1
|
Bonilla-Aldana DK, Bonilla-Aldana JL, Acosta-España JD, Rodriguez-Morales AJ. Highly Pathogenic Avian Influenza H5N1 in Cats ( Felis catus): A Systematic Review and Meta-Analysis. Animals (Basel) 2025; 15:1441. [PMID: 40427317 PMCID: PMC12108504 DOI: 10.3390/ani15101441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2025] [Revised: 05/05/2025] [Accepted: 05/05/2025] [Indexed: 05/29/2025] Open
Abstract
Introduction: Highly pathogenic avian influenza (HPAI) H5N1, a zoonotic virus primarily affecting birds, has shown increasing cross-species transmission, including to domestic animals such as cats. Recent reports of cat infections, often associated with contact with infected birds or the consumption of raw milk from H5N1-positive cattle, raise concerns about their role in viral adaptation and zoonotic transmission. Objective: To assess the global prevalence and characteristics of H5N1 infections in cats (Felis catus) through a systematic review and meta-analysis. Methods: Following PRISMA guidelines, we conducted a systematic search across PubMed, Scopus, and Web of Science up to 1 March 2025. Observational studies reporting the prevalence or seroprevalence of H5N1 in cats (Felis catus) were included. Data extraction and quality assessment were performed independently by four reviewers. Meta-analyses were conducted using a random-effects model, and heterogeneity was assessed via I2 statistics. Results: Twenty-one studies met the inclusion criteria, of which eight were included in the meta-analysis (n = 3586 cats). The pooled global prevalence of Felis catus infections due to H5N1 influenza was 0.7% (95%CI: 0.3-1.1%), with high heterogeneity (I2 = 86.5%). The prevalence varied by the diagnostic method, region, cat type, and time. Domestic cats and those in Africa had higher infection rates (20.0% and 32.0%, respectively). Case reports (n = 35) revealed a high mortality (74%), predominantly from clade 2.3.4.4b, with neurological and respiratory manifestations. Conclusions: Although the overall prevalence is low, H5N1 infection in cats is increasing, particularly in clade 2.3.4.4b. Their close contact with humans and other animals highlights the need for enhanced surveillance, diagnostics, and One Health strategies to mitigate zoonotic risks.
Collapse
Affiliation(s)
| | | | - Jaime David Acosta-España
- School of Medicine, Pontificia Universidad Católica del Ecuador, Quito 170525, Ecuador
- Health Sciences Faculty, Universidad Internacional SEK (UISEK), Quito 170120, Ecuador
- Institute of Microbiology, Friedrich Schiller University Jena, 07743 Jena, Germany
- Centro de Investigación para la Salud en América Latina (CISeAL), Pontificia Universidad Católica del Ecuador, Quito 170120, Ecuador
| | - Alfonso J. Rodriguez-Morales
- Faculty of Health Sciences, Universidad Científica del Sur, Lima 15307, Peru
- Grupo de Investigación Biomedicina, Faculty of Medicine, Fundación Universitaria Autónoma de las Américas-Institución Universitaria Visión de las Américas, Pereira 660003, Colombia
| |
Collapse
|
2
|
Yu Y, Wang Q, Wei Y, Liu J, Wang G, Wang Z, Shen W, Han L, Li C, Lei CQ, Xu S, Zhu Q. Nucleophosmin 1 inhibits the replication of influenza A virus by competitively binding viral RNA with viral proteins. Virol Sin 2025:S1995-820X(25)00054-9. [PMID: 40348279 DOI: 10.1016/j.virs.2025.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 04/27/2025] [Indexed: 05/14/2025] Open
Abstract
Influenza A viruses (IAVs) are single-stranded negative-sense RNA viruses that continually challenge animal and human health. In IAV-infected cells, host RNA-binding proteins play key roles in the life cycle of IAV by directly binding to viral RNA. Here, we examined the role of the host RNA-binding protein nucleophosmin-1 (NPM1) in IAV replication. We found that, as a nucleolar phosphoprotein, NPM1 directly binds to viral RNA (vRNA) and inhibits the replication of various subtypes of IAV. NPM1 binding to vRNA competitively reduces the assembly of the viral ribonucleoprotein complex and the viral polymerase activity, thereby reducing the generation of progeny viral RNA and virions. The RNA-binding activity of NPM1, with the key residues T199, T219, T234, and T237, is essential for its anti-influenza function. Taken together, our findings demonstrate that NPM1 acts as an RNA-binding protein and interacts with IAV vRNA to suppress viral replication.
Collapse
Affiliation(s)
- Yingying Yu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Qian Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Yanli Wei
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Junwen Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Guangwen Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Zhengxiang Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Wentao Shen
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Lu Han
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Chengjun Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Cao-Qi Lei
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Shuai Xu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China.
| | - Qiyun Zhu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China.
| |
Collapse
|
3
|
Wasik BR, Damodaran L, Maltepes MA, Voorhees IEH, Leutenegger CM, Newbury S, Moncla LH, Dalziel BD, Goodman LB, Parrish CR. The evolution and epidemiology of H3N2 canine influenza virus after 20 years in dogs. Epidemiol Infect 2025; 153:e47. [PMID: 40040347 PMCID: PMC11920924 DOI: 10.1017/s0950268825000251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 01/31/2025] [Accepted: 02/22/2025] [Indexed: 03/06/2025] Open
Abstract
The H3N2 canine influenza virus (CIV) emerged from an avian reservoir in Asia to circulate entirely among dogs for the last 20 years. The virus was first seen circulating outside Asian dog populations in 2015, in North America. Utilizing viral genomic data in addition to clinical reports and diagnostic testing data, we provide an updated analysis of the evolution and epidemiology of the virus in its canine host. CIV in dogs in North America is marked by a complex life history - including local outbreaks, regional lineage die-outs, and repeated reintroductions of the virus (with diverse genotypes) from different regions of Asia. Phylogenetic and Bayesian analysis reveal multiple CIV clades, and viruses from China have seeded recent North American outbreaks, with 2 or 3 introductions in the past 3 years. Genomic epidemiology confirms that within North America the virus spreads very rapidly among dogs in kennels and shelters in different regions - but then dies out locally. The overall epidemic therefore requires longer-distance dispersal of virus to maintain outbreaks over the long term. With a constant evolutionary rate over 20 years, CIV still appears best adapted to transmission in dense populations and has not gained properties for prolonged circulation among dogs.
Collapse
Affiliation(s)
- Brian R. Wasik
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Lambodhar Damodaran
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Maria A. Maltepes
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ian E. H. Voorhees
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | | | - Sandra Newbury
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Louise H. Moncla
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Benjamin D. Dalziel
- Department of Integrative Biology, Oregon State University, Corvallis, OR, USA
- Department of Mathematics, Oregon State University, Corvallis, OR, USA
| | - Laura B. Goodman
- Baker Institute for Animal Health, Department of Public and Ecosystems Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Colin R. Parrish
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| |
Collapse
|
4
|
Umar S, Muhammad S, mouzahim M, Pleva SM, Zhongqi Q, Weidong Y, Gao D. Burden of Common Respiratory Pathogens Among Cats in China. Vet Med Sci 2025; 11:e70082. [PMID: 39575527 PMCID: PMC11582471 DOI: 10.1002/vms3.70082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/10/2024] [Accepted: 09/30/2024] [Indexed: 11/25/2024] Open
Abstract
BACKGROUND Feline respiratory disease complex (FRDC) is a set of illnesses which are primarily associated with different types of viruses and bacteria. There is scarcity of data on pathogens associated with FRDC in China. OBJECTIVES The primary objective of this study was to investigate the prevalence and dynamics of FRDC pathogens in China. METHODS A total of 458 samples were retrieved from veterinary clinics during 2021-2024 from cats suffering from respiratory infections. Four viruses and three bacteria associated with FRDC were targeted for molecular detection with real time qPCR/RT-qPCR assays. RESULTS At least 1 targeted respiratory pathogen was detected in 423 samples (92.3%), whereas no pathogens were detected in 7.7% of samples. Bacteria were detected in 32.1% of samples, and viruses were detected in 60.2% of samples. The prevalence of viruses detected were feline calicivirus (31.2%), feline herpesvirus-1 (24.6%), influenza A virus (2.8%) and severe acute respiratory syndrome coronavirus-2 (1.5%), whereas the detection rate for bacteria was Mycoplasma felis (15.5%), Chlamydia felis (10.2%) and Bordetella bronchiseptica (6.3%). Significantly higher cases were reported from kittens (57.4%). Pathogen detection was more common during the cold season. Mono-infections involving one bacteria or virus were detected in 44.7% of samples, whereas coinfections were detected in 47.5% of samples. No quadruple coinfections were recorded in this study. CONCLUSIONS The frequency of detection of feline respiratory pathogens alone or in combinations among diseased cats was high, indicating a heavy burden of respiratory infections among cats in Kunshan, China. Continued surveillance is desired, and newly emerged respiratory pathogens should also be monitored in routine diagnostic testing.
Collapse
Affiliation(s)
- Sajid Umar
- Global Health Research Center (GHRC)Duke Kunshan UniversityKunshanChina
- Division of Natural & Applied Sciences (DNAS)Duke Kunshan UniversityKunshanChina
| | - Shaban Muhammad
- Global Health Research Center (GHRC)Duke Kunshan UniversityKunshanChina
- Division of Natural & Applied Sciences (DNAS)Duke Kunshan UniversityKunshanChina
| | - Marwa mouzahim
- Global Health Research Center (GHRC)Duke Kunshan UniversityKunshanChina
- Division of Natural & Applied Sciences (DNAS)Duke Kunshan UniversityKunshanChina
| | - Shelley Marie Pleva
- Global Health Research Center (GHRC)Duke Kunshan UniversityKunshanChina
- Division of Natural & Applied Sciences (DNAS)Duke Kunshan UniversityKunshanChina
| | - Qiu Zhongqi
- Simba Pet Hospital (Tinglin Park branch)KunshanChina
| | - Yu Weidong
- Play Pi Kangkang Pet HospitalKunshan City Development ZoneKunshanChina
| | - Di Gao
- MSD Animal Health ShanghaiShanghaiChina
| |
Collapse
|
5
|
Cavicchio L, Campalto M, Carrino M, Lucchese L, Ceglie L, Fincato A, Boscolo Cegion L, Mazzotta E, Beato MS, Natale A. Influenza in feral cat populations: insights from a study in North-East Italy. Front Vet Sci 2024; 11:1439354. [PMID: 39247126 PMCID: PMC11378839 DOI: 10.3389/fvets.2024.1439354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/19/2024] [Indexed: 09/10/2024] Open
Abstract
Influenza A virus (IAV) can cause high morbidity and mortality in domestic and wild avian species and it is able to infect mammals as well. IAV in cats is sporadic and self-limiting but the recent findings of high pathogenicity avian influenza virus (HPAIV) with genetic signatures of mammalian adaptation, in domestic cats, has raised new concerns about the potential role of cats in the virus ecology. The present study aimed to investigate the circulation of IAV in companion animals' shelters in North-eastern Italy. All samples were collected from feral cats living in feline colonies that were hosted in the companion animals' shelters for the requisite period to administer the veterinary treatments. Between 2021 and 2022, 389 oropharyngeal swabs and 279 sera were collected. All swabs tested negative for IAV and the only one ELISA positive serum sample resulted H5 positive by HI test with a titer of 1:80. Despite the sporadic occurrence of influenza in cats, continuous monitoring is crucial due to the evolving zoonotic nature of the virus.
Collapse
Affiliation(s)
- Lara Cavicchio
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Legnaro, Italy
| | - Mery Campalto
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Legnaro, Italy
| | - Marilena Carrino
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Legnaro, Italy
| | - Laura Lucchese
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Legnaro, Italy
| | - Letizia Ceglie
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Legnaro, Italy
| | - Alice Fincato
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Legnaro, Italy
| | | | - Elisa Mazzotta
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Legnaro, Italy
| | - Maria Serena Beato
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Legnaro, Italy
| | - Alda Natale
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Legnaro, Italy
| |
Collapse
|
6
|
Sekine W, Kamiki H, Ishida H, Matsugo H, Ohira K, Li K, Katayama M, Takenaka-Uema A, Murakami S, Horimoto T. Adaptation potential of H3N8 canine influenza virus in human respiratory cells. Sci Rep 2024; 14:18750. [PMID: 39138310 PMCID: PMC11322661 DOI: 10.1038/s41598-024-69509-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024] Open
Abstract
In 2004, the equine-origin H3N8 canine influenza virus (CIV) first caused an outbreak with lethal cases in racing greyhounds in Florida, USA, and then spread to domestic dogs nationwide. Although transmission of this canine virus to humans has not been reported, it is important to evaluate its zoonotic potential because of the high contact opportunities between companion dogs and humans. To gain insight into the interspecies transmissibility of H3N8 CIV, we tested its adaptability to human respiratory A549 cells through successive passages. We found that CIV acquired high growth properties in these cells mainly through mutations in surface glycoproteins, such as hemagglutinin (HA) and neuraminidase (NA). Our reverse genetics approach revealed that HA2-K82E, HA2-R163K, and NA-S18L mutations were responsible for the increased growth of CIV in human cells. Molecular analyses revealed that both HA2 mutations altered the optimum pH for HA membrane fusion activity and that the NA mutation changed the HA-NA functional balance. These findings suggest that H3N8 CIV could evolve into a human pathogen with pandemic potential through a small number of mutations, thereby posing a threat to public health in the future.
Collapse
Affiliation(s)
- Wataru Sekine
- Laboratory of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-Ku, Tokyo, Japan
| | - Haruhiko Kamiki
- Laboratory of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-Ku, Tokyo, Japan
| | - Hiroho Ishida
- Laboratory of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-Ku, Tokyo, Japan
- Laboratory of Infectious Diseases, School of Veterinary Medicine, Azabu University, Kanagawa, Japan
| | - Hiromichi Matsugo
- Laboratory of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-Ku, Tokyo, Japan
- Laboratory of RNA Viruses, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Kosuke Ohira
- Laboratory of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-Ku, Tokyo, Japan
| | - Kaixin Li
- Laboratory of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-Ku, Tokyo, Japan
| | - Misa Katayama
- Laboratory of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-Ku, Tokyo, Japan
| | - Akiko Takenaka-Uema
- Laboratory of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-Ku, Tokyo, Japan
| | - Shin Murakami
- Laboratory of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-Ku, Tokyo, Japan
| | - Taisuke Horimoto
- Laboratory of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-Ku, Tokyo, Japan.
| |
Collapse
|
7
|
Glebova TI, Klivleyeva NG, Saktaganov NT, Shamenova MG, Lukmanova GV, Baimukhametova AM, Baiseiit SB, Ongarbayeva NS, Orynkhanov KA, Ametova AV, Ilicheva AK. Circulation of influenza viruses in the dog population in Kazakhstan (2023-2024). Open Vet J 2024; 14:1896-1904. [PMID: 39308731 PMCID: PMC11415905 DOI: 10.5455/ovj.2024.v14.i8.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/12/2024] [Indexed: 09/25/2024] Open
Abstract
Background Dogs in close contact with humans can serve as a source of potentially dangerous reassortant influenza viruses (IVs) with zoonotic potential. The dog's body can serve as a vessel for the emergence of new IVs. These new viruses can become a source of infection for other animals and humans. The potential for zoonotic transmission of IVs from dogs to humans poses a public health risk. Aim Study of the circulation of IVs in the dog population in Almaty, Kazakhstan. Methods Biosamples (oropharyngeal swabs and blood serum) from dogs were collected from veterinary clinics in Almaty in 2023-2024. Samples were screened using RT-PCR, HI assay, and ELISA. Results RT-PCR analysis of 355 nasopharyngeal swabs showed the presence of influenza A virus (IAV) in 32 samples (9.01% of the total number of samples analyzed). When subtyping IAV H1N1 RNA was detected in 19 swabs (5.35%). IAV subtype could not be determined in 13 PCR-positive samples (3.66%). The genetic material of IAV H3N2, H5, H7, and H9, as well as coronavirus, bocavirus, and adenovirus has not been identified. In a serological analysis of 180 blood sera using ELISA, antibodies to IAV were detected in 5.56% (n = 10). The results of the HI assay showed the presence of antihemagglutinins to A/H1N1pdm in 6.11% (11 samples), to A/H3N2 in 9.44% (17 samples), and no antibodies to IAV H5, H7, and type B were detected. Conclusion There is no information about human infection with any canine influenza virus. However, many cases of infection in dogs with human IAVs H1N1, H1N1pdm09, and H3N2 have been described. When dogs are co-infected with different IAVs, new recombinant IAVs may emerge that can infect humans and other animals. Therefore, ongoing global surveillance of animal populations is necessary to monitor the evolution and circulation of viruses dangerous to public health. This is also important for timely preparation for the emergence of a new zoonotic influenza virus that has pandemic potential for humans.
Collapse
Affiliation(s)
- Tatyana I. Glebova
- The Research and Production Center for Microbiology and Virology, Almaty, Republic of Kazakhstan
| | - Nailya G. Klivleyeva
- The Research and Production Center for Microbiology and Virology, Almaty, Republic of Kazakhstan
| | - Nurbol T. Saktaganov
- The Research and Production Center for Microbiology and Virology, Almaty, Republic of Kazakhstan
| | - Mira G. Shamenova
- The Research and Production Center for Microbiology and Virology, Almaty, Republic of Kazakhstan
| | - Galina V. Lukmanova
- The Research and Production Center for Microbiology and Virology, Almaty, Republic of Kazakhstan
| | - Assem M. Baimukhametova
- The Research and Production Center for Microbiology and Virology, Almaty, Republic of Kazakhstan
| | - Sagadat B. Baiseiit
- The Research and Production Center for Microbiology and Virology, Almaty, Republic of Kazakhstan
| | - Nuray S. Ongarbayeva
- The Research and Production Center for Microbiology and Virology, Almaty, Republic of Kazakhstan
| | | | | | - Aitolkyn K. Ilicheva
- The Research and Production Center for Microbiology and Virology, Almaty, Republic of Kazakhstan
| |
Collapse
|
8
|
Faleye TOC, Skidmore P, Elyaderani A, Adhikari S, Kaiser N, Smith A, Yanez A, Perleberg T, Driver EM, Halden RU, Varsani A, Scotch M. Exploring Canine Picornavirus Diversity in the USA Using Wastewater Surveillance: From High-Throughput Genomic Sequencing to Immuno-Informatics and Capsid Structure Modeling. Viruses 2024; 16:1188. [PMID: 39205161 PMCID: PMC11359023 DOI: 10.3390/v16081188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/13/2024] [Accepted: 07/17/2024] [Indexed: 09/04/2024] Open
Abstract
The SARS-CoV-2 pandemic resulted in a scale-up of viral genomic surveillance globally. However, the wet lab constraints (economic, infrastructural, and personnel) of translating novel virus variant sequence information to meaningful immunological and structural insights that are valuable for the development of broadly acting countermeasures (especially for emerging and re-emerging viruses) remain a challenge in many resource-limited settings. Here, we describe a workflow that couples wastewater surveillance, high-throughput sequencing, phylogenetics, immuno-informatics, and virus capsid structure modeling for the genotype-to-serotype characterization of uncultivated picornavirus sequences identified in wastewater. Specifically, we analyzed canine picornaviruses (CanPVs), which are uncultivated and yet-to-be-assigned members of the family Picornaviridae that cause systemic infections in canines. We analyzed 118 archived (stored at -20 °C) wastewater (WW) samples representing a population of ~700,000 persons in southwest USA between October 2019 to March 2020 and October 2020 to March 2021. Samples were pooled into 12 two-liter volumes by month, partitioned (into filter-trapped solids [FTSs] and filtrates) using 450 nm membrane filters, and subsequently concentrated to 2 mL (1000×) using 10,000 Da MW cutoff centrifugal filters. The 24 concentrates were subjected to RNA extraction, CanPV complete capsid single-contig RT-PCR, Illumina sequencing, phylogenetics, immuno-informatics, and structure prediction. We detected CanPVs in 58.3% (14/24) of the samples generated 13,824,046 trimmed Illumina reads and 27 CanPV contigs. Phylogenetic and pairwise identity analyses showed eight CanPV genotypes (intragenotype divergence <14%) belonging to four clusters, with intracluster divergence of <20%. Similarity analysis, immuno-informatics, and virus protomer and capsid structure prediction suggested that the four clusters were likely distinct serological types, with predicted cluster-distinguishing B-cell epitopes clustered in the northern and southern rims of the canyon surrounding the 5-fold axis of symmetry. Our approach allows forgenotype-to-serotype characterization of uncultivated picornavirus sequences by coupling phylogenetics, immuno-informatics, and virus capsid structure prediction. This consequently bypasses a major wet lab-associated bottleneck, thereby allowing resource-limited settings to leapfrog from wastewater-sourced genomic data to valuable immunological insights necessary for the development of prophylaxis and other mitigation measures.
Collapse
Affiliation(s)
- Temitope O. C. Faleye
- Biodesign Center for Environmental Health Engineering, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Peter Skidmore
- College of Health Solutions, Arizona State University, Tempe, AZ 85287, USA
| | - Amir Elyaderani
- College of Health Solutions, Arizona State University, Tempe, AZ 85287, USA
| | - Sangeet Adhikari
- Biodesign Center for Environmental Health Engineering, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287, USA
| | - Nicole Kaiser
- College of Health Solutions, Arizona State University, Tempe, AZ 85287, USA
| | - Abriana Smith
- College of Health Solutions, Arizona State University, Tempe, AZ 85287, USA
| | - Allan Yanez
- Biodesign Center for Environmental Health Engineering, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Tyler Perleberg
- Biodesign Center for Environmental Health Engineering, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Erin M. Driver
- Biodesign Center for Environmental Health Engineering, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Rolf U. Halden
- Biodesign Center for Environmental Health Engineering, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287, USA
| | - Arvind Varsani
- Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA;
| | - Matthew Scotch
- Biodesign Center for Environmental Health Engineering, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
- College of Health Solutions, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
9
|
Liu L, Wang F, Wu Y, Mi W, Zhang Y, Chen L, Wang D, Deng G, Shi J, Chen H, Kong H. The V223I substitution in hemagglutinin reduces the binding affinity to human-type receptors while enhancing the thermal stability of the H3N2 canine influenza virus. Front Microbiol 2024; 15:1442163. [PMID: 39104583 PMCID: PMC11299061 DOI: 10.3389/fmicb.2024.1442163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 07/08/2024] [Indexed: 08/07/2024] Open
Abstract
Given the intimate relationship between humans and dogs, the H3N2 canine influenza viruses (CIVs) pose a threat to public health. In our study, we isolated four H3N2 CIVs from 3,758 dog nasal swabs in China between 2018 and 2020, followed by genetic and biological analysis. Phylogenetic analysis revealed 15 genotypes among all available H3N2 CIVs, with genotype 15 prevailing among dogs since around 2017, indicating the establishment of a stable virus lineage in dogs. Molecular characterization identified many mammalian adaptive substitutions, including HA-G146S, HA-N188D, PB2-I292T, PB2-G590S, PB2-S714I, PB1-D154G, and NP-R293K, present across the four isolates. Notably, analysis of HA sequences uncovered a newly emerged adaptive mutation, HA-V223I, which is predominantly found in human and swine H3N2 viruses, suggesting its role in mammalian adaptation. Receptor-binding analysis revealed that the four H3N2 viruses bind both avian and human-type receptors. However, HA-V223I decreases the H3N2 virus's affinity for human-type receptors but enhances its thermal stability. Furthermore, attachment analysis confirmed the H3N2 virus binding to human tracheal tissues, albeit with reduced affinity when the virus carries HA-V223I. Antigenic analysis indicated that the current human H3N2 vaccines do not confer protection against H3N2 CIVs. Collectively, these findings underscore that the potential threat posed by H3N2 CIVs to human health still exists, emphasizing the necessity of close surveillance and monitoring of H3N2 CIVs in dogs.
Collapse
Affiliation(s)
- Liling Liu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, CAAS, Harbin, China
| | - Fujun Wang
- Department of Biotechnology, Heilongjiang Vocational College for Nationalities, Harbin, China
- Harbin Fuai Pet Hospital, Harbin, China
| | - Ying Wu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, CAAS, Harbin, China
| | - Weiyong Mi
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, CAAS, Harbin, China
| | - Yaping Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, CAAS, Harbin, China
| | - Lei Chen
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, CAAS, Harbin, China
| | - Dongxue Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, CAAS, Harbin, China
| | - Guohua Deng
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, CAAS, Harbin, China
| | - Jianzhong Shi
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, CAAS, Harbin, China
| | - Hualan Chen
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, CAAS, Harbin, China
| | - Huihui Kong
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, CAAS, Harbin, China
| |
Collapse
|
10
|
Lee CY. Exploring Potential Intermediates in the Cross-Species Transmission of Influenza A Virus to Humans. Viruses 2024; 16:1129. [PMID: 39066291 PMCID: PMC11281536 DOI: 10.3390/v16071129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/08/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
The influenza A virus (IAV) has been a major cause of several pandemics, underscoring the importance of elucidating its transmission dynamics. This review investigates potential intermediate hosts in the cross-species transmission of IAV to humans, focusing on the factors that facilitate zoonotic events. We evaluate the roles of various animal hosts, including pigs, galliformes, companion animals, minks, marine mammals, and other animals, in the spread of IAV to humans.
Collapse
Affiliation(s)
- Chung-Young Lee
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea;
- Untreatable Infectious Disease Institute, Kyungpook National University, Daegu 41944, Republic of Korea
| |
Collapse
|
11
|
Zhou H, Li H, Sun X, Lin J, Zhang C, Zhao J, Zhao L, Zhou M. Rapid diagnosis of canine respiratory coronavirus, canine influenza virus, canine distemper virus and canine parainfluenza virus with a Taqman probe-based multiplex real-time PCR. J Virol Methods 2024; 328:114960. [PMID: 38823586 DOI: 10.1016/j.jviromet.2024.114960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 06/03/2024]
Abstract
Canine Infectious Respiratory Disease Complex (CIRDC) is a highly infectious diseases. Canine respiratory coronavirus (CRCoV), Canine influenza virus (CIV), Canine distemper virus (CDV), and Canine parainfluenza virus (CPiV) are crucial pathogens causing CIRDC. Due to the similar clinical symptoms induced by these viruses, differential diagnosis based solely on symptoms can be challenging. In this study, a multiplex real-time PCR assay was developed for detecting the four RNA viruses of CIRDC. Specific primers and probes were designed to target M gene of CRCoV, M gene of CIV, N gene of CDV and NP gene of CPiV. The detection limit is 10 copies/μL for CIV or CRCoV, while the detection limit of CDV or CPiV is 100 copies/μL. Intra-group and inter-group repeatability coefficient of variation (CV) were both less than 2 %. A total of 341 clinical canine samples were analyzed, and the results indicated that the method developed in our study owns a good consistency and better specificity compared with the conventional reverse transcription PCR. This study provides a new method to enable the simultaneous detection of all four pathogens in a single reaction, improving the efficiency for monitoring the prevalence of four viruses in CIRDC, which benefits the control of CIRDC.
Collapse
Affiliation(s)
- Hu Zhou
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan 430070, China
| | - Haoqi Li
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan 430070, China
| | - Xuehan Sun
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan 430070, China
| | - Jiaqi Lin
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan 430070, China
| | - Chengguang Zhang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan 430070, China
| | - Jianqing Zhao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan 430070, China.
| | - Ling Zhao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan 430070, China.
| | - Ming Zhou
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan 430070, China.
| |
Collapse
|
12
|
Thieulent CJ, Carossino M, Peak L, Wolfson W, Balasuriya UBR. Development and validation of multiplex one-step qPCR/RT-qPCR assays for simultaneous detection of SARS-CoV-2 and pathogens associated with feline respiratory disease complex. PLoS One 2024; 19:e0297796. [PMID: 38517847 PMCID: PMC10959388 DOI: 10.1371/journal.pone.0297796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 01/12/2024] [Indexed: 03/24/2024] Open
Abstract
Feline respiratory disease complex (FRDC) is caused by a wide range of viral and bacterial pathogens. Both Influenza A virus (IAV) and Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) also induce respiratory diseases in cats. Two one-step multiplex qPCR/RT-qPCR assays were developed and validated: FRA_1 (Feline respiratory assay 1) for the detection of four viral targets and FRA_2 for the detection of three bacteria associated with FRDC. Both multiplex assays demonstrated high specificity, efficiency (93.51%-107.8%), linearity (> 0.998), analytical sensitivity (≤ 15 genome copies/μl), repeatability (coefficient of variation [CV] < 5%), and reproducibility (CV < 6%). Among the 63 clinical specimens collected from FRDC-suspected cats, 92.1% were positive for at least one pathogen and co-infection was detected in 57.1% of samples. Mycoplasma felis (61.9%) was the most found pathogen, followed by feline herpesvirus-1 (30.2%), Chlamydia felis (28.7%) and feline calicivirus (27.0%). SARS-CoV-2 was detected in two specimens. In summary, this new panel of qPCR/RT-qPCR assays constitutes a useful and reliable tool for the rapid detection of SARS-CoV-2 and viral and bacterial pathogens associated with FRDC in cats.
Collapse
Affiliation(s)
- Côme J. Thieulent
- Louisiana Animal Disease Diagnostic Laboratory, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Mariano Carossino
- Louisiana Animal Disease Diagnostic Laboratory, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Laura Peak
- Louisiana Animal Disease Diagnostic Laboratory, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Wendy Wolfson
- Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Udeni B. R. Balasuriya
- Louisiana Animal Disease Diagnostic Laboratory, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| |
Collapse
|
13
|
Faleye TOC, Driver EM, Wright JM, Halden RU, Varsani A, Scotch M. Direct detection of canine picornavirus complete coding sequence in wastewater using long-range reverse-transcriptase polymerase chain reaction and long-read sequencing. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 118:105550. [PMID: 38199505 PMCID: PMC10923025 DOI: 10.1016/j.meegid.2024.105550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/03/2024] [Accepted: 01/06/2024] [Indexed: 01/12/2024]
Abstract
We describe four complete coding sequence (cCDS) of canine picornavirus from wastewater in Arizona, USA detected by coupling cCDS single-contig (∼7.5 kb) reverse-transcriptase polymerase chain reaction (RT-PCR) and low-cost long-read high-throughput sequencing. For viruses of medical/veterinary importance, this workflow expands possibilities of wastewater based genomic epidemiology for exploring virus evolutionary dynamics especially in low-resource settings.
Collapse
Affiliation(s)
- Temitope O C Faleye
- Biodesign Center for Environmental Health Engineering, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Erin M Driver
- Biodesign Center for Environmental Health Engineering, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Jillian M Wright
- Biodesign Center for Environmental Health Engineering, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Rolf U Halden
- Biodesign Center for Environmental Health Engineering, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287, USA
| | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, School of Life Sciences, Center for Evolution and Medicine, Arizona State University, Tempe, AZ 85287, USA
| | - Matthew Scotch
- Biodesign Center for Environmental Health Engineering, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA.
| |
Collapse
|
14
|
Song Y, Hong S, Park WB, Kim S, Lee E, Choen D, Yoo HS. Serological investigation of seven zoonotic pathogens in companion dogs in South Korea, 2018-2021. Vet Med Sci 2024; 10:e1380. [PMID: 38358075 PMCID: PMC10867870 DOI: 10.1002/vms3.1380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 12/06/2023] [Accepted: 01/29/2024] [Indexed: 02/16/2024] Open
Abstract
Based on the current situation of Korean culture and society, the population of companion animals in South Korea is growing rapidly along with zoonotic risks. The current data regarding zoonotic infections in companion dogs reported in Korea is sparse. This study aims to investigate the seroprevalence of seven potential zoonotic pathogens in companion dogs in South Korea: Anaplasma phagocytophilum, Borrelia burgdoferi, Ehrlichia canis, Coxiella burnetii, Brucella canis, Leptospira spp. and canine influenza A virus. A total of 284 serum samples were collected from 2018 to 2021, and the immunoglobulin G (IgG) antibodies against 7 zoonotic pathogens were detected using enzyme-linked immunosorbent assays. Samples were divided into five groups and analysed based on age. IgG antibodies against six of the seven pathogens were detected. The highest seropositivity rate was detected for canine influenza A virus exposure (59.1%) for which the rates were the highest in dogs under 1 year old and declined with age. Positivity rates of the other pathogens were relatively low: 1.76% for Leptospira spp., 1.40% for A. phagocytophilum and E. canis, 1.06% for B. canis and 0.35% for B. burgdoferi. No antibodies against C. burnetii were detected in this study. The exposure of dogs in South Korea to six zoonotic pathogens was serologically confirmed, highlighting a potential risk for human infection. The zoonotic risk of companion dogs cannot be neglected, and implementation of One Health approach should be advocated to establish effective preventive measures.
Collapse
Affiliation(s)
- Yun‐Qi Song
- Department of Infectious DiseaseCollege of Veterinary MedicineSeoul National UniversitySeoulRepublic of Korea
- BK21 FOUR Future Veterinary Medicine Leading Education and Research CenterSeoul National UniversitySeoulRepublic of Korea
| | | | - Woo Bin Park
- Department of Infectious DiseaseCollege of Veterinary MedicineSeoul National UniversitySeoulRepublic of Korea
| | - Suji Kim
- Department of Infectious DiseaseCollege of Veterinary MedicineSeoul National UniversitySeoulRepublic of Korea
- Research Institute for Veterinary ScienceSeoul National UniversitySeoulRepublic of Korea
| | - Eun‐Seo Lee
- Department of Infectious DiseaseCollege of Veterinary MedicineSeoul National UniversitySeoulRepublic of Korea
- BK21 FOUR Future Veterinary Medicine Leading Education and Research CenterSeoul National UniversitySeoulRepublic of Korea
| | | | - Han Sang Yoo
- Department of Infectious DiseaseCollege of Veterinary MedicineSeoul National UniversitySeoulRepublic of Korea
- BK21 FOUR Future Veterinary Medicine Leading Education and Research CenterSeoul National UniversitySeoulRepublic of Korea
- Research Institute for Veterinary ScienceSeoul National UniversitySeoulRepublic of Korea
| |
Collapse
|
15
|
Hiono T, Isoda N, Sakoda Y. [The current situation of H5 high pathogenicity avian influenza viruses in wild birds and mammals]. Uirusu 2024; 74:107-116. [PMID: 40024793 DOI: 10.2222/jsv.74.107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
H5 high pathogenicity avian influenza viruses, which emerged in Guangdong Province, China, in 1996, has now been persistently transmitted among various wild birds due to the "silent spreading" of the viruses among vaccinated poultry and domestic waterfowl. These viruses traveled long distances along with bird migration; therefore, the threat of H5 high pathogenicity avian influenza viruses is now a global issue. Furthermore, infection in wild mammals has become more prominent since 2020. The contamination of the wild bird population by the virus is considered to be an irreversible situation, and thus, the reduction of virus levels in the environment is an urgent issue to prevent further deterioration of the situation. This review will describe the history and current situations of influenza virus infection in wild birds and mammals, and discuss the research and countermeasures that are required to stop the damage caused by this virus.
Collapse
Affiliation(s)
- Takahiro Hiono
- Faculty of Veterinary Medicine, Hokkaido University
- One Health Research Center, Hokkaido University
- nternational Institute for Zoonosis Control, Hokkaido University
- Institute for Vaccine Research and Development (IVReD), Hokkaido University
| | - Norikazu Isoda
- Faculty of Veterinary Medicine, Hokkaido University
- One Health Research Center, Hokkaido University
- nternational Institute for Zoonosis Control, Hokkaido University
- Institute for Vaccine Research and Development (IVReD), Hokkaido University
| | - Yoshihiro Sakoda
- Faculty of Veterinary Medicine, Hokkaido University
- One Health Research Center, Hokkaido University
- nternational Institute for Zoonosis Control, Hokkaido University
- Institute for Vaccine Research and Development (IVReD), Hokkaido University
| |
Collapse
|
16
|
Faleye TOC, Driver EM, Bowes DA, Smith A, Kaiser NA, Wright JM, Chapman AR, Halden RU, Varsani A, Scotch M. Canine Parvovirus 2C Identified in Dog Feces from Poop Bags Collected from Outdoor Waste Bins in Arizona USA, June 2022. Transbound Emerg Dis 2023; 2023:5596886. [PMID: 38983716 PMCID: PMC11232495 DOI: 10.1155/2023/5596886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Canine parvoviruses (CPVs) are a major cause of morbidity and mortality in dogs. However, surveillance has been largely limited to clinically manifest cases, resulting in a dearth of CPV genomic information on virus type, abundance, and diversity, limiting our understanding of its evolutionary dynamics. We tested the feasibility of using dog feces in poop bags collected from outdoor waste bins as a source for environmental surveillance of CPV. After polymerase chain reaction, long-read sequencing, and bioinformatics, we identified that CPV-2c was present in Arizona, USA, in June 2022 and documented variants with amino acid substitutions 530E and 101K in NS1 and NS2, respectively. Based on publicly available sequence data in GenBank as of January 2023, the CPV genome described here represents the only CPV genome described in the USA from the 2022 season, despite news of CPV outbreak-associated fatalities in dogs in the USA. This highlights the need for more studies that document CPV complete or near complete genomes, as well as experimental studies, to further our understanding of its evolutionary process.
Collapse
Affiliation(s)
- Temitope O C Faleye
- The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, Tempe, AZ, USA
| | - Erin M Driver
- The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, Tempe, AZ, USA
| | - Devin A Bowes
- The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, Tempe, AZ, USA
| | - Abriana Smith
- The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, Tempe, AZ, USA
| | - Nicole A Kaiser
- The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, Tempe, AZ, USA
| | - Jillian M Wright
- The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, Tempe, AZ, USA
| | - Ainsley R Chapman
- The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, Tempe, AZ, USA
| | - Rolf U Halden
- The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, Tempe, AZ, USA
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, USA
- One Water One Health, Nonprofit Project of the Arizona State University Foundation, Tempe, AZ, USA
| | - Arvind Varsani
- Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Matthew Scotch
- The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, Tempe, AZ, USA
- College of Health Solutions, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
17
|
Yao XY, Lian CY, Lv ZH, Zhang XL, Shao JW. Emergence of a novel reassortant H5N6 subtype highly pathogenic avian influenza virus in farmed dogs in China. J Infect 2023; 87:e70-e72. [PMID: 37507094 DOI: 10.1016/j.jinf.2023.07.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 07/22/2023] [Indexed: 07/30/2023]
Affiliation(s)
- Xin-Yan Yao
- School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Chun-Yang Lian
- School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Zhi-Hang Lv
- School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Xue-Lian Zhang
- School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Jian-Wei Shao
- School of Life Science and Engineering, Foshan University, Foshan 528225, China.
| |
Collapse
|
18
|
Szaluś-Jordanow O, Golke A, Dzieciątkowski T, Chrobak-Chmiel D, Rzewuska M, Czopowicz M, Sapierzyński R, Kardas M, Biernacka K, Mickiewicz M, Moroz-Fik A, Łobaczewski A, Stefańska I, Kwiecień E, Markowska-Daniel I, Frymus T. A Fatal A/H5N1 Avian Influenza Virus Infection in a Cat in Poland. Microorganisms 2023; 11:2263. [PMID: 37764107 PMCID: PMC10538095 DOI: 10.3390/microorganisms11092263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/27/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
A European Shorthair male cat, neutered, approximately 6 years of age, was presented to the veterinary clinic due to apathy and anorexia. The cat lived mostly outdoors and was fed raw chicken meat. After 3 days of diagnostic procedures and symptomatic treatment, respiratory distress and neurological signs developed and progressed into epileptic seizures, followed by respiratory and cardiac arrest within the next 3 days. Post-mortem examination revealed necrotic lesions in the liver, lungs, and intestines. Notably, the brain displayed perivascular infiltration of lymphocytes and histiocytes. Few foci of neuronal necrosis in the brain were also confirmed. Microscopic examination of the remaining internal organs was unremarkable. The A/H5N1 virus infection was confirmed using a one-step real-time reverse transcription polymerase chain reaction (RT-qPCR). The disease caused severe neurological and respiratory signs, evidence of consolidations and the presence of numerous B lines, which were detected on lung ultrasound examination; the postmortem findings and detection of A/H5N1 viral RNA in multiple tissues indicated a generalized A/H5N1 virus infection. Moreover, a multidrug-resistant strain of Enterococcus faecium was isolated in pure culture from several internal organs. The source of infection could be exposure to infected birds or their excrements, as well as contaminated raw poultry meat but, in this case, the source of infection could not be identified.
Collapse
Affiliation(s)
- Olga Szaluś-Jordanow
- Department of Small Animal Diseases with Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159c, 02-776 Warsaw, Poland
| | - Anna Golke
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland
| | - Tomasz Dzieciątkowski
- Chair and Department of Medical Microbiology, Medical University of Warsaw, Chałubińskiego 5, 02-004 Warsaw, Poland
| | - Dorota Chrobak-Chmiel
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland
| | - Magdalena Rzewuska
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland
| | - Michał Czopowicz
- Division of Veterinary Epidemiology and Economics, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159c, 02-776 Warsaw, Poland
| | - Rafał Sapierzyński
- Department of Pathology and Veterinary Diagnostics, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159c, 02-776 Warsaw, Poland
| | - Michał Kardas
- Veterinary Clinic Auxilium, Arkadiusz Olkowski, Królewska Str. 64, 05-822 Milanówek, Poland
| | - Kinga Biernacka
- Division of Veterinary Epidemiology and Economics, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159c, 02-776 Warsaw, Poland
| | - Marcin Mickiewicz
- Division of Veterinary Epidemiology and Economics, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159c, 02-776 Warsaw, Poland
| | - Agata Moroz-Fik
- Division of Veterinary Epidemiology and Economics, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159c, 02-776 Warsaw, Poland
| | - Andrzej Łobaczewski
- Veterinary Clinic Auxilium, Arkadiusz Olkowski, Królewska Str. 64, 05-822 Milanówek, Poland
| | - Ilona Stefańska
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland
| | - Ewelina Kwiecień
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland
| | - Iwona Markowska-Daniel
- Division of Veterinary Epidemiology and Economics, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159c, 02-776 Warsaw, Poland
| | - Tadeusz Frymus
- Department of Small Animal Diseases with Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159c, 02-776 Warsaw, Poland
| |
Collapse
|
19
|
Thieulent CJ, Carossino M, Peak L, Strother K, Wolfson W, Balasuriya UBR. Development and Validation of a Panel of One-Step Four-Plex qPCR/RT-qPCR Assays for Simultaneous Detection of SARS-CoV-2 and Other Pathogens Associated with Canine Infectious Respiratory Disease Complex. Viruses 2023; 15:1881. [PMID: 37766287 PMCID: PMC10535912 DOI: 10.3390/v15091881] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 08/28/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Canine infectious respiratory disease complex (CIRDC) is the primary cause of respiratory disease in the canine population and is caused by a wide array of viruses and bacterial pathogens with coinfections being common. Since its recognition in late 2019, Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) has been reported to cause respiratory disease in dogs. Therefore, the rapid detection and differentiation of SARS-CoV-2 from other common viral and bacterial agents is critical from a public health standpoint. Here, we developed and validated a panel of four one-step multiplex qPCR/RT-qPCR assays for the detection and identification of twelve pathogens associated with CIRDC (canine adenovirus-2, canine distemper virus, canine herpesvirus-1, canine influenza A virus, canine parainfluenza virus, canine pneumovirus, canine respiratory coronavirus, SARS-CoV-2, Bordetella bronchiseptica, Streptococcus equi subsp. zooepidemicus, Mycoplasma cynos, and M. canis), as well as the identification of three main CIV subtypes (i.e., H3N2, H3N8, and H1N1). All developed assays demonstrated high specificity and analytical sensitivity. This panel was used to test clinical specimens (n = 76) from CIRDC-suspected dogs. M. canis, M. cynos, and CRCoV were the most frequently identified pathogens (30.3%, 25.0%, and 19.7% of samples, respectively). The newly emerging pathogens CPnV and SARS-CoV-2 were detected in 5.3% of samples and coinfections were identified in 30.3%. This new multiplex qPCR/RT-qPCR panel is the most comprehensive panel developed thus far for identifying CIRDC pathogens, along with SARS-CoV-2.
Collapse
Affiliation(s)
- Côme J. Thieulent
- Louisiana Animal Disease Diagnostic Laboratory, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA; (C.J.T.); (M.C.); (L.P.); (K.S.)
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Mariano Carossino
- Louisiana Animal Disease Diagnostic Laboratory, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA; (C.J.T.); (M.C.); (L.P.); (K.S.)
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Laura Peak
- Louisiana Animal Disease Diagnostic Laboratory, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA; (C.J.T.); (M.C.); (L.P.); (K.S.)
| | - Keith Strother
- Louisiana Animal Disease Diagnostic Laboratory, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA; (C.J.T.); (M.C.); (L.P.); (K.S.)
| | - Wendy Wolfson
- Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA;
| | - Udeni B. R. Balasuriya
- Louisiana Animal Disease Diagnostic Laboratory, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA; (C.J.T.); (M.C.); (L.P.); (K.S.)
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
20
|
Abdelwhab EM, Mettenleiter TC. Zoonotic Animal Influenza Virus and Potential Mixing Vessel Hosts. Viruses 2023; 15:980. [PMID: 37112960 PMCID: PMC10145017 DOI: 10.3390/v15040980] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/05/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Influenza viruses belong to the family Orthomyxoviridae with a negative-sense, single-stranded segmented RNA genome. They infect a wide range of animals, including humans. From 1918 to 2009, there were four influenza pandemics, which caused millions of casualties. Frequent spillover of animal influenza viruses to humans with or without intermediate hosts poses a serious zoonotic and pandemic threat. The current SARS-CoV-2 pandemic overshadowed the high risk raised by animal influenza viruses, but highlighted the role of wildlife as a reservoir for pandemic viruses. In this review, we summarize the occurrence of animal influenza virus in humans and describe potential mixing vessel or intermediate hosts for zoonotic influenza viruses. While several animal influenza viruses possess a high zoonotic risk (e.g., avian and swine influenza viruses), others are of low to negligible zoonotic potential (e.g., equine, canine, bat and bovine influenza viruses). Transmission can occur directly from animals, particularly poultry and swine, to humans or through reassortant viruses in "mixing vessel" hosts. To date, there are less than 3000 confirmed human infections with avian-origin viruses and less than 7000 subclinical infections documented. Likewise, only a few hundreds of confirmed human cases caused by swine influenza viruses have been reported. Pigs are the historic mixing vessel host for the generation of zoonotic influenza viruses due to the expression of both avian-type and human-type receptors. Nevertheless, there are a number of hosts which carry both types of receptors and can act as a potential mixing vessel host. High vigilance is warranted to prevent the next pandemic caused by animal influenza viruses.
Collapse
Affiliation(s)
- Elsayed M. Abdelwhab
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Thomas C. Mettenleiter
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| |
Collapse
|
21
|
Huang J, Li K, Xiao S, Hu J, Yin Y, Zhang J, Li S, Wang W, Hong J, Zhao Z, Chen X, Liu Y, Shi J, Hu F, Ran X, Ge Y, Jiang H, Liu Z, Ward MP, Zhang Z. Global epidemiology of animal influenza infections with explicit virus subtypes until 2016: A spatio-temporal descriptive analysis. One Health 2023. [DOI: 10.1016/j.onehlt.2023.100514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023] Open
|
22
|
Hiono T, Kobayashi D, Kobayashi A, Suzuki T, Satake Y, Harada R, Matsuno K, Sashika M, Ban H, Kobayashi M, Takaya F, Fujita H, Isoda N, Kimura T, Sakoda Y. Virological, pathological, and glycovirological investigations of an Ezo red fox and a tanuki naturally infected with H5N1 high pathogenicity avian influenza viruses in Hokkaido, Japan. Virology 2023; 578:35-44. [PMID: 36462496 DOI: 10.1016/j.virol.2022.11.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/16/2022] [Accepted: 11/20/2022] [Indexed: 11/30/2022]
Abstract
In winter/spring 2021-2022, high pathogenicity avian influenza viruses (HPAIVs) that are genetically closely related to each other were detected worldwide. In a public garden in Sapporo, Hokkaido, Japan, a crow die-off by HPAIV infection occurred from March 29 to May 18, 2022. During the event, H5N1 HPAIVs were isolated from an Ezo red fox (Vulpes vulpes schrencki) and a tanuki (Nyctereutes procyonoides albus) found in the same garden. The fox showed viral meningoencephalitis and moderate virus replication in the upper respiratory tract, whereas the tanuki showed viral conjunctivitis and secondary bacterial infection in the eyes accompanied with visceral larva migrans. Viruses isolated from the fox and the tanuki were genetically closely related to those isolated from crows in the same garden. Various α2-3 sialosides were found in the respiratory tracts of these canid mammals, consistent with HPAIV infections in these animals. This study highlighted the importance of monitoring HPAIV infections in wild carnivore mammals to detect the potential virus spreading in nature.
Collapse
Affiliation(s)
- Takahiro Hiono
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan; International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, 001-0020, Japan
| | - Daiki Kobayashi
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan
| | - Atsushi Kobayashi
- Laboratory of Comparative Pathology, Department of Clinical Sciences, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, 060-0818, Japan; One Health Research Center, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan
| | - Tamami Suzuki
- Laboratory of Comparative Pathology, Department of Clinical Sciences, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, 060-0818, Japan
| | - Yuki Satake
- Laboratory of Comparative Pathology, Department of Clinical Sciences, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, 060-0818, Japan
| | - Rio Harada
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan
| | - Keita Matsuno
- One Health Research Center, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan; Division of Risk Analysis and Management, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, 001-0020, Japan; Division of International Research Promotion, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, 001-0020, Japan
| | - Mariko Sashika
- Laboratory of Wildlife Biology and Medicine, Department of Environmental Veterinary Science, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan
| | - Hinako Ban
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan
| | - Maya Kobayashi
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan
| | - Fumihito Takaya
- Botanic Garden, Field Science Center for Northern Biosphere (FSC), Hokkaido University, Sapporo, Hokkaido, 060-0003, Japan
| | - Hiroko Fujita
- Botanic Garden, Field Science Center for Northern Biosphere (FSC), Hokkaido University, Sapporo, Hokkaido, 060-0003, Japan
| | - Norikazu Isoda
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan; International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, 001-0020, Japan; One Health Research Center, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan
| | - Takashi Kimura
- Laboratory of Comparative Pathology, Department of Clinical Sciences, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, 060-0818, Japan
| | - Yoshihiro Sakoda
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan; International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, 001-0020, Japan; One Health Research Center, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan; Hokkaido University, Institute for Vaccine Research and Development (HU-IVReD), Sapporo, Hokkaido, 001-0021, Japan.
| |
Collapse
|
23
|
Bao P, Liu Y, Zhang X, Fan H, Zhao J, Mu M, Li H, Wang Y, Ge H, Li S, Yang X, Cui Q, Chen R, Gao L, Sun Z, Gao L, Qiu S, Liu X, Horby PW, Li X, Fang L, Liu W. Human infection with a reassortment avian influenza A H3N8 virus: an epidemiological investigation study. Nat Commun 2022; 13:6817. [PMID: 36357398 PMCID: PMC9649012 DOI: 10.1038/s41467-022-34601-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 10/24/2022] [Indexed: 11/12/2022] Open
Abstract
A four-year-old boy developed recurrent fever and severe pneumonia in April, 2022. High-throughput sequencing revealed a reassortant avian influenza A-H3N8 virus (A/Henan/ZMD-22-2/2022(H3N8) with avian-origin HA and NA genes. The six internal genes were acquired from Eurasian lineage H9N2 viruses. Molecular substitutions analysis revealed the haemagglutin retained avian-like receptor binding specificity but that PB2 genes possessed sequence changes (E627K) associated with increased virulence and transmissibility in mammalian animal models. The patient developed respiratory failure, liver, renal, coagulation dysfunction and sepsis. Endotracheal intubation and extracorporeal membrane oxygenation were administered. H3N8 RNA was detected from nasopharyngeal swab of a dog, anal swab of a cat, and environmental samples collected in the patient's house. The full-length HA sequences from the dog and cat were identical to the sequence from the patient. No influenza-like illness was developed and no H3N8 RNA was identified in family members. Serological testing revealed neutralizing antibody response against ZMD-22-2 virus in the patient and three family members. Our results suggest that a triple reassortant H3N8 caused severe human disease. There is some evidence of mammalian adaptation, possible via an intermediary mammalian species, but no evidence of person-to-person transmission. The potential threat from avian influenza viruses warrants continuous evaluation and mitigation.
Collapse
Affiliation(s)
- Pengtao Bao
- grid.414252.40000 0004 1761 8894The Eighth Medical Center of Chinese PLA General Hospital, Beijing, 100091 China
| | - Yang Liu
- grid.452891.3Zhumadian Central Hospital, Zhumadian, 463000 China
| | - Xiaoai Zhang
- grid.410740.60000 0004 1803 4911State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071 China
| | - Hang Fan
- grid.410740.60000 0004 1803 4911State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071 China
| | - Jie Zhao
- Zhumadian Second People’s Hospital, Zhumadian, 463000 China
| | - Mi Mu
- grid.414252.40000 0004 1761 8894The Eighth Medical Center of Chinese PLA General Hospital, Beijing, 100091 China
| | - Haiyang Li
- Shangcai Caizhou Hospital, Shangcai County, Zhumadian, 463800 China
| | - Yanhe Wang
- grid.410740.60000 0004 1803 4911State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071 China
| | - Honghan Ge
- grid.410740.60000 0004 1803 4911State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071 China
| | - Shuang Li
- grid.410740.60000 0004 1803 4911State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071 China
| | - Xin Yang
- grid.410740.60000 0004 1803 4911State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071 China
| | - Qianqian Cui
- grid.410749.f0000 0004 0577 6238Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, China
| | - Rui Chen
- grid.452891.3Zhumadian Central Hospital, Zhumadian, 463000 China
| | - Liang Gao
- grid.452891.3Zhumadian Central Hospital, Zhumadian, 463000 China
| | - Zhihua Sun
- grid.452891.3Zhumadian Central Hospital, Zhumadian, 463000 China
| | - Lizhen Gao
- grid.452891.3Zhumadian Central Hospital, Zhumadian, 463000 China
| | - Shuang Qiu
- grid.452891.3Zhumadian Central Hospital, Zhumadian, 463000 China
| | - Xuchun Liu
- grid.452891.3Zhumadian Central Hospital, Zhumadian, 463000 China
| | - Peter W. Horby
- grid.4991.50000 0004 1936 8948Pandemic Sciences Institute, University of Oxford, Oxford, UK
| | - Xiubin Li
- grid.414252.40000 0004 1761 8894The Eighth Medical Center of Chinese PLA General Hospital, Beijing, 100091 China ,grid.414252.40000 0004 1761 8894The Third Medical Center of Chinese PLA General Hospital, Beijing, 100039 China
| | - Liqun Fang
- grid.410740.60000 0004 1803 4911State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071 China
| | - Wei Liu
- grid.410740.60000 0004 1803 4911State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071 China ,grid.186775.a0000 0000 9490 772XSchool of Public Health, Anhui Medical University, Hefei, 230032 China
| |
Collapse
|
24
|
Sit TH, Sun W, Tse AC, Brackman CJ, Cheng SM, Tang AWY, Cheung JT, Peiris M, Poon LL. Novel Zoonotic Avian Influenza A(H3N8) Virus in Chicken, Hong Kong, China. Emerg Infect Dis 2022; 28:2009-2015. [PMID: 36037827 PMCID: PMC9514342 DOI: 10.3201/eid2810.221067] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Zoonotic and pandemic influenza continue to pose threats to global public health. Pandemics arise when novel influenza A viruses, derived in whole or in part from animal or avian influenza viruses, adapt to transmit efficiently in a human population that has little population immunity to contain its onward transmission. Viruses of previous pandemic concern, such as influenza A(H7N9), arose from influenza A(H9N2) viruses established in domestic poultry acquiring a hemagglutinin and neuraminidase from influenza A viruses of aquatic waterfowl. We report a novel influenza A(H3N8) virus in chicken that has emerged in a similar manner and that has been recently reported to cause zoonotic disease. Although they are H3 subtype, these avian viruses are antigenically distant from contemporary human influenza A(H3N2) viruses, and there is little cross-reactive immunity in the human population. It is essential to heighten surveillance for these avian A(H3N8) viruses in poultry and in humans.
Collapse
|
25
|
Adaptation of the H7N2 Feline Influenza Virus to Human Respiratory Cell Culture. Viruses 2022; 14:v14051091. [PMID: 35632832 PMCID: PMC9144431 DOI: 10.3390/v14051091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 11/17/2022] Open
Abstract
During 2016–2017, the H7N2 feline influenza virus infected more than 500 cats in animal shelters in New York, USA. A veterinarian who had treated the cats became infected with this feline virus and showed mild respiratory symptoms. This suggests that the H7N2 feline influenza virus may evolve into a novel pandemic virus with a high pathogenicity and transmissibility as a result of mutations in humans. In this study, to gain insight into the molecular basis of the transmission of the feline virus to humans, we selected mutant viruses with enhanced growth in human respiratory A549 cells via successive passages of the virus and found almost all mutations to be in the envelope glycoproteins, such as hemagglutinin (HA) and neuraminidase (NA). The reverse genetics approach revealed that the HA mutations, HA1-H16Q, HA2-I47T, or HA2-Y119H, in the stalk region can lead to a high growth of mutant viruses in A549 cells, possibly by changing the pH threshold for membrane fusion. Furthermore, NA mutation, I28S/L, or three-amino-acid deletion in the transmembrane region can enhance viral growth in A549 cells, possibly by changing the HA–NA functional balance. These findings suggest that the H7N2 feline influenza virus has the potential to become a human pathogen by adapting to human respiratory cells, owing to the synergistic biological effect of the mutations in its envelope glycoproteins.
Collapse
|
26
|
Abstract
Horses are the third major mammalian species, along with humans and swine, long known to be subject to acute upper respiratory disease from influenza A virus infection. The viruses responsible are subtype H7N7, which is believed extinct, and H3N8, which circulates worldwide. The equine influenza lineages are clearly divergent from avian influenza lineages of the same subtypes. Their genetic evolution and potential for interspecies transmission, as well as clinical features and epidemiology, are discussed. Equine influenza is spread internationally and vaccination is central to control efforts. The current mechanism of international surveillance and virus strain recommendations for vaccines is described.
Collapse
Affiliation(s)
- Thomas M Chambers
- Department of Veterinary Science, Maxwell H. Gluck Equine Research Center, University of Kentucky, Lexington, Kentucky 40546, USA
| |
Collapse
|
27
|
Klivleyeva NG, Glebova TI, Shamenova MG, Saktaganov NT. Influenza A viruses circulating in dogs: A review of the scientific literature. Open Vet J 2022; 12:676-687. [PMID: 36589407 PMCID: PMC9789762 DOI: 10.5455/ovj.2022.v12.i5.12] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/12/2022] [Indexed: 01/03/2023] Open
Abstract
Influenza A viruses (IAV) cause persistent epidemics and occasional human pandemics, leading to considerable economic losses. The ecology and epidemiology of IAV are very complex and the emergence of novel zoonotic pathogens is one of the greatest challenges in the healthcare. IAV are characterized by genetic and antigenic variability resulting from a combination of high mutation rates and a segmented genome that provides the ability to rapidly change and adapt to new hosts. In this context, available scientific evidence is of great importance for understanding the epidemiology and evolution of influenza viruses. The present review summarizes original research papers and IAV infections reported in dogs all over the world. Reports of interspecies transmission of equine influenza viruses H3N2 from birds to dogs, as well as double and triple reassortant strains resulting from reassortment of avian, human, and canine strains have amplified the genetic variety of canine influenza viruses. A total of 146 articles were deemed acceptable by PubMed and the Google Scholar database and were therefore included in this review. The largest number of research articles (n = 68) were published in Asia, followed by the Americas (n = 44), Europe (n = 31), Africa (n = 2), and Australia (n = 1). Publications are conventionally divided into three categories. The first category (largest group) included modern articles published from 2011 to the present (n = 93). The second group consisted of publications from 2000 to 2010 (n = 46). Single papers of 1919, 1931, 1963, 1972, 1975, and 1992 were also used, which was necessary to emphasize the history of the study of the ecology and evolution of the IAV circulating among various mammalian species. The largest number of publications occurred in 2010 (n = 18) and 2015 (n = 11), which is associated with IAV outbreaks observed at that time in the dog population in America, Europe, and Asia. In general, these findings raise concerns that dogs may mediate the adaptation of IAVs to zoonotic transmission and therefore serve as alternative hosts for genetic reassortment of these viruses. The global concern and significant threat to public health from the present coronavirus diseases 2019 pandemic confirms the necessity for active surveillance of zoonotic viral diseases with pandemic potential.
Collapse
Affiliation(s)
- Nailya G. Klivleyeva
- Corresponding Author: Nailya G. Klivleyeva. The Research and Production Center for Microbiology and Virology, Almaty, Republic of Kazakhstan.
| | | | | | | |
Collapse
|
28
|
Li Y, Zhang X, Liu Y, Feng Y, Wang T, Ge Y, Kong Y, Sun H, Xiang H, Zhou B, Fang S, Xia Q, Hu X, Sun W, Wang X, Meng K, Lv C, Li E, Xia X, He H, Gao Y, Jin N. Characterization of Canine Influenza Virus A (H3N2) Circulating in Dogs in China from 2016 to 2018. Viruses 2021; 13:v13112279. [PMID: 34835084 PMCID: PMC8618230 DOI: 10.3390/v13112279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 11/21/2022] Open
Abstract
Avian H3N2 influenza virus follows cross-host transmission and has spread among dogs in Asia since 2005. After 2015–2016, a new H3N2 subtype canine influenza epidemic occurred in dogs in North America and Asia. The disease prevalence was assessed by virological and serological surveillance in dogs in China. Herein, five H3N2 canine influenza virus (CIV) strains were isolated from 1185 Chinese canine respiratory disease samples in 2017–2018; these strains were on the evolutionary branch of the North American CIVs after 2016 and genetically far from the classical canine H3N2 strain discovered in China before 2016. Serological surveillance showed an HI antibody positive rate of 6.68%. H3N2 was prevalent in the coastal areas and northeastern regions of China. In 2018, it became the primary epidemic strain in the country. The QK01 strain of H3N2 showed high efficiency in transmission among dogs through respiratory droplets. Nevertheless, the virus only replicated in the upper respiratory tract and exhibited low pathogenicity in mice. Furthermore, highly efficient transmission by direct contact other than respiratory droplet transmission was found in a guinea pig model. The low-level replication in avian species other than ducks could not facilitate contact and airborne transmission in chickens. The current results indicated that a novel H3N2 virus has become a predominant epidemic strain in dogs in China since 2016 and acquired highly efficient transmissibility but could not be replicated in avian species. Thus, further monitoring is required for designing optimal immunoprophylactic tools for dogs and estimating the zoonotic risk of CIV in China.
Collapse
Affiliation(s)
- Yuanguo Li
- College of Veterinary Medicine, Jilin University, Changchun 130062, China;
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (X.Z.); (Y.F.); (T.W.); (Y.K.); (H.X.); (B.Z.); (S.F.); (Q.X.); (X.H.); (W.S.); (X.W.); (K.M.); (C.L.); (E.L.); (X.X.)
| | - Xinghai Zhang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (X.Z.); (Y.F.); (T.W.); (Y.K.); (H.X.); (B.Z.); (S.F.); (Q.X.); (X.H.); (W.S.); (X.W.); (K.M.); (C.L.); (E.L.); (X.X.)
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Yuxiu Liu
- National Research Center for Veterinary Medicine, Luoyang 471003, China;
| | - Ye Feng
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (X.Z.); (Y.F.); (T.W.); (Y.K.); (H.X.); (B.Z.); (S.F.); (Q.X.); (X.H.); (W.S.); (X.W.); (K.M.); (C.L.); (E.L.); (X.X.)
| | - Tiecheng Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (X.Z.); (Y.F.); (T.W.); (Y.K.); (H.X.); (B.Z.); (S.F.); (Q.X.); (X.H.); (W.S.); (X.W.); (K.M.); (C.L.); (E.L.); (X.X.)
| | - Ye Ge
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China;
| | - Yunyi Kong
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (X.Z.); (Y.F.); (T.W.); (Y.K.); (H.X.); (B.Z.); (S.F.); (Q.X.); (X.H.); (W.S.); (X.W.); (K.M.); (C.L.); (E.L.); (X.X.)
| | - Hongyu Sun
- College of Basic Medical Sciences, Jilin Medical University, Jilin 132013, China;
| | - Haiyang Xiang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (X.Z.); (Y.F.); (T.W.); (Y.K.); (H.X.); (B.Z.); (S.F.); (Q.X.); (X.H.); (W.S.); (X.W.); (K.M.); (C.L.); (E.L.); (X.X.)
| | - Bo Zhou
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (X.Z.); (Y.F.); (T.W.); (Y.K.); (H.X.); (B.Z.); (S.F.); (Q.X.); (X.H.); (W.S.); (X.W.); (K.M.); (C.L.); (E.L.); (X.X.)
| | - Shushan Fang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (X.Z.); (Y.F.); (T.W.); (Y.K.); (H.X.); (B.Z.); (S.F.); (Q.X.); (X.H.); (W.S.); (X.W.); (K.M.); (C.L.); (E.L.); (X.X.)
| | - Qing Xia
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (X.Z.); (Y.F.); (T.W.); (Y.K.); (H.X.); (B.Z.); (S.F.); (Q.X.); (X.H.); (W.S.); (X.W.); (K.M.); (C.L.); (E.L.); (X.X.)
| | - Xinyu Hu
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (X.Z.); (Y.F.); (T.W.); (Y.K.); (H.X.); (B.Z.); (S.F.); (Q.X.); (X.H.); (W.S.); (X.W.); (K.M.); (C.L.); (E.L.); (X.X.)
| | - Weiyang Sun
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (X.Z.); (Y.F.); (T.W.); (Y.K.); (H.X.); (B.Z.); (S.F.); (Q.X.); (X.H.); (W.S.); (X.W.); (K.M.); (C.L.); (E.L.); (X.X.)
| | - Xuefeng Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (X.Z.); (Y.F.); (T.W.); (Y.K.); (H.X.); (B.Z.); (S.F.); (Q.X.); (X.H.); (W.S.); (X.W.); (K.M.); (C.L.); (E.L.); (X.X.)
| | - Keyin Meng
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (X.Z.); (Y.F.); (T.W.); (Y.K.); (H.X.); (B.Z.); (S.F.); (Q.X.); (X.H.); (W.S.); (X.W.); (K.M.); (C.L.); (E.L.); (X.X.)
| | - Chaoxiang Lv
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (X.Z.); (Y.F.); (T.W.); (Y.K.); (H.X.); (B.Z.); (S.F.); (Q.X.); (X.H.); (W.S.); (X.W.); (K.M.); (C.L.); (E.L.); (X.X.)
| | - Entao Li
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (X.Z.); (Y.F.); (T.W.); (Y.K.); (H.X.); (B.Z.); (S.F.); (Q.X.); (X.H.); (W.S.); (X.W.); (K.M.); (C.L.); (E.L.); (X.X.)
| | - Xianzhu Xia
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (X.Z.); (Y.F.); (T.W.); (Y.K.); (H.X.); (B.Z.); (S.F.); (Q.X.); (X.H.); (W.S.); (X.W.); (K.M.); (C.L.); (E.L.); (X.X.)
| | - Hongbin He
- College of Life Science, Shandong Normal University, Jinan 250014, China
- Correspondence: (H.H.); (Y.G.); (N.J.)
| | - Yuwei Gao
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (X.Z.); (Y.F.); (T.W.); (Y.K.); (H.X.); (B.Z.); (S.F.); (Q.X.); (X.H.); (W.S.); (X.W.); (K.M.); (C.L.); (E.L.); (X.X.)
- Correspondence: (H.H.); (Y.G.); (N.J.)
| | - Ningyi Jin
- College of Veterinary Medicine, Jilin University, Changchun 130062, China;
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (X.Z.); (Y.F.); (T.W.); (Y.K.); (H.X.); (B.Z.); (S.F.); (Q.X.); (X.H.); (W.S.); (X.W.); (K.M.); (C.L.); (E.L.); (X.X.)
- Correspondence: (H.H.); (Y.G.); (N.J.)
| |
Collapse
|
29
|
Kessler S, Harder TC, Schwemmle M, Ciminski K. Influenza A Viruses and Zoonotic Events-Are We Creating Our Own Reservoirs? Viruses 2021; 13:v13112250. [PMID: 34835056 PMCID: PMC8624301 DOI: 10.3390/v13112250] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/04/2021] [Accepted: 11/06/2021] [Indexed: 01/16/2023] Open
Abstract
Zoonotic infections of humans with influenza A viruses (IAVs) from animal reservoirs can result in severe disease in individuals and, in rare cases, lead to pandemic outbreaks; this is exemplified by numerous cases of human infection with avian IAVs (AIVs) and the 2009 swine influenza pandemic. In fact, zoonotic transmissions are strongly facilitated by manmade reservoirs that were created through the intensification and industrialization of livestock farming. This can be witnessed by the repeated introduction of IAVs from natural reservoirs of aquatic wild bird metapopulations into swine and poultry, and the accompanied emergence of partially- or fully-adapted human pathogenic viruses. On the other side, human adapted IAV have been (and still are) introduced into livestock by reverse zoonotic transmission. This link to manmade reservoirs was also observed before the 20th century, when horses seemed to have been an important reservoir for IAVs but lost relevance when the populations declined due to increasing industrialization. Therefore, to reduce zoonotic events, it is important to control the spread of IAV within these animal reservoirs, for example with efficient vaccination strategies, but also to critically surveil the different manmade reservoirs to evaluate the emergence of new IAV strains with pandemic potential.
Collapse
Affiliation(s)
- Susanne Kessler
- Medical Center, Institute of Virology, University of Freiburg, 79104 Freiburg, Germany; (S.K.); (M.S.)
- Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Timm C. Harder
- Friedrich-Loeffler-Institut (FLI), Institute of Diagnostic Virology, 17493 Greifswald-Insel Riems, Germany;
| | - Martin Schwemmle
- Medical Center, Institute of Virology, University of Freiburg, 79104 Freiburg, Germany; (S.K.); (M.S.)
- Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Kevin Ciminski
- Medical Center, Institute of Virology, University of Freiburg, 79104 Freiburg, Germany; (S.K.); (M.S.)
- Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- Correspondence:
| |
Collapse
|
30
|
Wang Z, Ye S, Yao C, Wang J, Mao J, Xu L, Liu Y, Fu C, Lu G, Li S. Antiviral Activity of Canine RIG-I against Canine Influenza Virus and Interactions between Canine RIG-I and CIV. Viruses 2021; 13:v13102048. [PMID: 34696478 PMCID: PMC8540569 DOI: 10.3390/v13102048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 12/24/2022] Open
Abstract
RIG-I functions as a virus sensor that induces a cellular antiviral response. Although it has been investigated in other species, there have been no further studies to date on canine RIG-I against canine influenza virus (CIV). In the present study, we cloned the RIG-I gene of beagle dogs and characterized its expression, subcellular localization, antiviral response, and interactions with CIV proteins. RIG-I was highly expressed and mainly localized in the cytoplasm, with low levels detected in the nucleus. The results revealed that overexpression of the CARD domain of RIG-I and knockdown of RIG-I showed its ability to activate the RLR pathway and induced the expression of downstream interferon-stimulated genes. Moreover, overexpression of canine RIG-I suppressed the replication of CIV. The association between RIG-I and CIV was evaluated with the luciferase assay and by indirect immunofluorescence and bimolecular fluorescence complementation analyses. The results showed that CIV nonstructural protein 1 (NS1) can strongly suppress the RIG-I–mediated innate immune response, and the novel interactions between CIV matrix proteins (M1 and M2) and canine RIG-I were disclosed. These findings provide a basis for investigating the antiviral mechanism of canine RIG-I against CIV, which can lead to effective strategies for preventing CIV infection in dogs.
Collapse
Affiliation(s)
- Zhen Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.W.); (S.Y.); (C.Y.); (J.W.); (J.M.); (L.X.); (Y.L.); (G.L.)
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou 510642, China
- Guangdong Technological Engineering Research Center for Pet, South China Agricultural University, Guangzhou 510642, China
| | - Shaotang Ye
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.W.); (S.Y.); (C.Y.); (J.W.); (J.M.); (L.X.); (Y.L.); (G.L.)
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou 510642, China
- Guangdong Technological Engineering Research Center for Pet, South China Agricultural University, Guangzhou 510642, China
| | - Congwen Yao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.W.); (S.Y.); (C.Y.); (J.W.); (J.M.); (L.X.); (Y.L.); (G.L.)
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou 510642, China
- Guangdong Technological Engineering Research Center for Pet, South China Agricultural University, Guangzhou 510642, China
| | - Ji Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.W.); (S.Y.); (C.Y.); (J.W.); (J.M.); (L.X.); (Y.L.); (G.L.)
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou 510642, China
- Guangdong Technological Engineering Research Center for Pet, South China Agricultural University, Guangzhou 510642, China
| | - Jianwei Mao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.W.); (S.Y.); (C.Y.); (J.W.); (J.M.); (L.X.); (Y.L.); (G.L.)
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou 510642, China
- Guangdong Technological Engineering Research Center for Pet, South China Agricultural University, Guangzhou 510642, China
| | - Liang Xu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.W.); (S.Y.); (C.Y.); (J.W.); (J.M.); (L.X.); (Y.L.); (G.L.)
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou 510642, China
- Guangdong Technological Engineering Research Center for Pet, South China Agricultural University, Guangzhou 510642, China
| | - Yongbo Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.W.); (S.Y.); (C.Y.); (J.W.); (J.M.); (L.X.); (Y.L.); (G.L.)
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou 510642, China
- Guangdong Technological Engineering Research Center for Pet, South China Agricultural University, Guangzhou 510642, China
| | - Cheng Fu
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510642, China;
| | - Gang Lu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.W.); (S.Y.); (C.Y.); (J.W.); (J.M.); (L.X.); (Y.L.); (G.L.)
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou 510642, China
- Guangdong Technological Engineering Research Center for Pet, South China Agricultural University, Guangzhou 510642, China
| | - Shoujun Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.W.); (S.Y.); (C.Y.); (J.W.); (J.M.); (L.X.); (Y.L.); (G.L.)
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou 510642, China
- Guangdong Technological Engineering Research Center for Pet, South China Agricultural University, Guangzhou 510642, China
- Correspondence:
| |
Collapse
|
31
|
Frymus T, Belák S, Egberink H, Hofmann-Lehmann R, Marsilio F, Addie DD, Boucraut-Baralon C, Hartmann K, Lloret A, Lutz H, Pennisi MG, Thiry E, Truyen U, Tasker S, Möstl K, Hosie MJ. Influenza Virus Infections in Cats. Viruses 2021; 13:v13081435. [PMID: 34452300 PMCID: PMC8402716 DOI: 10.3390/v13081435] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/14/2021] [Accepted: 07/20/2021] [Indexed: 11/16/2022] Open
Abstract
In the past, cats were considered resistant to influenza. Today, we know that they are susceptible to some influenza A viruses (IAVs) originating in other species. Usually, the outcome is only subclinical infection or a mild fever. However, outbreaks of feline disease caused by canine H3N2 IAV with fever, tachypnoea, sneezing, coughing, dyspnoea and lethargy are occasionally noted in shelters. In one such outbreak, the morbidity rate was 100% and the mortality rate was 40%. Recently, avian H7N2 IAV infection occurred in cats in some shelters in the USA, inducing mostly mild respiratory disease. Furthermore, cats are susceptible to experimental infection with the human H3N2 IAV that caused the pandemic in 1968. Several studies indicated that cats worldwide could be infected by H1N1 IAV during the subsequent human pandemic in 2009. In one shelter, severe cases with fatalities were noted. Finally, the highly pathogenic avian H5N1 IAV can induce a severe, fatal disease in cats, and can spread via cat-to-cat contact. In this review, the Advisory Board on Cat Diseases (ABCD), a scientifically independent board of experts in feline medicine from 11 European countries, summarises current data regarding the aetiology, epidemiology, pathogenesis, clinical picture, diagnostics, and control of feline IAV infections, as well as the zoonotic risks.
Collapse
Affiliation(s)
- Tadeusz Frymus
- Department of Small Animal Diseases with Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences—SGGW, 02-787 Warsaw, Poland
- Correspondence:
| | - Sándor Belák
- Department of Biomedical Sciences and Veterinary Public Health (BVF), Swedish University of Agricultural Sciences (SLU), P.O. Box 7036, 750 07 Uppsala, Sweden;
| | - Herman Egberink
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, University of Utrecht, 3584 CL Utrecht, The Netherlands;
| | - Regina Hofmann-Lehmann
- Clinical Laboratory, Center for Clinical Studies, Department of Clinical Diagnostics and Services, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland; (R.H.-L.); (H.L.)
| | - Fulvio Marsilio
- Faculty of Veterinary Medicine, Università degli Studi di Teramo, 64100 Teramo, Italy;
| | | | | | - Katrin Hartmann
- Clinic of Small Animal Medicine, Centre for Clinical Veterinary Medicine, LMU Munich, 80539 Munich, Germany;
| | - Albert Lloret
- Fundació Hospital Clínic Veterinari, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain;
| | - Hans Lutz
- Clinical Laboratory, Center for Clinical Studies, Department of Clinical Diagnostics and Services, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland; (R.H.-L.); (H.L.)
| | - Maria Grazia Pennisi
- Dipartimento di Scienze Veterinarie, Università di Messina, 98168 Messina, Italy;
| | - Etienne Thiry
- Veterinary Virology and Animal Viral Diseases, FARAH Research Centre, Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, Liège University, B-4000 Liège, Belgium;
| | - Uwe Truyen
- Institute of Animal Hygiene and Veterinary Public Health, University of Leipzig, 04103 Leipzig, Germany;
| | - Séverine Tasker
- Bristol Veterinary School, University of Bristol, Bristol BS40 5DU, UK;
- Linnaeus Group, Shirley, Solihull B90 4BN, UK
| | - Karin Möstl
- Institute of Virology, Department for Pathobiology, University of Veterinary Medicine, 1210 Vienna, Austria;
| | - Margaret J. Hosie
- MRC—University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK;
| |
Collapse
|
32
|
Abdulrahman DA, Meng X, Veit M. S-Acylation of Proteins of Coronavirus and Influenza Virus: Conservation of Acylation Sites in Animal Viruses and DHHC Acyltransferases in Their Animal Reservoirs. Pathogens 2021; 10:669. [PMID: 34072434 PMCID: PMC8227752 DOI: 10.3390/pathogens10060669] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/17/2021] [Accepted: 05/25/2021] [Indexed: 01/21/2023] Open
Abstract
Recent pandemics of zoonotic origin were caused by members of coronavirus (CoV) and influenza A (Flu A) viruses. Their glycoproteins (S in CoV, HA in Flu A) and ion channels (E in CoV, M2 in Flu A) are S-acylated. We show that viruses of all genera and from all hosts contain clusters of acylated cysteines in HA, S and E, consistent with the essential function of the modification. In contrast, some Flu viruses lost the acylated cysteine in M2 during evolution, suggesting that it does not affect viral fitness. Members of the DHHC family catalyze palmitoylation. Twenty-three DHHCs exist in humans, but the number varies between vertebrates. SARS-CoV-2 and Flu A proteins are acylated by an overlapping set of DHHCs in human cells. We show that these DHHC genes also exist in other virus hosts. Localization of amino acid substitutions in the 3D structure of DHHCs provided no evidence that their activity or substrate specificity is disturbed. We speculate that newly emerged CoVs or Flu viruses also depend on S-acylation for replication and will use the human DHHCs for that purpose. This feature makes these DHHCs attractive targets for pan-antiviral drugs.
Collapse
Affiliation(s)
- Dina A. Abdulrahman
- Department of Virology, Animal Health Research Institute (AHRI), Giza 12618, Egypt;
| | - Xiaorong Meng
- Institute of Virology, Veterinary Faculty, Free University Berlin, 14163 Berlin, Germany;
| | - Michael Veit
- Institute of Virology, Veterinary Faculty, Free University Berlin, 14163 Berlin, Germany;
| |
Collapse
|
33
|
Nguyen TQ, Rollon R, Choi YK. Animal Models for Influenza Research: Strengths and Weaknesses. Viruses 2021; 13:1011. [PMID: 34071367 PMCID: PMC8228315 DOI: 10.3390/v13061011] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/26/2021] [Accepted: 05/26/2021] [Indexed: 12/16/2022] Open
Abstract
Influenza remains one of the most significant public health threats due to its ability to cause high morbidity and mortality worldwide. Although understanding of influenza viruses has greatly increased in recent years, shortcomings remain. Additionally, the continuous mutation of influenza viruses through genetic reassortment and selection of variants that escape host immune responses can render current influenza vaccines ineffective at controlling seasonal epidemics and potential pandemics. Thus, there is a knowledge gap in the understanding of influenza viruses and a corresponding need to develop novel universal vaccines and therapeutic treatments. Investigation of viral pathogenesis, transmission mechanisms, and efficacy of influenza vaccine candidates requires animal models that can recapitulate the disease. Furthermore, the choice of animal model for each research question is crucial in order for researchers to acquire a better knowledge of influenza viruses. Herein, we reviewed the advantages and limitations of each animal model-including mice, ferrets, guinea pigs, swine, felines, canines, and non-human primates-for elucidating influenza viral pathogenesis and transmission and for evaluating therapeutic agents and vaccine efficacy.
Collapse
Affiliation(s)
- Thi-Quyen Nguyen
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju 28644, Korea; (T.-Q.N.); (R.R.)
| | - Rare Rollon
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju 28644, Korea; (T.-Q.N.); (R.R.)
| | - Young-Ki Choi
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju 28644, Korea; (T.-Q.N.); (R.R.)
- Zoonotic Infectious Diseases Research Center, Chungbuk National University, Cheongju 28644, Korea
| |
Collapse
|
34
|
Zhao S, Schuurman N, Tieke M, Quist B, Zwinkels S, van Kuppeveld FJM, de Haan CAM, Egberink H. Serological Screening of Influenza A Virus Antibodies in Cats and Dogs Indicates Frequent Infection with Different Subtypes. J Clin Microbiol 2020; 58:e01689-20. [PMID: 32878956 PMCID: PMC7587082 DOI: 10.1128/jcm.01689-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 08/31/2020] [Indexed: 12/17/2022] Open
Abstract
Influenza A viruses (IAVs) infect humans and a variety of other animal species. Infections with some subtypes of IAV were also reported in domestic cats and dogs. In addition to animal health implications, close contact between companion animals and humans also poses a potential risk of zoonotic IAV infections. In this study, serum samples from different cat and dog cohorts were analyzed for IAV antibodies against seven IAV subtypes, using three distinctive IAV-specific assays differing in IAV subtype-specific discriminatory power and sensitivity. Enzyme-linked immunosorbent assays against the complete hemagglutinin (HA) ectodomain or the HA1 domain were used, as well as a novel nanoparticle-based, virus-free hemagglutination inhibition assay. Using these three assays, we found cat and dog sera from different cohorts to be positive for antibodies against one or more IAV subtypes and/or strains. Cat and dog serum samples collected after the 2009 pandemic H1N1 outbreak exhibit much higher seropositivity against H1 compared to samples from before 2009. Cat sera, furthermore, displayed higher reactivity for avian IAVs than dog sera. Our findings show the added value of using complementary serological assays, which are based on reactivity with different numbers of HA epitopes, to study IAV antibody responses and for improved serosurveillance of IAV infections. We conclude that infection of cats and dogs with both human and avian IAVs of different subtypes is prevalent. These observations highlight the role of cats and dogs in IAV ecology and indicate the potential of these companion animals to give rise to novel (reassorted) viruses with increased zoonotic potential.
Collapse
Affiliation(s)
- Shan Zhao
- Virology Section, Infectious Diseases and Immunology Division, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Nancy Schuurman
- Virology Section, Infectious Diseases and Immunology Division, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Malte Tieke
- Virology Section, Infectious Diseases and Immunology Division, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Berit Quist
- Virology Section, Infectious Diseases and Immunology Division, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Steven Zwinkels
- Virology Section, Infectious Diseases and Immunology Division, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Frank J M van Kuppeveld
- Virology Section, Infectious Diseases and Immunology Division, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Cornelis A M de Haan
- Virology Section, Infectious Diseases and Immunology Division, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Herman Egberink
- Virology Section, Infectious Diseases and Immunology Division, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|