1
|
Naveen S, Balachandar D. Extracellular polymeric substances of plant-growth-promoting rhizobacteria modulate the positive plant-soil feedback in maize via soil conditioning. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 975:179256. [PMID: 40157035 DOI: 10.1016/j.scitotenv.2025.179256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/21/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
This study investigates the role of plant-growth-promoting rhizobacteria (PGPR) in plant-soil feedback (PSF), which is often negative in agriculture due to monocropping and poor soil management. While PGPR enhance soil health and crop productivity, their influence on PSF remains underexplored. The study examines two PGPR strains isolated from the rice rhizoplane: Aeromonas hydrophila QS74, a high-extracellular polymeric substances (EPS)-producing strain, and A. hydrophila QSRB5, a low-EPS-producing strain, to assess their role in PGPR-mediated positive PSF. An in vitro experiment evaluated bacterial growth, biofilm formation, and EPS production using synthetic, rice, and maize root exudates as sole carbon sources. A microcosm study assessed PGPR effects on soil properties, followed by a pot culture experiment to evaluate maize growth under PSF conditions. Results revealed that root exudates significantly promoted QS74 growth, biofilm formation, and EPS production compared to QSRB5. Soil inoculation with QS74 and root exudates enhanced soil organic carbon, microbial biomass, labile carbon, and dehydrogenase activity and aggregate stability indices, primarily due to increased EPS production. During soil conditioning stage of PSF, QS74 outperformed QSRB5 and uninoculated control by enhancing nutrient availability, soil biology and aggregate stability, leading to enhanced crop growth, nutrient uptake, and soil health in subsequent crop. This study demonstrates that EPS produced by PGPR facilitates the effective utilization of root exudate carbon during colonization, enriches the soil carbon and nutrients reservoir, enhances nutrient availability and positively influences the subsequent crop growth through plant-soil feedback. Furthermore, it provides a framework for evaluating PGPR-mediated positive PSF in agriculture.
Collapse
Affiliation(s)
- Shanmugam Naveen
- Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore 641003, India
| | - Dananjeyan Balachandar
- Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore 641003, India.
| |
Collapse
|
2
|
Wang H, Crowther TW, Isobe K, Wang H, Tateno R, Shi W. Niche Conservatism and Community Assembly Reveal Microbial Community Divergent Succession Between Litter and Topsoil. Mol Ecol 2025; 34:e17723. [PMID: 40109239 DOI: 10.1111/mec.17723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 02/18/2025] [Accepted: 03/03/2025] [Indexed: 03/22/2025]
Abstract
Natural restoration is an effective approach for restoring degraded ecosystems, yet the successional patterns and assembly mechanisms of aboveground (litter layer) and belowground (topsoil) microbial communities remain poorly understood. We applied the niche conservatism framework to investigate niche partitioning, successional patterns and community assembly processes of microbial communities in the litter and topsoil layers during long-term vegetation restoration in southwestern China. The results showed that, during vegetation succession, the potential source communities of microbial communities in the litter layer gradually shifted from being dominated by the topsoil to being dominated by the litter. Fungal communities had a significantly higher proportion of external immigrants (> 80%) than bacteria (> 40%) and archaea (< 20%). During succession, bacterial and fungal communities in the litter and topsoil layers underwent niche differentiation, displaying a divergent succession pattern, while archaeal communities showed niche overlap, following a convergent pattern driven by stochastic processes. Additionally, the dispersal rate (m) and β-diversity turnover rate (slope) of bacterial and fungal species in the litter were significantly lower than in the topsoil, with community assembly being more influenced by deterministic processes in the litter. This study reveals that higher habitat specialisation in the litter imposes stronger filtering effects on the colonisation of most microbial groups, particularly fungal communities, highlighting the role of strategy differentiation in shaping microbial communities.
Collapse
Affiliation(s)
- Haocai Wang
- Chongqing Jinfo Mountain Karst Ecosystem National Observation and Research Station, School of Geographical Sciences, Southwest University, Chongqing, China
| | - Thomas W Crowther
- Department of Environment Systems Science, Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
| | - Kazuo Isobe
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Hang Wang
- Dianchi Lake Ecosystem Observation and Research Station of Yunnan Province, Kunming, China
| | - Ryunosuke Tateno
- Filed Science Education and Research Center, Kyoto University, Kyoto, Japan
| | - Weiyu Shi
- Chongqing Jinfo Mountain Karst Ecosystem National Observation and Research Station, School of Geographical Sciences, Southwest University, Chongqing, China
| |
Collapse
|
3
|
Brunn M, Mueller CW, Chari NR, Meier IC, Obersteiner S, Phillips RP, Taylor B, Tumber-Dávila SJ, Ullah S, Klein T. Tree carbon allocation to root exudates: implications for carbon budgets, soil sequestration and drought response. TREE PHYSIOLOGY 2025; 45:tpaf026. [PMID: 40037284 DOI: 10.1093/treephys/tpaf026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/07/2025] [Accepted: 02/23/2025] [Indexed: 03/06/2025]
Abstract
Root carbon (C) exudation plays a central role in nutrient acquisition, microbially mediated organic matter decomposition and many other critical ecosystem processes. While it is well known that roots respond strongly to belowground resources, we have a limited quantitative understanding about C allocation to exudates and its fate in soil under changing water availability. This review synthesizes the importance of exudate C fluxes, summarizes studies quantifying mass-specific exudation rate (SER), total exudation rate (TER) and root exudate fraction (REF; the proportion of TER in a plant's C allocation), examines drought effects and highlights key research priorities to advance the understanding of C allocation to exudates in forest ecosystems. On average, SER is often <1 mg C gdry root-1 day-1, TER is 3.8 Pg C year-1 and REF varies between 1 and 17% of net primary production. Spatiotemporal variations in exudation, including seasonal and daily patterns and subsoil exudation, remain critical knowledge gaps. We show that many studies report a 1.2- to 11-fold increase in SER and REF in response to drought. However, TER often remains unchanged, suggesting that absolute exudate C inputs to the soil may stay constant under drought conditions. Disentangling the individual impacts of soil and air drought as well as drought legacy impacts on ecosystem C dynamics are overlooked aspects. By estimating the differences in rhizosphere formation and exudation across various forest biomes, we find that exudate-affected soil volumes are highest in tropical forests and lowest in boreal forests. While current research emphasizes significant C allocation from the canopy to soil via exudates, understanding exudation dynamics and biome-specific responses to drought by using standardized protocols is essential. Expanding these insights is critical for comprehending the role of root exudates in soil organic matter formation, ecosystem resilience and adaptation to climate change.
Collapse
Affiliation(s)
- Melanie Brunn
- IES, Institute for Environmental Sciences, University of Kaiserslautern-Landau (RPTU), Fortstraße 7, 76829 Landau, Germany
- IfIN, Institute for Integrated Natural Sciences, Universität Koblenz, Universitätsstraße 1, 56070 Koblenz, Germany
| | - Carsten W Mueller
- Institute of Ecology, Chair of Soil Science, Technische Universität Berlin, Ernst-Reuter-Platz 1, 10587 Berlin, Germany
- Department for Geosciences and Natural Resource Management, University of Copenhagen, Øster Voldgade 10, 1350 København K, Copenhagen, Denmark
| | - Nikhil R Chari
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford St., Cambridge, MA, USA
| | - Ina C Meier
- Functional Forest Ecology, Universität Hamburg, Ohnhorststraße 18, 22609 Hamburg, Hamburg, Germany
| | - Sophie Obersteiner
- Department of Plant and Environmental Sciences, Nella and Leon Benoziyo Building for Biological Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Richard P Phillips
- Department of Biology, Indiana University, 1001 E. Third St., Bloomington, IN 47405, USA
| | - Benton Taylor
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford St., Cambridge, MA, USA
| | - Shersingh Joseph Tumber-Dávila
- Department of Environmental Studies, Dartmouth College, 38 College St, Hanover, NH 03755, USA
- Harvard Forest, Harvard University, 324 North Main Street, Petersham, MA 01366-9504, USA
| | - Sami Ullah
- School of Geography, Earth and Environmental Sciences & Birmingham Institute of Forest Research, University of Birmingham, Edgbaston, B15 2TT, Birmingham, UK
| | - Tamir Klein
- Department of Plant and Environmental Sciences, Nella and Leon Benoziyo Building for Biological Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
4
|
Kural-Rendon C, Ford NE, Hooser K, Wagner MR. Intraspecific plant-soil feedbacks alter root traits in a perennial grass. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.11.642669. [PMID: 40161764 PMCID: PMC11952404 DOI: 10.1101/2025.03.11.642669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Drought is a common stressor faced by plants and their associated microbiomes. Projected climate data point toward an increase in the severity and frequency of extreme precipitation events, such as drought. Previous research has shown that long-term exposure to drought can shape plants' genomes, resulting in genetic variation for drought tolerance. We hypothesized that these genetic changes also affect patterns of microbial colonization in the rhizosphere, potentially feeding back to influence plant drought responses. Here, we tested 33 rhizosphere soils conditioned by 33 genotypes of Tripsacum dactyloides (eastern gamagrass) that originated from native populations across a precipitation gradient in the southern plains of the United States. We used these 33 rhizosphere soils as inocula for a fully factorial experiment to test the responses of conspecific plants to the differentially conditioned soils under drought or well-watered conditions. Variation in aboveground traits such as shoot length, weight, and root-to-shoot ratios was primarily explained by watering treatment. However, many belowground traits, such as root anatomical and architectural traits, were more likely to be affected by the genotype of the conditioning plant. Of the traits we measured, only aerenchyma area was affected by the interaction between current watering treatment and genotype of the conditioning plant. Ultimately, both the current watering treatment and conditioning plant genotype altered plant physiological traits and the associated microbiome. The differential intraspecies plant-soil feedback dynamics driven by plant local adaptation will be key to understanding future plants' responses to rapidly shifting climates, in both restoration projects and agricultural systems.
Collapse
|
5
|
Zhang C, Zhu T, Nielsen UN, Wright IJ, Li N, Chen X, Liu M. An integrated fast-slow plant and nematode economics spectrum predicts soil organic carbon dynamics during natural restoration. THE NEW PHYTOLOGIST 2025; 245:2467-2479. [PMID: 39364765 DOI: 10.1111/nph.20166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/14/2024] [Indexed: 10/05/2024]
Abstract
Aboveground and belowground attributes of terrestrial ecosystems interact to shape carbon (C) cycling. However, plants and soil organisms are usually studied separately, leading to a knowledge gap regarding their coordinated contributions to ecosystem C cycling. We explored whether integrated consideration of plant and nematode traits better explained soil organic C (SOC) dynamics than plant or nematode traits considered separately. Our study system was a space-for-time natural restoration chronosequence following agricultural abandonment in a subtropical region, with pioneer, early, mid and climax stages. We identified an integrated fast-slow trait spectrum encompassing plants and nematodes, demonstrating coordinated shifts from fast strategies in the pioneer stage to slow strategies in the climax stage, corresponding to enhanced SOC dynamics. Joint consideration of plant and nematode traits explained more variation in SOC than by either group alone. Structural equation modeling revealed that the integrated fast-slow trait spectrum influenced SOC through its regulation of microbial traits, including microbial C use efficiency and microbial biomass. Our findings confirm the pivotal role of plant-nematode trait coordination in modulating ecosystem C cycling and highlight the value of incorporating belowground traits into biogeochemical cycling under global change scenarios.
Collapse
Affiliation(s)
- Chongzhe Zhang
- Centre for Grassland Microbiome, State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu, 730000, China
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2751, Australia
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Tongbin Zhu
- Key Laboratory of Karst Dynamics, MLR & Guangxi, Institute of Karst Geology, Chinese Academy of Geological Sciences, Guilin, 541004, China
| | - Uffe N Nielsen
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Ian J Wright
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2751, Australia
- Australian Research Council Centre for Plant Success in Nature & Agriculture, Western Sydney University, Richmond, NSW, 2753, Australia
- School of Natural Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Na Li
- Centre for Grassland Microbiome, State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu, 730000, China
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaoyun Chen
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Manqiang Liu
- Centre for Grassland Microbiome, State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu, 730000, China
| |
Collapse
|
6
|
Peddle SD, Hodgson RJ, Borrett RJ, Brachmann S, Davies TC, Erickson TE, Liddicoat C, Muñoz‐Rojas M, Robinson JM, Watson CD, Krauss SL, Breed MF. Practical applications of soil microbiota to improve ecosystem restoration: current knowledge and future directions. Biol Rev Camb Philos Soc 2025; 100:1-18. [PMID: 39075839 PMCID: PMC11718600 DOI: 10.1111/brv.13124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/11/2024] [Accepted: 07/16/2024] [Indexed: 07/31/2024]
Abstract
Soil microbiota are important components of healthy ecosystems. Greater consideration of soil microbiota in the restoration of biodiverse, functional, and resilient ecosystems is required to address the twin global crises of biodiversity decline and climate change. In this review, we discuss available and emerging practical applications of soil microbiota into (i) restoration planning, (ii) direct interventions for shaping soil biodiversity, and (iii) strategies for monitoring and predicting restoration trajectories. We show how better planning of restoration activities to account for soil microbiota can help improve progress towards restoration targets. We show how planning to embed soil microbiota experiments into restoration projects will permit a more rigorous assessment of the effectiveness of different restoration methods, especially when complemented by statistical modelling approaches that capitalise on existing data sets to improve causal understandings and prioritise research strategies where appropriate. In addition to recovering belowground microbiota, restoration strategies that include soil microbiota can improve the resilience of whole ecosystems. Fundamentally, restoration planning should identify appropriate reference target ecosystem attributes and - from the perspective of soil microbiota - comprehensibly consider potential physical, chemical and biological influences on recovery. We identify that inoculating ecologically appropriate soil microbiota into degraded environments can support a range of restoration interventions (e.g. targeted, broad-spectrum and cultured inoculations) with promising results. Such inoculations however are currently underutilised and knowledge gaps persist surrounding successful establishment in light of community dynamics, including priority effects and community coalescence. We show how the ecological trajectories of restoration sites can be assessed by characterising microbial diversity, composition, and functions in the soil. Ultimately, we highlight practical ways to apply the soil microbiota toolbox across the planning, intervention, and monitoring stages of ecosystem restoration and address persistent open questions at each stage. With continued collaborations between researchers and practitioners to address knowledge gaps, these approaches can improve current restoration practices and ecological outcomes.
Collapse
Affiliation(s)
- Shawn D. Peddle
- College of Science and EngineeringFlinders UniversitySturt RoadBedford ParkSouth Australia5042Australia
| | - Riley J. Hodgson
- College of Science and EngineeringFlinders UniversitySturt RoadBedford ParkSouth Australia5042Australia
| | - Ryan J. Borrett
- SoilsWest, Centre for Sustainable Farming Systems, Food Futures InstituteMurdoch University90 South StreetMurdochWestern Australia6150Australia
| | - Stella Brachmann
- University of Waikato Te Whare Wananga o Waikato Gate 1Knighton RoadHamilton3240New Zealand
| | - Tarryn C. Davies
- College of Science and EngineeringFlinders UniversitySturt RoadBedford ParkSouth Australia5042Australia
| | - Todd E. Erickson
- Department of Biodiversity, Conservation and AttractionsKings Park ScienceKattidj CloseKings ParkWestern Australia6005Australia
- Centre for Engineering Innovation, School of Agriculture and EnvironmentThe University of Western AustraliaStirling HighwayCrawleyWestern Australia6009Australia
| | - Craig Liddicoat
- College of Science and EngineeringFlinders UniversitySturt RoadBedford ParkSouth Australia5042Australia
| | - Miriam Muñoz‐Rojas
- Department of Plant Biology and EcologyUniversity of SevilleC. San FernandoSevillaSpain
- School of Biological, Earth and Environmental Sciences, Centre for Ecosystem ScienceUniversity of New South WalesSydneyNew South Wales2052Australia
| | - Jake M. Robinson
- College of Science and EngineeringFlinders UniversitySturt RoadBedford ParkSouth Australia5042Australia
| | - Carl D. Watson
- College of Science and EngineeringFlinders UniversitySturt RoadBedford ParkSouth Australia5042Australia
| | - Siegfried L. Krauss
- Department of Biodiversity, Conservation and AttractionsKings Park ScienceKattidj CloseKings ParkWestern Australia6005Australia
- School of Biological SciencesThe University of Western AustraliaStirling HighwayCrawleyWestern Australia6009Australia
| | - Martin F. Breed
- College of Science and EngineeringFlinders UniversitySturt RoadBedford ParkSouth Australia5042Australia
| |
Collapse
|
7
|
Eck JL, Hernández Hassan L, Comita LS. Intraspecific plant-soil feedback in four tropical tree species is inconsistent in a field experiment. AMERICAN JOURNAL OF BOTANY 2024; 111:e16331. [PMID: 38750661 PMCID: PMC11659945 DOI: 10.1002/ajb2.16331] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 12/21/2024]
Abstract
PREMISE Soil microbes can influence patterns of diversity in plant communities via plant-soil feedbacks. Intraspecific plant-soil feedbacks occur when plant genotype leads to variations in soil microbial composition, resulting in differences in the performance of seedlings growing near their maternal plants versus seedlings growing near nonmaternal conspecific plants. How consistently such intraspecific plant-soil feedbacks occur in natural plant communities is unclear, especially in variable field conditions. METHODS In an in situ experiment with four native tree species on Barro Colorado Island (BCI), Panama, seedlings of each species were transplanted beneath their maternal tree or another conspecific tree in the BCI forest. Mortality and growth were assessed at the end of the wet season (~4 months post-transplant) and at the end of the experiment (~7 months post-transplant). RESULTS Differences in seedling performance among field treatments were inconsistent among species and eroded over time. Effects of field environment were detected at the end of the wet season in two of the four species: Virola surinamensis seedlings had higher survival beneath their maternal tree than other conspecific trees, while seedling survival of Ormosia macrocalyx was higher under other conspecific trees. However, these differences were gone by the end of the experiment. CONCLUSIONS Our results suggest that intraspecific plant-soil feedbacks may not be consistent in the field for tropical tree species and may have a limited role in determining seedling performance in tropical tree communities. Future studies are needed to elucidate the environmental and genetic factors that determine the incidence and direction of intraspecific plant-soil feedbacks in plant communities.
Collapse
Affiliation(s)
- Jenalle L. Eck
- Yale School of the Environment195 Prospect St.New Haven06511CTUSA
- Smithsonian Tropical Research InstituteLuis Clement Ave., Bldg Tupper 401AnconPanamaRepublic of Panama
- Department of Evolution, Ecology and Organismal BiologyThe Ohio State University318 W. 12th Ave., 300 Aronoff LaboratoryColumbus43210OHUSA
- Department of BotanyUniversity of TartuJ. Liivi 2Tartu50409Estonia
| | - Lourdes Hernández Hassan
- Smithsonian Tropical Research InstituteLuis Clement Ave., Bldg Tupper 401AnconPanamaRepublic of Panama
| | - Liza S. Comita
- Yale School of the Environment195 Prospect St.New Haven06511CTUSA
- Smithsonian Tropical Research InstituteLuis Clement Ave., Bldg Tupper 401AnconPanamaRepublic of Panama
| |
Collapse
|
8
|
Zhang P, Zhou J, He D, Yang Y, Lu Z, Yang C, Zhang D, Li F, Wang J. From Flourish to Nourish: Cultivating Soil Health for Sustainable Floriculture. PLANTS (BASEL, SWITZERLAND) 2024; 13:3055. [PMID: 39519989 PMCID: PMC11548209 DOI: 10.3390/plants13213055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/11/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024]
Abstract
Despite its rapid growth and economic success, the sustainability of the floriculture industry as it is presently conducted is debatable, due to the huge environmental impacts it initiates and incurs. Achieving sustainability requires joint efforts from all stakeholders, a fact that is often neglected in discussions that frequently focus upon economically driven management concerns. This review attempts to raise awareness and collective responsibility among the key practitioners in floriculture by discussing its sustainability in the context of soil health, as soil is the foundation of agriculture systems. Major challenges posed to soil health arise from soil acidification and salinization stimulated by the abusive use of fertilizers. The poisoning of soil biota by pesticide residues and plastic debris due to the excessive application of pesticides and disposal of plastics is another significant issue and concern. The consequence of continuous cropping obstacles are further elucidated by the concept of plant-soil feedback. Based on these challenges, we propose the adoption and implementation of several sustainable practices including breeding stress-resistant and nutrient-efficient cultivars, making sustainable soil management a goal of floriculture production, and the recycling of plastics to overcome and mitigate the decline in soil health. The problems created by flower waste materials are highlighted and efficient treatment by biochar synthesis is suggested. We acknowledge the complexity of developing and implementing the proposed practices in floriculture as there is limited collaboration among the research and operational communities, and the policymakers. Additional research examining the impacts the floriculture industry has upon soils is needed to develop more sustainable production practices that can help resolve the current threats and to bridge the understanding gap between researchers and stakeholders in floriculture.
Collapse
Affiliation(s)
- Peihua Zhang
- Key Laboratory for Flower Breeding of Yunnan Province, Floriculture Research Institute, Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Kunming 650200, China; (Z.L.); (C.Y.)
- Yunnan Seed Laboratory, Kunming 650200, China
- International Agricultural Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650200, China
| | - Jie Zhou
- School of Agriculture, Yunnan University, Kunming 650200, China; (J.Z.); (D.H.); (Y.Y.)
| | - Di He
- School of Agriculture, Yunnan University, Kunming 650200, China; (J.Z.); (D.H.); (Y.Y.)
| | - Yiran Yang
- School of Agriculture, Yunnan University, Kunming 650200, China; (J.Z.); (D.H.); (Y.Y.)
| | - Zhenhong Lu
- Key Laboratory for Flower Breeding of Yunnan Province, Floriculture Research Institute, Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Kunming 650200, China; (Z.L.); (C.Y.)
| | - Chunmei Yang
- Key Laboratory for Flower Breeding of Yunnan Province, Floriculture Research Institute, Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Kunming 650200, China; (Z.L.); (C.Y.)
| | - Dongdong Zhang
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China;
| | - Fan Li
- Key Laboratory for Flower Breeding of Yunnan Province, Floriculture Research Institute, Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Kunming 650200, China; (Z.L.); (C.Y.)
- Yunnan Seed Laboratory, Kunming 650200, China
| | - Jihua Wang
- Key Laboratory for Flower Breeding of Yunnan Province, Floriculture Research Institute, Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Kunming 650200, China; (Z.L.); (C.Y.)
- Yunnan Seed Laboratory, Kunming 650200, China
| |
Collapse
|
9
|
Caravaca F, Torres P, Díaz G, Roldán A. Selective shifts in the rhizosphere microbiome during the drought season could explain the success of the invader Nicotiana glauca in semiarid ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174444. [PMID: 38964394 DOI: 10.1016/j.scitotenv.2024.174444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/28/2024] [Accepted: 06/30/2024] [Indexed: 07/06/2024]
Abstract
The rhizosphere microbiome plays a crucial role in the ability of plants to colonize and thrive in stressful conditions such as drought, which could be decisive for the success of exotic plant invasion in the context of global climate change. The aim of this investigation was to examine differences in the composition, structure, and functional traits of the microbial community of the invader Nicotiana glauca R.C. Graham and native species growing at seven different Mediterranean semiarid locations under two distinct levels of water availability, corresponding to the wet and dry seasons. The results show that the phylum Actinobacteriota was an indicator phylum of the dry season as well as for the community of N. glauca. The dominant indicator bacterial families of the dry season were 67-14 (unclassified family), Pseudonocardiaceae, and Sphingomonadaceae, being relatively more abundant in the invasive rhizosphere. The relative abundances of the indicator fungal families Aspergillaceae (particularly the indicator genus Aspergillus), Glomeraceae, and Claroideoglomeraceae were higher in the invasive rhizosphere. The relative abundance of mycorrhizal fungi was higher in the invasive rhizosphere in the dry season (by about 40 % in comparison to that of native plants), without significant differences between invasive and native plants in the wet season. Bacterial potential functional traits related to energy and precursor metabolites production and also biosynthesis of cell wall, cofactors, vitamins, and amino acids as well as catabolic enzymes involved in the P cycle prevailed in the invasive rhizosphere under drought conditions. This study shows that the pronounced and beneficial shifts in the microbiome assembly and functions in the rhizosphere of N. glauca under conditions of low soil water availability can represent a clear advantage for its establishment.
Collapse
Affiliation(s)
- F Caravaca
- CSIC-Centro de Edafología y Biología Aplicada del Segura, Department of Soil and Water Conservation, P.O. Box 164, Campus de Espinardo 30100, Murcia, Spain.
| | - P Torres
- Universidad Miguel Hernández de Elche, Department of Applied Biology, Avda. Ferrocarril, s/n. Edf. Laboratorios-03202-Elche, Alicante, Spain
| | - G Díaz
- Universidad Miguel Hernández de Elche, Department of Applied Biology, Avda. Ferrocarril, s/n. Edf. Laboratorios-03202-Elche, Alicante, Spain
| | - A Roldán
- CSIC-Centro de Edafología y Biología Aplicada del Segura, Department of Soil and Water Conservation, P.O. Box 164, Campus de Espinardo 30100, Murcia, Spain
| |
Collapse
|
10
|
Marquardt T, Kaczmarek S, Niedbała W. Distribution of euptyctimous mite Phthiracarus longulus (Acari: Oribatida) under future climate change in the Palearctic. Sci Rep 2024; 14:21913. [PMID: 39300195 DOI: 10.1038/s41598-024-72852-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024] Open
Abstract
The aim of this paper is to prepare, describe and discuss the models of the current and future distribution of Phthiracarus longulus (Koch, 1841) (Acari: Oribatida: Euptyctima), the oribatid mite species widely distributed within the Palearctic. We used the maximum entropy (MAXENT) method to predict its current and future (until the year 2100) distribution based on macroclimatic bio-variables. To our best knowledge, this is the first-ever prediction of distribution in mite species using environmental niche modelling. The main thermal variables that shape the current distribution of P. longulus are the temperature annual range, mean temperature of the coldest quarter and the annual mean temperature, while for precipitation variables the most important is precipitation of the driest quarter. Regardless of the climatic change scenario (SSP1-2.6, SSP2-4.5, SSP5-8.5) our models show generally the northward shift of species range, and in Southern Europe the loss of most habitats with parallel upslope shift. According to our current model, the most of suitable habitats for P. longulus are located in the European part of Palearctic. In general, the species range is mostly affected in Europe. The most stable areas of P. longulus distribution were the Jutland with surrounding southern coasts of Scandinavia, islands of the Danish Straits and the region of Trondheim Fjord.
Collapse
Affiliation(s)
- Tomasz Marquardt
- Department of Evolutionary Biology, Faculty of Biological Sciences, Kazimierz Wielki University, Bydgoszcz, Poland.
| | - Sławomir Kaczmarek
- Department of Evolutionary Biology, Faculty of Biological Sciences, Kazimierz Wielki University, Bydgoszcz, Poland
| | - Wojciech Niedbała
- Department of Animal Taxonomy and Ecology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
11
|
Angelotti F, Hamada E, Bettiol W. A Comprehensive Review of Climate Change and Plant Diseases in Brazil. PLANTS (BASEL, SWITZERLAND) 2024; 13:2447. [PMID: 39273931 PMCID: PMC11396851 DOI: 10.3390/plants13172447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/07/2024] [Accepted: 07/30/2024] [Indexed: 09/15/2024]
Abstract
Analyzing the impacts of climate change on phytosanitary problems in Brazil is crucial due to the country's special role in global food security as one of the largest producers of essential commodities. This review focuses on the effects of climate change on plant diseases and discusses its main challenges in light of Brazil's diverse agricultural landscape. To assess the risk of diseases caused by fungi, bacteria, viruses, oomycetes, nematodes, and spiroplasms, we surveyed 304 pathosystems across 32 crops of economic importance from 2005 to 2022. Results show that diseases caused by fungi account for 79% of the pathosystems evaluated. Predicting the occurrence of diseases in a changing climate is a complex challenge, and the continuity of this work is strategic for Brazil's agricultural defense. The future risk scenarios analyzed here aim to help guide disease mitigation for cropping systems. Despite substantial progress and ongoing efforts, further research will be needed to effectively prevent economic and environmental damage.
Collapse
Affiliation(s)
- Francislene Angelotti
- Embrapa Semi-Arid, Brazilian Agricultural Research Corporation, Petrolina 56302-970, Brazil
| | - Emília Hamada
- Embrapa Environment, Brazilian Agricultural Research Corporation, Jaguariúna 13918-110, Brazil
| | - Wagner Bettiol
- Embrapa Environment, Brazilian Agricultural Research Corporation, Jaguariúna 13918-110, Brazil
| |
Collapse
|
12
|
Liddicoat C, Edwards RA, Roach M, Robinson JM, Wallace KJ, Barnes AD, Brame J, Heintz-Buschart A, Cavagnaro TR, Dinsdale EA, Doane MP, Eisenhauer N, Mitchell G, Rai B, Ramesh SA, Breed MF. Bioenergetic mapping of 'healthy microbiomes' via compound processing potential imprinted in gut and soil metagenomes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 940:173543. [PMID: 38821286 DOI: 10.1016/j.scitotenv.2024.173543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/24/2024] [Accepted: 05/24/2024] [Indexed: 06/02/2024]
Abstract
Despite mounting evidence of their importance in human health and ecosystem functioning, the definition and measurement of 'healthy microbiomes' remain unclear. More advanced knowledge exists on health associations for compounds used or produced by microbes. Environmental microbiome exposures (especially via soils) also help shape, and may supplement, the functional capacity of human microbiomes. Given the synchronous interaction between microbes, their feedstocks, and micro-environments, with functional genes facilitating chemical transformations, our objective was to examine microbiomes in terms of their capacity to process compounds relevant to human health. Here we integrate functional genomics and biochemistry frameworks to derive new quantitative measures of in silico potential for human gut and environmental soil metagenomes to process a panel of major compound classes (e.g., lipids, carbohydrates) and selected biomolecules (e.g., vitamins, short-chain fatty acids) linked to human health. Metagenome functional potential profile data were translated into a universal compound mapping 'landscape' based on bioenergetic van Krevelen mapping of function-level meta-compounds and corresponding functional relative abundances, reflecting imprinted genetic capacity of microbiomes to metabolize an array of different compounds. We show that measures of 'compound processing potential' associated with human health and disease (examining atherosclerotic cardiovascular disease, colorectal cancer, type 2 diabetes and anxious-depressive behavior case studies), and displayed seemingly predictable shifts along gradients of ecological disturbance in plant-soil ecosystems (three case studies). Ecosystem quality explained 60-92 % of variation in soil metagenome compound processing potential measures in a post-mining restoration case study dataset. With growing knowledge of the varying proficiency of environmental microbiota to process human health associated compounds, we might design environmental interventions or nature prescriptions to modulate our exposures, thereby advancing microbiota-oriented approaches to human health. Compound processing potential offers a simplified, integrative approach for applying metagenomics in ongoing efforts to understand and quantify the role of microbiota in environmental- and human-health.
Collapse
Affiliation(s)
- Craig Liddicoat
- College of Science and Engineering, Flinders University, Bedford Park, South Australia, Australia.
| | - Robert A Edwards
- College of Science and Engineering, Flinders University, Bedford Park, South Australia, Australia
| | - Michael Roach
- College of Science and Engineering, Flinders University, Bedford Park, South Australia, Australia
| | - Jake M Robinson
- College of Science and Engineering, Flinders University, Bedford Park, South Australia, Australia
| | - Kiri Joy Wallace
- Environmental Research Institute, University of Waikato, Hamilton, Aotearoa, New Zealand
| | - Andrew D Barnes
- Environmental Research Institute, University of Waikato, Hamilton, Aotearoa, New Zealand
| | - Joel Brame
- College of Science and Engineering, Flinders University, Bedford Park, South Australia, Australia
| | - Anna Heintz-Buschart
- Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, the Netherlands
| | - Timothy R Cavagnaro
- College of Science and Engineering, Flinders University, Bedford Park, South Australia, Australia
| | - Elizabeth A Dinsdale
- College of Science and Engineering, Flinders University, Bedford Park, South Australia, Australia
| | - Michael P Doane
- College of Science and Engineering, Flinders University, Bedford Park, South Australia, Australia
| | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv), 04103 Leipzig, Germany; Institute of Biology, Leipzig University, 04103 Leipzig, Germany
| | - Grace Mitchell
- Environmental Research Institute, University of Waikato, Hamilton, Aotearoa, New Zealand; Manaaki Whenua - Landcare Research, Hamilton, Aotearoa, New Zealand
| | - Bibishan Rai
- Environmental Research Institute, University of Waikato, Hamilton, Aotearoa, New Zealand
| | - Sunita A Ramesh
- College of Science and Engineering, Flinders University, Bedford Park, South Australia, Australia
| | - Martin F Breed
- College of Science and Engineering, Flinders University, Bedford Park, South Australia, Australia
| |
Collapse
|
13
|
Moss WE, Crausbay SD, Rangwala I, Wason JW, Trauernicht C, Stevens-Rumann CS, Sala A, Rottler CM, Pederson GT, Miller BW, Magness DR, Littell JS, Frelich LE, Frazier AG, Davis KT, Coop JD, Cartwright JM, Booth RK. Drought as an emergent driver of ecological transformation in the twenty-first century. Bioscience 2024; 74:524-538. [PMID: 39872081 PMCID: PMC11770345 DOI: 10.1093/biosci/biae050] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 05/02/2024] [Indexed: 01/29/2025] Open
Abstract
Under climate change, ecosystems are experiencing novel drought regimes, often in combination with stressors that reduce resilience and amplify drought's impacts. Consequently, drought appears increasingly likely to push systems beyond important physiological and ecological thresholds, resulting in substantial changes in ecosystem characteristics persisting long after drought ends (i.e., ecological transformation). In the present article, we clarify how drought can lead to transformation across a wide variety of ecosystems including forests, woodlands, and grasslands. Specifically, we describe how climate change alters drought regimes and how this translates to impacts on plant population growth, either directly or through drought's interactions with factors such as land management, biotic interactions, and other disturbances. We emphasize how interactions among mechanisms can inhibit postdrought recovery and can shift trajectories toward alternate states. Providing a holistic picture of how drought initiates long-term change supports the development of risk assessments, predictive models, and management strategies, enhancing preparedness for a complex and growing challenge.
Collapse
Affiliation(s)
- Wynne E Moss
- Conservation Science Partners, Truckee, California, United States
- U.S. Geological Survey, Northern Rocky Mountain Science Center, Bozeman, Montana, United States
| | - Shelley D Crausbay
- Conservation Science Partners, Truckee, California, United States
- USDA Forest Service, Fort Collins, Colorado, United States
| | - Imtiaz Rangwala
- North Central Climate Adaptation Science Center and with the Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado, United States
| | - Jay W Wason
- School of Forest Resources at the University of Maine, Orono, Maine, United States
| | - Clay Trauernicht
- Department of Natural Resources and Environmental Management at the University of Hawai'i at Mānoa, Honolulu, Hawai'i, United States
| | - Camille S Stevens-Rumann
- Colorado Forest Restoration Institute in the Forest and Rangeland Stewardship Department at Colorado State University in Fort Collins, Colorado, United States
| | - Anna Sala
- Division of Biological Sciences at the University of Montana, Missoula, Montana, United States
| | - Caitlin M Rottler
- South Central Climate Adaptation Science Center, University of Oklahoma, Norman, Oklahoma, United States
| | - Gregory T Pederson
- U.S. Geological Survey, Northern Rocky Mountain Science Center, Bozeman, Montana, United States
| | - Brian W Miller
- U.S. Geological Survey, North Central Climate Adaptation Science Center, Boulder, Colorado, United States
| | - Dawn R Magness
- U.S. Fish and Wildlife Service, Kenai National Wildlife Refuge, Soldotna, Alaska, United States
| | - Jeremy S Littell
- U.S. Geological Survey, Alaska Climate Adaptation Science Center, Anchorage, Alaska, United States
| | - Lee E Frelich
- Department of Forest Resources at the University of Minnesota, Saint Paul, Minnesota, United States
| | - Abby G Frazier
- Graduate School of Geography at Clark University, Worcester, Massachusetts, United States
| | - Kimberley T Davis
- Department of Ecosystem and Conservation Sciences at the University of Montana, Missoula, Montana, United States
- Missoula Fire Sciences Laboratory, Rocky Mountain Research Station of the USDA Forest Service, Missoula, Montana, United States
| | - Jonathan D Coop
- Clark School of Environment and Sustainability, Western Colorado University, Gunnison, Colorado, United States
| | - Jennifer M Cartwright
- U.S. Geological Survey, Southeast Climate Adaptation Science Center, Raleigh, North Carolina, United States
| | - Robert K Booth
- Earth and Environmental Science Department at Lehigh University, Bethlehem, Pennsylvania, United States
| |
Collapse
|
14
|
Bowd E, Lindenmayer D. Indirect and direct drivers of floristic condition in a threatened temperate woodland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174786. [PMID: 39009156 DOI: 10.1016/j.scitotenv.2024.174786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/07/2024] [Accepted: 07/12/2024] [Indexed: 07/17/2024]
Abstract
Almost half of Earth's surface is threatened by agriculture, which has extensively degraded ecosystems and resulted in significant biodiversity loss. Remnant ecosystems in fragmented agricultural landscapes are threatened by past and present grazing and land-clearing. Declines in native diversity are common in these ecosystems, and their restoration is a key conservation goal globally. Understanding the drivers of change in floristic condition, reflecting continuity in floristic composition towards native plant communities, is fundamental to inform effective restoration practice. Previous investigations have demonstrated abiotic and biotic drivers of floristic condition independently. However, few consider the combined influence of these drivers on floristic condition, or the interactions between them, which may mediate indirect effects (e.g. plant-soil interactions). Despite this, ecological interactions may underpin changes in floristic condition, and provide critical insights needed to inform restoration. Here, we use structural equation modelling to disentangle the relationships between plants, soils and grass and litter biomass (leaf litter and fine woody debris) to elucidate the direct and indirect drivers of floristic condition in some of the most degraded landscapes globally: the critically endangered box-gum grassy woodlands in south-eastern Australia. We identify divergent plant-soil interactions between native versus exotic plants to key soil properties including soil nitrate and phosphorus. Specifically, native plants were negatively associated with increasing soil fertility, which favored exotic species. We also found evidence of indirect effects on floristic condition, mediated through interactions between litter biomass, soils and the basal area of overstorey trees. Our findings highlight the major role of soils in shaping floristic condition through direct and indirect pathways, and the role of multivariate interactions in mediating these pathways in a highly degraded, critically endangered ecosystem. Effective restoration must therefore consider the multivariate direct and indirect drivers of ecological condition to maximise positive outcomes in these landscapes and those similar.
Collapse
Affiliation(s)
- Elle Bowd
- Fenner School of Environment and Society, The Australian National University, Canberra, ACT 2601, Australia.
| | - David Lindenmayer
- Fenner School of Environment and Society, The Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
15
|
Lustenhouwer N, Chaubet TMR, Melen MK, van der Putten WH, Parker IM. Plant-soil interactions during the native and exotic range expansion of an annual plant. J Evol Biol 2024; 37:653-664. [PMID: 38536056 DOI: 10.1093/jeb/voae040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 03/06/2024] [Accepted: 03/26/2024] [Indexed: 06/30/2024]
Abstract
Range expansions, whether they are biological invasions or climate change-mediated range shifts, may have profound ecological and evolutionary consequences for plant-soil interactions. Range-expanding plants encounter soil biota with which they have a limited coevolutionary history, especially when introduced to a new continent. Past studies have found mixed results on whether plants experience positive or negative soil feedback interactions in their novel range, and these effects often change over time. One important theoretical explanation is that plants locally adapt to the soil pathogens and mutualists in their novel range. We tested this hypothesis in Dittrichia graveolens, an annual plant that is both expanding its European native range, initially coinciding with climate warming, and rapidly invading California after human introduction. In parallel greenhouse experiments on both continents, we used plant genotypes and soils from 5 locations at the core and edge of each range to compare plant growth in soil inhabited by D. graveolens and nearby control microsites as a measure of plant-soil feedback. Plant-soil interactions were highly idiosyncratic across each range. On average, plant-soil feedbacks were more positive in the native range than in the exotic range. In line with the strongly heterogeneous pattern of soil responses along our biogeographic gradients, we found no evidence for evolutionary differentiation between plant genotypes from the core to the edge of either range. Our results suggest that the evolution of plant-soil interactions during range expansion may be more strongly driven by local evolutionary dynamics varying across the range than by large-scale biogeographic shifts.
Collapse
Affiliation(s)
- Nicky Lustenhouwer
- School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, United States
| | - Tom M R Chaubet
- Centre d'Ecologie Fonctionnelle et Evolutive, Centre National de la Recherche Scientifique, Montpellier, France
| | - Miranda K Melen
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, United States
| | - Wim H van der Putten
- Department of Terrestrial Ecology, NIOO-KNAW, Wageningen, The Netherlands
- Department of Nematology, Wageningen University & Research, Wageningen, The Netherlands
| | - Ingrid M Parker
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, United States
| |
Collapse
|
16
|
Jalloh AA, Mutyambai DM, Yusuf AA, Subramanian S, Khamis F. Maize edible-legumes intercropping systems for enhancing agrobiodiversity and belowground ecosystem services. Sci Rep 2024; 14:14355. [PMID: 38906908 PMCID: PMC11192945 DOI: 10.1038/s41598-024-64138-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 06/05/2024] [Indexed: 06/23/2024] Open
Abstract
Intensification of staple crops through conventional agricultural practices with chemical synthetic inputs has yielded positive outcomes in food security but with negative environmental impacts. Ecological intensification using cropping systems such as maize edible-legume intercropping (MLI) systems has the potential to enhance soil health, agrobiodiversity and significantly influence crop productivity. However, mechanisms underlying enhancement of biological soil health have not been well studied. This study investigated the shifts in rhizospheric soil and maize-root microbiomes and associated soil physico-chemical parameters in MLI systems of smallholder farms in comparison to maize-monoculture cropping systems (MMC). Maize-root and rhizospheric soil samples were collected from twenty-five farms each conditioned by MLI and MMC systems in eastern Kenya. Soil characteristics were assessed using Black oxidation and Walkley methods. High-throughput amplicon sequencing was employed to analyze fungal and bacterial communities, predicting their functional roles and diversity. The different MLI systems significantly impacted soil and maize-root microbial communities, resulting in distinct microbe sets. Specific fungal and bacterial genera and species were mainly influenced and enriched in the MLI systems (e.g., Bionectria solani, Sarocladium zeae, Fusarium algeriense, and Acremonium persicinum for fungi, and Bradyrhizobium elkanii, Enterobacter roggenkampii, Pantoea dispersa and Mitsuaria chitosanitabida for bacteria), which contribute to nutrient solubilization, decomposition, carbon utilization, plant protection, bio-insecticides/fertilizer production, and nitrogen fixation. Conversely, the MMC systems enriched phytopathogenic microbial species like Sphingomonas leidyi and Alternaria argroxiphii. Each MLI system exhibited a unique composition of fungal and bacterial communities that shape belowground biodiversity, notably affecting soil attributes, plant well-being, disease control, and agroecological services. Indeed, soil physico-chemical properties, including pH, nitrogen, organic carbon, phosphorus, and potassium were enriched in MLI compared to MMC cropping systems. Thus, diversification of agroecosystems with MLI systems enhances soil properties and shifts rhizosphere and maize-root microbiome in favor of ecologically important microbial communities.
Collapse
Affiliation(s)
- Abdul A Jalloh
- International Centre of Insect Physiology and Ecology, P.O. Box 30772-00100, Nairobi, Kenya
- Department of Zoology and Entomology, University of Pretoria, Private Bag x20 , Hatfield, Pretoria, South Africa
| | - Daniel Munyao Mutyambai
- International Centre of Insect Physiology and Ecology, P.O. Box 30772-00100, Nairobi, Kenya.
- Department of Life Sciences, South Eastern Kenya University, P.O Box 170-90200, Kitui, Kenya.
| | - Abdullahi Ahmed Yusuf
- Department of Zoology and Entomology, University of Pretoria, Private Bag x20 , Hatfield, Pretoria, South Africa
- Forestry and Agricultural Biotechnology Institute, University of Pretoria, Private Bag x20, Hatfield, Pretoria, South Africa
| | - Sevgan Subramanian
- International Centre of Insect Physiology and Ecology, P.O. Box 30772-00100, Nairobi, Kenya
| | - Fathiya Khamis
- International Centre of Insect Physiology and Ecology, P.O. Box 30772-00100, Nairobi, Kenya
| |
Collapse
|
17
|
Pu T, Zhang N, Wang J, Zhao Z, Tan W, Li C, Song Y. Organic management pattern improves microbial community diversity and alters microbial network structure in karst tea plantation. Heliyon 2024; 10:e31528. [PMID: 38826734 PMCID: PMC11141352 DOI: 10.1016/j.heliyon.2024.e31528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 06/04/2024] Open
Abstract
Soil microbiomes play a crucial role in enhancing plant growth, health, and overall agricultural productivity. Nevertheless, the influence of distinct agricultural management practices on the microbial diversity and community structure within tea (Camellia sinensis) plantations has remained enigmatic. This study postulates that organic agricultural management models can enhance microbial diversity and optimise the microbial community structure within tea plantations, indirectly augmenting soil fertility and tea quality. We employed metagenome technology and conducted molecular ecological network analysis to explore the impact of organic management, pollution-free management, and conventional management on the microbial network structure of tea plantation soil in Weng'an County in the southwestern karst region. Soils subjected to organic management exhibited a higher relative abundance of soil microbial and carbohydrate-active enzyme functional genes than those subjected to other management regimes. Additionally, the relative abundance and diversity of dominant bacteria and keystone species were notably higher under organic management than under the other management regimes. Correlation analysis showed that soil microorganisms were closely related to soil fertility and tea quality, respectively. One-way analysis of variance and the structural equation modelling results showed significant variability in soil fertility under the three agricultural management modes and that soil fertility and soil microbial diversity had a direct impact on tea quality (P > 0.05). In conclusion, this study underscores the profound impact of management modes on microbial diversity and community structure within tea plantations. These management practices alter the soil microbial network structure and potential function, ultimately regulating the microecological dynamics of the soil community in tea plantations.
Collapse
Affiliation(s)
- Tianyi Pu
- School of Karst Science, Guizhou Normal University/State Engineering Technology Institute for Karst Desertification Control, Guiyang, 550001, China
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, Guiyang University, Guiyang, Guizhou, 550001, China
| | - Ni Zhang
- School of Karst Science, Guizhou Normal University/State Engineering Technology Institute for Karst Desertification Control, Guiyang, 550001, China
| | - Jinqiu Wang
- School of Karst Science, Guizhou Normal University/State Engineering Technology Institute for Karst Desertification Control, Guiyang, 550001, China
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, Guiyang University, Guiyang, Guizhou, 550001, China
| | - Zhibing Zhao
- School of Karst Science, Guizhou Normal University/State Engineering Technology Institute for Karst Desertification Control, Guiyang, 550001, China
| | - Weiwen Tan
- School of Karst Science, Guizhou Normal University/State Engineering Technology Institute for Karst Desertification Control, Guiyang, 550001, China
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, Guiyang University, Guiyang, Guizhou, 550001, China
| | - Can Li
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, Guiyang University, Guiyang, Guizhou, 550001, China
| | - Yuehua Song
- School of Karst Science, Guizhou Normal University/State Engineering Technology Institute for Karst Desertification Control, Guiyang, 550001, China
| |
Collapse
|
18
|
Beyene BB, Tuji FA. Inoculation of Erythrina brucei with plant-beneficial microbial consortia enhanced its growth and improved soil nitrogen and phosphorous status when applied as green manure. Heliyon 2024; 10:e30484. [PMID: 38737265 PMCID: PMC11088309 DOI: 10.1016/j.heliyon.2024.e30484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 04/26/2024] [Accepted: 04/28/2024] [Indexed: 05/14/2024] Open
Abstract
Erythrina brucei has been applied as a green manure to improve soil fertility in southern Ethiopia. It has been nodulated by indigenous rhizobia. The objectives of this study were to evaluate the effects of E. brucei inoculation with microbial consortia consisted of Bradyrhizobium shewense, Acinetobacter soli and arbuscular mycorrhizal fungi (AMF)on E.brucei growth, soil nitrogen and phosphorous status after application as a green manure.A field experiment was conducted by inoculating E. Brucei with different microbial consortia. E. brucei inoculated with the microbial consortia were grown for 150 days. Its shoot length was measured at 60, 90, 120 and 150 days after planting. Then, plants were uprooted and mulched as a green manure. The soil nitrogen, available phosphorous and soil organic matter analysis were done. The experimental design was completely randomized block design with eight treatments comprised of three replications. Inoculated treatments did not show a significant (p < 0.05) difference in shoot length in the first 60 days. However, shoot length was increased between 19.1 and 41.3 %, 10.5-43.4 % and 8.7-37.6 %, respectively at 90, 120 and 150 days. The soil organic matter was improved in both inoculated and un-inoculated treatments. The improvements in the soil organic matter of un-inoculated treatments may be due to the decomposition of un-inoculated plants biomass in the soil. The B. shewense inoculation improved the soil nitrogen by 17 %. The soil phosphorous was improved in 57 % of inoculated treatments. The inoculation of E. brucei with microbial consortia enhanced its growth and improved soil fertility when applied as a green manure. Inoculating the green manure legumes with symbiotically effective rhizobia and plant-beneficial microbes can enhance the growth of E. brucei and its nutrient uptake.
Collapse
Affiliation(s)
- Belay Berza Beyene
- DebreMarkos University, College of Natural and Computational Sciences, Department of Biology, Debre Markos, Ethiopia
| | - Fassil Assefa Tuji
- Addis Ababa University, College of Natural and Computational Sciences, Department of Microbial, Cellular and Molecular Biology, Addis Ababa, Ethiopia
| |
Collapse
|
19
|
Ochoa-Hueso R, Eldridge DJ, Berdugo M, Trivedi P, Sokoya B, Cano-Díaz C, Abades S, Alfaro F, Bamigboye AR, Bastida F, Blanco-Pastor JL, de Los Rios A, Durán J, Geisen S, Grebenc T, Illán JG, Liu YR, Makhalanyane TP, Mamet S, Molina-Montenegro MA, Moreno JL, Nahberger TU, Peñaloza-Bojacá GF, Plaza C, Rey A, Rodríguez A, Siebe C, Singh BK, Teixido AL, Torres-Díaz C, Wang L, Wang J, Wang J, Zaady E, Zhou X, Zhou XQ, Tedersoo L, Delgado-Baquerizo M. Unearthing the soil-borne microbiome of land plants. GLOBAL CHANGE BIOLOGY 2024; 30:e17295. [PMID: 38804108 DOI: 10.1111/gcb.17295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 05/29/2024]
Abstract
Plant-soil biodiversity interactions are fundamental for the functioning of terrestrial ecosystems. Yet, the existence of a set of globally distributed topsoil microbial and small invertebrate organisms consistently associated with land plants (i.e., their consistent soil-borne microbiome), together with the environmental preferences and functional capabilities of these organisms, remains unknown. We conducted a standardized field survey under 150 species of land plants, including 58 species of bryophytes and 92 of vascular plants, across 124 locations from all continents. We found that, despite the immense biodiversity of soil organisms, the land plants evaluated only shared a small fraction (less than 1%) of all microbial and invertebrate taxa that were present across contrasting climatic and soil conditions and vegetation types. These consistent taxa were dominated by generalist decomposers and phagotrophs and their presence was positively correlated with the abundance of functional genes linked to mineralization. Finally, we showed that crossing environmental thresholds in aridity (aridity index of 0.65, i.e., the transition from mesic to dry ecosystems), soil pH (5.5; i.e., the transition from acidic to strongly acidic soils), and carbon (less than 2%, the lower limit of fertile soils) can result in drastic disruptions in the associations between land plants and soil organisms, with potential implications for the delivery of soil ecosystem processes under ongoing global environmental change.
Collapse
Affiliation(s)
- Raúl Ochoa-Hueso
- Department of Biology, Botany Area, University of Cádiz, Vitivinicultural and Agri-Food Research Institute (IVAGRO), Cádiz, Spain
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - David J Eldridge
- Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, University of NSW, Sydney, New South Wales, Australia
| | - Miguel Berdugo
- Departmento de Biodiversidad, Ecología y Evolución, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, Madrid, Spain
- Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland
| | - Pankaj Trivedi
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO, USA
| | - Blessing Sokoya
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado, USA
| | - Concha Cano-Díaz
- CISAS - Center for Research and Development in Agrifood Systems and Sustainability, Instituto Politécnico de Viana do Castelo, Rua Escola Industrial e Comercial Nun'Álvares, Viana do Castelo, Portugal
| | | | - Fernando Alfaro
- GEMA Center for Genomics, Ecology & Environment, Faculty of Interdisciplinary Studies, Universidad Mayor, Santiago, Chile
| | - Adebola R Bamigboye
- Natural History Museum (Botany Unit), Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Felipe Bastida
- CEBAS-CSIC, Campus Universitario de Espinardo, Murcia, Spain
| | - José L Blanco-Pastor
- Department of Biology, Botany Area, University of Cádiz, Vitivinicultural and Agri-Food Research Institute (IVAGRO), Cádiz, Spain
| | - Asunción de Los Rios
- Museo Nacional de Ciencias Naturales, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Jorge Durán
- Misión Biológica de Galicia, Consejo Superior de Investigaciones Científicas, Pontevedra, Spain
| | - Stefan Geisen
- Laboratory of Nematology, Wageningen University, Wageningen, The Netherlands
| | - Tine Grebenc
- Slovenian Forestry Institute, Ljubljana, Slovenia
| | - Javier G Illán
- Department of Entomology, Washington State University, Pullman, Washington, USA
| | - Yu-Rong Liu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Thulani P Makhalanyane
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Steven Mamet
- College of Agriculture and Bioresources, Department of Soil Science, University of Saskatchewan, Saskatoon, Canada
| | | | - José L Moreno
- CEBAS-CSIC, Campus Universitario de Espinardo, Murcia, Spain
| | | | - Gabriel F Peñaloza-Bojacá
- Laboratório de Sistemática Vegetal, Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - César Plaza
- Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Ana Rey
- Museo Nacional de Ciencias Naturales, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Alexandra Rodríguez
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Christina Siebe
- Instituto de Geología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
| | - Brajesh K Singh
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
- Global Centre for Land-Based Innovation, Western Sydney University, Penrith South, New South Wales, Australia
| | - Alberto L Teixido
- Departmento de Biodiversidad, Ecología y Evolución, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, Madrid, Spain
| | - Cristian Torres-Díaz
- Grupo de Biodiversidad y Cambio Global (BCG), Departamento de Ciencias Básicas, Universidad del Bío-Bío, Chillán, Chile
| | - Ling Wang
- Institute of Grassland Science, Northeast Normal University, Key Laboratory of Vegetation Ecology, Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Changchun, China
| | - Jianyong Wang
- Institute of Grassland Science, Northeast Normal University, Key Laboratory of Vegetation Ecology, Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Changchun, China
| | - Juntao Wang
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | - Eli Zaady
- Department of Natural Resources, Agricultural Research Organization, Institute of Plant Sciences, Gilat Research Center, Negev, Israel
| | - Xiaobing Zhou
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Xinjiang, China
| | - Xin-Quan Zhou
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Leho Tedersoo
- Mycology and Microbiology Center, University of Tartu, Tartu, Estonia
| | - Manuel Delgado-Baquerizo
- Laboratorio de Biodiversidad y Funcionamiento Ecosistémico, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Sevilla, Spain
| |
Collapse
|
20
|
Zou HX, Yan X, Rudolf VHW. Time-dependent interaction modification generated from plant-soil feedback. Ecol Lett 2024; 27:e14432. [PMID: 38698727 DOI: 10.1111/ele.14432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/10/2024] [Accepted: 04/18/2024] [Indexed: 05/05/2024]
Abstract
Pairwise interactions between species can be modified by other community members, leading to emergent dynamics contingent on community composition. Despite the prevalence of such higher-order interactions, little is known about how they are linked to the timing and order of species' arrival. We generate population dynamics from a mechanistic plant-soil feedback model, then apply a general theoretical framework to show that the modification of a pairwise interaction by a third plant depends on its germination phenology. These time-dependent interaction modifications emerge from concurrent changes in plant and microbe populations and are strengthened by higher overlap between plants' associated microbiomes. The interaction between this overlap and the specificity of microbiomes further determines plant coexistence. Our framework is widely applicable to mechanisms in other systems from which similar time-dependent interaction modifications can emerge, highlighting the need to integrate temporal shifts of species interactions to predict the emergent dynamics of natural communities.
Collapse
Affiliation(s)
- Heng-Xing Zou
- Program in Ecology and Evolutionary Biology, Department of BioSciences, Rice University, Houston, Texas, USA
| | - Xinyi Yan
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, USA
| | - Volker H W Rudolf
- Program in Ecology and Evolutionary Biology, Department of BioSciences, Rice University, Houston, Texas, USA
| |
Collapse
|
21
|
Idbella M, Bonanomi G, De Filippis F, Foscari A, Zotti M, Abd-ElGawad AM, Fechtali T, Incerti G, Mazzoleni S. Negative plant-soil feedback in Arabidopsis thaliana: Disentangling the effects of soil chemistry, microbiome, and extracellular self-DNA. Microbiol Res 2024; 281:127634. [PMID: 38308902 DOI: 10.1016/j.micres.2024.127634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/20/2024] [Accepted: 01/29/2024] [Indexed: 02/05/2024]
Abstract
Nutrient deficiency, natural enemies and litter autotoxicity have been proposed as possible mechanisms to explain species-specific negative plant-soil feedback (PSF). Another potential contributor to negative PSF is the plant released extracellular self-DNA during litter decay. In this study, we sought to comprehensively investigate these hypotheses by using Arabidopsis thaliana (L.) Heynh as a model plant in a feedback experiment. The experiment comprised a conditioning phase and a response phase in which the conditioned soils underwent four treatments: (i) addition of activated carbon, (ii) washing with tap water, (iii) sterilization by autoclaving, and (iv) control without any treatment. We evaluated soil chemical properties, microbiota by shotgun sequencing and the amount of A. thaliana extracellular DNA in the differently treated soils. Our results showed that washing and sterilization treatments mitigated the negative PSF effect. While shifts in soil chemical properties were not pronounced, significant changes in soil microbiota were observed, especially after sterilization. Notably, plant biomass was inversely associated with the content of plant self-DNA in the soil. Our results suggest that the negative PSF observed in the conditioned soil was associated to increased amounts of soilborne pathogens and plant self-DNA. However, fungal pathogens were not limited to negative conditions, butalso found in soils enhancing A.thaliana growth. In-depth multivariate analysis highlights that the hypothesis of negative PSF driven solely by pathogens lacks consistency. Instead, we propose a multifactorial explanation for the negative PSF buildup, in which the accumulation of self-DNA weakens the plant's root system, making it more susceptible to pathogens.
Collapse
Affiliation(s)
- Mohamed Idbella
- Department of Agricultural Sciences, University of Federico II, Via Università 100, 80055, Portici, Italy; Southwest Florida Research and Education Center, Department of Soil, Water, and Ecosystem Sciences, Institute of Food and Agricultural Sciences, University of Florida, 2685 State Rd 29N, Immokalee, FL 34142, USA
| | - Giuliano Bonanomi
- Department of Agricultural Sciences, University of Federico II, Via Università 100, 80055, Portici, Italy; Task Force on Microbiome Studies, University of Federico II, Naples, Italy
| | - Francesca De Filippis
- Department of Agricultural Sciences, University of Federico II, Via Università 100, 80055, Portici, Italy; Task Force on Microbiome Studies, University of Federico II, Naples, Italy
| | | | - Maurizio Zotti
- Department of Agricultural Sciences, University of Federico II, Via Università 100, 80055, Portici, Italy
| | - Ahmed M Abd-ElGawad
- Plant Production Department, College of Food & Agriculture Sciences, King Saud University, P.O. Box 2460 Riyadh 11451, Saudi Arabia
| | - Taoufiq Fechtali
- Laboratory of Biosciences, Faculty of Sciences and Techniques, Hassan II University, Casablanca, Morocco
| | - Guido Incerti
- Department of Agri-Food, Animal and Environmental Sciences, University of Udine, Italy
| | - Stefano Mazzoleni
- Department of Agricultural Sciences, University of Federico II, Via Università 100, 80055, Portici, Italy; Task Force on Microbiome Studies, University of Federico II, Naples, Italy.
| |
Collapse
|
22
|
Xu Y, Luo T, Wu B, Xia Z, Xu W, Gao J. Soil carbon emissions and influential factors across various stages of vegetation succession in vegetated concrete. Sci Rep 2024; 14:5963. [PMID: 38472340 DOI: 10.1038/s41598-024-56473-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 03/06/2024] [Indexed: 03/14/2024] Open
Abstract
After ecological restoration of high and steep slopes in the project disturbed area, soil properties, soil microorganisms, litter types and root types change with the succession of vegetation cover communities. However, the effects of different vegetation successional stages on soil respiration dynamics remain unclear. To elucidate trends and drivers of soil respiration in the context of vegetation succession, we used spatio-temporal alternative applied research. Vegetated concrete-restored slopes (VC) with predominantly herbaceous (GS), shrub (SS), and arborvitae (AS) vegetation were selected, and naturally restored slopes (NS) were used as control. SRS1000 T soil carbon flux measurement system was used to monitor soil respiration rate. The results showed that soil respiration (RS) and fractions of all four treatments showed a single-peak curve, with peaks concentrated in July and August. During the succession of vegetation from herbaceous to arborvitae on VC slopes, RS showed a decreasing trend, and GS was significantly higher than AS by 45%; Compared to NS, RS was 29.81% and 21.56% higher in GS and SS successional stages, respectively, and 27.51% lower in AS stage. RS was significantly and positively correlated with nitrate nitrogen (NO3--N) and microbial biomass nitrogen (MBN), both of which are important factors in regulating RS under vegetation succession. A bivariate model of soil temperature and water content explains the variability of Rs better. Overall, RS was higher than NS in the transition stage and lower than NS in the equilibrium stage of the vegetation community on VC slopes, and the RS decreases gradually with the vegetation succession of artificial ecological restoration slopes.
Collapse
Affiliation(s)
- Yakun Xu
- Hubei Provincial Engineering Research Center of Slope Habitat Construction Technique Using Cement-Based Materials, China Three Gorges University, Yichang, China
- College of Civil Engineering & Architecture, China Three Gorges University, Yichang, China
| | - Ting Luo
- Hubei Provincial Engineering Research Center of Slope Habitat Construction Technique Using Cement-Based Materials, China Three Gorges University, Yichang, China
- College of Civil Engineering & Architecture, China Three Gorges University, Yichang, China
| | - Bin Wu
- Hubei Provincial Engineering Research Center of Slope Habitat Construction Technique Using Cement-Based Materials, China Three Gorges University, Yichang, China.
| | - Zhenyao Xia
- College of Civil Engineering & Architecture, China Three Gorges University, Yichang, China.
| | - Wennian Xu
- Hubei Provincial Engineering Research Center of Slope Habitat Construction Technique Using Cement-Based Materials, China Three Gorges University, Yichang, China
- College of Civil Engineering & Architecture, China Three Gorges University, Yichang, China
| | - Jiazhen Gao
- Hubei Provincial Engineering Research Center of Slope Habitat Construction Technique Using Cement-Based Materials, China Three Gorges University, Yichang, China
- Wuhan Polytechnic, Wuhan, 443000, China
| |
Collapse
|
23
|
Delory BM, Callaway RM, Semchenko M. A trait-based framework linking the soil metabolome to plant-soil feedbacks. THE NEW PHYTOLOGIST 2024; 241:1910-1921. [PMID: 38124274 DOI: 10.1111/nph.19490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023]
Abstract
By modifying the biotic and abiotic properties of the soil, plants create soil legacies that can affect vegetation dynamics through plant-soil feedbacks (PSF). PSF are generally attributed to reciprocal effects of plants and soil biota, but these interactions can also drive changes in the identity, diversity and abundance of soil metabolites, leading to more or less persistent soil chemical legacies whose role in mediating PSF has rarely been considered. These chemical legacies may interact with microbial or nutrient legacies to affect species coexistence. Given the ecological importance of chemical interactions between plants and other organisms, a better understanding of soil chemical legacies is needed in community ecology. In this Viewpoint, we aim to: highlight the importance of belowground chemical interactions for PSF; define and integrate soil chemical legacies into PSF research by clarifying how the soil metabolome can contribute to PSF; discuss how functional traits can help predict these plant-soil interactions; propose an experimental approach to quantify plant responses to the soil solution metabolome; and describe a testable framework relying on root economics and seed dispersal traits to predict how plant species affect the soil metabolome and how they could respond to soil chemical legacies.
Collapse
Affiliation(s)
- Benjamin M Delory
- Institute of Ecology, Leuphana University of Lüneburg, Lüneburg, 21335, Germany
- Copernicus Institute of Sustainable Development, Utrecht University, Utrecht, 3584 CB, the Netherlands
| | - Ragan M Callaway
- Division of Biological Sciences and Institute on Ecosystems, University of Montana, Missoula, MT, 59812, USA
| | - Marina Semchenko
- Institute of Ecology and Earth Sciences, University of Tartu, Liivi 2, 50409, Tartu, Estonia
| |
Collapse
|
24
|
Meng Y, Geng X, Zhu P, Bai X, Zhang P, Ni G, Hou Y. Enhanced mutualism: A promotional effect driven by bacteria during the early invasion of Phytolacca americana. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2024; 34:e2742. [PMID: 36107405 DOI: 10.1002/eap.2742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/19/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
The enhanced mutualism hypothesis postulates that invasive plants promote self-growth by enriching beneficial microbes to establish a positive soil feedback. However, the roles of soil microorganisms may vary with increasing time for plant growth. Research on changes in soil microbial communities over time has important implications for understanding the mechanisms underlying plant invasion. Due to the difficulty in evaluating the duration of plant growth, few studies have quantified the changes in soil microorganisms with increasing plant age. This study focuses on the invasive weed Phytolacca americana L., which has growth rings in the main root. We conducted a two-stage experiment in the field and greenhouse to explore the soil feedback changes with duration of plant growth. We determined the effects of P. americana at different ages on the soil microbial community and soil properties and performed a soil inoculation experiment to quantify the influence of soil microbes on seed germination and seedling performance. We found that the content of some soil nutrients, namely total nitrogen, total phosphorus, nitrate-N, and available phosphorus, significantly decreased with increasing growth age of P. americana, whereas the available potassium showed an opposite increasing trend. The P. americana growth age also significantly influenced the soil bacterial community structure. However, this phenomenon did not occur in the fungal community. In the bacterial community, the relative abundance of plant growth-promoting bacteria showed an increasing trend. The soil inoculation experiment had high seed germination rates and biomass accumulation when the plants were grown in conditioned soil from P. americana growth within 5 years, suggesting a positive plant-soil feedback. However, the promoting effect disappeared in conditioned soil from 10 years of age. Our findings demonstrate that plant growth-promoting bacteria significantly accumulated in the soil during the early stages of P. americana invasion, and that the strength of enhanced positive feedback may play a crucial role in facilitating P. americana invasion. This study highlights the changing nature of plant-microbe interactions during biological invasion and illustrates how bacteria could contribute to the initial success of P. americana, providing new insights into the underlying mechanisms of plant invasion.
Collapse
Affiliation(s)
- Yunhao Meng
- College of Life Sciences, Ludong University, Yantai, China
| | - Xinze Geng
- College of Life Sciences, Ludong University, Yantai, China
| | - Ping Zhu
- College of Life Sciences, Ludong University, Yantai, China
| | - Xinfu Bai
- College of Life Sciences, Ludong University, Yantai, China
| | - Ping Zhang
- College of Life Sciences, Ludong University, Yantai, China
| | - Guangyan Ni
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Yuping Hou
- College of Life Sciences, Ludong University, Yantai, China
| |
Collapse
|
25
|
Delavaux CS, Angst JK, Espinosa H, Brown M, Petticord DF, Schroeder JW, Broders K, Herre EA, Bever JD, Crowther TW. Fungal community dissimilarity predicts plant-soil feedback strength in a lowland tropical forest. Ecology 2024; 105:e4200. [PMID: 37897325 DOI: 10.1002/ecy.4200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 06/09/2023] [Accepted: 10/03/2023] [Indexed: 10/30/2023]
Abstract
Soil microbes impact plant community structure and diversity through plant-soil feedbacks. However, linking the relative abundance of plant pathogens and mutualists to differential plant recruitment remains challenging. Here, we tested for microbial mediation of pairwise feedback using a reciprocal transplant experiment in a lowland tropical forest in Panama paired with amplicon sequencing of soil and roots. We found evidence that plant species identity alters the microbial community, and these changes in microbial composition alter subsequent growth and survival of conspecific plants. We also found that greater community dissimilarity between species in their arbuscular mycorrhizal and nonpathogenic fungi predicted increased positive feedback. Finally, we identified specific microbial taxa across our target functional groups that differentially accumulated under conspecific settings. Collectively, these findings clarify how soil pathogens and mutualists mediate net feedback effects on plant recruitment, with implications for management and restoration.
Collapse
Affiliation(s)
- Camille S Delavaux
- Department of Environmental Systems Science, ETH, Zurich, Switzerland
- Department of Ecology and Evolutionary Biology, The University of Kansas, Lawrence, Kansas, USA
- Kansas Biological Survey, The University of Kansas, Lawrence, Kansas, USA
- Smithsonian Tropical Research Institute, Panama City, Panama
| | - Janika K Angst
- Department of Environmental Systems Science, ETH, Zurich, Switzerland
| | - Hilario Espinosa
- Smithsonian Tropical Research Institute, Panama City, Panama
- Department of Evolutionary and Environmental Biology, University of Haifa, Haifa, Israel
- Sistema Nacional de Investigación, SENACYT, Panama City, Panama
- Universidad de Panama, Facultad de Ciencias Naturales, Exactas y Tecnología, Departamento de Botánica, Panama City, Panama
- Coiba Scientific Station (Coiba AIP), Panama City, Panama
| | - Makenna Brown
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, California, USA
| | - Daniel F Petticord
- Smithsonian Tropical Research Institute, Panama City, Panama
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| | | | - Kirk Broders
- Smithsonian Tropical Research Institute, Panama City, Panama
- Agricultural Research Service, National Center for Agricultural Utilization Research, Mycotoxin Prevention and Applied Microbiology Research Unit, Peoria, Illinois, USA
| | - Edward A Herre
- Smithsonian Tropical Research Institute, Panama City, Panama
| | - James D Bever
- Kansas Biological Survey, The University of Kansas, Lawrence, Kansas, USA
- Smithsonian Tropical Research Institute, Panama City, Panama
| | - Thomas W Crowther
- Department of Environmental Systems Science, ETH, Zurich, Switzerland
| |
Collapse
|
26
|
Ding G, Shen L, Dai J, Jackson R, Liu S, Ali M, Sun L, Wen M, Xiao J, Deakin G, Jiang D, Wang XE, Zhou J. The Dissection of Nitrogen Response Traits Using Drone Phenotyping and Dynamic Phenotypic Analysis to Explore N Responsiveness and Associated Genetic Loci in Wheat. PLANT PHENOMICS (WASHINGTON, D.C.) 2023; 5:0128. [PMID: 38148766 PMCID: PMC10750832 DOI: 10.34133/plantphenomics.0128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 11/23/2023] [Indexed: 12/28/2023]
Abstract
Inefficient nitrogen (N) utilization in agricultural production has led to many negative impacts such as excessive use of N fertilizers, redundant plant growth, greenhouse gases, long-lasting toxicity in ecosystem, and even effect on human health, indicating the importance to optimize N applications in cropping systems. Here, we present a multiseasonal study that focused on measuring phenotypic changes in wheat plants when they were responding to different N treatments under field conditions. Powered by drone-based aerial phenotyping and the AirMeasurer platform, we first quantified 6 N response-related traits as targets using plot-based morphological, spectral, and textural signals collected from 54 winter wheat varieties. Then, we developed dynamic phenotypic analysis using curve fitting to establish profile curves of the traits during the season, which enabled us to compute static phenotypes at key growth stages and dynamic phenotypes (i.e., phenotypic changes) during N response. After that, we combine 12 yield production and N-utilization indices manually measured to produce N efficiency comprehensive scores (NECS), based on which we classified the varieties into 4 N responsiveness (i.e., N-dependent yield increase) groups. The NECS ranking facilitated us to establish a tailored machine learning model for N responsiveness-related varietal classification just using N-response phenotypes with high accuracies. Finally, we employed the Wheat55K SNP Array to map single-nucleotide polymorphisms using N response-related static and dynamic phenotypes, helping us explore genetic components underlying N responsiveness in wheat. In summary, we believe that our work demonstrates valuable advances in N response-related plant research, which could have major implications for improving N sustainability in wheat breeding and production.
Collapse
Affiliation(s)
- Guohui Ding
- College of Agriculture, Plant Phenomics Research Centre, Academy for Advanced Interdisciplinary Studies,
Nanjing Agricultural University, Nanjing 210095, China
| | - Liyan Shen
- College of Agriculture, Plant Phenomics Research Centre, Academy for Advanced Interdisciplinary Studies,
Nanjing Agricultural University, Nanjing 210095, China
| | - Jie Dai
- College of Agriculture, Plant Phenomics Research Centre, Academy for Advanced Interdisciplinary Studies,
Nanjing Agricultural University, Nanjing 210095, China
| | - Robert Jackson
- Cambridge Crop Research,
National Institute of Agricultural Botany (NIAB), Cambridge CB3 0LE, UK
| | - Shuchen Liu
- College of Agriculture, Plant Phenomics Research Centre, Academy for Advanced Interdisciplinary Studies,
Nanjing Agricultural University, Nanjing 210095, China
| | - Mujahid Ali
- College of Agriculture, Plant Phenomics Research Centre, Academy for Advanced Interdisciplinary Studies,
Nanjing Agricultural University, Nanjing 210095, China
| | - Li Sun
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute,
Nanjing Agricultural University/JCIC-MCP, Nanjing, Jiangsu 210095, China
| | - Mingxing Wen
- Zhenjiang Institute of Agricultural Science, Jurong, Jiangsu 212400, China
| | - Jin Xiao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute,
Nanjing Agricultural University/JCIC-MCP, Nanjing, Jiangsu 210095, China
| | - Greg Deakin
- Cambridge Crop Research,
National Institute of Agricultural Botany (NIAB), Cambridge CB3 0LE, UK
| | - Dong Jiang
- Regional Technique Innovation Center for Wheat Production, Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture,
Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Xiu-e Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute,
Nanjing Agricultural University/JCIC-MCP, Nanjing, Jiangsu 210095, China
| | - Ji Zhou
- College of Agriculture, Plant Phenomics Research Centre, Academy for Advanced Interdisciplinary Studies,
Nanjing Agricultural University, Nanjing 210095, China
- Cambridge Crop Research,
National Institute of Agricultural Botany (NIAB), Cambridge CB3 0LE, UK
| |
Collapse
|
27
|
Zou HX, Rudolf VHW. Bridging theory and experiments of priority effects. Trends Ecol Evol 2023; 38:1203-1216. [PMID: 37633727 DOI: 10.1016/j.tree.2023.08.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/28/2023] [Accepted: 08/01/2023] [Indexed: 08/28/2023]
Abstract
Priority effects play a key role in structuring natural communities, but considerable confusion remains about how they affect different ecological systems. Synthesizing previous studies, we show that this confusion arises because the mechanisms driving priority and the temporal scale at which they operate differ among studies, leading to divergent outcomes in species interactions and biodiversity patterns. We suggest grouping priority effects into two functional categories based on their mechanisms: frequency-dependent priority effects that arise from positive frequency dependence, and trait-dependent priority effects that arise from time-dependent changes in interacting traits. Through easy quantification of these categories from experiments, we can construct community models representing diverse biological mechanisms and interactions with priority effects, therefore better predicting their consequences across ecosystems.
Collapse
Affiliation(s)
- Heng-Xing Zou
- Program in Ecology and Evolutionary Biology, Department of BioSciences, Rice University, 6100 Main St, Houston, TX 77005, USA.
| | - Volker H W Rudolf
- Program in Ecology and Evolutionary Biology, Department of BioSciences, Rice University, 6100 Main St, Houston, TX 77005, USA
| |
Collapse
|
28
|
Radujković D, Vicca S, van Rooyen M, Wilfahrt P, Brown L, Jentsch A, Reinhart KO, Brown C, De Gruyter J, Jurasinski G, Askarizadeh D, Bartha S, Beck R, Blenkinsopp T, Cahill J, Campetella G, Canullo R, Chelli S, Enrico L, Fraser L, Hao X, Henry HAL, Hohn M, Jouri MH, Koch M, Lawrence Lodge R, Li FY, Lord JM, Milligan P, Minggagud H, Palmer T, Schröder B, Szabó G, Zhang T, Zimmermann Z, Verbruggen E. Consistent predictors of microbial community composition across spatial scales in grasslands reveal low context-dependency. Mol Ecol 2023; 32:6924-6938. [PMID: 37873915 DOI: 10.1111/mec.17178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/26/2023] [Accepted: 10/12/2023] [Indexed: 10/25/2023]
Abstract
Environmental circumstances shaping soil microbial communities have been studied extensively. However, due to disparate study designs, it has been difficult to resolve whether a globally consistent set of predictors exists, or context-dependency prevails. Here, we used a network of 18 grassland sites (11 of those containing regional plant productivity gradients) to examine (i) if similar abiotic or biotic factors predict both large-scale (across sites) and regional-scale (within sites) patterns in bacterial and fungal community composition, and (ii) if microbial community composition differs consistently at two levels of regional plant productivity (low vs. high). Our results revealed that bacteria were associated with particular soil properties (such as base saturation) and both bacteria and fungi were associated with plant community composition across sites and within the majority of sites. Moreover, a discernible microbial community signal emerged, clearly distinguishing high and low-productivity soils across different grasslands independent of their location in the world. Hence, regional productivity differences may be typified by characteristic soil microbial communities across the grassland biome. These results could encourage future research aiming to predict the general effects of global changes on soil microbial community composition in grasslands and to discriminate fertile from infertile systems using generally applicable microbial indicators.
Collapse
Affiliation(s)
- Dajana Radujković
- Department of Biology, Plants and Ecosystems (PLECO), Universiteitsplein 1, University of Antwerp, Wilrijk, Belgium
| | - Sara Vicca
- Department of Biology, Plants and Ecosystems (PLECO), Universiteitsplein 1, University of Antwerp, Wilrijk, Belgium
| | - Margaretha van Rooyen
- Department of Plant and Soil Science, University of Pretoria, Pretoria, South Africa
| | - Peter Wilfahrt
- Department of Disturbance Ecology, University of Bayreuth, Bayreuth, Germany
- Department of Ecology, Evolution, and Behavior, University Minnesota, Saint Paul, Minnesota, USA
| | - Leslie Brown
- Applied Behavioural Ecology & Ecosystem Research Unit, Dept. Environmental Sciences, University of South Africa, Florida, South Africa
| | - Anke Jentsch
- Department of Disturbance Ecology, University of Bayreuth, Bayreuth, Germany
| | - Kurt O Reinhart
- United States Department of Agriculture-Agricultural Research Service (or USDA-ARS), Fort Keogh Livestock& Range Research Laboratory, Miles City, Montana, USA
| | - Charlotte Brown
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
- Desert Laboratory on Tumamoc Hill, University of Arizona, Tucson, Arizona, USA
| | - Johan De Gruyter
- Department of Biology, Plants and Ecosystems (PLECO), Universiteitsplein 1, University of Antwerp, Wilrijk, Belgium
| | - Gerald Jurasinski
- Landscape Ecology, University of Rostock, Rostock, Germany
- Institute of Botany and Landscape Ecology, University of Greifswald, Greifswald, Germany
| | - Diana Askarizadeh
- Department of Rehabilitation of Arid and Mountainous Regions, Faculty of Natural Resources, University of Tehran, Tehran, Iran
| | - Sandor Bartha
- Centre for Ecological Research, Institute of Ecology and Botany, Vácrátót, Hungary
| | - Ryan Beck
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, Alberta, Canada
| | - Theodore Blenkinsopp
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - James Cahill
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Giandiego Campetella
- Unit of Plant Diversity and Ecosystems Management, School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Roberto Canullo
- Unit of Plant Diversity and Ecosystems Management, School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Stefano Chelli
- Unit of Plant Diversity and Ecosystems Management, School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Lucas Enrico
- Instituto Multidisciplinario de Biología Vegetal (CONICET-UNC) and FCEFyN, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Lauchlan Fraser
- Department of Natural Resource Science, Thompson Rivers University, Kamloops, British Columbia, Canada
| | - Xiying Hao
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, Alberta, Canada
| | - Hugh A L Henry
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| | - Maria Hohn
- Department of Botany, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
| | | | - Marian Koch
- Soil Physics, University of Rostock, Rostock, Germany
| | | | - Frank Yonghong Li
- School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Janice M Lord
- Department of Botany - Te Tari Huaota, University of Otago, Dunedin, New Zealand
| | - Patrick Milligan
- Department of Biology, University of Florida, Gainesville, Florida, USA
| | - Hugjiltu Minggagud
- School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Todd Palmer
- Department of Biology, University of Florida, Gainesville, Florida, USA
| | | | - Gábor Szabó
- Environmental Sciences Doctoral School, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - Tongrui Zhang
- School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Zita Zimmermann
- Centre for Ecological Research, Institute of Ecology and Botany, Vácrátót, Hungary
| | - Erik Verbruggen
- Department of Biology, Plants and Ecosystems (PLECO), Universiteitsplein 1, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
29
|
Wood KEA, Kobe RK, Ibáñez I, McCarthy-Neumann S. Tree seedling functional traits mediate plant-soil feedback survival responses across a gradient of light availability. PLoS One 2023; 18:e0293906. [PMID: 38011125 PMCID: PMC10681222 DOI: 10.1371/journal.pone.0293906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 10/21/2023] [Indexed: 11/29/2023] Open
Abstract
1. Though not often examined together, both plant-soil feedbacks (PSFs) and functional traits have important influences on plant community dynamics and could interact. For example, seedling functional traits could impact seedling survivorship responses to soils cultured by conspecific versus heterospecific adults. Furthermore, levels of functional traits could vary with soil culturing source. In addition, these relationships might shift with light availability, which can affect trait values, microbe abundance, and whether mycorrhizal colonization is mutualistic or parasitic to seedlings. 2. To determine the extent to which functional traits mediate PSFs via seedling survival, we conducted a field experiment. We planted seedlings of four temperate tree species across a gradient of light availability and into soil cores collected beneath conspecific (sterilized and live) and heterospecific adults. We monitored seedling survival twice per week over one growing season, and we randomly selected subsets of seedlings to measure mycorrhizal colonization and phenolics, lignin, and NSC levels at three weeks. 3. Though evidence for PSFs was limited, Acer saccharum seedlings exhibited positive PSFs (i.e., higher survival in conspecific than heterospecific soils). In addition, soil microbes had a negative effect on A. saccharum and Prunus serotina seedling survival, with reduced survival in live versus sterilized conspecific soil. In general, we found higher trait values (measured amounts of a given trait) in conspecific than heterospecific soils and higher light availability. Additionally, A. saccharum survival increased with higher levels of phenolics, which were higher in conspecific soils and high light. Quercus alba survival decreased with higher AMF colonization. 4. We demonstrate that functional trait values in seedlings as young as three weeks vary in response to soil source and light availability. Moreover, seedling survivorship was associated with trait values for two species, despite both drought and heavy rainfall during the growing season that may have obscured survivorship-trait relationships. These results suggest that seedling traits could have an important role in mediating the effects of local soil source and light levels on seedling survivorship and thus plant traits could have an important role in PSFs.
Collapse
Affiliation(s)
- Katherine E. A. Wood
- Department of Forestry, Michigan State University, East Lansing, Michigan, United States of America
- Program in Ecology, Evolution and Behavior, Michigan State University, East Lansing, Michigan, United States of America
| | - Richard K. Kobe
- Department of Forestry, Michigan State University, East Lansing, Michigan, United States of America
- Program in Ecology, Evolution and Behavior, Michigan State University, East Lansing, Michigan, United States of America
| | - Inés Ibáñez
- School for Environment and Sustainability, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Sarah McCarthy-Neumann
- Department of Forestry, Michigan State University, East Lansing, Michigan, United States of America
- Department of Agricultural and Environmental Sciences, Tennessee State University, Nashville, Tennessee, United States of America
| |
Collapse
|
30
|
Zhang Y, Mo C, Pan Y, Yang P, Ding X, Lei Q, Kang P. Responses of Soil Microbial Survival Strategies and Functional Changes to Wet-Dry Cycle Events. Microorganisms 2023; 11:2783. [PMID: 38004794 PMCID: PMC10672765 DOI: 10.3390/microorganisms11112783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/06/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Soil microbial taxa have different functional ecological characteristics that influence the direction and intensity of plant-soil feedback responses to changes in the soil environment. However, the responses of soil microbial survival strategies to wet and dry events are poorly understood. In this study, soil physicochemical properties, enzyme activity, and high-throughput sequencing results were comprehensively anal0079zed in the irrigated cropland ecological zone of the northern plains of the Yellow River floodplain of China, where Oryza sativa was grown for a long period of time, converted to Zea mays after a year, and then Glycine max was planted. The results showed that different plant cultivations in a paddy-dryland rotation system affected soil physicochemical properties and enzyme activity, and G. max field cultivation resulted in higher total carbon, total nitrogen, soil total organic carbon, and available nitrogen content while significantly increasing α-glucosidase, β-glucosidase, and alkaline phosphatase activities in the soil. In addition, crop rotation altered the r/K-strategist bacteria, and the soil environment was the main factor affecting the community structure of r/K-strategist bacteria. The co-occurrence network revealed the inter-relationship between r/K-strategist bacteria and fungi, and with the succession of land rotation, the G. max sample plot exhibited more stable network relationships. Random forest analysis further indicated the importance of soil electrical conductivity, total carbon, total nitrogen, soil total organic carbon, available nitrogen, and α-glucosidase in the composition of soil microbial communities under wet-dry events and revealed significant correlations with r/K-strategist bacteria. Based on the functional predictions of microorganisms, wet-dry conversion altered the functions of bacteria and fungi and led to a more significant correlation between soil nutrient cycling taxa and environmental changes. This study contributes to a deeper understanding of microbial functional groups while helping to further our understanding of the potential functions of soil microbial functional groups in soil ecosystems.
Collapse
Affiliation(s)
- Yaqi Zhang
- School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China; (Y.Z.); (C.M.); (P.Y.); (X.D.)
| | - Chunyi Mo
- School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China; (Y.Z.); (C.M.); (P.Y.); (X.D.)
| | - Yaqing Pan
- Shapotou Desert Research and Experiment Station, Northwest Institute of Eco–Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China;
| | - Pengbin Yang
- School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China; (Y.Z.); (C.M.); (P.Y.); (X.D.)
| | - Xiaodong Ding
- School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China; (Y.Z.); (C.M.); (P.Y.); (X.D.)
| | - Qian Lei
- School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China; (Y.Z.); (C.M.); (P.Y.); (X.D.)
| | - Peng Kang
- School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China; (Y.Z.); (C.M.); (P.Y.); (X.D.)
| |
Collapse
|
31
|
David AS, Hernandez DJ, Menges ES, Sclater VL, Afkhami ME, Searcy CA. Heterogeneous landscape promotes distinct microbial communities in an imperiled scrub ecosystem. Mycologia 2023; 115:739-748. [PMID: 37812522 DOI: 10.1080/00275514.2023.2258268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 09/08/2023] [Indexed: 10/11/2023]
Abstract
Habitat heterogeneity is a key driver of biodiversity of macroorganisms, yet how heterogeneity structures belowground microbial communities is not well understood. Importantly, belowground microbial communities may respond to any number of abiotic, biotic, and spatial drivers found in heterogeneous environments. Here, we examine potential drivers of prokaryotic and fungal communities in soils across the heterogenous landscape of the imperiled Florida scrub, a pyrogenic ecosystem where slight differences in elevation lead to large changes in water and nutrient availability and vegetation composition. We employ a comprehensive, large-scale sampling design to characterize the communities of prokaryotes and fungi associated with three habitat types and two soil depths (crust and subterranean) to evaluate (i) differences in microbial communities across these heterogeneous habitats, (ii) the relative roles of abiotic, biotic, and spatial drivers in shaping community structure, and (iii) the distribution of fungal guilds across these habitats. We sequenced soils from 40 complete replicates of habitat × soil depth combinations and sequenced the prokaryotic 16S and fungal internal transcribed spacer (ITS) regions using Illumina MiSeq. Habitat heterogeneity generated distinct communities of soil prokaryotes and fungi. Spatial distance played a role in structuring crust communities, whereas subterranean microbial communities were primarily structured by the shrub community, whose roots they presumably interacted with. This result helps to explain the unexpected transition we observed between arbuscular mycorrhiza-dominated soils at low-elevation habitats to ectomycorrhiza-dominated soils at high-elevation habitats. Our results challenge previous notions of environmental determinism of microbial communities and generate new hypotheses regarding symbiotic relationships across heterogeneous environments.
Collapse
Affiliation(s)
- Aaron S David
- Archbold Biological Station, 123 Main Drive, Venus, Florida 33960
| | - Damian J Hernandez
- Department of Biology, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146
| | - Eric S Menges
- Archbold Biological Station, 123 Main Drive, Venus, Florida 33960
| | | | - Michelle E Afkhami
- Department of Biology, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146
| | - Christopher A Searcy
- Department of Biology, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146
| |
Collapse
|
32
|
Cheng G, Zhang X, Zhu M, Zhang Z, Jing L, Wang L, Li Q, Zhang X, Wang H, Wang W. Tree diversity, growth status, and spatial distribution affected soil N availability and N 2O efflux: Interaction with soil physiochemical properties. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118375. [PMID: 37356331 DOI: 10.1016/j.jenvman.2023.118375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 06/04/2023] [Accepted: 06/10/2023] [Indexed: 06/27/2023]
Abstract
Soil nitrogen (N) is an essential nutrient for tree growth, and excessive N is a source of pollution. This paper aims to define the effects of plant diversity and forest structure on various aspects of soil N cycling. Herein, we collected soils from 720 plots to measure total N content (TN), alkali-hydrolyzed N (AN), nitrate N (NO3--N), ammonium N (NH4+-N) in a 7.2 ha experimental forest in northeast China. Four plant diversity indices, seven structural metrics, four soil properties, and in situ N2O efflux were also measured. We found that: 1) high tree diversity had 1.3-1.4-fold NO3--N, 1.1-fold NH4+-N, and 1.5-1.8-fold N2O efflux (p < 0.05). 2) Tree growth decreased soil TN, AN, and NO3--N by more than 13%, and tree mixing and un-uniform distribution increased TN, AN, and NH4+-N by 11-22%. 3) Soil organic carbon (SOC) explained 34.3% of the N variations, followed by soil water content (1.5%), tree diameter (1.5%) and pH (1%), and soil bulk density (0.5%). SOC had the most robust linear relations to TN (R2 = 0.59) and AN (R2 = 0.5). 4) The partial least squares path model revealed that the tree diversity directly increased NO3--N, NH4+-N, and N2O efflux, and they were strengthened indirectly from soil properties by 1%-4%. The effects of tree size-density (-0.24) and spatial structure (0.16) were mainly achieved via their soil interaction and thus indirectly decreased NH4+-N, AN, and TN. Overall, high tree diversity forests improved soil N availability and N2O efflux, and un-uniform spatial tree assemblages could partially balance the soil N consumed by tree growth. Our data support soil N management in high northern hemisphere temperate forests from tree diversity and forest structural regulations.
Collapse
Affiliation(s)
- Guanchao Cheng
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China
| | - Xu Zhang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China
| | - Meina Zhu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China
| | - Zhonghua Zhang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China
| | - Lixin Jing
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China
| | - Lei Wang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China
| | - Qi Li
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China
| | - Xiting Zhang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China
| | - Huimei Wang
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China.
| | - Wenjie Wang
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China; Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, CAS, Changchun, 130102, China.
| |
Collapse
|
33
|
García-García I, Méndez-Cea B, González de Andrés E, Gazol A, Sánchez-Salguero R, Manso-Martínez D, Horreo JL, Camarero JJ, Linares JC, Gallego FJ. Climate and Soil Microsite Conditions Determine Local Adaptation in Declining Silver Fir Forests. PLANTS (BASEL, SWITZERLAND) 2023; 12:2607. [PMID: 37514222 PMCID: PMC10384727 DOI: 10.3390/plants12142607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/15/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023]
Abstract
Ongoing climatic change is threatening the survival of drought-sensitive tree species, such as silver fir (Abies alba). Drought-induced dieback had been previously explored in this conifer, although the role played by tree-level genetic diversity and its relationship with growth patterns and soil microsite conditions remained elusive. We used double digest restriction-site-associated DNA sequencing (ddRADseq) to describe different genetic characteristics of five silver fir forests in the Spanish Pyrenees, including declining and non-declining trees. Single nucleotide polymorphisms (SNPs) were used to investigate the relationships between genetics, dieback, intraspecific trait variation (functional dendrophenotypic traits and leaf traits), local bioclimatic conditions, and rhizosphere soil properties. While there were no noticeable genetic differences between declining and non-declining trees, genome-environment associations with selection signatures were abundant, suggesting a strong influence of climate, soil physicochemical properties, and soil microbial diversity on local adaptation. These results provide novel insights into how genetics and diverse environmental factors are interrelated and highlight the need to incorporate genetic data into silver fir forest dieback studies to gain a better understanding of local adaptation.
Collapse
Affiliation(s)
- Isabel García-García
- Departamento de Genética, Fisiología y Microbiología, Unidad de Genética, Facultad de CC Biológicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Belén Méndez-Cea
- Departamento de Genética, Fisiología y Microbiología, Unidad de Genética, Facultad de CC Biológicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | | | - Antonio Gazol
- Instituto Pirenaico de Ecología (IPE-CSIC), 50059 Zaragoza, Spain
| | - Raúl Sánchez-Salguero
- Departamento de Sistemas Físicos, Químicos y Naturales, Universidad Pablo de Olavide, 41013 Sevilla, Spain
| | - David Manso-Martínez
- Departamento de Genética, Fisiología y Microbiología, Unidad de Genética, Facultad de CC Biológicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Jose Luis Horreo
- Departamento de Genética, Fisiología y Microbiología, Unidad de Genética, Facultad de CC Biológicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - J Julio Camarero
- Instituto Pirenaico de Ecología (IPE-CSIC), 50059 Zaragoza, Spain
| | - Juan Carlos Linares
- Departamento de Sistemas Físicos, Químicos y Naturales, Universidad Pablo de Olavide, 41013 Sevilla, Spain
| | - Francisco Javier Gallego
- Departamento de Genética, Fisiología y Microbiología, Unidad de Genética, Facultad de CC Biológicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| |
Collapse
|
34
|
Ma N, Kou L, Li S, Dai X, Meng S, Jiang L, Xue Y, Zheng J, Fu X, Wang H. Plant-soil feedback regulates the trade-off between phosphorus acquisition pathways in Pinus elliottii. TREE PHYSIOLOGY 2023; 43:1092-1103. [PMID: 37074159 PMCID: PMC10785040 DOI: 10.1093/treephys/tpad044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/31/2023] [Accepted: 04/11/2023] [Indexed: 05/03/2023]
Abstract
Plant-soil feedback (PSF) is conventionally characterized by plant biomass growth, yet it remains unclear how PSF affects plant nutrient acquisition strategies (e.g., nutrient absorption and nutrient resorption) associated with plant growth, particularly under changing soil environments. A greenhouse experiment was performed with seedlings of Pinus elliottii Englem and conditioned soils of monoculture plantations (P. elliottii and Cunninghamia lanceolata Hook). Soil sterilization was designed to test plant phosphorus (P) acquisition strategy with and without native soil fungal communities. Soils from P. elliottii and C. lanceolata plantations were used to explore the specific soil legacy effects on two different P acquisition pathways (absorption and resorption). Phosphorus addition was also applied to examine the separate and combined effects of soil abiotic factors and soil fungal factors on P acquisition pathways. Due to diminished mycorrhizal symbiosis, PSF prompted plants to increasingly rely on P resorption under soil sterilization. In contrast, P absorption was employed preferentially in the heterospecific soil, where species-specific pathogenic fungi could not affect P absorption. Higher soil P availability diluted the effects of soil fungal factors on the trade-off between the two P acquisition pathways in terms of the absolute PSF. Moreover, P addition plays a limited role in terms of the relative PSF and does not affect the direction and strength of relative PSF. Our results reveal the role of PSF in regulating plant P acquisition pathways and highlight the interaction between mycorrhizal and pathogenic fungi as the underlying mechanism of PSF.
Collapse
Affiliation(s)
- Ning Ma
- National Ecosystem Science Data Center, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- Sino-Danish Center for Education and Research, Eastern Yanqihu Campus, University of Chinese Academy of Sciences, 380 Huaibeizhuang, Beijing 101400, China
| | - Liang Kou
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Shenggong Li
- National Ecosystem Science Data Center, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- Sino-Danish Center for Education and Research, Eastern Yanqihu Campus, University of Chinese Academy of Sciences, 380 Huaibeizhuang, Beijing 101400, China
| | - Xiaoqin Dai
- Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Shengwang Meng
- Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Lei Jiang
- National Ecosystem Science Data Center, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Yafang Xue
- National Ecosystem Science Data Center, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiajia Zheng
- National Ecosystem Science Data Center, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoli Fu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Huimin Wang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
35
|
In 't Zandt D, Kolaříková Z, Cajthaml T, Münzbergová Z. Plant community stability is associated with a decoupling of prokaryote and fungal soil networks. Nat Commun 2023; 14:3736. [PMID: 37349286 PMCID: PMC10287681 DOI: 10.1038/s41467-023-39464-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 06/14/2023] [Indexed: 06/24/2023] Open
Abstract
Soil microbial networks play a crucial role in plant community stability. However, we lack knowledge on the network topologies associated with stability and the pathways shaping these networks. In a 13-year mesocosm experiment, we determined links between plant community stability and soil microbial networks. We found that plant communities on soil abandoned from agricultural practices 60 years prior to the experiment promoted destabilising properties and were associated with coupled prokaryote and fungal soil networks. This coupling was mediated by strong interactions of plants and microbiota with soil resource cycling. Conversely, plant communities on natural grassland soil exhibited a high stability, which was associated with decoupled prokaryote and fungal soil networks. This decoupling was mediated by a large variety of past plant community pathways shaping especially fungal networks. We conclude that plant community stability is associated with a decoupling of prokaryote and fungal soil networks and mediated by plant-soil interactions.
Collapse
Affiliation(s)
- Dina In 't Zandt
- Institute of Botany, Czech Academy of Sciences, 252 43, Průhonice, Czech Republic.
| | - Zuzana Kolaříková
- Institute of Botany, Czech Academy of Sciences, 252 43, Průhonice, Czech Republic
| | - Tomáš Cajthaml
- Institute for Environmental Studies, Faculty of Science, Charles University, Praha 2, Czech Republic
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, Prague, CZ-14220, Czech Republic
| | - Zuzana Münzbergová
- Institute of Botany, Czech Academy of Sciences, 252 43, Průhonice, Czech Republic
- Department of Botany, Faculty of Science, Charles University, Praha 2, Czech Republic
| |
Collapse
|
36
|
Yang X, Shen K, Xia T, He Y, Guo Y, Wu B, Han X, Yan J, Jiao M. Invasive and Native Plants Differentially Respond to Exogenous Phosphorus Addition in Root Growth and Nutrition Regulated by Arbuscular Mycorrhizal Fungi. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112195. [PMID: 37299174 DOI: 10.3390/plants12112195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/19/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023]
Abstract
Plant invasion has severely damaged ecosystem stability and species diversity worldwide. The cooperation between arbuscular mycorrhizal fungi (AMF) and plant roots is often affected by changes in the external environment. Exogenous phosphorus (P) addition can alter the root absorption of soil resources, thus regulating the root growth and development of exotic and native plants. However, it remains unclear how exogenous P addition regulates the root growth and development of exotic and native plants mediated by AMF, affecting the exotic plant invasion. In this experiment, the invasive plant Eupatorium adenophorum and native plant Eupatorium lindleyanum were selected and cultured under intraspecific (Intra-) competition and interspecific (Inter-) competition conditions, involving inoculation with (M+) and without AMF (M-) and three different levels of P addition including no addition (P0), addition with 15 mg P kg-1 soil (P15), and addition with 25 mg P kg-1 soil (P25) for the two species. Root traits of the two species were analyzed to study the response of the two species' roots to AMF inoculation and P addition. The results showed that AMF significantly promoted the root biomass, length, surface area, volume, tips, branching points, and carbon (C), nitrogen (N), and P accumulation of the two species. Under M+ treatment, the Inter- competition decreased the root growth and nutrient accumulation of invasive E. adenophorum but increased the root growth and nutrient accumulation of native E. lindleyanum relative to the Intra- competition. Meanwhile, the exotic and native plants responded differently to P addition, exhibiting root growth and nutrient accumulation of invasive E. adenophorum increased with P addition, whereas native E. lindleyanum reduced with P addition. Further, the root growth and nutrition accumulation of native E. lindleyanum were higher than invasive E. adenophorum under Inter- competition. In conclusion, exogenous P addition promoted the invasive plant but reduced the native plant in root growth and nutrient accumulation regulated by AMF, although the native plant outcompeted the invasive plant when the two species competed. The findings provide a critical perspective that the anthropogenic P fertilizer addition might potentially contribute to the successful invasion of exotic plants.
Collapse
Affiliation(s)
- Xionggui Yang
- Forestry College, Research Center of Forest Ecology, Guizhou University, Guiyang 550025, China
| | - Kaiping Shen
- Forestry College, Research Center of Forest Ecology, Guizhou University, Guiyang 550025, China
| | - Tingting Xia
- Forestry College, Research Center of Forest Ecology, Guizhou University, Guiyang 550025, China
| | - Yuejun He
- Forestry College, Research Center of Forest Ecology, Guizhou University, Guiyang 550025, China
| | - Yun Guo
- Forestry College, Research Center of Forest Ecology, Guizhou University, Guiyang 550025, China
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang 550025, China
| | - Bangli Wu
- Forestry College, Research Center of Forest Ecology, Guizhou University, Guiyang 550025, China
| | - Xu Han
- Forestry College, Research Center of Forest Ecology, Guizhou University, Guiyang 550025, China
| | - Jiawei Yan
- Forestry College, Research Center of Forest Ecology, Guizhou University, Guiyang 550025, China
| | - Min Jiao
- Forestry College, Research Center of Forest Ecology, Guizhou University, Guiyang 550025, China
| |
Collapse
|
37
|
de Vries F, Lau J, Hawkes C, Semchenko M. Plant-soil feedback under drought: does history shape the future? Trends Ecol Evol 2023:S0169-5347(23)00054-X. [PMID: 36973124 DOI: 10.1016/j.tree.2023.03.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/29/2023]
Abstract
Plant-soil feedback (PSF) is widely recognised as a driver of plant community composition, but understanding of its response to drought remains in its infancy. Here, we provide a conceptual framework for the role of drought in PSF, considering plant traits, drought severity, and historical precipitation over ecological and evolutionary timescales. Comparing experimental studies where plants and microbes do or do not share a drought history (through co-sourcing or conditioning), we hypothesise that plants and microbes with a shared drought history experience more positive PSF under subsequent drought. To reflect real-world responses to drought, future studies need to explicitly include plant-microbial co-occurrence and potential co-adaptation and consider the precipitation history experienced by both plants and microbes.
Collapse
Affiliation(s)
- Franciska de Vries
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands.
| | - Jennifer Lau
- Department of Biology and Environmental Resilience Institute, Indiana University, IN, USA
| | - Christine Hawkes
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
| | - Marina Semchenko
- Institute of Ecology and Earth Sciences, University of Tartu, Liivi 2, 50409 Tartu, Estonia
| |
Collapse
|
38
|
Koozehgar Kaleji M, Kazemi H, Kamkar B, Amirnejad H, Hosseinalizadeh M. Evaluation, quantification, and mapping of ecosystem services in canola agroecosystems. LANDSCAPE AND ECOLOGICAL ENGINEERING 2023. [DOI: 10.1007/s11355-023-00552-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
39
|
Zhao W, Wang X, Howard MM, Kou Y, Liu Q. Functional shifts in soil fungal communities regulate differential tree species establishment during subalpine forest succession. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 861:160616. [PMID: 36462659 DOI: 10.1016/j.scitotenv.2022.160616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/27/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
Soil fungi can differentially affect plant performance and community dynamics. While fungi play key roles in driving the plant-soil feedbacks (PSFs) that promote grassland succession, it remains unclear how the fungi-mediated PSFs affect tree species establishment during forest succession. We inoculated pioneer broadleaf (Betula platyphylla and Betula albosinensis) and nonpioneer coniferous tree seedlings (Picea asperata and Abies faxoniana) with fungal-dominated rooting zone soils collected from dominant plant species of early-, mid- and late-successional stages in a subalpine forest, and compared their biomass and fungal communities. All tree species accumulated abundant pathogenic fungi in early-successional inoculated soil, which generated negative biotic feedbacks and lowered seedling biomass. High levels of soil ectomycorrhizal fungi from mid- and late-successional stages resulted in positive biotic PSFs and strongly facilitated slow-growing coniferous seedling performance to favour successional development. B. albosinensis also grew better in mid- and late-successional soils with fewer pathogenic fungi than in early-successional soil, indicating its large susceptibility to pathogen attack. In contrast, the growth of another pioneer tree, B. platyphylla, was significantly suppressed in late-successional soil and was mostly driven by saprotrophic fungi, despite the unchanged pathogenic fungal community traits between the two fast-growing species. This unexpected result suggested a host specificity-dependent mechanism involved in the different impacts of fungal pathogens on host trees. Our findings reveal a critical role of functional shifts in soil fungal communities in mediating differential PSFs of tree species across successional stages, which should be considered to improve the prediction and management of community development following forest disturbances.
Collapse
Affiliation(s)
- Wenqiang Zhao
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Xiaohu Wang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mia M Howard
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - Yongping Kou
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Qing Liu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| |
Collapse
|
40
|
Senthilnathan A, D'Andrea R. Niche theory for positive plant-soil feedbacks. Ecology 2023; 104:e3993. [PMID: 36788733 DOI: 10.1002/ecy.3993] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 02/16/2023]
Abstract
Interactions between plants and the soil are an important ecological process in terrestrial ecosystems as they affect plant community structure: when and where we find different plant species. Those interactions are typically thought of as one-directional: local soil conditions filter through dispersing species to produce a community of locally adapted plants. However, plants can modify local physicochemical soil conditions via their roots and associations with soil microbes. These may in turn affect the local fitness of other plants, making plant-soil interactions bidirectional. In order to understand how they differ from other ecological processes that structure plant communities, we need a theory connecting these individual-level plant-soil feedbacks to community-level patterns. Here, we build this theory with a mathematical model of plant community dynamics in which soil conditioning is explicitly modeled over time and depends on the density of the plants. We analyze this model to describe the long-term composition and spatial distribution of the plant community. Our main result is that positive plant-soil feedbacks will create clustering of species with similar soil preferences. The composition of these clusters is further influenced by niche width and conditioning strength. In contrast with competitive dynamics driven by niche overlap, only species belonging to the same cluster can maintain high relative abundance in the community. Spatial heterogeneity in the form of an environmental gradient generates patches, each representing a single cluster. However, such patchiness is disfavored when species differ in dispersal ability. We show that stronger dispersers cannot take over the habitat as long as an exogenous driver favors soil conditions that benefit the other species. If exogenous drivers supersede soil conditioning by plants, we retrieve classic habitat filtering, where species are selected based on their suitability to the local environment. Overall, we provide a novel mathematical model for positive plant-soil feedback that we use to describe the spatial patterns of plant abundance and traits related to soil preference and conditioning ability.
Collapse
Affiliation(s)
| | - Rafael D'Andrea
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
41
|
Jiang C, Zeng H. Unique Habitat of Karst Tiankengs Changes the Taxonomy and Potential Metabolism of Soil Microbial Communities. Microbiol Spectr 2023; 11:e0231622. [PMID: 36648219 PMCID: PMC9927240 DOI: 10.1128/spectrum.02316-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Microbial communities in karst ecosystems have been extensively studied. However, in a class of deep-lying habitats with unique climates (karst tiankeng), the structure and ecological functions of microorganisms receive little attention, which is essential for understanding the biogeochemistry of karst tiankeng. Herein, microorganisms from inside (ITK) and outside (OTK) karst tiankengs were analyzed by high-throughput sequencing and multivariate statistical analysis. The results showed that the structure and function of soil bacterial communities inside and outside karst tiankengs were significantly different. The ITK microbial communities presented significantly higher Shannon diversity due to the abundant nutrients in karst tiankeng soil. Random molecular ecological network analysis revealed that the ITK network was simpler and more vulnerable and may be susceptible to environmental changes. More positive links within the network indicate that microorganisms adapt to the karst tiankeng through synergies. The keystones in karst tiankeng were mainly involved in the decomposition of soil organic matter and carbon/nitrogen cycles. Although soil total phosphorus and available potassium regulate microbial community structure variation, dispersal limitation is the predominant ecological process within the microbial community in karst tiankeng. In addition, the functional profiles of the microbial communities reveal that some human diseases (such as infectious diseases) exist in OTK. Collectively, these findings have enhanced our understanding of microbial interactions, ecological functions, and community composition processes in karst tiankeng ecosystems. IMPORTANCE Constrained by the trapped terrain, a unique ecosystem has formed in karst tiankeng. Soil microorganisms are essential for the formation and maintenance of ecosystems, but soil microbial ecology research in karst tiankeng is still lacking. In this study, representative habitats inside and outside karst tiankeng were selected to study the taxonomy and potential metabolism of soil microbial communities. The results show that the unique habitat of karst tiankeng reshapes the composition, structure, and function of soil microbial communities. Our results contribute to enhancing our understanding of sustainable recovery strategies in fragile ecosystems and understanding the biodiversity value of karst tiankeng under climate change.
Collapse
Affiliation(s)
- Cong Jiang
- School of Urban Planning and Design, Peking University Shenzhen Graduate School, Peking University, Shenzhen, China
| | - Hui Zeng
- School of Urban Planning and Design, Peking University Shenzhen Graduate School, Peking University, Shenzhen, China
| |
Collapse
|
42
|
Beckman NG, Dybzinski R, Tilman D. Short-term plant-soil feedback experiment fails to predict outcome of competition observed in long-term field experiment. Ecology 2023; 104:e3883. [PMID: 36208059 DOI: 10.1002/ecy.3883] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 08/11/2022] [Indexed: 02/03/2023]
Abstract
Mounting evidence suggests that plant-soil feedbacks (PSF) may determine plant community structure. However, we still have a poor understanding of how predictions from short-term PSF experiments compare with outcomes of long-term field experiments involving competing plants. We conducted a reciprocal greenhouse experiment to examine how the growth of prairie grass species depended on the soil communities cultured by conspecific or heterospecific plant species in the field. The source soil came from monocultures in a long-term competition experiment (LTCE; Cedar Creek Ecosystem Science Reserve, MN, USA). Within the LTCE, six species of perennial prairie grasses were grown in monocultures or in eight pairwise competition plots for 12 years under conditions of low or high soil nitrogen availability. In six cases, one species clearly excluded the other; in two cases, the pair appeared to coexist. In year 15, we gathered soil from all 12 soil types (monocultures of six species by two nitrogen levels) and grew seedlings of all six species in each soil type for 7 weeks. Using biomass estimates from this greenhouse experiment, we predicted coexistence or competitive exclusion using pairwise PSFs, as derived by Bever and colleagues, and compared model predictions to observed outcomes within the LTCE. Pairwise PSFs among the species pairs ranged from negative, which is predicted to promote coexistence, to positive, which is predicted to promote competitive exclusion. However, these short-term PSF predictions bore no systematic resemblance to the actual outcomes of competition observed in the LTCE. Other forces may have more strongly influenced the competitive interactions or critical assumptions that underlie the PSF predictions may not have been met. Importantly, the pairwise PSF score derived by Bever et al. is only valid when the two species exhibit an internal equilibrium, corresponding to the Lotka-Volterra competition outcomes of stable coexistence and founder control. Predicting the other two scenarios, competitive exclusion by either species irrespective of initial conditions, requires measuring biomass in uncultured soil, which is methodologically challenging. Subject to several caveats that we discuss, our results call into question whether long-term competitive outcomes in the field can be predicted from the results of short-term PSF experiments.
Collapse
Affiliation(s)
- Noelle G Beckman
- Department of Biology and Ecology Center, Utah State University, Logan, Utah, USA
| | - Ray Dybzinski
- School of Environmental Sustainability, Loyola University Chicago, Chicago, Illinois, USA
| | - David Tilman
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, Minnesota, USA
| |
Collapse
|
43
|
Tondera K, Chazarenc F, Brisson J, Chagnon PL. Structure and impact of root-associated fungi in treatment wetland mesocosms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159958. [PMID: 36343819 DOI: 10.1016/j.scitotenv.2022.159958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 10/18/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Root fungal endophytes have been shown to play a positive role in soil phytoremediation by immobilizing or degrading contaminants. In comparison, little is known about their ecological functions and possible role in improving plant performance in treatment wetlands. In a greenhouse study, we compared the structure of fungal communities associated with Phragmites australis roots in treatment wetland mesocosms fed with pre-treated wastewater to mesocosms fed with drinking water. We evaluated the role of water source as an environmental filter structuring fungal communities, and correlated the relative abundances of fungal taxa with key services delivered by the wetlands (i.e., biomass production and nutrient removal). Mesocosms fed with wastewater had higher fungal alpha-diversity. Contrary to expectations, many fungi were unique to drinking water-fed mesocosms, suggesting that the oligotrophic conditions prevailing in these mesocosms benefited specific fungal taxa. On the other hand, wastewater-fed mesocosms had a slightly higher proportion of sequence reads belonging to fungal species recognized as potential endophytes and phytopathogens, highlighting the potential role of wastewater as a source of plant-associated fungi. Interestingly, we found contrasted association patterns between fungal species' relative abundances and different treatment wetland services (e.g., N vs P removal), such that some fungi were positively associated with N removal but negatively associated with P removal. This suggests that fungal endophytes may be functionally complementary in their contribution to distinct mesocosm services, thus supporting arguments in favor of microbial diversity in phytotechnologies. Because of the wide alpha-diversity of fungal communities, and the fact that with current databases, most species remained unassigned to a specific function (or even guild), further investigation is needed to link fungal community structure and service delivery in treatment wetlands.
Collapse
Affiliation(s)
- Katharina Tondera
- INRAE, REVERSAAL, F-69625 Villeurbanne, France; IMT Atlantique Bretagne-Pays de Loire, Department of Energy Systems and Environment, 44307 Nantes, France.
| | | | - Jacques Brisson
- Institut de recherche en biologie végétale, Département de sciences biologiques, Université de Montréal, Montréal, Canada.
| | - Pierre-Luc Chagnon
- Institut de recherche en biologie végétale, Département de sciences biologiques, Université de Montréal, Montréal, Canada.
| |
Collapse
|
44
|
Hodgson RJ, Liddicoat C, Cando‐Dumancela C, Blyth C, Watson CD, Breed MF. Local and non‐local soil microbiota impede germination of the endangered
Acacia whibleyana. AUSTRAL ECOL 2023. [DOI: 10.1111/aec.13275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Riley J. Hodgson
- College of Science and Engineering Flinders University Bedford Park South Australia Australia
| | - Craig Liddicoat
- College of Science and Engineering Flinders University Bedford Park South Australia Australia
- School of Public Health University of Adelaide Adelaide South Australia Australia
| | | | - Colette Blyth
- School of Biological Sciences University of Adelaide Adelaide South Australia Australia
| | - Carl D. Watson
- College of Science and Engineering Flinders University Bedford Park South Australia Australia
| | - Martin F. Breed
- College of Science and Engineering Flinders University Bedford Park South Australia Australia
| |
Collapse
|
45
|
Abrahão A, Marhan S, Boeddinghaus RS, Nawaz A, Wubet T, Hölzel N, Klaus VH, Kleinebecker T, Freitag M, Hamer U, Oliveira RS, Lambers H, Kandeler E. Microbial drivers of plant richness and productivity in a grassland restoration experiment along a gradient of land-use intensity. THE NEW PHYTOLOGIST 2022; 236:1936-1950. [PMID: 36128644 DOI: 10.1111/nph.18503] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Plant-soil feedbacks (PSFs) underlying grassland plant richness and productivity are typically coupled with nutrient availability; however, we lack understanding of how restoration measures to increase plant diversity might affect PSFs. We examined the roles of sward disturbance, seed addition and land-use intensity (LUI) on PSFs. We conducted a disturbance and seed addition experiment in 10 grasslands along a LUI gradient and characterized plant biomass and richness, soil microbial biomass, community composition and enzyme activities. Greater plant biomass at high LUI was related to a decrease in the fungal to bacterial ratios, indicating highly productive grasslands to be dominated by bacteria. Lower enzyme activity per microbial biomass at high plant species richness indicated a slower carbon (C) cycling. The relative abundance of fungal saprotrophs decreased, while pathogens increased with LUI and disturbance. Both fungal guilds were negatively associated with plant richness, indicating the mechanisms underlying PSFs depended on LUI. We show that LUI and disturbance affect fungal functional composition, which may feedback on plant species richness by impeding the establishment of pathogen-sensitive species. Therefore, we highlight the need to integrate LUI including its effects on PSFs when planning for practices that aim to optimize plant diversity and productivity.
Collapse
Affiliation(s)
- Anna Abrahão
- Department of Soil Biology, Institute of Soil Science and Land Evaluation, University of Hohenheim, 70599, Stuttgart, Germany
- Department of Biology, Science Center, Federal University of Ceará - UFC, Fortaleza, CE, 60440-900, Brazil
| | - Sven Marhan
- Department of Soil Biology, Institute of Soil Science and Land Evaluation, University of Hohenheim, 70599, Stuttgart, Germany
| | - Runa S Boeddinghaus
- Department of Soil Biology, Institute of Soil Science and Land Evaluation, University of Hohenheim, 70599, Stuttgart, Germany
- Landwirtschaftliches Technologiezentrum Augustenberg, 76227, Karlsruhe, Germany
| | - Ali Nawaz
- Department of Community Ecology, UFZ - Helmholtz Center for Environmental Research, 06120, Halle (Saale), Germany
- Department of Civil, Geo and Environmental Engineering, Technical University of Munich, Am Coulombwall 3, 85748, Garching, Germany
| | - Tesfaye Wubet
- Department of Community Ecology, UFZ - Helmholtz Center for Environmental Research, 06120, Halle (Saale), Germany
- German Center for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany
| | - Norbert Hölzel
- Institute of Landscape Ecology, University of Münster, Heisenbergstr. 2, D-48149, Münster, Germany
| | - Valentin H Klaus
- Institute of Agricultural Sciences, ETH Zürich, Universitätstr. 2, 8092, Zürich, Switzerland
| | - Till Kleinebecker
- Institute of Landscape Ecology and Resources Management, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 26-32, D-35392, Gießen, Germany
- Center for International Development and Environmental Research (ZEU), Justus Liebig University Giessen, Senckenbergstrasse 3, 35390, Giessen, Germany
| | - Martin Freitag
- Institute of Landscape Ecology, University of Münster, Heisenbergstr. 2, D-48149, Münster, Germany
| | - Ute Hamer
- Institute of Landscape Ecology, University of Münster, Heisenbergstr. 2, D-48149, Münster, Germany
| | - Rafael S Oliveira
- Departamento de Biologia Vegetal, Universidade Estadual de Campinas, 13083-970, Campinas, Brazil
| | - Hans Lambers
- School of Biological Sciences, University of Western Australia, Crawley, Perth, WA, 6009, Australia
| | - Ellen Kandeler
- Department of Soil Biology, Institute of Soil Science and Land Evaluation, University of Hohenheim, 70599, Stuttgart, Germany
| |
Collapse
|
46
|
Zhou H, Hou L, Lv X, Yang G, Wang Y, Wang X. Compensatory growth as a response to post-drought in grassland. FRONTIERS IN PLANT SCIENCE 2022; 13:1004553. [PMID: 36531403 PMCID: PMC9752846 DOI: 10.3389/fpls.2022.1004553] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Grasslands are structurally and functionally controlled by water availability. Ongoing global change is threatening the sustainability of grassland ecosystems through chronic alterations in climate patterns and resource availability, as well as by the increasing frequency and intensity of anthropogenic perturbations. Compared with many studies on how grassland ecosystems respond during drought, there are far fewer studies focused on grassland dynamics after drought. Compensatory growth, as the ability of plants to offset the adverse effects of environmental or anthropogenic perturbations, is a common phenomenon in grassland. However, compensatory growth induced by drought and its underlying mechanism across grasslands remains not clear. In this review, we provide examples of analogous compensatory growth from different grassland types across drought characteristics (intensity, timing, and duration) and explain the effect of resource availability on compensatory growth and their underlying mechanisms. Based on our review of the literature, a hypothetic framework for integrating plant, root, and microbial responses is also proposed to increase our understanding of compensatory growth after drought. This research will advance our understanding of the mechanisms of grassland ecosystem functioning in response to climate change.
Collapse
Affiliation(s)
- Huailin Zhou
- State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, China Meteorological Administration, Beijing, China
| | - Lulu Hou
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaomin Lv
- State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, China Meteorological Administration, Beijing, China
| | - Guang Yang
- College of Teacher Education, Capital Normal University, Beijing, China
| | - Yuhui Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Xu Wang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
47
|
Li X, Zhang Z, Lü X, Li Y, Jin K, van der Putten WH. Soil aggregate microbiomes steer plant community overyielding in ungrazed and intensively grazed grassland soils. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 321:115919. [PMID: 36001914 DOI: 10.1016/j.jenvman.2022.115919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 07/29/2022] [Accepted: 07/30/2022] [Indexed: 06/15/2023]
Abstract
Plant and soil microbial community composition play a central role in maintaining ecosystem functioning. Most studies have focused on soil microbes in the bulk soil, the rhizosphere and inside plant roots, however, less is known about the soil community that exists within soil aggregates, and how these soil communities influence plant biomass production. Here, using field-conditioned soil collected from experimental ungrazed and grazed grasslands in Inner Mongolia, China, we examined the composition of microbiomes inside soil aggregates of various size classes, and determined their roles in plant-soil feedbacks (PSFs), diversity-productivity relationships, and diversity-dependent overyielding. We found that grazing induced significantly positive PSF effects, which appeared to be mediated by mycorrhizal fungi, particularly under plant monocultures. Despite this, non-additive effects of microbiomes within different soil aggregates enhanced the strength of PSF under ungrazed grassland, but decreased PSF strength under intensively grazed grassland. Plant mixture-related increases in PSF effects markedly enhanced diversity-dependent overyielding, primarily due to complementary effects. Selection effects played far less of a role. Our work suggests that PSF contributes to diversity-dependent overyielding in grasslands via non-additive effects of microbiomes within different soil aggregates. The implication of our work is that assessing the effectiveness of sustainable grassland restoration and management on soil properties requires inspection of soil aggregate size-specific microbiomes, as these are relevant determinants of the feedback interactions between soil and plant performance.
Collapse
Affiliation(s)
- Xiliang Li
- Key Laboratory of Grassland Ecology and Restoration, Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, 010010, China; Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, 6700AB, the Netherlands
| | - Zhen Zhang
- Key Laboratory of Grassland Ecology and Restoration, Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, 010010, China
| | - Xiaotao Lü
- Erguna Forest-Steppe Ecotone Research Station, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Yuanheng Li
- Key Laboratory of Grassland Ecology and Restoration, Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, 010010, China.
| | - Ke Jin
- Key Laboratory of Grassland Ecology and Restoration, Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, 010010, China
| | - Wim H van der Putten
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, 6700AB, the Netherlands; Department of Nematology, Wageningen University & Research, Wageningen 6700 ES, the Netherlands
| |
Collapse
|
48
|
Dadzie FA, Moles AT, Erickson TE, Slavich E, Muñoz‐Rojas M. Native bacteria and cyanobacteria can influence seedling emergence and growth of native plants used in dryland restoration. J Appl Ecol 2022. [DOI: 10.1111/1365-2664.14293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Frederick A. Dadzie
- Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences UNSW Sydney Sydney New South Wales Australia
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences UNSW Sydney Sydney New South Wales Australia
| | - Angela T. Moles
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences UNSW Sydney Sydney New South Wales Australia
| | - Todd E. Erickson
- School of Biological Sciences University of Western Australia Crawley Western Australia Australia
- Kings Park Science, Department of Biodiversity, Conservation and Attractions Kings Park Western Australia Australia
| | - Eve Slavich
- School of Mathematics and Statistics UNSW Sydney Sydney New South Wales Australia
| | - Miriam Muñoz‐Rojas
- Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences UNSW Sydney Sydney New South Wales Australia
- Department of Plant Biology and Ecology University of Seville Seville Spain
| |
Collapse
|
49
|
Lundell S, Batbaatar A, Carlyle CN, Lamb EG, Otfinowski R, Schellenberg MP, Bennett JA. Plant responses to soil biota depend on precipitation history, plant diversity, and productivity. Ecology 2022; 103:e3784. [PMID: 35672930 DOI: 10.1002/ecy.3784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/18/2022] [Accepted: 05/05/2022] [Indexed: 12/13/2022]
Abstract
Soil biota are critical drivers of plant growth, population dynamics, and community structure and thus have wide-ranging effects on ecosystem function. Interactions between plants and soil biota are complex, however, and can depend on the diversity and productivity of the plant community and environmental conditions. Plant-soil biota interactions may be especially important during stressful periods, such as drought, when plants can gain great benefits from beneficial biota but may be susceptible to antagonists. How soil biota respond to drought is also important and can influence plant growth following drought and leave legacies that affect future plant responses to soil biota and further drought. To explore how drought legacies and plant community context influence plant growth responses to soil biota and further drought, we collected soils from 12 grasslands varying in plant diversity and productivity where precipitation was experimentally reduced. We used these soils as inoculum in a growth chamber experiment testing how precipitation history (ambient or reduced) and soil biota (live or sterile soil inoculum) mediate plant growth and drought responses within an experimental plant community. We also tested whether these responses differed with the diversity and productivity of the community where the soil was collected. Plant growth responses to soil biota were positive when inoculated with soils from less diverse and productive plant communities and became negative as the diversity and productivity of the conditioning community increased. At low diversity, however, positive soil biota effects on plant growth were eliminated if precipitation had been reduced in the field, suggesting that diversity loss may heighten climate change sensitivity. Differences among species within the experimental community in their responses to soil biota and drought suggest that species benefitting from less drought sensitive soil biota may be able to compensate for some of this loss of productivity. Regardless of the plant species and soil origin, further drought eliminated any effects of soil biota on plant growth. Consequently, soil biota may be unable to buffer the effects of drought on primary productivity or other ecosystem functions as extreme events increase in frequency.
Collapse
Affiliation(s)
- Seth Lundell
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, Canada
| | - Amgaa Batbaatar
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.,Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Cameron N Carlyle
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Eric G Lamb
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, Canada
| | - Rafael Otfinowski
- Department of Biology, The University of Winnipeg, Winnipeg, Manitoba, Canada
| | - Michael P Schellenberg
- Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, Swift Current, Saskatchewan, Canada
| | - Jonathan A Bennett
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
50
|
Lozano YM, Aguilar-Trigueros CA, Ospina JM, Rillig MC. Drought legacy effects on root morphological traits and plant biomass via soil biota feedback. THE NEW PHYTOLOGIST 2022; 236:222-234. [PMID: 35719096 DOI: 10.1111/nph.18327] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 06/14/2022] [Indexed: 05/22/2023]
Abstract
Drought causes soil feedback effects on plant performance. However, how the linkages between conditioned soil biota and root traits contribute to explain plant-soil feedback (PSF) as a function of drought is unknown. We utilized soil inoculum from a conditioning experiment where grassland species grew under well-watered and drought conditions, and their soil fungi were analyzed. Under well-watered conditions, we grew 21 grassland species with those inocula from either conspecific or heterospecific soils. At harvest, plant biomass and root traits were measured. Negative PSF (higher biomass in heterospecific than in conspecific soils) was predominant, and favored in drought-conditioned soils. Previous drought affected the relationship between root traits and fungal groups. Specific root surface area (SRSA) was higher in heterospecific than in conspecific droughted soils and was linked to an increase in saprotroph richness. Overall, root diameter was higher in conspecific soils and was linked to mutualist and pathogen composition, whereas the decrease of root : shoot in heterospecific soils was linked to pathogenic fungi. Drought legacy affects biomass and root morphological traits via conditioned soil biota, even after the drought conditions have disappeared. This provides new insights into the role that soil biota have modulating PSF responses to drought.
Collapse
Affiliation(s)
- Yudi M Lozano
- Institute of Biology, Plant Ecology, Freie Universität Berlin, D-14195, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), D-14195, Berlin, Germany
| | - Carlos A Aguilar-Trigueros
- Institute of Biology, Plant Ecology, Freie Universität Berlin, D-14195, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), D-14195, Berlin, Germany
| | - Jenny M Ospina
- Institute of Biology, Plant Ecology, Freie Universität Berlin, D-14195, Berlin, Germany
| | - Matthias C Rillig
- Institute of Biology, Plant Ecology, Freie Universität Berlin, D-14195, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), D-14195, Berlin, Germany
| |
Collapse
|