of the risk of MNPs exposure. However, physiological, metabolic, and exposure circumstances limit its extrapolation to humans. Furthermore, the reference value and challenge associated with employing zebrafish as a model to discern human health hazards linked to MNPs are assessed, accompanied by suggestions for future research endeavors.
Collapse
Affiliation(s)
- Wenbin Li
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, PR China
| | - Biao Song
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, PR China
| | - Zhuotong Zeng
- Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha, 410011, PR China.
| | - Zhaohui Yang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, PR China
| | - Fang Li
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, PR China
| | - Siying He
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, PR China
| | - Jing Tong
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, PR China
| | - Yalin Chen
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, PR China
| | - Chang Zhang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, PR China
| | - Dongbo Wang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, PR China
| | - Zhongwu Li
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, PR China
| | - Weiping Xiong
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, PR China.
| |
Collapse
|
13
|
Carra S, Gaudenzi G, Franceschetti G, Collini M, Sironi L, Bouzin M, Persani L, Chirico G, Vitale G, D’Alfonso L. How Tumors Affect Hemodynamics: A Diffusion Study on the Zebrafish Transplantable Model of Medullary Thyroid Carcinoma by Selective Plane Illumination Microscopy. Int J Mol Sci 2024; 25:13392. [PMID: 39769158 PMCID: PMC11678154 DOI: 10.3390/ijms252413392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/06/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
Medullary thyroid carcinoma (MTC), a rare neuroendocrine tumor comprising 3-5% of thyroid cancers, arises from calcitonin-producing parafollicular C cells. Despite aggressive behavior, surgery remains the primary curative treatment, with limited efficacy reported for radiotherapy and chemotherapy. Recent efforts have explored the pathogenetic mechanisms of MTC, identifying it as a highly vascularized neoplasm overexpressing pro-angiogenic factors. Building on the established benefits of zebrafish embryos, we previously created an in vivo MTC xenograft platform that allows real-time observation of tumor-induced angiogenesis and evaluation of the anti-angiogenic effects of tyrosine kinase inhibitors. In this study, we present a method using selective plane illumination microscopy (SPIM) to characterize vascular permeability in these xenografted embryos. Taking advantage of dextran injections into the blood flow of zebrafish embryos, we found that the diffusion coefficient in embryos grafted with MTC cells was about tenfold lower compared with the same parameter in controls. The results demonstrate the potential of our approach to estimate diffusion parameters, providing valuable insights into vascular permeability changes in MTC-implanted zebrafish embryos compared with controls. Our study sheds light on the intricate vascular biology of MTC, offering a promising tool for future investigations into tumor-induced angiogenesis and therapeutic strategies in diverse neoplasms.
Collapse
Affiliation(s)
- Silvia Carra
- Laboratory of Endocrine and Metabolic Research, IRCCS Istituto Auxologico Italiano, 20100 Milan, Italy;
| | - Germano Gaudenzi
- Laboratory of Geriatric and Oncologic Neuroendocrinology Research, IRCCS Istituto Auxologico Italiano, 20100 Milan, Italy; (G.G.); (G.V.)
| | - Giorgia Franceschetti
- Department of Physics “G. Occhialini”, Università degli Studi di Milano-Bicocca, Piazza Della Scienza 3, 20126 Milan, Italy (M.C.); (L.S.); (M.B.); (G.C.); (L.D.)
| | - Maddalena Collini
- Department of Physics “G. Occhialini”, Università degli Studi di Milano-Bicocca, Piazza Della Scienza 3, 20126 Milan, Italy (M.C.); (L.S.); (M.B.); (G.C.); (L.D.)
| | - Laura Sironi
- Department of Physics “G. Occhialini”, Università degli Studi di Milano-Bicocca, Piazza Della Scienza 3, 20126 Milan, Italy (M.C.); (L.S.); (M.B.); (G.C.); (L.D.)
| | - Margaux Bouzin
- Department of Physics “G. Occhialini”, Università degli Studi di Milano-Bicocca, Piazza Della Scienza 3, 20126 Milan, Italy (M.C.); (L.S.); (M.B.); (G.C.); (L.D.)
| | - Luca Persani
- Laboratory of Endocrine and Metabolic Research, IRCCS Istituto Auxologico Italiano, 20100 Milan, Italy;
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20100 Milan, Italy
| | - Giuseppe Chirico
- Department of Physics “G. Occhialini”, Università degli Studi di Milano-Bicocca, Piazza Della Scienza 3, 20126 Milan, Italy (M.C.); (L.S.); (M.B.); (G.C.); (L.D.)
| | - Giovanni Vitale
- Laboratory of Geriatric and Oncologic Neuroendocrinology Research, IRCCS Istituto Auxologico Italiano, 20100 Milan, Italy; (G.G.); (G.V.)
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20100 Milan, Italy
| | - Laura D’Alfonso
- Department of Physics “G. Occhialini”, Università degli Studi di Milano-Bicocca, Piazza Della Scienza 3, 20126 Milan, Italy (M.C.); (L.S.); (M.B.); (G.C.); (L.D.)
| |
Collapse
|
14
|
Mercado Soto NM, Horn A, Keller NP, Huttenlocher A, Wagner AS. A conserved in vivo burn wound infection model for diverse pathogenic fungi. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.12.623264. [PMID: 39605401 PMCID: PMC11601320 DOI: 10.1101/2024.11.12.623264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Secondary fungal infections represent a major complication following thermal injuries. However, the mechanisms of fungal colonization of burn tissue and how the host subsequently responds to fungi within this niche remain unclear. We have previously reported a zebrafish model of thermal injury that recapitulates many of the features of human burn wounds. Here, we characterize host-fungal interaction dynamics within the burn wound niche using two of the most common fungal pathogens isolated from burn injuries, Aspergillus fumigatus and Candida albicans . Both A. fumigatus and C. albicans colonize burned tissue in zebrafish larvae and induce a largely conserved innate immune response following colonization. Using drug-induced cell depletion strategies and transgenic zebrafish lines with impaired innate immune function, we found that macrophages control fungal burden while neutrophils primarily control invasive hyphal growth at the early stages of infection. However, we also found that loss of either immune cell can be compensated by the other at the later stages of infection, and that fish with both macrophage and neutrophil deficiencies show more invasive hyphal growth that is sustained throughout the infection process, suggesting redundancy in their antifungal activities. Finally, we demonstrate that C. albicans strains with increased β(1,3)-glucan exposure are cleared faster from the burn wound, demonstrating a need for shielding this immunogenic cell wall epitope for successful fungal colonization of burn tissue. Together, our findings support the use of zebrafish larvae as a model to study host-fungal interaction dynamics within burn wounds. Importance Secondary fungal infections within burn wound injuries are a significant problem that delay wound healing and increase the risk of patient mortality. Currently, little is known about how fungi colonize and infect burn tissue or how the host responds to pathogen presence. In this report, we expand upon an existing thermal injury model using zebrafish larvae to begin to elucidate both the host immune response to fungal burn colonization and fungal mechanisms for persistence within burn tissue. We found that both Aspergillus fumigatus and Candida albicans , common fungal burn wound isolates, successfully colonize burn tissue and are effectively cleared in immunocompetent zebrafish by both macrophages and neutrophils. We also find that C. albicans mutants harboring mutations that impact their ability to evade host immune system recognition are cleared more readily from burn tissue. Collectively, our work highlights the efficacy of using zebrafish to study host-fungal interaction dynamics within burn wounds.
Collapse
|
15
|
Werschler N, Quintard C, Nguyen S, Penninger J. Engineering next generation vascularized organoids. Atherosclerosis 2024; 398:118529. [PMID: 39304390 DOI: 10.1016/j.atherosclerosis.2024.118529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/31/2024] [Accepted: 06/21/2024] [Indexed: 09/22/2024]
Abstract
Organoids are self-organizing 3D cell culture models that are valuable for studying the mechanisms underlying both development and disease in multiple species, particularly, in humans. These 3D engineered tissues can mimic the structure and function of human organs in vitro. Methods to generate organoids have substantially improved to better resemble, in various ways, their in vivo counterpart. One of the major limitations in current organoid models is the lack of a functional vascular compartment. Here we discuss methodological approaches to generating perfusable blood vessel networks in organoid systems. Inclusion of perfused vascular compartments markedly enhances the physiological relevance of organoid systems and is a critical step in the establishment of next generation, higher-complexity in vitro systems for use in developmental, clinical, and drug-development settings.
Collapse
Affiliation(s)
- Nicolas Werschler
- University of British Columbia, Life Sciences Institute, Vancouver, Canada; University of British Columbia, School of Biomedical Engineering, Vancouver, Canada.
| | - Clement Quintard
- University of British Columbia, Life Sciences Institute, Vancouver, Canada; University of British Columbia, Medical Genetics, Vancouver, Canada
| | - Stephanie Nguyen
- University of British Columbia, School of Biomedical Engineering, Vancouver, Canada
| | - Josef Penninger
- University of British Columbia, Life Sciences Institute, Vancouver, Canada; University of British Columbia, School of Biomedical Engineering, Vancouver, Canada; University of British Columbia, Medical Genetics, Vancouver, Canada; Helmholtz Centre for Infection Research, Germany; Eric Kandel Institute, Department of Laboratory Medicine, Medical University of Vienna, Austria; IMBA Institute of Molecular Biotechnology, Vienna, Austria
| |
Collapse
|
16
|
Yu R, Ai N, Huang C, Wang D, Bian C, Ge W, Chong CM. Aspirin reduces Ponatinib-induced cardiovascular toxic phenotypes and death in zebrafish. Biomed Pharmacother 2024; 180:117503. [PMID: 39357328 DOI: 10.1016/j.biopha.2024.117503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/20/2024] [Accepted: 09/25/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Ponatinib (Iclusig) is an oral tyrosine kinase BCR-ABL inhibitor for treating patients with Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph+ ALL) and chronic myeloid leukemia (CML) who are resistant to the therapies with other tyrosine kinase inhibitors. However, adverse cardiovascular events caused by Ponatinib are a serious issue that affects patients' survival rates. Thus, it is necessary to search for candidate drugs to reduce the cardiovascular toxicity of Ponatinib. PURPOSE To investigate the effects of Aspirin on Ponatinib-induced cardiovascular toxicity in zebrafish. METHODS AB strain of wild type zebrafish (Danio rerio), Tg (cmlc2: GFP) transgenic zebrafish, and Tg (gata1: dsRed) transgenic zebrafish were used as in vivo models to assess survival, blood flow, cardiac morphology, and function. Thrombus formation was detected using O-dianisidine staining. The transcriptome of zebrafish larvae treated with Ponatinib was assessed using RNA sequencing. RESULTS Ponatinib not only reduced survival rate but also caused cardiovascular toxic events such as pericardial edema, abnormal heart structure, low heart rate, and thrombosis. In addition, whole-body transcriptome analysis showed that Ponatinib up-regulated the expression of cyclooxygenase-1 (COX-1). Compared with other antithrombotic drugs, a COX-1 inhibitor Aspirin more effectively reduced ponatinib-induced cardiovascular toxicity events and improved the survival rate of zebrafish larvae. CONCLUSION Our findings suggest that Aspirin exhibits the potential to reduce Ponatinib-induced cardiovascular toxicity.
Collapse
Affiliation(s)
- Ruiqi Yu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau 999078, China
| | - Nana Ai
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau 999078, China
| | - Chen Huang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, SAR 999078, China
| | - Danni Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau 999078, China
| | - Chao Bian
- Laboratory of Aquatic Genomics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Wei Ge
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau 999078, China.
| | - Cheong-Meng Chong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau 999078, China.
| |
Collapse
|
17
|
Mirzaei F, Eslahi A, Karimi S, Alizadeh F, Salmaninejad A, Rezaei M, Mozaffari S, Hamzehloei T, Pasdar A, Mojarrad M. Generation of Zebrafish Models of Human Retinitis Pigmentosa Diseases Using CRISPR/Cas9-Mediated Gene Editing System. Mol Biotechnol 2024; 66:2909-2919. [PMID: 37980693 DOI: 10.1007/s12033-023-00907-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 09/14/2023] [Indexed: 11/21/2023]
Abstract
Generating animal models can explore the role of new candidate genes in causing diseases and the pathogenicity of a specific mutation in the underlying genes. These animals can be used to identify new pharmaceutical or genetic therapeutic methods. In the present experiment, we developed a rpe65a knock out (KO) zebrafish as a retinitis pigmentosa (RP) disease model. Using the CRISPR/Cas9 system, the rpe65a gene was KO in zebrafish. Two specific single-guide RNAs (sgRNAs) were designed for the zebrafish rpe65a gene. SgRNAs were cloned into the DR274 plasmid and synthesized using in vitro transcription method. The efficiency of Ribonucleoprotein (synthesized sgRNA and recombinant Cas9) was evaluated by in vitro digestion experiment. Ribonucleoprotein complexes were microinjected into one to four-celled eggs of the TU zebrafish strain. The effectiveness of sgRNAs in KO the target gene was determined using the Heteroduplex mobility assay (HMA) and Sanger sequencing. Online software was used to determine the percent of mosaicism in the sequenced samples. By examining the sequences of the larvae that showed a mobility shift in the HMA method, the presence of indels in the binding region of sgRNAs was confirmed, so the zebrafish model for RP disease established. Zebrafish is an ideal animal model for the functional study of various diseases involving different genes and mutations and used for evaluating different therapeutic approaches in human diseases. This study presents the production of rpe65a gene KO zebrafish models using CRISPR/Cas9 technology. This model can be used in RP pathophysiology studies and preclinical gene therapy experiments.
Collapse
Affiliation(s)
- Farzaneh Mirzaei
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Atiyeh Eslahi
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sareh Karimi
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzaneh Alizadeh
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arash Salmaninejad
- Regenerative Medicine, Organ Procurement and Transplantation Multi-Disciplinary Center, Razi Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Mohammad Rezaei
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Sina Mozaffari
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Tayebeh Hamzehloei
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Pasdar
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Mojarrad
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
18
|
Wen ZH, Chang L, Yang SN, Yu CL, Tung FY, Kuo HM, Lu IC, Wu CY, Shih PC, Chen WF, Chen NF. The anti-angiogenic and anti-vasculogenic mimicry effects of GN25 in endothelial and glioma cells. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119799. [PMID: 39043304 DOI: 10.1016/j.bbamcr.2024.119799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 06/12/2024] [Accepted: 06/27/2024] [Indexed: 07/25/2024]
Abstract
BACKGROUND AND PURPOSE Scientists have been exploring anti-angiogenic strategies to inhibit angiogenesis and prevent tumor growth. Vasculogenic mimicry (VM) in glioblastoma multiforme (GBM) poses a challenge, complicating anti-angiogenesis therapy. A novel drug, GN25 (3-[{1,4-dihydro-5,8-dimethoxy-1,4-dioxo-2-naphthalenyl}thio]-propanoic acid), can inhibit tumor formation. This study aims to investigate the microenvironmental effects and molecular mechanisms of GN25 in anti-angiogenesis and anti-VM. EXPERIMENTAL APPROACH MTT (3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide) assay was used to evaluate the cell viability of different concentrations of GN25 in human umbilical vein endothelial cells (HUVEC) and Uppsala 87 malignant glioma (U87MG) cells. Functional assays were used to investigate the effects of GN25 on angiogenesis-related processes, whereas gelatin zymography, enzyme-linked immunosorbent assays, and Western blotting were utilized to assess the influence on matrix metalloproteinase (MMP)-2 and vascular endothelial growth factor (VEGF) secretion and related signaling pathways. KEY RESULTS GN25 suppressed migration, wound healing, and tube formation in HUVECs and disrupted angiogenesis in a rat aorta ring and zebrafish embryo model. GN25 dose-dependently reduced phosphatidylinositol 3-kinase/AKT and inhibited MMP-2/VEGF secretion in HUVECs. In U87MG cells, GN25 inhibited migration, wound healing, and VM, accompanied by a decrease in MMP-2 and VEGF secretion. The results indicate that GN25 effectively inhibits angiogenesis and VM formation in HUVECs and U87MG cells without affecting preexisting vascular structures. CONCLUSION AND IMPLICATIONS This study elaborated GN25's potential as an anti-angiogenic agent by elucidating its inhibitory effects on classical angiogenesis. VM provides valuable insights for developing novel therapeutic strategies against tumor progression and angiogenesis-related diseases. These results indicate the potential of GN25 as a promising candidate for angiogenesis-related diseases.
Collapse
Affiliation(s)
- Zhi-Hong Wen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan; Institute of BioPharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Long Chang
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - San-Nan Yang
- Department of Pediatrics, E-Da Hospital, I-Shou University, Kaohsiung 82445, Taiwan; School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan
| | - Chen-Ling Yu
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Fang-Yu Tung
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Hsiao-Mei Kuo
- Department of Neurosurgery, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833301, Taiwan
| | - I-Chen Lu
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Chang-Yi Wu
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan; Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Po-Chang Shih
- Institute of BioPharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Wu-Fu Chen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan; Department of Neurosurgery, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833301, Taiwan.
| | - Nan-Fu Chen
- Division of Neurosurgery, Department of Surgery, Kaohsiung Armed Forces General Hospital, Kaohsiung 80284, Taiwan.
| |
Collapse
|
19
|
Ludin A, Stirtz GL, Tal A, Nirmal AJ, Besson N, Jones SM, Pfaff KL, Manos M, Liu S, Barrera I, Gong Q, Rodrigues CP, Sahu A, Jerison E, Alessi JV, Ricciuti B, Richardson DS, Weiss JD, Moreau HM, Stanhope ME, Afeyan AB, Sefton J, McCall WD, Formato E, Yang S, Zhou Y, van Konijnenburg DPH, Cole HL, Cordova M, Deng L, Rajadhyaksha M, Quake SR, Awad MM, Chen F, Sorger PK, Hodi FS, Rodig SJ, Murphy GF, Zon LI. Craters on the melanoma surface facilitate tumor-immune interactions and demonstrate pathologic response to checkpoint blockade in humans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.18.613595. [PMID: 39345527 PMCID: PMC11429731 DOI: 10.1101/2024.09.18.613595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Immunotherapy leads to cancer eradication despite the tumor's immunosuppressive environment. Here, we used extended long-term in-vivo imaging and high-resolution spatial transcriptomics of endogenous melanoma in zebrafish, and multiplex imaging of human melanoma, to identify domains that facilitate immune response during immunotherapy. We identified crater-shaped pockets at the margins of zebrafish and human melanoma, rich with beta-2 microglobulin (B2M) and antigen recognition molecules. The craters harbor the highest density of CD8+ T cells in the tumor. In zebrafish, CD8+ T cells formed prolonged interactions with melanoma cells within craters, characteristic of antigen recognition. Following immunostimulatory treatment, the craters enlarged and became the major site of activated CD8+ T cell accumulation and tumor killing that was B2M dependent. In humans, craters predicted immune response to ICB therapy, showing response better than high T cell infiltration. This marks craters as potential new diagnostic tool for immunotherapy success and targets to enhance ICB response.
Collapse
Affiliation(s)
- Aya Ludin
- Harvard Stem Cell and Regenerative Biology Department, Harvard University; Boston, MA, USA
- Stem Cell Program and Division of Hematology/Oncology, Boston Children’s Hospital and Dana-Farber Cancer Institute; Boston, MA, USA
- These authors contributed equally
| | - Georgia L. Stirtz
- Harvard Stem Cell and Regenerative Biology Department, Harvard University; Boston, MA, USA
- These authors contributed equally
| | - Asaf Tal
- Harvard Stem Cell and Regenerative Biology Department, Harvard University; Boston, MA, USA
| | - Ajit J. Nirmal
- Department of Dermatology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Ludwig Center at Harvard; Boston, MA, USA
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA
- Department of Systems Biology, Harvard Medical School; Boston, MA, USA
| | - Naomi Besson
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Stephanie M. Jones
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Kathleen L. Pfaff
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Michael Manos
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Sophia Liu
- Biophysics Program, Harvard University, Boston, MA 02115, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Irving Barrera
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Qiyu Gong
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Cecilia Pessoa Rodrigues
- Harvard Stem Cell and Regenerative Biology Department, Harvard University; Boston, MA, USA
- Stem Cell Program and Division of Hematology/Oncology, Boston Children’s Hospital and Dana-Farber Cancer Institute; Boston, MA, USA
| | - Aditi Sahu
- Dermatology Service, Memorial Sloan Kettering Cancer Center; New York, NY, USA.|
| | - Elizabeth Jerison
- Department of Physics, University of Chicago, Chicago, IL 60637, USA, Institute for Biophysical Dynamics, and James Franck Institute
| | - Joao V. Alessi
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Biagio Ricciuti
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Douglas S. Richardson
- Harvard Center for Biological Imaging, Department of Molecular and Cellular Biology, Harvard University; Cambridge, MA, USA
| | - Jodi D. Weiss
- Harvard Stem Cell and Regenerative Biology Department, Harvard University; Boston, MA, USA
| | - Hadley M. Moreau
- Harvard Stem Cell and Regenerative Biology Department, Harvard University; Boston, MA, USA
| | - Meredith E. Stanhope
- Harvard Stem Cell and Regenerative Biology Department, Harvard University; Boston, MA, USA
| | - Alexander B. Afeyan
- Harvard Stem Cell and Regenerative Biology Department, Harvard University; Boston, MA, USA
| | - James Sefton
- Harvard Stem Cell and Regenerative Biology Department, Harvard University; Boston, MA, USA
| | - Wyatt D. McCall
- Harvard Stem Cell and Regenerative Biology Department, Harvard University; Boston, MA, USA
| | - Emily Formato
- Harvard Stem Cell and Regenerative Biology Department, Harvard University; Boston, MA, USA
- Stem Cell Program and Division of Hematology/Oncology, Boston Children’s Hospital and Dana-Farber Cancer Institute; Boston, MA, USA
| | - Song Yang
- Stem Cell Program and Division of Hematology/Oncology, Boston Children’s Hospital and Dana-Farber Cancer Institute; Boston, MA, USA
| | - Yi Zhou
- Stem Cell Program and Division of Hematology/Oncology, Boston Children’s Hospital and Dana-Farber Cancer Institute; Boston, MA, USA
| | | | - Hannah L. Cole
- Harvard Stem Cell and Regenerative Biology Department, Harvard University; Boston, MA, USA
| | - Miguel Cordova
- Dermatology Service, Memorial Sloan Kettering Cancer Center; New York, NY, USA.|
| | - Liang Deng
- Dermatology Service, Memorial Sloan Kettering Cancer Center; New York, NY, USA.|
| | - Milind Rajadhyaksha
- Dermatology Service, Memorial Sloan Kettering Cancer Center; New York, NY, USA.|
| | - Stephen R. Quake
- Department of Bioengineering and Applied sciences, Stanford University, Stanford, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Mark M. Awad
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Fei Chen
- Harvard Stem Cell and Regenerative Biology Department, Harvard University; Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Peter K. Sorger
- Ludwig Center at Harvard; Boston, MA, USA
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA
- Department of Systems Biology, Harvard Medical School; Boston, MA, USA
| | - F. Stephen Hodi
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215
- Parker Institute for Cancer Immunotherapy
| | - Scott J. Rodig
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - George F. Murphy
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Leonard I. Zon
- Harvard Stem Cell and Regenerative Biology Department, Harvard University; Boston, MA, USA
- Stem Cell Program and Division of Hematology/Oncology, Boston Children’s Hospital and Dana-Farber Cancer Institute; Boston, MA, USA
- Howard Hughes Medical Institute, Harvard medical school; Boston MA, USA
| |
Collapse
|
20
|
Ramli AH, Jayathilaka EHTT, Dias MKHM, Abdul Malek E, Jain N, An J, Churchill DG, Rukayadi Y, Swain P, Kim CH, de Zoysa M, Mohd Faudzi SM. Antifungal activity of synthetic xanthenone against fluconazole-resistant Candida auris and its mechanism of action. Microb Pathog 2024; 194:106797. [PMID: 39029597 DOI: 10.1016/j.micpath.2024.106797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/06/2024] [Accepted: 07/15/2024] [Indexed: 07/21/2024]
Abstract
Candida auris, an emerging multidrug-resistant fungal pathogen discovered in Japan in 2009, poses a significant global health threat, with infections reported in about 25 countries. The escalation of drug-resistant strains underscores the urgent need for new treatment options. This study aimed to investigate the antifungal potential of 2,3,4,4a-tetrahydro-1H-xanthen-1-one (XA1) against C. auris, as well as its mechanism of action and toxic profile. The antifungal activity of XA1 was first evaluated by determining the minimum inhibitory concentration (MIC), time-kill kinetics and biofilm inhibition. In addition, structural changes, membrane permeability, reactive oxygen species (ROS) production, and in vitro and in vivo toxicity of C. auris after exposure to XA1 were investigated. The results indicated that XA1 exhibited an MIC of 50 μg/mL against C. auris, with time-kill kinetics highlighting its efficacy. Field emission scanning electron microscopy (FE-SEM) showed structural damage in XA1-treated cells, supported by increased membrane permeability leading to cell death. Furthermore, XA1 induced ROS production and significantly inhibited biofilm formation. Importantly, XA1 exhibited low cytotoxicity in human epidermal keratinocytes (HaCaT), with a cell viability of over 90 % at 6.25 μg/mL. In addition, an LD50 of 17.68 μg/mL was determined in zebrafish embryos 24 h post fertilization (hpf), with developmental delay observed at prolonged exposure at 6.25 μg/mL (48-96 hpf). These findings position XA1 as a promising candidate for further research and development of an effective antifungal agent.
Collapse
Affiliation(s)
- Amirah Hani Ramli
- Natural Medicines and Product Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia
| | - E H T Thulshan Jayathilaka
- College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungnam National University, Yuseong-gu, Daejeon, 34134, Republic of Korea
| | | | - Emilia Abdul Malek
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400, UPM, Serdang, Selangor, Malaysia
| | - Neha Jain
- Department of Chemistry, Molecular Logic Gate Laboratory, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jongkeol An
- Department of Chemistry, Molecular Logic Gate Laboratory, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - David G Churchill
- Department of Chemistry, Molecular Logic Gate Laboratory, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Yaya Rukayadi
- Natural Medicines and Product Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia; Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400, UPM, Serdang, Selangor, Malaysia
| | - Puspanjali Swain
- Department of Biology, Chungnam National University, Yuseong-gu, Daejeon, 34134, Republic of Korea
| | - Cheol-Hee Kim
- Department of Biology, Chungnam National University, Yuseong-gu, Daejeon, 34134, Republic of Korea
| | - Mahanama de Zoysa
- College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungnam National University, Yuseong-gu, Daejeon, 34134, Republic of Korea.
| | - Siti Munirah Mohd Faudzi
- Natural Medicines and Product Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia; Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400, UPM, Serdang, Selangor, Malaysia.
| |
Collapse
|
21
|
Wang Y, Wang S, Wang Y, Gao P, Wang L, Wang Q, Zhang Y, Liu K, Xia Q, Tu P. The natural compound sinometumine E derived from Corydalis decumbens promotes angiogenesis by regulating HIF-1/ VEGF pathway in vivo and in vitro. Biomed Pharmacother 2024; 178:117113. [PMID: 39067164 DOI: 10.1016/j.biopha.2024.117113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/04/2024] [Accepted: 07/07/2024] [Indexed: 07/30/2024] Open
Abstract
The rhizome of Corydalis decumbens is a traditional Chinese medicine commonly utilized in the clinical treatment of acute ischemic stroke. Numerous phytochemical and biological investigations have demonstrated that protoberberine alkaloids from C. decumbens exhibit diverse pharmaceutical activities against various diseases. Sinometumine E (SE), a protoberberine alkaloid isolated from C. decumbens for the first time, is characterized by a complex 6/6/6/6/6/6 hexacyclic skeleton. In the current study, we investigated the protective effects of SE on endothelial cell injury and its angiogenesis effects in zebrafish. The results suggested that SE showed significant anti-ischemic effects on OGD/R-induced HBEC-5i and HUVECs cell ischemia/reperfusion injury model. Furthermore, it promoted angiogenesis in PTK787-induced, MPTP-induced, and atorvastatin-induced vessel injury models of zebrafish, while also suppressing hypoxia-induced locomotor impairment in zebrafish. Transcriptome sequencing analysis provided a sign that SE likely to promotes angiogenesis through the HIF-1/VEGF signaling pathway to exert anti-ischemic effects. Consistently, SE modulated several genes related to HIF-1/VEGF signal pathway, such as hif-1, vegf, vegfr-2, pi3k, erk, akt and plcγ. Molecular docking analysis revealed that VEGFR-2 exhibited high binding affinity with SE, and western blot analysis confirmed that SE treatment enhanced the expression of VEGFR-2. In conclusion, our study profiled the angiogenic activities of SE in vitro and in vivo. The key targets and related pathways involved in anti-ischemic effects of SE, shedding light on the pharmacodynamic components and mechanisms of Corydalis decumbens, and provides valuable insights for identifying effective substances for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Yuqi Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Shuhui Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yanhang Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Peng Gao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Le Wang
- School of Pharmacy, Minzu University of China, Beijing 100081, China
| | - Qiqi Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yun Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Qing Xia
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China.
| | - Pengfei Tu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| |
Collapse
|
22
|
Zhou W, Ghersi JJ, Ristori E, Semanchik N, Prendergast A, Zhang R, Carneiro P, Baldissera G, Sessa WC, Nicoli S. Akt is a mediator of artery specification during zebrafish development. Development 2024; 151:dev202727. [PMID: 39101673 PMCID: PMC11441982 DOI: 10.1242/dev.202727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 07/16/2024] [Indexed: 08/06/2024]
Abstract
The dorsal aorta (DA) is the first major blood vessel to develop in the embryonic cardiovascular system. Its formation is governed by a coordinated process involving the migration, specification, and arrangement of angioblasts into arterial and venous lineages, a process conserved across species. Although vascular endothelial growth factor a (VEGF-A) is known to drive DA specification and formation, the kinases involved in this process remain ambiguous. Thus, we investigated the role of protein kinase B (Akt) in zebrafish by generating a quadruple mutant (aktΔ/Δ), in which expression and activity of all Akt genes - akt1, -2, -3a and -3b - are strongly decreased. Live imaging of developing aktΔ/Δ DA uncovers early arteriovenous malformations. Single-cell RNA-sequencing analysis of aktΔ/Δ endothelial cells corroborates the impairment of arterial, yet not venous, cell specification. Notably, endothelial specific expression of ligand-independent activation of Notch or constitutively active Akt1 were sufficient to re-establish normal arterial specification in aktΔ/Δ. The Akt loss-of-function mutant unveils that Akt kinase can act upstream of Notch in arterial endothelial cells, and is involved in proper embryonic artery specification. This sheds light on cardiovascular development, revealing a mechanism behind congenital malformations.
Collapse
Affiliation(s)
- Wenping Zhou
- Vascular Biology & Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06511, USA
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Joey J Ghersi
- Vascular Biology & Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA
- Yale Cardiovascular Research Center, Department of Internal Medicine, Section of Cardiology, Yale University School of Medicine, New Haven, CT 06511, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
- Pathologies Foetomaternelles et Néonatales, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC H3T 1C5, Canada
- Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Emma Ristori
- Vascular Biology & Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA
- Yale Cardiovascular Research Center, Department of Internal Medicine, Section of Cardiology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Nicole Semanchik
- Vascular Biology & Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA
- Yale Cardiovascular Research Center, Department of Internal Medicine, Section of Cardiology, Yale University School of Medicine, New Haven, CT 06511, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Andrew Prendergast
- Department of Comparative Medicine, Yale zebrafish Research Core, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Rong Zhang
- Vascular Biology & Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Paola Carneiro
- Vascular Biology & Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA
- Yale Cardiovascular Research Center, Department of Internal Medicine, Section of Cardiology, Yale University School of Medicine, New Haven, CT 06511, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Gabriel Baldissera
- Yale Cardiovascular Research Center, Department of Internal Medicine, Section of Cardiology, Yale University School of Medicine, New Haven, CT 06511, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - William C Sessa
- Vascular Biology & Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Stefania Nicoli
- Vascular Biology & Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06510, USA
- Yale Cardiovascular Research Center, Department of Internal Medicine, Section of Cardiology, Yale University School of Medicine, New Haven, CT 06511, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
23
|
Yang D, Jian Z, Tang C, Chen Z, Zhou Z, Zheng L, Peng X. Zebrafish Congenital Heart Disease Models: Opportunities and Challenges. Int J Mol Sci 2024; 25:5943. [PMID: 38892128 PMCID: PMC11172925 DOI: 10.3390/ijms25115943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/18/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Congenital heart defects (CHDs) are common human birth defects. Genetic mutations potentially cause the exhibition of various pathological phenotypes associated with CHDs, occurring alone or as part of certain syndromes. Zebrafish, a model organism with a strong molecular conservation similar to humans, is commonly used in studies on cardiovascular diseases owing to its advantageous features, such as a similarity to human electrophysiology, transparent embryos and larvae for observation, and suitability for forward and reverse genetics technology, to create various economical and easily controlled zebrafish CHD models. In this review, we outline the pros and cons of zebrafish CHD models created by genetic mutations associated with single defects and syndromes and the underlying pathogenic mechanism of CHDs discovered in these models. The challenges of zebrafish CHD models generated through gene editing are also discussed, since the cardiac phenotypes resulting from a single-candidate pathological gene mutation in zebrafish might not mirror the corresponding human phenotypes. The comprehensive review of these zebrafish CHD models will facilitate the understanding of the pathogenic mechanisms of CHDs and offer new opportunities for their treatments and intervention strategies.
Collapse
|
24
|
Ramli AH, Swain P, Mohd Fahmi MSA, Abas F, Leong SW, Tejo BA, Shaari K, Ali AH, Agustar HK, Awang R, Ng YL, Lau YL, Md Razali MA, Mastuki SN, Mohmad Misnan N, Mohd Faudzi SM, Kim CH. Preliminary insight on diarylpentanoids as potential antimalarials: In silico, in vitro pLDH and in vivo zebrafish toxicity assessment. Heliyon 2024; 10:e27462. [PMID: 38495201 PMCID: PMC10943399 DOI: 10.1016/j.heliyon.2024.e27462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/19/2024] Open
Abstract
Malaria remains a major public health problem worldwide, including in Southeast Asia. Chemotherapeutic agents such as chloroquine (CQ) are effective, but problems with drug resistance and toxicity have necessitated a continuous search for new effective antimalarial agents. Here we report on a virtual screening of ∼300 diarylpentanoids and derivatives, in search of potential Plasmodium falciparum lactate dehydrogenase (PfLDH) inhibitors with acceptable drug-like properties. Several molecules with binding affinities comparable to CQ were chosen for in vitro validation of antimalarial efficacy. Among them, MS33A, MS33C and MS34C are the most promising against CQ-sensitive (3D7) with EC50 values of 1.6, 2.5 and 3.1 μM, respectively. Meanwhile, MS87 (EC50 of 1.85 μM) shown the most active against the CQ-resistant Gombak A strain, and MS33A and MS33C the most effective P. knowlesi inhibitors (EC50 of 3.6 and 5.1 μM, respectively). The in vitro cytotoxicity of selected diarylpentanoids (MS33A, MS33C, MS34C and MS87) was tested on Vero mammalian cells to evaluate parasite selectivity (SI), showing moderate to low cytotoxicity (CC50 > 82 μM). In addition, MS87 exhibited a high SI and the lowest resistance index (RI), suggesting that MS87 may exert effective parasite inhibition with low resistance potential in the CQ-resistant P. falciparum strain. Furthermore, the in vivo toxicity of the molecules on early embryonic development, the cardiovascular system, heart rate, motor activity and apoptosis were assessed in a zebrafish animal model. The overall results indicate the preliminary potential of diarylpentanoids, which need further investigation for their development as new antimalarial agents.
Collapse
Affiliation(s)
- Amirah Hani Ramli
- Natural Medicines and Product Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia
| | - Puspanjali Swain
- Department of Biology, Chungnam National University, Daejeon, 34134, South Korea
| | - Muhammad Syafiq Akmal Mohd Fahmi
- Natural Medicines and Product Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia
| | - Faridah Abas
- Natural Medicines and Product Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia
- Department of Food Science, Faculty of Food Science & Technology, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Sze Wei Leong
- Department of Chemistry, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Bimo Ario Tejo
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Khozirah Shaari
- Natural Medicines and Product Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia
| | - Amatul Hamizah Ali
- Department of Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, 43600, Selangor, Malaysia
| | - Hani Kartini Agustar
- Department of Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, 43600, Selangor, Malaysia
| | - Rusdam Awang
- UPM - MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Yee Ling Ng
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Yee Ling Lau
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | | | - Siti Nurulhuda Mastuki
- Natural Medicines and Product Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia
- Department of Biological Sciences and Biotechnology, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, Bangi, 43600, Selangor, Malaysia
| | - Norazlan Mohmad Misnan
- Herbal Medicine Research Centre, Institute for Medical Research, National Institutes of Health, 40170, Shah Alam, Selangor Darul Ehsan, Malaysia
| | - Siti Munirah Mohd Faudzi
- Natural Medicines and Product Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Cheol-Hee Kim
- Department of Biology, Chungnam National University, Daejeon, 34134, South Korea
| |
Collapse
|
25
|
Nöth J, Busch W, Tal T, Lai C, Ambekar A, Kießling TR, Scholz S. Analysis of vascular disruption in zebrafish embryos as an endpoint to predict developmental toxicity. Arch Toxicol 2024; 98:537-549. [PMID: 38129683 PMCID: PMC10794345 DOI: 10.1007/s00204-023-03633-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 11/07/2023] [Indexed: 12/23/2023]
Abstract
Inhibition of angiogenesis is an important mode of action for the teratogenic effect of chemicals and drugs. There is a gap in the availability of simple, experimental screening models for the detection of angiogenesis inhibition. The zebrafish embryo represents an alternative test system which offers the complexity of developmental differentiation of an entire organism while allowing for small-scale and high-throughput screening. Here we present a novel automated imaging-based method to detect the inhibition of angiogenesis in early life stage zebrafish. Video subtraction was used to identify the location and number of functional intersegmental vessels according to the detection of moving blood cells. By exposing embryos to multiple tyrosine kinase inhibitors including SU4312, SU5416, Sorafenib, or PTK787, we confirmed that this method can detect concentration-dependent inhibition of angiogenesis. Parallel assessment of arterial and venal aorta ruled out a potential bias by impaired heart or blood cell development. In contrast, the histone deacetylase inhibitor valproic acid did not affect ISV formation supporting the specificity of the angiogenic effects. The new test method showed higher sensitivity, i.e. lower effect concentrations, relative to a fluorescent reporter gene strain (Tg(KDR:EGFP)) exposed to the same tyrosine kinase inhibitors indicating that functional effects due to altered tubulogenesis or blood transport can be detected before structural changes of the endothelium are visible by fluorescence imaging. Comparison of exposure windows indicated higher specificity for angiogenesis when exposure started at later embryonic stages (24 h post-fertilization). One of the test compounds was showing particularly high specificity for angiogenesis effects (SU4312) and was, therefore, suggested as a model compound for the identification of molecular markers of angiogenic disruption. Our findings establish video imaging in wild-type strains as viable, non-invasive, high-throughput method for the detection of chemical-induced angiogenic disruption in zebrafish embryos.
Collapse
Affiliation(s)
- Julia Nöth
- Department of Bioanalytical Ecotoxicology, Helmholtz Centre for Environmental Research-UFZ, Permoserstraβe 15, 04318, Leipzig, Germany.
| | - Wibke Busch
- Department of Bioanalytical Ecotoxicology, Helmholtz Centre for Environmental Research-UFZ, Permoserstraβe 15, 04318, Leipzig, Germany
| | - Tamara Tal
- Department of Bioanalytical Ecotoxicology, Helmholtz Centre for Environmental Research-UFZ, Permoserstraβe 15, 04318, Leipzig, Germany
| | - Chih Lai
- University of St. Thomas, St. Paul, MN, USA
| | - Akhil Ambekar
- University of St. Thomas, St. Paul, MN, USA
- Duke University, A.I. Health Fellow-Associate in Research, Durham, NC, USA
| | | | - Stefan Scholz
- Department of Bioanalytical Ecotoxicology, Helmholtz Centre for Environmental Research-UFZ, Permoserstraβe 15, 04318, Leipzig, Germany
| |
Collapse
|
26
|
Saleh Alanazi SH, Farooq Khan M, Alazami AM, Baabbad A, Ahmed Wadaan M. Calotropis procera: A double edged sword against glioblastoma, inhibiting glioblastoma cell line growth by targeting histone deacetylases (HDAC) and angiogenesis. Heliyon 2024; 10:e24406. [PMID: 38304784 PMCID: PMC10831610 DOI: 10.1016/j.heliyon.2024.e24406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/16/2023] [Accepted: 01/08/2024] [Indexed: 02/03/2024] Open
Abstract
Despite substantial investments in anti-glioblastoma (GBM) drug discovery over the last decade, progress is limited to preclinical stages, with clinical studies frequently encountering obstacles. Angiogenic and histone deacetylase inhibitors (HDACi) have shown profound results in pre-clinical studies. Investigating a multicomponent anti-cancer remedy that disrupts the tumor angiogenic blood vessels and simultaneously disrupts HDACs, while inducing minimal side effects, is critically needed. The crude extracts derived from medicinal plants serve as a renewable reservoir of anti-tumor drugs, exhibiting reduced toxicity compared to chemically synthesized formulations. Calotropis procera is a traditional medicinal plant, and its anticancer potential against many cancer cell lines has been reported, however its antiangiogenic and HDAC inhibitory action is largely unknown. The anticancer activity of methanol leaf extract of C. procera was tested in three types of human glioblastoma cell lines. Wild-type and transgenic zebrafish embryos were used to evaluate developmental toxicity and angiogenic activity. A human angiogenic antibody array was used to profile angiogenic proteins in the U251 GM cell line. A real-time reverse transcriptase polymerase chain reaction (RT PCR) assay was used to detect the differential expression of eleven HDAC genes in U251 cells treated with C. procera extract. The extract significantly reduced the proliferation of all three types of GBM cell lines and the cytotoxicity was found to be more pronounced in U251 GM cells, with an IC50 value of 2.63 ± 0.23 μg/ml, possibly by arresting the cell cycle at the G2/M transition. The extract did not exhibit toxic effects in zebrafish embryos, even at concentrations as high as 1000 μg/ml. The extract also inhibited angiogenic blood vessel formation in the transgenic zebrafish model in a dose-dependent manner. The results from the angiogenic antibody array have suggested novel angiogenesis targets that can be utilized to treat GBM. Real-time RT PCR analysis has shown that C. procrea extract caused an upregulation of HDAC5, 7, and 10, while the mRNA of HDAC1, 2, 3 and 8 (Class I HDACs), and HDAC4, 6, and 9 (Class II) were downregulated in U251 GM cells. The cytotoxicity of the C. procera extract on GBM cell lines could be due to its dual action by regulation of both tumor angiogenesis and histone deacetylases enzymes. Through this study, the C. procera leaf extract has been suggested as an effective remedy to treat GBM with minimal toxicity. In addition, various novel angiogenic and HDAC targets has been identified which could be helpful in designing better therapeutic strategies to manage glioblastoma multiforme in human patients.
Collapse
Affiliation(s)
- Shamsa Hilal Saleh Alanazi
- Bioproducts Research Chair, Department of Zoology, College of Science, King Saud University, P.O Box 2455 Riyadh 11451, Kingdom of Saudi Arabia
| | - Muhammad Farooq Khan
- Bioproducts Research Chair, Department of Zoology, College of Science, King Saud University, P.O Box 2455 Riyadh 11451, Kingdom of Saudi Arabia
| | - Anas M. Alazami
- Translational Genomics Department, Centre for Genomic Medicine, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Almohannad Baabbad
- Bioproducts Research Chair, Department of Zoology, College of Science, King Saud University, P.O Box 2455 Riyadh 11451, Kingdom of Saudi Arabia
| | - Mohammad Ahmed Wadaan
- Bioproducts Research Chair, Department of Zoology, College of Science, King Saud University, P.O Box 2455 Riyadh 11451, Kingdom of Saudi Arabia
| |
Collapse
|
27
|
Chatterjee B, Fatima F, Seth S, Sinha Roy S. Moderate Elevation of Homocysteine Induces Endothelial Dysfunction through Adaptive UPR Activation and Metabolic Rewiring. Cells 2024; 13:214. [PMID: 38334606 PMCID: PMC10854856 DOI: 10.3390/cells13030214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 11/25/2023] [Indexed: 02/10/2024] Open
Abstract
Elevation of the intermediate amino acid metabolite Homocysteine (Hcy) causes Hyperhomocysteinemia (HHcy), a metabolic disorder frequently associated with mutations in the methionine-cysteine metabolic cycle as well as with nutritional deficiency and aging. The previous literature suggests that HHcy is a strong risk factor for cardiovascular diseases. Severe HHcy is well-established to correlate with vascular pathologies primarily via endothelial cell death. Though moderate HHcy is more prevalent and associated with an increased risk of cardiovascular abnormalities in later part of life, its precise role in endothelial physiology is largely unknown. In this study, we report that moderate elevation of Hcy causes endothelial dysfunction through impairment of their migration and proliferation. We established that unlike severe elevation of Hcy, moderate HHcy is not associated with suppression of endothelial VEGF/VEGFR transcripts and ROS induction. We further showed that moderate HHcy induces a sub-lethal ER stress that causes defective endothelial migration through abnormal actin cytoskeletal remodeling. We also found that sub-lethal increase in Hcy causes endothelial proliferation defect by suppressing mitochondrial respiration and concomitantly increases glycolysis to compensate the consequential ATP loss and maintain overall energy homeostasis. Finally, analyzing a previously published microarray dataset, we confirmed that these hallmarks of moderate HHcy are conserved in adult endothelial cells as well. Thus, we identified adaptive UPR and metabolic rewiring as two key mechanistic signatures in moderate HHcy-associated endothelial dysfunction. As HHcy is clinically associated with enhanced vascular inflammation and hypercoagulability, identifying these mechanistic pathways may serve as future targets to regulate endothelial function and health.
Collapse
Affiliation(s)
- Barun Chatterjee
- CSIR-Institute of Genomics & Integrative Biology, New Delhi 110025, India; (B.C.); (F.F.); (S.S.)
- Academy of Scientific & Innovative Research, Ghaziabad 201002, India
| | - Fabeha Fatima
- CSIR-Institute of Genomics & Integrative Biology, New Delhi 110025, India; (B.C.); (F.F.); (S.S.)
| | - Surabhi Seth
- CSIR-Institute of Genomics & Integrative Biology, New Delhi 110025, India; (B.C.); (F.F.); (S.S.)
- Academy of Scientific & Innovative Research, Ghaziabad 201002, India
| | - Soumya Sinha Roy
- CSIR-Institute of Genomics & Integrative Biology, New Delhi 110025, India; (B.C.); (F.F.); (S.S.)
- Academy of Scientific & Innovative Research, Ghaziabad 201002, India
| |
Collapse
|
28
|
Vinoth S, Balasubramanian S, Perumal E, Santhakumar K. Angiogenesis Assay for Live and Fixed Zebrafish Embryos/Larvae. Methods Mol Biol 2024; 2753:377-384. [PMID: 38285352 DOI: 10.1007/978-1-0716-3625-1_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Angiogenesis is the process of new blood vessel formation from preexisting vasculature. It is an integral component in normal embryonic development and tissue repair. Dysregulation of angiogenesis might lead to tissue ischemia (resulting from reduced blood vessel formation) or major diseases such as cancer (abnormal vascular growth). This makes angiogenesis an excellent area of research for cancer therapeutics, and various animal models including zebrafish are used to study blood vessel development. As most of the techniques used to study angiogenesis are complex and cumbersome, in this chapter, we provide two simple assays to study angiogenesis with live and fixed zebrafish embryos/larvae.
Collapse
Affiliation(s)
- S Vinoth
- Zebrafish Genetics Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamil Nadu, India
| | - Satheeswaran Balasubramanian
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Ekambaram Perumal
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, India.
| | - Kirankumar Santhakumar
- Zebrafish Genetics Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamil Nadu, India.
| |
Collapse
|
29
|
McGarry SD, Adjekukor C, Ahuja S, Greysson-Wong J, Vien I, Rinker KD, Childs SJ. Vessel Metrics: A software tool for automated analysis of vascular structure in confocal imaging. Microvasc Res 2024; 151:104610. [PMID: 37739214 DOI: 10.1016/j.mvr.2023.104610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/31/2023] [Accepted: 09/09/2023] [Indexed: 09/24/2023]
Abstract
Images contain a wealth of information that is often under analyzed in biological studies. Developmental models of vascular disease are a powerful way to quantify developmentally regulated vessel phenotypes to identify the roots of the disease process. We present vessel Metrics, a software tool specifically designed to analyze developmental vascular microscopy images that will expedite the analysis of vascular images and provide consistency between research groups. We developed a segmentation algorithm that robustly quantifies different image types, developmental stages, organisms, and disease models at a similar accuracy level to a human observer. We validate the algorithm on confocal, lightsheet, and two photon microscopy data in a zebrafish model expressing fluorescent protein in the endothelial nuclei. The tool accurately segments data taken by multiple scientists on varying microscopes. We validate vascular parameters such as vessel density, network length, and diameter, across developmental stages, genetic mutations, and drug treatments, and show a favorable comparison to other freely available software tools. Additionally, we validate the tool in a mouse model. Vessel Metrics reduces the time to analyze experimental results, improves repeatability within and between institutions, and expands the percentage of a given vascular network analyzable in experiments.
Collapse
Affiliation(s)
- Sean D McGarry
- Alberta Children's Hospital Research Institute, University of Calgary, T2N 4N1, Canada; Libin Institute, University of Calgary, T2N 4N1, Canada; Department of Biochemistry and Molecular Biology, University of Calgary, T2N 4N1, Canada
| | - Cynthia Adjekukor
- Alberta Children's Hospital Research Institute, University of Calgary, T2N 4N1, Canada; Libin Institute, University of Calgary, T2N 4N1, Canada; Department of Biochemistry and Molecular Biology, University of Calgary, T2N 4N1, Canada
| | - Suchit Ahuja
- Alberta Children's Hospital Research Institute, University of Calgary, T2N 4N1, Canada; Libin Institute, University of Calgary, T2N 4N1, Canada; Department of Biochemistry and Molecular Biology, University of Calgary, T2N 4N1, Canada
| | - Jasper Greysson-Wong
- Alberta Children's Hospital Research Institute, University of Calgary, T2N 4N1, Canada; Libin Institute, University of Calgary, T2N 4N1, Canada; Department of Biochemistry and Molecular Biology, University of Calgary, T2N 4N1, Canada
| | - Idy Vien
- Alberta Children's Hospital Research Institute, University of Calgary, T2N 4N1, Canada; Libin Institute, University of Calgary, T2N 4N1, Canada; Department of Biochemistry and Molecular Biology, University of Calgary, T2N 4N1, Canada
| | - Kristina D Rinker
- Centre for Bioengineering Research and Education, Schulich School of Engineering, University of Calgary, Calgary, AB, Canada; Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB, Canada
| | - Sarah J Childs
- Alberta Children's Hospital Research Institute, University of Calgary, T2N 4N1, Canada; Libin Institute, University of Calgary, T2N 4N1, Canada; Department of Biochemistry and Molecular Biology, University of Calgary, T2N 4N1, Canada.
| |
Collapse
|
30
|
Tazin N, Stevenson TJ, Bonkowsky JL, Gale BK. Using Electroporation to Improve and Accelerate Zebrafish Embryo Toxicity Testing. MICROMACHINES 2023; 15:49. [PMID: 38258168 PMCID: PMC10819337 DOI: 10.3390/mi15010049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/17/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024]
Abstract
Zebrafish have emerged as a useful model for biomedical research and have been used in environmental toxicology studies. However, the presence of the chorion during the embryo stage limits cellular exposure to toxic elements and creates the possibility of a false-negative or reduced sensitivity in fish embryo toxicity testing (FET). This paper presents the use of electroporation as a technique to improve the delivery of toxic elements inside the chorion, increasing the exposure level of the toxins at an early embryo stage (<3 h post-fertilization). A custom-made electroporation device with the required electrical circuitry has been developed to position embryos between electrodes that provide electrical pulses to expedite the entry of molecules inside the chorion. The optimized parameters facilitate material entering into the chorion without affecting the survival rate of the embryos. The effectiveness of the electroporation system is demonstrated using Trypan blue dye and gold nanoparticles (AuNPs, 20-40 nm). Our results demonstrate the feasibility of controlling the concentration of dye and nanoparticles delivered inside the chorion by optimizing the electrical parameters, including pulse width, pulse number, and amplitude. Next, we tested silver nanoparticles (AgNPs, 10 nm), a commonly used toxin that can lower mortality, affect heart rate, and cause phenotypic defects. We found that electroporation of AgNPs reduces the exposure time required for toxicity testing from 4 days to hours. Electroporation for FET can provide rapid entry of potential toxins into zebrafish embryos, reducing the time required for toxicity testing and drug delivery experiments.
Collapse
Affiliation(s)
- Nusrat Tazin
- Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Tamara J. Stevenson
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Joshua L. Bonkowsky
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Bruce K. Gale
- Department of Mechanical Engineering, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
31
|
Valamparamban GF, Spéder P. Homemade: building the structure of the neurogenic niche. Front Cell Dev Biol 2023; 11:1275963. [PMID: 38107074 PMCID: PMC10722289 DOI: 10.3389/fcell.2023.1275963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/16/2023] [Indexed: 12/19/2023] Open
Abstract
Neural stem/progenitor cells live in an intricate cellular environment, the neurogenic niche, which supports their function and enables neurogenesis. The niche is made of a diversity of cell types, including neurons, glia and the vasculature, which are able to signal to and are structurally organised around neural stem/progenitor cells. While the focus has been on how individual cell types signal to and influence the behaviour of neural stem/progenitor cells, very little is actually known on how the niche is assembled during development from multiple cellular origins, and on the role of the resulting topology on these cells. This review proposes to draw a state-of-the art picture of this emerging field of research, with the aim to expose our knowledge on niche architecture and formation from different animal models (mouse, zebrafish and fruit fly). We will span its multiple aspects, from the existence and importance of local, adhesive interactions to the potential emergence of larger-scale topological properties through the careful assembly of diverse cellular and acellular components.
Collapse
Affiliation(s)
| | - Pauline Spéder
- Institut Pasteur, Université Paris Cité, CNRS UMR3738, Structure and Signals in the Neurogenic Niche, Paris, France
| |
Collapse
|
32
|
Ernst A, Piragyte I, Mp AM, Le ND, Grandgirard D, Leib SL, Oates A, Mercader N. Identification of side effects of COVID-19 drug candidates on embryogenesis using an integrated zebrafish screening platform. Sci Rep 2023; 13:17037. [PMID: 37813860 PMCID: PMC10562458 DOI: 10.1038/s41598-023-43911-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/29/2023] [Indexed: 10/11/2023] Open
Abstract
Drug repurposing is an important strategy in COVID-19 treatment, but many clinically approved compounds have not been extensively studied in the context of embryogenesis, thus limiting their administration during pregnancy. Here we used the zebrafish embryo model organism to test the effects of 162 marketed drugs on cardiovascular development. Among the compounds used in the clinic for COVD-19 treatment, we found that Remdesivir led to reduced body size and heart functionality at clinically relevant doses. Ritonavir and Baricitinib showed reduced heart functionality and Molnupiravir and Baricitinib showed effects on embryo activity. Sabizabulin was highly toxic at concentrations only 5 times higher than Cmax and led to a mean mortality of 20% at Cmax. Furthermore, we tested if zebrafish could be used as a model to study inflammatory response in response to spike protein treatment and found that Remdesivir, Ritonavir, Molnupiravir, Baricitinib as well as Sabizabulin counteracted the inflammatory response related gene expression upon SARS-CoV-2 spike protein treatment. Our results show that the zebrafish allows to study immune-modulating properties of COVID-19 compounds and highlights the need to rule out secondary defects of compound treatment on embryogenesis. All results are available on a user friendly web-interface https://share.streamlit.io/alernst/covasc_dataapp/main/CoVasc_DataApp.py that provides a comprehensive overview of all observed phenotypic effects and allows personalized search on specific compounds or group of compounds. Furthermore, the presented platform can be expanded for rapid detection of developmental side effects of new compounds for treatment of COVID-19 and further viral infectious diseases.
Collapse
Affiliation(s)
| | - Indre Piragyte
- Institute of Anatomy, University of Bern, Bern, Switzerland
- Department for Biomedical Research DBMR, University of Bern, Bern, Switzerland
| | - Ayisha Marwa Mp
- Institute of Anatomy, University of Bern, Bern, Switzerland
- Department for Biomedical Research DBMR, University of Bern, Bern, Switzerland
| | - Ngoc Dung Le
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Denis Grandgirard
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Stephen L Leib
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Andrew Oates
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Nadia Mercader
- Institute of Anatomy, University of Bern, Bern, Switzerland.
- Department for Biomedical Research DBMR, University of Bern, Bern, Switzerland.
- Centro Nacional de Investigaciones Cardiovasculares, CNIC, Madrid, Spain.
| |
Collapse
|
33
|
Song N, Tang Y, Wang Y, Guan X, Yu W, Jiang T, Lu L, Gu Y. A SIRT6 Inhibitor, Marine-Derived Pyrrole-Pyridinimidazole Derivative 8a, Suppresses Angiogenesis. Mar Drugs 2023; 21:517. [PMID: 37888452 PMCID: PMC10608785 DOI: 10.3390/md21100517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023] Open
Abstract
Angiogenesis refers to the process of growing new blood vessels from pre-existing capillaries or post-capillary veins. This process plays a critical role in promoting tumorigenesis and metastasis. As a result, developing antiangiogenic agents has become an attractive strategy for tumor treatment. Sirtuin6 (SIRT6), a member of nicotinamide adenine (NAD+)-dependent histone deacetylases, regulates various biological processes, including metabolism, oxidative stress, angiogenesis, and DNA damage and repair. Some SIRT6 inhibitors have been identified, but the effects of SIRT6 inhibitors on anti-angiogenesis have not been reported. We have identified a pyrrole-pyridinimidazole derivative 8a as a highly effective inhibitor of SIRT6 and clarified its anti-pancreatic-cancer roles. This study investigated the antiangiogenic roles of 8a. We found that 8a was able to inhibit the migration and tube formation of HUVECs and downregulate the expression of angiogenesis-related proteins, including VEGF, HIF-1α, p-VEGFR2, and N-cadherin, and suppress the activation of AKT and ERK pathways. Additionally, 8a significantly blocked angiogenesis in intersegmental vessels in zebrafish embryos. Notably, in a pancreatic cancer xenograft mouse model, 8a down-regulated the expression of CD31, a marker protein of angiogenesis. These findings suggest that 8a could be a promising antiangiogenic and cancer therapeutic agent.
Collapse
Affiliation(s)
- Nannan Song
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China (T.J.)
| | - Yanfei Tang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China (T.J.)
| | - Yangui Wang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China (T.J.)
| | - Xian Guan
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China (T.J.)
| | - Wengong Yu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China (T.J.)
- Laboratory for Marine Drugs and Bioproducts of Laoshan Laboratory, Qingdao 266237, China
| | - Tao Jiang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China (T.J.)
- Laboratory for Marine Drugs and Bioproducts of Laoshan Laboratory, Qingdao 266237, China
| | - Ling Lu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China (T.J.)
- Laboratory for Marine Drugs and Bioproducts of Laoshan Laboratory, Qingdao 266237, China
| | - Yuchao Gu
- Laboratory for Marine Drugs and Bioproducts of Laoshan Laboratory, Qingdao 266237, China
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
34
|
Bertucci T, Kakarla S, Winkelman MA, Lane K, Stevens K, Lotz S, Grath A, James D, Temple S, Dai G. Direct differentiation of human pluripotent stem cells into vascular network along with supporting mural cells. APL Bioeng 2023; 7:036107. [PMID: 37564277 PMCID: PMC10411996 DOI: 10.1063/5.0155207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/11/2023] [Indexed: 08/12/2023] Open
Abstract
During embryonic development, endothelial cells (ECs) undergo vasculogenesis to form a primitive plexus and assemble into networks comprised of mural cell-stabilized vessels with molecularly distinct artery and vein signatures. This organized vasculature is established prior to the initiation of blood flow and depends on a sequence of complex signaling events elucidated primarily in animal models, but less studied and understood in humans. Here, we have developed a simple vascular differentiation protocol for human pluripotent stem cells that generates ECs, pericytes, and smooth muscle cells simultaneously. When this protocol is applied in a 3D hydrogel, we demonstrate that it recapitulates the dynamic processes of early human vessel formation, including acquisition of distinct arterial and venous fates, resulting in a vasculogenesis angiogenesis model plexus (VAMP). The VAMP captures the major stages of vasculogenesis, angiogenesis, and vascular network formation and is a simple, rapid, scalable model system for studying early human vascular development in vitro.
Collapse
Affiliation(s)
| | - Shravani Kakarla
- Northeastern University, Department of Bioengineering, Boston, Massachusetts 02115, USA
| | - Max A. Winkelman
- Northeastern University, Department of Bioengineering, Boston, Massachusetts 02115, USA
| | - Keith Lane
- Neural Stem Cell Institute, Rensselaer, New York 12144, USA
| | | | - Steven Lotz
- Neural Stem Cell Institute, Rensselaer, New York 12144, USA
| | - Alexander Grath
- Northeastern University, Department of Bioengineering, Boston, Massachusetts 02115, USA
| | - Daylon James
- Weill Cornell Medicine, New York, New York 10065, USA
| | - Sally Temple
- Neural Stem Cell Institute, Rensselaer, New York 12144, USA
| | - Guohao Dai
- Northeastern University, Department of Bioengineering, Boston, Massachusetts 02115, USA
| |
Collapse
|
35
|
Samad T, Wu SM. The sum of the parts is greater than the whole: current research models for congenital heart disease. NATURE CARDIOVASCULAR RESEARCH 2023; 2:708-710. [PMID: 39195960 DOI: 10.1038/s44161-023-00308-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Affiliation(s)
- Tahmina Samad
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- Division of Cardiology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Sean M Wu
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Pediatrics, Stanford University, Stanford, CA, USA.
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
36
|
Wang YS, Chen YT, Wu CY. Functional characterization of stap2b in zebrafish vascular development. FASEB J 2023; 37:e23053. [PMID: 37342918 DOI: 10.1096/fj.202201314rrr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 05/26/2023] [Accepted: 06/09/2023] [Indexed: 06/23/2023]
Abstract
The genetic control and signaling pathways of vascular development are not comprehensively understood. Transcription factors Islet2 (Isl2) and nr2f1b are critical for vascular growth in zebrafish, and further transcriptome analysis has revealed potential targets regulated by isl2/nr2f1b. In this study, we focused on the potential activation gene signal-transducing adaptor protein 2b (stap2b) and revealed a novel role of stap2b in vascular development. stap2b mRNA was expressed in developing vessels, suggesting stap2b plays a role in vascularization. Knocking down stap2b expression by morpholino injection or Crispr-Cas9-generated stap2b mutants caused vascular defects, suggesting a role played by stap2b in controlling the patterning of intersegmental vessels (ISVs) and the caudal vein plexus (CVP). The vessel abnormalities associated with stap2b deficiency were found to be due to dysregulated cell migration and proliferation. The decreased expression of vascular-specific markers in stap2b morphants was consistent with the vascular defects observed. In contrast, overexpression of stap2b enhanced the growth of ISVs and reversed the vessel defects in stap2b morphants. These data suggest that stap2b is necessary and sufficient to promote vascular development. Finally, we examined the interaction between stap2b and multiple signaling. We showed that stap2b regulated ISV growth through the JAK-STAT pathway. Moreover, we found that stap2b was regulated by Notch signaling to control ISV growth, and stap2b interacted with bone morphogenetic protein signaling to contribute to CVP formation. Altogether, we demonstrated that stap2b acts downstream of the isl2/nr2f1b pathway to play a pivotal role in vascular development via interaction with multiple signaling pathways.
Collapse
Affiliation(s)
- Yi-Shan Wang
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University, Kaohsiung, Taiwan
- Doctoral Degree Program in Marine Biotechnology, Academia Sinica, Taipei, Taiwan
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Yi-Ting Chen
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Chang-Yi Wu
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University, Kaohsiung, Taiwan
- Doctoral Degree Program in Marine Biotechnology, Academia Sinica, Taipei, Taiwan
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
37
|
Kam CY, Singh ID, Gonzalez DG, Matte-Martone C, Solá P, Solanas G, Bonjoch J, Marsh E, Hirschi KK, Greco V. Mechanisms of skin vascular maturation and maintenance captured by longitudinal imaging of live mice. Cell 2023; 186:2345-2360.e16. [PMID: 37167971 PMCID: PMC10225355 DOI: 10.1016/j.cell.2023.04.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/03/2023] [Accepted: 04/11/2023] [Indexed: 05/13/2023]
Abstract
A functional network of blood vessels is essential for organ growth and homeostasis, yet how the vasculature matures and maintains homeostasis remains elusive in live mice. By longitudinally tracking the same neonatal endothelial cells (ECs) over days to weeks, we found that capillary plexus expansion is driven by vessel regression to optimize network perfusion. Neonatal ECs rearrange positions to evenly distribute throughout the developing plexus and become positionally stable in adulthood. Upon local ablation, adult ECs survive through a plasmalemmal self-repair response, while neonatal ECs are predisposed to die. Furthermore, adult ECs reactivate migration to assist vessel repair. Global ablation reveals coordinated maintenance of the adult vascular architecture that allows for eventual network recovery. Lastly, neonatal remodeling and adult maintenance of the skin vascular plexus are orchestrated by temporally restricted, neonatal VEGFR2 signaling. Our work sheds light on fundamental mechanisms that underlie both vascular maturation and adult homeostasis in vivo.
Collapse
Affiliation(s)
- Chen Yuan Kam
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Ishani D Singh
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - David G Gonzalez
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | | | - Paloma Solá
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Guiomar Solanas
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Júlia Bonjoch
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Edward Marsh
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Karen K Hirschi
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.
| | - Valentina Greco
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA; Departments of Cell Biology and Dermatology, Yale Stem Cell Center, Yale Cancer Center, Yale School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
38
|
Park H, Song G, Hong T, An G, Park S, Lim W. Exposure to the herbicide fluridone induces cardiovascular toxicity in early developmental stages of zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 867:161535. [PMID: 36638995 DOI: 10.1016/j.scitotenv.2023.161535] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/02/2023] [Accepted: 01/07/2023] [Indexed: 06/17/2023]
Abstract
Fluridone is a systemic herbicide used to control a range of invasive aquatic plants in irrigation systems, lake, and reservoirs. Since aquatic herbicides are more likely to have a hazardous impact on ecosystems than terrestrially applied herbicides, a risk assessment is needed to determine whether to expand or limit their use. The aim of this study was to investigate the developmental toxicity of fluridone using zebrafish. Diverse toxicological results were observed for the sub-lethal endpoints, including lack of hatching, reduced heartbeat and disturbed blood circulation through dysmorphic heart, and edema formation. Abnormal apoptosis was observed in the brain and yolk sac of fluridone-exposed larvae. A computational analysis was used to predict chemical properties in non-target organisms and revealed that fluridone was highly relevant in the cardiovascular system. Double transgenic zebrafish (fli1a:EGFP;cmlc2:dsRed) were used to evaluate the effects of fluridone on the cardiovascular system during embryonic development. Ectopic growth of sub-intestinal vessels and sprouting angiogenesis in the hindbrain region were highly inhibited. Additionally, essential genes involved in the VEGF signaling and heart development were differentially expressed in dose-dependent manner. Collectively, our toxicological findings in fluridone exposure highlight defects in the cardiovascular development causing embryonic lethality that could damage aquatic communities and natural ecosystems.
Collapse
Affiliation(s)
- Hahyun Park
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Taeyeon Hong
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Garam An
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Sunwoo Park
- Department of Plant & Biomaterials Science, Gyeongsang National University, Jinju-si, Gyeongnam 52725, Republic of Korea.
| | - Whasun Lim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
39
|
Coppola A, Lombari P, Mazzella E, Capolongo G, Simeoni M, Perna AF, Ingrosso D, Borriello M. Zebrafish as a Model of Cardiac Pathology and Toxicity: Spotlight on Uremic Toxins. Int J Mol Sci 2023; 24:ijms24065656. [PMID: 36982730 PMCID: PMC10052014 DOI: 10.3390/ijms24065656] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023] Open
Abstract
Chronic kidney disease (CKD) is an increasing health care problem. About 10% of the general population is affected by CKD, representing the sixth cause of death in the world. Cardiovascular events are the main mortality cause in CKD, with a cardiovascular risk 10 times higher in these patients than the rate observed in healthy subjects. The gradual decline of the kidney leads to the accumulation of uremic solutes with a negative effect on every organ, especially on the cardiovascular system. Mammalian models, sharing structural and functional similarities with humans, have been widely used to study cardiovascular disease mechanisms and test new therapies, but many of them are rather expensive and difficult to manipulate. Over the last few decades, zebrafish has become a powerful non-mammalian model to study alterations associated with human disease. The high conservation of gene function, low cost, small size, rapid growth, and easiness of genetic manipulation are just some of the features of this experimental model. More specifically, embryonic cardiac development and physiological responses to exposure to numerous toxin substances are similar to those observed in mammals, making zebrafish an ideal model to study cardiac development, toxicity, and cardiovascular disease.
Collapse
Affiliation(s)
- Annapaola Coppola
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Patrizia Lombari
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Elvira Mazzella
- Department of Translational Medical Science, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Giovanna Capolongo
- Department of Translational Medical Science, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Mariadelina Simeoni
- Department of Translational Medical Science, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Alessandra F. Perna
- Department of Translational Medical Science, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Diego Ingrosso
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Margherita Borriello
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
- Correspondence:
| |
Collapse
|
40
|
Deshmukh D, Hsu YF, Chiu CC, Jadhao M, Hsu SCN, Hu SY, Yang SH, Liu W. Antiangiogenic potential of Lepista nuda extract suppressing MAPK/p38 signaling-mediated developmental angiogenesis in zebrafish and HUVECs. Biomed Pharmacother 2023; 159:114219. [PMID: 36621144 DOI: 10.1016/j.biopha.2023.114219] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/09/2023] Open
Abstract
The medicinal properties of natural/edible plant products and their use are popular in traditional practice owing to their nutritional contents with little to no side effects. Lepista nuda (L. nuda), an edible mushroom (Clitocybe nuda, commonly known as blewit), has attracted researchers to evaluate its contents and the mechanism of its activities. In the current study, we focused on evaluating the antiangiogenic effects of L. nuda water extract on zebrafish development and in vitro human umbilical vein endothelial cell (HUVEC) tube formation. Bioactive components such as ergothioneine, eritadenine, and adenosine were identified and quantified by HPLC analysis. The L. nuda extract showed antiangiogenic properties and inhibited intersegmental vessel (ISV), caudal vein plexus (CVP), hyaloid vessel (HV), and subintestinal vessel (SIV) development in Tg (fli1: EGFP) zebrafish embryos. The expression of angiogenesis-related genes (vegfaa, kdrl, vegfba, flt1, kdr) was affected following L. nuda extract treatment. L. nuda extract attenuated in vitro HUVEC tube formation, migration, and invasion. Furthermore, inhibition of MAPK/p38 signaling and depletion of proangiogenic genes, including growth factors (fgf, ang2, and vegfa); primary and accessory receptors (tie2, vegfr2, and eng); MMPs (mmp1 and mmp2); and cytokines (il-1α, il-1β, il-6, and tnf-α) was observed in HUVECs following L. nuda treatment. An in vivo zebrafish xenograft assay showed that L. nuda extract inhibited HuCCT1 cell-induced SIV sprouting in HuCCT1-injected embryos. Collectively, the results suggest that L. nuda could be a potential inhibitor of angiogenesis limiting cancer progression.
Collapse
Affiliation(s)
- Dhanashri Deshmukh
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Ya Fen Hsu
- Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Chien-Chih Chiu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan; Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan; National Laboratory Animal Center, National Applied Research Laboratories, Taipei, 115, Taiwan.
| | - Mahendra Jadhao
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan; Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
| | - Sodio C N Hsu
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Shao-Yang Hu
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung 912, Taiwan.
| | - Shu-Hui Yang
- Department of Management and Utilization, Fengshan Tropical Horticultural Experimental Branch, Taiwan Agricultural Research Institute, Kaohsiung 807, Taiwan.
| | - Wangta Liu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| |
Collapse
|
41
|
Analysis of Vascular Morphogenesis in Zebrafish. Methods Mol Biol 2023; 2608:425-450. [PMID: 36653721 DOI: 10.1007/978-1-0716-2887-4_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Analysis of cardiovascular development in zebrafish embryos has become a major driver of vascular research in recent years. Imaging-based analyses have allowed the discovery or verification of morphologically distinct processes and mechanisms of, e.g., endothelial cell migration, angiogenic sprouting, tip or stalk cell behavior, and vessel anastomosis. In this chapter, we describe the techniques and tools used for confocal imaging of zebrafish endothelial development in combination with general experimental approaches for molecular dissection of involved signaling pathways.
Collapse
|
42
|
Macrophage NFATC2 mediates angiogenic signaling during mycobacterial infection. Cell Rep 2022; 41:111817. [PMID: 36516756 PMCID: PMC9880963 DOI: 10.1016/j.celrep.2022.111817] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 11/05/2022] [Accepted: 11/21/2022] [Indexed: 12/15/2022] Open
Abstract
During mycobacterial infections, pathogenic mycobacteria manipulate both host immune and stromal cells to establish and maintain a productive infection. In humans, non-human primates, and zebrafish models of infection, pathogenic mycobacteria produce and modify the specialized lipid trehalose 6,6'-dimycolate (TDM) in the bacterial cell envelope to drive host angiogenesis toward the site of forming granulomas, leading to enhanced bacterial growth. Here, we use the zebrafish-Mycobacterium marinum infection model to define the signaling basis of the host angiogenic response. Through intravital imaging and cell-restricted peptide-mediated inhibition, we identify macrophage-specific activation of NFAT signaling as essential to TDM-mediated angiogenesis in vivo. Exposure of cultured human cells to Mycobacterium tuberculosis results in robust induction of VEGFA, which is dependent on a signaling pathway downstream of host TDM detection and culminates in NFATC2 activation. As granuloma-associated angiogenesis is known to serve bacterial-beneficial roles, these findings identify potential host targets to improve tuberculosis disease outcomes.
Collapse
|
43
|
Lu J, Wang W, Zhang C, Xu W, Chen W, Tao L, Li Z, Cheng J, Zhang Y. Characterization of glyphosate-induced cardiovascular toxicity and apoptosis in zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158308. [PMID: 36030873 DOI: 10.1016/j.scitotenv.2022.158308] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/21/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Glyphosate, the most widely used herbicide, presents new hazards to human health. The developmental toxicity of glyphosate, especially its cardiovascular toxicity, needs to be closely monitored. To understand how glyphosate affects development, we performed toxicity tests on zebrafish embryos that were continuously exposed to glyphosate. The results indicated that glyphosate affected the overall development of zebrafish embryos, including mortality, hatching abnormalities, and decreased body length. At the same time, zebrafish embryos exposed to glyphosate exhibited cardiac malformations, including enlarged chambers, thinned ventricular walls, and rhythm disturbances. In addition, defective intersegmental vasculature occurred after glyphosate exposure, indicating impaired angiogenesis. Mechanistically, apoptosis clustered in the heart and vascular regions and levels of ATP and apoptosis-related genes including caspase-3, caspase-9, bax, and bcl-2 were altered. In summary, the data showed that cardiovascular toxicity caused by glyphosate exposure may be related to apoptosis. Our study provides evidence for a link between glyphosate exposure and cardiovascular developmental toxicity. This raises concerns regarding the health risks of the glyphosate.
Collapse
Affiliation(s)
- Jian Lu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Weiguo Wang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Cheng Zhang
- Department of Pathology, UT southwestern Medical Center, Dallas, TX 75390, United States
| | - Wenping Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Weidong Chen
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Liming Tao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zhong Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Jiagao Cheng
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
| | - Yang Zhang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
44
|
Wang M, Liu J, Wang H, Hu T. Spiromesifen contributes vascular developmental toxicity via disrupting endothelial cell proliferation and migration in zebrafish embryos. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 188:105242. [PMID: 36464354 DOI: 10.1016/j.pestbp.2022.105242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/03/2022] [Accepted: 09/13/2022] [Indexed: 06/17/2023]
Abstract
Spiromesifen (SPF) is a specific contact pesticide, which has been widely used to control the growth of sucking insects like mites and whiteflies on crops. Although its residues in crops and effects on organisms has been extensively reported, its impact on the vasculature is still not being reported. In the present study, using human umbilical vein endothelial cells (HUVECs) and zebrafish embryos, we investigated the effects of SPF on blood vessel development and its mechanism of action. SPF exposure triggered abnormal blood vessel development, including vascular deletions and malformations, inhibition of CCV remodeling, and decrease of SIV areas. SPF exposure also obstructed the migration of endothelial cell from caudal hematopoietic tissue in zebrafish embryos. SPF damaged cytoskeleton, caused cell cycle arrest, inhibited the viability and migration of HUVECs. In addition, SPF also inhibited the expression of the VEGF/VEGFR pathway-related genes (hif1a, vegfa, flt1, and kdrl), cell cycle-related genes (ccnd1, ccne1, cdk2, and pcna), and Rho/ROCK pathway-related genes (itgb1, rho, rock, mlc-1, and vim-1). Taken together, SPF may inhibit the proliferation and migration of vascular endothelial cells through disturbing cytoskeleton via the Rho/ ROCK pathway, resulting in vascular malformation. Our study contributes to potential insight into the mechanism of SPF toxicity in angiocardiopathy.
Collapse
Affiliation(s)
- Mingxing Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Juan Liu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Huiyun Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Tingzhang Hu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China.
| |
Collapse
|
45
|
Gawrońska-Grzywacz M, Piątkowska-Chmiel I, Popiołek Ł, Herbet M, Dudka J. The N-Substituted-4-Methylbenzenesulphonyl Hydrazone Inhibits Angiogenesis in Zebrafish Tg(fli1: EGFP) Model. Pharmaceuticals (Basel) 2022; 15:ph15111308. [PMID: 36355480 PMCID: PMC9699420 DOI: 10.3390/ph15111308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/15/2022] [Accepted: 10/18/2022] [Indexed: 11/05/2022] Open
Abstract
One of the most important therapies of malignant neoplasms, which are the second cause of death worldwide, is focused on the inhibition of pathological angiogenesis within the tumor. Therefore, the searching for the efficacious and relatively inexpensive small-molecule inhibitors of this process is essential. In this research, the anti-angiogenic potential of N-substituted-4-methylbenzenesulphonyl hydrazone, possessing antiproliferative activity against cancer cells, was tested. For this purpose, an intersegmental vessel (ISV) angiogenesis assay was performed using 6 hpf (hours post fertilization), 12 hpf and 24 hpf embryos of zebrafish transgenic strain, Tg(fli1: EGFP). They were incubated with different concentrations of tested molecule and after 24 h the development of intersegmental vessels of the trunk was analysed. In turn, the acute toxicity study in the zebrafish model was mainly conducted on strain AB, using the OECD-approved and recommended fish embryo acute toxicity test (FET) procedure. The results showed the moderate toxicity of N-[(3-chloro-4-methoxyphenyl)methylidene]-4-methylbenzenesulphonohydrazide in above-mentioned model with the LC50 value calculated at 23.04 mg/L. Moreover, newly synthesized molecule demonstrated the anti-angiogenic potential proved in Tg(fli1: EGFP) zebrafish model, which may be promising for the therapy of neoplastic tumors as well as other diseases related to pathological angiogenesis, such as age-related macular degeneration and diabetic retinopathy.
Collapse
Affiliation(s)
- Monika Gawrońska-Grzywacz
- Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, 8B Jaczewskiego Street, 20-090 Lublin, Poland
- Correspondence:
| | - Iwona Piątkowska-Chmiel
- Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, 8B Jaczewskiego Street, 20-090 Lublin, Poland
| | - Łukasz Popiołek
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Lublin, 4A Chodźki Street, 20-093 Lublin, Poland
| | - Mariola Herbet
- Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, 8B Jaczewskiego Street, 20-090 Lublin, Poland
| | - Jarosław Dudka
- Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, 8B Jaczewskiego Street, 20-090 Lublin, Poland
| |
Collapse
|
46
|
Francis CR, Kushner EJ. Capturing membrane trafficking events during 3D angiogenic development in vitro. Microcirculation 2022; 29:e12726. [PMID: 34415654 PMCID: PMC8858330 DOI: 10.1111/micc.12726] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 08/10/2021] [Accepted: 08/16/2021] [Indexed: 12/30/2022]
Abstract
OBJECTIVES Vesicular trafficking dictates protein localization, functional activity, and half-life, providing a critically important regulatory step in tissue development; however, there is little information detailing endothelial-specific trafficking signatures. This is due, in part, to limitations in visualizing trafficking events in endothelial tissues. Our aim in this investigation was to explore the use of a 3-dimensional (3D) in vitro sprouting model to image endothelial membrane trafficking events. METHODS Endothelial cells were challenged to grow sprouts in a fibrin bead assay. Thereafter, spouts were transfected with fluorescent proteins and stained for various cell markers. Sprouts were then imaged for trafficking events using live and fixed-cell microscopy. RESULTS Our results demonstrate that fibrin bead sprouts have a strong apicobasal polarity marked by apical localization of proteins moesin and podocalyxin. Comparison of trafficking mediators Rab27a and Rab35 between 3D sprouts and 2D culture showed that vesicular carriers can be imaged at high resolution, exhibiting proper membrane polarity solely in 3D sprouts. Lastly, we imaged exocytic events of von Willebrand Factor and demonstrated a distinct imaging advantage for monitoring secretion events in 3D sprouts as compared with 2D culture. CONCLUSIONS Our results establish that the fibrin bead sprouting assay is well-suited for imaging of trafficking events during angiogenic growth.
Collapse
Affiliation(s)
| | - Erich J. Kushner
- Department of Biological SciencesUniversity of DenverDenverColoradoUSA
| |
Collapse
|
47
|
Field CJ, Perez AM, Samet T, Ricles V, Iovine MK, Lowe-Krentz LJ. Involvement of transmembrane protein 184a during angiogenesis in zebrafish embryos. Front Physiol 2022; 13:845407. [PMID: 36117693 PMCID: PMC9478037 DOI: 10.3389/fphys.2022.845407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 08/09/2022] [Indexed: 11/13/2022] Open
Abstract
Angiogenesis, the outgrowth of new blood vessels from existing vasculature, is critical during development, tissue formation, and wound healing. In response to vascular endothelial growth factors (VEGFs), endothelial cells are activated to proliferate and move towards the signal, extending the vessel. These events are directed by VEGF-VEGF receptor (Vegfr2) signal transduction, which in turn is modulated by heparan sulfate proteoglycans (HSPGs). HSPGs are glycoproteins covalently attached to HS glycosaminoglycan chains. Transmembrane protein 184a (Tmem184a) has been recently identified as a heparin receptor, which is believed to bind heparan sulfate chains in vivo. Therefore, Tmem184a has the potential to fine-tune interactions between VEGF and HS, modulating Vegfr2-dependent angiogenesis. The function of Tmem184a has been investigated in the regenerating zebrafish caudal fin, but its role has yet to be evaluated during developmental angiogenesis. Here we provide insights into how Tmem184a contributes to the proper formation of the vasculature in zebrafish embryos. First, we find that knockdown of Tmem184a causes a reduction in the number of intact intersegmental vessels (ISVs) in the zebrafish embryo. This phenotype mimics that of vegfr2b knockout mutants, which have previously been shown to exhibit severe defects in ISV development. We then test the importance of HS interactions by removing the binding domain within the Tmem184a protein, which has a negative effect on angiogenesis. Tmem184a is found to act synergistically with Vegfr2b, indicating that the two gene products function in a common pathway to modulate angiogenesis. Moreover, we find that knockdown of Tmem184a leads to an increase in endothelial cell proliferation but a decrease in the amount of VE-cadherin present. Together, these findings suggest that Tmem184a is necessary for ISVs to organize into mature, complete vessels.
Collapse
|
48
|
Ma C, Wu Z, Wang X, Huang M, Wei X, Wang W, Qu H, Qiaolongbatu X, Lou Y, Jing L, Fan G. A systematic comparison of anti-angiogenesis efficacy and cardiotoxicity of receptor tyrosine kinase inhibitors in zebrafish model. Toxicol Appl Pharmacol 2022; 450:116162. [PMID: 35830948 DOI: 10.1016/j.taap.2022.116162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 07/01/2022] [Accepted: 07/07/2022] [Indexed: 10/17/2022]
Abstract
Pathological angiogenesis is fundamental to progression of cancerous tumors and blinding eye diseases. Anti-angiogenic receptor tyrosine kinase inhibitors (TKIs) are in broad use for the treatment of these diseases. With more and more TKIs available, it is a challenge to make an optimal choice. It remains unclear whether TKIs demonstrate similar anti-angiogenesis activities in different tissues. Many TKIs have shown varying degrees of toxic effects that should also be considered in clinical use. This study investigates the anti-angiogenic effects of 13 FDA-approved TKIs on the intersegmental vessels (ISVs), subintestinal vessels (SIVs) and retinal vasculature in zebrafish embryos. The results show that vascular endothelial growth factor receptor TKIs (VEGFR-TKIs) exhibit anti-angiogenic abilities similarly on ISVs and SIVs, and their efficacy is consistent with their IC50 values against VEGFR2. In addition, VEGFR-TKIs selectively induces the apoptosis of endothelial cells in immature vessels. Among all TKIs tested, axitinib demonstrates a strong inhibition on retinal neovascularization at a low dose that do not strongly affect ISVs and SIVs, supporting its potential application for retinal diseases. Zebrafish embryos demonstrate cardiotoxicity after VEGFR-TKIs treatment, and ponatinib and sorafenib show a narrow therapeutic window, suggesting that these two drugs may need to be dosed more carefully in patients. We propose that zebrafish is an ideal model for studying in vivo antiangiogenic efficacy and cardiotoxicity of TKIs.
Collapse
Affiliation(s)
- Cui Ma
- School of Pharmacy, Shanghai Jiao Tong University, Building 6-312, Shanghai 200240, PR China; Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, PR China
| | - Zhenghua Wu
- School of Pharmacy, Shanghai Jiao Tong University, Building 6-312, Shanghai 200240, PR China; Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, PR China
| | - Xue Wang
- School of Pharmacy, Shanghai Jiao Tong University, Building 6-312, Shanghai 200240, PR China
| | - Mengling Huang
- School of Pharmacy, Shanghai Jiao Tong University, Building 6-312, Shanghai 200240, PR China
| | - Xiaona Wei
- School of Pharmacy, Shanghai Jiao Tong University, Building 6-312, Shanghai 200240, PR China
| | - Wei Wang
- School of Pharmacy, Shanghai Jiao Tong University, Building 6-312, Shanghai 200240, PR China
| | - Han Qu
- School of Pharmacy, Shanghai Jiao Tong University, Building 6-312, Shanghai 200240, PR China; Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, PR China
| | - Xijier Qiaolongbatu
- School of Pharmacy, Shanghai Jiao Tong University, Building 6-312, Shanghai 200240, PR China; Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, PR China
| | - Yuefen Lou
- Department of Pharmacy, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai 200434, PR China.
| | - Lili Jing
- School of Pharmacy, Shanghai Jiao Tong University, Building 6-312, Shanghai 200240, PR China.
| | - Guorong Fan
- School of Pharmacy, Shanghai Jiao Tong University, Building 6-312, Shanghai 200240, PR China; Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, PR China.
| |
Collapse
|
49
|
Pillay LM, Yano JJ, Davis AE, Butler MG, Ezeude MO, Park JS, Barnes KA, Reyes VL, Castranova D, Gore AV, Swift MR, Iben JR, Kenton MI, Stratman AN, Weinstein BM. In vivo dissection of Rhoa function in vascular development using zebrafish. Angiogenesis 2022; 25:411-434. [PMID: 35320450 DOI: 10.1007/s10456-022-09834-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 02/22/2022] [Indexed: 12/27/2022]
Abstract
The small monomeric GTPase RHOA acts as a master regulator of signal transduction cascades by activating effectors of cellular signaling, including the Rho-associated protein kinases ROCK1/2. Previous in vitro cell culture studies suggest that RHOA can regulate many critical aspects of vascular endothelial cell (EC) biology, including focal adhesion, stress fiber formation, and angiogenesis. However, the specific in vivo roles of RHOA during vascular development and homeostasis are still not well understood. In this study, we examine the in vivo functions of RHOA in regulating vascular development and integrity in zebrafish. We use zebrafish RHOA-ortholog (rhoaa) mutants, transgenic embryos expressing wild type, dominant negative, or constitutively active forms of rhoaa in ECs, pharmacological inhibitors of RHOA and ROCK1/2, and Rock1 and Rock2a/b dgRNP-injected zebrafish embryos to study the in vivo consequences of RHOA gain- and loss-of-function in the vascular endothelium. Our findings document roles for RHOA in vascular integrity, developmental angiogenesis, and vascular morphogenesis in vivo, showing that either too much or too little RHOA activity leads to vascular dysfunction.
Collapse
Affiliation(s)
- Laura M Pillay
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, 6 Center Dr. Bethesda, Bethesda, MD, 20892, USA
| | - Joseph J Yano
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, 6 Center Dr. Bethesda, Bethesda, MD, 20892, USA
- Department of Cell and Molecular Biology, University of Pennsylvania, 440 Curie Blvd, Philadelphia, PA, 19104, USA
| | - Andrew E Davis
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, 6 Center Dr. Bethesda, Bethesda, MD, 20892, USA
| | - Matthew G Butler
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, 6 Center Dr. Bethesda, Bethesda, MD, 20892, USA
| | - Megan O Ezeude
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, 6 Center Dr. Bethesda, Bethesda, MD, 20892, USA
| | - Jong S Park
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, 6 Center Dr. Bethesda, Bethesda, MD, 20892, USA
| | - Keith A Barnes
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, 6 Center Dr. Bethesda, Bethesda, MD, 20892, USA
| | - Vanessa L Reyes
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, 6 Center Dr. Bethesda, Bethesda, MD, 20892, USA
| | - Daniel Castranova
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, 6 Center Dr. Bethesda, Bethesda, MD, 20892, USA
| | - Aniket V Gore
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, 6 Center Dr. Bethesda, Bethesda, MD, 20892, USA
| | - Matthew R Swift
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, 6 Center Dr. Bethesda, Bethesda, MD, 20892, USA
| | - James R Iben
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, 6 Center Dr. Bethesda, Bethesda, MD, 20892, USA
| | - Madeleine I Kenton
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, 6 Center Dr. Bethesda, Bethesda, MD, 20892, USA
| | - Amber N Stratman
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, 6 Center Dr. Bethesda, Bethesda, MD, 20892, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Brant M Weinstein
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, 6 Center Dr. Bethesda, Bethesda, MD, 20892, USA.
| |
Collapse
|
50
|
Pro-Angiogenetic Effects of Purified Extracts from Helix aspersa during Zebrafish Development. Curr Issues Mol Biol 2022; 44:3364-3377. [PMID: 36005128 PMCID: PMC9406997 DOI: 10.3390/cimb44080232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/16/2022] [Accepted: 07/23/2022] [Indexed: 11/17/2022] Open
Abstract
Helix aspersa is a species of land snail belonging to the Helicidae family, widespread in the Mediterranean and continental area up to Northern Europe. In some areas it is appreciated as a food, but is mostly considered a parasite of gardens and cultivated fields. The mucus of Helix aspersa has found multiple applications in the cosmetic and health fields. In the present study, we investigated for the first time the angiogenetic properties of purified extracts from Helix aspersa using a transgenic zebrafish line Tg (kdrl:EGFP). The angiogenesis induced by purified snail extracts was demonstrated by their capability to increase the three well-established parameters of angiogenesis: generation of intersegmental vessels, modeling of caudal venous plexus, and formation of sub-intestinal venous plexus. The effects appeared to be mediated by the vascular endothelial growth factor (VEGF) pathway, being prevented by pretreatment of embryos with the selective VEGF receptor antagonist SU5416, and supported by the increased VEGF mRNA levels found in snail-extract-treated embryos. Insufficient vascular supply is underlined by low VEGF signaling, primarily because of its indispensable role in preventing capillary loss. Our findings might have a pharmacological impact by counteracting VEGF hypofunction and promoting angiogenesis to maintain adequate microvascular and vascular density in normal and suffering tissues and organs.
Collapse
|