1
|
Gomathi R, Kohila S, Viswanathan R, Krishnapriya V, Appunu C, Kumar RA, Alagupalamuthirsolai M, Manimekalai R, Elayaraja K, Kaverinathan K. Comparative Proteomic Analysis of High-Temperature Response in Sugarcane (Saccharum spp.). SUGAR TECH 2025; 27:193-207. [DOI: 10.1007/s12355-024-01400-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/12/2024] [Indexed: 01/11/2025]
|
2
|
Liu C, Dong K, Du H, Wang X, Sun J, Hu Q, Luo H, Sun X. AsHSP26.2, a creeping bentgrass chloroplast small heat shock protein positively regulates plant development. PLANT CELL REPORTS 2024; 43:32. [PMID: 38195772 DOI: 10.1007/s00299-023-03109-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 11/10/2023] [Indexed: 01/11/2024]
Abstract
KEY MESSAGE The creeping bentgrass small heat shock protein AsHSP26.2 positively regulates plant growth and is a novel candidate for use in crop genetic engineering for enhanced biomass production and grain yield. Small heat shock proteins (sHSPs), a family of proteins with high level of diversity, significantly influence plant stress tolerance and plant development. We have cloned a creeping bentgrass chloroplast-localized sHSP gene, AsHSP26.2 responsive to IAA, GA and 6-BA stimulation. Transgenic creeping bentgrass overexpressing AsHSP26.2 exhibited significantly enhanced plant growth with increased stolon number and length as well as enlarged leaf blade width and leaf sheath diameters, but inhibited leaf trichomes initiation and development in the abaxial epidermis. These phenotypes are completely opposite to those displayed in the transgenic plants overexpressing AsHSP26.8, another chloroplast sHSP26 isoform that contains additional seven amino acids (AEGQGDG) between the consensus regions III and IV (Sun et al., Plant Cell Environ 44:1769-1787, 2021). Furthermore, AsHSP26.2 overexpression altered phytohormone biosynthesis and signaling transduction, resulting in elevated auxin and gibberellins (GA) accumulation. The results obtained provide novel insights implicating the sHSPs in plant growth and development regulation, and strongly suggest AsHSP26.2 to be a novel candidate for use in crop genetic engineering for enhanced plant biomass production and grain yield.
Collapse
Affiliation(s)
- Chang Liu
- College of Agronomy, Hebei Agricultural University, Baoding, Hebei, 071001, People's Republic of China
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, Hebei, 071001, People's Republic of China
- Key Laboratory of Crop Growth Regulation of Hebei Province, Hebei Agricultural University, Baoding, Hebei, 071001, People's Republic of China
| | - Kangting Dong
- College of Agronomy, Hebei Agricultural University, Baoding, Hebei, 071001, People's Republic of China
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, Hebei, 071001, People's Republic of China
- Key Laboratory of Crop Growth Regulation of Hebei Province, Hebei Agricultural University, Baoding, Hebei, 071001, People's Republic of China
| | - Hui Du
- College of Agronomy, Hebei Agricultural University, Baoding, Hebei, 071001, People's Republic of China
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, Hebei, 071001, People's Republic of China
- Key Laboratory of Crop Growth Regulation of Hebei Province, Hebei Agricultural University, Baoding, Hebei, 071001, People's Republic of China
| | - Xiaodong Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, Hebei, 071001, People's Republic of China
- College of Plant Protection, Hebei Agricultural University, Baoding, 071000, China
| | - Jianmiao Sun
- College of Agronomy, Hebei Agricultural University, Baoding, Hebei, 071001, People's Republic of China
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, Hebei, 071001, People's Republic of China
- Key Laboratory of Crop Growth Regulation of Hebei Province, Hebei Agricultural University, Baoding, Hebei, 071001, People's Republic of China
| | - Qian Hu
- Department of Genetics and Biochemistry, Clemson University, 110 Biosystems Research Complex, Clemson, SC, 29634, USA
| | - Hong Luo
- Department of Genetics and Biochemistry, Clemson University, 110 Biosystems Research Complex, Clemson, SC, 29634, USA.
| | - Xinbo Sun
- College of Agronomy, Hebei Agricultural University, Baoding, Hebei, 071001, People's Republic of China.
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, Hebei, 071001, People's Republic of China.
- Key Laboratory of Crop Growth Regulation of Hebei Province, Hebei Agricultural University, Baoding, Hebei, 071001, People's Republic of China.
| |
Collapse
|
3
|
Chaouachi L, Marín-Sanz M, Barro F, Karmous C. Study of the genetic variability of durum wheat ( Triticum durum Desf.) in the face of combined stress: water and heat. AOB PLANTS 2024; 16:plad085. [PMID: 38204894 PMCID: PMC10781440 DOI: 10.1093/aobpla/plad085] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/29/2023] [Indexed: 01/12/2024]
Abstract
The devastating effects and extent of abiotic stress on cereal production continue to increase globally, affecting food security in several countries, including Tunisia. Heat waves and the scarcity of rainfall strongly affect durum wheat yields. The present study aims to screen for tolerance to combined water and heat stresses in durum wheat at the juvenile stage. Three combined treatments were tested, namely: T0 (100% field capacity (FC) at 24 °C), T1 (50% FC at 30 °C), and T2 (25% FC at 35 °C). The screening was carried out based on morphological, physiological, and biochemical criteria. The results showed that the combined stress significantly affected all the measured parameters. The relative water content (RWC) decreased by 37.6% under T1 compared to T0. Quantum yield (Fv/m) and photosynthetic efficiency (Fv/0) decreased under severe combined stress (T2) by 37.15% and 37.22%, respectively. Under T2 stress, LT increased by 63.7%. A significant increase in osmoprotective solutes was also observed, including proline, which increased by 154.6% under T2. Correlation analyses of the combination of water and heat stress confirm that the traits RWC, chlorophyll b content, Fv/m, proline content, Fv/0 and leaf temperature can be used as reliable screening criteria for the two stresses combined. The principal component analysis highlighted that Aouija tolerates the two levels of stresses studied, while the genotypes Karim and Hmira are the most sensitive. The results show that the tolerance of durum wheat to combined water and heat stress involves several adaptation mechanisms proportional to the stress intensity.
Collapse
Affiliation(s)
- Latifa Chaouachi
- Laboratory of Genetics and Cereal Breeding (LR14 AGR01), National Institute of Agronomy of Tunisia, Carthage University, 1082 Tunis, Tunisia
| | - Miriam Marín-Sanz
- Department of Plant Breeding, Institute for Sustainable Agriculture-Spanish National Research Council (IAS-CSIC), 14004 Córdoba, Spain
| | - Francisco Barro
- Department of Plant Breeding, Institute for Sustainable Agriculture-Spanish National Research Council (IAS-CSIC), 14004 Córdoba, Spain
| | - Chahine Karmous
- Laboratory of Genetics and Cereal Breeding (LR14 AGR01), National Institute of Agronomy of Tunisia, Carthage University, 1082 Tunis, Tunisia
| |
Collapse
|
4
|
Suhorukova AV, Sobolev DS, Milovskaya IG, Fadeev VS, Goldenkova-Pavlova IV, Tyurin AA. A Molecular Orchestration of Plant Translation under Abiotic Stress. Cells 2023; 12:2445. [PMID: 37887289 PMCID: PMC10605726 DOI: 10.3390/cells12202445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/12/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023] Open
Abstract
The complexities of translational strategies make this stage of implementing genetic information one of the most challenging to comprehend and, simultaneously, perhaps the most engaging. It is evident that this diverse range of strategies results not only from a long evolutionary history, but is also of paramount importance for refining gene expression and metabolic modulation. This notion is particularly accurate for organisms that predominantly exhibit biochemical and physiological reactions with a lack of behavioural ones. Plants are a group of organisms that exhibit such features. Addressing unfavourable environmental conditions plays a pivotal role in plant physiology. This is particularly evident with the changing conditions of global warming and the irrevocable loss or depletion of natural ecosystems. In conceptual terms, the plant response to abiotic stress comprises a set of elaborate and intricate strategies. This is influenced by a range of abiotic factors that cause stressful conditions, and molecular genetic mechanisms that fine-tune metabolic pathways allowing the plant organism to overcome non-standard and non-optimal conditions. This review aims to focus on the current state of the art in the field of translational regulation in plants under abiotic stress conditions. Different regulatory elements and patterns are being assessed chronologically. We deem it important to focus on significant high-performance techniques for studying the genetic information dynamics during the translation phase.
Collapse
|
5
|
Tsai WA, Sung PH, Kuo YW, Chen MC, Jeng ST, Lin JS. Involvement of microRNA164 in responses to heat stress in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 329:111598. [PMID: 36657663 DOI: 10.1016/j.plantsci.2023.111598] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/28/2022] [Accepted: 01/14/2023] [Indexed: 06/17/2023]
Abstract
MicroRNAs (miRNAs) are considered to be integral parts of plant stress regulatory networks. Under long-term heat stress, miR164 is induced. Conversely, its targets are repressed. Transgenic overexpressors (164OE) and mutants of MIR164 (mir164) were used to study miR164's functions during heat responses. Target gene expression decreased in 164OE transgenic plants and increased in mir164a-4 and mir164b mutants. Under heat stress, the mir164 mutants presented heat-sensitive phenotypes, while 164OE transgenic plants showed better thermotolerance than wild-type (WT) plants. Overexpression of miR164 decreased heat-inhibition of hypocotyl lengths. Under heat stress, miR164 target genes modulated the expression of chlorophyll b reductase and chlorophyll catabolic genes, reducing the chlorophyll a/b ratio. More H2O2 accumulated in the mir164 mutants under heat stress, which may have caused oxidative damage. In addition, expression of HSPs was altered in the experimental plants compared to that of the WT. Overall, miR164 influenced target gene expression, altering development, chlorophyll a/b ratio, H2O2-caused damage, and HSPs expression under long-term heat stress. These phenomena, in turn, likely influence the thermotolerance of plants.
Collapse
Affiliation(s)
- Wei-An Tsai
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, Australia.
| | - Po-Han Sung
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan.
| | - Yun-Wei Kuo
- Department of Agronomy, National Chung Hsing University, Taichung 40227, Taiwan; Institute of Flowers, Sanming Academy of Agricultural Sciences, Sanming 365000, Fujian, China.
| | - Ming-Cheng Chen
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan.
| | - Shih-Tong Jeng
- Institute of Plant Biology and Department of Life Science, National Taiwan University, Taipei 10617, Taiwan.
| | - Jeng-Shane Lin
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan.
| |
Collapse
|
6
|
Zhu Y, Yuan G, Wang Y, An G, Li W, Liu J, Sun D. Mapping and functional verification of leaf yellowing genes in watermelon during whole growth period. FRONTIERS IN PLANT SCIENCE 2022; 13:1049114. [PMID: 36340411 PMCID: PMC9627507 DOI: 10.3389/fpls.2022.1049114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Increasing light energy utilization efficiency is an effective way to increase yield and improve quality of watermelon. Leaf is the main place for photosynthesis, and the color of leaf is directly related to the change of photosynthesis. In addition, leaf yellowing can be used as a marker trait to play an important role in watermelon hybrid breeding and improve seed breeding. It can not only be used to eliminate hybrids at seedling stage, but also be used to determine seed purity. In this study, transcriptome analysis was first carried out using the whole growth period leaf yellowing watermelon mutant w-yl and inbred line ZK, and identified 2,471 differentially expressed genes (DEGs) in the comparison group w-yl-vs-ZK. Among the top 20 terms of the gene ontology (GO) enrichment pathway, 17 terms were related to photosynthesis. KEGG pathway enrichment analysis showed that the most abundant pathway was photosynthesis-antenna proteins. The F2 population was constructed by conventional hybridization with the inbred line ZK. Genetic analysis showed that leaf yellowing of the mutant was controlled by a single recessive gene. The leaf yellowing gene of watermelon located between Ind14,179,011 and InD16,396,362 on chromosome 2 by using indel-specific PCR markers, with a region of 2.217 Mb. In the interval, it was found that five genes may have gene fragment deletion in w-yl, among which Cla97C02G036010, Cla97C02G036030, Cla97C02G036040, Cla97C02G036050 were the whole fragment loss, and Cla97C02G0360 was the C-terminal partial base loss. Gene function verification results showed that Cla97C02G036040, Cla97C02G036050 and Cla97C02G036060 may be the key factors leading to yellowing of w-yl leaves.
Collapse
Affiliation(s)
- Yingchun Zhu
- The Key Laboratory of Genetic Resource Evaluation and Application of Horticultural Crops (Fruit), Ministry of Agriculture, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
- Western Research Institute, Chinese Academy of Agricultural Sciences, Changji, China
| | - Gaopeng Yuan
- The Key Laboratory of Genetic Resource Evaluation and Application of Horticultural Crops (Fruit), Ministry of Agriculture, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Yifan Wang
- The Key Laboratory of Genetic Resource Evaluation and Application of Horticultural Crops (Fruit), Ministry of Agriculture, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Guolin An
- The Key Laboratory of Genetic Resource Evaluation and Application of Horticultural Crops (Fruit), Ministry of Agriculture, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Weihua Li
- The Key Laboratory of Genetic Resource Evaluation and Application of Horticultural Crops (Fruit), Ministry of Agriculture, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Junpu Liu
- The Key Laboratory of Genetic Resource Evaluation and Application of Horticultural Crops (Fruit), Ministry of Agriculture, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
- Western Research Institute, Chinese Academy of Agricultural Sciences, Changji, China
| | - Dexi Sun
- The Key Laboratory of Genetic Resource Evaluation and Application of Horticultural Crops (Fruit), Ministry of Agriculture, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| |
Collapse
|
7
|
Sun X, Huang N, Li X, Zhu J, Bian X, Li H, Wang L, Hu Q, Luo H. A chloroplast heat shock protein modulates growth and abiotic stress response in creeping bentgrass. PLANT, CELL & ENVIRONMENT 2021; 44:1769-1787. [PMID: 33583055 DOI: 10.1111/pce.14031] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 06/12/2023]
Abstract
Small heat shock proteins (sHSPs), a family of the ubiquitous stress proteins in plants acting as molecular chaperones to protect other proteins from stress-induced damage, have been implicated in plant growth and development as well as plant response to environmental stress, especially heat stress. In this study, a chloroplast-localized sHSP, AsHSP26.8, was overexpressed in creeping bentgrass (Agrostis stolonifera L.) to study its role in regulating plant growth and stress response. Transgenic (TG) creeping bentgrass plants displayed arrested root development, slow growth rate, twisted leaf blades and are more susceptible to heat and salt but less sensitive to drought stress compared to wild-type (WT) controls. RNA-seq analysis revealed that AsHSP26.8 modulated the expression of genes in auxin signalling and stress-related genes such as those encoding HSPs, heat shock factors and other transcription factors. Our results provide new evidence demonstrating that AsHSP26.8 negatively regulates plant growth and development and plays differential roles in plant response to a plethora of diverse abiotic stresses.
Collapse
Affiliation(s)
- Xinbo Sun
- College of Agronomy, Hebei Agricultural University/State Key Laboratory of North China Crop Improvement and Regulation/Key Laboratory of Crop Growth Regulation of Hebei Province, Baoding, China
| | - Ning Huang
- Human Resource Department, Hebei Agricultural University, Baoding, China
| | - Xin Li
- College of Agronomy, Hebei Agricultural University/State Key Laboratory of North China Crop Improvement and Regulation/Key Laboratory of Crop Growth Regulation of Hebei Province, Baoding, China
| | - Junfei Zhu
- College of Agronomy, Hebei Agricultural University/State Key Laboratory of North China Crop Improvement and Regulation/Key Laboratory of Crop Growth Regulation of Hebei Province, Baoding, China
| | - Xiuju Bian
- College of Agronomy, Hebei Agricultural University/State Key Laboratory of North China Crop Improvement and Regulation/Key Laboratory of Crop Growth Regulation of Hebei Province, Baoding, China
| | - Huibin Li
- College of Agronomy, Hebei Agricultural University/State Key Laboratory of North China Crop Improvement and Regulation/Key Laboratory of Crop Growth Regulation of Hebei Province, Baoding, China
| | - Lihong Wang
- College of Agronomy, Hebei Agricultural University/State Key Laboratory of North China Crop Improvement and Regulation/Key Laboratory of Crop Growth Regulation of Hebei Province, Baoding, China
| | - Qian Hu
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, USA
| | - Hong Luo
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, USA
| |
Collapse
|
8
|
Waters ER, Vierling E. Plant small heat shock proteins - evolutionary and functional diversity. THE NEW PHYTOLOGIST 2020; 227:24-37. [PMID: 32297991 DOI: 10.1111/nph.16536] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 02/21/2020] [Indexed: 05/22/2023]
Abstract
Small heat shock proteins (sHSPs) are an ubiquitous protein family found in archaea, bacteria and eukaryotes. In plants, as in other organisms, sHSPs are upregulated by stress and are proposed to act as molecular chaperones to protect other proteins from stress-induced damage. sHSPs share an 'α-crystallin domain' with a β-sandwich structure and a diverse N-terminal domain. Although sHSPs are 12-25 kDa polypeptides, most assemble into oligomers with ≥ 12 subunits. Plant sHSPs are particularly diverse and numerous; some species have as many as 40 sHSPs. In angiosperms this diversity comprises ≥ 11 sHSP classes encoding proteins targeted to the cytosol, nucleus, endoplasmic reticulum, chloroplasts, mitochondria and peroxisomes. The sHSPs underwent a lineage-specific gene expansion, diversifying early in land plant evolution, potentially in response to stress in the terrestrial environment, and expanded again in seed plants and again in angiosperms. Understanding the structure and evolution of plant sHSPs has progressed, and a model for their chaperone activity has been proposed. However, how the chaperone model applies to diverse sHSPs and what processes sHSPs protect are far from understood. As more plant genomes and transcriptomes become available, it will be possible to explore theories of the evolutionary pressures driving sHSP diversification.
Collapse
Affiliation(s)
- Elizabeth R Waters
- Biology Department, San Diego State University, San Diego, CA, 92182, USA
| | - Elizabeth Vierling
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| |
Collapse
|
9
|
Sun X, Zhu J, Li X, Li Z, Han L, Luo H. AsHSP26.8a, a creeping bentgrass small heat shock protein integrates different signaling pathways to modulate plant abiotic stress response. BMC PLANT BIOLOGY 2020; 20:184. [PMID: 32345221 PMCID: PMC7189581 DOI: 10.1186/s12870-020-02369-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 03/29/2020] [Indexed: 05/24/2023]
Abstract
BACKGROUND Small heat shock proteins (sHSPs) are critical for plant response to biotic and abiotic stresses, especially heat stress. They have also been implicated in various aspects of plant development. However, the acting mechanisms of the sHSPs in plants, especially in perennial grass species, remain largely elusive. RESULTS In this study, AsHSP26.8a, a novel chloroplast-localized sHSP gene from creeping bentgrass (Agrostis stolonifera L.) was cloned and its role in plant response to environmental stress was studied. AsHSP26.8a encodes a protein of 26.8 kDa. Its expression was strongly induced in both leaf and root tissues by heat stress. Transgenic Arabidopsis plants overexpressing AsHSP26.8a displayed reduced tolerance to heat stress. Furthermore, overexpression of AsHSP26.8a resulted in hypersensitivity to hormone ABA and salinity stress. Global gene expression analysis revealed AsHSP26.8a-modulated expression of heat-shock transcription factor gene, and the involvement of AsHSP26.8a in ABA-dependent and -independent as well as other stress signaling pathways. CONCLUSIONS Our results suggest that AsHSP26.8a may negatively regulate plant response to various abiotic stresses through modulating ABA and other stress signaling pathways.
Collapse
Affiliation(s)
- Xinbo Sun
- Key Laboratory of Crop Growth Regulation of Hebei Province, College of Agronomy, Hebei Agricultural University, Baoding, Hebei, 071001, People's Republic of China
- Department of Genetics and Biochemistry, Clemson University, 110 Biosystems Research Complex, Clemson, SC, 29634, USA
| | - Junfei Zhu
- Key Laboratory of Crop Growth Regulation of Hebei Province, College of Agronomy, Hebei Agricultural University, Baoding, Hebei, 071001, People's Republic of China
| | - Xin Li
- Key Laboratory of Crop Growth Regulation of Hebei Province, College of Agronomy, Hebei Agricultural University, Baoding, Hebei, 071001, People's Republic of China
| | - Zhigang Li
- Department of Genetics and Biochemistry, Clemson University, 110 Biosystems Research Complex, Clemson, SC, 29634, USA
| | - Liebao Han
- Turfgrass Research Institute, Beijing Forestry University, Beijing, 100083, People's Republic of China.
| | - Hong Luo
- Department of Genetics and Biochemistry, Clemson University, 110 Biosystems Research Complex, Clemson, SC, 29634, USA.
| |
Collapse
|
10
|
Hu S, Ding Y, Zhu C. Sensitivity and Responses of Chloroplasts to Heat Stress in Plants. FRONTIERS IN PLANT SCIENCE 2020; 11:375. [PMID: 32300353 PMCID: PMC7142257 DOI: 10.3389/fpls.2020.00375] [Citation(s) in RCA: 163] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 03/16/2020] [Indexed: 05/21/2023]
Abstract
Increased temperatures caused by global warming threaten agricultural production, as warmer conditions can inhibit plant growth and development or even destroy crops in extreme circumstances. Extensive research over the past several decades has revealed that chloroplasts, the photosynthetic organelles of plants, are highly sensitive to heat stress, which affects a variety of photosynthetic processes including chlorophyll biosynthesis, photochemical reactions, electron transport, and CO2 assimilation. Important mechanisms by which plant cells respond to heat stress to protect these photosynthetic organelles have been identified and analyzed. More recent studies have made it clear that chloroplasts play an important role in inducing the expression of nuclear heat-response genes during the heat stress response. In this review, we summarize these important advances in plant-based research and discuss how the sensitivity, responses, and signaling roles of chloroplasts contribute to plant heat sensitivity and tolerance.
Collapse
Affiliation(s)
| | | | - Cheng Zhu
- Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, China
| |
Collapse
|
11
|
Zhao J, Yuan S, Zhou M, Yuan N, Li Z, Hu Q, Bethea FG, Liu H, Li S, Luo H. Transgenic creeping bentgrass overexpressing Osa-miR393a exhibits altered plant development and improved multiple stress tolerance. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:233-251. [PMID: 29873883 PMCID: PMC6330543 DOI: 10.1111/pbi.12960] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 05/19/2018] [Accepted: 06/03/2018] [Indexed: 05/12/2023]
Abstract
MicroRNA393 (miR393) has been implicated in plant growth, development and multiple stress responses in annual species such as Arabidopsis and rice. However, the role of miR393 in perennial grasses remains unexplored. Creeping bentgrass (Agrostis stolonifera L.) is an environmentally and economically important C3 cool-season perennial turfgrass. Understanding how miR393 functions in this representative turf species would allow the development of novel strategies in genetically engineering grass species for improved abiotic stress tolerance. We have generated and characterized transgenic creeping bentgrass plants overexpressing rice pri-miR393a (Osa-miR393a). We found that Osa-miR393a transgenics had fewer, but longer tillers, enhanced drought stress tolerance associated with reduced stomata density and denser cuticles, improved salt stress tolerance associated with increased uptake of potassium and enhanced heat stress tolerance associated with induced expression of small heat-shock protein in comparison with wild-type controls. We also identified two targets of miR393, AsAFB2 and AsTIR1, whose expression is repressed in transgenics. Taken together, our results revealed the distinctive roles of miR393/target module in plant development and stress responses between creeping bentgrass and other annual species, suggesting that miR393 would be a promising candidate for generating superior crop cultivars with enhanced multiple stress tolerance, thus contributing to agricultural productivity.
Collapse
Affiliation(s)
- Junming Zhao
- Department of Genetics and BiochemistryClemson UniversityClemsonSCUSA
- Animal Science and Technology CollegeSichuan Agricultural UniversityChengduSichuanChina
| | - Shuangrong Yuan
- Department of Genetics and BiochemistryClemson UniversityClemsonSCUSA
| | - Man Zhou
- College of Natural, Applied and Health SciencesWenzhou Kean UniversityWenzhouZhejiangChina
| | - Ning Yuan
- Department of Genetics and BiochemistryClemson UniversityClemsonSCUSA
| | - Zhigang Li
- Department of Genetics and BiochemistryClemson UniversityClemsonSCUSA
| | - Qian Hu
- Department of Genetics and BiochemistryClemson UniversityClemsonSCUSA
| | - Frank G. Bethea
- Department of Plant and Environmental SciencesClemson UniversityClemsonSCUSA
| | - Haibo Liu
- Department of Plant and Environmental SciencesClemson UniversityClemsonSCUSA
| | - Shigui Li
- Rice Research InstituteSichuan Agricultural UniversityChengduSichuanChina
| | - Hong Luo
- Department of Genetics and BiochemistryClemson UniversityClemsonSCUSA
| |
Collapse
|
12
|
Rezaee F, Lahouti M, Maleki M, Ganjeali A. Comparative proteomics analysis of whitetop (Lepidium draba L.) seedlings in response to exogenous glucose. Int J Biol Macromol 2018; 120:2458-2465. [PMID: 30193920 DOI: 10.1016/j.ijbiomac.2018.09.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/02/2018] [Accepted: 09/04/2018] [Indexed: 12/18/2022]
Abstract
In this research, a comparative proteomics approach was conducted to understand the physiological processes behind the sulforaphane formation in whitetop seedlings in response to exogenous glucose. Initially, 5-day-old whitetop seedlings were elicited by different concentrations (0, 166, 250, 277, 360 mM) of glucose for 72 h. According to the results, sulforaphane formation was influenced in a dose-dependent manner by glucose, and was maximized with the concentrations of 166 and 250 mM. Consequently, 2-dimensional gel electrophoresis was performed on the 166 mM glucose-elicited seedlings and it was shown that 25 protein spots were differentially expressed between glucose-elicited seedlings and control. Two hypothetical (were down-regulated) and 9 unique proteins (44% and 56% up- and down-regulated, respectively) were identified based on the Mass spectrometry analysis. According to the functional classification of the unique proteins, photosynthetic, chaperone, energy metabolism, signaling and sorting related proteins are marked in response to the glucose elicitation. This is the first report to successfully identify the Abscisic acid receptor PYR1-like and sorting nexin 1 isoform X1 by proteomics technique. In addition, the role of the sorting nexin 1 isoform X1 in the glucose-elicited whitetop seedling is reported for the first time.
Collapse
Affiliation(s)
- Fatemeh Rezaee
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mehrdad Lahouti
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Mahmood Maleki
- Department of Biotechnology, Institute of Science and High Technology and Environmental Science, Graduate University of Advanced Technology, Kerman, Iran
| | - Ali Ganjeali
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
13
|
Abstract
Increases in ambient temperatures have been a severe threat to crop production in many countries around the world under climate change. Chloroplasts serve as metabolic centers and play a key role in physiological adaptive processes to heat stress. In addition to expressing heat shock proteins that protect proteins from heat-induced damage, metabolic reprogramming occurs during adaptive physiological processes in chloroplasts. Heat stress leads to inhibition of plant photosynthetic activity by damaging key components functioning in a variety of metabolic processes, with concomitant reductions in biomass production and crop yield. In this review article, we will focus on events through extensive and transient metabolic reprogramming in response to heat stress, which included chlorophyll breakdown, generation of reactive oxygen species (ROS), antioxidant defense, protein turnover, and metabolic alterations with carbon assimilation. Such diverse metabolic reprogramming in chloroplasts is required for systemic acquired acclimation to heat stress in plants.
Collapse
Affiliation(s)
- Qing-Long Wang
- The National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China.
| | - Juan-Hua Chen
- The National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China.
| | - Ning-Yu He
- The National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China.
| | - Fang-Qing Guo
- The National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China.
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China.
| |
Collapse
|
14
|
Lin JS, Kuo CC, Yang IC, Tsai WA, Shen YH, Lin CC, Liang YC, Li YC, Kuo YW, King YC, Lai HM, Jeng ST. MicroRNA160 Modulates Plant Development and Heat Shock Protein Gene Expression to Mediate Heat Tolerance in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2018; 9:68. [PMID: 29449855 PMCID: PMC5799662 DOI: 10.3389/fpls.2018.00068] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 01/12/2018] [Indexed: 05/21/2023]
Abstract
Global warming is causing a negative impact on plant growth and adversely impacts on crop yield. MicroRNAs (miRNAs) are critical in regulating the expression of genes involved in plant development as well as defense responses. The effects of miRNAs on heat-stressed Arabidopsis warrants further investigation. Heat stress increased the expression of miR160 and its precursors but considerably reduced that of its targets, ARF10, ARF16, and ARF17. To study the roles of miR160 during heat stress, transgenic Arabidopsis plants overexpressing miR160 precursor a (160OE) and artificial miR160 (MIM160), which mimics an inhibitor of miR160, were created. T-DNA insertion mutants of miR160 targets were also used to examine their tolerances to heat stress. Results presented that overexpressing miR160 improved seed germination and seedling survival under heat stress. The lengths of hypocotyl elongation and rachis were also longer in 160OE than the wild-type (WT) plants under heat stress. Interestingly, MIM160 plants showed worse adaption to heat. In addition, arf10, arf16, and arf17 mutants presented similar phenotypes to 160OE under heat stress to advance abilities of thermotolerance. Moreover, transcriptome and qRT-PCR analyses revealed that HSP17.6A, HSP17.6II, HSP21, and HSP70B expression levels were regulated by heat in 160OE, MIM160, arf10, arf16, and arf17 plants. Hence, miR160 altered the expression of the heat shock proteins and plant development to allow plants to survive heat stress.
Collapse
Affiliation(s)
- Jeng-Shane Lin
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Chia-Chia Kuo
- Department of Life Science, Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | - I-Chu Yang
- Department of Life Science, Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | - Wei-An Tsai
- Department of Crop Environment, Hualien District Agricultural Research and Extension Station, Council of Agriculture, Hualien, Taiwan
| | - Yu-Hsing Shen
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Chih-Ching Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Yi-Chen Liang
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Yu-Chi Li
- Department of Life Science, Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | - Yun-Wei Kuo
- Department of Life Science, Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | - Yu-Chi King
- Department of Life Science, Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | - Hsi-Mei Lai
- Department of Agricultural Chemistry, National Taiwan University, Taipei, Taiwan
| | - Shih-Tong Jeng
- Department of Life Science, Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
- *Correspondence: Shih-Tong Jeng
| |
Collapse
|
15
|
Li Z, Yuan S, Jia H, Gao F, Zhou M, Yuan N, Wu P, Hu Q, Sun D, Luo H. Ectopic expression of a cyanobacterial flavodoxin in creeping bentgrass impacts plant development and confers broad abiotic stress tolerance. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:433-446. [PMID: 27638479 PMCID: PMC5362689 DOI: 10.1111/pbi.12638] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 09/10/2016] [Accepted: 09/13/2016] [Indexed: 05/18/2023]
Abstract
Flavodoxin (Fld) plays a pivotal role in photosynthetic microorganisms as an alternative electron carrier flavoprotein under adverse environmental conditions. Cyanobacterial Fld has been demonstrated to be able to substitute ferredoxin of higher plants in most electron transfer processes under stressful conditions. We have explored the potential of Fld for use in improving plant stress response in creeping bentgrass (Agrostis stolonifera L.). Overexpression of Fld altered plant growth and development. Most significantly, transgenic plants exhibited drastically enhanced performance under oxidative, drought and heat stress as well as nitrogen (N) starvation, which was associated with higher water retention and cell membrane integrity than wild-type controls, modified expression of heat-shock protein genes, production of more reduced thioredoxin, elevated N accumulation and total chlorophyll content as well as up-regulated expression of nitrite reductase and N transporter genes. Further analysis revealed that the expression of other stress-related genes was also impacted in Fld-expressing transgenics. Our data establish a key role of Fld in modulating plant growth and development and plant response to multiple sources of adverse environmental conditions in crop species. This demonstrates the feasibility of manipulating Fld in crop species for genetic engineering of plant stress tolerance.
Collapse
Affiliation(s)
- Zhigang Li
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanHubeiChina
- Department of Genetics and BiochemistryClemson UniversityClemsonSCUSA
| | - Shuangrong Yuan
- Department of Genetics and BiochemistryClemson UniversityClemsonSCUSA
| | - Haiyan Jia
- Department of Genetics and BiochemistryClemson UniversityClemsonSCUSA
- The Applied Plant Genomics Laboratory of Crop Genomics and Bioinformatics Centreand National Key Laboratory of Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjingJiangsuChina
| | - Fangyuan Gao
- Department of Genetics and BiochemistryClemson UniversityClemsonSCUSA
- Crop Research InstituteSichuan Academy of Agricultural SciencesChengduSichuanChina
| | - Man Zhou
- Department of Genetics and BiochemistryClemson UniversityClemsonSCUSA
| | - Ning Yuan
- Department of Genetics and BiochemistryClemson UniversityClemsonSCUSA
| | - Peipei Wu
- Department of Genetics and BiochemistryClemson UniversityClemsonSCUSA
| | - Qian Hu
- Department of Genetics and BiochemistryClemson UniversityClemsonSCUSA
| | - Dongfa Sun
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanHubeiChina
| | - Hong Luo
- Department of Genetics and BiochemistryClemson UniversityClemsonSCUSA
| |
Collapse
|
16
|
Chen ST, He NY, Chen JH, Guo FQ. Identification of core subunits of photosystem II as action sites of HSP21, which is activated by the GUN5-mediated retrograde pathway in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 89:1106-1118. [PMID: 27943531 DOI: 10.1111/tpj.13447] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 11/03/2016] [Accepted: 12/06/2016] [Indexed: 05/19/2023]
Abstract
Photosystem II (PSII) is the most thermolabile photosynthetic complex. Physiological evidence suggests that the small chloroplast heat-shock protein 21 (HSP21) is involved in plant thermotolerance, but the molecular mechanism of its action remains largely unknown. Here, we have provided genetic and biochemical evidence that HSP21 is activated by the GUN5-dependent retrograde signaling pathway, and stabilizes PSII by directly binding to its core subunits such as D1 and D2 proteins under heat stress. We further demonstrate that the constitutive expression of HSP21 sufficiently rescues the thermosensitive stability of PSII and survival defects of the gun5 mutant with dramatically improving granal stacking under heat stress, indicating that HSP21 is a key chaperone protein in maintaining the integrity of the thylakoid membrane system under heat stress. In line with our interpretation based on several lines of in vitro and in vivo protein-interaction evidence that HSP21 interacts with core subunits of PSII, the kinetics of HSP21 binding to the D1 and D2 proteins was determined by performing an analysis of microscale thermophoresis. Considering the major role of HSP21 in protecting the core subunits of PSII from thermal damage, its heat-responsive activation via the heat-shock transcription factor HsfA2 is critical for the survival of plants under heat stress. Our findings reveal an auto-adaptation loop pathway that plant cells optimize particular needs of chloroplasts in stabilizing photosynthetic complexes by relaying the GUN5-dependent plastid signal(s) to activate the heat-responsive expression of HSP21 in the nucleus during adaptation to heat stress in plants.
Collapse
Affiliation(s)
- Si-Ting Chen
- The National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences and National Center of Plant Gene Research (Shanghai), Institute of Plant Physiology & Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ning-Yu He
- The National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences and National Center of Plant Gene Research (Shanghai), Institute of Plant Physiology & Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Juan-Hua Chen
- The National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences and National Center of Plant Gene Research (Shanghai), Institute of Plant Physiology & Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fang-Qing Guo
- The National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences and National Center of Plant Gene Research (Shanghai), Institute of Plant Physiology & Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
| |
Collapse
|
17
|
Wang K, Liu Y, Tian J, Huang K, Shi T, Dai X, Zhang W. Transcriptional Profiling and Identification of Heat-Responsive Genes in Perennial Ryegrass by RNA-Sequencing. FRONTIERS IN PLANT SCIENCE 2017; 8:1032. [PMID: 28680431 PMCID: PMC5478880 DOI: 10.3389/fpls.2017.01032] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 05/29/2017] [Indexed: 05/18/2023]
Abstract
Perennial ryegrass (Lolium perenne) is one of the most widely used forage and turf grasses in the world due to its desirable agronomic qualities. However, as a cool-season perennial grass species, high temperature is a major factor limiting its performance in warmer and transition regions. In this study, a de novo transcriptome was generated using a cDNA library constructed from perennial ryegrass leaves subjected to short-term heat stress treatment. Then the expression profiling and identification of perennial ryegrass heat response genes by digital gene expression analyses was performed. The goal of this work was to produce expression profiles of high temperature stress responsive genes in perennial ryegrass leaves and further identify the potentially important candidate genes with altered levels of transcript, such as those genes involved in transcriptional regulation, antioxidant responses, plant hormones and signal transduction, and cellular metabolism. The de novo assembly of perennial ryegrass transcriptome in this study obtained more total and annotated unigenes compared to previously published ones. Many DEGs identified were genes that are known to respond to heat stress in plants, including HSFs, HSPs, and antioxidant related genes. In the meanwhile, we also identified four gene candidates mainly involved in C4 carbon fixation, and one TOR gene. Their exact roles in plant heat stress response need to dissect further. This study would be important by providing the gene resources for improving heat stress tolerance in both perennial ryegrass and other cool-season perennial grass plants.
Collapse
Affiliation(s)
- Kehua Wang
- Department of Grassland Science, China Agricultural UniversityBeijing, China
- *Correspondence: Kehua Wang, Wanjun Zhang,
| | - Yanrong Liu
- Department of Grassland Science, China Agricultural UniversityBeijing, China
| | - Jinli Tian
- Department of Grassland Science, China Agricultural UniversityBeijing, China
| | - Kunyong Huang
- Department of Grassland Science, China Agricultural UniversityBeijing, China
| | - Tianran Shi
- Department of Grassland Science, China Agricultural UniversityBeijing, China
| | - Xiaoxia Dai
- Department of Grassland Science, China Agricultural UniversityBeijing, China
| | - Wanjun Zhang
- Department of Grassland Science, China Agricultural UniversityBeijing, China
- National Energy R&D Center for Biomass, China Agricultural UniversityBeijing, China
- *Correspondence: Kehua Wang, Wanjun Zhang,
| |
Collapse
|
18
|
Sun X, Sun C, Li Z, Hu Q, Han L, Luo H. AsHSP17, a creeping bentgrass small heat shock protein modulates plant photosynthesis and ABA-dependent and independent signalling to attenuate plant response to abiotic stress. PLANT, CELL & ENVIRONMENT 2016; 39:1320-37. [PMID: 26610288 DOI: 10.1111/pce.12683] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Accepted: 11/16/2015] [Indexed: 05/20/2023]
Abstract
Heat shock proteins (HSPs) are molecular chaperones that accumulate in response to heat and other abiotic stressors. Small HSPs (sHSPs) belong to the most ubiquitous HSP subgroup with molecular weights ranging from 12 to 42 kDa. We have cloned a new sHSP gene, AsHSP17 from creeping bentgrass (Agrostis stolonifera) and studied its role in plant response to environmental stress. AsHSP17 encodes a protein of 17 kDa. Its expression was strongly induced by heat in both leaf and root tissues, and by salt and abscisic acid (ABA) in roots. Transgenic Arabidopsis plants constitutively expressing AsHSP17 exhibited enhanced sensitivity to heat and salt stress accompanied by reduced leaf chlorophyll content and decreased photosynthesis under both normal and stressed conditions compared to wild type. Overexpression of AsHSP17 also led to hypersensitivity to exogenous ABA and salinity during germination and post-germinative growth. Gene expression analysis indicated that AsHSP17 modulates expression of photosynthesis-related genes and regulates ABA biosynthesis, metabolism and ABA signalling as well as ABA-independent stress signalling. Our results suggest that AsHSP17 may function as a protein chaperone to negatively regulate plant responses to adverse environmental stresses through modulating photosynthesis and ABA-dependent and independent signalling pathways.
Collapse
Affiliation(s)
- Xinbo Sun
- Turfgrass Research Institute, Beijing Forestry University, Beijing, 100083, China
- Department of Genetics and Biochemistry, Clemson University, 110 Biosystems Research Complex, Clemson, SC, 29634, USA
- Key Laboratory of Crop Growth Regulation of Hebei Province, Agricultural University of Hebei, Baoding, 071001, China
| | - Chunyu Sun
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China
- Department of Genetics and Biochemistry, Clemson University, 110 Biosystems Research Complex, Clemson, SC, 29634, USA
| | - Zhigang Li
- Department of Genetics and Biochemistry, Clemson University, 110 Biosystems Research Complex, Clemson, SC, 29634, USA
| | - Qian Hu
- Department of Genetics and Biochemistry, Clemson University, 110 Biosystems Research Complex, Clemson, SC, 29634, USA
| | - Liebao Han
- Turfgrass Research Institute, Beijing Forestry University, Beijing, 100083, China
| | - Hong Luo
- Department of Genetics and Biochemistry, Clemson University, 110 Biosystems Research Complex, Clemson, SC, 29634, USA
| |
Collapse
|
19
|
Casaretto JA, El-Kereamy A, Zeng B, Stiegelmeyer SM, Chen X, Bi YM, Rothstein SJ. Expression of OsMYB55 in maize activates stress-responsive genes and enhances heat and drought tolerance. BMC Genomics 2016; 17:312. [PMID: 27129581 PMCID: PMC4850646 DOI: 10.1186/s12864-016-2659-5] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 04/25/2016] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Plant response mechanisms to heat and drought stresses have been considered in strategies for generating stress tolerant genotypes, but with limited success. Here, we analyzed the transcriptome and improved tolerance to heat stress and drought of maize plants over-expressing the OsMYB55 gene. RESULTS Over-expression of OsMYB55 in maize decreased the negative effects of high temperature and drought resulting in improved plant growth and performance under these conditions. This was evidenced by the higher plant biomass and reduced leaf damage exhibited by the transgenic lines compared to wild type when plants were subjected to individual or combined stresses and during or after recovery from stress. A global transcriptomic analysis using RNA sequencing revealed that several genes induced by heat stress in wild type plants are constitutively up-regulated in OsMYB55 transgenic maize. In addition, a significant number of genes up-regulated in OsMYB55 transgenic maize under control or heat treatments have been associated with responses to abiotic stresses including high temperature, dehydration and oxidative stress. The latter is a common and major consequence of imposed heat and drought conditions, suggesting that this altered gene expression may be associated with the improved stress tolerance in these transgenic lines. Functional annotation and enrichment analysis of the transcriptome also pinpoint the relevance of specific biological processes for stress responses. CONCLUSIONS Our results show that expression of OsMYB55 can improve tolerance to heat stress and drought in maize plants. Enhanced expression of stress-associated genes may be involved in OsMYB55-mediated stress tolerance. Possible implications for the improved tolerance to heat stress and drought of OsMYB55 transgenic maize are discussed.
Collapse
Affiliation(s)
- José A Casaretto
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| | - Ashraf El-Kereamy
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
- University of California, Agriculture and Natural Resources, Cooperative Extension - Kern County, Bakersfield, CA, 93307, USA
| | - Bin Zeng
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Suzy M Stiegelmeyer
- Syngenta Biotechnology Inc., Research Triangle Park, NC, 27709, USA
- Expression Analysis, Inc., Durham, NC, 27713, USA
| | - Xi Chen
- Syngenta Biotechnology Inc., Research Triangle Park, NC, 27709, USA
| | - Yong-Mei Bi
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Steven J Rothstein
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| |
Collapse
|
20
|
Zha Q, Xi X, Jiang A, Wang S, Tian Y. Changes in the protective mechanism of photosystem II and molecular regulation in response to high temperature stress in grapevines. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 101:43-53. [PMID: 26852109 DOI: 10.1016/j.plaphy.2016.01.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 01/29/2016] [Accepted: 01/29/2016] [Indexed: 06/05/2023]
Abstract
The response to high temperature stress, which influences the growth and development of grapes, varies between laboratory conditions and ambient growth conditions, and is poorly understood. In the present study, we investigated the effects of high temperature on grapevines (Vitis vinifera L. × Vitis labrusca L.) grown under artificial and ambient conditions. A temperature of 35 °C did not alter Photosystem II (PS II) activity and the expression of some heat-shock protein (HSPs) genes. These changes were, however, observed at 45 °C under artificial conditions, as well as when the ambient natural temperature was greater than 40 °C. Interestingly, these changes corresponded to shifts in PS II activity and HSPs expression. The protective mechanism of PS II was induced by temperatures greater than 40 °C. These data indicating that the expression of HSFA2, GLOS1 and some heat-shock protein (sHSPs) genes were more sensitive to the heat stress. Unlike the Kyoho grapevines, the Jumeigui grapevines showed rapid and dramatically deterioration in PS II activity and the expression of some heat response genes and HSP21, indicating that the Jumeigui grapevines could not counter the heat stress. These were some differences in PSII activity and the expression of heat response genes between the two cultivated conditions could be attributed to other environmental factors, inherent plant vigor, and the adaptation mechanism.
Collapse
Affiliation(s)
- Qian Zha
- Research Institute of Forestry and Pomology, Shanghai Academy of Agricultural Science, Shanghai, 201403, China; School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, 200240, China
| | - Xiaojun Xi
- Research Institute of Forestry and Pomology, Shanghai Academy of Agricultural Science, Shanghai, 201403, China
| | - Aili Jiang
- Research Institute of Forestry and Pomology, Shanghai Academy of Agricultural Science, Shanghai, 201403, China.
| | - Shiping Wang
- School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, 200240, China
| | - Yihua Tian
- Research Institute of Forestry and Pomology, Shanghai Academy of Agricultural Science, Shanghai, 201403, China
| |
Collapse
|
21
|
Zha Q, Xi X, Jiang A, Tian Y. High Temperature Affects Photosynthetic and Molecular Processes in Field-CultivatedVitis viniferaL. ×Vitis labruscaL. Photochem Photobiol 2016; 92:446-54. [DOI: 10.1111/php.12584] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 01/25/2016] [Accepted: 02/02/2016] [Indexed: 11/29/2022]
Affiliation(s)
- Qian Zha
- Shanghai Academy of Agricultural Science; Research Institute of Forestry and Pomology; Shanghai China
| | - Xiaojun Xi
- Shanghai Academy of Agricultural Science; Research Institute of Forestry and Pomology; Shanghai China
| | - Aili Jiang
- Shanghai Academy of Agricultural Science; Research Institute of Forestry and Pomology; Shanghai China
| | - Yihua Tian
- Shanghai Academy of Agricultural Science; Research Institute of Forestry and Pomology; Shanghai China
| |
Collapse
|
22
|
Hu L, Zhang Z, Xiang Z, Yang Z. Exogenous Application of Citric Acid Ameliorates the Adverse Effect of Heat Stress in Tall Fescue (Lolium arundinaceum). FRONTIERS IN PLANT SCIENCE 2016; 7:179. [PMID: 26925085 PMCID: PMC4757681 DOI: 10.3389/fpls.2016.00179] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 02/02/2016] [Indexed: 05/18/2023]
Abstract
Citric acid may be involved in plant response to high temperature. The objective of this study was to investigate whether exogenous citric acid could improve heat tolerance in a cool-season turfgrass species, tall fescue (Lolium arundinaceum), and to determine the physiological mechanisms of citric acid effects on heat stress tolerance. The grasses were subjected to four citric acid levels (0, 0.2, 2, and 20 mM) and two temperature levels (25/20 and 35/30 ± 0.5°C, day/night) treatments in growth chambers. Heat stress increased an electrolyte leakage (EL) and malonaldehyde (MDA) content, while reduced plant growth, chlorophyll (Chl) content, photochemical efficiency (Fv/Fm), root activity and antioxidant enzyme activities (superoxide dismutase, SOD; catalase, CAT; peroxidase, POD). External citric acid alleviated the detrimental effects of heat stress on tall fescue, which was evidenced by decreased EL and MDA content, and improved plant growth under stress conditions. Additionally, the reduction in Chl content, Fv/Fm, SOD, POD, CAT and root activity were ameliorated in citric acid treated plants under heat stressed conditions. High temperature induced the expression of heat shock protein (HSP) genes, which exhibited greater expression levels after citric acid treatment under heat stress. These results suggest that exogenous citric acid application may alleviate growth and physiological damage caused by high temperature. In addition, the exogenously applied citric acid might be responsible for maintaining membrane stability, root activity, and activation of antioxidant response and HSP genes which could contribute to the protective roles of citric acid in tall fescue responses to heat stress.
Collapse
Affiliation(s)
| | | | | | - Zhijian Yang
- Department of Turfgrass Sciences, College of Agronomy, Hunan Agricultural UniversityChangsha, China
| |
Collapse
|
23
|
Small Heat Shock Proteins, a Key Player in Grass Plant Thermotolerance. HEAT SHOCK PROTEINS AND PLANTS 2016. [DOI: 10.1007/978-3-319-46340-7_3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
24
|
Hu T, Liu SQ, Amombo E, Fu JM. Stress memory induced rearrangements of HSP transcription, photosystem II photochemistry and metabolism of tall fescue (Festuca arundinacea Schreb.) in response to high-temperature stress. FRONTIERS IN PLANT SCIENCE 2015; 6:403. [PMID: 26136755 PMCID: PMC4468413 DOI: 10.3389/fpls.2015.00403] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 05/19/2015] [Indexed: 05/20/2023]
Abstract
When plants are pre-exposed to stress, they can produce some stable signals and physiological reactions that may be carried forward as "stress memory". However, there is insufficient information about plants' stress memory responses mechanisms. Here, two tall fescue genotypes, heat-tolerant PI 574522 and heat-sensitive PI 512315, were subjected to recurring high-temperature pre-acclimation treatment. Two heat shock protein (HSP) genes, LMW-HSP and HMW-HSP, exhibited transcriptional memory for their higher transcript abundance during one or more subsequent stresses (S2, S3, S4) relative to the first stress (S1), and basal transcript levels during the recovery states (R1, R2, and R3). Activated transcriptional memory from two trainable genes could persist up to 4 days, and induce higher thermotolerance in tall fescue. This was confirmed by greater turf quality and lower electrolyte leakage. Pre-acclimation treatment inhibited the decline at steps of O-J-I-P and energy transport fluxes in active Photosystem II reaction center (PSII RC) for both tall fescue genotypes. The heat stress memory was associated with major shifts in leaf metabolite profiles. Furthermore, there was an exclusive increase in leaf organic acids (citric acid, malic acid, tris phosphoric acid, threonic acid), sugars (sucrose, glucose, idose, allose, talose, glucoheptose, tagatose, psicose), amino acids (serine, proline, pyroglutamic acid, glycine, alanine), and one fatty acid (butanoic acid) in pre-acclimated plants. These observations involved in transcriptional memory, PSII RC energy transport and metabolite profiles could provide new insights into the plant high-temperature response process.
Collapse
Affiliation(s)
| | | | | | - Jin-Min Fu
- *Correspondence: Jin-Min Fu, Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, Hubei, China
| |
Collapse
|
25
|
Hu T, Sun X, Zhang X, Nevo E, Fu J. An RNA sequencing transcriptome analysis of the high-temperature stressed tall fescue reveals novel insights into plant thermotolerance. BMC Genomics 2014; 15:1147. [PMID: 25527327 PMCID: PMC4378353 DOI: 10.1186/1471-2164-15-1147] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 12/12/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Tall fescue (Festuca arundinacea Schreb.) is major cool-season forage and turf grass species worldwide, but high-temperature is a major environmental stress that dramatically threaten forage production and turf management of tall fescue. However, very little is known about the whole-genome molecular mechanisms contributing to thermotolerance. The objectives of this study were to analyzed genome-wide gene expression profiles in the leaves of two tall fescue genotypes, heat tolerant 'PI578718' and heat sensitive 'PI234881' using high-throughput RNA sequencing. RESULTS A total of 262 million high-quality paired-end reads were generated and assembled into 31,803 unigenes with an average length of 1,840 bp. Of these, 12,974 unigenes showed different expression patterns in response to heat stress and were categorized into 49 Gene Ontology functional subcategories. In addition, the variance of enrichment degree in each functional subcategory between PI578718 and PI234881 increased with increasing treatment time. Cell division and cell cycle genes showed a massive increase in transcript abundance in heat-stressed plants and more activated genes were detected in PI 578718 by Kyoto Encyclopedia of Genes and Genomes pathways analysis. Low molecular weight heat shock protein (LMW-HSP, HSP20) showed activated in two stressed genotypes and high molecular weight HSP (HMW-HSP, HSP90) just in PI578718. Assimilation such as photosynthesis, carbon fixation, CH4, N, S metabolism decreased along with increased dissimilation such as oxidative phosphorylation. CONCLUSIONS The assembled transcriptome of tall fescue could serve as a global description of expressed genes and provide more molecular resources for future functional characterization analysis of genomics in cool-season turfgrass in response to high-temperature. Increased cell division, LMW/HMW-HSP, dissimilation and antioxidant transcript amounts in tall fescue were correlated with successful resistance to high temperature stress.
Collapse
Affiliation(s)
| | | | | | - Eviatar Nevo
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Science, Wuhan 430074, Hubei, P,R, China.
| | | |
Collapse
|
26
|
So HA, Chung E, Lee JH. Arabidopsis atDjC53 encoding a type III J-protein plays a negative role in heat shock tolerance. Genes Genomics 2014. [DOI: 10.1007/s13258-014-0207-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
27
|
Wang K, Zhang X, Goatley M, Ervin E. Heat shock proteins in relation to heat stress tolerance of creeping bentgrass at different N levels. PLoS One 2014; 9:e102914. [PMID: 25050702 PMCID: PMC4106837 DOI: 10.1371/journal.pone.0102914] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 06/23/2014] [Indexed: 11/24/2022] Open
Abstract
Heat stress is a primary factor causing summer bentgrass decline. Changes in gene expression at the transcriptional and/or translational level are thought to be a fundamental mechanism in plant response to environmental stresses. Heat stress redirects protein synthesis in higher plants and results in stress protein synthesis, particularly heat shock proteins (HSPs). The goal of this work was to analyze the expression pattern of major HSPs in creeping bentgrass (Agrostis stolonifera L.) during different heat stress periods and to study the influence of nitrogen (N) on the HSP expression patterns. A growth chamber study on 'Penn-A4' creeping bentgrass subjected to 38/28°C day/night for 50 days, was conducted with four nitrate rates (no N-0, low N-2.5, medium N-7.5, and high N-12.5 kg N ha-1) applied biweekly. Visual turfgrass quality (TQ), normalized difference vegetation index (NDVI), photochemical efficiency of photosystem II (Fv/Fm), shoot electrolyte leakage (ShEL), and root viability (RV) were monitored, along with the expression pattern of HSPs. There was no difference in measured parameters between treatments until week seven, except TQ at week five. At week seven, grass at medium N had better TQ, NDVI, and Fv/Fm accompanied by lower ShEL and higher RV, suggesting a major role in improved heat tolerance. All the investigated HSPs (HSP101, HSP90, HSP70, and sHSPs) were up-regulated by heat stress. Their expression patterns indicated cooperation between different HSPs and their roles in bentgrass thermotolerance. In addition, their production seems to be resource dependent. This study could further improve our understanding about how different N levels affect bentgrass thermotolerance.
Collapse
Affiliation(s)
- Kehua Wang
- Department of Grassland Science, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Department of Crop and Soil Environmental Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Xunzhong Zhang
- Department of Crop and Soil Environmental Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Mike Goatley
- Department of Crop and Soil Environmental Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Erik Ervin
- Department of Crop and Soil Environmental Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| |
Collapse
|
28
|
Sharmin SA, Alam I, Rahman MA, Kim KH, Kim YG, Lee BH. Mapping the leaf proteome of Miscanthus sinensis and its application to the identification of heat-responsive proteins. PLANTA 2013; 238:459-74. [PMID: 23728367 DOI: 10.1007/s00425-013-1900-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 05/14/2013] [Indexed: 05/13/2023]
Abstract
Miscanthus sinensis is a promising bioenergy crop; however, its genome is poorly represented in sequence databases. As an initial step in the comprehensive analysis of the M. sinensis proteome, we report a reference 2-DE protein map of the leaf. A total of 316 protein spots were excised from the gels, digested with trypsin and subjected to matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) or MALDI-TOF/TOF MS. Two hundred and thirty-two protein spots were identified, which are involved in a variety of cellular functions through distinct metabolic pathways. Functional annotation of the proteins revealed a nearly complete C3 and C4 cycle, starch and sugar synthesis pathway, glycolysis pathway, a significant portion of the pentose phosphate pathway, and many enzymes involved in secondary metabolism such as flavonoid/isoflavonoid, kaurene, chalcone, sesquiterpene and lignin biosynthesis. Other proteins belong to primary metabolism, transcription, protein synthesis, protein destination/storage, disease/defense, cell growth/division, transportation and signal transduction. To test the applicability of the constructed map, we studied the effect of heat stress on M. sinensis leaf proteome. Twenty-five protein spots were upregulated, five were newly induced and twenty-five spots were downregulated by heat treatment. The differentially accumulated proteins were involved in photosynthesis, energy metabolism, gene transcription, protein kinases and phosphatases, signal transduction, protein synthesis and heat shock responses. C4-specific pyruvate orthophosphate dikinase, Rubisco large subunit, Rubisco activase and some associated proteins were upregulated during heat stress and tend to restore upon recovery. Identification of these proteins provides some important clues regarding the way M. sinensis copes with hot climate. This work represents the first extensive proteomic description of M. sinensis and provides a reference map and heat-responsive candidates for future molecular and physiological studies of this bioenergy crop.
Collapse
Affiliation(s)
- Shamima Akhtar Sharmin
- Division of Applied Life Sciences (BK21 program), IALS, PMBBRC, Gyeongsang National University, Jinju, 660-701, Korea,
| | | | | | | | | | | |
Collapse
|
29
|
Zhong L, Zhou W, Wang H, Ding S, Lu Q, Wen X, Peng L, Zhang L, Lu C. Chloroplast small heat shock protein HSP21 interacts with plastid nucleoid protein pTAC5 and is essential for chloroplast development in Arabidopsis under heat stress. THE PLANT CELL 2013; 25:2925-43. [PMID: 23922206 PMCID: PMC3784589 DOI: 10.1105/tpc.113.111229] [Citation(s) in RCA: 153] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 07/04/2013] [Accepted: 07/18/2013] [Indexed: 05/18/2023]
Abstract
Compared with small heat shock proteins (sHSPs) in other organisms, those in plants are the most abundant and diverse. However, the molecular mechanisms by which sHSPs are involved in cell protection remain unknown. Here, we characterized the role of HSP21, a plastid nucleoid-localized sHSP, in chloroplast development under heat stress. We show that an Arabidopsis thaliana knockout mutant of HSP21 had an ivory phenotype under heat stress. Quantitative real-time RT-PCR, run-on transcription, RNA gel blot, and polysome association analyses demonstrated that HSP21 is involved in plastid-encoded RNA polymerase (PEP)-dependent transcription. We found that the plastid nucleoid protein pTAC5 was an HSP21 target. pTAC5 has a C4-type zinc finger similar to that of Escherichia coli DnaJ and zinc-dependent disulfide isomerase activity. Reduction of pTAC5 expression by RNA interference led to similar phenotypic effects as observed in hsp21. HSP21 and pTAC5 formed a complex that was associated mainly with the PEP complex. HSP21 and pTAC5 were associated with the PEP complex not only during transcription initiation, but also during elongation and termination. Our results suggest that HSP21 and pTAC5 are required for chloroplast development under heat stress by maintaining PEP function.
Collapse
Affiliation(s)
- Linlin Zhong
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wen Zhou
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haijun Wang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shunhua Ding
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Qingtao Lu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Xiaogang Wen
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Lianwei Peng
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Lixin Zhang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- National Center for Plant Gene Research, Beijing 100093, China
| | - Congming Lu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- National Center for Plant Gene Research, Beijing 100093, China
- Address correspondence to
| |
Collapse
|
30
|
Li Z, Hu Q, Zhou M, Vandenbrink J, Li D, Menchyk N, Reighard S, Norris A, Liu H, Sun D, Luo H. Heterologous expression of OsSIZ1, a rice SUMO E3 ligase, enhances broad abiotic stress tolerance in transgenic creeping bentgrass. PLANT BIOTECHNOLOGY JOURNAL 2013; 11:432-45. [PMID: 23231430 DOI: 10.1111/pbi.12030] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 11/01/2012] [Accepted: 11/06/2012] [Indexed: 05/20/2023]
Abstract
Sumoylation is a posttranslational regulatory process in higher eukaryotes modifying substrate proteins through conjugation of small ubiquitin-related modifiers (SUMOs). Sumoylation modulates protein stability, subcellular localization and activity; thus, it regulates most cellular functions including response to environmental stress in plants. To study the feasibility of manipulating SUMO E3 ligase, one of the important components in the sumoylation pathway in transgenic (TG) crop plants for improving overall plant performance under adverse environmental conditions, we have analysed TG creeping bentgrass (Agrostis stolonifera L.) plants constitutively expressing OsSIZ1, a rice SUMO E3 ligase. Overexpression of OsSIZ1 led to increased photosynthesis and overall plant growth. When subjected to water deficiency and heat stress, OsSIZ1 plants exhibited drastically enhanced performance associated with more robust root growth, higher water retention and cell membrane integrity than wild-type (WT) controls. OsSIZ1 plants also displayed significantly better growth than WT controls under phosphate-starvation conditions, which was associated with a higher uptake of phosphate (Pi) and other minerals, such as potassium and zinc. Further analysis revealed that overexpression of OsSIZ1 enhanced stress-induced SUMO conjugation to substrate in TG plants, which was associated with modified expression of stress-related genes. This strongly supports a role sumoylation plays in regulating multiple molecular pathways involved in plant stress response, establishing a direct link between sumoylation and plant response to environmental adversities. Our results demonstrate the great potential of genetic manipulation of sumoylation process in TG crop species for improved resistance to broad abiotic stresses.
Collapse
Affiliation(s)
- Zhigang Li
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Khurana N, Chauhan H, Khurana P. Wheat chloroplast targeted sHSP26 promoter confers heat and abiotic stress inducible expression in transgenic Arabidopsis Plants. PLoS One 2013; 8:e54418. [PMID: 23349883 PMCID: PMC3548792 DOI: 10.1371/journal.pone.0054418] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 12/11/2012] [Indexed: 01/03/2023] Open
Abstract
The small heat shock proteins (sHSPs) have been found to play a critical role in physiological stress conditions in protecting proteins from irreversible aggregation. To characterize the hloroplast targeted sHSP26 promoter in detail, deletion analysis of the promoter is carried out and analysed via transgenics in Arabidopsis. In the present study, complete assessment of the importance of CCAAT-box elements along with Heat shock elements (HSEs) in the promoter of sHSP26 was performed. Moreover, the importance of 5' untranslated region (UTR) has also been established in the promoter via Arabidopsis transgenics. An intense GUS expression was observed after heat stress in the transgenics harbouring a full-length promoter, confirming the heat-stress inducibility of the promoter. Transgenic plants without UTR showed reduced GUS expression when compared to transgenic plants with UTR as was confirmed at the RNA and protein levels by qRT-PCR and GUS histochemical assays, thus suggesting the possible involvement of some regulatory elements present in the UTR in heat-stress inducibility of the promoter. Promoter activity was also checked under different abiotic stresses and revealed differential expression in different deletion constructs. Promoter analysis based on histochemical assay, real-time qPCR and fluorimetric analysis revealed that HSEs alone could not transcribe GUS gene significantly in sHSP26 promoter and CCAAT box elements contribute synergistically to the transcription. Our results also provide insight into the importance of 5`UTR of sHsp26 promoter thus emphasizing the probable role of imperfect CCAAT-box element or some novel cis-element with respect to heat stress.
Collapse
Affiliation(s)
- Neetika Khurana
- Department of Plant Molecular Biology, University of Delhi, South Campus, New Delhi, India
| | - Harsh Chauhan
- Department of Plant Molecular Biology, University of Delhi, South Campus, New Delhi, India
| | - Paramjit Khurana
- Department of Plant Molecular Biology, University of Delhi, South Campus, New Delhi, India
| |
Collapse
|
32
|
Waters ER. The evolution, function, structure, and expression of the plant sHSPs. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:391-403. [PMID: 23255280 DOI: 10.1093/jxb/ers355] [Citation(s) in RCA: 236] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Small heat shock proteins are a diverse, ancient, and important family of proteins. All organisms possess small heat shock proteins (sHSPs), indicating that these proteins evolved very early in the history of life prior to the divergence of the three domains of life (Archaea, Bacteria, and Eukarya). Comparing the structures of sHSPs from diverse organisms across these three domains reveals that despite considerable amino acid divergence, many structural features are conserved. Comparisons of the sHSPs from diverse organisms reveal conserved structural features including an oligomeric form with a β-sandwich that forms a hollow ball. This conservation occurs despite significant divergence in primary sequences. It is well established that sHSPs are molecular chaperones that prevent misfolding and irreversible aggregation of their client proteins. Most notably, the sHSPs are extremely diverse and variable in plants. Some plants have >30 individual sHSPs. Land plants, unlike other groups, possess distinct sHSP subfamilies. Most are highly up-regulated in response to heat and other stressors. Others are selectively expressed in seeds and pollen, and a few are constitutively expressed. As a family, sHSPs have a clear role in thermotolerance, but attributing specific effects to individual proteins has proved challenging. Considerable progress has been made during the last 15 years in understanding the sHSPs. However, answers to many important questions remain elusive, suggesting that the next 15 years will be at least equally rewarding.
Collapse
Affiliation(s)
- Elizabeth R Waters
- Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA.
| |
Collapse
|
33
|
Shakeel SN, Ul Haq N, Heckathorn S, Luthe DS. Analysis of gene sequences indicates that quantity not quality of chloroplast small HSPs improves thermotolerance in C4 and CAM plants. PLANT CELL REPORTS 2012; 31:1943-1957. [PMID: 22797908 DOI: 10.1007/s00299-012-1307-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 06/07/2012] [Accepted: 06/19/2012] [Indexed: 06/01/2023]
Abstract
Chloroplast-localized small heat-shock proteins (Cp-sHSP) protect Photosystem II and thylakoid membranes during heat and other stresses, and Cp-sHSP production levels are related to plant thermotolerance. However, to date, a paucity of Cp-sHSP sequences from C4 or CAM species, or from other extremely heat-tolerant species, has precluded an examination to determine if Cp-sHSP genes or proteins might differ among plants with photosynthetic pathways or between heat-sensitive and heat-tolerant species. To investigate this, we isolated and characterized novel Cp-sHSP genes in four plant species: two moderately heat-tolerant C4 species, Spartina alterniflora (monocot) and Amaranthus retroflexus (eudicot), and two very heat-tolerant CAM species, Agave americana (monocot) and Ferocactus wislizenii (eudicot) (respective genes: SasHSP27.12, ArsHSP26.43, AasHSP26.85 and FwsHSP27.52) by PCR-based genome walking and cDNA RACE. Analysis of these Cp-sHSPs has confirmed the presence of conserved domains common to previously examined species. As expected, the transit peptide was found to be the most variable part of these proteins. Promoter analysis of these genes revealed differences in CAM versus C3 and C4 species that were independent of a general difference between monocots and eudicots observed for the entire protein. Heat-induced gene and protein expression indicated that Cp-sHSP protein levels were correlated with thermotolerance of photosynthetic electron transport, and that in most cases protein and transcript levels were correlated. Thus, available evidence indicates little variation in the amino acid sequence of Cp-sHSP mature proteins between heat-sensitive and -tolerant species, but that variation in Cp-sHSP protein production is related to heat tolerance or photosynthetic pathway (CAM vs. C3 and C4) and is driven by promoter differences. Key message We isolated and characterized four novel Cp-sHSP genes with promoters from wild plants, analysis has shown qualitative and quantitative interspecific variations in Cp-sHSPs of C3, C4, and CAM plant thermotolerance.
Collapse
MESH Headings
- Adaptation, Physiological
- Agave/genetics
- Agave/physiology
- Amaranthus/genetics
- Amaranthus/physiology
- Amino Acid Sequence
- Chloroplast Proteins/genetics
- Chloroplast Proteins/metabolism
- Chloroplasts/genetics
- Chloroplasts/physiology
- Conserved Sequence
- DNA, Complementary/genetics
- DNA, Complementary/metabolism
- Genes, Chloroplast
- Genes, Plant
- Genomics/methods
- Heat-Shock Proteins, Small/genetics
- Heat-Shock Proteins, Small/metabolism
- Hot Temperature
- Molecular Sequence Data
- Photosynthesis
- Photosystem II Protein Complex/genetics
- Photosystem II Protein Complex/physiology
- Phylogeny
- Polymerase Chain Reaction
- Promoter Regions, Genetic
- Protein Biosynthesis
- Protein Structure, Tertiary
- Sequence Analysis, DNA
- Sequence Analysis, Protein/methods
- Species Specificity
Collapse
Affiliation(s)
- Samina N Shakeel
- Department of Biochemistry and Molecular Biology, Mississippi State University, Starkville, MS, USA.
| | | | | | | |
Collapse
|
34
|
Amano M, Iida S, Kosuge K. Comparative studies of thermotolerance: different modes of heat acclimation between tolerant and intolerant aquatic plants of the genus Potamogeton. ANNALS OF BOTANY 2012; 109:443-52. [PMID: 22147547 PMCID: PMC3268545 DOI: 10.1093/aob/mcr300] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2011] [Accepted: 11/01/2011] [Indexed: 05/23/2023]
Abstract
BACKGROUND AND AIMS Molecular-based studies of thermotolerance have rarely been performed on wild plants, although this trait is critical for summer survival. Here, we focused on thermotolerance and expression of heat shock transcription factor A2 (HSFA2) and its putative target gene (chloroplast-localized small heat shock protein, CP-sHSP) in two allied aquatic species of the genus Potamogeton (pondweeds) that differ in survival on land. METHODS The degree of thermotolerance was examined using a chlorophyll bioassay to assess heat injury in plants cultivated under non- and heat-acclimation conditions. Potamogeton HSFA2 and CP-sHSP genes were identified and their heat-induction was quantified by real-time PCR. KEY RESULTS The inhibition of chlorophyll accumulation after heat stress showed that Potamogeton malaianus had a higher basal thermotolerance and developed acquired thermotolerance, whereas Potamogeton perfoliatus was heat sensitive and unable to acquire thermotolerance. We found two duplicated HSFA2 and CP-sHSP genes in each species. These genes were induced by heat shock in P. malaianus, while one HSFA2a gene was not induced in P. perfoliatus. In non-heat-acclimated plants, transcript levels of HSFA2 and CP-sHSP were transiently elevated after heat shock. In heat-acclimated plants, transcripts were continuously induced during sublethal heat shock in P. malaianus, but not in P. perfoliatus. Instead, the minimum threshold temperature for heat induction of the CP-sHSP genes was elevated in P. perfoliatus. CONCLUSIONS Our comparative study of thermotolerance showed that heat acclimation leads to species-specific changes in heat response. The development of acquired thermotolerance is beneficial for survival at extreme temperatures. However, the loss of acquired thermotolerance and plasticity in the minimum threshold temperature of heat response may be favourable for plants growing in moderate habitats with limited daily and seasonal temperature fluctuations.
Collapse
Affiliation(s)
| | | | - Keiko Kosuge
- Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| |
Collapse
|
35
|
Kim KH, Alam I, Kim YG, Sharmin SA, Lee KW, Lee SH, Lee BH. Overexpression of a chloroplast-localized small heat shock protein OsHSP26 confers enhanced tolerance against oxidative and heat stresses in tall fescue. Biotechnol Lett 2011; 34:371-7. [DOI: 10.1007/s10529-011-0769-3] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 09/26/2011] [Indexed: 12/13/2022]
|
36
|
Shakeel S, Haq NU, Heckathorn SA, Hamilton EW, Luthe DS. Ecotypic variation in chloroplast small heat-shock proteins and related thermotolerance in Chenopodium album. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2011; 49:898-908. [PMID: 21684754 DOI: 10.1016/j.plaphy.2011.05.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Accepted: 05/05/2011] [Indexed: 05/19/2023]
Abstract
Production of chloroplast-localized small heat-shock proteins (Cp-sHSP) is correlated with increased thermotolerance in plants. Ecotypic variation in function and expression of Cp-sHSPs was analyzed in two Chenopodium album ecotypes from cool vs. warm-temperate USA habitats [New York (NY) and Mississippi (MS) respectively]. P(et) was more heat tolerant in the MS than the NY ecotype, and MS ecotype derived proportionally greater protection of P(et) by Cp-sHSP during high temperatures. Four genes encoding Cp-sHSPs were isolated and characterized: CaHSP25.99n (NY-1) and CaHSP26.23n (NY-2) from NY ecotype, and CaHSP26.04m (MS-1) and CaHSP26.26m (MS-2) from MS ecotype. The genes were nearly identical in predicted amino-acid sequence and hydrophobicity. Gene expression analysis indicated that MS-1 and MS-2 transcripts were constitutively expressed at low levels at 25 °C, while no NY-1 and NY-2 transcripts were detected at this temperature. Maximum accumulation of NY-1 and NY-2 transcripts occurred at 33 °C and 40 °C for MS-1 and MS-2. Immunoblot analysis revealed that (1) protein expression was highest at 37 °C in both ecotypes, but was greater in MS than NY ecotype at 40 °C; and (2) import of Cp-sHSP into chloroplasts was more heat-labile in NY ecotype. The higher expression of one isoform in MS ecotype may contribute to its enhanced thermotolerance. Absence of correlation between protein and transcript levels, suggests the post-transcriptional regulation is occurring. Promoter analysis of these genes revealed significant variations in heat-shock elements (HSE), core motifs required for heat-shock-factor binding. We propose a correlation between unique promoter architecture, Cp-sHSP expression and thermotolerance in both ecotypes.
Collapse
Affiliation(s)
- Samina Shakeel
- Department of Biochemistry, and Molecular Biology, Mississippi State University, MS, USA.
| | | | | | | | | |
Collapse
|
37
|
Valcu CM, Lalanne C, Plomion C, Schlink K. Heat induced changes in protein expression profiles of Norway spruce (Picea abies) ecotypes from different elevations. Proteomics 2009; 8:4287-302. [PMID: 18814337 DOI: 10.1002/pmic.200700992] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Although tree species typically exhibit low genetic differentiation between populations, ecotypes adapted to different environmental conditions can vary in their capacity to withstand and recover from environmental stresses like heat stress. Two month old seedlings of a Picea abies ecotype adapted to high elevation showed lower level of thermotolerance and higher level of tolerance to oxidative stress relative to a low elevation ecotype. Protein expression patterns following exposure to severe heat stress of the two ecotypes were compared by means of 2-DE. Several proteins exhibiting ecotype and tissue specific expression were identified by MS/MS. Among them, small heat shock proteins of the HSP 20 family and proteins involved in protection from oxidative stress displayed qualitative and quantitative differences in expression between the ecotypes correlated with the observed phenotypic differences. On the basis of these results, it can be speculated that the observed interpopulation polymorphism of protein regulation in response to heat stress could underlie their different capacities to withstand and recover from heat stress. These local adaptations are potentially relevant for the species adaptation to the conditions predicted by the current models for climate change.
Collapse
Affiliation(s)
- Cristina-Maria Valcu
- Section of Forest Genetics, Technische Universität München, Freising-Weihenstephan, Germany.
| | | | | | | |
Collapse
|
38
|
Huang B, Xu C. Identification and characterization of proteins associated with plant tolerance to heat stress. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2008; 50:1230-7. [PMID: 19017110 DOI: 10.1111/j.1744-7909.2008.00735.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Heat stress is a major abiotic stress limiting plant growth and productivity in many areas of the world. Understanding mechanisms of plant adaptation to heat stress would facilitate the development of heat-tolerant cultivars for improving productivity in warm climatic regions. Protein metabolism involving protein synthesis and degradation is one of the most sensitive processes to heat stress. Changes in the level and expression pattern of some proteins may play an important role in plant adaptation to heat stress. The identification of stress-responsive proteins and pathways has been facilitated by an increasing number of tools and resources, including two-dimensional electrophoresis and mass spectrometry, and the rapidly expanding nucleotide and amino acid sequence databases. Heat stress may induce or enhance protein expression or cause protein degradation. The induction of heat-responsive proteins, particularly heat shock proteins (HSPs), plays a key role in plant tolerance to heat stress. Protein degradation involving various proteases is also important in regulating plant responses to heat stress. This review provides an overview of recent research on proteomic profiling for the identification of heat-responsive proteins associated with heat tolerance, heat induction and characteristics of HSPs, and protein degradation in relation to plant responses to heat stress.
Collapse
Affiliation(s)
- Bingru Huang
- Department of Plant Biology and Pathology, Rutgers University, New Brunswick, NJ 08901, USA.
| | | |
Collapse
|
39
|
Su PH, Li HM. Arabidopsis stromal 70-kD heat shock proteins are essential for plant development and important for thermotolerance of germinating seeds. PLANT PHYSIOLOGY 2008; 146:1231-41. [PMID: 18192441 PMCID: PMC2259073 DOI: 10.1104/pp.107.114496] [Citation(s) in RCA: 175] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2007] [Accepted: 01/06/2008] [Indexed: 05/19/2023]
Abstract
The 70-kD heat shock proteins (Hsp70s) have been shown to be important for protein folding, protein translocation, and stress responses in almost all organisms and in almost all subcellular compartments. However, the function of plastid stromal Hsp70s in higher plants is still uncertain. Genomic surveys have revealed that there are two putative stromal Hsp70s in Arabidopsis thaliana, denoted cpHsc70-1 (At4g24280) and cpHsc70-2 (At5g49910). In this study, we show that cpHsc70-1 and cpHsc70-2 could indeed be imported into the chloroplast stroma. Their corresponding T-DNA insertion knockout mutants were isolated and designated as Deltacphsc70-1 and Deltacphsc70-2. No visible phenotype was observed in the Deltacphsc70-2 mutant under normal growth conditions. In contrast, Deltacphsc70-1 mutant plants exhibited variegated cotyledons, malformed leaves, growth retardation, and impaired root growth, even though the protein level of cpHsc70-2 was up-regulated in the Deltacphsc70-1 mutant. After heat shock treatment of germinating seeds, root growth from Deltacphsc70-1 seeds was further impaired, indicating that cpHsc70-1 is important for thermotolerance of germinating seeds. No Deltacphsc70-1 Deltacphsc70-2 double mutant could be obtained, suggesting that the Deltacphsc70 double knockout was lethal. Genotype analyses of F(1) seedlings from various crosses indicated that double-knockout mutation was lethal to the female gametes and reduced the transmission efficiency of the male gametes. These results indicate that cpHsc70s are essential for plant development and the two cpHsc70s most likely have redundant but also distinct functions.
Collapse
Affiliation(s)
- Pai-Hsiang Su
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei, Taiwan
| | | |
Collapse
|
40
|
Yang JY, Sun Y, Sun AQ, Yi SY, Qin J, Li MH, Liu J. The involvement of chloroplast HSP100/ClpB in the acquired thermotolerance in tomato. PLANT MOLECULAR BIOLOGY 2006; 62:385-95. [PMID: 16912911 DOI: 10.1007/s11103-006-9027-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2006] [Accepted: 05/30/2006] [Indexed: 05/11/2023]
Abstract
The chloroplast HSP100/ClpB is a newly documented member of the ClpB family, but little was known about its role in imparting thermotolerance to cells. A cDNA coding for a HSP100/ClpB homolog has been cloned from Lycopersicon esculentum and termed as Lehsp100/ClpB (the cDNA sequence of Lehsp100/ClpB has been submitted to the GenBank database under accession number: AB219939). The protein encoded by the cDNA was most similar to the putative chloroplast HSP100/ClpBs in higher plants and the ClpB from Cyanobacterium Synechococcus sp. A 97 kDa protein, which matched the predicted size of mature LeHSP100/ClpB, was immunologically detected in chloroplast isolated from heat-treated tomato plants. In addition, the fusion protein, combining the transit sequence of LeHSP100/ClpB and GFP, was found to be located in chloroplast based on the observations of fluorescent microscope images. These results indicated the chloroplast-localization of LeHSP100/ClpB. Both the transcript and the protein of Lehsp100/ClpB were not detected under normal growth conditions, but they were induced by increasingly higher temperatures. An antisense Lehsp100/ClpB cDNA fragment was introduced into the tomato by Agrobacterium-mediated transformation. Antisense lines exhibited an extreme repression of heat-induced expression of Lehsp100/ClpB. The levels of chloroplast HSP60 and small HSP in antisense lines were identical to those of the control plants. After plants preconditioned at 38 degrees C for 2 h were exposed to a lethal heat shock at 46 degrees C for 2 h, the antisense lines were greatly impaired and withered in 21 days of the recovery phase, whereas the untransformed control plants and the vector-transformed plants survived. Furthermore, chlorophyll fluorescence measurements showed that PS II in antisense lines were more susceptible to the thermal irreversible inactivation than the untransformed and vector-transformed control plants. This work provides the first example that induction of chloroplast LeHSP100/ClpB contributes to the acquisition of thermotolerance in higher plants.
Collapse
Affiliation(s)
- Jin-ying Yang
- College of Life Science, Shandong Normal University, Jinan, Shandong, 250014, PR China
| | | | | | | | | | | | | |
Collapse
|
41
|
Vinocur B, Altman A. Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Curr Opin Biotechnol 2005; 16:123-32. [PMID: 15831376 DOI: 10.1016/j.copbio.2005.02.001] [Citation(s) in RCA: 625] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Abiotic stresses, especially salinity and drought, are the primary causes of crop loss worldwide. Plant adaptation to environmental stresses is dependent upon the activation of cascades of molecular networks involved in stress perception, signal transduction, and the expression of specific stress-related genes and metabolites. Consequently, engineering genes that protect and maintain the function and structure of cellular components can enhance tolerance to stress. Our limited knowledge of stress-associated metabolism remains a major gap in our understanding; therefore, comprehensive profiling of stress-associated metabolites is most relevant to the successful molecular breeding of stress-tolerant crop plants. Unraveling additional stress-associated gene resources, from both crop plants and highly salt- and drought-tolerant model plants, will enable future molecular dissection of salt-tolerance mechanisms in important crop plants.
Collapse
Affiliation(s)
- Basia Vinocur
- The Robert H Smith Institute of Plant Sciences and Genetics in Agriculture and the Otto Warburg Center for Agricultural Biotechnology, The Hebrew University of Jerusalem, PO Box 12, Rehovot 76100, Israel
| | | |
Collapse
|
42
|
Neta-Sharir I, Isaacson T, Lurie S, Weiss D. Dual role for tomato heat shock protein 21: protecting photosystem II from oxidative stress and promoting color changes during fruit maturation. THE PLANT CELL 2005; 17:1829-38. [PMID: 15879560 PMCID: PMC1143080 DOI: 10.1105/tpc.105.031914] [Citation(s) in RCA: 210] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2005] [Revised: 04/12/2005] [Accepted: 04/13/2005] [Indexed: 05/02/2023]
Abstract
The tomato (Lycopersicon esculentum) chloroplast small heat shock protein (sHSP), HSP21, is induced by heat treatment in leaves, but also under normal growth conditions in developing fruits during the transition of chloroplasts to chromoplasts. We used transgenic tomato plants constitutively expressing HSP21 to study the role of the protein under stress conditions and during fruit maturation. Although we did not find any effect for the transgene on photosystem II (PSII) thermotolerance, our results show that the protein protects PSII from temperature-dependent oxidative stress. In addition, we found direct evidence of the protein's role in fruit reddening and the conversion of chloroplasts to chromoplasts. When plants were grown under normal growth temperature, transgenic fruits accumulated carotenoids earlier than controls. Furthermore, when detached mature green fruits were stored for 2 weeks at 2 degrees C and then transferred to room temperature, the natural accumulation of carotenoids was blocked. In a previous study, we showed that preheat treatment, which induces HSP21, allowed fruit color change at room temperature, after a cold treatment. Here, we show that mature green transgenic fruits constitutively expressing HSP21 do not require the heat treatment to maintain the ability to accumulate carotenoids after cold storage. This study demonstrates that a sHSP plays a role in plant development under normal growth conditions, in addition to its protective effect under stress conditions.
Collapse
Affiliation(s)
- Inbal Neta-Sharir
- Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agricultural, Food, and Environmental Quality Sciences, Hebrew University of Jerusalem, Rehovot 76100, Israel
| | | | | | | |
Collapse
|
43
|
Wang W, Vinocur B, Shoseyov O, Altman A. Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. TRENDS IN PLANT SCIENCE 2004; 9:244-52. [PMID: 15130550 DOI: 10.1016/j.tplants.2004.03.006] [Citation(s) in RCA: 1468] [Impact Index Per Article: 69.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Affiliation(s)
- Wangxia Wang
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agricultural, Food and Environmental Quality Sciences, The Hebrew University of Jerusalem, PO Box 12, Rehovot 76100, Israel
| | | | | | | |
Collapse
|