1
|
Hu R, Yu H, Deng J, Chen S, Yang R, Xie H, Tang X, Yu Y, Duan Y, Zhang M, Zhu M, Yu Y. Phosphoenolpyruvate and Related Metabolic Pathways Contribute to the Regulation of Plant Growth and Development. Int J Mol Sci 2025; 26:391. [PMID: 39796250 PMCID: PMC11720000 DOI: 10.3390/ijms26010391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/21/2024] [Accepted: 01/02/2025] [Indexed: 01/13/2025] Open
Abstract
Phosphoenolpyruvate (PEP) plays a key role in the development of plants and exists in a wide variety of species. Research on the metabolic activities of PEP in plants has received increasing attention. PEP regulates multiple processes in plant growth and development. This article provides a comprehensive summary of these pathways, including embryo formation, root development, synthesis of secondary metabolites, and the formation of lignification. We also summarize new findings, including PEP's role in nodule energy sensing and carbon allocation under the influence of ozone. This review displays the complex and differential regulatory pathways in plant growth and development and provides a reference for basic and applied research on PEP metabolism in plants.
Collapse
Affiliation(s)
- Runzhou Hu
- Long Ping Branch, College of Biology, Hunan University, Changsha 410125, China; (R.H.); (H.Y.); (M.Z.)
- State Key Laboratory of Hybrid Rice, Hunan Rice Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (J.D.); (S.C.); (R.Y.); (H.X.); (X.T.); (Y.Y.); (Y.D.)
| | - Haiyang Yu
- Long Ping Branch, College of Biology, Hunan University, Changsha 410125, China; (R.H.); (H.Y.); (M.Z.)
| | - Jing Deng
- State Key Laboratory of Hybrid Rice, Hunan Rice Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (J.D.); (S.C.); (R.Y.); (H.X.); (X.T.); (Y.Y.); (Y.D.)
| | - Shanjing Chen
- State Key Laboratory of Hybrid Rice, Hunan Rice Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (J.D.); (S.C.); (R.Y.); (H.X.); (X.T.); (Y.Y.); (Y.D.)
| | - Ronglan Yang
- State Key Laboratory of Hybrid Rice, Hunan Rice Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (J.D.); (S.C.); (R.Y.); (H.X.); (X.T.); (Y.Y.); (Y.D.)
| | - Hongjun Xie
- State Key Laboratory of Hybrid Rice, Hunan Rice Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (J.D.); (S.C.); (R.Y.); (H.X.); (X.T.); (Y.Y.); (Y.D.)
| | - Xiao Tang
- State Key Laboratory of Hybrid Rice, Hunan Rice Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (J.D.); (S.C.); (R.Y.); (H.X.); (X.T.); (Y.Y.); (Y.D.)
| | - Yaying Yu
- State Key Laboratory of Hybrid Rice, Hunan Rice Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (J.D.); (S.C.); (R.Y.); (H.X.); (X.T.); (Y.Y.); (Y.D.)
| | - Yonghong Duan
- State Key Laboratory of Hybrid Rice, Hunan Rice Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (J.D.); (S.C.); (R.Y.); (H.X.); (X.T.); (Y.Y.); (Y.D.)
| | - Meng Zhang
- Long Ping Branch, College of Biology, Hunan University, Changsha 410125, China; (R.H.); (H.Y.); (M.Z.)
| | - Mingdong Zhu
- Long Ping Branch, College of Biology, Hunan University, Changsha 410125, China; (R.H.); (H.Y.); (M.Z.)
- State Key Laboratory of Hybrid Rice, Hunan Rice Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (J.D.); (S.C.); (R.Y.); (H.X.); (X.T.); (Y.Y.); (Y.D.)
| | - Yinghong Yu
- Long Ping Branch, College of Biology, Hunan University, Changsha 410125, China; (R.H.); (H.Y.); (M.Z.)
- State Key Laboratory of Hybrid Rice, Hunan Rice Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (J.D.); (S.C.); (R.Y.); (H.X.); (X.T.); (Y.Y.); (Y.D.)
| |
Collapse
|
2
|
Cheng J, Arystanbek Kyzy M, Heide A, Khan A, Lehmann M, Schröder L, Nägele T, Pommerrenig B, Keller I, Neuhaus HE. Senescence-Associated Sugar Transporter1 affects developmental master regulators and controls senescence in Arabidopsis. PLANT PHYSIOLOGY 2024; 196:2749-2767. [PMID: 39158083 DOI: 10.1093/plphys/kiae430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/19/2024] [Accepted: 07/26/2024] [Indexed: 08/20/2024]
Abstract
Sugar transport across membranes is critical for plant development and yield. However, an analysis of the role of intracellular sugar transporters in senescence is lacking. Here, we characterized the role of Senescence-Associated Sugar Transporter1 (SAST1) during senescence in Arabidopsis (Arabidopsis thaliana). SAST1 expression was induced in leaves during senescence and after the application of abscisic acid (ABA). SAST1 is a vacuolar protein that pumps glucose out of the cytosol. sast1 mutants exhibited a stay-green phenotype during developmental senescence, after the darkening of single leaves, and after ABA feeding. To explain the stay-green phenotype of sast1 mutants, we analyzed the activity of the glucose-induced master regulator TOR (target of rapamycin), which is responsible for maintaining a high anabolic state. TOR activity was higher in sast1 mutants during senescence compared to wild types, whereas the activity of its antagonist, SNF1-related protein kinase 1 (SnRK1), was reduced in sast1 mutants under senescent conditions. This deregulation of TOR and SnRK1 activities correlated with high cytosolic glucose levels under senescent conditions in sast1 mutants. Although sast1 mutants displayed a functional stay-green phenotype, their seed yield was reduced. These analyses place the activity of SAST1 in the last phase of a leaf's existence in the molecular program required to complete its life cycle.
Collapse
Affiliation(s)
- Jintao Cheng
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, 430070 Wuhan, China
| | - Meerim Arystanbek Kyzy
- Plant Physiology, University of Kaiserslautern-Landau (RPTU), Kaiserslautern D-67653, Germany
| | - Adrian Heide
- Plant Physiology, University of Kaiserslautern-Landau (RPTU), Kaiserslautern D-67653, Germany
| | - Azkia Khan
- Plant Physiology, University of Kaiserslautern-Landau (RPTU), Kaiserslautern D-67653, Germany
| | - Martin Lehmann
- Plant Biochemistry, Faculty of Biology, Ludwig Maximilians-University Munich, Planegg-Martinsried 82152, Germany
| | - Laura Schröder
- Plant Evolutionary Cell Biology, Faculty of Biology, Ludwig Maximilians-University Munich, Planegg-Martinsried 82152, Germany
| | - Thomas Nägele
- Plant Evolutionary Cell Biology, Faculty of Biology, Ludwig Maximilians-University Munich, Planegg-Martinsried 82152, Germany
| | - Benjamin Pommerrenig
- Julius Kühn-Institute, Federal Research Centre for Cultivated Plants, Quedlinburg D-06484, Germany
| | - Isabel Keller
- Plant Physiology, University of Kaiserslautern-Landau (RPTU), Kaiserslautern D-67653, Germany
| | - H Ekkehard Neuhaus
- Plant Physiology, University of Kaiserslautern-Landau (RPTU), Kaiserslautern D-67653, Germany
| |
Collapse
|
3
|
Chompa SS, Zuan ATK, Amin AM, Hun TG, Ghazali AHA, Sadeq BM, Akter A, Rahman ME, Rashid HO. Growth and protein response of rice plant with plant growth-promoting rhizobacteria inoculations under salt stress conditions. Int Microbiol 2024; 27:1151-1168. [PMID: 38172302 DOI: 10.1007/s10123-023-00469-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/22/2023] [Accepted: 12/08/2023] [Indexed: 01/05/2024]
Abstract
Soil salinity has been one of the significant barriers to improving rice production and quality. According to reports, Bacillus spp. can be utilized to boost plant development in saline soil, although the molecular mechanisms behind the interaction of microbes towards salt stress are not fully known. Variations in rice plant protein expression in response to salt stress and plant growth-promoting rhizobacteria (PGPR) inoculations were investigated using a proteomic method and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Findings revealed that 54 salt-responsive proteins were identified by mass spectrometry analysis (LC-MS/MS) with the Bacillus spp. interaction, and the proteins were functionally classified as gene ontology. The initial study showed that all proteins were labeled by mass spectrometry analysis (LC-MS/MS) with Bacillus spp. interaction; the proteins were functionally classified into six groups. Approximately 18 identified proteins (up-regulated, 13; down-regulated, 5) were involved in the photosynthetic process. An increase in the expression of eight up-regulated and two down-regulated proteins in protein synthesis known as chaperones, such as the 60 kDa chaperonin, the 70 kDa heat shock protein BIP, and calreticulin, was involved in rice plant stress tolerance. Several proteins involved in protein metabolism and signaling pathways also experienced significant changes in their expression. The results revealed that phytohormones regulated the manifestation of various chaperones and protein abundance and that protein synthesis played a significant role in regulating salt stress. This study also described how chaperones regulate rice salt stress, their different subcellular localizations, and the activity of chaperones.
Collapse
Affiliation(s)
- Sayma Serine Chompa
- Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Ali Tan Kee Zuan
- Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| | - Adibah Mohd Amin
- Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Tan Geok Hun
- Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | | | - Buraq Musa Sadeq
- Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Amaily Akter
- Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Md Ekhlasur Rahman
- Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
- Divisional Laboratory, Soil Resource Development Institute, Krishi Khamar Sarak, Farmgate, Dhaka, 1215, Bangladesh
| | - Harun Or Rashid
- Department of Modern Languages & Communications, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| |
Collapse
|
4
|
Lu Y, Zhang S, Xiang P, Yin Y, Yu C, Hua J, Shi Q, Chen T, Zhou Z, Yu W, Creech DL, Lu Z. Integrated small RNA, transcriptome and physiological approaches provide insight into Taxodium hybrid 'Zhongshanshan' roots in acclimation to prolonged flooding. TREE PHYSIOLOGY 2024; 44:tpae031. [PMID: 38498333 DOI: 10.1093/treephys/tpae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/13/2024] [Indexed: 03/20/2024]
Abstract
Although Taxodium hybrid 'Zhongshanshan' 406 (Taxodium mucronatum Tenore × Taxodium distichum; Taxodium 406) is an extremely flooding-tolerant woody plant, the physiological and molecular mechanisms underlying acclimation of its roots to long-term flooding remain largely unknown. Thus, we exposed saplings of Taxodium 406 to either non-flooding (control) or flooding for 2 months. Flooding resulted in reduced root biomass, which is in line with lower concentrations of citrate, α-ketoglutaric acid, fumaric acid, malic acid and adenosine triphosphate (ATP) in Taxodium 406 roots. Flooding led to elevated activities of pyruvate decarboxylase, alcohol dehydrogenase and lactate dehydrogenase, which is consistent with higher lactate concentration in the roots of Taxodium 406. Flooding brought about stimulated activities of superoxide dismutase and catalase and elevated reduced glutathione (GSH) concentration and GSH/oxidized glutathione, which is in agreement with reduced concentrations of O2- and H2O2 in Taxodium 406 roots. The levels of starch, soluble protein, indole-3-acetic acid, gibberellin A4 and jasmonate were decreased, whereas the concentrations of glucose, total non-structural carbohydrates, most amino acids and 1-aminocyclopropane-1-carboxylate (ACC) were improved in the roots of flooding-treated Taxodium 406. Underlying these changes in growth and physiological characteristics, 12,420 mRNAs and 42 miRNAs were significantly differentially expressed, and 886 miRNA-mRNA pairs were identified in the roots of flooding-exposed Taxodium 406. For instance, 1-aminocyclopropane-1-carboxylate synthase 8 (ACS8) was a target of Th-miR162-3p and 1-aminocyclopropane-1-carboxylate oxidase 4 (ACO4) was a target of Th-miR166i, and the downregulation of Th-miR162-3p and Th-miR166i results in the upregulation of ACS8 and ACO4, probably bringing about higher ACC content in flooding-treated roots. Overall, these results indicate that differentially expressed mRNA and miRNAs are involved in regulating tricarboxylic acid cycle, ATP production, fermentation, and metabolism of carbohydrates, amino acids and phytohormones, as well as reactive oxygen species detoxification of Taxodium 406 roots. These processes play pivotal roles in acclimation to flooding stress. These results will improve our understanding of the molecular and physiological bases underlying woody plant flooding acclimation and provide valuable insights into breeding-flooding tolerant trees.
Collapse
Affiliation(s)
- Yan Lu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, No. 1 Qianhu Houcun, Zhongshanmen Wai, Nanjing 210014, China
- Nanjing Botanical Garden Mem. Sun Yat-Sen, No. 1 Qianhu Houcun, Zhongshanmen Wai, Nanjing 210014, China
| | - Shuqing Zhang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, No. 1 Qianhu Houcun, Zhongshanmen Wai, Nanjing 210014, China
- Nanjing Botanical Garden Mem. Sun Yat-Sen, No. 1 Qianhu Houcun, Zhongshanmen Wai, Nanjing 210014, China
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China
| | - Peng Xiang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, No. 1 Qianhu Houcun, Zhongshanmen Wai, Nanjing 210014, China
- Nanjing Botanical Garden Mem. Sun Yat-Sen, No. 1 Qianhu Houcun, Zhongshanmen Wai, Nanjing 210014, China
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China
| | - Yunlong Yin
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, No. 1 Qianhu Houcun, Zhongshanmen Wai, Nanjing 210014, China
- Nanjing Botanical Garden Mem. Sun Yat-Sen, No. 1 Qianhu Houcun, Zhongshanmen Wai, Nanjing 210014, China
| | - Chaoguang Yu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, No. 1 Qianhu Houcun, Zhongshanmen Wai, Nanjing 210014, China
- Nanjing Botanical Garden Mem. Sun Yat-Sen, No. 1 Qianhu Houcun, Zhongshanmen Wai, Nanjing 210014, China
| | - Jianfeng Hua
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, No. 1 Qianhu Houcun, Zhongshanmen Wai, Nanjing 210014, China
- Nanjing Botanical Garden Mem. Sun Yat-Sen, No. 1 Qianhu Houcun, Zhongshanmen Wai, Nanjing 210014, China
| | - Qin Shi
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, No. 1 Qianhu Houcun, Zhongshanmen Wai, Nanjing 210014, China
- Nanjing Botanical Garden Mem. Sun Yat-Sen, No. 1 Qianhu Houcun, Zhongshanmen Wai, Nanjing 210014, China
| | - Tingting Chen
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, No. 1 Qianhu Houcun, Zhongshanmen Wai, Nanjing 210014, China
- Nanjing Botanical Garden Mem. Sun Yat-Sen, No. 1 Qianhu Houcun, Zhongshanmen Wai, Nanjing 210014, China
| | - Zhidong Zhou
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, No. 1 Qianhu Houcun, Zhongshanmen Wai, Nanjing 210014, China
- Nanjing Botanical Garden Mem. Sun Yat-Sen, No. 1 Qianhu Houcun, Zhongshanmen Wai, Nanjing 210014, China
| | - Wanwen Yu
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China
| | - David L Creech
- Department of Agriculture, Arthur Temple College of Forestry and Agriculture, Stephen F. Austin State University, 1936 North St, Nacogdoches, TX 75962-3000, USA
| | - Zhiguo Lu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, No. 1 Qianhu Houcun, Zhongshanmen Wai, Nanjing 210014, China
- Nanjing Botanical Garden Mem. Sun Yat-Sen, No. 1 Qianhu Houcun, Zhongshanmen Wai, Nanjing 210014, China
| |
Collapse
|
5
|
Mathew IE, Rhein HS, Yang J, Gradogna A, Carpaneto A, Guo Q, Tappero R, Scholz-Starke J, Barkla BJ, Hirschi KD, Punshon T. Sequential removal of cation/H + exchangers reveals their additive role in elemental distribution, calcium depletion and anoxia tolerance. PLANT, CELL & ENVIRONMENT 2024; 47:557-573. [PMID: 37916653 DOI: 10.1111/pce.14756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/21/2023] [Accepted: 10/18/2023] [Indexed: 11/03/2023]
Abstract
Multiple Arabidopsis H+ /Cation exchangers (CAXs) participate in high-capacity transport into the vacuole. Previous studies have analysed single and double mutants that marginally reduced transport; however, assessing phenotypes caused by transport loss has proven enigmatic. Here, we generated quadruple mutants (cax1-4: qKO) that exhibited growth inhibition, an 85% reduction in tonoplast-localised H+ /Ca transport, and enhanced tolerance to anoxic conditions compared to CAX1 mutants. Leveraging inductively coupled plasma mass spectrometry (ICP-MS) and synchrotron X-ray fluorescence (SXRF), we demonstrate CAX transporters work together to regulate leaf elemental content: ICP-MS analysis showed that the elemental concentrations in leaves strongly correlated with the number of CAX mutations; SXRF imaging showed changes in element partitioning not present in single CAX mutants and qKO had a 40% reduction in calcium (Ca) abundance. Reduced endogenous Ca may promote anoxia tolerance; wild-type plants grown in Ca-limited conditions were anoxia tolerant. Sequential reduction of CAXs increased mRNA expression and protein abundance changes associated with reactive oxygen species and stress signalling pathways. Multiple CAXs participate in postanoxia recovery as their concerted removal heightened changes in postanoxia Ca signalling. This work showcases the integrated and diverse function of H+ /Cation transporters and demonstrates the ability to improve anoxia tolerance through diminishing endogenous Ca levels.
Collapse
Affiliation(s)
- Iny Elizebeth Mathew
- Pediatrics-Nutrition, Children's Nutrition Research, Baylor College of Medicine, Houston, Texas, USA
| | - Hormat Shadgou Rhein
- Pediatrics-Nutrition, Children's Nutrition Research, Baylor College of Medicine, Houston, Texas, USA
| | - Jian Yang
- Pediatrics-Nutrition, Children's Nutrition Research, Baylor College of Medicine, Houston, Texas, USA
| | - Antonella Gradogna
- Institute of Biophysics, Consiglio Nazionale delle Ricerche, Genova, Italy
| | - Armando Carpaneto
- Institute of Biophysics, Consiglio Nazionale delle Ricerche, Genova, Italy
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genoa, Genova, Italy
| | - Qi Guo
- Faculty of Science and Engineering, Southern Cross University, Lismore, New South Wales, Australia
| | - Ryan Tappero
- Brookhaven National Laboratory, Photon Sciences Department, Upton, New York, USA
| | | | - Bronwyn J Barkla
- Faculty of Science and Engineering, Southern Cross University, Lismore, New South Wales, Australia
| | - Kendal D Hirschi
- Pediatrics-Nutrition, Children's Nutrition Research, Baylor College of Medicine, Houston, Texas, USA
| | - Tracy Punshon
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, USA
| |
Collapse
|
6
|
Li J, Pang Q, Yan X. Unique Features of the m 6A Methylome and Its Response to Salt Stress in the Roots of Sugar Beet ( Beta vulgaris). Int J Mol Sci 2023; 24:11659. [PMID: 37511417 PMCID: PMC10380635 DOI: 10.3390/ijms241411659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/13/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Salt is one of the most important environmental factors in crop growth and development. N6-methyladenosine (m6A) is an epigenetic modification that regulates plant-environment interaction at transcriptional and translational levels. Sugar beet is a salt-tolerant sugar-yielding crop, but how m6A modification affects its response to salt stress remains unknown. In this study, m6A-seq was used to explore the role of m6A modification in response to salt stress in sugar beet (Beta vulgaris). Transcriptome-wide m6A methylation profiles and physiological responses to high salinity were investigated in beet roots. After treatment with 300 mM NaCl, the activities of peroxidase and catalase, the root activity, and the contents of Na+, K+, and Ca2+ in the roots were significantly affected by salt stress. Compared with the control plants, 6904 differentially expressed genes (DEGs) and 566 differentially methylated peaks (DMPs) were identified. Association analysis revealed that 243 DEGs contained DMP, and 80% of these DEGs had expression patterns that were negatively correlated with the extent of m6A modification. Further analysis verified that m6A methylation may regulate the expression of some genes by controlling their mRNA stability. Functional analysis revealed that m6A modifications primarily affect the expression of genes involved in energy metabolism, transport, signal transduction, transcription factors, and cell wall organization. This study provides evidence that a post-transcriptional regulatory mechanism mediates gene expression during salt stress by affecting the stability of mRNA in the root.
Collapse
Affiliation(s)
- Junliang Li
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Institute for Eco-Environmental Research of Sanyang Wetland, College of Life and Environmental Science, Wenzhou University, Zhong-Xin Street, Wenzhou 325035, China
- Post-Doctoral Research Stations, Northeast Forestry University, Harbin 150040, China
| | - Qiuying Pang
- Post-Doctoral Research Stations, Northeast Forestry University, Harbin 150040, China
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Xiufeng Yan
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Institute for Eco-Environmental Research of Sanyang Wetland, College of Life and Environmental Science, Wenzhou University, Zhong-Xin Street, Wenzhou 325035, China
| |
Collapse
|
7
|
Structural and Functional Diversity of Two ATP-Driven Plant Proton Pumps. Int J Mol Sci 2023; 24:ijms24054512. [PMID: 36901943 PMCID: PMC10003446 DOI: 10.3390/ijms24054512] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/09/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Two ATP-dependent proton pumps function in plant cells. Plasma membrane H+-ATPase (PM H+-ATPase) transfers protons from the cytoplasm to the apoplast, while vacuolar H+-ATPase (V-ATPase), located in tonoplasts and other endomembranes, is responsible for proton pumping into the organelle lumen. Both enzymes belong to two different families of proteins and, therefore, differ significantly in their structure and mechanism of action. The plasma membrane H+-ATPase is a member of the P-ATPases that undergo conformational changes, associated with two distinct E1 and E2 states, and autophosphorylation during the catalytic cycle. The vacuolar H+-ATPase represents rotary enzymes functioning as a molecular motor. The plant V-ATPase consists of thirteen different subunits organized into two subcomplexes, the peripheral V1 and the membrane-embedded V0, in which the stator and rotor parts have been distinguished. In contrast, the plant plasma membrane proton pump is a functional single polypeptide chain. However, when the enzyme is active, it transforms into a large twelve-protein complex of six H+-ATPase molecules and six 14-3-3 proteins. Despite these differences, both proton pumps can be regulated by the same mechanisms (such as reversible phosphorylation) and, in some processes, such as cytosolic pH regulation, may act in a coordinated way.
Collapse
|
8
|
Yang J, Mathew IE, Rhein H, Barker R, Guo Q, Brunello L, Loreti E, Barkla BJ, Gilroy S, Perata P, Hirschi KD. The vacuolar H+/Ca transporter CAX1 participates in submergence and anoxia stress responses. PLANT PHYSIOLOGY 2022; 190:2617-2636. [PMID: 35972350 PMCID: PMC9706465 DOI: 10.1093/plphys/kiac375] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/17/2022] [Indexed: 05/04/2023]
Abstract
A plant's oxygen supply can vary from normal (normoxia) to total depletion (anoxia). Tolerance to anoxia is relevant to wetland species, rice (Oryza sativa) cultivation, and submergence tolerance of crops. Decoding and transmitting calcium (Ca) signals may be an important component to anoxia tolerance; however, the contribution of intracellular Ca transporters to this process is poorly understood. Four functional cation/proton exchangers (CAX1-4) in Arabidopsis (Arabidopsis thaliana) help regulate Ca homeostasis around the vacuole. Our results demonstrate that cax1 mutants are more tolerant to both anoxic conditions and submergence. Using phenotypic measurements, RNA-sequencing, and proteomic approaches, we identified cax1-mediated anoxia changes that phenocopy changes present in anoxia-tolerant crops: altered metabolic processes, diminished reactive oxygen species production post anoxia, and altered hormone signaling. Comparing wild-type and cax1 expressing genetically encoded Ca indicators demonstrated altered cytosolic Ca signals in cax1 during reoxygenation. Anoxia-induced Ca signals around the plant vacuole are involved in the control of numerous signaling events related to adaptation to low oxygen stress. This work suggests that cax1 anoxia response pathway could be engineered to circumvent the adverse effects of flooding that impair production agriculture.
Collapse
Affiliation(s)
- Jian Yang
- Pediatrics-Nutrition, Children’s Nutrition Research, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Iny Elizebeth Mathew
- Pediatrics-Nutrition, Children’s Nutrition Research, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Hormat Rhein
- Pediatrics-Nutrition, Children’s Nutrition Research, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Richard Barker
- Department of Botany, Birge Hall, University of Wisconsin, Wisconsin, USA
| | - Qi Guo
- Southern Cross Plant Science, Southern Cross University, Lismore, New South Wales, Australia
| | - Luca Brunello
- Plant Lab, Institute of Life Sciences, Scuola Superiore Sant'Anna, San Giuliano Terme, Pisa, Italy
| | - Elena Loreti
- Institute of Agricultural Biology and Biotechnology, National Research Council, 56124 Pisa, Italy
| | - Bronwyn J Barkla
- Southern Cross Plant Science, Southern Cross University, Lismore, New South Wales, Australia
| | - Simon Gilroy
- Department of Botany, Birge Hall, University of Wisconsin, Wisconsin, USA
| | - Pierdomenico Perata
- Plant Lab, Institute of Life Sciences, Scuola Superiore Sant'Anna, San Giuliano Terme, Pisa, Italy
| | - Kendal D Hirschi
- Pediatrics-Nutrition, Children’s Nutrition Research, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
9
|
Shen S, Li N, Wang Y, Zhou R, Sun P, Lin H, Chen W, Yu T, Liu Z, Wang Z, Tan X, Zhu C, Feng S, Zhang Y, Song X. High-quality ice plant reference genome analysis provides insights into genome evolution and allows exploration of genes involved in the transition from C3 to CAM pathways. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:2107-2122. [PMID: 35838009 PMCID: PMC9616530 DOI: 10.1111/pbi.13892] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/19/2022] [Accepted: 07/10/2022] [Indexed: 06/15/2023]
Abstract
Ice plant (Mesembryanthemum crystallinum), a member of the Aizoaceae family, is a typical halophyte crop and a model plant for studying the mechanism of transition from C3 photosynthesis to crassulacean acid metabolism (CAM). Here, we report a high-quality chromosome-level ice plant genome sequence. This 98.05% genome sequence is anchored to nine chromosomes, with a total length of 377.97 Mb and an N50 scaffold of 40.45 Mb. Almost half of the genome (48.04%) is composed of repetitive sequences, and 24 234 genes have been annotated. Subsequent to the ancient whole-genome triplication (WGT) that occurred in eudicots, there has been no recent whole-genome duplication (WGD) or WGT in ice plants. However, we detected a novel WGT event that occurred in the same order in Simmondsia chinensis, which was previously overlooked. Our findings revealed that ice plants have undergone chromosome rearrangements and gene removal during evolution. Combined with transcriptome and comparative genomic data and expression verification, we identified several key genes involved in the CAM pathway and constructed a comprehensive network. As the first genome of the Aizoaceae family to be released, this report will provide a rich data resource for comparative and functional genomic studies of Aizoaceae, especially for studies on salt tolerance and C3-to-CAM transitions to improve crop yield and resistance.
Collapse
Affiliation(s)
- Shaoqin Shen
- College of Life Sciences/Center for Genomics and Bio‐computingNorth China University of Science and TechnologyTangshanHebeiChina
| | - Nan Li
- College of Life Sciences/Center for Genomics and Bio‐computingNorth China University of Science and TechnologyTangshanHebeiChina
| | - Yujie Wang
- College of Life Sciences/Center for Genomics and Bio‐computingNorth China University of Science and TechnologyTangshanHebeiChina
| | - Rong Zhou
- Department of Food ScienceAarhus UniversityAarhusDenmark
| | - Pengchuan Sun
- Key Laboratory for Bio‐Resource and Eco‐Environment of Ministry of Education, College of Life SciencesSichuan UniversityChengduChina
| | - Hao Lin
- School of Life Science and Technology and Center for Informational BiologyUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Wei Chen
- College of Life Sciences/Center for Genomics and Bio‐computingNorth China University of Science and TechnologyTangshanHebeiChina
- Innovative Institute of Chinese Medicine and PharmacyChengdu University of Traditional Chinese MedicineChengduChina
| | - Tong Yu
- College of Life Sciences/Center for Genomics and Bio‐computingNorth China University of Science and TechnologyTangshanHebeiChina
| | - Zhuo Liu
- College of Life Sciences/Center for Genomics and Bio‐computingNorth China University of Science and TechnologyTangshanHebeiChina
| | - Zhiyuan Wang
- College of Life Sciences/Center for Genomics and Bio‐computingNorth China University of Science and TechnologyTangshanHebeiChina
| | - Xiao Tan
- College of Life Sciences/Center for Genomics and Bio‐computingNorth China University of Science and TechnologyTangshanHebeiChina
| | - Changping Zhu
- College of Life Sciences/Center for Genomics and Bio‐computingNorth China University of Science and TechnologyTangshanHebeiChina
| | - Shuyan Feng
- College of Life Sciences/Center for Genomics and Bio‐computingNorth China University of Science and TechnologyTangshanHebeiChina
| | - Yu Zhang
- College of Life Sciences/Center for Genomics and Bio‐computingNorth China University of Science and TechnologyTangshanHebeiChina
| | - Xiaoming Song
- College of Life Sciences/Center for Genomics and Bio‐computingNorth China University of Science and TechnologyTangshanHebeiChina
- School of Life Science and Technology and Center for Informational BiologyUniversity of Electronic Science and Technology of ChinaChengduChina
- Food Science and Technology DepartmentUniversity of Nebraska‐LincolnLincolnNebraskaUSA
| |
Collapse
|
10
|
Sevilla E, Andreu P, Fillat MF, Peleato ML, Marín JA, Arbeloa A. Identification of Early Salt-Stress-Responsive Proteins in In Vitro Prunus Cultured Excised Roots. PLANTS 2022; 11:plants11162101. [PMID: 36015404 PMCID: PMC9416420 DOI: 10.3390/plants11162101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 11/17/2022]
Abstract
Fruit-tree rootstock selection is a challenge under a scenario of growing environmental stresses in which the soil and climate are greatly affected. Salinization is an increasing global process that severely affects soil fertility. The selection of rootstocks with the ability to tolerate salt stress is essential. Excised root cultures may be an excellent experimental approach to study stress physiology and a predictive tool to assess possible tolerance. In this study, we show how protein changes in response to salt stress evaluated in excised root cultures of Prunus cerasus (moderate salt-sensitive cultivar) could be representative of these changes in the roots of whole plants. The 2D electrophoresis of root extracts and subsequent spot identification by MALDI-TOF/TOF-MS show 16 relevant proteins differentially expressed in roots as a response to 60 mM NaCl. Cytoplasmic isozyme fructose 1,6-bisphosphate aldolase shows relevant changes in its relative presence of isoforms as a response to saline stress, while the total level of enzymes remains similar. Ferredoxin-NADP+ reductase increases as a response to salinity, even though the measured activity is not significantly different. The observed changes are congruent with previous proteomic studies on the roots of whole plants that are involved in protection mechanisms against salt stress.
Collapse
Affiliation(s)
- Emma Sevilla
- Department of Biochemistry, Molecular Biology, Institute of Biocomputation, Physics of Complex Systems, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Pilar Andreu
- Pomology Department, Estación Experimental de Aula Dei CSIC, Av. Montañana 1005, 50059 Zaragoza, Spain
| | - María F. Fillat
- Department of Biochemistry, Molecular Biology, Institute of Biocomputation, Physics of Complex Systems, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - M. Luisa Peleato
- Department of Biochemistry, Molecular Biology, Institute of Biocomputation, Physics of Complex Systems, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Juan A. Marín
- Pomology Department, Estación Experimental de Aula Dei CSIC, Av. Montañana 1005, 50059 Zaragoza, Spain
| | - Arancha Arbeloa
- Pomology Department, Estación Experimental de Aula Dei CSIC, Av. Montañana 1005, 50059 Zaragoza, Spain
- Correspondence:
| |
Collapse
|
11
|
Zhao L, Zhu Y, Wang M, Han Y, Xu J, Feng W, Zheng X. Enolase, a cadmium resistance related protein from hyperaccumulator plant Phytolacca americana, increase the tolerance of Escherichia coli to cadmium stress. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2022; 25:562-571. [PMID: 35802034 DOI: 10.1080/15226514.2022.2092064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Phytolacca americana is a Cd hyperaccumulator plant that accumulates significant amounts of Cd in leaves, making it a valuable phytoremediation plant species. Our previous research found enolase (ENO) may play an important part in P. americana to cope with Cd stress. As a multifunctional enzyme, ENO was involved not only in glycolysis but also in the response of plants to various environmental stresses. However, there are few studies on the function of PaENO (P. americana enolase) in coping with Cd stress. In this study, the PaENO gene was isolated from P. americana, and the expression level of PaENO gene significantly increased after Cd treatment. The enzymatic activity analysis showed PaENO had typical ENO activity, and the 42-position serine was essential to the enzymatic activity of PaENO. The Cd resistance assay indicated the expression of PaENO remarkably enhanced the resistance of E. coli to Cd, which was achieved by reducing the Cd content in E. coli. Moreover, both the expression of inactive PaENO and PaMBP-1 (alternative translation product of PaENO) can improve the tolerance of E. coli to Cd. The results indicated PaENO may be alternatively translated into the transcription factor PaMBP-1 to participate in the response of P. americana to Cd stress.
Collapse
Affiliation(s)
- Le Zhao
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan and Education Ministry of P.R. China, Zhengzhou, China
| | - Yunhao Zhu
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan and Education Ministry of P.R. China, Zhengzhou, China
| | - Min Wang
- Beijing Key Laboratory of Plant Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, China
| | - Yongguang Han
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Jiao Xu
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Weisheng Feng
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan and Education Ministry of P.R. China, Zhengzhou, China
| | - Xiaoke Zheng
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan and Education Ministry of P.R. China, Zhengzhou, China
| |
Collapse
|
12
|
Guo Q, Liu L, Rupasinghe TWT, Roessner U, Barkla BJ. Salt stress alters membrane lipid content and lipid biosynthesis pathways in the plasma membrane and tonoplast. PLANT PHYSIOLOGY 2022; 189:805-826. [PMID: 35289902 PMCID: PMC9157097 DOI: 10.1093/plphys/kiac123] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 02/22/2022] [Indexed: 05/25/2023]
Abstract
Plant cell membranes are the sites of sensing and initiation of rapid responses to changing environmental factors including salinity stress. Understanding the mechanisms involved in membrane remodeling is important for studying salt tolerance in plants. This task remains challenging in complex tissue due to suboptimal subcellular membrane isolation techniques. Here, we capitalized on the use of a surface charge-based separation method, free flow electrophoresis, to isolate the tonoplast (TP) and plasma membrane (PM) from leaf tissue of the halophyte ice plant (Mesembryanthemum crystallinum L.). Results demonstrated a membrane-specific lipidomic remodeling in this plant under salt conditions, including an increased proportion of bilayer forming lipid phosphatidylcholine in the TP and an increase in nonbilayer forming and negatively charged lipids (phosphatidylethanolamine and phosphatidylserine) in the PM. Quantitative proteomics showed salt-induced changes in proteins involved in fatty acid synthesis and desaturation, glycerolipid, and sterol synthesis, as well as proteins involved in lipid signaling, binding, and trafficking. These results reveal an essential plant mechanism for membrane homeostasis wherein lipidome remodeling in response to salt stress contributes to maintaining the physiological function of individual subcellular compartments.
Collapse
Affiliation(s)
- Qi Guo
- Faculty of Science and Engineering, Southern Cross Plant Science, Southern Cross University, Lismore, NSW 2480, Australia
| | - Lei Liu
- Faculty of Science and Engineering, Southern Cross Plant Science, Southern Cross University, Lismore, NSW 2480, Australia
| | - Thusitha W T Rupasinghe
- School of BioSciences, The University of Melbourne, Parkville 3010, Australia
- Sciex, Mulgrave, VIC 3170, Australia
| | - Ute Roessner
- School of BioSciences, The University of Melbourne, Parkville 3010, Australia
| | - Bronwyn J Barkla
- Faculty of Science and Engineering, Southern Cross Plant Science, Southern Cross University, Lismore, NSW 2480, Australia
| |
Collapse
|
13
|
Khan MN, Ahmed I, Ud Din I, Noureldeen A, Darwish H, Khan M. Proteomic insight into soybean response to flooding stress reveals changes in energy metabolism and cell wall modifications. PLoS One 2022; 17:e0264453. [PMID: 35511817 PMCID: PMC9070951 DOI: 10.1371/journal.pone.0264453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 02/08/2022] [Indexed: 11/19/2022] Open
Abstract
Soybean is a legume crop enriched with proteins and oil. It is frequently exposed to anthropogenic and natural flooding that limits its growth and yield. Current study applied gel-free proteomic techniques to unravel soybean response mechanism to flooding stress. Two-days-old soybeans were flooded for 4 days continuously and root samples were collected at days 2 to 6 for proteomic and enzymatic analyses. Age-matched untreated soybeans were collected as control. After protein extraction, purification and tryptic digestion, the peptides were analyzed on nano-liquid chromatography-mass spectrometry. A total of 539 and 472 proteins with matched peptides 2 or more were identified in control and flooded seedlings, respectively. Among these 364 proteins were commonly identified in both control and flooded soybeans. Fourty-two protein's abundances were changed 4-fold after 2-days of flooding stress as compared to starting point. The cluster analysis showed that highly increased proteins included cupin family proteins, enolase, pectin methylesterase inhibitor, glyoxalase II, alcohol dehydrogenase and aldolase. The enzyme assay of enolase and pectin methylesterase inhibitor confirmed protein abundance changes. These findings suggest that soybean adopts the less energy consuming strategies and brings biochemical and structural changes in the cell wall to effectively respond to flooding stress and for the survival.
Collapse
Affiliation(s)
- Mudassar Nawaz Khan
- Institute of Biotechnology & Genetic Engineering, The University of Agriculture Peshawar, Peshawar, Pakistan
- Department of Biotechnology & Genetic Engineering, Hazara University Mansehra, Mansehra, Pakistan
| | - Iftikhar Ahmed
- Bio Resources Conservation Institute, National Agricultural Research Center Islamabad, Islamabad, Pakistan
| | - Israr Ud Din
- Institute of Biotechnology & Genetic Engineering, The University of Agriculture Peshawar, Peshawar, Pakistan
| | - Ahmed Noureldeen
- Department of Biology, College of Sciences, Taif University, Taif, Saudi Arabia
| | - Hadeer Darwish
- Department of Biotechnology, College of Sciences, Taif University, Taif, Saudi Arabia
| | - Majid Khan
- Institute of Biotechnology & Genetic Engineering, The University of Agriculture Peshawar, Peshawar, Pakistan
| |
Collapse
|
14
|
Yang L, Wang Z, Zhang A, Bhawal R, Li C, Zhang S, Cheng L, Hua J. Reduction of the canonical function of a glycolytic enzyme enolase triggers immune responses that further affect metabolism and growth in Arabidopsis. THE PLANT CELL 2022; 34:1745-1767. [PMID: 34791448 PMCID: PMC9048932 DOI: 10.1093/plcell/koab283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/07/2021] [Indexed: 05/14/2023]
Abstract
Primary metabolism provides energy for growth and development as well as secondary metabolites for diverse environmental responses. Here we describe an unexpected consequence of disruption of a glycolytic enzyme enolase named LOW EXPRESSION OF OSMOTICALLY RESPONSIVE GENE 2 (LOS2) in causing constitutive defense responses or autoimmunity in Arabidopsis thaliana. The autoimmunity in the los2 mutant is accompanied by a higher expression of about one-quarter of intracellular immune receptor nucleotide-binding leucine-rich repeat (NLR) genes in the genome and is partially dependent on one of these NLR genes. The LOS2 gene was hypothesized to produce an alternatively translated protein c-Myc Binding Protein (MBP-1) that functions as a transcriptional repressor. Complementation tests show that LOS2 executes its function in growth and immunity regulation through the canonical enolase activity but not the production of MBP-1. In addition, the autoimmunity in the los2 mutants leads to a higher accumulation of sugars and organic acids and a depletion of glycolytic metabolites. These findings indicate that LOS2 does not exert its function in immune responses through an alternatively translated protein MBP-1. Rather, they show that a perturbation of glycolysis from the reduction of the enolase activity results in activation of NLR-involved immune responses which further influences primary metabolism and plant growth, highlighting the complex interaction between primary metabolism and plant immunity.
Collapse
Affiliation(s)
- Leiyun Yang
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853, USA
| | - Zhixue Wang
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853, USA
| | | | - Ruchika Bhawal
- Proteomics and Metabolomics Facility, Cornell University, New York 14853, USA
| | | | - Sheng Zhang
- Proteomics and Metabolomics Facility, Cornell University, New York 14853, USA
| | - Lailiang Cheng
- Horticulture Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853, USA
| | | |
Collapse
|
15
|
Mansour MMF, Hassan FAS. How salt stress-responsive proteins regulate plant adaptation to saline conditions. PLANT MOLECULAR BIOLOGY 2022; 108:175-224. [PMID: 34964081 DOI: 10.1007/s11103-021-01232-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 12/06/2021] [Indexed: 05/20/2023]
Abstract
An overview is presented of recent advances in our knowledge of candidate proteins that regulate various physiological and biochemical processes underpinning plant adaptation to saline conditions. Salt stress is one of the environmental constraints that restrict plant distribution, growth and yield in many parts of the world. Increased world population surely elevates food demands all over the globe, which anticipates to add a great challenge to humanity. These concerns have necessitated the scientists to understand and unmask the puzzle of plant salt tolerance mechanisms in order to utilize various strategies to develop salt tolerant crop plants. Salt tolerance is a complex trait involving alterations in physiological, biochemical, and molecular processes. These alterations are a result of genomic and proteomic complement readjustments that lead to tolerance mechanisms. Proteomics is a crucial molecular tool that indicates proteins expressed by the genome, and also identifies the functions of proteins accumulated in response to salt stress. Recently, proteomic studies have shed more light on a range of promising candidate proteins that regulate various processes rendering salt tolerance to plants. These proteins have been shown to be involved in photosynthesis and energy metabolism, ion homeostasis, gene transcription and protein biosynthesis, compatible solute production, hormone modulation, cell wall structure modification, cellular detoxification, membrane stabilization, and signal transduction. These candidate salt responsive proteins can be therefore used in biotechnological approaches to improve tolerance of crop plants to salt conditions. In this review, we provided comprehensive updated information on the proteomic data of plants/genotypes contrasting in salt tolerance in response to salt stress. The roles of salt responsive proteins that are potential determinants for plant salt adaptation are discussed. The relationship between changes in proteome composition and abundance, and alterations observed in physiological and biochemical features associated with salt tolerance are also addressed.
Collapse
Affiliation(s)
| | - Fahmy A S Hassan
- Department of Horticulture, Faculty of Agriculture, Tanta University, Tanta, Egypt
| |
Collapse
|
16
|
Jha S, Maity S, Singh J, Chouhan C, Tak N, Ambatipudi K. Integrated physiological and comparative proteomics analysis of contrasting genotypes of pearl millet reveals underlying salt-responsive mechanisms. PHYSIOLOGIA PLANTARUM 2022; 174:e13605. [PMID: 34837239 DOI: 10.1111/ppl.13605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 11/11/2021] [Indexed: 05/20/2023]
Abstract
Salinity stress poses a significant risk to plant development and agricultural yield. Therefore, elucidation of stress-response mechanisms has become essential to identify salt-tolerance genes in plants. In the present study, two genotypes of pearl millet (Pennisetum glaucum L.) with contrasting tolerance for salinity exhibited differential morpho-physiological and proteomic responses under 150 mM NaCl. The genotype IC 325825 was shown to withstand the stress better than IP 17224. The salt-tolerance potential of IC 325825 was associated with its ability to maintain intracellular osmotic, ionic, and redox homeostasis and membrane integrity under stress. The IC 325825 genotype exhibited a higher abundance of C4 photosynthesis enzymes, efficient enzymatic and non-enzymatic antioxidant system, and lower Na+ /K+ ratio compared with IP 17224. Comparative proteomics analysis revealed greater metabolic perturbation in IP 17224 under salinity, in contrast to IC 325825 that harbored pro-active stress-responsive machinery, allowing its survival and better adaptability under salt stress. The differentially abundant proteins were in silico characterized for their functions, subcellular-localization, associated pathways, and protein-protein interaction. These proteins were mainly involved in photosynthesis/response to light stimulus, carbohydrate and energy metabolism, and stress responses. Proteomics data were validated through expression profiling of the selected genes, revealing a poor correlation between protein abundance and their relative transcript levels. This study has provided novel insights into salt adaptive mechanisms in P. glaucum, demonstrating the power of proteomics-based approaches. The critical proteins identified in the present study could be further explored as potential objects for engineering stress tolerance in salt-sensitive major crops.
Collapse
Affiliation(s)
- Shweta Jha
- Plant Functional Genomics Lab, Biotechnology Unit, Department of Botany (UGC-Centre of Advanced Study), Jai Narain Vyas University, Jodhpur, Rajasthan, India
| | - Sudipa Maity
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Jawahar Singh
- Plant Functional Genomics Lab, Biotechnology Unit, Department of Botany (UGC-Centre of Advanced Study), Jai Narain Vyas University, Jodhpur, Rajasthan, India
| | - Chaya Chouhan
- Plant Functional Genomics Lab, Biotechnology Unit, Department of Botany (UGC-Centre of Advanced Study), Jai Narain Vyas University, Jodhpur, Rajasthan, India
| | - Nisha Tak
- BNF and Microbial Genomics Lab, Department of Botany (UGC-Centre of Advanced Study), Jai Narain Vyas University, Jodhpur, Rajasthan, India
| | - Kiran Ambatipudi
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| |
Collapse
|
17
|
Athar HUR, Zulfiqar F, Moosa A, Ashraf M, Zafar ZU, Zhang L, Ahmed N, Kalaji HM, Nafees M, Hossain MA, Islam MS, El Sabagh A, Siddique KHM. Salt stress proteins in plants: An overview. FRONTIERS IN PLANT SCIENCE 2022; 13:999058. [PMID: 36589054 PMCID: PMC9800898 DOI: 10.3389/fpls.2022.999058] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 11/23/2022] [Indexed: 05/04/2023]
Abstract
Salinity stress is considered the most devastating abiotic stress for crop productivity. Accumulating different types of soluble proteins has evolved as a vital strategy that plays a central regulatory role in the growth and development of plants subjected to salt stress. In the last two decades, efforts have been undertaken to critically examine the genome structure and functions of the transcriptome in plants subjected to salinity stress. Although genomics and transcriptomics studies indicate physiological and biochemical alterations in plants, it do not reflect changes in the amount and type of proteins corresponding to gene expression at the transcriptome level. In addition, proteins are a more reliable determinant of salt tolerance than simple gene expression as they play major roles in shaping physiological traits in salt-tolerant phenotypes. However, little information is available on salt stress-responsive proteins and their possible modes of action in conferring salinity stress tolerance. In addition, a complete proteome profile under normal or stress conditions has not been established yet for any model plant species. Similarly, a complete set of low abundant and key stress regulatory proteins in plants has not been identified. Furthermore, insufficient information on post-translational modifications in salt stress regulatory proteins is available. Therefore, in recent past, studies focused on exploring changes in protein expression under salt stress, which will complement genomic, transcriptomic, and physiological studies in understanding mechanism of salt tolerance in plants. This review focused on recent studies on proteome profiling in plants subjected to salinity stress, and provide synthesis of updated literature about how salinity regulates various salt stress proteins involved in the plant salt tolerance mechanism. This review also highlights the recent reports on regulation of salt stress proteins using transgenic approaches with enhanced salt stress tolerance in crops.
Collapse
Affiliation(s)
- Habib-ur-Rehman Athar
- Institute of Pure and Applied Biology, Bahauddin Zakariya University, Multan, Pakistan
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Faisal Zulfiqar
- Department of Horticultural Sciences, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
- *Correspondence: Faisal Zulfiqar, ; Kadambot H. M. Siddique,
| | - Anam Moosa
- Department of Plant Pathology, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Muhammad Ashraf
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Zafar Ullah Zafar
- Institute of Pure and Applied Biology, Bahauddin Zakariya University, Multan, Pakistan
| | - Lixin Zhang
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Nadeem Ahmed
- College of Life Sciences, Northwest A&F University, Yangling, China
- Department of Botany, Mohy-ud-Din Islamic University, Nerian Sharif, Pakistan
| | - Hazem M. Kalaji
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences SGGW, Warsaw, Poland
| | - Muhammad Nafees
- Department of Horticultural Sciences, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Mohammad Anwar Hossain
- Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Mohammad Sohidul Islam
- Department of Agronomy, Hajee Mohammad Danesh Science and Technology University, Dinajpur, Bangladesh
| | - Ayman El Sabagh
- Faculty of Agriculture, Department of Field Crops, Siirt University, Siirt, Türkiye
- Agronomy Department, Faculty of Agriculture, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Kadambot H. M. Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Petrth WA, Australia
- *Correspondence: Faisal Zulfiqar, ; Kadambot H. M. Siddique,
| |
Collapse
|
18
|
Ding G, Yang Q, Ruan X, Si T, Yuan B, Zheng W, Xie Q, Souleymane OA, Wang X. Proteomics analysis of the effects for different salt ions in leaves of true halophyte Sesuvium portulacastrum. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 170:234-248. [PMID: 34920320 DOI: 10.1016/j.plaphy.2021.12.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 05/25/2023]
Abstract
Sesuvium portulacastrum is a true halophyte and shows an optimal development under moderate salinity with large amounts of salt ions in its leaves. However, the specific proteins in response to salt ions are remained unknown. In this study, comparative physiological and proteomic analyses of different leaves subject to NaCl, KCl, NaNO3 and KNO3 were performed. Chlorophyll content was decreased under the above four kinds of salt treatments. Starch and soluble sugar contents changed differently under different salt treatments. A total of 53 differentially accumulated proteins (DAPs) were identified by mass spectrometry. Among them, 13, 25, 26 and 25 DAPs were identified after exposure to KCl, NaCl, KNO3, and NaNO3, respectively. These DAPs belong to 47 unique genes, and 37 of them are involved in protein-protein interactions. These DAPs displayed different expression patterns after treating with different salt ions. Functional annotation revealed they are mainly involved in photosynthesis, carbohydrate and energy metabolism, lipid metabolism, and biosynthesis of secondary metabolites. Genes and proteins showed different expression profiles under different salt treatments. Enzyme activity analysis indicated P-ATPase was induced by KCl, NaCl and NaNO3, V-ATPase was induced by KCl and NaCl, whereas V-PPase activity was significantly increased after application of KNO3, but sharply inhibited by NaCl. These results might deepen our understanding of responsive mechanisms in the leaves of S. portulacastrum upon different salt ions.
Collapse
Affiliation(s)
- Guohua Ding
- College of Life Sciences, Ministry of Education Key Laboratory for Ecology of Tropical Islands, Hainan Normal University, Haikou, Hainan, 571158, China
| | - Qian Yang
- South Subtropical Crop Research Institute, China Academy of Tropical Agricultural Sciences, China
| | - Xueyu Ruan
- College of Life Sciences, Ministry of Education Key Laboratory for Ecology of Tropical Islands, Hainan Normal University, Haikou, Hainan, 571158, China
| | - Tingting Si
- College of Life Sciences, Ministry of Education Key Laboratory for Ecology of Tropical Islands, Hainan Normal University, Haikou, Hainan, 571158, China
| | - Boxuan Yuan
- College of Life Sciences, Ministry of Education Key Laboratory for Ecology of Tropical Islands, Hainan Normal University, Haikou, Hainan, 571158, China; Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Wenwei Zheng
- College of Life Sciences, Ministry of Education Key Laboratory for Ecology of Tropical Islands, Hainan Normal University, Haikou, Hainan, 571158, China
| | - Quanliang Xie
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Ousmane Ahmat Souleymane
- College of Life Sciences, Ministry of Education Key Laboratory for Ecology of Tropical Islands, Hainan Normal University, Haikou, Hainan, 571158, China
| | - Xuchu Wang
- College of Life Sciences, Ministry of Education Key Laboratory for Ecology of Tropical Islands, Hainan Normal University, Haikou, Hainan, 571158, China.
| |
Collapse
|
19
|
Kosová K, Vítámvás P, Prášil IT, Klíma M, Renaut J. Plant Proteoforms Under Environmental Stress: Functional Proteins Arising From a Single Gene. FRONTIERS IN PLANT SCIENCE 2021; 12:793113. [PMID: 34970290 PMCID: PMC8712444 DOI: 10.3389/fpls.2021.793113] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/16/2021] [Indexed: 05/30/2023]
Abstract
Proteins are directly involved in plant phenotypic response to ever changing environmental conditions. The ability to produce multiple mature functional proteins, i.e., proteoforms, from a single gene sequence represents an efficient tool ensuring the diversification of protein biological functions underlying the diversity of plant phenotypic responses to environmental stresses. Basically, two major kinds of proteoforms can be distinguished: protein isoforms, i.e., alterations at protein sequence level arising from posttranscriptional modifications of a single pre-mRNA by alternative splicing or editing, and protein posttranslational modifications (PTMs), i.e., enzymatically catalyzed or spontaneous modifications of certain amino acid residues resulting in altered biological functions (or loss of biological functions, such as in non-functional proteins that raised as a product of spontaneous protein modification by reactive molecular species, RMS). Modulation of protein final sequences resulting in different protein isoforms as well as modulation of chemical properties of key amino acid residues by different PTMs (such as phosphorylation, N- and O-glycosylation, methylation, acylation, S-glutathionylation, ubiquitinylation, sumoylation, and modifications by RMS), thus, represents an efficient means to ensure the flexible modulation of protein biological functions in response to ever changing environmental conditions. The aim of this review is to provide a basic overview of the structural and functional diversity of proteoforms derived from a single gene in the context of plant evolutional adaptations underlying plant responses to the variability of environmental stresses, i.e., adverse cues mobilizing plant adaptive mechanisms to diminish their harmful effects.
Collapse
Affiliation(s)
- Klára Kosová
- Division of Crop Genetics and Plant Breeding, Crop Research Institute, Prague, Czechia
| | - Pavel Vítámvás
- Division of Crop Genetics and Plant Breeding, Crop Research Institute, Prague, Czechia
| | - Ilja Tom Prášil
- Division of Crop Genetics and Plant Breeding, Crop Research Institute, Prague, Czechia
| | - Miroslav Klíma
- Division of Crop Genetics and Plant Breeding, Crop Research Institute, Prague, Czechia
| | - Jenny Renaut
- Biotechnologies and Environmental Analytics Platform (BEAP), Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), Esch-Sur-Alzette, Luxembourg
| |
Collapse
|
20
|
Roy Choudhury A, Choi J, Walitang DI, Trivedi P, Lee Y, Sa T. ACC deaminase and indole acetic acid producing endophytic bacterial co-inoculation improves physiological traits of red pepper (Capsicum annum L.) under salt stress. JOURNAL OF PLANT PHYSIOLOGY 2021; 267:153544. [PMID: 34700019 DOI: 10.1016/j.jplph.2021.153544] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
Salinity induces myriad of physiological and biochemical perturbations in plants and its amelioration can be attained by the use of potential bacterial synthetic communities. The use of microbial consortia in contrast to single bacterial inoculation can additively enhance stress tolerance and productivity of agricultural crops. In this study, co-inoculation of Pseudomonas koreensis S2CB45 and Microbacterium hydrothermale IC37-36 isolated from arbuscular mycorrhizal fungi (AMF) spore and rice seed endosphere, respectively, were used to evaluate the physiological and biochemical effects on red pepper at two salt concentrations (75 mM and 150 mM). Plant growth promoting characteristics particularly 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity, indole acetic acid (IAA) and cytokinin production were higher during co-culturing compared to the individual bacterial culture. The higher ACC deaminase activity had resulted in 20% and 22% decrease in stress ethylene emission compared to the non-inoculated plants at 75 mM and 150 mM salt stress, respectively. The decline in ethylene emission had eventually reduced ROS accumulation, and the co-inoculated plants had also harbored enhanced antioxidant enzyme activities and higher sugar accumulation compared to the other treatments suggesting enhanced tolerance to salinity. Collectively, these results put forward a novel consortium of bacterial strains that can be used for sustainable agricultural practices against salinity.
Collapse
Affiliation(s)
- Aritra Roy Choudhury
- Department of Environmental and Biological Chemistry, Chungbuk National University, Cheongju, Republic of Korea; Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Republic of Korea
| | - Jeongyun Choi
- Department of Environmental and Biological Chemistry, Chungbuk National University, Cheongju, Republic of Korea
| | - Denver I Walitang
- Department of Environmental and Biological Chemistry, Chungbuk National University, Cheongju, Republic of Korea; College of Agriculture, Fisheries and Forestry, Romblon State University, Romblon, Philippines
| | - Pankaj Trivedi
- Microbiome Network and Department of Agricultural Biology, Colorado State University, Fort Collins, CO, USA
| | - Yi Lee
- Department of Industrial Plant Science and Technology, Chungbuk National University, Cheongju, Republic of Korea
| | - Tongmin Sa
- Department of Environmental and Biological Chemistry, Chungbuk National University, Cheongju, Republic of Korea; The Korean Academy of Science and Technology, Seongnam, Republic of Korea.
| |
Collapse
|
21
|
Ríos-Meléndez S, Valadez-Hernández E, Delgadillo C, Luna-Guevara ML, Martínez-Núñez MA, Sánchez-Pérez M, Martínez-Y-Pérez JL, Arroyo-Becerra A, Cárdenas L, Bibbins-Martínez M, Maldonado-Mendoza IE, Villalobos-López MA. Pseudocrossidium replicatum (Taylor) R.H. Zander is a fully desiccation-tolerant moss that expresses an inducible molecular mechanism in response to severe abiotic stress. PLANT MOLECULAR BIOLOGY 2021; 107:387-404. [PMID: 34189708 PMCID: PMC8648698 DOI: 10.1007/s11103-021-01167-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 06/10/2021] [Indexed: 05/04/2023]
Abstract
KEY MESSAGE The moss Pseudocrossidium replicatum is a desiccation-tolerant species that uses an inducible system to withstand severe abiotic stress in both protonemal and gametophore tissues. Desiccation tolerance (DT) is the ability of cells to recover from an air-dried state. Here, the moss Pseudocrossidium replicatum was identified as a fully desiccation-tolerant (FDT) species. Its gametophores rapidly lost more than 90% of their water content when exposed to a low-humidity atmosphere [23% relative humidity (RH)], but abscisic acid (ABA) pretreatment diminished the final water loss after equilibrium was reached. P. replicatum gametophores maintained good maximum photosystem II (PSII) efficiency (Fv/Fm) for up to two hours during slow dehydration; however, ABA pretreatment induced a faster decrease in the Fv/Fm. ABA also induced a faster recovery of the Fv/Fm after rehydration. Protein synthesis inhibitor treatment before dehydration hampered the recovery of the Fv/Fm when the gametophores were rehydrated after desiccation, suggesting the presence of an inducible protective mechanism that is activated in response to abiotic stress. This observation was also supported by accumulation of soluble sugars in gametophores exposed to ABA or NaCl. Exogenous ABA treatment delayed the germination of P. replicatum spores and induced morphological changes in protonemal cells that resembled brachycytes. Transcriptome analyses revealed the presence of an inducible molecular mechanism in P. replicatum protonemata that was activated in response to dehydration. This study is the first RNA-Seq study of the protonemal tissues of an FDT moss. Our results suggest that P. replicatum is an FDT moss equipped with an inducible molecular response that prepares this species for severe abiotic stress and that ABA plays an important role in this response.
Collapse
Affiliation(s)
- Selma Ríos-Meléndez
- Laboratorio de Genómica Funcional y Biotecnología de Plantas, Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional, C.P. 90700, Tepetitla de Lardizábal, Tlaxcala, México
| | - Emmanuel Valadez-Hernández
- Laboratorio de Genómica Funcional y Biotecnología de Plantas, Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional, C.P. 90700, Tepetitla de Lardizábal, Tlaxcala, México
| | - Claudio Delgadillo
- Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Maria L Luna-Guevara
- Facultad de Ingeniería Química, Benemérita Universidad Autónoma de Puebla, C.P. 72000, Puebla, Puebla, México
| | - Mario A Martínez-Núñez
- UMDI-Sisal, Facultad de Ciencias, Universidad Nacional Autónoma de México, C.P. 97302, Mérida, Yucatán, México
| | - Mishael Sánchez-Pérez
- Unidad de Análisis Bioinformáticos, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, C.P. 62210, Cuernavaca, Morelos, México
| | - José L Martínez-Y-Pérez
- Centro de Investigación en Genética y Ambiente, Universidad Autónoma de Tlaxcala, C.P. 90210, Ixtacuixtla, Tlaxcala, México
| | - Analilia Arroyo-Becerra
- Laboratorio de Genómica Funcional y Biotecnología de Plantas, Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional, C.P. 90700, Tepetitla de Lardizábal, Tlaxcala, México
| | - Luis Cárdenas
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, C.P. 62210, Cuernavaca, Morelos, México
| | - Martha Bibbins-Martínez
- Laboratorio de Genómica Funcional y Biotecnología de Plantas, Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional, C.P. 90700, Tepetitla de Lardizábal, Tlaxcala, México
| | - Ignacio E Maldonado-Mendoza
- Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional, Unidad Sinaloa, Instituto Politécnico Nacional, C.P. 81049, Guasave, Sinaloa, México
| | - Miguel Angel Villalobos-López
- Laboratorio de Genómica Funcional y Biotecnología de Plantas, Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional, C.P. 90700, Tepetitla de Lardizábal, Tlaxcala, México.
| |
Collapse
|
22
|
Ma X, Wu Y, Ming H, Liu H, Liu Z, Li H, Zhang G. AtENO2 functions in the development of male gametophytes in Arabidopsis thaliana. JOURNAL OF PLANT PHYSIOLOGY 2021; 263:153417. [PMID: 34102568 DOI: 10.1016/j.jplph.2021.153417] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/05/2021] [Accepted: 04/06/2021] [Indexed: 06/12/2023]
Abstract
Pollen fertility is an important factor affecting the seed setting rate and seed yield of plants. The Arabidopsis thaliana enolase gene ENO2 (AtENO2) can affect the pollen morphology, germination, and pollen tube growth. AtENO2 encodes two proteins AtENO2 and AtMBP-1. To examine the effect of AtENO2 protein on pollen development, the 2nd ATG of the AtENO2 coding sequence for AtMBP-1 was mutated by site-directed mutagenesis, and transgenic plants expressing only AtENO2 but not AtMBP-1 were obtained. Phenotypic analysis indicated that AtENO2 was essential in the pollen development. The mechanisms of AtENO2 on pollen development were analyzed. AtENO2 can affect development of the pollen intine, and the mechanism may be that AtENO2 regulated the methyl esterification of pectin in pollen intine through ARF3 and AtPMEI-pi. The -734 ∼ -573 sequence of AtENO2 promoter is the main transcriptional regulatory region of AtENO2 affecting pollen development. The functional cis-acting element may be GTGANTG10(GTGA), and the trans-acting factors may be KAN, AS2 and ARF3/ETT. Moreover, the deletion of AtENO2 can cause significant difference in the expression of multiple genes related to pollen exine development. These results are useful for further studying the function of AtENO2 and exploring the mechanism of plant pollen development.
Collapse
Affiliation(s)
- Xiaofeng Ma
- Beijing Key Laboratory of Gene Resource and Molecular Development/College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Yu Wu
- Beijing Key Laboratory of Gene Resource and Molecular Development/College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Hainan Ming
- Beijing Key Laboratory of Gene Resource and Molecular Development/College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Huimin Liu
- Beijing Key Laboratory of Gene Resource and Molecular Development/College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Zijin Liu
- Beijing Key Laboratory of Gene Resource and Molecular Development/College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Hongjie Li
- The National Engineering Laboratory of Crop Molecular Breeding/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Genfa Zhang
- Beijing Key Laboratory of Gene Resource and Molecular Development/College of Life Sciences, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
23
|
Carmona-Salazar L, Cahoon RE, Gasca-Pineda J, González-Solís A, Vera-Estrella R, Treviño V, Cahoon EB, Gavilanes-Ruiz M. Plasma and vacuolar membrane sphingolipidomes: composition and insights on the role of main molecular species. PLANT PHYSIOLOGY 2021; 186:624-639. [PMID: 33570616 PMCID: PMC8154057 DOI: 10.1093/plphys/kiab064] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 01/24/2021] [Indexed: 05/04/2023]
Abstract
Lipid structures affect membrane biophysical properties such as thickness, stability, permeability, curvature, fluidity, asymmetry, and interdigitation, contributing to membrane function. Sphingolipids are abundant in plant endomembranes and plasma membranes (PMs) and comprise four classes: ceramides, hydroxyceramides, glucosylceramides, and glycosylinositolphosphoceramides (GIPCs). They constitute an array of chemical structures whose distribution in plant membranes is unknown. With the aim of describing the hydrophobic portion of sphingolipids, 18 preparations from microsomal (MIC), vacuolar (VM), PM, and detergent-resistant membranes (DRM) were isolated from Arabidopsis (Arabidopsis thaliana) leaves. Sphingolipid species, encompassing pairing of long-chain bases and fatty acids, were identified and quantified in these membranes. Sphingolipid concentrations were compared using univariate and multivariate analysis to assess sphingolipid diversity, abundance, and predominance across membranes. The four sphingolipid classes were present at different levels in each membrane: VM was enriched in glucosylceramides, hydroxyceramides, and GIPCs; PM in GIPCs, in agreement with their key role in signal recognition and sensing; and DRM in GIPCs, as reported by their function in nanodomain formation. While a total of 84 sphingolipid species was identified in MIC, VM, PM, and DRM, only 34 were selectively distributed in the four membrane types. Conversely, every membrane contained a different number of predominant species (11 in VM, 6 in PM, and 17 in DRM). This study reveals that MIC, VM, PM, and DRM contain the same set of sphingolipid species but every membrane source contains its own specific assortment based on the proportion of sphingolipid classes and on the predominance of individual species.
Collapse
Affiliation(s)
- Laura Carmona-Salazar
- Dpto. de Bioquímica, Facultad de Química, Conj. E. Universidad Nacional Autónoma de México, UNAM. Cd. Universitaria, Coyoacán. 04510, Cd. de México, México
| | - Rebecca E Cahoon
- Center for Plant Science Innovation & Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, NE 68588–0665, USA
| | - Jaime Gasca-Pineda
- UBIPRO, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, UNAM, 54090, Estado de México, México
| | - Ariadna González-Solís
- Center for Plant Science Innovation & Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, NE 68588–0665, USA
| | - Rosario Vera-Estrella
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, UNAM. Cuernavaca, Morelos, México
| | - Victor Treviño
- Tecnológico de Monterrey, Escuela de Medicina, 64710 Monterrey, Nuevo León, México
| | - Edgar B Cahoon
- Center for Plant Science Innovation & Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, NE 68588–0665, USA
| | - Marina Gavilanes-Ruiz
- Dpto. de Bioquímica, Facultad de Química, Conj. E. Universidad Nacional Autónoma de México, UNAM. Cd. Universitaria, Coyoacán. 04510, Cd. de México, México
- Author for communication:
| |
Collapse
|
24
|
Membrane Profiling by Free Flow Electrophoresis and SWATH-MS to Characterize Subcellular Compartment Proteomes in Mesembryanthemum crystallinum. Int J Mol Sci 2021; 22:ijms22095020. [PMID: 34065142 PMCID: PMC8126025 DOI: 10.3390/ijms22095020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/04/2021] [Accepted: 05/06/2021] [Indexed: 01/11/2023] Open
Abstract
The study of subcellular membrane structure and function facilitates investigations into how biological processes are divided within the cell. However, work in this area has been hampered by the limited techniques available to fractionate the different membranes. Free Flow Electrophoresis (FFE) allows for the fractionation of membranes based on their different surface charges, a property made up primarily of their varied lipid and protein compositions. In this study, high-resolution plant membrane fractionation by FFE, combined with mass spectrometry-based proteomics, allowed the simultaneous profiling of multiple cellular membranes from the leaf tissue of the plant Mesembryanthemum crystallinum. Comparisons of the fractionated membranes’ protein profile to that of known markers for specific cellular compartments sheds light on the functions of proteins, as well as provides new evidence for multiple subcellular localization of several proteins, including those involved in lipid metabolism.
Collapse
|
25
|
Hussain S, Hussain S, Ali B, Ren X, Chen X, Li Q, Saqib M, Ahmad N. Recent progress in understanding salinity tolerance in plants: Story of Na +/K + balance and beyond. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 160:239-256. [PMID: 33524921 DOI: 10.1016/j.plaphy.2021.01.029] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 01/18/2021] [Indexed: 05/07/2023]
Abstract
High salt concentrations in the growing medium can severely affect the growth and development of plants. It is imperative to understand the different components of salt-tolerant network in plants in order to produce the salt-tolerant cultivars. High-affinity potassium transporter- and myelocytomatosis proteins have been shown to play a critical role for salinity tolerance through exclusion of sodium (Na+) ions from sensitive shoot tissues in plants. Numerous genes, that limit the uptake of salts from soil and their transport throughout the plant body, adjust the ionic and osmotic balance of cells in roots and shoots. In the present review, we have tried to provide a comprehensive report of major research advances on different mechanisms regulating plant tolerance to salinity stress at proteomics, metabolomics, genomics and transcriptomics levels. Along with the role of ionic homeostasis, a major focus was given on other salinity tolerance mechanisms in plants including osmoregulation and osmo-protection, cell wall remodeling and integrity, and plant antioxidative defense. Major proteins and genes expressed under salt-stressed conditions and their role in enhancing salinity tolerance in plants are discussed as well. Moreover, this manuscript identifies and highlights the key questions on plant salinity tolerance that remain to be discussed in the future.
Collapse
Affiliation(s)
- Sadam Hussain
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China; Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
| | - Saddam Hussain
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan; Shanghai Center for Plant Stress Biology, Chinese Academy of Agricultural Sciences, Shanghai, China.
| | - Basharat Ali
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
| | - Xiaolong Ren
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaoli Chen
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Qianqian Li
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Muhammad Saqib
- Agronomic Research Institute, Ayub Agricultural Research Institute, Faisalabad, Pakistan
| | - Naeem Ahmad
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
26
|
Gallo V, Zappettini A, Villani M, Marmiroli N, Marmiroli M. Comparative Analysis of Proteins Regulated during Cadmium Sulfide Quantum Dots Response in Arabidopsis thaliana Wild Type and Tolerant Mutants. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:615. [PMID: 33804515 PMCID: PMC7998754 DOI: 10.3390/nano11030615] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 02/25/2021] [Accepted: 02/25/2021] [Indexed: 12/15/2022]
Abstract
In previous work, two independent Arabidopsis thaliana Ac/Ds transposon insertional mutant lines, atnp01 and atnp02, were identified that showed a higher level of tolerance than the wild type (wt) line to cadmium sulfide quantum dots (CdS QDs). The tolerance response was characterized at physiological, genetic and transcriptomic levels. In this work, a comparative analysis was performed on protein extracts from plantlets of the two mutants and of wt, each treated with 80 mg L-1 CdS QDs. A comparative protein analysis was performed by 2D-PAGE, and proteins were characterized by MALDI-TOF/TOF mass spectrometry. Of 250 proteins identified from all three lines, 98 showed significant changes in relative abundance between control and CdS QD-treated plantlets. The wt, atnp01, and atnp02 control-treated pairs respectively showed 61, 31, and 31 proteins with differential expression. The two mutants had a different response to treatment in terms of type and quantity of up- and downregulated proteins. This difference became more striking when compared to wt. A network analysis of the proteins differentially expressed in atnp01 and atnp02 included several of those encoded by putative genes accommodating the transposons, which were responsible for regulation of some proteins identified in this study. These included nifu-like protein 3 (Nfu3), involved in chloroplast assembly, elongator complex 3 (Elo3), involved in transcriptional elongation, magnesium-chelate subunit-2 (Chli2), involved in chlorophyll biosynthesis, and protein phosphatase 2C (PP2C) which mediates abiotic stress response.
Collapse
Affiliation(s)
- Valentina Gallo
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43123 Parma, Italy; (V.G.); (N.M.)
| | - Andrea Zappettini
- Institute of Materials for Electronics and Magnetism (IMEM), National Research Council (CNR), 43124 Parma, Italy; (A.Z.); (M.V.)
| | - Marco Villani
- Institute of Materials for Electronics and Magnetism (IMEM), National Research Council (CNR), 43124 Parma, Italy; (A.Z.); (M.V.)
| | - Nelson Marmiroli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43123 Parma, Italy; (V.G.); (N.M.)
- The Italian National Interuniversity Consortium for Environmental Sciences (CINSA), 43123 Parma, Italy
| | - Marta Marmiroli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43123 Parma, Italy; (V.G.); (N.M.)
| |
Collapse
|
27
|
Cheng L, Min W, Li M, Zhou L, Hsu CC, Yang X, Jiang X, Ruan Z, Zhong Y, Wang ZY, Wang W. Quantitative Proteomics Reveals that GmENO2 Proteins Are Involved in Response to Phosphate Starvation in the Leaves of Glycine max L. Int J Mol Sci 2021; 22:E920. [PMID: 33477636 PMCID: PMC7831476 DOI: 10.3390/ijms22020920] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 12/24/2022] Open
Abstract
Soybean (Glycine max L.) is a major crop providing important source for protein and oil for human life. Low phosphate (LP) availability is a critical limiting factor affecting soybean production. Soybean plants develop a series of strategies to adapt to phosphate (Pi) limitation condition. However, the underlying molecular mechanisms responsible for LP stress response remain largely unknown. Here, we performed a label-free quantification (LFQ) analysis of soybean leaves grown under low and high phosphate conditions. We identified 267 induced and 440 reduced differential proteins from phosphate-starved leaves. Almost a quarter of the LP decreased proteins are involved in translation processes, while the LP increased proteins are accumulated in chlorophyll biosynthetic and carbon metabolic processes. Among these induced proteins, an enolase protein, GmENO2a was found to be mostly induced protein. On the transcriptional level, GmENO2a and GmENO2b, but not GmENO2c or GmENO2d, were dramatically induced by phosphate starvation. Among 14 enolase genes, only GmENO2a and GmENO2b genes contain the P1BS motif in their promoter regions. Furthermore, GmENO2b was specifically induced in the GmPHR31 overexpressing soybean plants. Our findings provide molecular insights into how soybean plants tune basic carbon metabolic pathway to adapt to Pi deprivation through the ENO2 enzymes.
Collapse
Affiliation(s)
- Ling Cheng
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.C.); (X.J.); (Z.R.)
| | - Wanling Min
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (W.M.); (M.L.); (L.Z.)
| | - Man Li
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (W.M.); (M.L.); (L.Z.)
| | - Lili Zhou
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (W.M.); (M.L.); (L.Z.)
| | - Chuan-Chih Hsu
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA; (C.-C.H.); (X.Y.); (Z.-Y.W.)
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Xuelian Yang
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA; (C.-C.H.); (X.Y.); (Z.-Y.W.)
| | - Xue Jiang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.C.); (X.J.); (Z.R.)
| | - Zhijie Ruan
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.C.); (X.J.); (Z.R.)
| | - Yongjia Zhong
- Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Zhi-Yong Wang
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA; (C.-C.H.); (X.Y.); (Z.-Y.W.)
| | - Wenfei Wang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.C.); (X.J.); (Z.R.)
| |
Collapse
|
28
|
O'Leary B, Plaxton WC. Multifaceted functions of post-translational enzyme modifications in the control of plant glycolysis. CURRENT OPINION IN PLANT BIOLOGY 2020; 55:28-37. [PMID: 32200227 DOI: 10.1016/j.pbi.2020.01.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/24/2020] [Accepted: 01/31/2020] [Indexed: 06/10/2023]
Abstract
Glycolysis is a central feature of metabolism and its regulation plays important roles during plant developmental and stress responses. Recent advances in proteomics and mass spectrometry have documented extensive and dynamic post-translational modifications (PTMs) of most glycolytic enzymes in diverse plant tissues. Protein PTMs represent fundamental regulatory events that integrate signalling and gene expression with cellular metabolic networks, and can regulate glycolytic enzyme activity, localization, protein:protein interactions, moonlighting functions, and turnover. Serine/threonine phosphorylation and redox PTMs of cysteine thiol groups appear to be the most prevalent forms of reversible covalent modification involved in plant glycolytic control. Additional PTMs including monoubiquitination also have important functions. However, the molecular functions and mechanisms of most glycolytic enzyme PTMs remain unknown, and represent important objectives for future studies.
Collapse
Affiliation(s)
- Brendan O'Leary
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley 6009, Australia
| | - William C Plaxton
- Department of Biology, Queen's University, Kingston, Ontario K7L3N6, Canada.
| |
Collapse
|
29
|
Vaishnav A, Singh J, Singh P, Rajput RS, Singh HB, Sarma BK. Sphingobacterium sp. BHU-AV3 Induces Salt Tolerance in Tomato by Enhancing Antioxidant Activities and Energy Metabolism. Front Microbiol 2020; 11:443. [PMID: 32308647 PMCID: PMC7145953 DOI: 10.3389/fmicb.2020.00443] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 03/02/2020] [Indexed: 11/13/2022] Open
Abstract
Salt tolerant bacteria can be helpful in improving a plant's tolerance to salinity. Although plant-bacteria interactions in response to salt stress have been characterized, the precise molecular mechanisms by which bacterial inoculation alleviates salt stress in plants are still poorly explored. In the present study, we aimed to determine the role of a salt-tolerant plant growth-promoting rhizobacteria (PGPR) Sphingobacterium BHU-AV3 for improving salt tolerance in tomato through investigating the physiological responses of tomato roots and leaves under salinity stress. Tomato plants inoculated with BHU-AV3 and challenged with 200 mM NaCl exhibited less senescence, positively correlated with the maintenance of ion balance, lowered reactive oxygen species (ROS), and increased proline content compared to the non-inoculated plants. BHU-AV3-inoculated plant leaves were less affected by oxidative stress, as evident from a reduction in superoxide contents, cell death, and lipid peroxidation. The reduction in ROS level was associated with the increased antioxidant enzyme activities along with multiple-isoform expression [peroxidase (POD), polyphenol oxidase (PPO), and superoxide dismutase (SOD)] in plant roots. Additionally, BHU-AV3 inoculation induced the expression of proteins involved in (i) energy production [ATP synthase], (ii) carbohydrate metabolism (enolase), (iii) thiamine biosynthesis protein, (iv) translation protein (elongation factor 1 alpha), and the antioxidant defense system (catalase) in tomato roots. These findings have provided insight into the molecular mechanisms of bacteria-mediated alleviation of salt stress in plants. From the study, we can conclude that BHU-AV3 inoculation effectively induces antioxidant systems and energy metabolism in tomato roots, which leads to whole plant protection during salt stress through induced systemic tolerance.
Collapse
Affiliation(s)
- Anukool Vaishnav
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Jyoti Singh
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Prachi Singh
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Rahul Singh Rajput
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Harikesh Bahadur Singh
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Birinchi K. Sarma
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
30
|
Liu ZJ, Zhang YH, Ma XF, Ye P, Gao F, Li XF, Zhou YJ, Shi ZH, Cheng HM, Zheng CX, Li HJ, Zhang GF. Biological functions of Arabidopsis thaliana MBP-1-like protein encoded by ENO2 in the response to drought and salt stresses. PHYSIOLOGIA PLANTARUM 2020; 168:660-674. [PMID: 31343741 DOI: 10.1111/ppl.13013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 06/21/2019] [Accepted: 07/16/2019] [Indexed: 06/10/2023]
Abstract
Arabidopsis thaliana ENO2 (AtENO2) plays an important role in plant growth and development. It encodes two proteins, a full-length AtENO2 and a truncated version, AtMBP-1, alternatively translated from the second start codon of the mRNA. The AtENO2 mutant (eno2- ) exhibited reduced leaf size, shortened siliques, a dwarf phenotype and higher sensitivity to abiotic stress. The objectives of this study were to analyze the regulatory network of the ENO2 gene in plant growth development and understand the function of AtENO2/AtMBP-1 to abiotic stresses. An eno2- /35S:AtENO2-GFP line and an eno2- /35S:AtMBP-1-GFP line of Arabidopsis were obtained. Results of sequencing by 454 GS FLX identified 578 upregulated and 720 downregulated differential expressed genes (DEGs) in a pairwise comparison (WT-VS-eno2- ). All the high-quality reads were annotated using the Gene Ontology (GO) terms. The DEGs with KEGG pathway annotations occurred in 110 pathways. The metabolic pathways and biosynthesis of secondary metabolites contained more DEGs. Moreover, the eno2- /35S:AtENO2-GFP line returned to the wild-type (WT) phenotype and was tolerant to drought and salt stresses. However, the eno2- /35S:AtMBP-1-GFP line was not able to recover the WT phenotype but it has a higher tolerance to drought and salt stresses. Results from this study demonstrate that AtENO2 is critical for the growth and development, and the AtMBP-1 coded by AtENO2 is important in tolerance of Arabidopsis to abiotic stresses.
Collapse
Affiliation(s)
- Zi-Jin Liu
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Yong-Hua Zhang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Xiao-Feng Ma
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Pan Ye
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Fei Gao
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Xiao-Feng Li
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Yi-Jun Zhou
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Zi-Han Shi
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Hui-Mei Cheng
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Chao-Xing Zheng
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Hong-Jie Li
- The National Engineering Laboratory of Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Gen-Fa Zhang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
31
|
Fugate KK, Eide JD, Martins DN, Grusak MA, Deckard EL, Finger FL. Colocalization of sucrose synthase expression and sucrose storage in the sugarbeet taproot indicates a potential role for sucrose catabolism in sucrose accumulation. JOURNAL OF PLANT PHYSIOLOGY 2019; 240:153016. [PMID: 31400718 DOI: 10.1016/j.jplph.2019.153016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 07/08/2019] [Accepted: 07/13/2019] [Indexed: 06/10/2023]
Abstract
Sucrose metabolism is believed to have a central role in promoting sink strength and sucrose storage in the sugarbeet taproot. How sucrose accumulation is increased by sucrose-degrading enzymes, however, is a paradox. To elucidate roles for sucrose-degrading activities in sucrose accumulation, relationships between the intercellular location of sucrose-catabolizing enzymes and sites of sucrose accumulation were determined in the sugarbeet taproot. Sucrose storage was evident in parenchyma cells of the outer cortex, rays, and rings of parenchyma tissue, but was absent in phloem, the vascular cambium, cells surrounding these tissues, or cells surrounding xylem. Sucrose synthase, which was primarily responsible for sucrose catabolism throughout the taproot, was expressed in similar cell and tissue types to those accumulating sucrose. Colocalization of sucrose synthase with sucrose accumulation, as well as sucrose synthase localization near the tonoplast, suggests a role for the enzyme in generating metabolic energy to fuel sucrose sequestration in the vacuole. Localization near the plasma membrane also suggests a role for sucrose synthase in supplying substrates for cell wall biosynthesis. By utilizing sucrose for ATP or cell wall biosynthesis, sucrose synthase likely maintains the source-to-sink sucrose gradient that drives sucrose transport into the root, thereby promoting sugarbeet root sink strength.
Collapse
Affiliation(s)
- Karen K Fugate
- USDA-ARS, Edward T. Schafer Agricultural Research Center, 1616 Albrecht Blvd. N., Fargo, ND, 58102-2765, USA.
| | - John D Eide
- USDA-ARS, Edward T. Schafer Agricultural Research Center, 1616 Albrecht Blvd. N., Fargo, ND, 58102-2765, USA.
| | - Daniel N Martins
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36571-000, Viçosa, MG, Brazil.
| | - Michael A Grusak
- USDA-ARS, Edward T. Schafer Agricultural Research Center, 1616 Albrecht Blvd. N., Fargo, ND, 58102-2765, USA.
| | - Edward L Deckard
- Department of Plant Sciences, North Dakota State University, P.O. Box 6050, Fargo, ND, 58108, USA.
| | - Fernando L Finger
- Departamento de Fitotecnia, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil.
| |
Collapse
|
32
|
Genome wide characterization, evolution and expression analysis of FBA gene family under salt stress in Gossypium species. Biologia (Bratisl) 2019. [DOI: 10.2478/s11756-019-00296-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
33
|
Didiasova M, Schaefer L, Wygrecka M. When Place Matters: Shuttling of Enolase-1 Across Cellular Compartments. Front Cell Dev Biol 2019; 7:61. [PMID: 31106201 PMCID: PMC6498095 DOI: 10.3389/fcell.2019.00061] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 04/05/2019] [Indexed: 12/22/2022] Open
Abstract
Enolase is a glycolytic enzyme, which catalyzes the inter-conversion of 2-phosphoglycerate to phosphoenolpyruvate. Altered expression of this enzyme is frequently observed in cancer and accounts for the Warburg effect, an adaptive response of tumor cells to hypoxia. In addition to its catalytic function, ENO-1 exhibits other activities, which strongly depend on its cellular and extracellular localization. For example, the association of ENO-1 with mitochondria membrane was found to be important for the stability of the mitochondrial membrane, and ENO-1 sequestration on the cell surface was crucial for plasmin-mediated pericellular proteolysis. The latter activity of ENO-1 enables many pathogens but also immune and cancer cells to invade the tissue, leading further to infection, inflammation or metastasis formation. The ability of ENO-1 to conduct so many diverse processes is reflected by its contribution to a high number of pathologies, including type 2 diabetes, cardiovascular hypertrophy, fungal and bacterial infections, cancer, systemic lupus erythematosus, hepatic fibrosis, Alzheimer's disease, rheumatoid arthritis, and systemic sclerosis. These unexpected non-catalytic functions of ENO-1 and their contributions to diseases are the subjects of this review.
Collapse
Affiliation(s)
- Miroslava Didiasova
- Department of Biochemistry, Faculty of Medicine, Universities of Giessen and Marburg Lung Center, Giessen, Germany
| | - Liliana Schaefer
- Institute of Pharmacology and Toxicology, Goethe University Frankfurt, Frankfurt, Germany
| | - Malgorzata Wygrecka
- Department of Biochemistry, Faculty of Medicine, Universities of Giessen and Marburg Lung Center, Giessen, Germany.,Member of the German Center for Lung Research, Giessen, Germany
| |
Collapse
|
34
|
Hwang HH, Wang CH, Chen HH, Ho JF, Chi SF, Huang FC, Yen HE. Effective Agrobacterium-mediated transformation protocols for callus and roots of halophyte ice plant (Mesembryanthemum crystallinum). BOTANICAL STUDIES 2019; 60:1. [PMID: 30617933 PMCID: PMC6323063 DOI: 10.1186/s40529-018-0249-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 12/19/2018] [Indexed: 05/21/2023]
Abstract
BACKGROUND Ice plant (Mesembryanthemum crystallinum L.) is a model plant for studying salt-tolerant mechanisms in higher plants. Many salt stress-responsive ice plant genes have been identified with molecular and biochemical approaches. However, no further functional characterization of these genes in host plant due to lack of easy and effective transformation protocols. RESULTS To establish efficient transformation system of ice plants, three types of ice plant materials, hypocotyl-derived callus, aseptically-grown seedlings and pot-grown juvenile plants, were used to develop Agrobacterium-mediated transformation protocols. The highest transient transformation efficiency was with 5-day-old ice plant callus co-incubated with an Agrobacterium tumefaciens at 2.5 × 109 cells mL-1 for 48 h. The 3-day-old ice plant seedlings with root tip removed were successfully infected with A. tumefaciens or A. rhizogenes, and obtained 85% and 33-100% transient transformation rates, respectively. The transient transformation assays in ice plant callus and seedlings demonstrated that the concentrations of Agrobacteria, the durations of co-incubation time, and the plant growth stages were three important factors affecting the transient transformation efficiencies. Additionally, pot-grown juvenile plants were syringe-injected with two A. rhizogenes strains A8196 and NCPPB 1855, to establish transformed roots. After infections, ice plants were grown hydroponically and showed GUS expressions in transformed roots for 8 consecutive weeks. CONCLUSIONS Our Agrobacterium-mediated transformation protocols utilized hypocotyl-derived callus and seedlings as plant materials, which can be easily obtained in large quantity. The average successful transient transformation rates were about 2.4-3.0% with callus and 33.3-100.0% with seedlings. We also developed a rapid and efficient protocol to generate transgenic roots by A. rhizogenes infections without laborious and challenging tissue culture techniques. This protocol to establish composite ice plant system demonstrates excellent improvements in efficiency, efficacy, and ease of use over previous ice plant transformation protocols. These Agrobacterium-mediated transformation protocols can be versatile and efficient tools for exploring gene functions at cellular and organ levels of ice plants.
Collapse
Affiliation(s)
- Hau-Hsuan Hwang
- Department of Life Sciences, National Chung Hsing University, No. 145, Xingda Road, Taichung, 402 Taiwan
- Ph.D. Program in Microbial Genomics, National Chung Hsing University, Taichung, Taiwan
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
- Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung, Taiwan
| | - Chih-Hao Wang
- Department of Life Sciences, National Chung Hsing University, No. 145, Xingda Road, Taichung, 402 Taiwan
| | - Hsiao-Huei Chen
- Department of Life Sciences, National Chung Hsing University, No. 145, Xingda Road, Taichung, 402 Taiwan
| | - Jia-Fang Ho
- Department of Life Sciences, National Chung Hsing University, No. 145, Xingda Road, Taichung, 402 Taiwan
| | - Shin-Fei Chi
- Department of Life Sciences, National Chung Hsing University, No. 145, Xingda Road, Taichung, 402 Taiwan
| | - Fan-Chen Huang
- Department of Life Sciences, National Chung Hsing University, No. 145, Xingda Road, Taichung, 402 Taiwan
- Ph.D. Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taichung, Taiwan
| | - Hungchen Emilie Yen
- Department of Life Sciences, National Chung Hsing University, No. 145, Xingda Road, Taichung, 402 Taiwan
| |
Collapse
|
35
|
Kholghi M, Toorchi M, Bandehagh A, Ostendorp A, Ostendorp S, Hanhart P, Kehr J. Comparative proteomic analysis of salt-responsive proteins in canola roots by 2-DE and MALDI-TOF MS. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1867:227-236. [PMID: 30611781 DOI: 10.1016/j.bbapap.2018.12.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 12/14/2018] [Accepted: 12/30/2018] [Indexed: 02/08/2023]
Abstract
Salinity stress is a major abiotic stress that affects plant growth and limits crop production. Roots are the primary site of salinity perception, and salt sensitivity in roots limits the productivity of the entire plant. To better understand salt stress responses in canola, we performed a comparative proteomic analysis of roots from the salt-tolerant genotype Safi-7 and the salt-sensitive genotype Zafar. Plants were exposed to 0, 150, and 300 mM NaCl. Our physiological and morphological observations confirmed that Safi-7 was more salt-tolerant than Zafar. The root proteins were separated by two-dimensional gel electrophoresis and MALDI-TOF mass spectrometry was applied to identify proteins regulated in response to salt stress. We identified 36 and 25 protein spots whose abundance was significantly affected by salt stress in roots of plants from the tolerant and susceptible genotype, respectively. Functional classification analysis revealed that the differentially expressed proteins from the tolerant genotype could be assigned to 14 functional categories, while those from the susceptible genotype could be classified into 9 functional categories. The most significant differences concerned proteins involved in glycolysis (Glyceraldehyde-3-phosphate dehydrogenase, Fructose-bisphosphate aldolase, Phosphoglycerate kinase 3), stress (heat shock proteins), Redox regulation (Glutathione S-transferase DHAR1, L-ascorbate peroxidase), energy metabolism (ATP synthase subunit B), and transport (V-type proton ATPase subunit B1) which were increased only in the tolerant line under salt stress. Our results provide the basis for further elucidating the molecular mechanisms of salt-tolerance and will be helpful for breeding salt-tolerant canola cultivars.
Collapse
Affiliation(s)
- Maryam Kholghi
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Mahmoud Toorchi
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Ali Bandehagh
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Anna Ostendorp
- Molecular Plant Genetics, Universität Hamburg, Biozentrum Klein Flottbek, Ohnhorststr. 18, 22609 Hamburg, Germany
| | - Steffen Ostendorp
- Molecular Plant Genetics, Universität Hamburg, Biozentrum Klein Flottbek, Ohnhorststr. 18, 22609 Hamburg, Germany
| | - Patrizia Hanhart
- Molecular Plant Genetics, Universität Hamburg, Biozentrum Klein Flottbek, Ohnhorststr. 18, 22609 Hamburg, Germany
| | - Julia Kehr
- Molecular Plant Genetics, Universität Hamburg, Biozentrum Klein Flottbek, Ohnhorststr. 18, 22609 Hamburg, Germany.
| |
Collapse
|
36
|
Hu Y, Lu Y, Zhao Y, Zhou DX. Histone Acetylation Dynamics Integrates Metabolic Activity to Regulate Plant Response to Stress. FRONTIERS IN PLANT SCIENCE 2019; 10:1236. [PMID: 31636650 PMCID: PMC6788390 DOI: 10.3389/fpls.2019.01236] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 09/05/2019] [Indexed: 05/20/2023]
Abstract
Histone lysine acetylation is an essential chromatin modification for epigenetic regulation of gene expression during plant response to stress. On the other hand, enzymes involved in histone acetylation homeostasis require primary metabolites as substrates or cofactors whose levels are greatly influenced by stress and growth conditions in plants. In addition, histone lysine acylation that requires similar enzymes for deposition and removal as histone acetylation has been recently characterized in plant. Results on understanding the intrinsic relationship between histone acetylation/acylation, metabolism and stress response in plants are accumulating. In this review, we summarize recent advance in the field and propose a model of interplay between metabolism and epigenetic regulation of genes expression in plant adaptation to stress.
Collapse
Affiliation(s)
- Yongfeng Hu
- College of Bioengineering, Jingchu University of Technology, Jingmen, China
| | - Yue Lu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Yu Zhao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Dao-Xiu Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Institute of Plant Science of Paris-Saclay (IPS2), CNRS, INRA, University Paris-sud 11, University Paris-Saclay, Orsay, France
- *Correspondence: Dao-Xiu Zhou,
| |
Collapse
|
37
|
Santos IR, Maximiano MR, Almeida RF, da Cunha RNV, Lopes R, Scherwinski-Pereira JE, Mehta A. Genotype-dependent changes of gene expression during somatic embryogenesis in oil palm hybrids (Elaeis oleifera x E. guineensis). PLoS One 2018; 13:e0209445. [PMID: 30596686 PMCID: PMC6312368 DOI: 10.1371/journal.pone.0209445] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 12/05/2018] [Indexed: 11/29/2022] Open
Abstract
To understand the molecular processes triggered during the different steps of somatic embryogenesis (SE) in oil palm, the expression of 19 genes associated to SE identified in proteomic and transcriptomic studies was investigated by qRT-PCR. To evaluate the differential expression of these genes, two interspecific hybrid genotypes (Elaeis oleifera x Elaeis guineensis) contrasting for the acquisition of embryogenic competence were used. Aclorophyllated leaves of both hybrids, one responsive (B351733) and the other non-responsive (B352933) to SE were submitted to callus induction and collected at different time points: 0 (before induction), 14, 30, 90 and 150 days of callus induction (doi). The results obtained showed that all evaluated genes were downregulated at 14 doi in the responsive genotype when compared to the non-responsive. It was also possible to observe that most of the genes changed their expression behavior at 30 doi and were upregulated thereafter until 150 doi, with the exception of the pathogenesis-related PRB1-3-like (PRB1-3) gene, which did not show differential expression at 30 doi and was downregulated at 90 and 150 doi when compared to the non-responsive hybrid. These results indicate that 30 doi is a turning point in gene expression, probably associated to embryogenic competence acquisition. We also show that the expression behavior of the responsive genotype is more stable than that of the non-responsive when the different induction time points are compared to 0 doi (before induction). Moreover, the results obtained in this study corroborate our hypothesis that the regulation of genes involved in the control of oxidative stress and energy metabolism are crucial for the acquisition of embryogenic competence in oil palm.
Collapse
Affiliation(s)
- Ivonaldo Reis Santos
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF, Brazil
- Programa de Pós-Graduação em Botânica, Universidade de Brasília, Brasília—DF, Brazil
| | - Mariana Rocha Maximiano
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF, Brazil
- Programa de Pós-Graduação em Ciências Biológicas (Imunologia e DIP/Genética e Biotecnologia), Universidade Federal de Juiz de Fora, Juiz de Fora, MG, Brazil
| | - Raphael Ferreira Almeida
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF, Brazil
- Programa de Pós-Graduação em Botânica, Universidade de Brasília, Brasília—DF, Brazil
| | | | | | | | - Angela Mehta
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF, Brazil
| |
Collapse
|
38
|
ENO2 knock-out mutants in Arabidopsis modify the regulation of the gene expression response to NaCl stress. Mol Biol Rep 2018; 45:1331-1338. [PMID: 30120651 PMCID: PMC6156758 DOI: 10.1007/s11033-018-4292-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Accepted: 08/01/2018] [Indexed: 11/03/2022]
Abstract
There is a growing awareness that some dual-function enzymes may provide a directly evidence that metabolism could feed into the regulation of gene expression via metabolic enzymes. However, the mechanism by which metabolic enzymes control gene expression to optimize plant stress responses remains largely unknown in Arabidopsis thaliana. LOS2/ENO2 is a bifunctional gene transcribed a functional RNA that translates a full-length version of the ENO2 protein and a truncated version of the MBP-1 protein. Here, we report that eno2 negatively regulates plant tolerance to salinity stress. NaCl treatment caused the death of the mutant eno2/eno2 homozygote earlier than the wild type (WT) Arabidopsis. To understand the mechanism by which the mutant eno2 had a lower NaCl tolerance, an analysis of the expressed sequence tag (EST) dataset from the WT and mutant eno2 Arabidopsis was conducted. Firstly, the most identified up- and down-regulated genes are senescence-associated gene 12 (SAG12) and isochorismate mutase-related gene, which are associated with salicylic acid (SA) inducible plant senescence and endogenous SA synthesis, respectively. Secondly, the differentially regulated by salt stress genes in mutant eno2 are largely enriched Gene Ontology(GO) terms associated with various kinds of response to stimulations. Thirdly, in the Kyoto Encyclopedia of Genes and Genomes (KEGG) mapping, we find that knocking out ENO2-influenced genes were most enriched into metabolite synthesis with extra plant-pathogen interaction pathway and plant hormone signal transduction pathway. Briefly, with the translation shifting function, LOS2/ENO2 not only influenced the genes involved in SA synthesis and transduction, but also influenced genes that participate in metabolite synthesis in cytoplasm and gene expression variation in nuclear under salt stress.
Collapse
|
39
|
Di Silvestre D, Bergamaschi A, Bellini E, Mauri P. Large Scale Proteomic Data and Network-Based Systems Biology Approaches to Explore the Plant World. Proteomes 2018; 6:proteomes6020027. [PMID: 29865292 PMCID: PMC6027444 DOI: 10.3390/proteomes6020027] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 05/30/2018] [Accepted: 06/01/2018] [Indexed: 12/26/2022] Open
Abstract
The investigation of plant organisms by means of data-derived systems biology approaches based on network modeling is mainly characterized by genomic data, while the potential of proteomics is largely unexplored. This delay is mainly caused by the paucity of plant genomic/proteomic sequences and annotations which are fundamental to perform mass-spectrometry (MS) data interpretation. However, Next Generation Sequencing (NGS) techniques are contributing to filling this gap and an increasing number of studies are focusing on plant proteome profiling and protein-protein interactions (PPIs) identification. Interesting results were obtained by evaluating the topology of PPI networks in the context of organ-associated biological processes as well as plant-pathogen relationships. These examples foreshadow well the benefits that these approaches may provide to plant research. Thus, in addition to providing an overview of the main-omic technologies recently used on plant organisms, we will focus on studies that rely on concepts of module, hub and shortest path, and how they can contribute to the plant discovery processes. In this scenario, we will also consider gene co-expression networks, and some examples of integration with metabolomic data and genome-wide association studies (GWAS) to select candidate genes will be mentioned.
Collapse
Affiliation(s)
- Dario Di Silvestre
- Institute for Biomedical Technologies-National Research Council; F.lli Cervi 93, 20090 Segrate, Milan, Italy.
| | - Andrea Bergamaschi
- Institute for Biomedical Technologies-National Research Council; F.lli Cervi 93, 20090 Segrate, Milan, Italy.
| | - Edoardo Bellini
- Institute for Biomedical Technologies-National Research Council; F.lli Cervi 93, 20090 Segrate, Milan, Italy.
| | - PierLuigi Mauri
- Institute for Biomedical Technologies-National Research Council; F.lli Cervi 93, 20090 Segrate, Milan, Italy.
| |
Collapse
|
40
|
Kosová K, Vítámvás P, Urban MO, Prášil IT, Renaut J. Plant Abiotic Stress Proteomics: The Major Factors Determining Alterations in Cellular Proteome. FRONTIERS IN PLANT SCIENCE 2018; 9:122. [PMID: 29472941 PMCID: PMC5810178 DOI: 10.3389/fpls.2018.00122] [Citation(s) in RCA: 158] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 01/23/2018] [Indexed: 05/19/2023]
Abstract
HIGHLIGHTS: Major environmental and genetic factors determining stress-related protein abundance are discussed.Major aspects of protein biological function including protein isoforms and PTMs, cellular localization and protein interactions are discussed.Functional diversity of protein isoforms and PTMs is discussed. Abiotic stresses reveal profound impacts on plant proteomes including alterations in protein relative abundance, cellular localization, post-transcriptional and post-translational modifications (PTMs), protein interactions with other protein partners, and, finally, protein biological functions. The main aim of the present review is to discuss the major factors determining stress-related protein accumulation and their final biological functions. A dynamics of stress response including stress acclimation to altered ambient conditions and recovery after the stress treatment is discussed. The results of proteomic studies aimed at a comparison of stress response in plant genotypes differing in stress adaptability reveal constitutively enhanced levels of several stress-related proteins (protective proteins, chaperones, ROS scavenging- and detoxification-related enzymes) in the tolerant genotypes with respect to the susceptible ones. Tolerant genotypes can efficiently adjust energy metabolism to enhanced needs during stress acclimation. Stress tolerance vs. stress susceptibility are relative terms which can reflect different stress-coping strategies depending on the given stress treatment. The role of differential protein isoforms and PTMs with respect to their biological functions in different physiological constraints (cellular compartments and interacting partners) is discussed. The importance of protein functional studies following high-throughput proteome analyses is presented in a broader context of plant biology. In summary, the manuscript tries to provide an overview of the major factors which have to be considered when interpreting data from proteomic studies on stress-treated plants.
Collapse
Affiliation(s)
- Klára Kosová
- Division of Crop Genetics and Breeding, Laboratory of Plant Stress Biology and Biotechnology, Crop Research Institute, Prague, Czechia
- Department of Experimental Plant Biology, Faculty of Science, Charles University in Prague, Prague, Czechia
| | - Pavel Vítámvás
- Division of Crop Genetics and Breeding, Laboratory of Plant Stress Biology and Biotechnology, Crop Research Institute, Prague, Czechia
- Department of Experimental Plant Biology, Faculty of Science, Charles University in Prague, Prague, Czechia
| | - Milan O. Urban
- Division of Crop Genetics and Breeding, Laboratory of Plant Stress Biology and Biotechnology, Crop Research Institute, Prague, Czechia
- Department of Experimental Plant Biology, Faculty of Science, Charles University in Prague, Prague, Czechia
| | - Ilja T. Prášil
- Division of Crop Genetics and Breeding, Laboratory of Plant Stress Biology and Biotechnology, Crop Research Institute, Prague, Czechia
| | - Jenny Renaut
- Environmental Research and Technology Platform, Environmental Research and Innovation, Luxembourg Institute of Science and Technology (LIST), Esch-sur-Alzette, Luxembourg
| |
Collapse
|
41
|
Liu X, Wei W, Zhu W, Su L, Xiong Z, Zhou M, Zheng Y, Zhou DX. Histone Deacetylase AtSRT1 Links Metabolic Flux and Stress Response in Arabidopsis. MOLECULAR PLANT 2017; 10:1510-1522. [PMID: 29107034 DOI: 10.1016/j.molp.2017.10.010] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 10/16/2017] [Accepted: 10/16/2017] [Indexed: 05/19/2023]
Abstract
How plant metabolic flux alters gene expression to optimize plant growth and response to stress remains largely unclear. Here, we report that Arabidopsis thaliana NAD+-dependent histone deacetylase AtSRT1 negatively regulates plant tolerance to stress and glycolysis but stimulates mitochondrial respiration. We found that AtSRT1 interacts with Arabidopsis cMyc-Binding Protein 1 (AtMBP-1), a transcriptional repressor produced by alternative translation of the cytosolic glycolytic enolase gene LOS2/ENO2. We demonstrated that AtSRT1 could associate with the chromatin of AtMBP-1 targets LOS2/ENO2 and STZ/ZAT10, both of which encode key stress regulators, and reduce the H3K9ac levels at these genes to repress their transcription. Overexpression of both AtSRT1 and AtMBP-1 had synergistic effects on the expression of glycolytic genes, glycolytic enzymatic activities, and mitochondrial respiration. Furthermore, we found that AtMBP-1 is lysine-acetylated and vulnerable to proteasomal protein degradation, while AtSRT1 could remove its lysine acetylation and significantly enhance its stability in vivo. Taken together, these results indicate that AtSRT1 regulates primary metabolism and stress response by both epigenetic regulation and modulation of AtMBP-1 transcriptional activity in Arabidopsis.
Collapse
Affiliation(s)
- Xiaoyun Liu
- Institute for Interdisciplinary Research, Jianghan University, Wuhan 430056, China
| | - Wei Wei
- Institute for Interdisciplinary Research, Jianghan University, Wuhan 430056, China.
| | - Wenjun Zhu
- College of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Lufang Su
- Institute for Interdisciplinary Research, Jianghan University, Wuhan 430056, China
| | - Zeyang Xiong
- Institute for Interdisciplinary Research, Jianghan University, Wuhan 430056, China
| | - Man Zhou
- Institute for Interdisciplinary Research, Jianghan University, Wuhan 430056, China
| | - Yu Zheng
- Institute for Interdisciplinary Research, Jianghan University, Wuhan 430056, China
| | - Dao-Xiu Zhou
- Institute Plant Science Paris-Saclay (IPS2), CNRS, INRA, Université Paris-sud 11, Université Paris-Saclay, B630, 91405 Orsay, France.
| |
Collapse
|
42
|
Abstract
Free flow zonal electrophoresis (FFZE) is a versatile, reproducible, and potentially high-throughput technique for the separation of plant organelles and membranes by differences in membrane surface charge. It offers considerable benefits over traditional fractionation techniques, such as density gradient centrifugation and two-phase partitioning, as it is relatively fast, sample recovery is high, and the method provides unparalleled sample purity. It has been used to successfully purify chloroplasts and mitochondria from plants but also, to obtain highly pure fractions of plasma membrane, tonoplast, ER, Golgi, and thylakoid membranes. Application of the technique can significantly improve protein coverage in large-scale proteomics studies by decreasing sample complexity. Here, we describe the method for the fractionation of plant cellular membranes from leaves by FFZE.
Collapse
|
43
|
Radchuk V, Riewe D, Peukert M, Matros A, Strickert M, Radchuk R, Weier D, Steinbiß HH, Sreenivasulu N, Weschke W, Weber H. Down-regulation of the sucrose transporters HvSUT1 and HvSUT2 affects sucrose homeostasis along its delivery path in barley grains. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:4595-4612. [PMID: 28981782 PMCID: PMC5853522 DOI: 10.1093/jxb/erx266] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 07/03/2017] [Indexed: 05/05/2023]
Abstract
Sucrose transport and partitioning are crucial for seed filling. While many plasma-membrane-localised sucrose transporters (SUT1 family members) have been analysed in seeds, the functions of vacuolar SUT2 members are still obscure. In barley grains, expression of HvSUT1 and HvSUT2 overlap temporally and spatially, suggesting concerted functions to regulate sucrose homeostasis. Using HvSUT2-RNAi plants, we found that grains were also deficient in HvSUT1 expression and seemingly sucrose-limited during mid-to-late grain filling. Transgenic endosperms accumulated less starch and dry weight, although overall sucrose and hexose contents were higher. Comprehensive transcript and metabolite profiling revealed that genes related to glycolysis, the tricarboxylic acid cycle, starch and amino acid synthesis, grain maturation, and abscisic acid signalling were down-regulated together with most glycolytic intermediates and amino acids. Sucrose was increased along the sucrose delivery route in the nucellar projection, the endosperm transfer cells, and the starchy endosperm, indicating that suppressed transporter activity diminished sucrose efflux from vacuoles, which generated sugar deficiency in the cytoplasm. Thus, endosperm vacuoles may buffer sucrose concentrations to regulate homeostasis at grain filling. Transcriptional changes revealed that limited endosperm sucrose initiated sugar starvation responses, such as sugar recycling from starch, hemicelluloses and celluloses together with vacuolar protein degradation, thereby supporting formation of nucleotide sugars. Barley endosperm cells can thus suppress certain pathways to retrieve resources to maintain essential cell functions.
Collapse
Affiliation(s)
- Volodymyr Radchuk
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung, Stadt Seeland OT Gatersleben, Germany
| | - David Riewe
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung, Stadt Seeland OT Gatersleben, Germany
| | - Manuela Peukert
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung, Stadt Seeland OT Gatersleben, Germany
| | - Andrea Matros
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung, Stadt Seeland OT Gatersleben, Germany
| | - Marc Strickert
- Computational Intelligence—FB12 Informatik, Philipps University, Marburg, Germany
| | - Ruslana Radchuk
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung, Stadt Seeland OT Gatersleben, Germany
| | - Diana Weier
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung, Stadt Seeland OT Gatersleben, Germany
| | | | - Nese Sreenivasulu
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung, Stadt Seeland OT Gatersleben, Germany
| | - Winfriede Weschke
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung, Stadt Seeland OT Gatersleben, Germany
| | - Hans Weber
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung, Stadt Seeland OT Gatersleben, Germany
| |
Collapse
|
44
|
Nawrot R, Lippmann R, Matros A, Musidlak O, Nowicki G, Mock HP. Proteomic comparison of Chelidonium majus L. latex in different phases of plant development. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 112:312-325. [PMID: 28131060 DOI: 10.1016/j.plaphy.2017.01.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 12/27/2016] [Accepted: 01/11/2017] [Indexed: 06/06/2023]
Abstract
Chelidonium majus L. (Papaveraceae) latex is used in traditinonal folk medicine to treat papillae, warts, condylomas, which are visible effects of human papilloma virus (HPV) infections. The aim of this work was to provide new insights into the biology and medicinal use of C. majus milky sap in the flowering and fruit ripening period of the plant by comparing the protein content between samples collected on respective developmental stages using LC-MS-based label-free proteome approach. For quantification, the multiplexed LC-MS data were processed using comparative chemometric approach. Progenesis LC-MS results showed that in green fruit phase (stage IV), comparing to flowering phase (stage III) of plant development, a range of proteins with higher abundance were identified as stress- and defense-related. On the other hand at stage III very intense protein synthesis, processes of transcription, protein folding and active transport of molecules (ABC transporters) are well represented. 2-DE protein maps showed an abundant set of spots with similar MWs (about 30-35 kDa) and pIs (ca. 5.5-6.5), which were identified as major latex proteins (MLPs). Therefore we suggest that biological activity of C. majus latex could be related to its protein content, which shifts during plant development from intense biosynthetic processes (biosynthesis and transport of small molecules, like alkaloids) to plant defense mechanisms against pathogens. Further studies will help to elucidate if these defense-related and pathogenesis-related proteins, like MLP, together with small-molecule compounds, could inhibit viral infection, what could be a step to fully understand the medicinal activity of C. majus latex.
Collapse
Affiliation(s)
- Robert Nawrot
- Department of Molecular Virology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Umultowska 89, PL-61-614 Poznań, Poland.
| | - Rico Lippmann
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, D-06466 Gatersleben, Germany
| | - Andrea Matros
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, D-06466 Gatersleben, Germany
| | - Oskar Musidlak
- Department of Molecular Virology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Umultowska 89, PL-61-614 Poznań, Poland
| | - Grzegorz Nowicki
- Department of Molecular Virology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Umultowska 89, PL-61-614 Poznań, Poland
| | - Hans-Peter Mock
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, D-06466 Gatersleben, Germany
| |
Collapse
|
45
|
Garagounis C, Kostaki KI, Hawkins TJ, Cummins I, Fricker MD, Hussey PJ, Hetherington AM, Sweetlove LJ. Microcompartmentation of cytosolic aldolase by interaction with the actin cytoskeleton in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:885-898. [PMID: 28338736 DOI: 10.1093/jxb/erx015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Evidence is accumulating for molecular microcompartments formed when proteins interact in localized domains with the cytoskeleton, organelle surfaces, and intracellular membranes. To understand the potential functional significance of protein microcompartmentation in plants, we studied the interaction of the glycolytic enzyme fructose bisphosphate aldolase with actin in Arabidopsis thaliana. Homology modelling of a major cytosolic isozyme of aldolase, FBA8, suggested that the tetrameric holoenzyme has two actin binding sites and could therefore act as an actin-bundling protein, as was reported for animal aldolases. This was confirmed by in vitro measurements of an increase in viscosity of F-actin polymerized in the presence of recombinant FBA8. Simultaneously, interaction with F-actin caused non-competitive inhibition of aldolase activity. We did not detect co-localization of an FBA8-RFP fusion protein, expressed in an fba8-knockout background, with the actin cytoskeleton using confocal laser-scanning microscopy. However, we did find evidence for a low level of interaction using FRET-FLIM analysis of FBA8-RFP co-expressed with the actin-binding protein GFP-Lifeact. Furthermore, knockout of FBA8 caused minor alterations of guard cell actin cytoskeleton morphology and resulted in a reduced rate of stomatal closure in response to decreased humidity. We conclude that cytosolic aldolase can be microcompartmented in vivo by interaction with the actin cytoskeleton and may subtly modulate guard cell behaviour as a result.
Collapse
Affiliation(s)
- Constantine Garagounis
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - Kalliopi-Ioanna Kostaki
- School of Biological Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Tim J Hawkins
- School of Biosciences, Durham University, South Road, Durham DH1 3LE, UK
| | - Ian Cummins
- School of Biosciences, Durham University, South Road, Durham DH1 3LE, UK
| | - Mark D Fricker
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - Patrick J Hussey
- School of Biosciences, Durham University, South Road, Durham DH1 3LE, UK
| | - Alistair M Hetherington
- School of Biological Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Lee J Sweetlove
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| |
Collapse
|
46
|
Garibay-Hernández A, Barkla BJ, Vera-Estrella R, Martinez A, Pantoja O. Membrane Proteomic Insights into the Physiology and Taxonomy of an Oleaginous Green Microalga. PLANT PHYSIOLOGY 2017; 173:390-416. [PMID: 27837088 PMCID: PMC5210721 DOI: 10.1104/pp.16.01240] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 11/03/2016] [Indexed: 05/22/2023]
Abstract
Ettlia oleoabundans is a nonsequenced oleaginous green microalga. Despite the significant biotechnological interest in producing value-added compounds from the acyl lipids of this microalga, a basic understanding of the physiology and biochemistry of oleaginous microalgae is lacking, especially under nitrogen deprivation conditions known to trigger lipid accumulation. Using an RNA sequencing-based proteomics approach together with manual annotation, we are able to provide, to our knowledge, the first membrane proteome of an oleaginous microalga. This approach allowed the identification of novel proteins in E. oleoabundans, including two photoprotection-related proteins, Photosystem II Subunit S and Maintenance of Photosystem II under High Light1, which were considered exclusive to higher photosynthetic organisms, as well as Retinitis Pigmentosa Type 2-Clathrin Light Chain, a membrane protein with a novel domain architecture. Free-flow zonal electrophoresis of microalgal membranes coupled to liquid chromatography-tandem mass spectrometry proved to be a useful technique for determining the intracellular location of proteins of interest. Carbon-flow compartmentalization in E. oleoabundans was modeled using this information. Molecular phylogenetic analyses of protein markers and 18S ribosomal DNA support the reclassification of E. oleoabundans within the trebouxiophycean microalgae, rather than with the Chlorophyceae class, in which it is currently classified, indicating that it may not be closely related to the model green alga Chlamydomonas reinhardtii A detailed survey of biological processes taking place in the membranes of nitrogen-deprived E. oleoabundans, including lipid metabolism, provides insights into the basic biology of this nonmodel organism.
Collapse
Affiliation(s)
- Adriana Garibay-Hernández
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, 62210 Mexico (A.G.-H., R.V.-E., A.M., O.P.); and
- Southern Cross Plant Science, Southern Cross University, Lismore, 2480 New South Wales, Australia (B.J.B.)
| | - Bronwyn J Barkla
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, 62210 Mexico (A.G.-H., R.V.-E., A.M., O.P.); and
- Southern Cross Plant Science, Southern Cross University, Lismore, 2480 New South Wales, Australia (B.J.B.)
| | - Rosario Vera-Estrella
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, 62210 Mexico (A.G.-H., R.V.-E., A.M., O.P.); and
- Southern Cross Plant Science, Southern Cross University, Lismore, 2480 New South Wales, Australia (B.J.B.)
| | - Alfredo Martinez
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, 62210 Mexico (A.G.-H., R.V.-E., A.M., O.P.); and
- Southern Cross Plant Science, Southern Cross University, Lismore, 2480 New South Wales, Australia (B.J.B.)
| | - Omar Pantoja
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, 62210 Mexico (A.G.-H., R.V.-E., A.M., O.P.); and
- Southern Cross Plant Science, Southern Cross University, Lismore, 2480 New South Wales, Australia (B.J.B.)
| |
Collapse
|
47
|
Abstract
Isolation of various subcellular compartments followed by a high-coverage proteomic analysis provides an unparalleled foundation for the functional analyses of proteins. Analyses of tonoplast preparations free of major contaminants provide insights into vesicular fusion machinery, solute transport, and the vacuole association with the cytoskeleton, whereas analyses of the vacuolar lumen have yielded numerous soluble glycosidases, proteases, and proteins involved in stress responses. In addition, vacuolar lumen preparations have also allowed characterization of a luminal solute content in response to various abiotic stresses. Here, I revisit and update one of the most successful methodologies for vacuole and tonoplast isolation.
Collapse
Affiliation(s)
- Jan Zouhar
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, I.N.I.A. Parque Científico y Tecnológico, Campus de Montegancedo, 28223, Pozuelo de Alarcón, Spain.
| |
Collapse
|
48
|
Ahmad P, Abdel Latef AAH, Rasool S, Akram NA, Ashraf M, Gucel S. Role of Proteomics in Crop Stress Tolerance. FRONTIERS IN PLANT SCIENCE 2016; 7:1336. [PMID: 27660631 PMCID: PMC5014855 DOI: 10.3389/fpls.2016.01336] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 08/18/2016] [Indexed: 05/21/2023]
Abstract
Plants often experience various biotic and abiotic stresses during their life cycle. The abiotic stresses include mainly drought, salt, temperature (low/high), flooding and nutritional deficiency/excess which hamper crop growth and yield to a great extent. In view of a projection 50% of the crop loss is attributable to abiotic stresses. However, abiotic stresses cause a myriad of changes in physiological, molecular and biochemical processes operating in plants. It is now widely reported that several proteins respond to these stresses at pre- and post-transcriptional and translational levels. By knowing the role of these stress inducible proteins, it would be easy to comprehensively expound the processes of stress tolerance in plants. The proteomics study offers a new approach to discover proteins and pathways associated with crop physiological and stress responses. Thus, studying the plants at proteomic levels could help understand the pathways involved in stress tolerance. Furthermore, improving the understanding of the identified key metabolic proteins involved in tolerance can be implemented into biotechnological applications, regarding recombinant/transgenic formation. Additionally, the investigation of identified metabolic processes ultimately supports the development of antistress strategies. In this review, we discussed the role of proteomics in crop stress tolerance. We also discussed different abiotic stresses and their effects on plants, particularly with reference to stress-induced expression of proteins, and how proteomics could act as vital biotechnological tools for improving stress tolerance in plants.
Collapse
Affiliation(s)
- Parvaiz Ahmad
- Department of Botany, Sri Pratap CollegeSrinagar, India
- Department of Botany and Microbiology, King Saud UniversityRiyadh, Saudi Arabia
| | - Arafat A. H. Abdel Latef
- Department of Botany, Faculty of Science, South Valley UniversityQena, Egypt
- Department of Biology, College of Applied Medical Sciences, Taif UniversityTurubah, Saudi Arabia
| | | | - Nudrat A. Akram
- Department of Botany, Government College UniversityFaisalabad, Pakistan
| | - Muhammad Ashraf
- Department of Botany and Microbiology, King Saud UniversityRiyadh, Saudi Arabia
- Pakistan Science FoundationIslamabad, Pakistan
| | - Salih Gucel
- Centre for Environmental Research, Near East UniversityNicosia, Cyprus
| |
Collapse
|
49
|
Chiang CP, Yim WC, Sun YH, Ohnishi M, Mimura T, Cushman JC, Yen HE. Identification of Ice Plant (Mesembryanthemum crystallinum L.) MicroRNAs Using RNA-Seq and Their Putative Roles in High Salinity Responses in Seedlings. FRONTIERS IN PLANT SCIENCE 2016; 7:1143. [PMID: 27555850 PMCID: PMC4977306 DOI: 10.3389/fpls.2016.01143] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Accepted: 07/18/2016] [Indexed: 05/03/2023]
Abstract
The halophyte Mesembryanthemum crystallinum (common or crystalline ice plant) is a useful model for studying molecular mechanisms of salt tolerance. The morphology, physiology, metabolism, and gene expression of ice plant have been studied and large-scale analyses of gene expression profiling have drawn an outline of salt tolerance in ice plant. A rapid root growth to a sudden increase in salinity was observed in ice plant seedlings. Using a fluorescent dye to detect Na(+), we found that ice plant roots respond to an increased flux of Na(+) by either secreting or storing Na(+) in specialized cells. High-throughput sequencing was used to identify small RNA profiles in 3-day-old seedlings treated with or without 200 mM NaCl. In total, 135 conserved miRNAs belonging to 21 families were found. The hairpin precursor of 19 conserved mcr-miRNAs and 12 novel mcr-miRNAs were identified. After 6 h of salt stress, the expression of most mcr-miRNAs showed decreased relative abundance, whereas the expression of their corresponding target genes showed increased mRNA relative abundance. The cognate target genes are involved in a broad range of biological processes: transcription factors that regulate growth and development, enzymes that catalyze miRNA biogenesis for the most conserved mcr-miRNA, and proteins that are involved in ion homeostasis and drought-stress responses for some novel mcr-miRNAs. Analyses of the functions of target genes revealed that cellular processes, including growth and development, metabolism, and ion transport activity are likely to be enhanced in roots under salt stress. The expression of eleven conserved miRNAs and two novel miRNAs were correlated reciprocally with predicted targets within hours after salt stress exposure. Several conserved miRNAs have been known to regulate root elongation, root apical meristem activity, and lateral root formation. Based upon the expression pattern of miRNA and target genes in combination with the observation of Na(+) distribution, ice plant likely responds to increased salinity by using Na(+) as an osmoticum for cell expansion and guard cell opening. Excessive Na(+) could either be secreted through the root epidermis or stored in specialized leaf epidermal cells. These responses are regulated in part at the miRNA-mediated post-transcriptional level.
Collapse
Affiliation(s)
- Chih-Pin Chiang
- Department of Life Sciences, National Chung Hsing UniversityTaichung, Taiwan
| | - Won C. Yim
- Department of Biochemistry and Molecular Biology, University of NevadaReno, NV, USA
| | - Ying-Hsuan Sun
- Department of Forestry, National Chung Hsing UniversityTaichung, Taiwan
| | - Miwa Ohnishi
- Graduate School of Science, Kobe UniversityKobe, Japan
| | | | - John C. Cushman
- Department of Biochemistry and Molecular Biology, University of NevadaReno, NV, USA
| | - Hungchen E. Yen
- Department of Life Sciences, National Chung Hsing UniversityTaichung, Taiwan
| |
Collapse
|
50
|
Maršálová L, Vítámvás P, Hynek R, Prášil IT, Kosová K. Proteomic Response of Hordeum vulgare cv. Tadmor and Hordeum marinum to Salinity Stress: Similarities and Differences between a Glycophyte and a Halophyte. FRONTIERS IN PLANT SCIENCE 2016; 7:1154. [PMID: 27536311 PMCID: PMC4971088 DOI: 10.3389/fpls.2016.01154] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 07/19/2016] [Indexed: 05/29/2023]
Abstract
Response to a high salinity treatment of 300 mM NaCl was studied in a cultivated barley Hordeum vulgare Syrian cultivar Tadmor and in a halophytic wild barley H. marinum. Differential salinity tolerance of H. marinum and H. vulgare is underlied by qualitative and quantitative differences in proteins involved in a variety of biological processes. The major aim was to identify proteins underlying differential salinity tolerance between the two barley species. Analyses of plant water content, osmotic potential and accumulation of proline and dehydrin proteins under high salinity revealed a relatively higher water saturation deficit in H. marinum than in H. vulgare while H. vulgare had lower osmotic potential corresponding with high levels of proline and dehydrins. Analysis of proteins soluble upon boiling isolated from control and salt-treated crown tissues revealed similarities as well as differences between H. marinum and H. vulgare. The similar salinity responses of both barley species lie in enhanced levels of stress-protective proteins such as defense-related proteins from late-embryogenesis abundant family, several chaperones from heat shock protein family, and others such as GrpE. However, there have also been found significant differences between H. marinum and H. vulgare salinity response indicating an active stress acclimation in H. marinum while stress damage in H. vulgare. An active acclimation to high salinity in H. marinum is underlined by enhanced levels of several stress-responsive transcription factors from basic leucine zipper and nascent polypeptide-associated complex families. In salt-treated H. marinum, enhanced levels of proteins involved in energy metabolism such as glycolysis, ATP metabolism, and photosynthesis-related proteins indicate an active acclimation to enhanced energy requirements during an establishment of novel plant homeostasis. In contrast, changes at proteome level in salt-treated H. vulgare indicate plant tissue damage as revealed by enhanced levels of proteins involved in proteasome-dependent protein degradation and proteins related to apoptosis. The results of proteomic analysis clearly indicate differential responses to high salinity and provide more profound insight into biological mechanisms underlying salinity response between two barley species with contrasting salinity tolerance.
Collapse
Affiliation(s)
- Lucie Maršálová
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and TechnologyPrague, Czech Republic
| | - Pavel Vítámvás
- Laboratory of Plant Stress Biology and Biotechnology, Division of Crop Genetics and Breeding, Crop Research InstitutePrague, Czech Republic
| | - Radovan Hynek
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and TechnologyPrague, Czech Republic
| | - Ilja T. Prášil
- Laboratory of Plant Stress Biology and Biotechnology, Division of Crop Genetics and Breeding, Crop Research InstitutePrague, Czech Republic
| | - Klára Kosová
- Laboratory of Plant Stress Biology and Biotechnology, Division of Crop Genetics and Breeding, Crop Research InstitutePrague, Czech Republic
| |
Collapse
|