1
|
Chenchula S, Atal S, Ghanta MK, Uppugunduri CR, Karunakaran S, Amerneni KC, Sarma P, Prakash S, Amerneni LS, Padmavathi R, Anitha K, Sri Varshini T, Vishnu Vardhan K, Kaore S, Sadasivam B. Emerging variants of Mpox virus and tecovirimat resistance: Genomic insights and implications for treatment strategies. Virology 2025; 608:110532. [PMID: 40245474 DOI: 10.1016/j.virol.2025.110532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 04/07/2025] [Accepted: 04/10/2025] [Indexed: 04/19/2025]
Abstract
Mpox is a zoonotic viral infection caused by the monkeypox virus (MPXV) genus Orthopoxvirus. The MPXV, possesses a large and complex double-stranded DNA genome, encoding approximately 190 genes. The virus has gained attention due to recent outbreaks and the emergence of resistant variants. MPXV exists in two distinct clades: Central African (Clade I) and West African (Clade II), with Clade I being more virulent. Genomic surveillance has revealed significant mutations across MPXV lineages, with Clade IIb, responsible for the 2022 outbreak, exhibiting rapid adaptation through APOBEC3-mediated deamination associated with sustained human-to-human transmission. The recent outbreak of highly mutated Clade 1b MPXV (hMpox-1) strain was associated with increased human-to-human transmission, underscoring the importance of monitoring viral mutations to track diversity and identify resistance to antiviral therapies. Tecovirimat, an antiviral drug authorized for treating Mpox, targets the F13L protein involved in viral egress. However, the rise of MPXV variants resistant to tecovirimat, linked to mutations in the F13L gene, presents a growing challenge. Mutations in the F13L gene, such as H238Q, A288P, A290V, D294V, P243S, N267D, A295E, I372N, and A184T, have been linked to resistance, reducing tecovirimat's efficacy. Therefore, understanding the Clade-specific mutation patterns and genomic adaptations offers crucial insights into the mechanisms driving resistant variant emergence to inform targeted therapeutic and vaccine development strategies, ensuring effective containment of future Mpox outbreaks. This review highlights the genomic diversity of MPXV, its implications for antiviral resistance, and strategies to enhance treatment effectiveness, particularly in vulnerable populations.
Collapse
Affiliation(s)
| | - Shubham Atal
- All India Institute of Medical Sciences Bhopal, India.
| | | | | | | | | | | | - Satya Prakash
- All India Institute of Medical Sciences Bhopal, India.
| | | | - R Padmavathi
- MediCiti Institute of Medical Sciences, Medchal, Hyderabad, India.
| | - K Anitha
- School of Pharmacy and Technology Management, SVKM'S NMIMS, Shirpur, India.
| | | | | | - Shilpa Kaore
- All India Institute of Medical Sciences Bhopal, India.
| | | |
Collapse
|
2
|
Song Y, Yan Y, Xu J, Lv S, Ren G, Zhou Y, Song W, Ge R, Xu P, Zhu G, Chen Z. Complete Genome Sequence Analysis of the First Imported Mpox Virus Clade Ib Variant in China. Pathogens 2025; 14:102. [PMID: 39861063 PMCID: PMC11768240 DOI: 10.3390/pathogens14010102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 01/13/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025] Open
Abstract
Mpox, a zoonotic disease caused by the mpox virus (MPXV), has seen a significant shift in its epidemiological status since 2022, evolving from an initial local outbreak to a global epidemic. This recent outbreak of MPXV mainly emerged in several European and American countries and subsequently spread to over 100 countries and regions worldwide. The rapid evolution of MPXV, coupled with increased international interactions, has led to a gradual rise in mpox cases in certain regions of Asia, mostly involving MPXV clade II and its branch strains. In contrast, the more pathogenic and clinically severe MPXV clade Ib has been relatively rare, with no reports in China to date. Here, we analyzed the whole gene sequence of imported MPXV clade Ib variant from the first infection case detected in China. Through whole genome sequencing, we successfully obtained a full-length MPXV genome of 195,405 base pairs (bp). Phylogenetic analysis revealed that the genetic sequence of the MPXV in this case was predominantly clustered with MPXV clade Ib sequences previously reported from multiple African and European countries. Compared with the MPXV clade Ib reference strain DQ011155.1, there are 127 nucleotide alterations and 57 amino acid mutations in the MPXV genome of this case. Given that the MPXV clade Ib has started to appear in China, we must pay more attention to the prevention of and control measures for the spread of mpox.
Collapse
Affiliation(s)
- Yin Song
- Jiaxing Key Laboratory of Pathogenic Microbiology, Jiaxing Center for Disease Control and Prevention, Jiaxing 314050, China; (Y.S.); (Y.Y.); (S.L.); (G.R.); (Y.Z.); (W.S.); (R.G.)
| | - Yong Yan
- Jiaxing Key Laboratory of Pathogenic Microbiology, Jiaxing Center for Disease Control and Prevention, Jiaxing 314050, China; (Y.S.); (Y.Y.); (S.L.); (G.R.); (Y.Z.); (W.S.); (R.G.)
| | - Jingyu Xu
- Department of Microbiology, Haiyan Center for Disease Control and Prevention, Haiyan, Jiaxing 314300, China; (J.X.); (P.X.)
| | - Shencong Lv
- Jiaxing Key Laboratory of Pathogenic Microbiology, Jiaxing Center for Disease Control and Prevention, Jiaxing 314050, China; (Y.S.); (Y.Y.); (S.L.); (G.R.); (Y.Z.); (W.S.); (R.G.)
| | - Ganglin Ren
- Jiaxing Key Laboratory of Pathogenic Microbiology, Jiaxing Center for Disease Control and Prevention, Jiaxing 314050, China; (Y.S.); (Y.Y.); (S.L.); (G.R.); (Y.Z.); (W.S.); (R.G.)
| | - Yamei Zhou
- Jiaxing Key Laboratory of Pathogenic Microbiology, Jiaxing Center for Disease Control and Prevention, Jiaxing 314050, China; (Y.S.); (Y.Y.); (S.L.); (G.R.); (Y.Z.); (W.S.); (R.G.)
| | - Wanchen Song
- Jiaxing Key Laboratory of Pathogenic Microbiology, Jiaxing Center for Disease Control and Prevention, Jiaxing 314050, China; (Y.S.); (Y.Y.); (S.L.); (G.R.); (Y.Z.); (W.S.); (R.G.)
| | - Rui Ge
- Jiaxing Key Laboratory of Pathogenic Microbiology, Jiaxing Center for Disease Control and Prevention, Jiaxing 314050, China; (Y.S.); (Y.Y.); (S.L.); (G.R.); (Y.Z.); (W.S.); (R.G.)
| | - Peihua Xu
- Department of Microbiology, Haiyan Center for Disease Control and Prevention, Haiyan, Jiaxing 314300, China; (J.X.); (P.X.)
| | - Guoying Zhu
- Jiaxing Key Laboratory of Pathogenic Microbiology, Jiaxing Center for Disease Control and Prevention, Jiaxing 314050, China; (Y.S.); (Y.Y.); (S.L.); (G.R.); (Y.Z.); (W.S.); (R.G.)
| | - Zhongwen Chen
- Jiaxing Key Laboratory of Pathogenic Microbiology, Jiaxing Center for Disease Control and Prevention, Jiaxing 314050, China; (Y.S.); (Y.Y.); (S.L.); (G.R.); (Y.Z.); (W.S.); (R.G.)
| |
Collapse
|
3
|
Kinganda-Lusamaki E, Amuri-Aziza A, Fernandez-Nuñez N, Makangara-Cigolo JC, Pratt C, Vakaniaki EH, Hoff NA, Luakanda-Ndelemo G, Akil-Bandali P, Nundu SS, Mulopo-Mukanya N, Ngimba M, Modadra-Madakpa B, Diavita R, Paku-Tshambu P, Pukuta-Simbu E, Merritt S, O'Toole Á, Low N, Nkuba-Ndaye A, Kavunga-Membo H, Shongo Lushima R, Liesenborghs L, Wawina-Bokalanga T, Vercauteren K, Mukadi-Bamuleka D, Subissi L, Muyembe-Tamfum JJ, Kindrachuk J, Ayouba A, Rambaut A, Delaporte E, Tessema S, D'Ortenzio E, Rimoin AW, Hensley LE, Mbala-Kingebeni P, Peeters M, Ahuka-Mundeke S. Clade I mpox virus genomic diversity in the Democratic Republic of the Congo, 2018-2024: Predominance of zoonotic transmission. Cell 2025; 188:4-14.e6. [PMID: 39454573 DOI: 10.1016/j.cell.2024.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/27/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024]
Abstract
Recent reports raise concerns on the changing epidemiology of mpox in the Democratic Republic of the Congo (DRC). High-quality genomes were generated for 337 patients from 14/26 provinces to document whether the increase in number of cases is due to zoonotic spillover events or viral evolution, with enrichment of APOBEC3 mutations linked to human adaptation. Our study highlights two patterns of transmission contributing to the source of human cases. All new sequences from the eastern South Kivu province (n = 17; 4.8%) corresponded to the recently described clade Ib, associated with sexual contact and sustained human-to-human transmission. By contrast, all other genomes are clade Ia, which exhibits high genetic diversity with low numbers of APOBEC3 mutations compared with clade Ib, suggesting multiple zoonotic introductions. The presence of multiple clade I variants in urban areas highlights the need for coordinated international response efforts and more studies on the transmission and the reservoir of mpox.
Collapse
Affiliation(s)
- Eddy Kinganda-Lusamaki
- Institut National de Recherche Biomédicale (INRB), Kinshasa, Democratic Republic of the Congo; Service de Microbiologie, Département de Biologie Médicale, Cliniques Universitaires de Kinshasa, Université de Kinshasa, Kinshasa, Democratic Republic of the Congo; TransVIHMI, Université de Montpellier, INSERM, IRD, 34394 Montpellier, France.
| | - Adrienne Amuri-Aziza
- Institut National de Recherche Biomédicale (INRB), Kinshasa, Democratic Republic of the Congo
| | | | - Jean-Claude Makangara-Cigolo
- Institut National de Recherche Biomédicale (INRB), Kinshasa, Democratic Republic of the Congo; Service de Microbiologie, Département de Biologie Médicale, Cliniques Universitaires de Kinshasa, Université de Kinshasa, Kinshasa, Democratic Republic of the Congo; Graduate School of Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | | | | | - Nicole A Hoff
- Department of Epidemiology, Jonathan and Karin Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Gradi Luakanda-Ndelemo
- Institut National de Recherche Biomédicale (INRB), Kinshasa, Democratic Republic of the Congo
| | - Prince Akil-Bandali
- Institut National de Recherche Biomédicale (INRB), Kinshasa, Democratic Republic of the Congo
| | - Sabin Sabiti Nundu
- Institut National de Recherche Biomédicale (INRB), Kinshasa, Democratic Republic of the Congo
| | | | - Michel Ngimba
- Rodolphe Merieux INRB-Goma Laboratory, Goma, Democratic Republic of the Congo
| | | | - Ruth Diavita
- Institut National de Recherche Biomédicale (INRB), Kinshasa, Democratic Republic of the Congo
| | - Princesse Paku-Tshambu
- Institut National de Recherche Biomédicale (INRB), Kinshasa, Democratic Republic of the Congo
| | - Elisabeth Pukuta-Simbu
- Institut National de Recherche Biomédicale (INRB), Kinshasa, Democratic Republic of the Congo
| | - Sydney Merritt
- Department of Epidemiology, Jonathan and Karin Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Áine O'Toole
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh, UK
| | - Nicola Low
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - Antoine Nkuba-Ndaye
- Institut National de Recherche Biomédicale (INRB), Kinshasa, Democratic Republic of the Congo; Service de Microbiologie, Département de Biologie Médicale, Cliniques Universitaires de Kinshasa, Université de Kinshasa, Kinshasa, Democratic Republic of the Congo; TransVIHMI, Université de Montpellier, INSERM, IRD, 34394 Montpellier, France
| | - Hugo Kavunga-Membo
- Rodolphe Merieux INRB-Goma Laboratory, Goma, Democratic Republic of the Congo
| | - Robert Shongo Lushima
- PNLFHMPX, Hemorrhagic Fever and Mpox Program, Ministry of Health, Kinshasa, Democratic Republic of the Congo
| | - Laurens Liesenborghs
- Department of Clinical Sciences, Institute of Tropical Medicine, 2000 Antwerp, Belgium; Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Tony Wawina-Bokalanga
- Institut National de Recherche Biomédicale (INRB), Kinshasa, Democratic Republic of the Congo; Service de Microbiologie, Département de Biologie Médicale, Cliniques Universitaires de Kinshasa, Université de Kinshasa, Kinshasa, Democratic Republic of the Congo; Department of Clinical Sciences, Institute of Tropical Medicine, 2000 Antwerp, Belgium
| | - Koen Vercauteren
- Department of Clinical Sciences, Institute of Tropical Medicine, 2000 Antwerp, Belgium
| | - Daniel Mukadi-Bamuleka
- Institut National de Recherche Biomédicale (INRB), Kinshasa, Democratic Republic of the Congo; Service de Microbiologie, Département de Biologie Médicale, Cliniques Universitaires de Kinshasa, Université de Kinshasa, Kinshasa, Democratic Republic of the Congo; Rodolphe Merieux INRB-Goma Laboratory, Goma, Democratic Republic of the Congo
| | | | - Jean-Jacques Muyembe-Tamfum
- Institut National de Recherche Biomédicale (INRB), Kinshasa, Democratic Republic of the Congo; Service de Microbiologie, Département de Biologie Médicale, Cliniques Universitaires de Kinshasa, Université de Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Jason Kindrachuk
- Department of Medical Microbiology & Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Ahidjo Ayouba
- TransVIHMI, Université de Montpellier, INSERM, IRD, 34394 Montpellier, France
| | - Andrew Rambaut
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh, UK
| | - Eric Delaporte
- TransVIHMI, Université de Montpellier, INSERM, IRD, 34394 Montpellier, France
| | - Sofonias Tessema
- Africa Centers for Disease Control and Prevention (Africa CDC), Addis Ababa, Ethiopia
| | - Eric D'Ortenzio
- ANRS Emerging Infectious Diseases (ANRS MIE), INSERM, 75015 Paris, France
| | - Anne W Rimoin
- Department of Epidemiology, Jonathan and Karin Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | | | - Placide Mbala-Kingebeni
- Institut National de Recherche Biomédicale (INRB), Kinshasa, Democratic Republic of the Congo; Service de Microbiologie, Département de Biologie Médicale, Cliniques Universitaires de Kinshasa, Université de Kinshasa, Kinshasa, Democratic Republic of the Congo.
| | - Martine Peeters
- TransVIHMI, Université de Montpellier, INSERM, IRD, 34394 Montpellier, France.
| | - Steve Ahuka-Mundeke
- Institut National de Recherche Biomédicale (INRB), Kinshasa, Democratic Republic of the Congo; Service de Microbiologie, Département de Biologie Médicale, Cliniques Universitaires de Kinshasa, Université de Kinshasa, Kinshasa, Democratic Republic of the Congo.
| |
Collapse
|
4
|
Qazi TS, Ying Z, Xiao Y, Ali T, Haque MA, Ali M, Shah A, Ali M. Mpox: a public health emergency demands, urgent action. Ann Med Surg (Lond) 2025; 87:18-19. [PMID: 40109626 PMCID: PMC11918781 DOI: 10.1097/ms9.0000000000002793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 11/20/2024] [Indexed: 03/22/2025] Open
Affiliation(s)
- Tariq Siraj Qazi
- Department of Public Health, Kunming Medical University, Kunming, Yunnan, China
- Jinnah College of Nurisng, Abbottabad, Pakistan
| | - Zhang Ying
- Nursing School of Kunming Medical University, Kunming, Yunnan, China
| | - Yuanyuan Xiao
- Department of Public Health, Kunming Medical University, Kunming, Yunnan, China
| | - Tooba Ali
- Dow University of Health Sciences, Karachi, Pakistan
| | - Md Ariful Haque
- Department of Public Health, Atish Dipankar University of Science and Technology, Dhaka, Bangladesh
- Voice of Doctors Research School, Dhaka, Bangladesh
- Department of Orthopedic Surgery, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, China
| | - Mahboob Ali
- Department of Orthopaedics and Spine, Hayatabad Medical Complex Peshawar, Pakistan
| | - Ali Shah
- Jinnah College of Nurisng, Abbottabad, Pakistan
| | - Mumtaz Ali
- Jinnah College of Nurisng, Abbottabad, Pakistan
| |
Collapse
|
5
|
Li Q, Chen Y, Zhang W, Li C, Tang D, Hua W, Hou F, Chen Z, Liu Y, Tian Y, Sun K, Xu X, Zeng Y, Xia F, Lu J, Wang Z. Mpox virus Clade IIb infected Cynomolgus macaques via mimic natural infection routes closely resembled human mpox infection. Emerg Microbes Infect 2024; 13:2332669. [PMID: 38494777 PMCID: PMC10984234 DOI: 10.1080/22221751.2024.2332669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 03/15/2024] [Indexed: 03/19/2024]
Abstract
Generating an infectious non-human primate (NHP) model using a prevalent monkeypox virus (MPXV) strain has emerged as a crucial strategy for assessing the efficacy of vaccines and antiviral drugs against human MPXV infection. Here, we established an animal model by infecting cynomolgus macaques with the prevalent MPXV strain, WIBP-MPXV-001, and simulating its natural routes of infection. A comprehensive analysis and evaluation were conducted on three animals, including monitoring clinical symptoms, collecting hematology data, measuring viral loads, evaluating cellular and humoral immune responses, and examining histopathology. Our findings revealed that initial skin lesions appeared at the inoculation sites and subsequently spread to the limbs and back, and all infected animals exhibited bilateral inguinal lymphadenopathy, eventually leading to a self-limiting disease course. Viral DNA was detected in post-infection blood, nasal, throat, rectal and blister fluid swabs. These observations indicate that the NHP model accurately reflects critical clinical features observed in human MPXV infection. Notably, the animals displayed clinical symptoms and disease progression similar to those of humans, rather than a lethal outcome as observed in previous studies. Historically, MPXV was utilized as a surrogate model for smallpox. However, our study contributes to a better understanding of the dynamics of current MPXV infections while providing a potential infectious NHP model for further evaluation of vaccines and antiviral drugs against mpox infection. Furthermore, the challenge model closely mimics the primary natural routes of transmission for human MPXV infections. This approach enhances our understanding of the precise mechanisms underlying the interhuman transmission of MPXV.
Collapse
Affiliation(s)
- Qingni Li
- Biosafety Level 3 Laboratory, Wuhan Institute of Biological Products Co., Ltd., Wuhan, People’s Republic of China
| | - Yunfeng Chen
- Biosafety Level 3 Laboratory, Wuhan Institute of Biological Products Co., Ltd., Wuhan, People’s Republic of China
| | - Wenjing Zhang
- Biosafety Level 3 Laboratory, Wuhan Institute of Biological Products Co., Ltd., Wuhan, People’s Republic of China
| | - Chunyang Li
- Biosafety Level 3 Laboratory, Wuhan Institute of Biological Products Co., Ltd., Wuhan, People’s Republic of China
| | - Ding Tang
- Biosafety Level 3 Laboratory, Wuhan Institute of Biological Products Co., Ltd., Wuhan, People’s Republic of China
| | - Wanlu Hua
- Biosafety Level 3 Laboratory, Wuhan Institute of Biological Products Co., Ltd., Wuhan, People’s Republic of China
| | - Fan Hou
- Biosafety Level 3 Laboratory, Wuhan Institute of Biological Products Co., Ltd., Wuhan, People’s Republic of China
| | - Zhuo Chen
- Biosafety Level 3 Laboratory, Wuhan Institute of Biological Products Co., Ltd., Wuhan, People’s Republic of China
| | - Yuanlang Liu
- Biosafety Level 3 Laboratory, Wuhan Institute of Biological Products Co., Ltd., Wuhan, People’s Republic of China
| | - Yi Tian
- Biosafety Level 3 Laboratory, Wuhan Institute of Biological Products Co., Ltd., Wuhan, People’s Republic of China
| | - Kaili Sun
- Biosafety Level 3 Laboratory, Wuhan Institute of Biological Products Co., Ltd., Wuhan, People’s Republic of China
| | - Xiuli Xu
- Biosafety Level 3 Laboratory, Wuhan Institute of Biological Products Co., Ltd., Wuhan, People’s Republic of China
| | - Yan Zeng
- Biosafety Level 3 Laboratory, Wuhan Institute of Biological Products Co., Ltd., Wuhan, People’s Republic of China
| | - Fei Xia
- Biosafety Level 3 Laboratory, Wuhan Institute of Biological Products Co., Ltd., Wuhan, People’s Republic of China
| | - Jia Lu
- Biosafety Level 3 Laboratory, Wuhan Institute of Biological Products Co., Ltd., Wuhan, People’s Republic of China
| | - Zejun Wang
- Biosafety Level 3 Laboratory, Wuhan Institute of Biological Products Co., Ltd., Wuhan, People’s Republic of China
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, People’s Republic of China
- National Key Laboratory for Novel Vaccines Research and Development of Emerging Infectious Diseases, Wuhan, People’s Republic of China
- Hubei Provincial Vaccine Technology Innovation Center, Wuhan, People’s Republic of China
| |
Collapse
|
6
|
Cabanillas B, Murdaca G, Guemari A, Torres MJ, Azkur AK, Aksoy E, Vitte J, Fernández-Santamaria R, Karavelia A, Castagnoli R, Valdelvira R, Orsi A, Ogliastro M, Massaro E, Yücel EÖ, Novak N, Agache I, Akdis M, Akdis CA. Monkeypox 2024 outbreak: Fifty essential questions and answers. Allergy 2024; 79:3285-3309. [PMID: 39495103 DOI: 10.1111/all.16374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/05/2024] [Accepted: 10/16/2024] [Indexed: 11/05/2024]
Abstract
As the world still vividly recalls the previous monkeypox (mpox) outbreak that impacted over 120 countries worldwide with more than 99,000 cases in 2022, we are now facing a second wave of infections from the monkeypox virus (MPXV), characterized by an exponential increase in cases. The current 2024 outbreak has already recorded more than 20,000 cases in Africa, marking a dramatic escalation compared to previous outbreaks. The predominance of the newly identified clade Ib variant, first detected in the Democratic Republic of the Congo (DRC) and now identified across multiple African nations and beyond, underscores its enhanced transmissibility and potential for international spread, evidenced by cases in Sweden and Thailand. The World Health Organization (WHO) declared on August 14, 2024, the current mpox outbreak a Public Health Emergency of International Concern (PHEIC), calling for heightened global public health measures. The ongoing pattern of unusual, frequent, and extensive outbreaks of mpox with potential global implications poses significant questions. This review addresses, in the format of 50 questions and answers, the 2024 mpox outbreak, detailing its characteristics, epidemiological data, and impact compared to previous outbreaks. It comprehensively explores critical questions related to MPXV virological characteristics, immunological response, clinical manifestations, epidemiology, diagnostics, and available treatments. The review also documents the significant and evolving challenges posed by the current mpox outbreak, highlighting its scale, spread, and public health response.
Collapse
Affiliation(s)
- Beatriz Cabanillas
- Department of Allergy, Instituto de Investigacion Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Giuseppe Murdaca
- Department of Internal Medicine, University of Genova, Genova, Italy
- Allergology and Clinical Immunology Unit, San Bartolomeo Hospital, Sarzana, Italy
| | - Amir Guemari
- IDESP and PREMEDICAL, University of Montpellier-INSERM, INRIA, Montpellier, France
| | - Maria Jose Torres
- Allergy Unit, Hospital Regional Universitario de Málaga, Allergy Research Group, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, ARADyAL, Malaga University, Málaga, Spain
| | - Ahmet Kursat Azkur
- Department of Virology, Faculty of Veterinary Medicine, Kirikkale University, Kirikkale, Turkey
| | - Emel Aksoy
- Department of Virology, Faculty of Veterinary Medicine, Kirikkale University, Kirikkale, Turkey
| | - Joana Vitte
- IDESP and PREMEDICAL, University of Montpellier-INSERM, INRIA, Montpellier, France
- University of Reims Champagne-Ardenne, INSERM UMR 1250 and Immunology Laboratory, University Hospital of Reims, Reims, France
| | - Ruben Fernández-Santamaria
- Immunology Department, IIS-Fundacion Jimenez Diaz, Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain
| | - Aspasia Karavelia
- Department of Ear-Nose-Throat Surgery, General Hospital of Nafplio, Nafplio, Greece
| | - Riccardo Castagnoli
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
- Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Rafael Valdelvira
- Department of Allergy, Instituto de Investigacion Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Andrea Orsi
- Department of Health Sciences (DISSAL), University of Genova, Genova, Italy
- Hygiene Unit, San Martino Policlinico Hospital-IRCCS for Oncology and Neurosciences, Genova, Italy
| | - Matilde Ogliastro
- Department of Health Sciences (DISSAL), University of Genova, Genova, Italy
| | - Elvira Massaro
- Department of Health Sciences (DISSAL), University of Genova, Genova, Italy
| | - Esra Özek Yücel
- Division of Pediatrics, Department of Pediatric Allergy and Immunology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Natalija Novak
- Department of Dermatology and Allergy, Venusberg Campus 1, Bonn, Germany
| | - Ioana Agache
- Transylvania University, Brasov, Romania
- Theramed Medical Center, Brasov, Romania
| | - Mubeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| |
Collapse
|
7
|
Al-Dabbagh J, Mohammad Deeb E, Younis R, Eissa R. The dermatological manifestations and differential diagnosis of monkeypox: A narrative review. Medicine (Baltimore) 2024; 103:e40359. [PMID: 39496026 PMCID: PMC11537653 DOI: 10.1097/md.0000000000040359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/15/2024] [Indexed: 11/06/2024] Open
Abstract
Monkeypox (MPX) is a zoonotic viral disease caused by the monkeypox virus (MPXV), which belongs to the Orthopoxvirus genus. The main clinical features of MPX are fever, rash, and lymphadenopathy. It is usually a self-limited disease and can resolve within a few weeks in most cases. MPXV is now becoming a global concern. The world health organization declared the outbreak of MPX in 2022 a global health emergency. In this article, we focus on the mucocutaneous manifestations and differential diagnosis of MPX.
Collapse
Affiliation(s)
- Jacob Al-Dabbagh
- Cancer Research Center, Tishreen University, Latakia, Syria & Faculty of Medicine, Tishreen University, Latakia, Syria
| | | | - Razan Younis
- Faculty of Medicine, Tartous University, Tartous, Syria
| | - Rahaf Eissa
- Faculty of Medicine, Tishreen University, Latakia, Syria
| |
Collapse
|
8
|
Olawade DB, Wada OZ, Fidelis SC, Oluwole OS, Alisi CS, Orimabuyaku NF, Clement David-Olawade A. Strengthening Africa's response to Mpox (monkeypox): insights from historical outbreaks and the present global spread. SCIENCE IN ONE HEALTH 2024; 3:100085. [PMID: 39583938 PMCID: PMC11582772 DOI: 10.1016/j.soh.2024.100085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 10/23/2024] [Indexed: 11/26/2024]
Abstract
Mpox, formerly known as Monkeypox, is a viral zoonotic disease endemic to Central and West Africa that has posed significant public health challenges since its identification in 1970. Despite decades of experience in managing outbreaks, the 2022-2024 Mpox outbreaks exposed substantial gaps in global preparedness and response, leading the World Health Organization (WHO) to declare a Public Health Emergency of International Concern (PHEIC) in 2022. The resurgence of cases in Europe in 2022 and the more recent emergence of the virulent clade Ⅰb in the Democratic Republic of the Congo (DRC) in 2024 have highlighted a critical need for improved proactive and response strategies to curb the epidemic. This narrative review examines the historical and recent epidemiology of Mpox in Africa and explores the factors that have limited effective management. These include objective influences such as viral mutations, zoonotic transmission patterns, and environmental changes like deforestation, as well as subjective factors, including delayed responses, limited vaccine availability, cessation of smallpox vaccinations, and inequitable access to healthcare. In particular, the review emphasizes the ongoing disparities in global health equity, as wealthier nations have been able to secure vaccines and therapeutics quickly, while endemic regions in Africa continue to struggle with limited resources. The review also discusses how socio-economic and cultural factors, combined with weak public health infrastructure and inadequate surveillance systems, perpetuate cycles of outbreak in vulnerable populations. Furthermore, the emergence of clade Ⅰb in 2024, with its higher virulence and mortality rates among children, particularly in rural areas, underscores the urgency of addressing the evolving epidemiological landscape of Mpox. In response to these challenges, this review recommends strengthening healthcare infrastructure, enhancing surveillance systems, ensuring equitable access to vaccines and treatments, and integrating environmental management into public health strategies. Global collaboration remains essential to provide African countries with the resources and support needed to manage and prevent future outbreaks effectively. Without these measures, the world risks a prolonged public health crisis with far-reaching consequences for both Africa and the global community.
Collapse
Affiliation(s)
- David B. Olawade
- Department of Allied and Public Health, School of Health, Sport and Bioscience, University of East London, London, United Kingdom
- Department of Research and Innovation, Medway NHS Foundation Trust, Gillingham ME75NY, United Kingdom
- Department of Public Health, York St John University, London, United Kingdom
| | - Ojima Z. Wada
- Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Sandra Chinaza Fidelis
- School of Nursing and Midwifery, University of Central Lancashire, Preston Campus, United Kingdom
| | - Oluwafemi S. Oluwole
- Department of Public Health, School of Health and Life Science, Teesside University, Middlesbrough, United Kingdom
| | - Chibuike S. Alisi
- Department of Allied and Public Health, School of Health, Sport and Bioscience, University of East London, London, United Kingdom
| | | | | |
Collapse
|
9
|
Yeşiltepe A, Çal A. An evaluation of societal perception of monkeypox in terms of disease anxiety and stress levels: A Turkish sample. Public Health Nurs 2024; 41:798-805. [PMID: 38299754 DOI: 10.1111/phn.13292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/19/2023] [Accepted: 01/18/2024] [Indexed: 02/02/2024]
Abstract
OBJECTIVE The purpose of this research was to examine community perception of monkeypox in terms of epidemic anxiety and stress levels. METHODS This research was performed as a descriptive, cross-sectional study. The research was conducted with 1001 individuals between September and December 2022. AMOS 24, JAMOVI, and SPSS version 25 software were employed. The data were collected using a descriptive form, the Epidemic Anxiety Scale, and the Perceived Stress Scale. RESULTS The mean Epidemic Anxiety Scale score was 52.47 ± 14.52, and the mean Perceived Stress Scale score was 41.88 ± 6.83. Significant positive correlation was determined between the Epidemic Anxiety Scale and the Perceived Stress Scale (r = 0.350, p = .000). A one-unit increase in perceived stress caused a 0.360 increase in epidemic anxiety (ß = 0.360). In addition, having heard of and fearing monkeypox, thinking about its ability to cause an epidemic, and perceived stress emerged as significant predictors of epidemic anxiety. CONCLUSION The community was found to exhibit a moderate level of epidemic anxiety and a low level of perceived stress. Epidemic anxiety levels increased in line with perceived stress levels. We recommend that individuals in need receive support by determining epidemic anxiety and perceived stress levels in the community.
Collapse
Affiliation(s)
- Akgün Yeşiltepe
- Faculty of Health Science, Munzur University, Tunceli, Turkey
| | - Ayşe Çal
- Faculty of Health Science, Ankara Medipol University, Ankara, Turkey
| |
Collapse
|
10
|
Yang H, Xie X, Zeng M, Cao Y, Fan Q, Jiang M, Lei C, Wang J, Li F, Tang X, Yu H, Li L. Clinical characteristics, viral dynamics, and antibody response of monkeypox virus infections among men with and without HIV infection in Guangzhou, China. Front Cell Infect Microbiol 2024; 14:1412753. [PMID: 38979508 PMCID: PMC11228139 DOI: 10.3389/fcimb.2024.1412753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 06/10/2024] [Indexed: 07/10/2024] Open
Abstract
Background Monkeypox virus (MPXV) is spreading globally and nearly half of the infected people were human immunodeficiency virus (HIV) positive. Therefore, an in-depth understanding of the effects of HIV infection on the outcomes of MPXV infection is urgently needed. This study aimed to explore the clinical features, viral dynamics, and antibody response to MPXV infections in men who had sex with men (MSM) with and without HIV co-infection. Design or methods MPXV-infected patients diagnosed by PCR were recruited in this study and were divided into MPXV and MPXV + HIV groups based on whether they were co-infected with HIV. Clinical data and samples were collected during of the hospital stay and follow up interviews. The symptoms and signs, laboratory examinations, viral shedding in various body fluids or swabs, antibody dynamics were tracked and compared between the two groups. Results A total of 41 MPXV patients were recruited through June 2023 to September 2023 in Guangzhou. The MPXV group and MPXV + HIV group comprised 20 and 21 MSM, respectively. Patients in the two groups exhibited similar clinical characteristics except for pruritus and eschar, both were significantly fewer in MPXV + HIV group than in MPXV only group. Among the 355 clinical samples collected, MPXV DNA was detected in 100% of scabs, 97.4% of skin swabs, and 92.3% of exudate swabs from lesions, while the positive rate was 87.5% from oropharyngeal swabs, 59% from saliva, 51.3% from anal swabs, 50% from feces, 30.6% from urine samples, 37.5% of semen, and 28.2% from sera. Dynamics analysis revealed that viral DNA was undetectable in most patients 20 days after symptom onset. IgM and IgG antibodies to MPXV were detected in all patients with 3-5 days earlier in the MPXV group than in the MPXV + HIV group. Conclusion This cohort analysis based on a large outbreak among MSM in Guangzhou indicated no obvious differences in clinical symptoms, viral DNA data, but antibody responses were 3-5 days later in mpox patients with HIV infection.
Collapse
Affiliation(s)
- Huiqin Yang
- Infectious Disease Center, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xiaoqing Xie
- Institute of Infectious Diseases, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Mou Zeng
- Infectious Disease Center, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yinghui Cao
- Institute of Infectious Diseases, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Qinghong Fan
- Institute of Infectious Diseases, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Mengling Jiang
- Institute of Infectious Diseases, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Chunliang Lei
- Infectious Disease Center, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jian Wang
- Infectious Disease Center, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Feng Li
- Institute of Infectious Diseases, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xiaoping Tang
- Institute of Infectious Diseases, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Haisheng Yu
- Institute of Infectious Diseases, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Linghua Li
- Infectious Disease Center, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
11
|
Jaleel A, Farid G, Irfan H, Mahmood K, Baig S. A Systematic Review on the Mental Health Status of Patients Infected With Monkeypox Virus. Soa Chongsonyon Chongsin Uihak 2024; 35:107-118. [PMID: 38601106 PMCID: PMC11001497 DOI: 10.5765/jkacap.230064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/14/2023] [Accepted: 12/06/2023] [Indexed: 04/12/2024] Open
Abstract
Objectives This study aims to extract and summarize the literature on the mental health status of patients with monkeypox. Methods This review was carried out according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines using different databases and publishers such as Scopus, Sage, ScienceDirect, PubMed, BMJ, Wiley Online Library, Wolters Kluwer OVID-SP, and Google Scholar. The literature review was based on monkeypox and mental health. The year of publication was 2021-2023, during the monkeypox disease period. Data were extracted from opinions, editorials, empirical studies, and surveys. Results Based on the literature related to the mental status of patients with monkeypox, the following themes and subthemes were identified: anxiety and depression, self-harm and suicidal tendencies, neuropsychiatric symptoms, mental health, social stigma, sex workers, vaccination, and stress-related diseases. Conclusion A review of monkeypox virus infection studies reveals that 25%-50% of patients experience anxiety and depression due to isolation, boredom, and loneliness. Factors such as infected people, a lack of competence among healthcare professionals, and shame over physical symptoms exacerbate mental insults. The implications of society include increased self-harm, suicide, low productivity, fear of stigmatization, and transmission of infection.
Collapse
Affiliation(s)
- Anila Jaleel
- Department of Biochemistry, Shalimar Medical and Dental
College, Lahore, Pakistan
| | - Ghulam Farid
- Shalimar Medical and Dental College, Lahore,
Pakistan
| | - Haleema Irfan
- Department of Biochemistry, Shalimar Medical and Dental
College, Lahore, Pakistan
| | - Khalid Mahmood
- Information Management, University of Punjab, Lahore,
Pakistan
| | - Saeeda Baig
- Department of Biochemistry, Ziauddin University, Karachi,
Pakistan
| |
Collapse
|
12
|
Yang CH, Song AL, Qiu Y, Ge XY. Cross-species transmission and host range genes in poxviruses. Virol Sin 2024; 39:177-193. [PMID: 38272237 PMCID: PMC11074647 DOI: 10.1016/j.virs.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
The persistent epidemic of human mpox, caused by mpox virus (MPXV), raises concerns about the future spread of MPXV and other poxviruses. MPXV is a typical zoonotic virus which can infect human and cause smallpox-like symptoms. MPXV belongs to the Poxviridae family, which has a relatively broad host range from arthropods to vertebrates. Cross-species transmission of poxviruses among different hosts has been frequently reported and resulted in numerous epidemics. Poxviruses have a complex linear double-strand DNA genome that encodes hundreds of proteins. Genes related to the host range of poxvirus are called host range genes (HRGs). This review briefly introduces the taxonomy, phylogeny and hosts of poxviruses, and then comprehensively summarizes the current knowledge about the cross-species transmission of poxviruses. In particular, the HRGs of poxvirus are described and their impacts on viral host range are discussed in depth. We hope that this review will provide a comprehensive perspective about the current progress of researches on cross-species transmission and HRG variation of poxviruses, serving as a valuable reference for academic studies and disease control in the future.
Collapse
Affiliation(s)
- Chen-Hui Yang
- College of Biology, Hunan Provincial Key Laboratory of Medical Virology, Hunan University, Changsha, 410012, China
| | - A-Ling Song
- College of Biology, Hunan Provincial Key Laboratory of Medical Virology, Hunan University, Changsha, 410012, China
| | - Ye Qiu
- College of Biology, Hunan Provincial Key Laboratory of Medical Virology, Hunan University, Changsha, 410012, China.
| | - Xing-Yi Ge
- College of Biology, Hunan Provincial Key Laboratory of Medical Virology, Hunan University, Changsha, 410012, China.
| |
Collapse
|
13
|
Maqbool KU, Akhtar MT, Ayub S, Simran FNU, Malik J, Malik M, Zubair R, Mehmoodi A. Role of vaccination in patients with human monkeypox virus and its cardiovascular manifestations. Ann Med Surg (Lond) 2024; 86:1506-1516. [PMID: 38463133 PMCID: PMC10923390 DOI: 10.1097/ms9.0000000000001674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/20/2023] [Indexed: 03/12/2024] Open
Abstract
Human monkeypox, caused by the monkeypox virus (MPXV), is an emerging infectious disease with the potential for human-to-human transmission and diverse clinical presentations. While generally considered milder than smallpox, it can lead to severe cardiovascular complications. The virus primarily spreads through contact with infected animals or through human-to-human transmission. Cardiovascular involvement in human monkeypox is rare but has been associated with myocarditis, pericarditis, arrhythmias, and even fulminant myocardial infarction. Vaccination plays a crucial role in preventing and controlling monkeypox, but the eradication of smallpox has left global populations vulnerable. This review explores the cardiovascular manifestations of human monkeypox, the role of vaccination in disease prevention, and the importance of continued research and development of effective vaccines to protect against this emerging infectious threat. The global impact of monkeypox outbreaks, particularly on vulnerable populations, further highlights the importance of understanding and addressing this disease.
Collapse
Affiliation(s)
| | | | - Shayan Ayub
- Department of Cardiovascular Medicine, Cardiovascular Analytics Group
| | - FNU Simran
- Department of Cardiovascular Medicine, Cardiovascular Analytics Group
| | - Jahanzeb Malik
- Department of Cardiovascular Medicine, Cardiovascular Analytics Group
| | - Maria Malik
- Department of Cardiovascular Medicine, Cardiovascular Analytics Group
| | - Rafia Zubair
- Department of Cardiovascular Medicine, Cardiovascular Analytics Group
| | - Amin Mehmoodi
- Department of Medicine, Ibn e Seena Hospital, Kabul, Afghanistan
| |
Collapse
|
14
|
Su S, Jia M, Yu Y, Li H, Yin W, Lu Y, Huang R, Xiang R, Huang H, Hu P. Integrated Network Analysis of Symptom Clusters Across Monkeypox Epidemics From 1970 to 2023: Systematic Review and Meta-Analysis. JMIR Public Health Surveill 2024; 10:e49285. [PMID: 38363593 PMCID: PMC10907939 DOI: 10.2196/49285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 12/29/2023] [Accepted: 01/20/2024] [Indexed: 02/17/2024] Open
Abstract
BACKGROUND The worldwide spread of monkeypox (mpox) has witnessed a significant increase, particularly in nonendemic countries. OBJECTIVE We aimed to investigate the changing clinical symptoms associated with mpox from 1970 to 2023 and explore their interrelations. METHODS In this systematic review and meta-analysis, 3 electronic databases were searched for English peer-reviewed studies conducted from January 1970 to April 2023 that reported any symptoms among confirmed mpox cases. We categorized the mpox epidemics into 3 periods: 1970-2002 (period 1, within the African region), 2003-2021(period 2, epidemics outside Africa), and 2022-2023 (period 3, worldwide outbreak). Following PRISMA guidelines, a meta-analysis was performed to estimate the pooled prevalence for each symptom. The correlation among symptoms was analyzed and visualized using network analysis. RESULTS The meta-analysis included 61 studies that reported 21 symptoms in 720 patients from period 1, 39 symptoms in 1756 patients from period 2, and 37 symptoms in 12,277 patients from period 3. The most common symptom among patients from all 3 periods was rash (period 1: 92.6%, 95% CI 78.2%-100%; period 2: 100%, 95% CI 99.9%-100%; and period 3: 94.8%, 95% CI 90.9%-98.8%), followed by lymphadenopathy (period 1: 59.8%, 95% CI 50.3%-69.2%; period 2: 74.1%, 95% CI 64.2%-84.1%; and period 3: 61.1%, 95% CI 54.2%-68.1%). Fever (99%, 95% CI 97%-100%), enlarged lymph nodes (80.5%, 95% CI 75.4%-85.0%), and headache (69.1%, 95% CI 4%-100%) were the main symptoms in period 1, with a significant decrease in period 3: 37.9%, 31.2%, and 28.7%, respectively. Chills/rigors (73.3%, 95% CI 60.9%-85.7%), fatigue (68.2%, 95% CI 51.6%-84.8%), and dysphagia/swallowing difficulty (61.2%, 95% CI 10.5%-100%) emerged as primary new symptoms in period 2 and decreased significantly in period 3. Most other symptoms remained unchanged or decreased in period 3 compared to the former 2 periods. Nausea/vomiting had the highest degree of correlation (with 13 symptoms) and was highly positively correlated with lymphadenopathy (r=0.908) and conjunctivitis (r=0.900) in period 2. In contrast, rash and headache were 2 symptoms with the highest degree of correlation (with 21 and 21 symptoms, respectively) in period 3 and were highly positively correlated with fever (r=0.918 and 0.789, respectively). CONCLUSIONS The manifestation of symptoms in patients with mpox has become more diverse, leading to an increase in their correlation. Although the prevalence of rash remains steady, other symptoms have decreased. It is necessary to surveil the evolving nature of mpox and the consequential changes in clinical characteristics. Epidemic countries may shift their focus on the potential association among symptoms and the high synergy risk. TRIAL REGISTRATION PROSPERO Registration: CRD42023403282; http://tinyurl.com/yruuas5n.
Collapse
Affiliation(s)
- Shu Su
- Key Laboratory of Molecular Biology for Infectious Diseases, Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Meng Jia
- Key Laboratory of Molecular Biology for Infectious Diseases, Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yingni Yu
- Key Laboratory of Molecular Biology for Infectious Diseases, Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hu Li
- Key Laboratory of Molecular Biology for Infectious Diseases, Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wenwei Yin
- Key Laboratory of Molecular Biology for Infectious Diseases, Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yi Lu
- Key Laboratory of Molecular Biology for Infectious Diseases, Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Rongzhong Huang
- Key Laboratory of Molecular Biology for Infectious Diseases, Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Rong Xiang
- Key Laboratory of Molecular Biology for Infectious Diseases, Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Huizhe Huang
- Key Laboratory of Molecular Biology for Infectious Diseases, Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Peng Hu
- Key Laboratory of Molecular Biology for Infectious Diseases, Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
15
|
Kang Y, Lu S, Zhong R, You J, Chen J, Li L, Huang R, Xie Y, Chen F, Chen J, Chen L. The immune inflammation factors associated with disease severity and poor prognosis in patients with COVID-19: A retrospective cohort study. Heliyon 2024; 10:e23583. [PMID: 38173531 PMCID: PMC10761779 DOI: 10.1016/j.heliyon.2023.e23583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 01/05/2024] Open
Abstract
Coronavirus disease 2019 (COVID-19) is associated with immune dysregulation and cytokine storm. It is essential to explore the immune response characteristics of peripheral circulation in COVID-19 patients to reveal pathogenesis and predict disease progression. In this study, the levels of total immunoglobulins (IgG, IgM, IgA), complement (C3, C4),lymphocyte subsets (CD3+ cell,CD4+ cell,CD8+ cell, NK cell, CD19+ cell and CD45+ cell) and cytokines (IL-2, IL-4, IL-5, IL-6, IL-8, IL-10, IL-17, IL-12p, IL-1β, TNF-α, IFN-α and IFN-γ) were retrospectively analyzed in COVID-19 patients. A total of 513 patients were enrolled in this study, cases were distributed according to clinical status as mild or moderate (n = 212), severe survivors (n = 197) and severe non-survivors (n = 104). IL-6, IL-8, IL-10 and IFN-γ were increased in severe patients compared with non-severe patients, despite decreased CD45+ cell, CD3+ cell, CD4+ cell, CD8+ cell, CD19+ cell, and NK cell. Compared with severe survivors, the levels of L-6, IL-8 and IL-10 in non-survivors increased significantly, and levels of C3, CD45+ cell, CD3+ cell,CD4+ cell,CD8+ cell, and NK cell decreased. Moreover, age, IL-8, IL-10, CD8+cells and NK cell were independent risk factors for the severity of COVID-19. Multivariable regression showed increasing odds ratio of in-hospital death associated with tumor, older age, higher IL-8 level, and decreasing odds ratio of in-hospital death associated with increased levels of CD8+cell and NK cell. Finally, patients with tumor, or high IL-6 or high IL-10 expression and lower CD8+ or lower NK levels exhibited a significantly shorter survival time. In conclusion, our study provides findings of the immunological characteristics associated with disease severity to predict the progression of COVID-19. The immune inflammation factors, such as IL-6, IL-8, IL-10, CD8+ cell and NK cell, could serve as excellent biomarkers for monitoring or predicting COVID-19 progression therapeutic to COVID-19 patients.
Collapse
Affiliation(s)
- Yanli Kang
- Department of Clinical Laboratory, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Shifa Lu
- Department of Clinical Laboratory, JianOu Municipal Hospital of Fujian Province, Nanping, China
| | - Ruifang Zhong
- Department of Clinical Laboratory, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Jianbin You
- Department of Clinical Laboratory, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Jiahao Chen
- Department of Clinical Laboratory, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Ling Li
- Department of Clinical Laboratory, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Rongbin Huang
- Department of Clinical Laboratory, JianOu Municipal Hospital of Fujian Province, Nanping, China
| | - Yanyan Xie
- Department of Clinical Laboratory, The Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Falin Chen
- Department of Clinical Laboratory, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Jinhua Chen
- Department of Clinical Laboratory, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Liangyuan Chen
- Department of Clinical Laboratory, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| |
Collapse
|
16
|
Nucera F, Bonina L, Cipolla A, Pirina P, Hansbro PM, Adcock IM, Caramori G. Poxviridae Pneumonia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1451:183-204. [PMID: 38801579 DOI: 10.1007/978-3-031-57165-7_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Poxviridae family includes several viruses that infecting humans usually causes skin lesions only, but in some cases their clinical course is complicated by viral pneumonia (with or without bacterial superinfections). Historically variola virus has been the poxviridae most frequently associated with the development of pneumonia with many large outbreaks worldwide before its eradication in 1980. It is still considered a biological threat for its potential in biological warfare and bioterrorism. Smallpox pneumonia can be severe with the onset of acute respiratory distress syndrome (ARDS) and death. Vaccinia virus, used for vaccination against smallpox exceptionally, in immunocompromised patients, can induce generalized (with also lung involvement) severe disease after vaccination. MPXV virus occasionally can cause pneumonia particularly in immunocompromised patients. The pathophysiology of poxviridae pneumonia is still an area of active research; however, in animal models these viruses can cause both direct damage to the lower airways epithelium and a hyperinflammatory syndrome, like a cytokine storm. Multiple mechanisms of immune evasion have also been described. The treatment of poxviridae pneumonia is mainly based on careful supportive care. Despite the absence of randomized clinical trials in patients with poxviridae pneumonia there are antiviral drugs, such as tecovirimat, cidofovir and brincidofovir, FDA-approved for use in smallpox and also available under an expanded access protocol for treatment of MPXV. There are 2 (replication-deficient modified vaccinia Ankara and replication-competent vaccinia virus) smallpox vaccines FDA-approved with the first one also approved for prevention of MPXV in adults that are at high risk of infection.
Collapse
Affiliation(s)
- Francesco Nucera
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università degli Studi di Messina, Messina, Italy
| | - Letterio Bonina
- Virologia, Dipartimento di Patologia delle Malattie Umane "G. Barresi", Università degli Studi di Messina, Messina, Italy
| | - Antonino Cipolla
- Pneumologia, Dipartimento di Medicina Clinica e Sperimentale, Università degli Studi di Catania, Catania, Italy
| | - Pietro Pirina
- Pneumologia, Dipartimento di Medicina, Chirurgia e Farmacia, Università degli Studi di Sassari, Sassari, Italy
| | - Philip M Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Sydney, Australia
| | - Ian M Adcock
- Airway Disease Section, National Heart and Lung Institute, Imperial College London, London, UK
| | - Gaetano Caramori
- Pulmonology, Department of Medicine and Surgery, University of Parma, Parma, Italy.
| |
Collapse
|
17
|
Lu J, Xing H, Wang C, Tang M, Wu C, Ye F, Yin L, Yang Y, Tan W, Shen L. Mpox (formerly monkeypox): pathogenesis, prevention, and treatment. Signal Transduct Target Ther 2023; 8:458. [PMID: 38148355 PMCID: PMC10751291 DOI: 10.1038/s41392-023-01675-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/14/2023] [Accepted: 09/21/2023] [Indexed: 12/28/2023] Open
Abstract
In 2022, a global outbreak of Mpox (formerly monkeypox) occurred in various countries across Europe and America and rapidly spread to more than 100 countries and regions. The World Health Organization declared the outbreak to be a public health emergency of international concern due to the rapid spread of the Mpox virus. Consequently, nations intensified their efforts to explore treatment strategies aimed at combating the infection and its dissemination. Nevertheless, the available therapeutic options for Mpox virus infection remain limited. So far, only a few numbers of antiviral compounds have been approved by regulatory authorities. Given the high mutability of the Mpox virus, certain mutant strains have shown resistance to existing pharmaceutical interventions. This highlights the urgent need to develop novel antiviral drugs that can combat both drug resistance and the potential threat of bioterrorism. Currently, there is a lack of comprehensive literature on the pathophysiology and treatment of Mpox. To address this issue, we conducted a review covering the physiological and pathological processes of Mpox infection, summarizing the latest progress of anti-Mpox drugs. Our analysis encompasses approved drugs currently employed in clinical settings, as well as newly identified small-molecule compounds and antibody drugs displaying potential antiviral efficacy against Mpox. Furthermore, we have gained valuable insights from the process of Mpox drug development, including strategies for repurposing drugs, the discovery of drug targets driven by artificial intelligence, and preclinical drug development. The purpose of this review is to provide readers with a comprehensive overview of the current knowledge on Mpox.
Collapse
Affiliation(s)
- Junjie Lu
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Hubei Province, Xiangyang, 441021, China
| | - Hui Xing
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Hubei Province, Xiangyang, 441021, China
| | - Chunhua Wang
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Hubei Province, Xiangyang, 441021, China
| | - Mengjun Tang
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Hubei Province, Xiangyang, 441021, China
| | - Changcheng Wu
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Fan Ye
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Hubei Province, Xiangyang, 441021, China
| | - Lijuan Yin
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Yang Yang
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for infectious disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, 518112, China.
| | - Wenjie Tan
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.
| | - Liang Shen
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Hubei Province, Xiangyang, 441021, China.
| |
Collapse
|
18
|
He Y, Wu H, Chen Y, Wang D, Tang W, Moody MA, Ni G, Gu S. Can ChatGPT/GPT-4 assist surgeons in confronting patients with Mpox and handling future epidemics? Int J Surg 2023; 109:2544-2548. [PMID: 37161504 PMCID: PMC10442131 DOI: 10.1097/js9.0000000000000453] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 05/01/2023] [Indexed: 05/11/2023]
Affiliation(s)
- Yongbin He
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing
- Department of Orthopedics, The Fifth Affiliated Hospital of Zunyi Medical University, Zhuhai
| | - Haiyang Wu
- Department of Spine Surgery, Tianjin Huanhu Hospital, Graduate School of Tianjin Medical University, Tianjin
- Duke Molecular Physiology Institute
| | - Yan Chen
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing
| | - Dewei Wang
- Department of Orthopedics, The Fifth Affiliated Hospital of Zunyi Medical University, Zhuhai
| | - Weiming Tang
- University of North Carolina Project-China, Guangzhou
- Department of Medicine, University of North Carolina Institute for Global Health and Infectious Diseases, Chapel Hill, NC
| | - M. Anthony Moody
- Division of Infectious Diseases, Department of Pediatrics, Duke University School of Medicine
- Duke Human Vaccine Institute, Duke University Medical Center, Durham
| | - Guoxin Ni
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Shuqin Gu
- Duke Human Vaccine Institute, Duke University Medical Center, Durham
| |
Collapse
|
19
|
Nyame J, Punniyakotti S, Khera K, Pal RS, Varadarajan N, Sharma P. Challenges in the treatment and prevention of Monkeypox infection; a comprehensive review. Acta Trop 2023:106960. [PMID: 37276922 PMCID: PMC10239200 DOI: 10.1016/j.actatropica.2023.106960] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/07/2023]
Abstract
Human monkeypox (HMPX) is a zoonotic disease, literally meaning that it can be passed on from animals (non-primate) to human (primate). All the reported and recorded cases have been traced back either to international travel or import of African animals. In the Unites states, sporadic monkeypox cases have been reported in specific over the past 50 years, starting its first identification in the Democratic Republic of the Congo (D.R.C.) in 1970. Due to its extreme versatility, this disease poses threat as a serious public health issue that needs to be monitored, researched and prevented. Data indicate that prior immunization with the smallpox vaccine is beneficial and may provide protection against the monkeypox virus. JYNNEOSTM is a live viral vaccine that has been approved to improve clinical manifestations of the infection. On the other hand, public ignorance about safety precaution towards monkeypox post-COVID is another challenge that needs to be overcome in tackling HMPX as a possible re-emergent infection. This review is a collation of the epidemiology, etiology, transmission, clinical features and treatment of human monkeypox (HMPX).
Collapse
Affiliation(s)
- Jennifer Nyame
- Lovely Institute of Technology, Lovely School of Pharmaceutical Sciences, Lovely Professional University, Punjab, 144411, India
| | - Saranya Punniyakotti
- Department of Pharmacy Practice, Lovely Institute of Technology, Lovely School of Pharmaceutical Sciences, Lovely Professional University, Punjab, 144411, India.
| | - Kanav Khera
- Department of Pharmacy Practice, Lovely Institute of Technology, Lovely School of Pharmaceutical Sciences, Lovely Professional University, Punjab, 144411, India
| | - Rashmi Saxena Pal
- Department of Pharmacognosy, Lovely Institute of Technology, Lovely School of Pharmaceutical Sciences, Lovely Professional University, Punjab, 144411, India
| | - Nithya Varadarajan
- Department of Pharmacy Practice, Saveetha College of Pharmacy, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai
| | - Prachi Sharma
- Department of Pharmacology, Lovely Institute of Technology, Lovely School of Pharmaceutical Sciences Lovely Professional University, Punjab, 144411, India
| |
Collapse
|
20
|
Hudu SA, Alshrari AS, Al Qtaitat A, Imran M. VP37 Protein Inhibitors for Mpox Treatment: Highlights on Recent Advances, Patent Literature, and Future Directions. Biomedicines 2023; 11:biomedicines11041106. [PMID: 37189724 DOI: 10.3390/biomedicines11041106] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/03/2023] [Accepted: 03/10/2023] [Indexed: 05/17/2023] Open
Abstract
Monkeypox disease (Mpox) has threatened humankind worldwide since mid-2022. The Mpox virus (MpoxV) is an example of Orthopoxviruses (OPVs), which share similar genomic structures. A few treatments and vaccines are available for Mpox. OPV-specific VP37 protein (VP37P) is a target for developing drugs against Mpox and other OPV-induced infections such as smallpox. This review spotlights the existing and prospective VP37P inhibitors (VP37PIs) for Mpox. The non-patent literature was collected from PubMed, and the patent literature was gathered from free patent databases. Very little work has been carried out on developing VP37PIs. One VP37PI (tecovirimat) has already been approved in Europe to treat Mpox, while another drug, NIOCH-14, is under clinical trial. Developing tecovirimat/NIOCH-14-based combination therapies with clinically used drugs demonstrating activity against Mpox or other OPV infections (mitoxantrone, ofloxacin, enrofloxacin, novobiocin, cidofovir, brincidofovir, idoxuridine, trifluridine, vidarabine, fialuridine, adefovir, imatinib, and rifampicin), immunity boosters (vitamin C, zinc, thymoquinone, quercetin, ginseng, etc.), and vaccines may appear a promising strategy to fight against Mpox and other OPV infections. Drug repurposing is also a good approach for identifying clinically useful VP37PIs. The dearth in the discovery process of VP37PIs makes it an interesting area for further research. The development of the tecovirimat/NIOCH-14-based hybrid molecules with certain chemotherapeutic agents looks fruitful and can be explored to obtain new VP37PI. It would be interesting and challenging to develop an ideal VP37PI concerning its specificity, safety, and efficacy.
Collapse
Affiliation(s)
- Shuaibu A Hudu
- Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, Zarqa 13110, Jordan
| | - Ahmed S Alshrari
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Northern Border University, Arar 91431, Saudi Arabia
| | - Aiman Al Qtaitat
- Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, Zarqa 13110, Jordan
- Department of Anatomy and Histology, Faculty of Medicine, Mutah University, Karak 61710, Jordan
| | - Mohd Imran
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| |
Collapse
|
21
|
Kandeel M. Current Clinical Trials for the Monkeypox Virus. DR. SULAIMAN AL HABIB MEDICAL JOURNAL 2023. [PMCID: PMC9990049 DOI: 10.1007/s44229-023-00029-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023] Open
Abstract
Background Monkeypox (MPX) is a zoonotic Orthopoxvirus causing smallpox-like symptoms. Before April 2022, MPX cases outside Africa were rare. The virus can spread through skin-to-skin contact, sexual contact, respiratory droplets, and household items such as towels and blankets. Aim This study was aimed at highlighting the dire need for vaccination and treatment against this infection. Several in-process clinical trials that may help overcome MPX infection are discussed. Methods A search for recent clinical studies was conducted in the clinicaltrials.gov database. Results A total of 15 trials were identified. After February 2022, 14 new trials were launched. Of the 15 trials, 9 were observational studies, 3 were treatment studies and 3 were preventive studies. MPX clinical trial topics were classified into four broad categories: MPX virus shedding and clearance; response to MPX vaccine; antiviral treatment for MPX; and awareness regarding MPX. One medication, tecovirimat, and two vaccines are currently in clinical trials. Conclusions Few treatments and vaccines are under evaluation. Although multiple trials have been conducted, evidence to determine the present state of MPX infection is currently insufficient. Global collaboration is required to achieve complete understanding of the epidemiology, prevention and control of MPX.
Collapse
Affiliation(s)
- Mahmoud Kandeel
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Hofuf, 31982 Al-Ahsa Saudi Arabia
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelshikh University, Kafrelshikh, 33516 Egypt
| |
Collapse
|
22
|
Levitt CV, Tran QK, Hraky H, Mazer-Amirshahi M, Pourmand A. Emergency department approach to monkeypox. World J Emerg Med 2023; 14:341-348. [PMID: 37908793 PMCID: PMC10613789 DOI: 10.5847/wjem.j.1920-8642.2023.098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 09/10/2023] [Indexed: 11/02/2023] Open
Abstract
BACKGROUND Monkeypox (mpox) is a viral infection that is primarily endemic to countries in Africa, but large outbreaks outside of Africa have been historically rare. In June 2022, mpox began to spread across Europe and North America, causing the World Health Organization (WHO) to declare mpox a public health emergency of international concern. This article aims to review clinical presentation, diagnosis, and prevention and treatment strategies on mpox, providing the basic knowledge for prevention and control for emergency providers. METHODS We conducted a review of the literature using PubMed and SCOPUS databases from their beginnings to the end of July 2023. The inclusion criteria were studies on adult patients focusing on emerging infections that described an approach to a public health emergency of international concern, systematic reviews, clinical guidelines, and retrospective studies. Studies that were not published in English were excluded. RESULTS We included 50 studies in this review. The initial symptoms of mpox are non-specific: fever, malaise, myalgias, and sore throat. Rash, a common presentation of mpox, usually occurs 2-4 weeks after the prodrome, but the presence of lymphadenopathy may distinguish mpox from other infections from the Poxviridae family. Life-threatening complications such as pneumonia, sepsis, encephalitis, myocarditis, and death can occur. There are documented co-occurrences of human immunodeficiency virus (HIV) and other sexually transmitted infections that can worsen morbidity. CONCLUSION The initial presentation of mpox is non-specific. The preferred treatment included tecovirimat in patients with severe illness or at high risk of developing severe disease and vaccination with two doses of JYNNEOS. However, careful history and physical examination can raise the clinicians' suspicion and point toward a prompt diagnosis. There are different modalities to prevent and treat mpox infection.
Collapse
Affiliation(s)
- Catherine V. Levitt
- Department of Emergency Medicine, George Washington University School of Medicine and Health Sciences, Washington DC 20037, USA
| | - Quincy K. Tran
- Department of Emergency Medicine, University of Maryland School of Medicine, Baltimore 21201, USA
- Program in Trauma, The R Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, Baltimore 21201, USA
| | - Hashem Hraky
- Department of Emergency Medicine, George Washington University School of Medicine and Health Sciences, Washington DC 20037, USA
| | - Maryann Mazer-Amirshahi
- Department of Emergency Medicine, MedStar Washington Hospital Center and Georgetown University School of Medicine, Washington DC 20037, USA
| | - Ali Pourmand
- Department of Emergency Medicine, George Washington University School of Medicine and Health Sciences, Washington DC 20037, USA
| |
Collapse
|