1
|
Matz HC, Ellebedy AH. Vaccination against influenza viruses annually: Renewing or narrowing the protective shield? J Exp Med 2025; 222:e20241283. [PMID: 40272481 PMCID: PMC12020744 DOI: 10.1084/jem.20241283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/03/2025] [Accepted: 04/09/2025] [Indexed: 04/25/2025] Open
Abstract
Annual vaccines are recommended for the seasonal influenza virus. While yearly updates to the vaccine are necessary due to the constant evolution of influenza viruses, some studies have suggested repeat vaccination may result in a reduction in vaccine effectiveness in subsequent years. This review examines the available evidence that repeated annual influenza virus vaccination may have effects on future vaccine responses, and it synthesizes the available data with studies that may indicate potential immunological mechanisms underlying these effects. The goal is to examine the available literature to determine whether these mechanisms can be subverted to improve seasonal influenza virus vaccine efficacy.
Collapse
Affiliation(s)
- Hanover C. Matz
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Ali H. Ellebedy
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, St. Louis, MO, USA
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
2
|
Wang Q, Nie J, Liu Z, Chang Y, Wei Y, Yao X, Sun L, Liu X, Liu Q, Liang X, Zhang X, Zhang Y, Su W, Zhao Q, Shan Y, Wang Y, Cheng X, Shi Y. Induction of enhanced stem-directed neutralizing antibodies by HA2-16 ferritin nanoparticles with H3 influenza virus boost. NANOSCALE ADVANCES 2025; 7:2011-2020. [PMID: 39974341 PMCID: PMC11833233 DOI: 10.1039/d4na00964a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 01/27/2025] [Indexed: 02/21/2025]
Abstract
Current seasonal influenza vaccines offer limited protection against influenza viruses due to genetic drift. The urgent need for a universal influenza vaccine to combat highly mutated strains is evident. This study utilized the conserved HA2 subunit of hemagglutinin (HA) and a short linear epitope of HA2 (HA2-16) from the H3 influenza virus to conjugate with ferritin, resulting in the construction of recombinant immunogens termed HA2-F and HA2-16-F, respectively. In vitro characterization confirmed the self-assembly of prokaryotically expressed HA2-F and HA2-16-F into nanoparticles (NPs). To simulate natural virus infection in the vaccinated population, intranasal infection with the whole H3N2 virus was administered as a final boost. Enhanced binding activity to A/Hong Kong/4801/2014 (H3N2) and A/17/California/2009/38 (H1N1) virus was detected in the HA2-16 group induced by the A/Wisconsin/67/2005 (H3N2) virus boost (Titer >104). Furthermore, higher titers of neutralizing antibodies were elicited by HA2-16-F NP (ID50: 50.4-631.0) compared to those by HA2-F NP (ID50: 20.3-178.2). These results demonstrated that the H3N2 virus boost focused the antibody response on the HA2-16 epitope. Additionally, our immunization strategy was found to reduce serum ferritin reactive antibodies. In summary, HA2-16 not only holds promise as a vaccine candidate but also exhibits significant potential for influenza vaccine production, particularly in enhancing the levels of induced stem-directed antibodies. This study contributes to the development of recombinant immunogens for improved influenza vaccine efficacy.
Collapse
Affiliation(s)
- Qingyu Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University Changchun Jilin 130012 China
| | - Jiaojiao Nie
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University Changchun Jilin 130012 China
| | - Zejinxuan Liu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University Changchun Jilin 130012 China
| | - Yaotian Chang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University Changchun Jilin 130012 China
| | - Yangang Wei
- MTM Biotechnology Ltd Zhongshan Guangdong 528437 China
| | - Xin Yao
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University Changchun Jilin 130012 China
| | - Lulu Sun
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University Changchun Jilin 130012 China
| | - Xiaoxi Liu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University Changchun Jilin 130012 China
| | - Qicheng Liu
- High School Attached to Northeast Normal University Changchun Jilin 130012 China
| | - Xinyu Liang
- High School Attached to Northeast Normal University Changchun Jilin 130012 China
| | - Xinran Zhang
- High School Attached to Northeast Normal University Changchun Jilin 130012 China
| | - Yong Zhang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University Changchun Jilin 130012 China
| | - Weiheng Su
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University Changchun Jilin 130012 China
| | - Qi Zhao
- Faculty of Health Sciences, University of Macau Taipa Macau China
- MoE Frontiers Science Center for Precision Oncology, University of Macau Taipa Macau SAR China
| | - Yaming Shan
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University Changchun Jilin 130012 China
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University Changchun Jilin 130012 China
| | - Yingwu Wang
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University Changchun Jilin 130012 China
| | - Xianbin Cheng
- Department of Thyroid Surgery, The Second Hospital of Jilin University Changchun China
| | - Yuhua Shi
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University Changchun Jilin 130012 China
| |
Collapse
|
3
|
Cancro MP. B cells and aging: a historical perspective. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025:vkaf025. [PMID: 40107285 DOI: 10.1093/jimmun/vkaf025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 01/21/2025] [Indexed: 03/22/2025]
Affiliation(s)
- Michael P Cancro
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
4
|
Yao J, Xie B, Ding X, Yu H, Lin T, Duan J, Zhang X, Ling P, Zhao F. Tp40: a new potential prognostic and diagnostic marker for syphilis. Microbiol Spectr 2025; 13:e0279924. [PMID: 39932281 DOI: 10.1128/spectrum.02799-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 12/23/2024] [Indexed: 03/05/2025] Open
Abstract
The characterization of Treponema pallidum proteins is of great significance for the study of the prevention, diagnosis, and pathogenesis of syphilis. The structures and functions of many T. pallidum proteins, including the Tp40 (Tp0134) protein, remain unknown. To explore the expression pattern of the Tp40 protein within T. pallidum, we established an animal model of syphilis infection to compare the variations in serum Tp40 antibody levels between Live and Inactivated Tp groups. The results indicated that the absorbance of Tp40-enzyme-linked immunosorbent assay (ELISA) did not increase in the Inactivated group and the Untreated group, but it increased in the Live Tp infection group, suggesting that the Tp40 protein is an in vivo-induced antigen that is only actively expressed during infection. In addition, the localization of the Tp40 protein was determined by the gel microdrop method. We found that Tp40 may be a transmembrane protein with a signaling peptide present in the intima periplasm of T. pallidum. Finally, 468 patients' sera were collected for diagnostic value evaluation. Tp40-ELISA, LZ-ELISA, and Shanghai Kehua rapid plasma reagin (RPR) reagent kit showed a high degree of consistency in 468 serum samples. This suggests that Tp40 could be a valuable diagnostic antigen. The results of this study provide a new reference for the study of the pathogenesis, protein function, and diagnosis of syphilis. IMPORTANCE In recent years, syphilis, as a chronic infectious disease, has once again attracted much attention. Treponema pallidum exhibits remarkable infectivity, concealment, and aggressiveness, posing considerable challenges to its prevention and control. The underlying pathogenic mechanisms remain elusive, and during the infection process, the roles of numerous proteins are still unclear. Through protein characterization in this study, it was found that the Tp40 protein is highly likely to be a transmembrane protein with a signal peptide and may be located in the periplasm. Besides, based on experiments with animal models and the detection of human serum samples, we believe that the Tp40 protein is a potential in vivo-induced antigen of T. pallidum that can be used for serological diagnosis of syphilis. This study conducted a preliminary exploration of the Tp40 protein and provided a meaningful reference for further exploration of the functional mechanism of the Tp40 protein and its significance in clinical diagnosis.
Collapse
Affiliation(s)
- Jiangchen Yao
- MOE Key Lab of Rare Pediatric Diseases&Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, Hengyang Medical College, University of South China, Hengyang, China
| | - Bibo Xie
- MOE Key Lab of Rare Pediatric Diseases&Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, Hengyang Medical College, University of South China, Hengyang, China
| | - Xuan Ding
- MOE Key Lab of Rare Pediatric Diseases&Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, Hengyang Medical College, University of South China, Hengyang, China
| | - Han Yu
- MOE Key Lab of Rare Pediatric Diseases&Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, Hengyang Medical College, University of South China, Hengyang, China
| | - Ting Lin
- MOE Key Lab of Rare Pediatric Diseases&Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, Hengyang Medical College, University of South China, Hengyang, China
| | - Junxia Duan
- Department of Clinical Laboratory Medicine, The Central Hospital of Shaoyang, Shaoyang City, China
| | - Xiaohong Zhang
- MOE Key Lab of Rare Pediatric Diseases&Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, Hengyang Medical College, University of South China, Hengyang, China
| | - Peng Ling
- Department of Critical Care Medicine, The Central Hospital of Shaoyang, Shaoyang City, China
| | - Feijun Zhao
- MOE Key Lab of Rare Pediatric Diseases&Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, Hengyang Medical College, University of South China, Hengyang, China
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, China
- Department of Clinical Laboratory Medicine, Changsha Central Hospital, Changsha, China
| |
Collapse
|
5
|
Murugaiah V, Watson SJ, Cunliffe RF, Temperton NJ, Reece ST, Kellam P, Tregoning JS. A Transgenic Mouse With a Humanized B-Cell Repertoire Mounts an Antibody Response to Influenza Infection and Vaccination. J Infect Dis 2025; 231:e299-e307. [PMID: 39317662 PMCID: PMC11841647 DOI: 10.1093/infdis/jiae472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/16/2024] [Accepted: 09/21/2024] [Indexed: 09/26/2024] Open
Abstract
The development of a universal influenza vaccine likely requires an understanding of previous exposure to influenza virus (through vaccination or infection) and how that shapes the antibody repertoire to vaccination, sometimes called original antigenic sin or antigenic imprinting. While animal models can have a much more defined exposure history, they lack a human B-cell repertoire. Transgenic mice with the complete human immunoglobulin locus enable studies of controlled infection history leading to human-like antibody evolution. Here we evaluated responses to influenza in the Intelliselect transgenic mouse (the Kymouse). We show the Kymouse is susceptible to disease following infection with either H1N1, H3N2, or B/Yamagata influenza viruses and that it induces a robust binding and neutralizing antibody response to all 3 strains of influenza virus. This study demonstrates that human B-cell repertoire mice can be used for influenza virus studies, providing a tool for further interrogation of the antibody response.
Collapse
MESH Headings
- Animals
- Mice, Transgenic
- B-Lymphocytes/immunology
- Influenza Vaccines/immunology
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Humans
- Mice
- Orthomyxoviridae Infections/immunology
- Orthomyxoviridae Infections/prevention & control
- Orthomyxoviridae Infections/virology
- Influenza B virus/immunology
- Influenza A Virus, H1N1 Subtype/immunology
- Disease Models, Animal
- Influenza A Virus, H3N2 Subtype/immunology
- Influenza, Human/immunology
- Influenza, Human/prevention & control
- Antibodies, Neutralizing/blood
- Antibodies, Neutralizing/immunology
- Vaccination
- Antibody Formation
Collapse
Affiliation(s)
- Valarmathy Murugaiah
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Simon J Watson
- Kymab, a Sanofi Company, Babraham Research Campus, Cambridge, United Kingdom
| | - Robert F Cunliffe
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Nigel J Temperton
- Viral Pseudotype Unit, University of Kent and Greenwich, Chatham, United Kingdom
| | - Stevo T Reece
- Kymab, a Sanofi Company, Babraham Research Campus, Cambridge, United Kingdom
| | - Paul Kellam
- Department of Infectious Disease, Imperial College London, London, United Kingdom
- Kymab, a Sanofi Company, Babraham Research Campus, Cambridge, United Kingdom
| | - John S Tregoning
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| |
Collapse
|
6
|
Keay S, Alberts F, O’Connor AM, Friendship R, O’Sullivan T, Poljak Z. The case for development of a core outcome set (COS) and supplemental reporting guidelines for influenza vaccine challenge trial research in swine. Front Vet Sci 2025; 12:1465926. [PMID: 40007748 PMCID: PMC11851948 DOI: 10.3389/fvets.2025.1465926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 01/27/2025] [Indexed: 02/27/2025] Open
Abstract
Previously, we systematically reviewed more than 20 years of influenza vaccine challenge trial research in pigs to answer the question, "does vaccinating sows protect offspring?" Overall, most studies were well designed but clinical heterogeneity made between-study comparisons challenging. Studies varied by samples, outcomes, and assays selected for measurement. Additionally, data essential for inclusion of findings in meta-analyses were often insufficiently reported and as a result, summary effect measures were either not derived or were not meaningful. Clinical heterogeneity and reporting issues complicate and limit what can be learned cumulatively from research and both represent two types of avoidable research waste. Here, we illustrate each concern using data collected tangentially during the systematic review and propose two corrective strategies, both of which have broad applicability across veterinary intervention research; (i) develop a Core Outcome Set (COS) to reduce unnecessary clinical heterogeneity in future research and (ii) encourage funders and journal editors to require submitted research protocols and manuscripts adhere to established reporting guidelines. As a reporting corollary, we developed a supplemental checklist specific to influenza vaccine challenge trial research in swine and propose that it is completed by researchers and included with all study protocol and manuscript submissions. The checklist serves two purposes: as a reminder of details essential to report for inclusion of findings in meta-analyses and sub-group meta-analyses (e.g., antigenic or genomic descriptions of influenza vaccine and challenge viruses), and as an aid to help synthesis researchers fully characterize and comprehensively include studies in reviews.
Collapse
Affiliation(s)
- Sheila Keay
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Famke Alberts
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Annette M. O’Connor
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
| | - Robert Friendship
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Terri O’Sullivan
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Zvonimir Poljak
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
7
|
Lv H, Teo QW, Lee CCD, Liang W, Choi D, Mao KJ, Ardagh MR, Gopal AB, Mehta A, Szlembarski M, Bruzzone R, Wilson IA, Wu NC, Mok CKP. Differential antigenic imprinting effects between influenza H1N1 hemagglutinin and neuraminidase in a mouse model. J Virol 2025; 99:e0169524. [PMID: 39636110 PMCID: PMC11784018 DOI: 10.1128/jvi.01695-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 11/10/2024] [Indexed: 12/07/2024] Open
Abstract
Understanding how immune history influences influenza immunity is essential for developing effective vaccines and therapeutic strategies. This study examines the antigenic imprinting of influenza hemagglutinin (HA) and neuraminidase (NA) using a mouse model with sequential infections by H1N1 virus strains exhibiting substantial antigenic differences in HA. In our pre-2009 influenza infection model, we observed that mice with more extensive infection histories produced higher levels of functional NA-inhibiting antibodies (NAI). However, following further infection with the 2009 pandemic H1N1 strain, these mice demonstrated a reduced NAI to the challenged virus. Interestingly, prior exposure to older strains resulted in a lower HA antibody response (neutralization and HAI) to the challenged virus in both pre- and post-2009 scenarios, potentially due to faster viral clearance facilitated by immune memory recall. Overall, our findings reveal distinct trajectories in HA and NA immune responses, suggesting that immune imprinting can differentially impact these proteins based on the extent of antigenic variation in influenza viruses. IMPORTANCE Influenza viruses continue to pose a significant threat to human health, with vaccine effectiveness remaining a persistent challenge. Individual immune history is a crucial factor that can influence antibody responses to subsequent influenza exposures. While many studies have explored how pre-existing antibodies shape the induction of anti-HA antibodies following influenza virus infections or vaccinations, the impact on anti-NA antibodies has been less extensively studied. Using a mouse model, our study demonstrates that within pre-2009 H1N1 strains, an extensive immune history negatively impacted anti-HA antibody responses but enhanced anti-NA antibody responses. However, in response to the 2009 pandemic H1N1 strain, which experienced an antigenic shift, both anti-HA and anti-NA antibody responses were hindered by antibodies from prior pre-2009 H1N1 virus infections. These findings provide important insights into how antigenic imprinting affects both anti-HA and anti-NA antibody responses and underscore the need to consider immune history in developing more effective influenza vaccination strategies.
Collapse
MESH Headings
- Animals
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza A Virus, H1N1 Subtype/genetics
- Neuraminidase/immunology
- Neuraminidase/genetics
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Mice
- Antibodies, Viral/immunology
- Antibodies, Viral/blood
- Disease Models, Animal
- Orthomyxoviridae Infections/immunology
- Orthomyxoviridae Infections/virology
- Female
- Humans
- Mice, Inbred BALB C
- Influenza Vaccines/immunology
- Antigens, Viral/immunology
- Antibodies, Neutralizing/immunology
- Influenza, Human/immunology
- Influenza, Human/virology
- Antigenic Variation
Collapse
Affiliation(s)
- Huibin Lv
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Qi Wen Teo
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Chang-Chun D. Lee
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, California, USA
| | - Weiwen Liang
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Centre for Immunology & Infection, Hong Kong Science Park, Hong Kong, China
| | - Danbi Choi
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Kevin J. Mao
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Madison R. Ardagh
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Akshita B. Gopal
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Arjun Mehta
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Matt Szlembarski
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Roberto Bruzzone
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Centre for Immunology & Infection, Hong Kong Science Park, Hong Kong, China
- Istituto Pasteur Italia, Rome, Italy
| | - Ian A. Wilson
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, California, USA
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Nicholas C. Wu
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Chris K. P. Mok
- The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- S.H. Ho Research Centre for Infectious Diseases, The Chinese University of Hong Kong, Hong Kong, China
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
8
|
Alyokhin AV, Rosenthal BM, Weber DC, Baker MB. Towards a unified approach in managing resistance to vaccines, drugs, and pesticides. Biol Rev Camb Philos Soc 2025. [PMID: 39807648 DOI: 10.1111/brv.13174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 12/05/2024] [Accepted: 12/10/2024] [Indexed: 01/16/2025]
Abstract
Everywhere, pests and pathogens evolve resistance to our control efforts, impairing human health and welfare. Developing sustainable solutions to this problem requires working with evolved immune and ecological systems, rather than against these evolutionary forces. We advocate a transdisciplinary approach to resistance based on an evolutionary foundation informed by the concepts of integrated pest management and One Health. Diverse, multimodal management approaches create a more challenging environment for the evolution of resistance. Given our permanent evolutionary and ecological relationships with pests and pathogens, responses to most biological threats to health and agriculture should seek sustainable harm reduction rather than eradication.
Collapse
Affiliation(s)
- Andrei V Alyokhin
- School of Biology and Ecology, University of Maine, 5722 Dering Hall, Orono, 04469, Maine, USA
| | - Benjamin M Rosenthal
- Animal Parasitic Diseases Laboratory, Agricultural Research Service, US Department of Agriculture, 10300 Baltimore Avenue, Beltsville, 20705, Maryland, USA
| | - Donald C Weber
- Invasive Insect Biocontrol and Behaviour Laboratory, Agricultural Research Service, US Department of Agriculture, 10300 Baltimore Avenue, Beltsville, 20705, Maryland, USA
| | - Mitchell B Baker
- Biology Department, Queens College, City University of New York, 149th St, Flushing, 11367, New York, USA
| |
Collapse
|
9
|
Xu Z, Peng Q, Xu J, Zhang H, Song J, Wei D, Zeng Q. Dynamic modeling of antibody repertoire reshaping in response to viral infections. Comput Biol Med 2025; 184:109475. [PMID: 39616881 DOI: 10.1016/j.compbiomed.2024.109475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 11/09/2024] [Accepted: 11/24/2024] [Indexed: 12/22/2024]
Abstract
For decades, research has largely focused on the generation of high-affinity, antigen-specific antibodies during viral infections. This emphasis has made it challenging for immunologists to systematically evaluate the mechanisms initiating humoral immunity in specific immune responses. In this study, we employ ordinary differential equations (ODE) to investigate the dynamic reshaping of the entire antibody repertoire in response to viral infections. Our findings demonstrate that the host's antibody atlas undergoes significant restructuring during these infections by the selective expansion of antibody pools with strong binding activity. The simulation results indicate that the ELISA (Enzyme-Linked Immunosorbent Assay) outcomes do not directly reflect the levels of specific neutralizing antibodies, but rather represent a quantitative response of the reshaped antibody repertoire following infection. Our model transcends traditional theories of immune memory, providing an explanation for the sustained presence of specific antibodies in the human body in long term. Additionally, our model extends to explore the mechanistic basis of the original antigenic sin, providing practical applications of our framework. One important application of this model is that it indicates that antibodies with a faster forward binding rate are more effective in preventing and treating associated viral infections compared to those with higher binding affinity.
Collapse
Affiliation(s)
- Zhaobin Xu
- Department of Life Science, Dezhou University, Dezhou 253023, China.
| | - Qingzhi Peng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Junxiao Xu
- Department of Life Science, Dezhou University, Dezhou 253023, China
| | - Hongmei Zhang
- Department of Life Science, Dezhou University, Dezhou 253023, China
| | - Jian Song
- Department of Life Science, Dezhou University, Dezhou 253023, China
| | - Dongqing Wei
- State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Joint International Research Laboratory of Metabolic & Developmental Sciences and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, China; Zhongjing Research and Industrialization Institute of Chinese Medicine, Zhongguancun Scientific Park, Meixi, Nanyang, Henan, 473006, China; Peng Cheng National Laboratory, Vanke Cloud City Phase I Building 8, Xili Street, Nashan District, Shenzhen, Guangdong, 518055, China
| | - Qiangcheng Zeng
- Department of Life Science, Dezhou University, Dezhou 253023, China
| |
Collapse
|
10
|
Maltseva M, Keeshan A, Cooper C, Langlois MA. Immune imprinting: The persisting influence of the first antigenic encounter with rapidly evolving viruses. Hum Vaccin Immunother 2024; 20:2384192. [PMID: 39149872 PMCID: PMC11328881 DOI: 10.1080/21645515.2024.2384192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/08/2024] [Accepted: 07/21/2024] [Indexed: 08/17/2024] Open
Abstract
Immune imprinting is a phenomenon that stems from the fundamentals of immunological memory. Upon recurrent exposures to an evolving pathogen, the immune system must weigh the benefits of rapidly recalling established antibody repertoires with greater affinity to the initial variant or invest additional time and energy in producing de novo responses specific to the emerging variant. In this review, we delve into the mechanistic complexities of immune imprinting and its role in shaping subsequent immune responses, both de novo and recall, against rapidly evolving respiratory viruses such as influenza and coronaviruses. By exploring the duality of immune imprinting, we examine its potential to both enhance or hinder immune protection against disease, while emphasizing the role of host and viral factors. Finally, we explore how different vaccine platforms may affect immune imprinting and comment on vaccine strategies that can favor de novo variant-specific antibody responses.
Collapse
Affiliation(s)
- Mariam Maltseva
- Department of Biochemistry, Microbiology & Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Alexa Keeshan
- School of Epidemiology and Public Health, University of Ottawa Faculty of Medicine, Ottawa, ON, Canada
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Curtis Cooper
- School of Epidemiology and Public Health, University of Ottawa Faculty of Medicine, Ottawa, ON, Canada
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Medicine, University of Ottawa, Ottawa, ON, Canada
- Division of Infectious Diseases, Ottawa Hospital Research Institute Clinical Epidemiology Program, Ottawa, ON, Canada
| | - Marc-André Langlois
- Department of Biochemistry, Microbiology & Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
- Center for Infection, Immunity, and Inflammation (CI3), University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
11
|
Mallajosyula V, Chakraborty S, Sola E, Fong RF, Shankar V, Gao F, Burrell AR, Gupta N, Wagar LE, Mischel PS, Capasso R, Staat MA, Chien YH, Dekker CL, Wang TT, Davis MM. Coupling antigens from multiple subtypes of influenza can broaden antibody and T cell responses. Science 2024; 386:1389-1395. [PMID: 39700292 PMCID: PMC12036609 DOI: 10.1126/science.adi2396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/29/2024] [Accepted: 11/08/2024] [Indexed: 12/21/2024]
Abstract
The seasonal influenza vaccine contains strains of viruses from distinct subtypes that are grown independently and then combined. However, most individuals exhibit a more robust response to one of these strains and thus are vulnerable to infection by others. By studying a monozygotic twin cohort, we found that although prior exposure is a factor, host genetics are a stronger driver of subtype bias to influenza viral strains. We found that covalent coupling of heterologous hemagglutinin (HA) from different viral strains could largely eliminate subtype bias in an animal model and in a human tonsil organoid system. We proposed that coupling of heterologous antigens improves antibody responses across influenza strains by broadening T cell help, and we found that using this approach substantially improved the antibody response to avian influenza HA.
Collapse
MESH Headings
- Animals
- Female
- Humans
- Male
- Mice
- Antibodies, Viral/immunology
- Antibody Formation/immunology
- Antigens, Viral/immunology
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Influenza A virus/immunology
- Influenza A virus/genetics
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza A Virus, H1N1 Subtype/genetics
- Influenza Vaccines/immunology
- Influenza, Human/immunology
- Influenza, Human/prevention & control
- Influenza, Human/virology
- Palatine Tonsil/immunology
- Palatine Tonsil/virology
- CD4-Positive T-Lymphocytes/immunology
- Organoids/immunology
- Organoids/virology
- Mice, Inbred C57BL
Collapse
Affiliation(s)
- Vamsee Mallajosyula
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Saborni Chakraborty
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Medicine, Division of Infectious Diseases, Stanford University, Stanford, CA 94305, USA
| | - Elsa Sola
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ryan Furuichi Fong
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Vishnu Shankar
- Program in Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Fei Gao
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Allison R. Burrell
- Department of Pediatrics, Division of Infectious Diseases, University of Cincinnati College of Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45220, USA
| | - Neha Gupta
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lisa E. Wagar
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697, USA
| | - Paul S. Mischel
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA 94305, USA
| | - Robson Capasso
- Division of Sleep Surgery, Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Mary A. Staat
- Department of Pediatrics, Division of Infectious Diseases, University of Cincinnati College of Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45220, USA
| | - Yueh-Hsiu Chien
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Cornelia L. Dekker
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Taia T. Wang
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Medicine, Division of Infectious Diseases, Stanford University, Stanford, CA 94305, USA
| | - Mark M. Davis
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA
| |
Collapse
|
12
|
Lam N, Lee Y, Farber DL. A guide to adaptive immune memory. Nat Rev Immunol 2024; 24:810-829. [PMID: 38831162 DOI: 10.1038/s41577-024-01040-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2024] [Indexed: 06/05/2024]
Abstract
Immune memory - comprising T cells, B cells and plasma cells and their secreted antibodies - is crucial for human survival. It enables the rapid and effective clearance of a pathogen after re-exposure, to minimize damage to the host. When antigen-experienced, memory T cells become activated, they proliferate and produce effector molecules at faster rates and in greater magnitudes than antigen-inexperienced, naive cells. Similarly, memory B cells become activated and differentiate into antibody-secreting cells more rapidly than naive B cells, and they undergo processes that increase their affinity for antigen. The ability of T cells and B cells to form memory cells after antigen exposure is the rationale behind vaccination. Understanding immune memory not only is crucial for the design of more-efficacious vaccines but also has important implications for immunotherapies in infectious disease and cancer. This 'guide to' article provides an overview of the current understanding of the phenotype, function, location, and pathways for the generation, maintenance and protective capacity of memory T cells and memory B cells.
Collapse
Affiliation(s)
- Nora Lam
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - YoonSeung Lee
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Donna L Farber
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Surgery, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
13
|
Rella SA, Kulikova YA, Minnegalieva AR, Kondrashov FA. Complex vaccination strategies prevent the emergence of vaccine resistance. Evolution 2024; 78:1722-1738. [PMID: 38990788 DOI: 10.1093/evolut/qpae106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 06/22/2024] [Accepted: 07/10/2024] [Indexed: 07/13/2024]
Abstract
Vaccination is the most effective tool to control infectious diseases. However, the evolution of vaccine resistance, exemplified by vaccine resistance in SARS-CoV-2, remains a concern. Here, we model complex vaccination strategies against a pathogen with multiple epitopes-molecules targeted by the vaccine. We found that a vaccine targeting one epitope was ineffective in preventing vaccine escape. Vaccine resistance in highly infectious pathogens was prevented by the full-epitope vaccine, that is, one targeting all available epitopes, but only when the rate of pathogen evolution was low. Strikingly, a bet-hedging strategy of random administration of vaccines targeting different epitopes was the most effective in preventing vaccine resistance in pathogens with the low rate of infection and high rate of evolution. Thus, complex vaccination strategies, when biologically feasible, may be preferable to the currently used single-vaccine approaches for long-term control of disease outbreaks, especially when applied to livestock with near 100% vaccination rates.
Collapse
Affiliation(s)
- Simon A Rella
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Yuliya A Kulikova
- International Institute for Applied Systems Analysis, Laxenburg, Austria
- Okinawa Institute of Science and Technology, Okinawa, Japan
| | | | | |
Collapse
|
14
|
Ding X, Zhao F, Liu Z, Yao J, Yu H, Zhang X. Original antigenic sin: A potential double-edged effect for vaccine improvement. Biomed Pharmacother 2024; 178:117187. [PMID: 39084082 DOI: 10.1016/j.biopha.2024.117187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 08/02/2024] Open
Abstract
Original antigenic sin (OAS) influences the immune response to subsequent infections with related variants following initial pathogen exposure. This phenomenon is characterized by cross-reactivity, which, although it may worsen infections, also provides a degree of protection against immune evasion caused by variations. This paradox complicates the development of creating universal vaccinations, as they frequently show diminished effectiveness against these emerging variants. This review aims to elucidate the diverse impacts of OAS on the immune response to various infections, emphasizing the complicated balance between beneficial and harmful outcomes. Moreover, we evaluate the influence of adjuvants and other variables on the extent of OAS, hence affecting the effectiveness of vaccines. Understanding the mechanisms of OAS that cause persistent infections and evasion of the immune system is crucial for the developing innovative vaccines. And it has significant potential for clinical applications.
Collapse
Affiliation(s)
- Xuan Ding
- MOE Key Lab of Rare Pediatric Diseases &Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, Hengyang Medical College, University of South China, Hengyang 421001, PR China
| | - Feijun Zhao
- MOE Key Lab of Rare Pediatric Diseases &Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, Hengyang Medical College, University of South China, Hengyang 421001, PR China; Laboratory Medicine Center, the First Affiliated Hospital of University of South ChinaHengyang 421001, PR China
| | - Zhaoping Liu
- MOE Key Lab of Rare Pediatric Diseases &Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, Hengyang Medical College, University of South China, Hengyang 421001, PR China
| | - Jiangchen Yao
- MOE Key Lab of Rare Pediatric Diseases &Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, Hengyang Medical College, University of South China, Hengyang 421001, PR China
| | - Han Yu
- MOE Key Lab of Rare Pediatric Diseases &Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, Hengyang Medical College, University of South China, Hengyang 421001, PR China
| | - Xiaohong Zhang
- MOE Key Lab of Rare Pediatric Diseases &Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, Hengyang Medical College, University of South China, Hengyang 421001, PR China.
| |
Collapse
|
15
|
Binayke A, Zaheer A, Vishwakarma S, Sharma P, Dandotiya J, Raghavan S, Gosain M, Singh S, Chattopadhyay S, Kaushal J, Madan U, Kshetrapal P, Batra G, Wadhwa N, Pandey AK, Bhatnagar S, Garg PK, Awasthi A. Understanding the landscape of the SARS-CoV-2-specific T cells post-omicron surge. J Med Virol 2024; 96:e29877. [PMID: 39169721 DOI: 10.1002/jmv.29877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/24/2024] [Accepted: 08/13/2024] [Indexed: 08/23/2024]
Abstract
Emerging evidence shows increased humoral response post-omicron surge, but research on T cell responses is limited. This study investigated the durability, magnitude, and breadth of SARS-CoV-2-spike-specific T cell responses in 216 two-dose vaccinated individuals pre- and post-omicron surge. Post-surge samples showed enhanced T cell responses, indicating widespread asymptomatic exposure to omicron. Further analysis of 105 individuals with multiple exposures to SARS-CoV-2 through boosters or infections showed that post-omicron, two-dose vaccinated individuals had T cell responses comparable to those of COVID-19 convalescents or boosted individuals. Additionally, we report cross-reactive T cell responses against omicron sub-variants, including BA2.86, remained strong, with preserved frequencies of spike-specific stem-cell-like memory T cells. In silico prediction indicates that mutated epitopes of JN.1 and KP.2 retain over 95.6% of their HLA binding capability. Overall, our data suggests that T cell responses are sustained, enhanced, and cross-reactive against emerging SARS-CoV-2 variants following symptomatic or asymptomatic omicron infection.
Collapse
Affiliation(s)
- Akshay Binayke
- Immunology Core Laboratory, Translational Health Science and Technology Institute, Faridabad, India
- Centre for Immunobiology and Immunotherapy, Translational Health Science and Technology Institute, Faridabad, India
- Jawaharlal Nehru University, New Delhi, India
| | - Aymaan Zaheer
- Immunology Core Laboratory, Translational Health Science and Technology Institute, Faridabad, India
| | - Siddhesh Vishwakarma
- Immunology Core Laboratory, Translational Health Science and Technology Institute, Faridabad, India
| | - Priyanka Sharma
- Immunology Core Laboratory, Translational Health Science and Technology Institute, Faridabad, India
| | - Jyotsna Dandotiya
- Centre for Immunobiology and Immunotherapy, Translational Health Science and Technology Institute, Faridabad, India
| | | | - Mudita Gosain
- Translational Health Science and Technology Institute, Faridabad, India
| | - Savita Singh
- Translational Health Science and Technology Institute, Faridabad, India
| | | | - Jyotsana Kaushal
- Immunology Core Laboratory, Translational Health Science and Technology Institute, Faridabad, India
| | - Upasna Madan
- Centre for Immunobiology and Immunotherapy, Translational Health Science and Technology Institute, Faridabad, India
| | | | - Gaurav Batra
- Translational Health Science and Technology Institute, Faridabad, India
| | - Nitya Wadhwa
- Translational Health Science and Technology Institute, Faridabad, India
| | | | | | - Pramod Kumar Garg
- Translational Health Science and Technology Institute, Faridabad, India
- All India Institute of Medical Science, New Delhi, India
| | - Amit Awasthi
- Immunology Core Laboratory, Translational Health Science and Technology Institute, Faridabad, India
- Centre for Immunobiology and Immunotherapy, Translational Health Science and Technology Institute, Faridabad, India
| |
Collapse
|
16
|
McGough L, Cobey S. A speed limit on serial strain replacement from original antigenic sin. Proc Natl Acad Sci U S A 2024; 121:e2400202121. [PMID: 38857397 PMCID: PMC11194583 DOI: 10.1073/pnas.2400202121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 05/06/2024] [Indexed: 06/12/2024] Open
Abstract
Many pathogens evolve to escape immunity, yet it remains difficult to predict whether immune pressure will lead to diversification, serial replacement of one variant by another, or more complex patterns. Pathogen strain dynamics are mediated by cross-protective immunity, whereby exposure to one strain partially protects against infection by antigenically diverged strains. There is growing evidence that this protection is influenced by early exposures, a phenomenon referred to as original antigenic sin (OAS) or imprinting. In this paper, we derive constraints on the emergence of the pattern of successive strain replacements demonstrated by influenza, SARS-CoV-2, seasonal coronaviruses, and other pathogens. We find that OAS implies that the limited diversity found with successive strain replacement can only be maintained if [Formula: see text] is less than a threshold set by the characteristic antigenic distances for cross-protection and for the creation of new immune memory. This bound implies a "speed limit" on the evolution of new strains and a minimum variance of the distribution of infecting strains in antigenic space at any time. To carry out this analysis, we develop a theoretical model of pathogen evolution in antigenic space that implements OAS by decoupling the antigenic distances required for protection from infection and strain-specific memory creation. Our results demonstrate that OAS can play an integral role in the emergence of strain structure from host immune dynamics, preventing highly transmissible pathogens from maintaining serial strain replacement without diversification.
Collapse
Affiliation(s)
- Lauren McGough
- Department of Ecology and EvolutionThe University of Chicago, Chicago, IL60637
| | - Sarah Cobey
- Department of Ecology and EvolutionThe University of Chicago, Chicago, IL60637
| |
Collapse
|
17
|
Mai F, Bergmann W, Reisinger EC, Müller-Hilke B. The varying extent of humoral and cellular immune responses to either vector- or RNA-based SARS-CoV-2 vaccines persists for at least 18 months and is independent of infection. J Virol 2024; 98:e0191223. [PMID: 38501661 PMCID: PMC11019912 DOI: 10.1128/jvi.01912-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/28/2024] [Indexed: 03/20/2024] Open
Abstract
The corona virus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome corona-virus 2 (SARS-CoV-2) spurred a worldwide race for the development of an efficient vaccine. Various strategies were pursued; however, the first vaccines to be licensed presented the SARS-CoV-2 spike protein either in the context of a non-replicating adenoviral vector or as an mRNA construct. While short-term efficacies have extensively been characterized, the duration of protection, the need for repeated boosting, and reasonable vaccination intervals have yet to be defined. We here describe the adaptive immune response resulting from homologous and heterologous vaccination regimen at 18 months after primary vaccination. To that extent, we monitored 176 healthcare workers, the majority of whom had recovered from previous SARS-CoV-2 infection. In summary, we find that differences depending on primary immunization continue to exist 18 months after the first vaccination and these findings hold true irrespective of previous infection with the virus. Homologous primary immunization with BNT162b2 was repeatedly shown to produce higher antibody levels and slower antibody decline, leading to more effective in vitro neutralization capacities. Likewise, cellular responses resulting from in vitro re-stimulation were more pronounced after primary immunization involving BNT162b2. In contrast, IL-2 producing memory T helper and cytotoxic T cells appeared independent from the primary vaccination regimen. Despite these differences, comparable infection rates among all vaccination groups suggest comparable real-life protection.IMPORTANCEVaccination against the severe acute respiratory syndrome corona-virus 2 (SARS-CoV-2) was shown to avert severe courses of corona virus disease 2019 (COVID-19) and to mitigate spreading of the virus. However, the duration of protection and need for repeated boosting have yet to be defined. Monitoring and comparing the immune responses resulting from various vaccine strategies are therefore important to fill knowledge gaps and prepare for future pandemics.
Collapse
Affiliation(s)
- Franz Mai
- Core Facility for Cell Sorting and Cell Analysis, University Medical Center, Rostock, Germany
| | - Wendy Bergmann
- Core Facility for Cell Sorting and Cell Analysis, University Medical Center, Rostock, Germany
| | - Emil C. Reisinger
- Division of Tropical Medicine and Infectious Diseases, Center of Internal Medicine II, University Medical Center, Rostock, Germany
| | - Brigitte Müller-Hilke
- Core Facility for Cell Sorting and Cell Analysis, University Medical Center, Rostock, Germany
- Institute of Immunology, University Medical Center, Rostock, Germany
| |
Collapse
|
18
|
Chen L, Sun M, Zhang H, Zhang X, Yao Y, Li M, Li K, Fan P, Zhang H, Qin Y, Zhang Z, Li E, Chen Z, Guan W, Li S, Yu C, Zhang K, Gong R, Chiu S. Potent human neutralizing antibodies against Nipah virus derived from two ancestral antibody heavy chains. Nat Commun 2024; 15:2987. [PMID: 38582870 PMCID: PMC10998907 DOI: 10.1038/s41467-024-47213-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 03/18/2024] [Indexed: 04/08/2024] Open
Abstract
Nipah virus (NiV) is a World Health Organization priority pathogen and there are currently no approved drugs for clinical immunotherapy. Through the use of a naïve human phage-displayed Fab library, two neutralizing antibodies (NiV41 and NiV42) targeting the NiV receptor binding protein (RBP) were identified. Following affinity maturation, antibodies derived from NiV41 display cross-reactivity against both NiV and Hendra virus (HeV), whereas the antibody based on NiV42 is only specific to NiV. Results of immunogenetic analysis reveal a correlation between the maturation of antibodies and their antiviral activity. In vivo testing of NiV41 and its mature form (41-6) show protective efficacy against a lethal NiV challenge in hamsters. Furthermore, a 2.88 Å Cryo-EM structure of the tetrameric RBP and antibody complex demonstrates that 41-6 blocks the receptor binding interface. These findings can be beneficial for the development of antiviral drugs and the design of vaccines with broad spectrum against henipaviruses.
Collapse
Affiliation(s)
- Li Chen
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mengmeng Sun
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Huajun Zhang
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Xinghai Zhang
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Yanfeng Yao
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Ming Li
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Kangyin Li
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Pengfei Fan
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China
| | - Haiwei Zhang
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Ye Qin
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhe Zhang
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Entao Li
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, Hefei, China
| | - Zhen Chen
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Wuxiang Guan
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Shanshan Li
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Changming Yu
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China.
| | - Kaiming Zhang
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, Hefei, China.
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, MOE Key Laboratory for Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
- Department of Urology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
| | - Rui Gong
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Hubei Jiangxia Laboratory, Wuhan, Hubei, China.
| | - Sandra Chiu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, Hefei, China.
| |
Collapse
|
19
|
Costa Rocha VP, Souza Machado BA, Barreto BC, Quadros HC, Santana Fernandes AM, Lima EDS, Bandeira ME, Meira CS, Moraes dos Santos Fonseca L, Erasmus J, Khandhar A, Berglund P, Reed S, José da Silva Badaró R, Pereira Soares MB. A polyvalent RNA vaccine reduces the immune imprinting phenotype in mice and induces neutralizing antibodies against omicron SARS-CoV-2. Heliyon 2024; 10:e25539. [PMID: 38370238 PMCID: PMC10869778 DOI: 10.1016/j.heliyon.2024.e25539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/29/2024] [Accepted: 01/29/2024] [Indexed: 02/20/2024] Open
Abstract
Immune imprinting is now evident in COVID-19 vaccinated people. This phenomenon may impair the development of effective neutralizing antibodies against variants of concern (VoCs), mainly Omicron and its subvariants. Consequently, the boost doses with bivalent vaccines have not shown a significant gain of function regarding the neutralization of Omicron. The approach to design COVID-19 vaccines must be revised to improve the effectiveness against VoCs. Here, we took advantage of the self-amplifying characteristic of RepRNA and developed a polyvalent formulation composed of mRNA from five VoCs. LION/RepRNA Polyvalent induced neutralizing antibodies in mice previously immunized with LION/RepRNA D614G and reduced the imprinted phenotype associated with low neutralization capacity of Omicron B.1.1.529 pseudoviruses. The polyvalent vaccine can be a strategy to handle the low neutralization of Omicron VoC, despite booster doses with either monovalent or bivalent vaccines.
Collapse
Affiliation(s)
- Vinicius Pinto Costa Rocha
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CIMATEC, Salvador, Bahia, Brazil
- Gonçalo Moniz Institute, FIOCRUZ, Salvador, Bahia, Brazil
| | - Bruna Aparecida Souza Machado
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CIMATEC, Salvador, Bahia, Brazil
- University Center SENAI CIMATEC, Salvador, Bahia, Brazil
| | | | - Helenita Costa Quadros
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CIMATEC, Salvador, Bahia, Brazil
- Gonçalo Moniz Institute, FIOCRUZ, Salvador, Bahia, Brazil
| | | | - Eduarda dos Santos Lima
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CIMATEC, Salvador, Bahia, Brazil
| | - Mariana Evangelista Bandeira
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CIMATEC, Salvador, Bahia, Brazil
| | - Cássio Santana Meira
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CIMATEC, Salvador, Bahia, Brazil
- Gonçalo Moniz Institute, FIOCRUZ, Salvador, Bahia, Brazil
| | | | | | | | | | | | - Roberto José da Silva Badaró
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CIMATEC, Salvador, Bahia, Brazil
| | - Milena Botelho Pereira Soares
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CIMATEC, Salvador, Bahia, Brazil
- Gonçalo Moniz Institute, FIOCRUZ, Salvador, Bahia, Brazil
| |
Collapse
|
20
|
Lu X, Liu F, Tzeng WP, York IA, Tumpey TM, Levine MZ. Antibody-Mediated Suppression Regulates the Humoral Immune Response to Influenza Vaccination in Humans. J Infect Dis 2024; 229:310-321. [PMID: 37981659 DOI: 10.1093/infdis/jiad493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/29/2023] [Accepted: 11/16/2023] [Indexed: 11/21/2023] Open
Abstract
BACKGROUND Preexisting immunity, including memory B cells and preexisting antibodies, can modulate antibody responses to influenza in vivo to antigenically related antigens. We investigated whether preexisting hemagglutination inhibition (HAI) antibodies targeting the K163 epitope on the hemagglutinin (K163 antibodies) could affect antibody responses following vaccination with A/California/07/2009-like A(H1N1)pdm09 influenza viruses in humans. METHODS Pre- and postvaccination sera collected from 300 adults (birth years, 1961-1998) in 6 seasons (2010-2016) were analyzed by HAI assays with 2 reverse genetics viruses and A(H1N1) viruses circulated from 1977 to 2018. Antibody adsorption assays were used to verify the preexisting K163 antibody-mediated suppression effect. RESULTS Preexisting K163 antibody titers ≥80 affected HAI antibody responses following influenza vaccination containing A/California/07/2009-like antigens. At high K163 antibody concentrations (HAI antibody titers ≥160), all HAI antibody responses were suppressed. However, at moderate K163 antibody concentrations (HAI antibody titer, 80), only K163 epitope-specific antibody responses were suppressed, and novel HAI antibody responses targeting the non-K163 epitopes were induced by vaccination. Novel antibodies targeting non-K163 epitopes cross-reacted with newly emerging A(H1N1)pdm09 strains with a K163Q mutation rather than historic 1977-2007 A(H1N1) viruses. CONCLUSIONS K163 antibody-mediated suppression shapes antibody responses to A(H1N1)pdm09 vaccination. Understanding how preexisting antibodies suppress and redirect vaccine-induced antibody responses is of great importance to improve vaccine effectiveness.
Collapse
Affiliation(s)
- Xiuhua Lu
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Feng Liu
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Wen-Ping Tzeng
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Ian A York
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Terrence M Tumpey
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Min Z Levine
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| |
Collapse
|
21
|
Evans JP, Liu SL. Challenges and Prospects in Developing Future SARS-CoV-2 Vaccines: Overcoming Original Antigenic Sin and Inducing Broadly Neutralizing Antibodies. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1459-1467. [PMID: 37931210 DOI: 10.4049/jimmunol.2300315] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 06/27/2023] [Indexed: 11/08/2023]
Abstract
The impacts of the COVID-19 pandemic led to the development of several effective SARS-CoV-2 vaccines. However, waning vaccine efficacy as well as the antigenic drift of SARS-CoV-2 variants has diminished vaccine efficacy against SARS-CoV-2 infection and may threaten public health. Increasing interest has been given to the development of a next generation of SARS-CoV-2 vaccines with increased breadth and effectiveness against SARS-CoV-2 infection. In this Brief Review, we discuss recent work on the development of these next-generation vaccines and on the nature of the immune response to SARS-CoV-2. We examine recent work to develop pan-coronavirus vaccines as well as to develop mucosal vaccines. We further discuss challenges associated with the development of novel vaccines including the need to overcome "original antigenic sin" and highlight areas requiring further investigation. We place this work in the context of SARS-CoV-2 evolution to inform how the implementation of future vaccine platforms may impact human health.
Collapse
Affiliation(s)
- John P Evans
- Center for Retrovirus Research, The Ohio State University, Columbus, OH
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH
- Molecular, Cellular, and Developmental Biology Program, The Ohio State University, Columbus, OH
| | - Shan-Lu Liu
- Center for Retrovirus Research, The Ohio State University, Columbus, OH
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH
- Viruses and Emerging Pathogens Program, Infectious Diseases Institute, The Ohio State University, Columbus, OH
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH
| |
Collapse
|
22
|
Huang CQ, Vishwanath S, Carnell GW, Chan ACY, Heeney JL. Immune imprinting and next-generation coronavirus vaccines. Nat Microbiol 2023; 8:1971-1985. [PMID: 37932355 DOI: 10.1038/s41564-023-01505-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 09/13/2023] [Indexed: 11/08/2023]
Abstract
Vaccines based on historical virus isolates provide limited protection from continuously evolving RNA viruses, such as influenza viruses or coronaviruses, which occasionally spill over between animals and humans. Despite repeated booster immunizations, population-wide declines in the neutralization of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants have occurred. This has been compared to seasonal influenza vaccinations in humans, where the breadth of immune responses induced by repeat exposures to antigenically distinct influenza viruses is confounded by pre-existing immunity-a mechanism known as imprinting. Since its emergence, SARS-CoV-2 has evolved in a population with partial immunity, acquired by infection, vaccination or both. Here we critically examine the evidence for and against immune imprinting in host humoral responses to SARS-CoV-2 and its implications for coronavirus disease 2019 (COVID-19) booster vaccine programmes.
Collapse
Affiliation(s)
- Chloe Qingzhou Huang
- Laboratory of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Sneha Vishwanath
- Laboratory of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - George William Carnell
- Laboratory of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Andrew Chun Yue Chan
- Laboratory of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Jonathan Luke Heeney
- Laboratory of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK.
| |
Collapse
|
23
|
Seow J, Shalim ZA, Graham C, Kimuda S, Pillai A, Lechmere T, Kurshan A, Khimji AM, Snell LB, Nebbia G, Mant C, Waters A, Fox J, Malim MH, Doores KJ. Broad and potent neutralizing antibodies are elicited in vaccinated individuals following Delta/BA.1 breakthrough infection. mBio 2023; 14:e0120623. [PMID: 37747187 PMCID: PMC10653880 DOI: 10.1128/mbio.01206-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/02/2023] [Indexed: 09/26/2023] Open
Abstract
IMPORTANCE With the emergence of SARS-CoV-2 viral variants, there has been an increase in infections in vaccinated individuals. Here, we isolated monoclonal antibodies (mAbs) from individuals experiencing a breakthrough infection (Delta or BA.1) to determine how exposure to a heterologous Spike broadens the neutralizing antibody response at the monoclonal level. All mAbs isolated had reactivity to the Spike of the vaccine and infection variant. While many mAbs showed reduced neutralization of current circulating variants, we identified mAbs with broad and potent neutralization of BA.2.75.2, XBB, XBB.1.5, and BQ.1.1 indicating the presence of conserved epitopes on Spike. These results indicate that variant-based vaccine boosters have the potential to broaden the vaccine response.
Collapse
Affiliation(s)
- Jeffrey Seow
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| | - Zayed A. Shalim
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| | - Carl Graham
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| | - Simon Kimuda
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| | - Aswin Pillai
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| | - Thomas Lechmere
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| | - Ashwini Kurshan
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| | - Atika M. Khimji
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| | - Luke B. Snell
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
- Department of Infectious Diseases, Centre for Clinical Infection and Diagnostics Research, Guy’s and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Gaia Nebbia
- Department of Infectious Diseases, Centre for Clinical Infection and Diagnostics Research, Guy’s and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Christine Mant
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
- Department of Infectious Diseases, Infectious Diseases Biobank, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| | - Anele Waters
- Harrison Wing, Guy's and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Julie Fox
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
- Harrison Wing, Guy's and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Michael H. Malim
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| | - Katie J. Doores
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| |
Collapse
|
24
|
Keay S, Poljak Z, Alberts F, O’Connor A, Friendship R, O’Sullivan TL, Sargeant JM. Does Vaccine-Induced Maternally-Derived Immunity Protect Swine Offspring against Influenza a Viruses? A Systematic Review and Meta-Analysis of Challenge Trials from 1990 to May 2021. Animals (Basel) 2023; 13:3085. [PMID: 37835692 PMCID: PMC10571953 DOI: 10.3390/ani13193085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/21/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
It is unclear if piglets benefit from vaccination of sows against influenza. For the first time, methods of evidence-based medicine were applied to answer the question: "Does vaccine-induced maternally-derived immunity (MDI) protect swine offspring against influenza A viruses?". Challenge trials were reviewed that were published from 1990 to April 2021 and measured at least one of six outcomes in MDI-positive versus MDI-negative offspring (hemagglutination inhibition (HI) titers, virus titers, time to begin and time to stop shedding, risk of infection, average daily gain (ADG), and coughing) (n = 15). Screening and extraction of study characteristics was conducted in duplicate by two reviewers, with data extraction and assessment for risk of bias performed by one. Homology was defined by the antigenic match of vaccine and challenge virus hemagglutinin epitopes. Results: Homologous, but not heterologous MDI, reduced virus titers in piglets. There was no difference, calculated as relative risks (RR), in infection incidence risk over the entire study period; however, infection hazard (instantaneous risk) was decreased in pigs with MDI (log HR = -0.64, 95% CI: -1.13, -0.15). Overall, pigs with MDI took about a ½ day longer to begin shedding virus post-challenge (MD = 0.51, 95% CI: 0.03, 0.99) but the hazard of infected pigs ceasing to shed was not different (log HR = 0.32, 95% CI: -0.29, 0.93). HI titers were synthesized qualitatively and although data on ADG and coughing was extracted, details were insufficient for conducting meta-analyses. Conclusion: Homology of vaccine strains with challenge viruses is an important consideration when assessing vaccine effectiveness. Herd viral dynamics are complex and may include concurrent or sequential exposures in the field. The practical significance of reduced weaned pig virus titers is, therefore, not known and evidence from challenge trials is insufficient to make inferences on the effects of MDI on incidence risk, time to begin or to cease shedding virus, coughing, and ADG. The applicability of evidence from single-strain challenge trials to field practices is limited. Despite the synthesis of six outcomes, challenge trial evidence does not support or refute vaccination of sows against influenza to protect piglets. Additional research is needed; controlled trials with multi-strain concurrent or sequential heterologous challenges have not been conducted, and sequential homologous exposure trials were rare. Consensus is also warranted on (1) the selection of core outcomes, (2) the sizing of trial populations to be reflective of field populations, (3) the reporting of antigenic characterization of vaccines, challenge viruses, and sow exposure history, and (4) on the collection of non-aggregated individual pig data.
Collapse
Affiliation(s)
- Sheila Keay
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (Z.P.); (F.A.); (R.F.); (T.L.O.); (J.M.S.)
| | - Zvonimir Poljak
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (Z.P.); (F.A.); (R.F.); (T.L.O.); (J.M.S.)
| | - Famke Alberts
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (Z.P.); (F.A.); (R.F.); (T.L.O.); (J.M.S.)
| | - Annette O’Connor
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA;
| | - Robert Friendship
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (Z.P.); (F.A.); (R.F.); (T.L.O.); (J.M.S.)
| | - Terri L. O’Sullivan
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (Z.P.); (F.A.); (R.F.); (T.L.O.); (J.M.S.)
| | - Jan M. Sargeant
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (Z.P.); (F.A.); (R.F.); (T.L.O.); (J.M.S.)
- Centre for Public Health and Zoonoses, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
25
|
Tregoning JS. LION: Taming RNA vaccine inflammation. Mol Ther 2023; 31:2557. [PMID: 37541255 PMCID: PMC10492017 DOI: 10.1016/j.ymthe.2023.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/06/2023] [Accepted: 07/11/2023] [Indexed: 08/06/2023] Open
Affiliation(s)
- John S Tregoning
- Department of Infectious Disease, Imperial College London, London, UK.
| |
Collapse
|
26
|
Liu DJ, Liu CC, Zhong XQ, Wu X, Zhang HH, Lu SW, Shen ZL, Song WW, Zhao SL, Peng YS, Zheng HP, Wan MY, Chen YQ, Deng L. Boost immunizations with NA-derived peptide conjugates achieve induction of NA inhibition antibodies and heterologous influenza protections. Cell Rep 2023; 42:112766. [PMID: 37421618 DOI: 10.1016/j.celrep.2023.112766] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/12/2023] [Accepted: 06/22/2023] [Indexed: 07/10/2023] Open
Abstract
Neuraminidase is suggested as an important component for developing a universal influenza vaccine. Targeted induction of neuraminidase-specific broadly protective antibodies by vaccinations is challenging. To overcome this, we rationally select the highly conserved peptides from the consensus amino acid sequence of the globular head domains of neuraminidase. Inspired by the B cell receptor evolution process, a reliable sequential immunization regimen is designed to result in immuno-focusing by steering bulk immune responses to a selected region where broadly protective B lymphocyte epitopes reside. After priming neuraminidase protein-specific antibody responses in C57BL/6 or BALB/c inbred mice strains by immunization or pre-infection, boost immunizations with certain neuraminidase-derived peptide-keyhole limpet hemocyanin conjugates significantly strengthened serum neuraminidase inhibition activities and cross-protections. Overall, this study provides proof of concept for a peptide-based sequential immunization strategy for achieving targeted induction of cross-protective antibody response, which provides references for designing universal vaccines against other highly variable pathogens.
Collapse
Affiliation(s)
- De-Jian Liu
- Hunan Provincial Key Laboratory of Medical Virology, College of Biology, Hunan University, Changsha 410082, China
| | - Cui-Cui Liu
- Hunan Provincial Key Laboratory of Medical Virology, College of Biology, Hunan University, Changsha 410082, China
| | - Xiu-Qin Zhong
- Hunan Provincial Key Laboratory of Medical Virology, College of Biology, Hunan University, Changsha 410082, China
| | - Xuan Wu
- Hunan Provincial Key Laboratory of Medical Virology, College of Biology, Hunan University, Changsha 410082, China
| | - Hui-Hui Zhang
- Bioinformatics Center, College of Biology, Hunan University, Changsha 410082, China
| | - Shang-Wen Lu
- Bioinformatics Center, College of Biology, Hunan University, Changsha 410082, China
| | - Zhuo-Ling Shen
- Hunan Provincial Key Laboratory of Medical Virology, College of Biology, Hunan University, Changsha 410082, China
| | - Wen-Wen Song
- Hunan Provincial Key Laboratory of Medical Virology, College of Biology, Hunan University, Changsha 410082, China
| | - Shi-Long Zhao
- Hunan Provincial Key Laboratory of Medical Virology, College of Biology, Hunan University, Changsha 410082, China
| | - You-Song Peng
- Hunan Provincial Key Laboratory of Medical Virology, College of Biology, Hunan University, Changsha 410082, China; Bioinformatics Center, College of Biology, Hunan University, Changsha 410082, China
| | - He-Ping Zheng
- Hunan Provincial Key Laboratory of Medical Virology, College of Biology, Hunan University, Changsha 410082, China; Bioinformatics Center, College of Biology, Hunan University, Changsha 410082, China
| | - Mu-Yang Wan
- Hunan Provincial Key Laboratory of Medical Virology, College of Biology, Hunan University, Changsha 410082, China
| | - Yao-Qing Chen
- School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, Guangdong Province 518107, China
| | - Lei Deng
- Hunan Provincial Key Laboratory of Medical Virology, College of Biology, Hunan University, Changsha 410082, China; Bioinformatics Center, College of Biology, Hunan University, Changsha 410082, China; Beijing Weimiao Biotechnology Co., Ltd., Haidian District, Beijing 100000, China.
| |
Collapse
|
27
|
Daulagala P, Mann BR, Leung K, Lau EHY, Yung L, Lei R, Nizami SIN, Wu JT, Chiu SS, Daniels RS, Wu NC, Wentworth D, Peiris M, Yen HL. Imprinted Anti-Hemagglutinin and Anti-Neuraminidase Antibody Responses after Childhood Infections of A(H1N1) and A(H1N1)pdm09 Influenza Viruses. mBio 2023; 14:e0008423. [PMID: 37070986 PMCID: PMC10294682 DOI: 10.1128/mbio.00084-23] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/29/2023] [Indexed: 04/19/2023] Open
Abstract
Immune imprinting is a driver known to shape the anti-hemagglutinin (HA) antibody landscape of individuals born within the same birth cohort. With the HA and neuraminidase (NA) proteins evolving at different rates under immune selection pressures, anti-HA and anti-NA antibody responses since childhood influenza virus infections have not been evaluated in parallel at the individual level. This is partly due to the limited knowledge of changes in NA antigenicity, as seasonal influenza vaccines have focused on generating neutralizing anti-HA antibodies against HA antigenic variants. Here, we systematically characterized the NA antigenic variants of seasonal A(H1N1) viruses from 1977 to 1991 and completed the antigenic profile of N1 NAs from 1977 to 2015. We identified that NA proteins of A/USSR/90/77, A/Singapore/06/86, and A/Texas/36/91 were antigenically distinct and mapped N386K as a key determinant of the NA antigenic change from A/USSR/90/77 to A/Singapore/06/86. With comprehensive panels of HA and NA antigenic variants of A(H1N1) and A(H1N1)pdm09 viruses, we determined hemagglutinin inhibition (HI) and neuraminidase inhibition (NI) antibodies from 130 subjects born between 1950 and 2015. Age-dependent imprinting was observed for both anti-HA and anti-NA antibodies, with the peak HI and NI titers predominantly detected from subjects at 4 to 12 years old during the year of initial virus isolation, except the age-independent anti-HA antibody response against A(H1N1)pdm09 viruses. More participants possessed antibodies that reacted to multiple antigenically distinct NA proteins than those with antibodies that reacted to multiple antigenically distinct HA proteins. Our results support the need to include NA proteins in seasonal influenza vaccine preparations. IMPORTANCE Seasonal influenza vaccines have aimed to generate neutralizing anti-HA antibodies for protection since licensure. More recently, anti-NA antibodies have been established as an additional correlate of protection. While HA and NA antigenic changes occurred discordantly, the anti-HA and anti-NA antibody profiles have rarely been analyzed in parallel at the individual level, due to the limited knowledge on NA antigenic changes. By characterizing NA antigenic changes of A(H1N1) viruses, we determined the anti-HA and anti-NA antibody landscape against antigenically distinct A(H1N1) and A(H1N1)pdm09 viruses using sera of 130 subjects born between 1950 and 2015. We observed age-dependent imprinting of both anti-HA and anti-NA antibodies against strains circulated during the first decade of life. A total of 67.7% (88/130) and 90% (117/130) of participants developed cross-reactive antibodies to multiple HA and NA antigens at titers ≥1:40. With slower NA antigenic changes and cross-reactive anti-NA antibody responses, including NA protein in influenza vaccine preparation may enhance vaccine efficacy.
Collapse
Affiliation(s)
- Pavithra Daulagala
- School of Public Health, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China
| | - Brian R. Mann
- WHO Collaborating Center for Surveillance, Epidemiology and Control of Influenza, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Kathy Leung
- School of Public Health, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China
- Laboratory of Data Discovery for Health Limited (D24H), Hong Kong Science Park, Hong Kong SAR, China
- University of Hong Kong, Shenzhen Hospital, Shenzhen, China
| | - Eric H. Y. Lau
- School of Public Health, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China
- Laboratory of Data Discovery for Health Limited (D24H), Hong Kong Science Park, Hong Kong SAR, China
| | - Louise Yung
- School of Public Health, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China
| | - Ruipeng Lei
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Sarea I. N. Nizami
- School of Public Health, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China
| | - Joseph T. Wu
- School of Public Health, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China
- Laboratory of Data Discovery for Health Limited (D24H), Hong Kong Science Park, Hong Kong SAR, China
| | - Susan S. Chiu
- Department of Paediatrics and Adolescent Medicine, Queen Mary Hospital and Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China
| | - Rodney S. Daniels
- Francis Crick Institute, Crick Worldwide Influenza Centre, WHO Collaborating Centre for Reference and Research on Influenza, London, UK
| | - Nicholas C. Wu
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - David Wentworth
- WHO Collaborating Center for Surveillance, Epidemiology and Control of Influenza, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Malik Peiris
- School of Public Health, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China
- Centre for Immunology and Infection (C2I), Hong Kong Science Park, Hong Kong SAR, China
| | - Hui-Ling Yen
- School of Public Health, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
28
|
Zhang Y, Li Q, Luo L, Duan C, Shen J, Wang Z. Application of germline antibody features to vaccine development, antibody discovery, antibody optimization and disease diagnosis. Biotechnol Adv 2023; 65:108143. [PMID: 37023966 DOI: 10.1016/j.biotechadv.2023.108143] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/26/2023] [Accepted: 03/29/2023] [Indexed: 04/08/2023]
Abstract
Although the efficacy and commercial success of vaccines and therapeutic antibodies have been tremendous, designing and discovering new drug candidates remains a labor-, time- and cost-intensive endeavor with high risks. The main challenges of vaccine development are inducing a strong immune response in broad populations and providing effective prevention against a group of highly variable pathogens. Meanwhile, antibody discovery faces several great obstacles, especially the blindness in antibody screening and the unpredictability of the developability and druggability of antibody drugs. These challenges are largely due to poorly understanding of germline antibodies and the antibody responses to pathogen invasions. Thanks to the recent developments in high-throughput sequencing and structural biology, we have gained insight into the germline immunoglobulin (Ig) genes and germline antibodies and then the germline antibody features associated with antigens and disease manifestation. In this review, we firstly outline the broad associations between germline antibodies and antigens. Moreover, we comprehensively review the recent applications of antigen-specific germline antibody features, physicochemical properties-associated germline antibody features, and disease manifestation-associated germline antibody features on vaccine development, antibody discovery, antibody optimization, and disease diagnosis. Lastly, we discuss the bottlenecks and perspectives of current and potential applications of germline antibody features in the biotechnology field.
Collapse
Affiliation(s)
- Yingjie Zhang
- National Key Laboratory of Veterinary Public Health Security, Beijing Key Laboratory of Detection Technology for Animal-Derived Food, College of Veterinary Medicine, China Agricultural University, 100193 Beijing, People's Republic of China
| | - Qing Li
- National Key Laboratory of Veterinary Public Health Security, Beijing Key Laboratory of Detection Technology for Animal-Derived Food, College of Veterinary Medicine, China Agricultural University, 100193 Beijing, People's Republic of China
| | - Liang Luo
- National Key Laboratory of Veterinary Public Health Security, Beijing Key Laboratory of Detection Technology for Animal-Derived Food, College of Veterinary Medicine, China Agricultural University, 100193 Beijing, People's Republic of China
| | - Changfei Duan
- National Key Laboratory of Veterinary Public Health Security, Beijing Key Laboratory of Detection Technology for Animal-Derived Food, College of Veterinary Medicine, China Agricultural University, 100193 Beijing, People's Republic of China
| | - Jianzhong Shen
- National Key Laboratory of Veterinary Public Health Security, Beijing Key Laboratory of Detection Technology for Animal-Derived Food, College of Veterinary Medicine, China Agricultural University, 100193 Beijing, People's Republic of China
| | - Zhanhui Wang
- National Key Laboratory of Veterinary Public Health Security, Beijing Key Laboratory of Detection Technology for Animal-Derived Food, College of Veterinary Medicine, China Agricultural University, 100193 Beijing, People's Republic of China.
| |
Collapse
|
29
|
Reusch L, Angeletti D. Memory B-cell diversity: From early generation to tissue residency and reactivation. Eur J Immunol 2023; 53:e2250085. [PMID: 36811174 DOI: 10.1002/eji.202250085] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/17/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023]
Abstract
Memory B cells (MBCs) have a crucial function in providing an enhanced response to repeated infections. Upon antigen encounter, MBC can either rapidly differentiate to antibody secreting cells or enter germinal centers (GC) to further diversify and affinity mature. Understanding how and when MBC are formed, where they reside and how they select their fate upon reactivation has profound implications for designing strategies to improve targeted, next-generation vaccines. Recent studies have crystallized much of our knowledge on MBC but also reported several surprising discoveries and gaps in our current understanding. Here, we review the latest advancements in the field and highlight current unknowns. In particular, we focus on timing and cues leading to MBC generation before and during the GC reaction, discuss how MBC become resident in mucosal tissues, and finally, provide an overview of factors shaping MBC fate-decision upon reactivation in mucosal and lymphoid tissues.
Collapse
Affiliation(s)
- Laura Reusch
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Davide Angeletti
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
30
|
Cox F, Saeland E, Thoma A, van den Hoogen W, Tettero L, Drijver J, Vaneman C, van Polanen Y, Ritschel T, Bastian AR, Callendret B, Zahn R, van der Fits L. RSV A2-Based Prefusion F Vaccine Candidates Induce RSV A and RSV B Cross Binding and Neutralizing Antibodies and Provide Protection against RSV A and RSV B Challenge in Preclinical Models. Vaccines (Basel) 2023; 11:vaccines11030672. [PMID: 36992257 DOI: 10.3390/vaccines11030672] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023] Open
Abstract
RSV is divided into two antigenic subtypes, RSV A and RSV B, which is largely based on the variation in the G protein, while the fusion protein F is more conserved and a target for antibody-mediated neutralization. Here we evaluate the breadth of the protective immune responses across RSV A and RSV B subtypes, induced by vaccines based on the RSV A-based fusion protein, stabilized in the prefusion conformation (preF) in preclinical models. Immunization of naïve cotton rats with preF subunit or preF encoded by a replication incompetent Adenoviral 26, induced antibodies capable of neutralizing recent RSV A and RSV B clinical isolates, as well as protective efficacy against a challenge with RSV A and RSV B strains. Similarly, induction of cross-neutralizing antibodies was observed after immunization with Ad26-encoded preF, preF protein or a mix of both (Ad26/preF protein) in RSV pre-exposed mice and African Green Monkeys. Transfer of serum of human subjects immunized with Ad26/preF protein into cotton rats provide protection against challenges with both RSV A and RSV B, with complete protection against both strains observed in the lower respiratory tract. In contrast, almost no protection against RSV A and B infection was observed after the transfer of a human serum pool isolated pre-vaccination. These results collectively show that the RSV A-based monovalent Ad26/preF protein vaccine induced neutralizing antibodies, as well as protection against both RSV A and RSV B subtypes in animals, including by passive transfer of human antibodies alone, suggesting that clinical efficacy against both subtypes can be achieved.
Collapse
Affiliation(s)
- Freek Cox
- Janssen Vaccines & Prevention B.V. Archimedesweg 4-6, 2333 CN Leiden, The Netherlands
| | - Eirikur Saeland
- Janssen Vaccines & Prevention B.V. Archimedesweg 4-6, 2333 CN Leiden, The Netherlands
| | - Anne Thoma
- Janssen Vaccines & Prevention B.V. Archimedesweg 4-6, 2333 CN Leiden, The Netherlands
| | - Ward van den Hoogen
- Janssen Vaccines & Prevention B.V. Archimedesweg 4-6, 2333 CN Leiden, The Netherlands
| | - Lisanne Tettero
- Janssen Vaccines & Prevention B.V. Archimedesweg 4-6, 2333 CN Leiden, The Netherlands
| | - Joke Drijver
- Janssen Vaccines & Prevention B.V. Archimedesweg 4-6, 2333 CN Leiden, The Netherlands
| | - Cornelis Vaneman
- Janssen Vaccines & Prevention B.V. Archimedesweg 4-6, 2333 CN Leiden, The Netherlands
| | - Yolinda van Polanen
- Janssen Vaccines & Prevention B.V. Archimedesweg 4-6, 2333 CN Leiden, The Netherlands
| | - Tina Ritschel
- Janssen Vaccines & Prevention B.V. Archimedesweg 4-6, 2333 CN Leiden, The Netherlands
| | | | - Benoit Callendret
- Janssen Vaccines & Prevention B.V. Archimedesweg 4-6, 2333 CN Leiden, The Netherlands
| | - Roland Zahn
- Janssen Vaccines & Prevention B.V. Archimedesweg 4-6, 2333 CN Leiden, The Netherlands
| | - Leslie van der Fits
- Janssen Vaccines & Prevention B.V. Archimedesweg 4-6, 2333 CN Leiden, The Netherlands
| |
Collapse
|
31
|
Schiepers A, van 't Wout MFL, Greaney AJ, Zang T, Muramatsu H, Lin PJC, Tam YK, Mesin L, Starr TN, Bieniasz PD, Pardi N, Bloom JD, Victora GD. Molecular fate-mapping of serum antibody responses to repeat immunization. Nature 2023; 615:482-489. [PMID: 36646114 PMCID: PMC10023323 DOI: 10.1038/s41586-023-05715-3] [Citation(s) in RCA: 91] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 01/06/2023] [Indexed: 01/18/2023]
Abstract
The protective efficacy of serum antibodies results from the interplay of antigen-specific B cell clones of different affinities and specificities. These cellular dynamics underlie serum-level phenomena such as original antigenic sin (OAS)-a proposed propensity of the immune system to rely repeatedly on the first cohort of B cells engaged by an antigenic stimulus when encountering related antigens, in detriment to the induction of de novo responses1-5. OAS-type suppression of new, variant-specific antibodies may pose a barrier to vaccination against rapidly evolving viruses such as influenza and SARS-CoV-26,7. Precise measurement of OAS-type suppression is challenging because cellular and temporal origins cannot readily be ascribed to antibodies in circulation; its effect on subsequent antibody responses therefore remains unclear5,8. Here we introduce a molecular fate-mapping approach with which serum antibodies derived from specific cohorts of B cells can be differentially detected. We show that serum responses to sequential homologous boosting derive overwhelmingly from primary cohort B cells, while later induction of new antibody responses from naive B cells is strongly suppressed. Such 'primary addiction' decreases sharply as a function of antigenic distance, allowing reimmunization with divergent viral glycoproteins to produce de novo antibody responses targeting epitopes that are absent from the priming variant. Our findings have implications for the understanding of OAS and for the design and testing of vaccines against evolving pathogens.
Collapse
Affiliation(s)
- Ariën Schiepers
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY, USA
| | | | - Allison J Greaney
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Trinity Zang
- Laboratory of Retrovirology, The Rockefeller University, New York, NY, USA
| | - Hiromi Muramatsu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Paulo J C Lin
- Acuitas Therapeutics, Vancouver, British Columbia, Canada
| | - Ying K Tam
- Acuitas Therapeutics, Vancouver, British Columbia, Canada
| | - Luka Mesin
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY, USA
| | - Tyler N Starr
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Paul D Bieniasz
- Laboratory of Retrovirology, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Norbert Pardi
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jesse D Bloom
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Gabriel D Victora
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
32
|
Frasca L, Ocone G, Palazzo R. Safety of COVID-19 Vaccines in Patients with Autoimmune Diseases, in Patients with Cardiac Issues, and in the Healthy Population. Pathogens 2023; 12:pathogens12020233. [PMID: 36839505 PMCID: PMC9964607 DOI: 10.3390/pathogens12020233] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/25/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) has been a challenge for the whole world since the beginning of 2020, and COVID-19 vaccines were considered crucial for disease eradication. Instead of producing classic vaccines, some companies pointed to develop products that mainly function by inducing, into the host, the production of the antigenic protein of SARS-CoV-2 called Spike, injecting an instruction based on RNA or a DNA sequence. Here, we aim to give an overview of the safety profile and the actual known adverse effects of these products in relationship with their mechanism of action. We discuss the use and safety of these products in at-risk people, especially those with autoimmune diseases or with previously reported myocarditis, but also in the general population. We debate the real necessity of administering these products with unclear long-term effects to at-risk people with autoimmune conditions, as well as to healthy people, at the time of omicron variants. This, considering the existence of therapeutic interventions, much more clearly assessed at present compared to the past, and the relatively lower aggressive nature of the new viral variants.
Collapse
|
33
|
Einav T, Kosikova M, Radvak P, Kuo YC, Kwon HJ, Xie H. Mapping the Antibody Repertoires in Ferrets with Repeated Influenza A/H3 Infections: Is Original Antigenic Sin Really "Sinful"? Viruses 2023; 15:374. [PMID: 36851590 PMCID: PMC9959794 DOI: 10.3390/v15020374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/20/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
The influenza-specific antibody repertoire is continuously reshaped by infection and vaccination. The host immune response to contemporary viruses can be redirected to preferentially boost antibodies specific for viruses encountered early in life, a phenomenon called original antigenic sin (OAS) that is suggested to be responsible for diminished vaccine effectiveness after repeated seasonal vaccination. Using a new computational tool called Neutralization Landscapes, we tracked the progression of hemagglutination inhibition antibodies within ferret antisera elicited by repeated influenza A/H3 infections and deciphered the influence of prior exposures on the de novo antibody response to evolved viruses. The results indicate that a broadly neutralizing antibody signature can nevertheless be induced by repeated exposures despite OAS induction. Our study offers a new way to visualize how immune history shapes individual antibodies within a repertoire, which may help to inform future universal influenza vaccine design.
Collapse
Affiliation(s)
- Tal Einav
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Martina Kosikova
- Laboratory of Respiratory Viral Diseases, Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Peter Radvak
- Laboratory of Respiratory Viral Diseases, Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Yuan-Chia Kuo
- Laboratory of Respiratory Viral Diseases, Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Hyung Joon Kwon
- Laboratory of Respiratory Viral Diseases, Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Hang Xie
- Laboratory of Respiratory Viral Diseases, Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD 20993, USA
| |
Collapse
|
34
|
Rodrick TC, Siu Y, Carlock MA, Ross TM, Jones DR. Urine Metabolome Dynamics Discriminate Influenza Vaccination Response. Viruses 2023; 15:242. [PMID: 36680282 PMCID: PMC9861122 DOI: 10.3390/v15010242] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
Influenza represents a major and ongoing public health hazard. Current collaborative efforts are aimed toward creating a universal flu vaccine with the goals of both improving responses to vaccination and increasing the breadth of protection against multiple strains and clades from a single vaccine. As an intermediate step toward these goals, the current work is focused on evaluating the systemic host response to vaccination in both normal and high-risk populations, such as the obese and geriatric populations, which have been linked to poor responses to vaccination. We therefore employed a metabolomics approach using a time-course (n = 5 time points) of the response to human vaccination against influenza from the time before vaccination (pre) to 90 days following vaccination. We analyzed the urinary profiles of a cohort of subjects (n = 179) designed to evenly sample across age, sex, BMI, and other demographic factors, stratifying their responses to vaccination as “High”, “Low”, or “None” based on the seroconversion measured by hemagglutination inhibition assay (HAI) from plasma samples at day 28 post-vaccination. Overall, we putatively identified 15,903 distinct, named, small-molecule structures (4473 at 10% FDR) among the 895 samples analyzed, with the aim of identifying metabolite correlates of the vaccine response, as well as prognostic and diagnostic markers from the periods before and after vaccination, respectively. Notably, we found that the metabolic profiles could unbiasedly separate the high-risk High-responders from the high-risk None-responders (obese/geriatric) within 3 days post-vaccination. The purine metabolites Guanine and Hypoxanthine were negatively associated with high seroconversion (p = 0.0032, p < 0.0001, respectively), while Acetyl-Leucine and 5-Aminovaleric acid were positively associated. Further changes in Cystine, Glutamic acid, Kynurenine and other metabolites implicated early oxidative stress (3 days) after vaccination as a hallmark of the High-responders. Ongoing efforts are aimed toward validating these putative markers using a ferret model of influenza infection, as well as an independent cohort of human seasonal vaccination and human challenge studies with live virus.
Collapse
Affiliation(s)
- Tori C. Rodrick
- Metabolomics Core Resource Laboratory, NYU Langone Health, New York, NY 10016, USA
| | - Yik Siu
- Metabolomics Core Resource Laboratory, NYU Langone Health, New York, NY 10016, USA
| | - Michael A. Carlock
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA
| | - Ted M. Ross
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA
| | - Drew R. Jones
- Metabolomics Core Resource Laboratory, NYU Langone Health, New York, NY 10016, USA
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| |
Collapse
|
35
|
Aguilar-Bretones M, Fouchier RA, Koopmans MP, van Nierop GP. Impact of antigenic evolution and original antigenic sin on SARS-CoV-2 immunity. J Clin Invest 2023; 133:e162192. [PMID: 36594464 PMCID: PMC9797340 DOI: 10.1172/jci162192] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Infections with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and vaccinations targeting the spike protein (S) offer protective immunity against coronavirus disease 2019 (COVID-19). This immunity may further be shaped by cross-reactivity with common cold coronaviruses. Mutations arising in S that are associated with altered intrinsic virus properties and immune escape result in the continued circulation of SARS-CoV-2 variants. Potentially, vaccine updates will be required to protect against future variants of concern, as for influenza. To offer potent protection against future variants, these second-generation vaccines may need to redirect immunity to epitopes associated with immune escape and not merely boost immunity toward conserved domains in preimmune individuals. For influenza, efficacy of repeated vaccination is hampered by original antigenic sin, an attribute of immune memory that leads to greater induction of antibodies specific to the first-encountered variant of an immunogen compared with subsequent variants. In this Review, recent findings on original antigenic sin are discussed in the context of SARS-CoV-2 evolution. Unanswered questions and future directions are highlighted, with an emphasis on the impact on disease outcome and vaccine design.
Collapse
|
36
|
Karuppiah B, Chinniah R, Pandi S, Sevak V, Ravi PM, Thadakanathan D. Immunogenetic landscape of COVID-19 infections related neurological complications. COVID-19 IN ALZHEIMER'S DISEASE AND DEMENTIA 2023:133-146. [DOI: 10.1016/b978-0-443-15256-6.00009-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
37
|
Sharma S, Vercruysse T, Sanchez-Felipe L, Kerstens W, Rasulova M, Bervoets L, De Keyzer C, Abdelnabi R, Foo CS, Lemmens V, Van Looveren D, Maes P, Baele G, Weynand B, Lemey P, Neyts J, Thibaut HJ, Dallmeier K. Updated vaccine protects against SARS-CoV-2 variants including Omicron (B.1.1.529) and prevents transmission in hamsters. Nat Commun 2022; 13:6644. [PMID: 36333374 PMCID: PMC9636174 DOI: 10.1038/s41467-022-34439-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022] Open
Abstract
Current COVID-19 vaccines are based on prototypic spike sequences from ancestral 2019 SARS-CoV-2 strains. However, the ongoing pandemic is fueled by variants of concern (VOC) escaping vaccine-mediated protection. Here we demonstrate how immunization in hamsters using prototypic spike expressed from yellow fever 17D (YF17D) as vector blocks ancestral virus (B lineage) and VOC Alpha (B.1.1.7) yet fails to fully protect from Beta (B.1.351). However, the same YF17D vectored vaccine candidate with an evolved antigen induced considerably improved neutralizing antibody responses against VOCs Beta, Gamma (P.1) and the recently predominant Omicron (B.1.1.529), while maintaining immunogenicity against ancestral virus and VOC Delta (B.1.617.2). Thus vaccinated animals resisted challenge by all VOCs, including vigorous high titre exposure to the most difficult to cover Beta, Delta and Omicron variants, eliminating detectable virus and markedly improving lung pathology. Finally, vaccinated hamsters did not transmit Delta variant to non-vaccinated cage mates. Overall, our data illustrate how current first-generation COVID-19 vaccines may need to be updated to maintain efficacy against emerging VOCs and their spread at community level.
Collapse
Affiliation(s)
- Sapna Sharma
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology, Molecular Vaccinology and Vaccine Discovery, BE-3000, Leuven, Belgium
| | - Thomas Vercruysse
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Translational Platform Virology and Chemotherapy, BE-3000, Leuven, Belgium
| | - Lorena Sanchez-Felipe
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology, Molecular Vaccinology and Vaccine Discovery, BE-3000, Leuven, Belgium
| | - Winnie Kerstens
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Translational Platform Virology and Chemotherapy, BE-3000, Leuven, Belgium
| | - Madina Rasulova
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Translational Platform Virology and Chemotherapy, BE-3000, Leuven, Belgium
| | - Lindsey Bervoets
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology, Molecular Vaccinology and Vaccine Discovery, BE-3000, Leuven, Belgium
| | - Carolien De Keyzer
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology, Molecular Vaccinology and Vaccine Discovery, BE-3000, Leuven, Belgium
| | - Rana Abdelnabi
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology, Molecular Vaccinology and Vaccine Discovery, BE-3000, Leuven, Belgium
| | - Caroline S Foo
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology, Molecular Vaccinology and Vaccine Discovery, BE-3000, Leuven, Belgium
| | - Viktor Lemmens
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology, Molecular Vaccinology and Vaccine Discovery, BE-3000, Leuven, Belgium
| | - Dominique Van Looveren
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Translational Platform Virology and Chemotherapy, BE-3000, Leuven, Belgium
| | - Piet Maes
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Clinical and Epidemiological Virology, Zoonotic Infectious Diseases Unit, BE-3000, Leuven, Belgium
| | - Guy Baele
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Clinical and Epidemiological Virology, Evolutionary and Computational Virology, BE-3000, Leuven, Belgium
| | - Birgit Weynand
- KU Leuven Department of Imaging and Pathology, Translational Cell and Tissue Research, BE-3000, Leuven, Belgium
| | - Philippe Lemey
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Clinical and Epidemiological Virology, Evolutionary and Computational Virology, BE-3000, Leuven, Belgium
| | - Johan Neyts
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology, Molecular Vaccinology and Vaccine Discovery, BE-3000, Leuven, Belgium
- Global Virus Network (GVN), Baltimore, MD, USA
| | - Hendrik Jan Thibaut
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Translational Platform Virology and Chemotherapy, BE-3000, Leuven, Belgium
| | - Kai Dallmeier
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology, Molecular Vaccinology and Vaccine Discovery, BE-3000, Leuven, Belgium.
| |
Collapse
|
38
|
Schiepers A, van 't Wout MFL, Greaney AJ, Zang T, Muramatsu H, Lin PJC, Tam YK, Mesin L, Starr TN, Bieniasz PD, Pardi N, Bloom JD, Victora GD. Molecular fate-mapping of serum antibodies reveals the effects of antigenic imprinting on repeated immunization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.08.29.505743. [PMID: 36093344 PMCID: PMC9460965 DOI: 10.1101/2022.08.29.505743] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The ability of serum antibody to protect against pathogens arises from the interplay of antigen-specific B cell clones of different affinities and fine specificities. These cellular dynamics are ultimately responsible for serum-level phenomena such as antibody imprinting or "Original Antigenic Sin" (OAS), a proposed propensity of the immune system to rely repeatedly on the first cohort of B cells that responded to a stimulus upon exposure to related antigens. Imprinting/OAS is thought to pose a barrier to vaccination against rapidly evolving viruses such as influenza and SARS-CoV-2. Precise measurement of the extent to which imprinting/OAS inhibits the recruitment of new B cell clones by boosting is challenging because cellular and temporal origins cannot readily be assigned to antibodies in circulation. Thus, the extent to which imprinting/OAS impacts the induction of new responses in various settings remains unclear. To address this, we developed a "molecular fate-mapping" approach in which serum antibodies derived from specific cohorts of B cells can be differentially detected. We show that, upon sequential homologous boosting, the serum antibody response strongly favors reuse of the first cohort of B cell clones over the recruitment of new, naÏve-derived B cells. This "primary addiction" decreases as a function of antigenic distance, allowing secondary immunization with divergent influenza virus or SARS-CoV-2 glycoproteins to overcome imprinting/OAS by targeting novel epitopes absent from the priming variant. Our findings have implications for the understanding of imprinting/OAS, and for the design and testing of vaccines aimed at eliciting antibodies to evolving antigens.
Collapse
|
39
|
Sicca F, Sakorafa E, de Jonge A, de Vries-Idema J, Zhou F, Cox RJ, Huckriede A. The evolution of humoral immune responses to past and novel influenza virus strains gives evidence for antigenic seniority. Front Immunol 2022; 13:987984. [PMID: 36119111 PMCID: PMC9478913 DOI: 10.3389/fimmu.2022.987984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/17/2022] [Indexed: 11/18/2022] Open
Abstract
The high genetic and antigenic variability of influenza virus and the repeated exposures of individuals to the virus over time account for the human immune responses toward this pathogen to continuously evolve during the lifespan of an individual. Influenza-specific immune memory to past strains has been shown to affect the immune responses to subsequent influenza strains and in turn to be changed itself through the new virus encounter. However, exactly how and to what extent this happens remains unclear. Here we studied pre-existing immunity against influenza A virus (IAV) by assessing IAV binding (IgG), neutralizing, and neuraminidase-specific antibodies to 5 different IAV strains in 180 subjects from 3 different age cohorts, adolescents, adults, and elderly, over a 5-year time span. In each age cohort, the highest neutralizing antibody titers were seen for a virus strain that circulated early in their life but the highest increase in titer was found for the most recent virus strains. In contrast, the highest IgG titers were seen against recent virus strains but the biggest increase in titer occurred against older strains. Significant increases in neutralizing antibody titers against a newly encountered virus strain were observed in all age cohorts demonstrating that pre-existing immunity did not hamper antibody induction. Our results indicate that the evolution of influenza-specific humoral immunity differs for rather cross-reactive virus-binding antibodies and more strain-specific neutralizing antibodies. Nevertheless, in general, our observations lend support to the antigenic seniority theory according to which the antibody response to influenza is broadened with each virus encounter, with the earliest encountered strain taking in the most senior and thus dominant position.
Collapse
Affiliation(s)
- Federica Sicca
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Eleni Sakorafa
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Anouk de Jonge
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Jacqueline de Vries-Idema
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Fan Zhou
- Influenza Centre, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department Microbiology, Haukeland University Hospital, Bergen, Norway
| | - Rebecca Jane Cox
- Influenza Centre, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department Microbiology, Haukeland University Hospital, Bergen, Norway
| | - Anke Huckriede
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- *Correspondence: Anke Huckriede,
| |
Collapse
|
40
|
Abstract
Annual seasonal influenza epidemics of variable severity caused by influenza A and B virus infections result in substantial disease burden worldwide. Seasonal influenza virus circulation declined markedly in 2020-21 after SARS-CoV-2 emerged but increased in 2021-22. Most people with influenza have abrupt onset of respiratory symptoms and myalgia with or without fever and recover within 1 week, but some can experience severe or fatal complications. Prevention is primarily by annual influenza vaccination, with efforts underway to develop new vaccines with improved effectiveness. Sporadic zoonotic infections with novel influenza A viruses of avian or swine origin continue to pose pandemic threats. In this Seminar, we discuss updates of key influenza issues for clinicians, in particular epidemiology, virology, and pathogenesis, diagnostic testing including multiplex assays that detect influenza viruses and SARS-CoV-2, complications, antiviral treatment, influenza vaccines, infection prevention, and non-pharmaceutical interventions, and highlight gaps in clinical management and priorities for clinical research.
Collapse
Affiliation(s)
- Timothy M Uyeki
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | - David S Hui
- Division of Respiratory Medicine and Stanley Ho Centre for Emerging Infectious Diseases, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong Special Administrative Region, China
| | - Maria Zambon
- Virology Reference Department, UK Health Security Agency, London, UK
| | - David E Wentworth
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Arnold S Monto
- Center for Respiratory Research and Response, Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
41
|
Replicating RNA platform enables rapid response to the SARS-CoV-2 Omicron variant and elicits enhanced protection in naïve hamsters compared to ancestral vaccine. EBioMedicine 2022; 83:104196. [PMID: 35932641 PMCID: PMC9349033 DOI: 10.1016/j.ebiom.2022.104196] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/01/2022] [Accepted: 07/15/2022] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND In late 2021, the SARS-CoV-2 Omicron (B.1.1.529) variant of concern (VoC) was reported with many mutations in the viral spike protein that were predicted to enhance transmissibility and allow viral escape of neutralizing antibodies. Within weeks of the first report of B.1.1.529, this VoC has rapidly spread throughout the world, replacing previously circulating strains of SARS-CoV-2 and leading to a resurgence in COVID-19 cases even in populations with high levels of vaccine- and infection-induced immunity. Studies have shown that B.1.1.529 is less sensitive to protective antibody conferred by previous infections and vaccines developed against earlier lineages of SARS-CoV-2. The ability of B.1.1.529 to spread even among vaccinated populations has led to a global public health demand for updated vaccines that can confer protection against B.1.1.529. METHODS We rapidly developed a replicating RNA vaccine expressing the B.1.1.529 spike and evaluated immunogenicity in mice and hamsters. We also challenged hamsters with B.1.1.529 and evaluated whether vaccination could protect against viral shedding and replication within respiratory tissue. FINDINGS We found that mice previously immunized with A.1-specific vaccines failed to elevate neutralizing antibody titers against B.1.1.529 following B.1.1.529-targeted boosting, suggesting pre-existing immunity may impact the efficacy of B.1.1.529-targeted boosters. Furthermore, we found that our B.1.1.529-targeted vaccine provides superior protection compared to the ancestral A.1-targeted vaccine in hamsters challenged with the B.1.1.529 VoC after a single dose of each vaccine. INTERPRETATION Our data suggest that B.1.1.529-targeted vaccines may provide superior protection against B.1.1.529 but pre-existing immunity and timing of boosting may need to be considered for optimum protection. FUNDING This research was supported in part by the Intramural Research Program, NIAID/NIH, Washington Research Foundation and by grants 27220140006C (JHE), AI100625, AI151698, and AI145296 (MG).
Collapse
|
42
|
Bivalent H1 and H3 COBRA Recombinant Hemagglutinin Vaccines Elicit Seroprotective Antibodies against H1N1 and H3N2 Influenza Viruses from 2009 to 2019. J Virol 2022; 96:e0165221. [PMID: 35289635 DOI: 10.1128/jvi.01652-21] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Commercial influenza virus vaccines often elicit strain-specific immune responses and have difficulties preventing illness caused by antigenically drifted viral variants. In the last 20 years, the H3N2 component of the annual vaccine has been updated nearly twice as often as the H1N1 component, and in 2019, a mismatch between the wild-type (WT) H3N2 vaccine strain and circulating H3N2 influenza strains led to a vaccine efficacy of ∼9%. Modern methods of developing computationally optimized broadly reactive antigens (COBRAs) for H3N2 influenza viruses utilize current viral surveillance information to design more broadly reactive vaccine antigens. Here, 7 new recombinant hemagglutinin (rHA) H3 COBRA hemagglutinin (HA) antigens were evaluated in mice. Subsequently, two candidates, J4 and NG2, were selected for further testing in influenza-preimmune animals based on their ability to elicit broadly reactive antibodies against antigenically drifted H3N2 viral isolates. In the preimmune model, monovalent formulations of J4 and NG2 elicited broadly reactive antibodies against recently circulating H3N2 influenza viruses from 2019. Bivalent mixtures of COBRA H1 and H3 rHA, Y2 + J4, and Y2 + NG2 outperformed multiple WT H1+H3 bivalent rHA mixtures by eliciting seroprotective antibodies against H1N1 and H3N2 isolates from 2009 to 2019. Overall, the newly generated COBRA HA antigens, namely, Y2, J4, and NG2, had the ability to induce broadly reactive antibodies in influenza-naive and preimmune animals in both monovalent and bivalent formulations, and these antigens outperformed H1 and H3 WT rHA vaccine antigens by eliciting seroprotective antibodies against panels of antigenically drifted historical H1N1 and H3N2 vaccine strains from 2009 to 2019. IMPORTANCE Standard-of-care influenza virus vaccines are composed of a mixture of antigens from different influenza viral subtypes. For the first time, lead COBRA H1 and H3 HA antigens, formulated as a bivalent vaccine, have been investigated in animals with preexisting immunity to influenza viruses. The cocktail of COBRA HA antigens elicited more broadly reactive anti-HA antibodies than those elicited by a comparator bivalent wild-type HA vaccine against H1 and H3 influenza viruses isolated between 2009 and 2019.
Collapse
|
43
|
Moysi E, Paris RM, Le Grand R, Koup RA, Petrovas C. Human lymph node immune dynamics as driver of vaccine efficacy: an understudied aspect of immune responses. Expert Rev Vaccines 2022; 21:633-644. [PMID: 35193447 DOI: 10.1080/14760584.2022.2045198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION During the last century, changes in hygiene, sanitation, and the advent of childhood vaccination have resulted in profound reductions in mortality from infectious diseases. Despite this success, infectious diseases remain an enigmatic public health threat, where effective vaccines for influenza, human immunodeficiency virus (HIV), tuberculosis, and malaria, among others remain elusive. AREA COVERED In addition to the immune evasion tactics employed by complex pathogens, our understanding of immunopathogenesis and the development of effective vaccines is also complexified by the inherent variability of human immune responses. Lymph nodes (LNs) are the anatomical sites where B cell responses develop. An important, but understudied component of immune response complexity is variation in LN immune dynamics and in particular variation in germinal center follicular helper T cells (Tfh) and B cells which can be impacted by genetic variation, aging, the microbiome and chronic infection. EXPERT OPINION This review describes the contribution of genetic variation, aging, microbiome and chronic infection on LN immune dynamics and associated Tfh responses and offers perspective on how inclusion of LN immune subset and cytoarchitecture analyses, along with peripheral blood biomarkers can supplement systems vaccinology or immunology approaches for the development of vaccines or other interventions to prevent infectious diseases.
Collapse
Affiliation(s)
- Eirini Moysi
- Tissue Analysis Core, Vaccine Research Center, NIAID, NIH, Bethesda, MD, USA
| | | | - Roger Le Grand
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
| | - Richard A Koup
- Immunology Laboratory, Vaccine Research Center, NIAID, NIH, Bethesda, MD, USA
| | - Constantinos Petrovas
- Tissue Analysis Core, Vaccine Research Center, NIAID, NIH, Bethesda, MD, USA.,Department of Laboratory Medicine and Pathology, Institute of Pathology, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
44
|
Rijkers GT, van Overveld FJ. The "original antigenic sin" and its relevance for SARS-CoV-2 (COVID-19) vaccination. CLINICAL IMMUNOLOGY COMMUNICATIONS 2021; 1:13-16. [PMID: 38620690 PMCID: PMC8500682 DOI: 10.1016/j.clicom.2021.10.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 10/04/2021] [Indexed: 04/14/2023]
Abstract
Imprinting of the specific molecular image of a given protein antigen into immunological memory is one of the hallmarks of immunity. A later contact with a related, but different antigen should not trigger the memory response (because the produced antibodies would not be effective). The preferential expansion of cross-reactive antibodies, or T-lymphocytes for that matter, by a related antigen has been termed the original antigenic sin and was first described by Thomas Francis Jr. in 1960. The phenomenon was initially described for influenza virus, but also has been found for dengue and rotavirus. The antibody dependent enhancement observed in feline coronavirus vaccination also may be related to the original antigenic sin. For a full interpretation of the effectivity of the immune response against SARS-CoV-2, as well as for the success of vaccination, the role of existing immunological memory against circulating corona viruses is reviewed and analyzed.
Collapse
Affiliation(s)
- Ger T Rijkers
- Science Department, University College Roosevelt, Middelburg, the Netherlands
- Microvida Laboratory of Medical Microbiology and Immunology, St. Elizabeth Hospital, Tilburg, the Netherlands
| | | |
Collapse
|
45
|
Aguilar-Bretones M, Westerhuis BM, Raadsen MP, de Bruin E, Chandler FD, Okba NM, Haagmans BL, Langerak T, Endeman H, van den Akker JP, Gommers DA, van Gorp EC, GeurtsvanKessel CH, de Vries RD, Fouchier RA, Rockx BH, Koopmans MP, van Nierop GP. Seasonal coronavirus-specific B cells with limited SARS-CoV-2 cross-reactivity dominate the IgG response in severe COVID-19. J Clin Invest 2021; 131:e150613. [PMID: 34499051 PMCID: PMC8553556 DOI: 10.1172/jci150613] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 09/02/2021] [Indexed: 12/15/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of coronavirus disease 2019 (COVID-19). Little is known about the interplay between preexisting immunity to endemic seasonal coronaviruses and the development of a SARS-CoV-2-specific IgG response. We investigated the kinetics, breadth, magnitude, and level of cross-reactivity of IgG antibodies against SARS-CoV-2 and heterologous seasonal and epidemic coronaviruses at the clonal level in patients with mild or severe COVID-19 as well as in disease control patients. We assessed antibody reactivity to nucleocapsid and spike antigens and correlated this IgG response to SARS-CoV-2 neutralization. Patients with COVID-19 mounted a mostly type-specific SARS-CoV-2 response. Additionally, IgG clones directed against a seasonal coronavirus were boosted in patients with severe COVID-19. These boosted clones showed limited cross-reactivity and did not neutralize SARS-CoV-2. These findings indicate a boost of poorly protective CoV-specific antibodies in patients with COVID-19 that correlated with disease severity, revealing "original antigenic sin."
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Henrik Endeman
- Intensive Care Unit, Erasmus Medical Center (EMC), Wytemaweg, Rotterdam, Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Reina J. Possible effect of the "original antigenic sin" in vaccination against new variants of SARS-CoV-2. Rev Clin Esp 2021; 222:91-92. [PMID: 34563486 PMCID: PMC8437764 DOI: 10.1016/j.rceng.2021.05.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 05/15/2021] [Indexed: 11/06/2022]
Affiliation(s)
- J Reina
- Unidad de Virología, Servicio de Microbiología, Hospital Universitario Son Espases, Facultad de Medicina (UIB), Palma de Mallorca, Spain.
| |
Collapse
|
47
|
Bull MB, Cohen CA, Leung NH, Valkenburg SA. Universally Immune: How Infection Permissive Next Generation Influenza Vaccines May Affect Population Immunity and Viral Spread. Viruses 2021; 13:1779. [PMID: 34578360 PMCID: PMC8472936 DOI: 10.3390/v13091779] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/31/2021] [Accepted: 09/03/2021] [Indexed: 12/24/2022] Open
Abstract
Next generation influenza vaccines that target conserved epitopes are becoming a clinical reality but still have challenges to overcome. Universal next generation vaccines are considered a vital tool to combat future pandemic viruses and have the potential to vastly improve long-term protection against seasonal influenza viruses. Key vaccine strategies include HA-stem and T cell activating vaccines; however, they could have unintended effects for virus adaptation as they recognise the virus after cell entry and do not directly block infection. This may lead to immune pressure on residual viruses. The potential for immune escape is already evident, for both the HA stem and T cell epitopes, and mosaic approaches for pre-emptive immune priming may be needed to circumvent key variants. Live attenuated influenza vaccines have not been immunogenic enough to boost T cells in adults with established prior immunity. Therefore, viral vectors or peptide approaches are key to harnessing T cell responses. A plethora of viral vector vaccines and routes of administration may be needed for next generation vaccine strategies that require repeated long-term administration to overcome vector immunity and increase our arsenal against diverse influenza viruses.
Collapse
Affiliation(s)
- Maireid B. Bull
- HKU-Pasteur Research Pole, School of Public Health, The University of Hong Kong, Hong Kong, China; (M.B.B.); (C.A.C.)
| | - Carolyn A. Cohen
- HKU-Pasteur Research Pole, School of Public Health, The University of Hong Kong, Hong Kong, China; (M.B.B.); (C.A.C.)
| | - Nancy H.L. Leung
- World Health Organization Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, The University of Hong Kong, Hong Kong, China;
| | - Sophie A. Valkenburg
- HKU-Pasteur Research Pole, School of Public Health, The University of Hong Kong, Hong Kong, China; (M.B.B.); (C.A.C.)
| |
Collapse
|
48
|
Allen JD, Ross TM. Evaluation of Next-Generation H3 Influenza Vaccines in Ferrets Pre-Immune to Historical H3N2 Viruses. Front Immunol 2021; 12:707339. [PMID: 34475872 PMCID: PMC8406686 DOI: 10.3389/fimmu.2021.707339] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 07/21/2021] [Indexed: 11/13/2022] Open
Abstract
Each person has a unique immune history to past influenza virus infections. Exposure to influenza viruses early in life establishes memory B cell populations that influence future immune responses to influenza vaccination. Current influenza vaccines elicit antibodies that are typically strain specific and do not offer broad protection against antigenically drifted influenza strains in all age groups of people. This is particularly true for vaccine antigens of the A(H3N2) influenza virus subtype, where continual antigenic drift necessitates frequent vaccine reformulation. Broadly-reactive influenza virus vaccine antigens offer a solution to combat antigenic drift, but they also need to be equally effective in all populations, regardless of prior influenza virus exposure history. This study examined the role that pre-existing immunity plays on influenza virus vaccination. Ferrets were infected with historical A(H3N2) influenza viruses isolated from either the 1970’s, 1980’s, or 1990’s and then vaccinated with computationally optimized broadly reactive antigens (COBRA) or wild-type (WT) influenza virus like particles (VLPs) expressing hemagglutinin (HA) vaccine antigens to examine the expansion of immune breadth. Vaccines with the H3 COBRA HA antigens had more cross-reactive antibodies following a single vaccination in all three pre-immune regimens than vaccines with WT H3 HA antigens against historical, contemporary, and future drifted A(H3N2) influenza viruses. The H3 COBRA HA vaccines also induced antibodies capable of neutralizing live virus infections against modern drifted A(H3N2) strains at higher titers than the WT H3 HA vaccine comparators.
Collapse
Affiliation(s)
- James D Allen
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, United States
| | - Ted M Ross
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, United States.,Department of Infectious Diseases, University of Georgia, Athens, GA, United States
| |
Collapse
|
49
|
Bemark M, Angeletti D. Know your enemy or find your friend?-Induction of IgA at mucosal surfaces. Immunol Rev 2021; 303:83-102. [PMID: 34331314 PMCID: PMC7612940 DOI: 10.1111/imr.13014] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 06/28/2021] [Indexed: 12/15/2022]
Abstract
Most antibodies produced in the body are of the IgA class. The dominant cell population producing them are plasma cells within the lamina propria of the gastrointestinal tract, but many IgA-producing cells are also found in the airways, within mammary tissues, the urogenital tract and inside the bone marrow. Most IgA antibodies are transported into the lumen by epithelial cells as part of the mucosal secretions, but they are also present in serum and other body fluids. A large part of the commensal microbiota in the gut is covered with IgA antibodies, and it has been demonstrated that this plays a role in maintaining a healthy balance between the host and the bacteria. However, IgA antibodies also play important roles in neutralizing pathogens in the gastrointestinal tract and the upper airways. The distinction between the two roles of IgA - protective and balance-maintaining - not only has implications on function but also on how the production is regulated. Here, we discuss these issues with a special focus on gut and airways.
Collapse
Affiliation(s)
- Mats Bemark
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Clinical Immunology and Transfusion Medicine, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Davide Angeletti
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
50
|
Clemens EA, Alexander-Miller MA. Understanding Antibody Responses in Early Life: Baby Steps towards Developing an Effective Influenza Vaccine. Viruses 2021; 13:v13071392. [PMID: 34372597 PMCID: PMC8310046 DOI: 10.3390/v13071392] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 07/13/2021] [Indexed: 01/01/2023] Open
Abstract
The immune system of young infants is both quantitatively and qualitatively distinct from that of adults, with diminished responsiveness leaving these individuals vulnerable to infection. Because of this, young infants suffer increased morbidity and mortality from respiratory pathogens such as influenza viruses. The impaired generation of robust and persistent antibody responses in these individuals makes overcoming this increased vulnerability through vaccination challenging. Because of this, an effective vaccine against influenza viruses in infants under 6 months is not available. Furthermore, vaccination against influenza viruses is challenging even in adults due to the high antigenic variability across viral strains, allowing immune evasion even after induction of robust immune responses. This has led to substantial interest in understanding how specific antibody responses are formed to variable and conserved components of influenza viruses, as immune responses tend to strongly favor recognition of variable epitopes. Elicitation of broadly protective antibody in young infants, therefore, requires that both the unique characteristics of young infant immunity as well as the antibody immunodominance present among epitopes be effectively addressed. Here, we review our current understanding of the antibody response in newborns and young infants and discuss recent developments in vaccination strategies that can modulate both magnitude and epitope specificity of IAV-specific antibody.
Collapse
|