1
|
Zhou B, Wang L, Ji Z, Chen X, Sun X, Xu N, Li P, Sang YL, Du Q, Liu LJ. The PagAFP2a-PagAREB1 Module Form a Negative Feedback Loop to Regulate Salt Tolerance in Populus. PLANT, CELL & ENVIRONMENT 2025. [PMID: 40165385 DOI: 10.1111/pce.15495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 03/04/2025] [Accepted: 03/14/2025] [Indexed: 04/02/2025]
Abstract
Salt stress is a major abiotic stress restrict plant growth and distribution. In our previous study, we found the ABI5-BINDING PROTEIN 2a (PagAFP2a) gene was rapidly and significantly induced by salt stress in hybrid poplar (Populus alba × Populus glandulosa), however, its function in salt stress responses was unclear. In this study, we further demonstrated that the PagAFP2a gene expression is significantly induced by salt and ABA treatments. Additionally, the ABA-responsive element (ABRE) binding proteins (PagAREB1s) directly bind to PagAFP2a promoter and activate its expression. Physiological analysis showed that PagAFP2a overexpression (PagAFP2aOE) or PagAREB1-3 knockout (PagAREB1-3KO) significantly reduced salt tolerance whereas PagAFP2a knockout (PagAFP2aKO) or PagAREB1-3 overexpression (PagAREB1-3OE) significantly enhanced salt tolerance in poplar. Correspondingly, salt stress responsive genes were significantly upregulated in PagAFP2aKO and PagAREB1-3OE plants while downregulated in PagAFP2aOE and PagAREB1-3KO plants. Furthermore, we demonstrated that PagAFP2a directly interacts with PagAREB1s and represses its transcriptional activity at the target genes. In summary, our results unveil the PagAFP2a-PagAREB1s module form a negative feedback loop in ABA signaling to fine-tune salt stress responses in Populus.
Collapse
Affiliation(s)
- Bowen Zhou
- State Forestry and Grassland Administration Key Laboratory of Silviculture in downstream areas of the Yellow River, College of Forestry, Shandong Agricultural University, Taian, Shandong, China
| | - Linjing Wang
- State Forestry and Grassland Administration Key Laboratory of Silviculture in downstream areas of the Yellow River, College of Forestry, Shandong Agricultural University, Taian, Shandong, China
| | - Zhenyang Ji
- State Forestry and Grassland Administration Key Laboratory of Silviculture in downstream areas of the Yellow River, College of Forestry, Shandong Agricultural University, Taian, Shandong, China
| | - Xiaoman Chen
- State Forestry and Grassland Administration Key Laboratory of Silviculture in downstream areas of the Yellow River, College of Forestry, Shandong Agricultural University, Taian, Shandong, China
| | - Xingkai Sun
- State Forestry and Grassland Administration Key Laboratory of Silviculture in downstream areas of the Yellow River, College of Forestry, Shandong Agricultural University, Taian, Shandong, China
| | - Na Xu
- State Forestry and Grassland Administration Key Laboratory of Silviculture in downstream areas of the Yellow River, College of Forestry, Shandong Agricultural University, Taian, Shandong, China
| | - Peng Li
- State Forestry and Grassland Administration Key Laboratory of Silviculture in downstream areas of the Yellow River, College of Forestry, Shandong Agricultural University, Taian, Shandong, China
| | - Ya Lin Sang
- State Forestry and Grassland Administration Key Laboratory of Silviculture in downstream areas of the Yellow River, College of Forestry, Shandong Agricultural University, Taian, Shandong, China
| | - Qingzhang Du
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
| | - Li-Jun Liu
- State Forestry and Grassland Administration Key Laboratory of Silviculture in downstream areas of the Yellow River, College of Forestry, Shandong Agricultural University, Taian, Shandong, China
| |
Collapse
|
2
|
Liu XD, Zeng YY, Hasan MM, Ghimire S, Jiang H, Qi SH, Tian XQ, Fang XW. Diverse functional interactions between ABA and ethylene in plant development and responses to stress. PHYSIOLOGIA PLANTARUM 2024; 176:e70000. [PMID: 39686889 DOI: 10.1111/ppl.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024]
Abstract
Abscisic acid (ABA) and ethylene are two essential hormones that play crucial roles throughout the entire plant life cycle and in their tolerance to abiotic or biotic stress. In recent decades, increasing research has revealed that, in addition to their individual roles, these two hormones are more likely to function through their interactions, forming a complex regulatory network. More importantly, their functions change and their interactions vary from synergistic to antagonistic depending on the specific plant organ and development stage, which is less focused, compared and systematically summarized. In this review, we first introduce the general synthesis and action signaling pathways of these two plant hormones individually and their interactions in relation to seed dormancy and germination, primary root growth, shoot development, fruit ripening, leaf senescence and abscission, and stomatal movement regulation under both normal and stress conditions. A better understanding of the complex interactions between ABA and ethylene will enhance our knowledge of how plant hormones regulate development and respond to stress and may facilitate the development of crops with higher yields and greater tolerance to stressful environments through tissue-specific genetic modifications in the future.
Collapse
Affiliation(s)
- Xu-Dong Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Yuan-Yuan Zeng
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Md Mahadi Hasan
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Shantwana Ghimire
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Hui Jiang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Shi-Hua Qi
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Xue-Qian Tian
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Xiang-Wen Fang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| |
Collapse
|
3
|
Veerabagu M, van der Schoot C, Turečková V, Tarkowská D, Strnad M, Rinne PLH. Light on perenniality: Para-dormancy is based on ABA-GA antagonism and endo-dormancy on the shutdown of GA biosynthesis. PLANT, CELL & ENVIRONMENT 2023; 46:1785-1804. [PMID: 36760106 DOI: 10.1111/pce.14562] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/23/2023] [Accepted: 02/07/2023] [Indexed: 05/04/2023]
Abstract
Perennial para- and endo-dormancy are seasonally separate phenomena. Whereas para-dormancy is the suppression of axillary buds (AXBs) by a growing shoot, endo-dormancy is the short-day elicited arrest of terminal and AXBs. In hybrid aspen (Populus tremula x P. tremuloides) compromising the apex releases para-dormancy, whereas endo-dormancy requires chilling. ABA and GA are implicated in both phenomena. To untangle their roles, we blocked ABA biosynthesis with fluridone (FD), which significantly reduced ABA levels, downregulated GA-deactivation genes, upregulated the major GA3ox-biosynthetic genes, and initiated branching. Comprehensive GA-metabolite analyses suggested that FD treatment shifted GA production to the non-13-hydroxylation pathway, enhancing GA4 function. Applied ABA counteracted FD effects on GA metabolism and downregulated several GA3/4 -inducible α- and γ-clade 1,3-β-glucanases that hydrolyze callose at plasmodesmata (PD), thereby enhancing PD-callose accumulation. Remarkably, ABA-deficient plants repressed GA4 biosynthesis and established endo-dormancy like controls but showed increased stress sensitivity. Repression of GA4 biosynthesis involved short-day induced DNA methylation events within the GA3ox2 promoter. In conclusion, the results cast new light on the roles of ABA and GA in dormancy cycling. In para-dormancy, PD-callose turnover is antagonized by ABA, whereas in short-day conditions, lack of GA4 biosynthesis promotes callose deposition that is structurally persistent throughout endo-dormancy.
Collapse
Affiliation(s)
| | | | - Veronika Turečková
- Laboratory of Growth Regulators, Faculty of Sciences, Palacký University & Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czech Republic
| | - Danuše Tarkowská
- Laboratory of Growth Regulators, Faculty of Sciences, Palacký University & Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czech Republic
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Faculty of Sciences, Palacký University & Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czech Republic
| | - Päivi L H Rinne
- Department of Plant Sciences, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
4
|
Responses to Drought Stress in Poplar: What Do We Know and What Can We Learn? Life (Basel) 2023; 13:life13020533. [PMID: 36836891 PMCID: PMC9962866 DOI: 10.3390/life13020533] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/09/2023] [Accepted: 02/11/2023] [Indexed: 02/17/2023] Open
Abstract
Poplar (Populus spp.) is a high-value crop for wood and biomass production and a model organism for tree physiology and genomics. The early release, in 2006, of the complete genome sequence of P. trichocarpa was followed by a wealth of studies that significantly enriched our knowledge of complex pathways inherent to woody plants, such as lignin biosynthesis and secondary cell wall deposition. Recently, in the attempt to cope with the challenges posed by ongoing climate change, fundamental studies and breeding programs with poplar have gradually shifted their focus to address the responses to abiotic stresses, particularly drought. Taking advantage from a set of modern genomic and phenotyping tools, these studies are now shedding light on important processes, including embolism formation (the entry and expansion of air bubbles in the xylem) and repair, the impact of drought stress on biomass yield and quality, and the long-term effects of drought events. In this review, we summarize the status of the research on the molecular bases of the responses to drought in poplar. We highlight how this knowledge can be exploited to select more tolerant genotypes and how it can be translated to other tree species to improve our understanding of forest dynamics under rapidly changing environmental conditions.
Collapse
|
5
|
Cheng Y, Liang C, Qiu Z, Zhou S, Liu J, Yang Y, Wang R, Yin J, Ma C, Cui Z, Song J, Li D. Jasmonic acid negatively regulates branch growth in pear. FRONTIERS IN PLANT SCIENCE 2023; 14:1105521. [PMID: 36824194 PMCID: PMC9941643 DOI: 10.3389/fpls.2023.1105521] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
The quality of seedlings is an important factor for development of the pear industry. A strong seedling with few branches and suitable internodes is ideal material as a rootstock for grafting and breeding. Several branching mutants of pear rootstocks were identified previously. In the present study, 'QAU-D03' (Pyrus communis L.) and it's mutants were used to explore the mechanism that affects branch formation by conducting phenotypic trait assessment, hormone content analysis, and transcriptome analysis. The mutant plant (MP) showed fewer branches, shorter 1-year-old shoots, and longer petiole length, compared to original plants (OP), i.e., wild type. Endogenous hormone analysis revealed that auxin, cytokinin, and jasmonic acid contents in the stem tips of MP were significantly higher than those of the original plants. In particular, the jasmonic acid content of the MP was 1.8 times higher than that of the original plants. Transcriptome analysis revealed that PcCOI1, which is a transcriptional regulatory gene downstream of the jasmonic acid signaling pathway, was expressed more highly in the MP than in the original plants, whereas the expression levels of PcJAZ and PcMYC were reduced in the MP compared with that of the original plants. In response to treatment with exogenous methyl jasmonate, the original plants phenotype was consistent with that of the MP in developing less branches. These results indicate that jasmonic acid negatively regulates branch growth of pear trees and that jasmonic acid downstream regulatory genes play a crucial role in regulating branching.
Collapse
Affiliation(s)
- Yuanyuan Cheng
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticultural Plants, Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Chenglin Liang
- Haidu College, Qingdao Agricultural University, Laiyang, China
| | - Zhiyun Qiu
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticultural Plants, Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Siqi Zhou
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticultural Plants, Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Jianlong Liu
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticultural Plants, Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Yingjie Yang
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticultural Plants, Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Ran Wang
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticultural Plants, Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Jie Yin
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticultural Plants, Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Chunhui Ma
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticultural Plants, Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Zhenhua Cui
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticultural Plants, Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Jiankun Song
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticultural Plants, Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Dingli Li
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticultural Plants, Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
6
|
Zheng M, Wang Q, Lei S, Yang D, Liu Y, Feng D, Huang X, Yang K, Qian J, Hsu YF. PtoMPO1, a negative mediator, functions in poplar drought tolerance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 190:156-163. [PMID: 36115269 DOI: 10.1016/j.plaphy.2022.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/22/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
Drought, as one of the most severe abiotic stresses in nature, adversely affects plant growth and development. Poplar is a woody plant which is prone to water-deficit sensitivity. Therefore, it is important to improve our understanding of how poplar responds to drought stress. Here, we cloned a gene from Populus tomentosa, namely PtoMPO1. PtoMPO1 encodes a DUF962 domain protein that is a homolog of yeast dioxygenase Mpo1 and Arabidopsis MHP1. The transcripts of PtoMPO1 were repressed by drought stress and ABA. Atmhp1-1 was a T-DNA insertion mutant lacking AtMHP1, and heteroexpression of PtoMPO1 in Atmhp1-1 significantly alleviated the sensitivity of Atmhp1-1 to ABA and NaCl, implying the functional replacement of PtoMPO1 to AtMHP1. PtoMPO1 overexpression decreased but PtoMPO1 mutation enhanced poplar drought tolerance. Furthermore, the expression of drought-related gene PtoRD26 is markedly lower in PtoMPO1-overexpressing plants and notably higher in Ptompo1 mutants compared to that in the wild type. Overall, these results suggested that PtoMPO1 functions as a novel negative mediator for drought tolerance in poplar.
Collapse
Affiliation(s)
- Min Zheng
- School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Qingzhu Wang
- School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Shikang Lei
- School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Dongcheng Yang
- School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Yun Liu
- College of Resources and Environment, Southwest University, Chongqing, 400716, China
| | - Dalan Feng
- Chongqing Academy of Forestry, Chongqing Key Laboratory of the Three Gorges Storehouse District Forest Ecology Protects and Restores, Chongqing, 400036, China
| | - Xiaohui Huang
- Chongqing Academy of Forestry, Chongqing Key Laboratory of the Three Gorges Storehouse District Forest Ecology Protects and Restores, Chongqing, 400036, China
| | - Kezhen Yang
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Jie Qian
- School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Yi-Feng Hsu
- School of Life Sciences, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
7
|
Sezen UU, Worthy SJ, Umaña MN, Davies SJ, McMahon SM, Swenson NG. Comparative transcriptomics of tropical woody plants supports fast and furious strategy along the leaf economics spectrum in lianas. Biol Open 2022; 11:276072. [PMID: 35876379 PMCID: PMC9346291 DOI: 10.1242/bio.059184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 05/19/2022] [Indexed: 12/03/2022] Open
Abstract
Lianas, climbing woody plants, influence the structure and function of tropical forests. Climbing traits have evolved multiple times, including ancestral groups such as gymnosperms and pteridophytes, but the genetic basis of the liana strategy is largely unknown. Here, we use a comparative transcriptomic approach for 47 tropical plant species, including ten lianas of diverse taxonomic origins, to identify genes that are consistently expressed or downregulated only in lianas. Our comparative analysis of full-length transcripts enabled the identification of a core interactomic network common to lianas. Sets of transcripts identified from our analysis reveal features related to functional traits pertinent to leaf economics spectrum in lianas, include upregulation of genes controlling epidermal cuticular properties, cell wall remodeling, carbon concentrating mechanism, cell cycle progression, DNA repair and a large suit of downregulated transcription factors and enzymes involved in ABA-mediated stress response as well as lignin and suberin synthesis. All together, these genes are known to be significant in shaping plant morphologies through responses such as gravitropism, phyllotaxy and shade avoidance. Summary: The full-length fraction of liana transcriptomes mapped on a protein–protein interactome revealed the nature of their convergence through distinct sets of expressed and downregulated genes not observed in free-standing plants.
Collapse
Affiliation(s)
- U Uzay Sezen
- Smithsonian Environmental Research Center, 647 Contees Wharf Rd, Edgewater, MD, 21037, USA
| | - Samantha J Worthy
- Department of Evolution and Ecology, University of California, Davis, CA, 95616USA
| | - Maria N Umaña
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Stuart J Davies
- Forest Global Earth Observatory, Smithsonian Tropical Research Institute, Gamboa, Panama.,Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington DC, 20560, USA
| | - Sean M McMahon
- Smithsonian Environmental Research Center, 647 Contees Wharf Rd, Edgewater, MD, 21037, USA
| | - Nathan G Swenson
- Department of Evolution and Ecology, University of California, Davis, CA, 95616USA.,Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
8
|
Differences in Environmental and Hormonal Regulation of Growth Responses in Two Highly Productive Hybrid Populus Genotypes. FORESTS 2022. [DOI: 10.3390/f13020183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Phenotypic plasticity, in response to adverse conditions, determines plant productivity and survival. The aim of this study was to test if two highly productive Populus genotypes, characterised by different in vitro etiolation patterns, differ also in their responses to hormones gibberellin (GA) and abscisic acid (ABA), and to a GA biosynthesis inhibitor paclobutrazol (PBZ). The experiments on shoot cultures of ‘Hybrida 275′ (abbr. H275; Populus maximowiczii × P. trichocarpa) and IBL 91/78 (Populus tremula × P. alba) were conducted by either modulating the physical in vitro environment or by adding specific chemicals to the nutrient medium. Our results revealed two main sets of differences between the studied genotypes in environmental and hormonal regulation of growth responses. First, the genotype H275 responded to darkness with PBZ-inhibitable shoot elongation; in contrast, the elongation of IBL 91/78 shoots was not affected either by darkness or PBZ treatment. Secondly, the explants of H275 were unable to recover their growth if it was inhibited with ABA; in contrast, those of IBL 91/78 recovered so well after the temporal inhibition by ABA that, when rooted subsequently, they developed longer shoots and roots than without a previous ABA treatment. Our results indicate that GA catabolism and repressive signalling provide an important pathway to control growth and physiological adaptation in response to immediate or impending adverse conditions. These observations can help breeders define robust criteria for identifying genotypes with high resistance and productivity and highlight where genotypes exhibit susceptibility to stress.
Collapse
|
9
|
Cai K, Zhou X, Li X, Kang Y, Yang X, Cui Y, Li G, Pei X, Zhao X. Insight Into the Multiple Branches Traits of a Mutant in Larix olgensis by Morphological, Cytological, and Transcriptional Analyses. FRONTIERS IN PLANT SCIENCE 2021; 12:787661. [PMID: 34992622 PMCID: PMC8724527 DOI: 10.3389/fpls.2021.787661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/16/2021] [Indexed: 06/14/2023]
Abstract
Larix olgensis is a tall deciduous tree species that has many applications in the wood fiber industry. Bud mutations are somatic mutations in plants and are considered an ideal material to identify and describe the molecular mechanism of plant mutation. However, the molecular regulatory mechanisms of bud mutations in L. olgensis remain unknown. In this study, dwarfed (or stunted), short-leaved, and multi-branched mutants of L. olgensis were found and utilized to identify crucial genes and regulatory networks controlling the multiple branch structure of L. olgensis. The physiological data showed that the branch number, bud number, fresh and dry weight, tracheid length, tracheid length-width ratio, inner tracheid diameter, and epidermal cell area of mutant plants were higher than that of wild-type plants. Hormone concentration measurements found that auxin, gibberellin, and abscisic acid in the mutant leaves were higher than that in wild-type plants. Moreover, the transcriptome sequencing of all samples using the Illumina Hiseq sequencing platform. Transcriptome analysis identified, respectively, 632, 157, and 199 differentially expressed genes (DEGs) in buds, leaves, and stems between mutant plants and wild type. DEGs were found to be involved in cell division and differentiation, shoot apical meristem activity, plant hormone biosynthesis, and sugar metabolism. Furthermore, bZIP, WRKY, and AP2/ERF family transcription factors play a role in bud formation. This study provides new insights into the molecular mechanisms of L. olgensis bud and branch formation and establishes a fundamental understanding of the breeding of new varieties in L. olgensis.
Collapse
Affiliation(s)
- Kewei Cai
- College of Forestry and Grassland, Jilin Agricultural University, Changchun, China
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Xueyan Zhou
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Xiang Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Ye Kang
- Seed Orchard of Siping, Siping, China
| | | | | | | | - Xiaona Pei
- College of Forestry and Grassland, Jilin Agricultural University, Changchun, China
| | - Xiyang Zhao
- College of Forestry and Grassland, Jilin Agricultural University, Changchun, China
| |
Collapse
|
10
|
Pan W, Liang J, Sui J, Li J, Liu C, Xin Y, Zhang Y, Wang S, Zhao Y, Zhang J, Yi M, Gazzarrini S, Wu J. ABA and Bud Dormancy in Perennials: Current Knowledge and Future Perspective. Genes (Basel) 2021; 12:genes12101635. [PMID: 34681029 PMCID: PMC8536057 DOI: 10.3390/genes12101635] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/15/2021] [Accepted: 10/15/2021] [Indexed: 11/16/2022] Open
Abstract
Bud dormancy is an evolved trait that confers adaptation to harsh environments, and affects flower differentiation, crop yield and vegetative growth in perennials. ABA is a stress hormone and a major regulator of dormancy. Although the physiology of bud dormancy is complex, several advancements have been achieved in this field recently by using genetics, omics and bioinformatics methods. Here, we review the current knowledge on the role of ABA and environmental signals, as well as the interplay of other hormones and sucrose, in the regulation of this process. We also discuss emerging potential mechanisms in this physiological process, including epigenetic regulation.
Collapse
Affiliation(s)
- Wenqiang Pan
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, China Agricultural University, Beijing 100193, China; (W.P.); (J.L.); (J.L.); (C.L.); (Y.X.); (Y.Z.); (S.W.); (Y.Z.); (J.Z.); (M.Y.)
| | - Jiahui Liang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, China Agricultural University, Beijing 100193, China; (W.P.); (J.L.); (J.L.); (C.L.); (Y.X.); (Y.Z.); (S.W.); (Y.Z.); (J.Z.); (M.Y.)
| | - Juanjuan Sui
- Biology and Food Engineering College, Fuyang Normal University, Fuyang 236037, China;
| | - Jingru Li
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, China Agricultural University, Beijing 100193, China; (W.P.); (J.L.); (J.L.); (C.L.); (Y.X.); (Y.Z.); (S.W.); (Y.Z.); (J.Z.); (M.Y.)
| | - Chang Liu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, China Agricultural University, Beijing 100193, China; (W.P.); (J.L.); (J.L.); (C.L.); (Y.X.); (Y.Z.); (S.W.); (Y.Z.); (J.Z.); (M.Y.)
| | - Yin Xin
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, China Agricultural University, Beijing 100193, China; (W.P.); (J.L.); (J.L.); (C.L.); (Y.X.); (Y.Z.); (S.W.); (Y.Z.); (J.Z.); (M.Y.)
| | - Yanmin Zhang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, China Agricultural University, Beijing 100193, China; (W.P.); (J.L.); (J.L.); (C.L.); (Y.X.); (Y.Z.); (S.W.); (Y.Z.); (J.Z.); (M.Y.)
| | - Shaokun Wang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, China Agricultural University, Beijing 100193, China; (W.P.); (J.L.); (J.L.); (C.L.); (Y.X.); (Y.Z.); (S.W.); (Y.Z.); (J.Z.); (M.Y.)
| | - Yajie Zhao
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, China Agricultural University, Beijing 100193, China; (W.P.); (J.L.); (J.L.); (C.L.); (Y.X.); (Y.Z.); (S.W.); (Y.Z.); (J.Z.); (M.Y.)
| | - Jie Zhang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, China Agricultural University, Beijing 100193, China; (W.P.); (J.L.); (J.L.); (C.L.); (Y.X.); (Y.Z.); (S.W.); (Y.Z.); (J.Z.); (M.Y.)
- Biotechnology Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350001, China
| | - Mingfang Yi
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, China Agricultural University, Beijing 100193, China; (W.P.); (J.L.); (J.L.); (C.L.); (Y.X.); (Y.Z.); (S.W.); (Y.Z.); (J.Z.); (M.Y.)
| | - Sonia Gazzarrini
- Department of Biological Sciences, University of Toronto, Toronto, ON M1C 1A4, Canada;
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G3, Canada
| | - Jian Wu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, China Agricultural University, Beijing 100193, China; (W.P.); (J.L.); (J.L.); (C.L.); (Y.X.); (Y.Z.); (S.W.); (Y.Z.); (J.Z.); (M.Y.)
- Correspondence:
| |
Collapse
|
11
|
Sharmin S, Lipka U, Polle A, Eckert C. The influence of transpiration on foliar accumulation of salt and nutrients under salinity in poplar (Populus × canescens). PLoS One 2021; 16:e0253228. [PMID: 34166404 PMCID: PMC8224899 DOI: 10.1371/journal.pone.0253228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 05/31/2021] [Indexed: 11/18/2022] Open
Abstract
Increasing salinity is one of the major drawbacks for plant growth. Besides the ion itself being toxic to plant cells, it greatly interferes with the supply of other macronutrients like potassium, calcium and magnesium. However, little is known about how sodium affects the translocation of these nutrients from the root to the shoot. The major driving force of this translocation process is thought to be the water flow through the xylem driven by transpiration. To dissect the effects of transpiration from those of salinity we compared salt stressed, ABA treated and combined salt- and ABA treated poplars with untreated controls. Salinity reduced the root content of major nutrients like K+, Ca2+ and Mg2+. Less Ca2+ and Mg2+ in the roots resulted in reduced leaf Ca2+ and leaf Mg2+ levels due to reduced stomatal conductance and reduced transpiration. Interestingly, leaf K+ levels were positively affected in leaves under salt stress although there was less K+ in the roots under salt. In response to ABA, transpiration was also decreased and Mg2+ and Ca2+ levels decreased comparably to the salt stress treatment, while K+ levels were not affected. Thus, our results suggest that loading and retention of leaf K+ is enhanced under salt stress compared to merely transpiration driven cation supply.
Collapse
Affiliation(s)
- Shayla Sharmin
- Forest Botany and Tree Physiology, University of Göttingen, Göttingen, Germany
| | - Ulrike Lipka
- Forest Botany and Tree Physiology, University of Göttingen, Göttingen, Germany
| | - Andrea Polle
- Forest Botany and Tree Physiology, University of Göttingen, Göttingen, Germany
| | - Christian Eckert
- Forest Botany and Tree Physiology, University of Göttingen, Göttingen, Germany
- * E-mail:
| |
Collapse
|
12
|
Sun X, Wen C, Xu J, Wang Y, Zhu J, Zhang Y. The apple columnar gene candidate MdCoL and the AP2/ERF factor MdDREB2 positively regulate ABA biosynthesis by activating the expression of MdNCED6/9. TREE PHYSIOLOGY 2021; 41:1065-1076. [PMID: 33238313 DOI: 10.1093/treephys/tpaa162] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 11/18/2020] [Indexed: 06/11/2023]
Abstract
MdCoL, which encodes a putative 2OG-Fe(II) oxygenase, is a strong candidate gene for control of the columnar growth phenotype in apple. However, the mechanism by which MdCoL produces the columnar trait is unclear. Here, we show that MdCoL influences abscisic acid (ABA) biosynthesis through its interactions with the MdDREB2 transcription factor. Expression analyses and transgenic tobacco studies have confirmed that MdCoL is likely a candidate for control of the columnar phenotype. Furthermore, the ABA level in columnar apple trees is significantly higher than that in standard apple trees. A protein interaction experiment has showed that MdCoL interacts with MdDREB2. Transient expression and electrophoretic mobility shift assays have demonstrated that MdDREB2 binds directly to the DRE motif in the MdNCED6 and MdNCED9 (MdNCED6/9) gene promoters, thereby activating the transcription of these ABA biosynthesis genes. In addition, a higher ABA content has been detected following co-overexpression of MdCoL-MdDREB2 when compared with the overexpression of MdCoL or MdDREB2 alone. Taken together, our results indicate that an interaction between MdCoL and MdDREB2 promotes the expression of MdNCED6/9 and increases ABA levels, a phenomenon that may underlie the columnar growth phenotype in apple.
Collapse
Affiliation(s)
- Xin Sun
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
- Qingdao Key Laboratory of Genetic Development and Breeding in Horticultural Plants, Qingdao 266109, China
| | - Cuiping Wen
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
| | - Jihua Xu
- Qingdao Key Laboratory of Genetic Development and Breeding in Horticultural Plants, Qingdao 266109, China
| | - Yihe Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
| | - Jun Zhu
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
| | - Yugang Zhang
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
- Qingdao Key Laboratory of Genetic Development and Breeding in Horticultural Plants, Qingdao 266109, China
| |
Collapse
|
13
|
He Y, Liu Y, Li M, Lamin-Samu AT, Yang D, Yu X, Izhar M, Jan I, Ali M, Lu G. The Arabidopsis SMALL AUXIN UP RNA32 Protein Regulates ABA-Mediated Responses to Drought Stress. FRONTIERS IN PLANT SCIENCE 2021; 12:625493. [PMID: 33777065 PMCID: PMC7994887 DOI: 10.3389/fpls.2021.625493] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/02/2021] [Indexed: 05/27/2023]
Abstract
SMALL AUXIN UP-REGULATED RNAs (SAURs) are recognized as auxin-responsive genes involved in the regulation of abiotic stress adaptive growth. Among the growth-limiting factors, water-deficit condition significantly affects plant growth and development. The putative function of SAUR family member AtSAUR32 has the potential to diminish the negative impact of drought stress, but the exact function and mode of action remain unclear in Arabidopsis. In the current study, AtSAUR32 gene was cloned and functionally analyzed. AtSAUR32 localized to the plasma membrane and nucleus was dominantly expressed in roots and highly induced by abscisic acid and drought treatment at certain time points. The stomatal closure and seed germination of saur32 were less sensitive to ABA relative to AtSAUR32-overexpressed line (OE32-5) and wild type (WT). Moreover, the saur32 mutant under drought stress showed increased ion leakage while quantum yield of photosystem II (ΦPSII) and endogenous ABA accumulation were reduced, along with the expression pattern of ABA/stress-responsive genes compared with WT and the OE32-5 transgenic line. Additionally, yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) assays showed that AtSAUR32 interacted with clade-A PP2C proteins (AtHAI1 and AtAIP1) to regulate ABA sensitivity in Arabidopsis. Taken together, these results indicate that AtSAUR32 plays an important role in drought stress adaptation via mediating ABA signal transduction.
Collapse
Affiliation(s)
- Yanjun He
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yue Liu
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Mengzhuo Li
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Anthony Tumbeh Lamin-Samu
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Dandan Yang
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Xiaolin Yu
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Muhammad Izhar
- College of Agronomy, Northwest A&F University, Yangling, China
| | - Ibadullah Jan
- Department of Agriculture, University of Swabi, Swabi, Pakistan
| | - Muhammad Ali
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Gang Lu
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Zhejiang University, Hangzhou, China
| |
Collapse
|
14
|
Yang Y, Li HG, Wang J, Wang HL, He F, Su Y, Zhang Y, Feng CH, Niu M, Li Z, Liu C, Yin W, Xia X. ABF3 enhances drought tolerance via promoting ABA-induced stomatal closure by directly regulating ADF5 in Populus euphratica. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:7270-7285. [PMID: 32822499 DOI: 10.1093/jxb/eraa383] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 08/17/2020] [Indexed: 05/20/2023]
Abstract
Water availability is a main limiting factor for plant growth, development, and distribution throughout the world. Stomatal movement mediated by abscisic acid (ABA) is particularly important for drought adaptation, but the molecular mechanisms in trees are largely unclear. Here, we isolated an ABA-responsive element binding factor, PeABF3, in Populus euphratica. PeABF3 was preferentially expressed in the xylem and young leaves, and was induced by dehydration and ABA treatments. PeABF3 showed transactivation activity and was located in the nucleus. To study its functional mechanism in poplar responsive to drought stress, transgenic triploid white poplars (Populus tomentosa 'YiXianCiZhu B385') overexpressing PeABF3 were generated. PeABF3 overexpression significantly enhanced stomatal sensitivity to exogenous ABA. When subjected to drought stress, PeABF3 overexpression maintained higher photosynthetic activity and promoted cell membrane integrity, resulting in increased water-use efficiency and enhanced drought tolerance compared with wild-type controls. Moreover, a yeast one-hybrid assay and an electrophoretic mobility shift assay revealed that PeABF3 activated the expression of Actin-Depolymerizing Factor-5 (PeADF5) by directly binding to its promoter, promoting actin cytoskeleton remodeling and stomatal closure in poplar under drought stress. Taken together, our results indicate that PeABF3 enhances drought tolerance via promoting ABA-induced stomatal closure by directly regulating PeADF5 expression.
Collapse
Affiliation(s)
- Yanli Yang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Hui-Guang Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Jie Wang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Hou-Ling Wang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Fang He
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yanyan Su
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Ying Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Cong-Hua Feng
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Mengxue Niu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Zhonghai Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Chao Liu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Weilun Yin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Xinli Xia
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| |
Collapse
|
15
|
Abscisic Acid Biosynthesis and Signaling in Plants: Key Targets to Improve Water Use Efficiency and Drought Tolerance. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10186322] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The observation of a much-improved fitness of wild-type plants over abscisic acid (ABA)-deficient mutants during drought has led researchers from all over to world to perform experiments aiming at a better understanding of how this hormone modulates the physiology of plants under water-limited conditions. More recently, several promising approaches manipulating ABA biosynthesis and signaling have been explored to improve water use efficiency and confer drought tolerance to major crop species. Here, we review recent progress made in the last decade on (i) ABA biosynthesis, (ii) the roles of ABA on plant-water relations and on primary and secondary metabolisms during drought, and (iii) the regulation of ABA levels and perception to improve water use efficiency and drought tolerance in crop species.
Collapse
|
16
|
Hong Y, Wang Z, Shi H, Yao J, Liu X, Wang F, Zeng L, Xie Z, Zhu JK. Reciprocal regulation between nicotinamide adenine dinucleotide metabolism and abscisic acid and stress response pathways in Arabidopsis. PLoS Genet 2020; 16:e1008892. [PMID: 32569316 PMCID: PMC7332101 DOI: 10.1371/journal.pgen.1008892] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 07/02/2020] [Accepted: 05/27/2020] [Indexed: 12/28/2022] Open
Abstract
Nicotinamide adenine dinucleotide (NAD) is an essential coenzyme that has emerged as a central hub linking redox equilibrium and signal transduction in living organisms. The homeostasis of NAD is required for plant growth, development, and adaption to environmental cues. In this study, we isolated a chilling hypersensitive Arabidopsis thaliana mutant named qs-2 and identified the causal mutation in the gene encoding quinolinate synthase (QS) critical for NAD biosynthesis. The qs-2 mutant is also hypersensitive to salt stress and abscisic acid (ABA) but resistant to drought stress. The qs-2 mutant accumulates a reduced level of NAD and over-accumulates reactive oxygen species (ROS). The ABA-hypersensitivity of qs-2 can be rescued by supplementation of NAD precursors and by mutations in the ABA signaling components SnRK2s or RBOHF. Furthermore, ABA-induced over-accumulation of ROS in the qs-2 mutant is dependent on the SnRK2s and RBOHF. The expression of QS gene is repressed directly by ABI4, a transcription factor in the ABA response pathway. Together, our findings reveal an unexpected interplay between NAD biosynthesis and ABA and stress signaling, which is critical for our understanding of the regulation of plant growth and stress responses.
Collapse
Affiliation(s)
- Yechun Hong
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Shanghai, P.R. China
| | - Zhen Wang
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- * E-mail: (ZW); (JKZ)
| | - Huazhong Shi
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, United States of America
| | - Juanjuan Yao
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Shanghai, P.R. China
| | - Xue Liu
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Fuxing Wang
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Shanghai, P.R. China
| | - Liang Zeng
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhi Xie
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Shanghai, P.R. China
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana, United States of America
- * E-mail: (ZW); (JKZ)
| |
Collapse
|
17
|
Root Development and Stress Tolerance in rice: The Key to Improving Stress Tolerance without Yield Penalties. Int J Mol Sci 2020; 21:ijms21051807. [PMID: 32155710 PMCID: PMC7084713 DOI: 10.3390/ijms21051807] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/04/2020] [Accepted: 03/04/2020] [Indexed: 12/16/2022] Open
Abstract
Roots anchor plants and take up water and nutrients from the soil; therefore, root development strongly affects plant growth and productivity. Moreover, increasing evidence indicates that root development is deeply involved in plant tolerance to abiotic stresses such as drought and salinity. These findings suggest that modulating root growth and development provides a potentially useful approach to improve plant abiotic stress tolerance. Such targeted approaches may avoid the yield penalties that result from growth-defense trade-offs produced by global induction of defenses against abiotic stresses. This review summarizes the developmental mechanisms underlying root development and discusses recent studies about modulation of root growth and stress tolerance in rice.
Collapse
|
18
|
Cernusak LA, Goldsmith GR, Arend M, Siegwolf RTW. Effect of Vapor Pressure Deficit on Gas Exchange in Wild-Type and Abscisic Acid-Insensitive Plants. PLANT PHYSIOLOGY 2019; 181:1573-1586. [PMID: 31562233 PMCID: PMC6878010 DOI: 10.1104/pp.19.00436] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 09/08/2019] [Indexed: 05/25/2023]
Abstract
Stomata control the gas exchange of terrestrial plant leaves, and are therefore essential to plant growth and survival. We investigated gas exchange responses to vapor pressure deficit (VPD) in two gray poplar (Populus × canescens) lines: wild type and abscisic acid-insensitive (abi1) with functionally impaired stomata. Transpiration rate in abi1 increased linearly with VPD, up to about 2 kPa. Above this, sharply declining transpiration was followed by leaf death. In contrast, wild type showed a steady or slightly declining transpiration rate up to VPD of nearly 7 kPa, and fully recovered photosynthetic function afterward. There were marked differences in discrimination against 13CO2 (Δ13C) and C18OO (Δ18O) between abi1 and wild-type plants. The Δ13C indicated that intercellular CO2 concentrations decreased with VPD in wild-type plants, but not in abi1 plants. The Δ18O reflected progressive stomatal closure in wild type in response to increasing VPD; however, in abi1, stomata remained open and oxygen atoms of CO2 continued to exchange with 18O enriched leaf water. Coupled measurements of Δ18O and gas exchange were used to estimate intercellular vapor pressure, e i In wild-type leaves, there was no evidence of unsaturation of e i, even at VPD above 6 kPa. In abi1 leaves, e i approached 0.6 times saturation vapor pressure before the precipitous decline in transpiration rate. For wild type, a sensitive stomatal response to increasing VPD was pivotal in preventing unsaturation of e i In abi1, after taking unsaturation into account, stomatal conductance increased with increasing VPD, consistent with a disabled active response of guard cell osmotic pressure.
Collapse
Affiliation(s)
- Lucas A Cernusak
- College of Science and Engineering, James Cook University, Cairns, Queensland 4879, Australia
| | - Gregory R Goldsmith
- Ecosystem Fluxes and Stable Isotope Research Group, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Matthias Arend
- Physiological Plant Ecology Group, University of Basel, 4001 Basel, Switzerland
| | - Rolf T W Siegwolf
- Ecosystem Fluxes and Stable Isotope Research Group, Paul Scherrer Institute, 5232 Villigen, Switzerland
| |
Collapse
|
19
|
Schneider A, Godin C, Boudon F, Demotes-Mainard S, Sakr S, Bertheloot J. Light Regulation of Axillary Bud Outgrowth Along Plant Axes: An Overview of the Roles of Sugars and Hormones. FRONTIERS IN PLANT SCIENCE 2019; 10:1296. [PMID: 31681386 PMCID: PMC6813921 DOI: 10.3389/fpls.2019.01296] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 09/18/2019] [Indexed: 05/06/2023]
Abstract
Apical dominance, the process by which the growing apical zone of the shoot inhibits bud outgrowth, involves an intricate network of several signals in the shoot. Auxin originating from plant apical region inhibits bud outgrowth indirectly. This inhibition is in particular mediated by cytokinins and strigolactones, which move from the stem to the bud and that respectively stimulate and repress bud outgrowth. The action of this hormonal network is itself modulated by sugar levels as competition for sugars, caused by the growing apical sugar sink, may deprive buds from sugars and prevents bud outgrowth partly by their signaling role. In this review, we analyze recent findings on the interaction between light, in terms of quantity and quality, and apical dominance regulation. Depending on growth conditions, light may trigger different pathways of the apical dominance regulatory network. Studies pinpoint to the key role of shoot-located cytokinin synthesis for light intensity and abscisic acid synthesis in the bud for R:FR in the regulation of bud outgrowth by light. Our analysis provides three major research lines to get a more comprehensive understanding of light effects on bud outgrowth. This would undoubtedly benefit from the use of computer modeling associated with experimental observations to deal with a regulatory system that involves several interacting signals, feedbacks, and quantitative effects.
Collapse
Affiliation(s)
- Anne Schneider
- IRHS, INRA, Agrocampus-Ouest, Université d’Angers, SFR 4207 QuaSaV, Beaucouzé, France
| | - Christophe Godin
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, INRIA, Lyon, France
| | | | | | - Soulaiman Sakr
- IRHS, INRA, Agrocampus-Ouest, Université d’Angers, SFR 4207 QuaSaV, Beaucouzé, France
| | - Jessica Bertheloot
- IRHS, INRA, Agrocampus-Ouest, Université d’Angers, SFR 4207 QuaSaV, Beaucouzé, France
| |
Collapse
|
20
|
Yu D, Wildhagen H, Tylewicz S, Miskolczi PC, Bhalerao RP, Polle A. Abscisic acid signalling mediates biomass trade-off and allocation in poplar. THE NEW PHYTOLOGIST 2019; 223:1192-1203. [PMID: 31050802 DOI: 10.1111/nph.15878] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 04/19/2019] [Indexed: 06/09/2023]
Abstract
Abscisic acid (ABA) is a well known stress hormone regulating drought adaptation of plants. Here, we hypothesised that genetic engineering of genes involved in ABA stress signalling and photoperiodic regulation affected drought resistance by trade-off with biomass production in perennial poplar trees. We grew Populus tremula × tremuloides wild-type (T89) and various transgenic lines (two transformation events of 35S::abi1-1, 35S::RCAR, RCAR:RNAi, 35S::ABI3, 35S::AREB3, 35S::FDL1, FDL1:RNAi, 35S::FDL2 and FDL2:RNAi) outdoors and exposed them to drought in the second growth period. After the winter, the surviving lines showed a huge variation in stomatal conductance, leaf size, whole-plant leaf area, tree height, stem diameter, and biomass. Whole-plant leaf area was a strong predictor for woody biomass production. The 35S::AREB3 lines were compromised in biomass production under well irrigated conditions compared with wild-type poplars but were resilient to drought. ABA signalling regulated FDL1 and FDL2 expression under stress. Poplar lines overexpressing FDL1 or FDL2 were drought-sensitive; they shed leaves and lost root biomass, whereas the FDL RNAi lines showed higher biomass allocation to roots under drought. These results assign a new function in drought acclimation to FDL genes aside from photoperiodic regulation. Our results imply a critical role for ABA-mediated processes in balancing biomass production and climate adaptation.
Collapse
Affiliation(s)
- Dade Yu
- Forest Botany and Tree Physiology, University of Goettingen, 37077, Göttingen, Germany
| | - Henning Wildhagen
- Forest Botany and Tree Physiology, University of Goettingen, 37077, Göttingen, Germany
| | - Szymon Tylewicz
- Forest Genetics and Plant Physiology, Umea Plant Science Centre, 90736, Umea, Sweden
| | - Pal C Miskolczi
- Forest Genetics and Plant Physiology, Umea Plant Science Centre, 90736, Umea, Sweden
| | - Rishikesh P Bhalerao
- Forest Genetics and Plant Physiology, Umea Plant Science Centre, 90736, Umea, Sweden
| | - Andrea Polle
- Forest Botany and Tree Physiology, University of Goettingen, 37077, Göttingen, Germany
| |
Collapse
|
21
|
Liu R, Finlayson SA. Sorghum tiller bud growth is repressed by contact with the overlying leaf. PLANT, CELL & ENVIRONMENT 2019; 42:2120-2132. [PMID: 30875440 DOI: 10.1111/pce.13548] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/14/2019] [Accepted: 02/23/2019] [Indexed: 05/06/2023]
Abstract
Basal branching in grasses, or tillering, is an important trait determining both form and function of crops. Although similarities exist between eudicot and grass branching programs, one notable difference is that the tiller buds of grasses are covered by the subtending leaf, whereas eudicot buds are typically unconstrained. The current study shows that contact with the leaf sheath represses sorghum bud growth by providing a mechanical signal that cues the bud to refrain from rapid growth. Leaf removal resulted in massive reprogramming of the bud transcriptome that included signatures of epigenetic modifications and also implicated several hormones in the response. Bud abscisic acid transiently increased, then decreased following leaf removal relative to controls, and abscisic acid was necessary to repress bud growth in the presence of the leaf. Jasmonic acid (JA) levels and signalling increased in buds following leaf removal. Remarkably, application of JA to buds in situ promoted growth. The repression of bud growth by leaf contact shares characteristics of thigmomorphogenic responses in other systems, including the involvement of JA, though the JA effect is opposite. The repression of bud growth by leaf contact may represent a mechanism to time tillering to an appropriate developmental stage of the plant.
Collapse
Affiliation(s)
- Ruixian Liu
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, PR China
- Key Laboratory of Cotton and Rape in Lower Reaches of Yangtze River, Ministry of Agriculture, Nanjing, PR China
| | - Scott A Finlayson
- Department of Soil and Crop Sciences, Texas A&M AgriLife Research, Texas A&M University, College Station, Texas, USA
- Faculty of Molecular and Environmental Plant Sciences, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
22
|
Pashkovskiy PP, Vankova R, Zlobin IE, Dobrev P, Ivanov YV, Kartashov AV, Kuznetsov VV. Comparative analysis of abscisic acid levels and expression of abscisic acid-related genes in Scots pine and Norway spruce seedlings under water deficit. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 140:105-112. [PMID: 31091491 DOI: 10.1016/j.plaphy.2019.04.037] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 04/26/2019] [Accepted: 04/29/2019] [Indexed: 06/09/2023]
Abstract
Abscisic acid (ABA) is one of the main participants in the regulation of plant responses to water deficiency. Knowledge of the ABA signal transduction pathways in gymnosperms is rather limited, especially in comparison with those in angiosperms. Seedlings of Scots pine and Norway spruce are known for their contrasting behaviour strategies under water deficit. To characterize the possible role of ABA in these differences, ABA dynamics were investigated under conditions of water deficit in seedlings of these two species. The content of ABA and its catabolites was followed in the roots and needles of seedlings of Pinus sylvestris and Picea abies under conditions of polyethylene glycol (PEG)-induced water deficiency (-0.15 and -0.5 MPa) for 10 days. The expression of the main genes for ABA-biosynthetic enzymes was also analysed. ABA showed more pronounced stress-dependent dynamics in pine roots than in spruce roots, whereas in needles, the response was greater for spruce than pine. The ABA increase during drought was mainly due to de novo synthesis and the shift in the balance between ABA synthesis and catabolism towards synthesis. The ABA-glucosyl ester did not serve as a reserve for the release of free ABA under water deficiency. The expression levels of the main ABA biosynthetic genes showed a weak or no correlation with changes in ABA content under water stress, i.e., the ABA content in the seedlings of both species was not directly linked to the transcript levels of the main ABA biosynthetic genes. Less-pronounced stress-induced changes in ABA in pine needles than in spruce needles may be related to pine seedlings having a less conservative strategy of growth and maintenance of water balance under water deficit.
Collapse
Affiliation(s)
- Pavel P Pashkovskiy
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276, Moscow, Russia
| | - Radomira Vankova
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, The Czech Academy of Sciences, Prague 6, Lysolaje, Czech Republic
| | - Ilya E Zlobin
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276, Moscow, Russia.
| | - Petre Dobrev
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, The Czech Academy of Sciences, Prague 6, Lysolaje, Czech Republic
| | - Yury V Ivanov
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276, Moscow, Russia
| | - Alexander V Kartashov
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276, Moscow, Russia
| | - Vladimir V Kuznetsov
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276, Moscow, Russia
| |
Collapse
|
23
|
Placido DF, Dong N, Dong C, Cruz VMV, Dierig DA, Cahoon RE, Kang BG, Huynh T, Whalen M, Ponciano G, McMahan C. Downregulation of a CYP74 Rubber Particle Protein Increases Natural Rubber Production in Parthenium argentatum. FRONTIERS IN PLANT SCIENCE 2019; 10:760. [PMID: 31297121 PMCID: PMC6607968 DOI: 10.3389/fpls.2019.00760] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 05/24/2019] [Indexed: 05/31/2023]
Abstract
We report functional genomics studies of a CYP74 rubber particle protein from Parthenium argentatum, commonly called guayule. Previously identified as an allene oxide synthase (AOS), this CYP74 constitutes the most abundant protein found in guayule rubber particles. Transgenic guayule lines with AOS gene expression down-regulated by RNAi (AOSi) exhibited strong phenotypes that included agricultural traits conducive to enhancing rubber yield. AOSi lines had higher leaf and stem biomass, thicker stembark tissues, increased stem branching and improved net photosynthetic rate. Importantly, the rubber content was significantly increased in AOSi lines compared to the wild-type (WT), vector control and AOS overexpressing (AOSoe) lines, when grown in controlled environments both in tissue-culture media and in greenhouse/growth chambers. Rubber particles from AOSi plants consistently had less AOS particle-associated protein, and lower activity (for conversion of 13-HPOT to allene oxide). Yet plants with downregulated AOS showed higher rubber transferase enzyme activity. The increase in biomass in AOSi lines was associated with not only increases in the rate of photosynthesis and non-photochemical quenching (NPQ), in the cold, but also in the content of the phytohormone SA, along with a decrease in JA, GAs, and ABA. The increase in biosynthetic activity and rubber content could further result from the negative regulation of AOS expression by high levels of salicylic acid in AOSi lines and when introduced exogenously. It is apparent that AOS in guayule plays a pivotal role in rubber production and plant growth.
Collapse
Affiliation(s)
- Dante F. Placido
- Bioproducts Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Albany, CA, United States
| | - Niu Dong
- Bioproducts Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Albany, CA, United States
| | - Chen Dong
- Bioproducts Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Albany, CA, United States
| | - Von Mark V. Cruz
- Guayule Research Farm, Section Manager Agricultural Operations, Bridgestone Americas, Inc., Eloy, AZ, United States
| | - David A. Dierig
- Guayule Research Farm, Section Manager Agricultural Operations, Bridgestone Americas, Inc., Eloy, AZ, United States
| | - Rebecca E. Cahoon
- Department of Biochemistry, University of Nebraska–Lincoln, Lincoln, NE, United States
| | | | - Trinh Huynh
- Bioproducts Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Albany, CA, United States
| | - Maureen Whalen
- Bioproducts Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Albany, CA, United States
| | - Grisel Ponciano
- Bioproducts Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Albany, CA, United States
| | - Colleen McMahan
- Bioproducts Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Albany, CA, United States
| |
Collapse
|
24
|
Rigoulot SB, Petzold HE, Williams SP, Brunner AM, Beers EP. Populus trichocarpa clade A PP2C protein phosphatases: their stress-induced expression patterns, interactions in core abscisic acid signaling, and potential for regulation of growth and development. PLANT MOLECULAR BIOLOGY 2019; 100:303-317. [PMID: 30945147 DOI: 10.1007/s11103-019-00861-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 03/26/2019] [Indexed: 05/26/2023]
Abstract
Overexpression of the poplar PP2C protein phosphatase gene PtrHAB2 resulted in increased tree height and altered leaf morphology and phyllotaxy, implicating PP2C phosphatases as growth regulators functioning under favorable conditions. We identified and studied Populus trichocarpa genes, PtrHAB1 through PtrHAB15, belonging to the clade A PP2C family of protein phosphatases known to regulate abscisic acid (ABA) signaling. PtrHAB1 through PtrHAB3 and PtrHAB12 through PtrHAB15 were the most highly expressed genes under non-stress conditions. The poplar PP2C genes were differentially regulated by drought treatments. Expression of PtrHAB1 through PtrHAB3 was unchanged or downregulated in response to drought, while all other PtrHAB genes were weakly to strongly upregulated in response to drought stress treatments. Yeast two-hybrid assays involving seven ABA receptor proteins (PtrRCAR) against 12 PtrHAB proteins detected 51 interactions involving eight PP2Cs and all PtrRCAR proteins with 22 interactions requiring the addition of ABA. PtrHAB2, PtrHAB12, PtrHAB13 and PtrHAB14 also interacted with the sucrose non-fermenting related kinase 2 proteins PtrSnRK2.10 and PtrSnRK2.11, supporting conservation of a SnRK2 signaling cascade regulated by PP2C in poplar. Additionally, PtrHAB2, PtrHAB12, PtrHAB13 and PtrHAB14 interacted with the mitogen-activated protein kinase protein PtrMPK7. Due to its interactions with PtrSnRK2 and PtrMPK7 proteins, and its reduced expression during drought stress, PtrHAB2 was overexpressed in poplar to test its potential as a growth regulator under non-stress conditions. 35S::PtrHAB2 transgenics exhibited increased growth rate for a majority of transgenic events and alterations in leaf phyllotaxy and morphology. These results indicate that PP2Cs have additional roles which extend beyond canonical ABA signaling, possibly coordinating plant growth and development in response to environmental conditions.
Collapse
Affiliation(s)
- Stephen B Rigoulot
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
| | - H Earl Petzold
- Department of Forest Resources and Environmental Conservation, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Sarah P Williams
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, 24061, USA
- Department of Biology, College of William and Mary, Williamsburg, VA, 23187, USA
| | - Amy M Brunner
- Department of Forest Resources and Environmental Conservation, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Eric P Beers
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, 24061, USA.
| |
Collapse
|
25
|
Yaaran A, Negin B, Moshelion M. Role of guard-cell ABA in determining steady-state stomatal aperture and prompt vapor-pressure-deficit response. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 281:31-40. [PMID: 30824059 DOI: 10.1016/j.plantsci.2018.12.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 12/19/2018] [Accepted: 12/28/2018] [Indexed: 05/24/2023]
Abstract
Abscisic acid (ABA) is known to be involved in stomatal closure. However, its role in stomatal response to rapid increases in the vapor pressure deficit (VPD) is unclear. To study this issue, we generated guard cell-specific ABA-insensitive Arabidopsis plants (guard-cell specific abi1-1; GCabi). Under non-stressed conditions, the stomatal conductance (gs) and apertures of GCabi plants were greater than those of control plants. This supports guard-cell ABA role as limiting steady-state stomatal aperture under non-stressful conditions. When there was a rapid increase in VPD (0.15 to 1 kPa), the gs and stomatal apertures of GCabi decreased in a manner similar that observed in the WT control, but different from that observed in WT plants treated with fusicoccin. Low VPD increased the size of the stomatal apertures of the WT, but not of GCabi. We conclude that guard-cell ABA does not play a significant role in the initial, rapid stomatal closure that occurs in response to an increase in VPD, but is important for stomatal adaptation to ambient VPD. We propose a biphasic angiosperm VPD-sensing model that includes an initial ABA-independent phase and a subsequent ABA-dependent steady-state phase in which stomatal behavior is optimized for ambient VPD conditions.
Collapse
Affiliation(s)
- Adi Yaaran
- Faculty of Agriculture, Food and Environment, The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, 76100, Israel.
| | - Boaz Negin
- Faculty of Agriculture, Food and Environment, The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, 76100, Israel.
| | - Menachem Moshelion
- Faculty of Agriculture, Food and Environment, The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, 76100, Israel.
| |
Collapse
|
26
|
Zheng C, Acheampong AK, Shi Z, Mugzech A, Halaly-Basha T, Shaya F, Sun Y, Colova V, Mosquna A, Ophir R, Galbraith DW, Or E. Abscisic acid catabolism enhances dormancy release of grapevine buds. PLANT, CELL & ENVIRONMENT 2018; 41:2490-2503. [PMID: 29907961 DOI: 10.1111/pce.13371] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 05/28/2018] [Accepted: 06/11/2018] [Indexed: 05/13/2023]
Abstract
The molecular mechanism regulating dormancy release in grapevine buds is as yet unclear. It was formerly proposed that dormancy is maintained by abscisic acid (ABA)-mediated repression of bud-meristem activity and that removal of this repression triggers dormancy release. It was also proposed that such removal of repression may be achieved via natural or artificial up-regulation of VvA8H-CYP707A4, which encodes ABA 8'-hydroxylase, and is the most highly expressed paralog in grapevine buds. The current study further examines these assumptions, and its experiments reveal that (a) hypoxia and ethylene, stimuli of bud dormancy release, enhance expression of VvA8H-CYP707A4 within grape buds, (b) the VvA8H-CYP707A4 protein accumulates during the natural transition to the dormancy release stage, and (c) transgenic vines overexpressing VvA8H-CYP707A4 exhibit increased ABA catabolism and significant enhancement of bud break in controlled and natural environments and longer basal summer laterals. The results suggest that VvA8H-CYP707A4 functions as an ABA degrading enzyme, and are consistent with a model in which the VvA8H-CYP707A4 level in the bud is up-regulated by natural and artificial bud break stimuli, which leads to increased ABA degradation capacity, removal of endogenous ABA-mediated repression, and enhanced regrowth. Interestingly, it also hints at sharing of regulatory steps between latent and lateral bud outgrowth.
Collapse
Affiliation(s)
- Chuanlin Zheng
- Department of Fruit Tree Sciences, Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Atiako Kwame Acheampong
- Department of Fruit Tree Sciences, Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Zhaowan Shi
- Department of Fruit Tree Sciences, Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Amichay Mugzech
- Department of Fruit Tree Sciences, Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Tamar Halaly-Basha
- Department of Fruit Tree Sciences, Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Felix Shaya
- Department of Fruit Tree Sciences, Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Yufei Sun
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Violeta Colova
- Center for Viticulture and Small Fruit Research, College of Agriculture and Food Sciences, Florida A & M University, Tallahassee, Florida
| | - Assaf Mosquna
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Ron Ophir
- Department of Fruit Tree Sciences, Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - David W Galbraith
- School of Plant Sciences and BIO5 Institute, University of Arizona, Tucson, Arizona
| | - Etti Or
- Department of Fruit Tree Sciences, Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| |
Collapse
|
27
|
Ectopic expression of mutated type 2C protein phosphatase OsABI-LIKE2 decreases abscisic acid sensitivity in Arabidopsis and rice. Sci Rep 2018; 8:12320. [PMID: 30120350 PMCID: PMC6097999 DOI: 10.1038/s41598-018-30866-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 08/06/2018] [Indexed: 12/02/2022] Open
Abstract
Abscisic acid (ABA) is a phytohormone that is necessary for stress adaptation. Recent studies have reported that attenuated levels of ABA improved grain yield and seedling growth under low temperature in cereals. To improve plant growth under low temperature, we attempted to generate ABA-insensitive transgenic rice by expressing a clade A type 2C protein phosphatase (OsPP2C), OsABIL2, with or without the mutation equivalent to the Arabidopsis abi1-1 mutation. A yeast two-hybrid assay revealed that the interaction between OsABIL2 and a putative rice ABA receptor, OsPYL1, was ABA-dependent, and the interaction was lost with amino acid substitution from glycine to aspartic acid at the 183rd amino acid of the OsABIL2 protein, corresponding to abi1-1 mutation. The constitutive expression of OsABIL2 or OsABIL2G183D in Arabidopsis or rice decreased ABA sensitivity to differing degrees. Moreover, the transgenic rice expressing OsABIL2G183D exhibited improved seedling growth under low temperature, although the transgenic lines showed unfavorable traits, such as viviparous germination and elongated internodes. These results indicated that the introduction of abi1-1 type dominant mutation was also effective in OsABIL2 at decreasing ABA sensitivity in plants, and the attenuation of ABA sensitivity could be an alternative parameter to improve rice performance under low temperatures.
Collapse
|
28
|
Grimberg Å, Lager I, Street NR, Robinson KM, Marttila S, Mähler N, Ingvarsson PK, Bhalerao RP. Storage lipid accumulation is controlled by photoperiodic signal acting via regulators of growth cessation and dormancy in hybrid aspen. THE NEW PHYTOLOGIST 2018; 219:619-630. [PMID: 29761498 DOI: 10.1111/nph.15197] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 03/28/2018] [Indexed: 05/24/2023]
Abstract
The signalling pathways that control seasonal modulation of carbon metabolism in perennial plants are poorly understood. Using genetic, metabolic and natural variation approaches, we identify factors mediating photoperiodic control of storage lipid accumulation in the model tree hybrid aspen (Populus tremula × tremuloides). We characterized lipid accumulation in transgenic hybrid aspen with impaired photoperiodic and hormonal responses. Genome-wide association mapping was performed in Swedish aspen (P. tremula) genotypes to determine genetic loci associated with genotype variation in lipid content. Our data show that the storage lipid triacylglycerol (TAG) accumulates in cambial meristem and pith rays of aspen in response to photoperiodic signal controlling growth cessation and dormancy induction. We show that photoperiodic control of TAG accumulation is mediated by the FLOWERING LOCUS T/CONSTANS module, which also controls the induction of growth cessation. Hormonal and chromatin remodelling pathways also contribute to TAG accumulation by photoperiodic signal. Natural variation exists in lipid accumulation that is controlled by input from multiple loci. Our data shed light on how the control of storage metabolism is temporally coordinated with growth cessation and dormancy by photoperiodic signal, and reveals that storage lipid accumulation between seeds and perennating organs of trees may involve distinct regulatory circuits.
Collapse
Affiliation(s)
- Åsa Grimberg
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Växtskyddsvägen 1, 23053, Alnarp, Sweden
| | - Ida Lager
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Växtskyddsvägen 1, 23053, Alnarp, Sweden
| | - Nathaniel R Street
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Artedigränd 7, 90187, Umeå, Sweden
| | - Kathryn M Robinson
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Artedigränd 7, 90187, Umeå, Sweden
| | - Salla Marttila
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Växtskyddsvägen 1, 23053, Alnarp, Sweden
| | - Niklas Mähler
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Artedigränd 7, 90187, Umeå, Sweden
| | - Pär K Ingvarsson
- Department of Plant Biology, Swedish University of Agricultural Sciences, Almas allé 5, 75007, Uppsala, Sweden
| | - Rishikesh P Bhalerao
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Skogsmarksgränd, 90183, Umeå, Sweden
| |
Collapse
|
29
|
Yuan C, Ahmad S, Cheng T, Wang J, Pan H, Zhao L, Zhang Q. Red to Far-Red Light Ratio Modulates Hormonal and Genetic Control of Axillary bud Outgrowth in Chrysanthemum ( Dendranthema grandiflorum 'Jinba'). Int J Mol Sci 2018; 19:ijms19061590. [PMID: 29843424 PMCID: PMC6032274 DOI: 10.3390/ijms19061590] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 05/22/2018] [Accepted: 05/23/2018] [Indexed: 11/16/2022] Open
Abstract
Single-flower cut Chrysanthemum (Dendranthema grandiflorum 'Jinba') holds a unique status in global floriculture industry. However, the extensive axillary bud outgrowth presents a major drawback. Shade is an environment cue that inhibits shoot branching. Present study was aimed at investigating the effect of ratio of red to far-red light (R:FR) in regulating the lateral bud outgrowth of Chrysanthemum and the detailed mechanism. Results showed that the fate of axillary buds at specific positions in stem exhibited difference in response to R:FR. Decreasing R:FR resulted in elevation of abscisic acid (ABA) accumulation in axillary buds. Expression of ABA, indole-3-acetic acid (IAA) and strigolactones (SL) -related metabolism and signal transduction genes was significantly changed in response to low R:FR. In addition, low R:FR caused the re-distribution of sucrose across the whole plant, driving more sucrose towards bottom buds. Our results indicate that low R:FR not always inhibits bud outgrowth, rather its influence depends on the bud position in the stem. ABA, SL and auxin pathways were involved in the process. Interestingly, sucrose also appears to be involved in the process which is necessary to pay attention in the further studies. The present study also lays the foundation for developing methods to regulate axillary bud outgrowth in Chrysanthemum.
Collapse
Affiliation(s)
- Cunquan Yuan
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China.
| | - Sagheer Ahmad
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China.
| | - Tangren Cheng
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China.
| | - Jia Wang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China.
| | - Huitang Pan
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China.
| | - Liangjun Zhao
- Department of Ornamental Horticulture, China Agricultural University, Beijing 100193, China.
| | - Qixiang Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
30
|
Abscisic Acid (ABA ) Promotes the Induction and Maintenance of Pear (Pyrus pyrifolia White Pear Group) Flower Bud Endodormancy. Int J Mol Sci 2018; 19:ijms19010310. [PMID: 29361708 PMCID: PMC5796254 DOI: 10.3390/ijms19010310] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 01/14/2018] [Accepted: 01/16/2018] [Indexed: 11/17/2022] Open
Abstract
Dormancy is an adaptive mechanism that allows temperate deciduous plants to survive unfavorable winter conditions. In the present work, we investigated the possible function of abscisic acid (ABA) on the endodormancy process in pear. The ABA content increased during pear flower bud endodormancy establishment and decreased towards endodormancy release. In total, 39 putative genes related to ABA metabolism and signal transductions were identified from pear genome. During the para- to endodormancy transition, PpNCED-2 and PpNCED-3 had high expression levels, while PpCYP707As expression levels were low. However, during endodormancy, the expression of PpCYP707A-3 sharply increased with increasing cold accumulation. At the same time, the ABA content of pear buds declined, and the percentage of bud breaks rapidly increased. On the other hand, the expression levels of PpPYLs, PpPP2Cs, PpSnRK2s, and PpABI4/ABI5s were also changed during the pear flower bud dormancy cycle. Furthermore, exogenous ABA application to para-dormant buds significantly reduced the bud breaks and accelerated the transition to endodormancy. During the whole treatment time, the expression level of PpPP2C-12 decreased to a greater extent in ABA-treated buds than in control. However, the expression levels of PpSnRK2-1, PpSnRK2-4, and PpABI5-1 were higher in ABA-treated buds. Our results indicated that PpCYP707A-3 and PpNCEDs play pivotal roles on the regulation of endodormancy release, while ABA signal transduction pathway also appears to be involved in the process. The present work provided the basic information about the function of ABA-related genes during pear flower bud dormancy process.
Collapse
|
31
|
Papacek M, Christmann A, Grill E. Interaction network of ABA receptors in grey poplar. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 92:199-210. [PMID: 28746755 DOI: 10.1111/tpj.13646] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 07/17/2017] [Accepted: 07/21/2017] [Indexed: 06/07/2023]
Abstract
The plant hormone abscisic acid (ABA) is a key player in responses to abiotic stress. ABA regulates a plant's water status and mediates drought tolerance by controlling stomatal gas exchange, water conductance and differential gene expression. ABA is recognized and bound by the Regulatory Component of ABA Receptors (RCARs)/PYR1/PYL (Pyrabactin Resistance 1/PYR1-like). Ligand binding stabilizes the interaction of RCARs with type 2C protein phosphatases (PP2C), which are ABA co-receptors. While the core pathway of ABA signalling has been elucidated, the large number of different ABA receptors and co-receptors within a plant species generates a complexity of heteromeric receptor complexes that has not functionally been resolved in any plant species to date. In this study, we characterized ABA receptors and co-receptors of grey poplar (Populus x canescens [Ait.] Sm.) and their capacity to regulate ABA responses. We observed a high number of regulatory combinations of holo-receptor complexes, but also some preferential and selective RCAR-PP2C interactions. Poplar and Arabidopsis ABA receptor components revealed a strong structural and functional conservation. Heterologous receptor complexes of poplar and Arabidopsis components showed functionality in vitro and regulated ABA-responsive gene expression in cells of both species. ABA-responsive promoters of Arabidopsis were also active in poplar, which was explored to generate poplar reporter lines expressing green fluorescent protein in response to ABA. The study presents a detailed analysis of receptor complexes of a tree species and shows high conservation of ABA receptor components between an annual and a perennial plant.
Collapse
Affiliation(s)
- Michael Papacek
- Lehrstuhl für Botanik, Technische Universität München, Emil-Ramann Straße 4, D-85354, Freising, Germany
| | - Alexander Christmann
- Lehrstuhl für Botanik, Technische Universität München, Emil-Ramann Straße 4, D-85354, Freising, Germany
| | - Erwin Grill
- Lehrstuhl für Botanik, Technische Universität München, Emil-Ramann Straße 4, D-85354, Freising, Germany
| |
Collapse
|
32
|
Yu X, Takebayashi A, Demura T, Ohtani M. Differential expression of poplar sucrose nonfermenting1-related protein kinase 2 genes in response to abiotic stress and abscisic acid. JOURNAL OF PLANT RESEARCH 2017; 130:929-940. [PMID: 28550412 DOI: 10.1007/s10265-017-0952-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Accepted: 04/21/2017] [Indexed: 06/07/2023]
Abstract
Knowledge on the responses of woody plants to abiotic stress can inform strategies to breed improved tree varieties and to manage tree species for environmental conservation and the production of lignocellulosic biomass. In this study, we examined the expression patterns of poplar (Populus trichocarpa) genes encoding members of the sucrose nonfermenting1-related protein kinase 2 (SnRK2) family, which are core components of the abiotic stress response. The P. trichocarpa genome contains twelve SnRK2 genes (PtSnRK2.1- PtSnRK2.12) that can be divided into three subclasses (I-III) based on the structures of their encoded kinase domains. We found that PtSnRK2s are differentially expressed in various organs. In MS medium-grown plants, all of the PtSnRK2 genes were significantly upregulated in response to abscisic acid (ABA) treatment, whereas osmotic and salt stress treatments induced only some (four and seven, respectively) of the PtSnRK2 genes. By contrast, soil-grown plants showed increased expression of most PtSnRK2 genes under drought and salt treatments, but not under ABA treatment. In soil-grown plants, drought stress induced SnRK2 subclass II genes in all tested organs (leaves, stems, and roots), whereas subclass III genes tended to be upregulated in leaves only. These results suggest that the PtSnRK2 genes are involved in abiotic stress responses, are at least partially activated by ABA, and show organ-specific responses.
Collapse
Affiliation(s)
- Xiang Yu
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
| | - Arika Takebayashi
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
| | - Taku Demura
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan.
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan.
| | - Misato Ohtani
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan.
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan.
| |
Collapse
|
33
|
Tuan PA, Bai S, Saito T, Ito A, Moriguchi T. Dormancy-Associated MADS-Box (DAM) and the Abscisic Acid Pathway Regulate Pear Endodormancy Through a Feedback Mechanism. PLANT & CELL PHYSIOLOGY 2017; 58:1378-1390. [PMID: 28586469 DOI: 10.1093/pcp/pcx074] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 05/10/2017] [Indexed: 05/20/2023]
Abstract
In the pear 'Kosui' (Pyrus pyrifolia Nakai), the dormancy-associated MADS-box (PpDAM1 = PpMADS13-1) gene has been reported to play an essential role in bud endodormancy. Here, we found that PpDAM1 up-regulated expression of 9-cis-epoxycarotenoid dioxygenase (PpNCED3), which is a rate-limiting gene for ABA biosynthesis. Transient assays with a dual luciferase reporter system (LUC assay) and electrophoretic mobility shift assay (EMSA) showed that PpDAM1 activated PpNCED3 expression by binding to the CArG motif in the PpNCED3 promoter. PpNCED3 expression was increased toward endodormancy release in lateral flower buds of 'Kosui', which is consistent with the induced levels of ABA, its catabolism (ABA 8'-hydroxylase) and signaling genes (type 2C protein phosphatase genes and SNF1-related protein kinase 2 genes). In addition, we found that an ABA response element (ABRE)-binding transcription factor, PpAREB1, exhibiting high expression concomitant with endodormancy release, bound to three ABRE motifs in the promoter region of PpDAM1 and negatively regulated its activity. Taken together, our results suggested a feedback regulation between PpDAM1 and the ABA metabolism and signaling pathway during endodormancy of pear. This first evidence of an interaction between a DAM and ABA biosynthesis in vitro will provide further insights into bud endodormancy regulatory mechanisms of deciduous trees including pear.
Collapse
Affiliation(s)
- Pham Anh Tuan
- Institute of Fruit Tree and Tea Science, NARO, Tsukuba, Ibaraki 305-8605, Japan
| | - Songling Bai
- Institute of Fruit Tree and Tea Science, NARO, Tsukuba, Ibaraki 305-8605, Japan
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Takanori Saito
- Institute of Fruit Tree and Tea Science, NARO, Tsukuba, Ibaraki 305-8605, Japan
- Graduate School of Horticulture, Chiba University, Matsudo, Chiba 271-8510, Japan
| | - Akiko Ito
- Institute of Fruit Tree and Tea Science, NARO, Tsukuba, Ibaraki 305-8605, Japan
| | - Takaya Moriguchi
- Institute of Fruit Tree and Tea Science, NARO, Tsukuba, Ibaraki 305-8605, Japan
- Institute of Fruit Tree and Tea Science, NARO, Okitsu-Nakacho Shimizu, Shizuoka 424-0292, Japan
| |
Collapse
|
34
|
Holalu SV, Finlayson SA. The ratio of red light to far red light alters Arabidopsis axillary bud growth and abscisic acid signalling before stem auxin changes. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:943-952. [PMID: 28062593 PMCID: PMC5444464 DOI: 10.1093/jxb/erw479] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Arabidopsis thaliana shoot branching is inhibited by a low red light to far red light ratio (R:FR, an indicator of competition), and by loss of phytochrome B function. Prior studies have shown that phytochrome B deficiency suppresses bud growth by elevating systemic auxin signalling, and that increasing the R:FR promotes the growth of buds suppressed by low R:FR by inhibiting bud abscisic acid (ABA) accumulation and signalling. Here, systemic auxin signalling and bud ABA signalling were examined in the context of rapid bud responses to an increased R:FR. Increasing the R:FR promoted the growth of buds inhibited by a low R:FR within 6 h. Relative to a low R:FR, bud ABA accumulation and signalling in plants given a high R:FR showed a sustained decline within 3 h, prior to increased growth. Main stem auxin levels and signalling showed a weak, transient response. Systemic effects and those localised to the bud were further examined by decapitating plants maintained either under a low R:FR or provided with a high R:FR. Increasing the R:FR promoted bud growth before decapitation, but decapitated plants eventually formed longer branches. The data suggest that rapid responses to an increased R:FR may be mediated by changes in bud ABA physiology, although systemic auxin signalling is necessary for sustained bud repression under a low R:FR.
Collapse
Affiliation(s)
- Srinidhi V Holalu
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX 77843, USA
- Faculty of Molecular and Environmental Plant Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Scott A Finlayson
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX 77843, USA
- Faculty of Molecular and Environmental Plant Sciences, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
35
|
Negin B, Moshelion M. The evolution of the role of ABA in the regulation of water-use efficiency: From biochemical mechanisms to stomatal conductance. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 251:82-89. [PMID: 27593466 DOI: 10.1016/j.plantsci.2016.05.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 05/09/2016] [Accepted: 05/12/2016] [Indexed: 05/21/2023]
Abstract
Abscisic acid is found in a wide variety of organisms. In the plant kingdom, ABA's role in mediating responses to abiotic stress has been conserved and enhanced throughout evolution. The emergence of plants to terrestrial environments required the development of mechanisms to cope with ongoing and severe abiotic stress such as drought and rapid changes in humidity and temperature. The common understanding is that terrestrial plants evolved strategies ranging from desiccation-tolerance mechanisms (mosses) to drought tolerance (CAM plants), to better exploit different ecological niches. In between these divergent water regulation strategies, ABA plays a significant role in managing plants' adaptation to new environments by optimizing water-use efficiency (WUE) under particular environmental conditions. ABA plays some very different roles in the regulation of WUE. ABA's role in the regulation of guard cells and transpiration has yielded a wide variety of WUE-regulation mechanisms, ranging from no sensitivity (ferns) to low sensitivity (anisohydric behavior) to hypersensitivity to ABA (isohydric behavior and putatively CAM plants). ABA also plays a role in the regulation of non-stomatal, biochemical mechanisms of WUE regulation. In angiosperms, this includes the control of osmotic adjustment and morphological changes, including changes in leaf size, stomatal density, stomatal size and root development. Under severe stress, ABA also appears to initiate leaf senescence via transcriptional regulation, to directly inhibit photosynthesis.
Collapse
Affiliation(s)
- Boaz Negin
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 7610001, Israel.
| | - Menachem Moshelion
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 7610001, Israel.
| |
Collapse
|
36
|
Dawood T, Yang X, Visser EJW, Te Beek TAH, Kensche PR, Cristescu SM, Lee S, Floková K, Nguyen D, Mariani C, Rieu I. A Co-Opted Hormonal Cascade Activates Dormant Adventitious Root Primordia upon Flooding in Solanum dulcamara. PLANT PHYSIOLOGY 2016; 170:2351-64. [PMID: 26850278 PMCID: PMC4825138 DOI: 10.1104/pp.15.00773] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 02/04/2016] [Indexed: 05/17/2023]
Abstract
Soil flooding is a common stress factor affecting plants. To sustain root function in the hypoxic environment, flooding-tolerant plants may form new, aerenchymatous adventitious roots (ARs), originating from preformed, dormant primordia on the stem. We investigated the signaling pathway behind AR primordium reactivation in the dicot species Solanum dulcamara Transcriptome analysis indicated that flooding imposes a state of quiescence on the stem tissue, while increasing cellular activity in the AR primordia. Flooding led to ethylene accumulation in the lower stem region and subsequently to a drop in abscisic acid (ABA) level in both stem and AR primordia tissue. Whereas ABA treatment prevented activation of AR primordia by flooding, inhibition of ABA synthesis was sufficient to activate them in absence of flooding. Together, this reveals that there is a highly tissue-specific response to reduced ABA levels. The central role for ABA in the response differentiates the pathway identified here from the AR emergence pathway known from rice (Oryza sativa). Flooding and ethylene treatment also induced expression of the polar auxin transporter PIN2, and silencing of this gene or chemical inhibition of auxin transport inhibited primordium activation, even though ABA levels were reduced. Auxin treatment, however, was not sufficient for AR emergence, indicating that the auxin pathway acts in parallel with the requirement for ABA reduction. In conclusion, adaptation of S. dulcamara to wet habitats involved co-option of a hormonal signaling cascade well known to regulate shoot growth responses, to direct a root developmental program upon soil flooding.
Collapse
Affiliation(s)
- Thikra Dawood
- Department of Molecular Plant Physiology, Institute for Water and Wetland Research (T.D., X.Y., D.N., C.M., I.R.), Department of Experimental Plant Ecology, Institute for Water and Wetland Research (E.J.W.V.), Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences (P.R.K.), and Department of Molecular and Laser Physics, Institute for Molecules and Materials (S.M.C.), Radboud University, 6500 GL Nijmegen, The Netherlands;Netherlands Bioinformatics Centre, 6525 GA Nijmegen, The Netherlands (T.A.H.t.B.);Laboratory of Plant Physiology, Plant Sciences, Wageningen University, 6708 PB Wageningen, The Netherlands (S.L., K.F.); andGyeongsangbuk-Do Agricultural Research and Extension Services, 136 Gil-14, Chilgokiungang-Daero, Daegu, South Korea (S.L.)
| | - Xinping Yang
- Department of Molecular Plant Physiology, Institute for Water and Wetland Research (T.D., X.Y., D.N., C.M., I.R.), Department of Experimental Plant Ecology, Institute for Water and Wetland Research (E.J.W.V.), Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences (P.R.K.), and Department of Molecular and Laser Physics, Institute for Molecules and Materials (S.M.C.), Radboud University, 6500 GL Nijmegen, The Netherlands;Netherlands Bioinformatics Centre, 6525 GA Nijmegen, The Netherlands (T.A.H.t.B.);Laboratory of Plant Physiology, Plant Sciences, Wageningen University, 6708 PB Wageningen, The Netherlands (S.L., K.F.); andGyeongsangbuk-Do Agricultural Research and Extension Services, 136 Gil-14, Chilgokiungang-Daero, Daegu, South Korea (S.L.)
| | - Eric J W Visser
- Department of Molecular Plant Physiology, Institute for Water and Wetland Research (T.D., X.Y., D.N., C.M., I.R.), Department of Experimental Plant Ecology, Institute for Water and Wetland Research (E.J.W.V.), Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences (P.R.K.), and Department of Molecular and Laser Physics, Institute for Molecules and Materials (S.M.C.), Radboud University, 6500 GL Nijmegen, The Netherlands;Netherlands Bioinformatics Centre, 6525 GA Nijmegen, The Netherlands (T.A.H.t.B.);Laboratory of Plant Physiology, Plant Sciences, Wageningen University, 6708 PB Wageningen, The Netherlands (S.L., K.F.); andGyeongsangbuk-Do Agricultural Research and Extension Services, 136 Gil-14, Chilgokiungang-Daero, Daegu, South Korea (S.L.)
| | - Tim A H Te Beek
- Department of Molecular Plant Physiology, Institute for Water and Wetland Research (T.D., X.Y., D.N., C.M., I.R.), Department of Experimental Plant Ecology, Institute for Water and Wetland Research (E.J.W.V.), Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences (P.R.K.), and Department of Molecular and Laser Physics, Institute for Molecules and Materials (S.M.C.), Radboud University, 6500 GL Nijmegen, The Netherlands;Netherlands Bioinformatics Centre, 6525 GA Nijmegen, The Netherlands (T.A.H.t.B.);Laboratory of Plant Physiology, Plant Sciences, Wageningen University, 6708 PB Wageningen, The Netherlands (S.L., K.F.); andGyeongsangbuk-Do Agricultural Research and Extension Services, 136 Gil-14, Chilgokiungang-Daero, Daegu, South Korea (S.L.)
| | - Philip R Kensche
- Department of Molecular Plant Physiology, Institute for Water and Wetland Research (T.D., X.Y., D.N., C.M., I.R.), Department of Experimental Plant Ecology, Institute for Water and Wetland Research (E.J.W.V.), Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences (P.R.K.), and Department of Molecular and Laser Physics, Institute for Molecules and Materials (S.M.C.), Radboud University, 6500 GL Nijmegen, The Netherlands;Netherlands Bioinformatics Centre, 6525 GA Nijmegen, The Netherlands (T.A.H.t.B.);Laboratory of Plant Physiology, Plant Sciences, Wageningen University, 6708 PB Wageningen, The Netherlands (S.L., K.F.); andGyeongsangbuk-Do Agricultural Research and Extension Services, 136 Gil-14, Chilgokiungang-Daero, Daegu, South Korea (S.L.)
| | - Simona M Cristescu
- Department of Molecular Plant Physiology, Institute for Water and Wetland Research (T.D., X.Y., D.N., C.M., I.R.), Department of Experimental Plant Ecology, Institute for Water and Wetland Research (E.J.W.V.), Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences (P.R.K.), and Department of Molecular and Laser Physics, Institute for Molecules and Materials (S.M.C.), Radboud University, 6500 GL Nijmegen, The Netherlands;Netherlands Bioinformatics Centre, 6525 GA Nijmegen, The Netherlands (T.A.H.t.B.);Laboratory of Plant Physiology, Plant Sciences, Wageningen University, 6708 PB Wageningen, The Netherlands (S.L., K.F.); andGyeongsangbuk-Do Agricultural Research and Extension Services, 136 Gil-14, Chilgokiungang-Daero, Daegu, South Korea (S.L.)
| | - Sangseok Lee
- Department of Molecular Plant Physiology, Institute for Water and Wetland Research (T.D., X.Y., D.N., C.M., I.R.), Department of Experimental Plant Ecology, Institute for Water and Wetland Research (E.J.W.V.), Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences (P.R.K.), and Department of Molecular and Laser Physics, Institute for Molecules and Materials (S.M.C.), Radboud University, 6500 GL Nijmegen, The Netherlands;Netherlands Bioinformatics Centre, 6525 GA Nijmegen, The Netherlands (T.A.H.t.B.);Laboratory of Plant Physiology, Plant Sciences, Wageningen University, 6708 PB Wageningen, The Netherlands (S.L., K.F.); andGyeongsangbuk-Do Agricultural Research and Extension Services, 136 Gil-14, Chilgokiungang-Daero, Daegu, South Korea (S.L.)
| | - Kristýna Floková
- Department of Molecular Plant Physiology, Institute for Water and Wetland Research (T.D., X.Y., D.N., C.M., I.R.), Department of Experimental Plant Ecology, Institute for Water and Wetland Research (E.J.W.V.), Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences (P.R.K.), and Department of Molecular and Laser Physics, Institute for Molecules and Materials (S.M.C.), Radboud University, 6500 GL Nijmegen, The Netherlands;Netherlands Bioinformatics Centre, 6525 GA Nijmegen, The Netherlands (T.A.H.t.B.);Laboratory of Plant Physiology, Plant Sciences, Wageningen University, 6708 PB Wageningen, The Netherlands (S.L., K.F.); andGyeongsangbuk-Do Agricultural Research and Extension Services, 136 Gil-14, Chilgokiungang-Daero, Daegu, South Korea (S.L.)
| | - Duy Nguyen
- Department of Molecular Plant Physiology, Institute for Water and Wetland Research (T.D., X.Y., D.N., C.M., I.R.), Department of Experimental Plant Ecology, Institute for Water and Wetland Research (E.J.W.V.), Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences (P.R.K.), and Department of Molecular and Laser Physics, Institute for Molecules and Materials (S.M.C.), Radboud University, 6500 GL Nijmegen, The Netherlands;Netherlands Bioinformatics Centre, 6525 GA Nijmegen, The Netherlands (T.A.H.t.B.);Laboratory of Plant Physiology, Plant Sciences, Wageningen University, 6708 PB Wageningen, The Netherlands (S.L., K.F.); andGyeongsangbuk-Do Agricultural Research and Extension Services, 136 Gil-14, Chilgokiungang-Daero, Daegu, South Korea (S.L.)
| | - Celestina Mariani
- Department of Molecular Plant Physiology, Institute for Water and Wetland Research (T.D., X.Y., D.N., C.M., I.R.), Department of Experimental Plant Ecology, Institute for Water and Wetland Research (E.J.W.V.), Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences (P.R.K.), and Department of Molecular and Laser Physics, Institute for Molecules and Materials (S.M.C.), Radboud University, 6500 GL Nijmegen, The Netherlands;Netherlands Bioinformatics Centre, 6525 GA Nijmegen, The Netherlands (T.A.H.t.B.);Laboratory of Plant Physiology, Plant Sciences, Wageningen University, 6708 PB Wageningen, The Netherlands (S.L., K.F.); andGyeongsangbuk-Do Agricultural Research and Extension Services, 136 Gil-14, Chilgokiungang-Daero, Daegu, South Korea (S.L.)
| | - Ivo Rieu
- Department of Molecular Plant Physiology, Institute for Water and Wetland Research (T.D., X.Y., D.N., C.M., I.R.), Department of Experimental Plant Ecology, Institute for Water and Wetland Research (E.J.W.V.), Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences (P.R.K.), and Department of Molecular and Laser Physics, Institute for Molecules and Materials (S.M.C.), Radboud University, 6500 GL Nijmegen, The Netherlands;Netherlands Bioinformatics Centre, 6525 GA Nijmegen, The Netherlands (T.A.H.t.B.);Laboratory of Plant Physiology, Plant Sciences, Wageningen University, 6708 PB Wageningen, The Netherlands (S.L., K.F.); andGyeongsangbuk-Do Agricultural Research and Extension Services, 136 Gil-14, Chilgokiungang-Daero, Daegu, South Korea (S.L.)
| |
Collapse
|
37
|
Yao C, Finlayson SA. Abscisic Acid Is a General Negative Regulator of Arabidopsis Axillary Bud Growth. PLANT PHYSIOLOGY 2015; 169:611-26. [PMID: 26149576 PMCID: PMC4577412 DOI: 10.1104/pp.15.00682] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 07/01/2015] [Indexed: 05/02/2023]
Abstract
Branching is an important process controlled by intrinsic programs and by environmental signals transduced by a variety of plant hormones. Abscisic acid (ABA) was previously shown to mediate Arabidopsis (Arabidopsis thaliana) branching responses to the ratio of red light (R) to far-red light (FR; an indicator of competition) by suppressing bud outgrowth from lower rosette positions under low R:FR. However, the role of ABA in regulating branching more generally was not investigated. This study shows that ABA restricts lower bud outgrowth and promotes correlative inhibition under both high and low R:FR. ABA was elevated in buds exhibiting delayed outgrowth resulting from bud position and low R:FR and decreased in elongating buds. ABA was reduced in lower buds of hyperbranching mutants deficient in auxin signaling (AUXIN RESISTANT1), MORE AXILLARY BRANCHING (MAX) signaling (MAX2), and BRANCHED1 (BRC1) function, and partial suppression of branch elongation in these mutants by exogenous ABA suggested that ABA may act downstream of these components. Bud BRC1 expression was not altered by exogenous ABA, consistent with a downstream function for ABA. However, the expression of genes encoding the indole-3-acetic acid (IAA) biosynthesis enzyme TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS1, the auxin transporter PIN-FORMED1, and the cell cycle genes CYCLIN A2;1 and PROLIFERATING CELL NUCLEAR ANTIGEN1 in buds was suppressed by ABA, suggesting that it may inhibit bud growth in part by suppressing elements of the cell cycle machinery and bud-autonomous IAA biosynthesis and transport. ABA was found to suppress bud IAA accumulation, thus confirming this aspect of its action.
Collapse
Affiliation(s)
- Chi Yao
- Department of Soil and Crop Sciences (C.Y., S.A.F.) and Faculty of Molecular and Environmental Plant Sciences (S.A.F.), Texas A&M University, College Station, Texas 77843; andTexas A&M AgriLife Research, College Station, Texas 77843 (C.Y., S.A.F.)
| | - Scott A Finlayson
- Department of Soil and Crop Sciences (C.Y., S.A.F.) and Faculty of Molecular and Environmental Plant Sciences (S.A.F.), Texas A&M University, College Station, Texas 77843; andTexas A&M AgriLife Research, College Station, Texas 77843 (C.Y., S.A.F.)
| |
Collapse
|
38
|
Brunner I, Herzog C, Dawes MA, Arend M, Sperisen C. How tree roots respond to drought. FRONTIERS IN PLANT SCIENCE 2015; 6:547. [PMID: 26284083 PMCID: PMC4518277 DOI: 10.3389/fpls.2015.00547] [Citation(s) in RCA: 271] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 07/06/2015] [Indexed: 05/17/2023]
Abstract
The ongoing climate change is characterized by increased temperatures and altered precipitation patterns. In addition, there has been an increase in both the frequency and intensity of extreme climatic events such as drought. Episodes of drought induce a series of interconnected effects, all of which have the potential to alter the carbon balance of forest ecosystems profoundly at different scales of plant organization and ecosystem functioning. During recent years, considerable progress has been made in the understanding of how aboveground parts of trees respond to drought and how these responses affect carbon assimilation. In contrast, processes of belowground parts are relatively underrepresented in research on climate change. In this review, we describe current knowledge about responses of tree roots to drought. Tree roots are capable of responding to drought through a variety of strategies that enable them to avoid and tolerate stress. Responses include root biomass adjustments, anatomical alterations, and physiological acclimations. The molecular mechanisms underlying these responses are characterized to some extent, and involve stress signaling and the induction of numerous genes, leading to the activation of tolerance pathways. In addition, mycorrhizas seem to play important protective roles. The current knowledge compiled in this review supports the view that tree roots are well equipped to withstand drought situations and maintain morphological and physiological functions as long as possible. Further, the reviewed literature demonstrates the important role of tree roots in the functioning of forest ecosystems and highlights the need for more research in this emerging field.
Collapse
Affiliation(s)
- Ivano Brunner
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorf, Switzerland
| | - Claude Herzog
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorf, Switzerland
- Swiss Federal Institute of Technology ZürichZürich, Switzerland
| | - Melissa A. Dawes
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorf, Switzerland
| | - Matthias Arend
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorf, Switzerland
| | - Christoph Sperisen
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorf, Switzerland
| |
Collapse
|
39
|
Hollender CA, Dardick C. Molecular basis of angiosperm tree architecture. THE NEW PHYTOLOGIST 2015; 206:541-56. [PMID: 25483362 DOI: 10.1111/nph.13204] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 10/30/2014] [Indexed: 05/24/2023]
Abstract
The architecture of trees greatly impacts the productivity of orchards and forestry plantations. Amassing greater knowledge on the molecular genetics that underlie tree form can benefit these industries, as well as contribute to basic knowledge of plant developmental biology. This review describes the fundamental components of branch architecture, a prominent aspect of tree structure, as well as genetic and hormonal influences inferred from studies in model plant systems and from trees with non-standard architectures. The bulk of the molecular and genetic data described here is from studies of fruit trees and poplar, as these species have been the primary subjects of investigation in this field of science.
Collapse
Affiliation(s)
- Courtney A Hollender
- Appalachian Fruit Research Station, Agricultural Research Service, United States Department of Agriculture, 2217 Wiltshire Rd, Kearnysville, WV, 25430, USA
| | | |
Collapse
|
40
|
Huang AX, She XP, Zhao JL, Zhang YY. Inhibition of ABA-induced stomatal closure by fusicoccin is associated with cytosolic acidification-mediated hydrogen peroxide removal. BOTANICAL STUDIES 2014; 55:33. [PMID: 28510970 PMCID: PMC5432956 DOI: 10.1186/1999-3110-55-33] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 09/06/2013] [Indexed: 06/07/2023]
Abstract
BACKGROUND Fusicoccin (FC), a fungal phytotoxin produced by Fusicoccum amygdale, causes the inhibition of ABA-induced stomatal closure. The mechanism of inhibition is remaining unclear. We analyzed the role of hydrogen peroxide (H2O2) and relationship between H2O2 removal and cytosolic pH changes during inhibition of ABA-induced stomatal closure by FC. RESULTS According to the results, ABA treatment induced H2O2 production and stomatal closure, but FC inhibited the effects of ABA on these two parameters. Treatment with catalase (CAT) and NADPH oxidase inhibitor diphenylene iodonium (DPI) mimicked the effect of FC. These data suggest that inhibition of ABA effect by FC is related to the decrease of H2O2 levels in guard cells. Furthermore, similar to CAT, FC not only suppressed stomatal closure and H2O2 levels in guard cells treated with exogenous H2O2, but also reopened the stomata which had been closed by ABA and reduced the level of H2O2 that had been produced by ABA, indicating that FC causes H2O2 removal in guard cells. The butyric acid treatment simulated the effects of FC on the stomatal aperture and H2O2 levels in guard cells treated with exogenous H2O2 and had been closed by ABA, and both FC and butyric acid reduced cytosolic pH in guard cells of stomata treated with H2O2 and had been closed by ABA, which demonstrate that cytosolic acidification mediates FC-induced H2O2 removal. CONCLUSION These results suggest that FC causes cytosolic acidification in guard cells, then induces H2O2 removal and reduces H2O2 levels in guard cells, finally inhibits stomatal closure induced by ABA.
Collapse
Affiliation(s)
- Ai-Xia Huang
- College of Life Sciences, Shaanxi Normal University, 710062 Xi’an, China
| | - Xiao-Ping She
- College of Life Sciences, Shaanxi Normal University, 710062 Xi’an, China
| | - Jin-Liang Zhao
- College of Life Sciences, Shaanxi Normal University, 710062 Xi’an, China
| | - Yun-Ying Zhang
- College of Life Sciences, Shaanxi Normal University, 710062 Xi’an, China
| |
Collapse
|
41
|
Considine MJ, Foyer CH. Redox regulation of plant development. Antioxid Redox Signal 2014. [PMID: 24180689 DOI: 10.1089/ars.20135665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/17/2023]
Abstract
SIGNIFICANCE We provide a conceptual framework for the interactions between the cellular redox signaling hub and the phytohormone signaling network that controls plant growth and development to maximize plant productivity under stress-free situations, while limiting growth and altering development on exposure to stress. RECENT ADVANCES Enhanced cellular oxidation plays a key role in the regulation of plant growth and stress responses. Oxidative signals or cycles of oxidation and reduction are crucial for the alleviation of dormancy and quiescence, activating the cell cycle and triggering genetic and epigenetic control that underpin growth and differentiation responses to changing environmental conditions. CRITICAL ISSUES The redox signaling hub interfaces directly with the phytohormone network in the synergistic control of growth and its modulation in response to environmental stress, but a few components have been identified. Accumulating evidence points to a complex interplay of phytohormone and redox controls that operate at multiple levels. For simplicity, we focus here on redox-dependent processes that control root growth and development and bud burst. FUTURE DIRECTIONS The multiple roles of reactive oxygen species in the control of plant growth and development have been identified, but increasing emphasis should now be placed on the functions of redox-regulated proteins, along with the central roles of reductants such as NAD(P)H, thioredoxins, glutathione, glutaredoxins, peroxiredoxins, ascorbate, and reduced ferredoxin in the regulation of the genetic and epigenetic factors that modulate the growth and vigor of crop plants, particularly within an agricultural context.
Collapse
Affiliation(s)
- Michael J Considine
- 1 School of Plant Biology and Institute of Agriculture, University of Western Australia , Crawley, Australia
| | | |
Collapse
|
42
|
Abstract
SIGNIFICANCE We provide a conceptual framework for the interactions between the cellular redox signaling hub and the phytohormone signaling network that controls plant growth and development to maximize plant productivity under stress-free situations, while limiting growth and altering development on exposure to stress. RECENT ADVANCES Enhanced cellular oxidation plays a key role in the regulation of plant growth and stress responses. Oxidative signals or cycles of oxidation and reduction are crucial for the alleviation of dormancy and quiescence, activating the cell cycle and triggering genetic and epigenetic control that underpin growth and differentiation responses to changing environmental conditions. CRITICAL ISSUES The redox signaling hub interfaces directly with the phytohormone network in the synergistic control of growth and its modulation in response to environmental stress, but a few components have been identified. Accumulating evidence points to a complex interplay of phytohormone and redox controls that operate at multiple levels. For simplicity, we focus here on redox-dependent processes that control root growth and development and bud burst. FUTURE DIRECTIONS The multiple roles of reactive oxygen species in the control of plant growth and development have been identified, but increasing emphasis should now be placed on the functions of redox-regulated proteins, along with the central roles of reductants such as NAD(P)H, thioredoxins, glutathione, glutaredoxins, peroxiredoxins, ascorbate, and reduced ferredoxin in the regulation of the genetic and epigenetic factors that modulate the growth and vigor of crop plants, particularly within an agricultural context.
Collapse
Affiliation(s)
- Michael J Considine
- 1 School of Plant Biology and Institute of Agriculture, University of Western Australia , Crawley, Australia
| | | |
Collapse
|
43
|
Endo A, Nelson KM, Thoms K, Abrams SR, Nambara E, Sato Y. Functional characterization of xanthoxin dehydrogenase in rice. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:1231-40. [PMID: 25014258 DOI: 10.1016/j.jplph.2014.05.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 05/25/2014] [Accepted: 05/26/2014] [Indexed: 05/05/2023]
Abstract
Abscisic acid (ABA) is a phytohormone that plays a key role in biotic and abiotic stress responses. ABA metabolic genes are promising targets for molecular breeding work to improve stress tolerance in crops. The accumulation of ABA does not always improve stress tolerance since stress-induced accumulation of ABA in pollen inhibits the normal course of gametogenesis, affecting grain yields in cereals. This effect highlights the importance of manipulating the ABA levels according to the type of tissues. The aim of this study was to assign an ABA biosynthetic enzyme, xanthoxin dehydrogenase (XanDH), as a functional marker to modulate ABA levels in rice. XanDH is a member of the short-chain dehydrogenase/reductase family that catalyzes the conversion of xanthoxin to abscisyl aldehyde (ABAld). Previously, this enzyme had only been identified in Arabidopsis, as AtABA2. In this study, a XanDH named OsABA2 was identified in rice. Phylogenetic analysis indicated that a single gene encodes for OsABA2 in the rice genome. Its amino acid sequence contains two motifs that are essential for cofactor binding and catalytic activity. Expression analysis of OsABA2 mRNA showed that the transcript level did not change in response to treatment with ABA or dehydration. Recombinant OsABA2 protein expressed in Escherichia coli converted xanthoxin to ABAld in an NAD-dependent manner. Moreover, expression of OsABA2 in an Arabidopsis aba2 mutant rescued the aba2 mutant phenotypes, characterized by reduced growth, increased water loss, and germination in the presence of paclobutrazol, a gibberellin biosynthesis inhibitor or high concentration of glucose. These results indicate that OsABA2 is a rice XanDH that functions in ABA biosynthesis.
Collapse
Affiliation(s)
- Akira Endo
- Crop Breeding Research Division, National Agriculture and Food Research Organization (NARO), Hokkaido Agricultural Research Center, 1 Hitsujigaoka, Toyohira-ku, Sapporo, Hokkaido 062-8555, Japan
| | - Ken M Nelson
- National Research Council Canada, Saskatoon, Saskatchewan S7N 0W9, Canada
| | - Ken Thoms
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan S7N 5C7, Canada
| | - Suzanne R Abrams
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan S7N 5C7, Canada
| | - Eiji Nambara
- Department of Cell & Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, Ontario M5S 3B2, Canada; The Center for the Analysis of Genome Evolution and Function, University of Toronto, 25 Willcocks Street, Toronto, Ontario M5S 3B2, Canada
| | - Yutaka Sato
- Crop Breeding Research Division, National Agriculture and Food Research Organization (NARO), Hokkaido Agricultural Research Center, 1 Hitsujigaoka, Toyohira-ku, Sapporo, Hokkaido 062-8555, Japan.
| |
Collapse
|
44
|
Cao X, Jia J, Zhang C, Li H, Liu T, Jiang X, Polle A, Peng C, Luo ZB. Anatomical, physiological and transcriptional responses of two contrasting poplar genotypes to drought and re-watering. PHYSIOLOGIA PLANTARUM 2014; 151:480-94. [PMID: 24320774 DOI: 10.1111/ppl.12138] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 11/18/2013] [Accepted: 11/22/2013] [Indexed: 05/24/2023]
Abstract
Populus × euramericana (Pe) displays higher stable carbon isotope composition (δ(13)C) and intrinsic water use efficiency (WUEi) than Populus cathayana (Pc) under unlimited water conditions, rendering us to hypothesize that Pe is better acclimated to water deficiency than Pc. To examine this hypothesis, saplings of Pc and Pe were exposed to drought and subsequently re-watered. Pc and Pe exhibited distinct anatomical, physiological and transcriptional responses in acclimation to drought and re-watering, mainly due to stronger responsiveness of transcriptional regulation of genes encoding plasma membrane intrinsic proteins (PIPs), higher starch accumulation, δ(13)C, stable nitrogen isotope composition (δ(15)N) and WUEi , and lower reactive oxygen species (ROS) accumulation and scavenging in Pe. In acclimation to drought, both poplar genotypes demonstrated altered anatomical properties, declined height growth, differential expression of PIPs, activation of ABA signaling pathway, decreased total soluble sugars and starch, increased δ(13)C, δ(15)N and WUEi , and shifted homeostasis of ROS production and scavenging, and these changes can be recovered upon re-watering. These data indicate that Pe is more tolerant to drought than Pc, and that anatomical, physiological and transcriptional acclimation to drought and re-watering is essential for poplars to survive and grow under projected dry climate scenarios in the future.
Collapse
Affiliation(s)
- Xu Cao
- College of Life Sciences and State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, China; Büsgen-Institute, Department of Forest Botany and Tree Physiology, Georg-August University, 37077, Göttingen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Krishna Reddy S, Finlayson SA. Phytochrome B promotes branching in Arabidopsis by suppressing auxin signaling. PLANT PHYSIOLOGY 2014; 164:1542-50. [PMID: 24492336 PMCID: PMC3938639 DOI: 10.1104/pp.113.234021] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 01/31/2014] [Indexed: 05/18/2023]
Abstract
Many plants respond to competition signals generated by neighbors by evoking the shade avoidance syndrome, including increased main stem elongation and reduced branching. Vegetation-induced reduction in the red light:far-red light ratio provides a competition signal sensed by phytochromes. Plants deficient in phytochrome B (phyB) exhibit a constitutive shade avoidance syndrome including reduced branching. Because auxin in the polar auxin transport stream (PATS) inhibits axillary bud outgrowth, its role in regulating the phyB branching phenotype was tested. Removing the main shoot PATS auxin source by decapitation or chemically inhibiting the PATS strongly stimulated branching in Arabidopsis (Arabidopsis thaliana) deficient in phyB, but had a modest effect in the wild type. Whereas indole-3-acetic acid (IAA) levels were elevated in young phyB seedlings, there was less IAA in mature stems compared with the wild type. A split plate assay of bud outgrowth kinetics indicated that low auxin levels inhibited phyB buds more than the wild type. Because the auxin response could be a result of either the auxin signaling status or the bud's ability to export auxin into the main shoot PATS, both parameters were assessed. Main shoots of phyB had less absolute auxin transport capacity compared with the wild type, but equal or greater capacity when based on the relative amounts of native IAA in the stems. Thus, auxin transport capacity was unlikely to restrict branching. Both shoots of young phyB seedlings and mature stem segments showed elevated expression of auxin-responsive genes and expression was further increased by auxin treatment, suggesting that phyB suppresses auxin signaling to promote branching.
Collapse
|
46
|
Ríos G, Leida C, Conejero A, Badenes ML. Epigenetic regulation of bud dormancy events in perennial plants. FRONTIERS IN PLANT SCIENCE 2014; 5:247. [PMID: 24917873 PMCID: PMC4042555 DOI: 10.3389/fpls.2014.00247] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 05/14/2014] [Indexed: 05/03/2023]
Abstract
Release of bud dormancy in perennial plants resembles vernalization in Arabidopsis thaliana and cereals. In both cases, a certain period of chilling is required for accomplishing the reproductive phase, and several transcription factors with the MADS-box domain perform a central regulatory role in these processes. The expression of DORMANCY-ASSOCIATED MADS-box (DAM)-related genes has been found to be up-regulated in dormant buds of numerous plant species, such as poplar, raspberry, leafy spurge, blackcurrant, Japanese apricot, and peach. Moreover, functional evidence suggests the involvement of DAM genes in the regulation of seasonal dormancy in peach. Recent findings highlight the presence of genome-wide epigenetic modifications related to dormancy events, and more specifically the epigenetic regulation of DAM-related genes in a similar way to FLOWERING LOCUS C, a key integrator of vernalization effectors on flowering initiation in Arabidopsis. We revise the most relevant molecular and genomic contributions in the field of bud dormancy, and discuss the increasing evidence for chromatin modification involvement in the epigenetic regulation of seasonal dormancy cycles in perennial plants.
Collapse
Affiliation(s)
- Gabino Ríos
- Instituto Valenciano de Investigaciones AgrariasMoncada, Valencia, Spain
- *Correspondence: Gabino Ríos, Instituto Valenciano de Investigaciones Agrarias, Carretera Moncada-Naquera km 4.5, Moncada, 46113 Valencia, Spain e-mail:
| | - Carmen Leida
- Research and Innovation Center, Fondazione Edmund Mach, San Michele all’AdigeItaly
| | - Ana Conejero
- Instituto Valenciano de Investigaciones AgrariasMoncada, Valencia, Spain
| | | |
Collapse
|
47
|
Reddy SK, Holalu SV, Casal JJ, Finlayson SA. Abscisic acid regulates axillary bud outgrowth responses to the ratio of red to far-red light. PLANT PHYSIOLOGY 2013; 163:1047-58. [PMID: 23929720 PMCID: PMC3793024 DOI: 10.1104/pp.113.221895] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 08/05/2013] [Indexed: 05/18/2023]
Abstract
Low red light/far-red light ratio (R:FR) serves as an indicator of impending competition and has been demonstrated to suppress branch development. The regulation of Arabidopsis (Arabidopsis thaliana) rosette bud outgrowth by the R:FR and the associated mechanisms were investigated at several levels. Growth under low R:FR suppressed outgrowth of the third from topmost bud (bud n-2) but not that of the topmost bud. Subsequently increasing the R:FR near the time of anthesis promoted bud n-2 outgrowth and reduced topmost bud growth. Buds from specific rosette positions, exhibiting divergent fates to increased R:FR, were harvested 3 h after modifying the R:FR and were used to conduct ATH1 microarray-based transcriptome profiling. Differentially expressed genes showed enrichment of light signaling and hormone-related Gene Ontology terms and promoter motifs, most notably those associated with abscisic acid (ABA). Genes associated with ABA biosynthesis, including the key biosynthetic gene NINE-CIS-EPOXYCAROTENOID DIOXYGENASE3 (NCED3), and with ABA signaling were expressed at higher levels in the responsive bud n-2, and increasing the R:FR decreased their expression only in bud n-2. ABA abundance in responsive buds decreased within 12 h of increasing the R:FR, while indole-3-acetic acid levels did not change. A role for ABA in repressing bud outgrowth from lower positions under low R:FR was demonstrated using the nced3-2 and aba2-1 ABA biosynthesis mutants, which showed enhanced branching and a defective bud n-2 outgrowth response to low R:FR. The results provide evidence that ABA regulates bud outgrowth responses to the R:FR and thus extend the known hormonal pathways associated with the regulation of branching and shade avoidance.
Collapse
|
48
|
Dinh ST, Baldwin IT, Galis I. The HERBIVORE ELICITOR-REGULATED1 gene enhances abscisic acid levels and defenses against herbivores in Nicotiana attenuata plants. PLANT PHYSIOLOGY 2013; 162:2106-24. [PMID: 23784463 PMCID: PMC3729786 DOI: 10.1104/pp.113.221150] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 06/17/2013] [Indexed: 05/03/2023]
Abstract
Nicotiana attenuata plants can distinguish the damage caused by herbivore feeding from other types of damage by perceiving herbivore-associated elicitors, such as the fatty acid-amino acid conjugates (FACs) in oral secretions (OS) of Manduca sexta larvae, which are introduced into wounds during feeding. However, the transduction of FAC signals into downstream plant defense responses is still not well established. We identified a novel FAC-regulated protein in N. attenuata (NaHER1; for herbivore elicitor regulated) and show that it is an indispensable part of the OS signal transduction pathway. N. attenuata plants silenced in the expression of NaHER1 by RNA interference (irHER1) were unable to amplify their defenses beyond basal, wound-induced levels in response to OS elicitation. M. sexta larvae performed 2-fold better when reared on irHER1 plants, which released less volatile organic compounds (indirect defense) and had strongly reduced levels of several direct defense metabolites, including trypsin proteinase inhibitors, 17-hydroxygeranyllinallool diterpene glycosides, and caffeoylputrescine, after real and/or simulated herbivore attack. In parallel to impaired jasmonate signaling and metabolism, irHER1 plants were more drought sensitive and showed reduced levels of abscisic acid (ABA) in the leaves, suggesting that silencing of NaHER1 interfered with ABA metabolism. Because treatment of irHER1 plants with ABA results in both the accumulation of significantly more ABA catabolites and the complete restoration of normal wild-type levels of OS-induced defense metabolites, we conclude that NaHER1 acts as a natural suppressor of ABA catabolism after herbivore attack, which, in turn, activates the full defense profile and resistance against herbivores.
Collapse
Affiliation(s)
- Son Truong Dinh
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, D–07745 Jena, Germany
| | - Ian T. Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, D–07745 Jena, Germany
| | | |
Collapse
|
49
|
Bai S, Saito T, Sakamoto D, Ito A, Fujii H, Moriguchi T. Transcriptome analysis of Japanese pear (Pyrus pyrifolia Nakai) flower buds transitioning through endodormancy. PLANT & CELL PHYSIOLOGY 2013; 54:1132-51. [PMID: 23624675 DOI: 10.1093/pcp/pct067] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The transcriptomes of endodormant and ecodormant Japanese pear (Pyrus pyrifolia Nakai 'Kosui') flower buds were analyzed using RNA-seq technology and compared. Among de novo assembly of 114,191 unigenes, 76,995 unigenes were successfully annotated by BLAST searches against various databases. Gene Ontology (GO) enrichment analysis revealed that oxidoreductases were enriched in the molecular function category, a result consistent with previous observations of notable changes in hydrogen peroxide concentration during endodormancy release. In the GO categories related to biological process, the abundance of DNA methylation-related gene transcripts also significantly changed during endodormancy release, indicating the involvement of epigenetic regulation. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis also showed the changes in transcript abundance of genes involved in the metabolism of various phytohormones. Genes for both ABA and gibberellin biosynthesis were down-regulated, whereas the genes encoding their degradation enzymes were up-regulated during endodormancy release. In the ethylene pathway, 1-aminocyclopropane-1-carboxylate synthase (ACS), a gene encoding the rate-limiting enzyme for ethylene biosynthesis, was induced towards endodormancy release. All of these results indicated the involvement of phytohormones in endodormancy release. Furthermore, the expression of dormancy-associated MADS-box (DAM) genes was down-regulated concomitant with endodormancy release, although changes in the abundance of these gene transcripts were not as significant as those identified by transcriptome analysis. Consequently, characterization of the Japanese pear transcriptome during the transition from endormancy to ecodormancy will provide researchers with useful information for data mining and will facilitate further experiments on endodormancy especially in rosaceae fruit trees.
Collapse
Affiliation(s)
- Songling Bai
- NARO Institute of Fruit Tree Science, Tsukuba, Ibaraki 305-8605 Japan
| | | | | | | | | | | |
Collapse
|
50
|
Laur J, Hacke UG. Transpirational demand affects aquaporin expression in poplar roots. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:2283-93. [PMID: 23599275 PMCID: PMC3654427 DOI: 10.1093/jxb/ert096] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Isohydric plants tend to maintain a water potential homeostasis primarily by controlling water loss via stomatal conductance. However, there is accumulating evidence that plants can also modulate water uptake in a dynamic manner. The dynamics of water uptake are influenced by aquaporin-mediated changes in root hydraulics. Most studies in this area have been conducted on herbaceous plants, and less is known about responses of woody plants. Here a study was conducted to determine how roots of hybrid poplar plants (Populus trichocarpa×deltoides) respond to a step change in transpirational demand. The main objective was to measure the expression of selected aquaporin genes and to assess how transcriptional responses correspond to changes in root water flow (Q R) and other parameters of water relations. A subset of plants was grown in shade and was subsequently exposed to a 5-fold increase in light level. Another group of plants was grown at ~95% relative humidity (RH) and was then subjected to lower RH while the light level remained unchanged. Both plant groups experienced a transient drop in stem water potentials. At 28h after the increase in transpirational demand, water potentials recovered. This recovery was associated with changes in the expression of PIP1 and PIP2 subfamily genes and an increase in Q R. Stomata of plants growing at high RH were larger and showed incomplete closure after application of abscisic acid. Since stomatal conductance remained high and unchanged in these plants, it is suggested that the recovery in water potential in these plants was largely driven by the increase in Q R.
Collapse
Affiliation(s)
| | - Uwe G. Hacke
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|