1
|
Tiede A, Stockhoff L, Liu Z, Rieland H, Mauz JB, Ohlendorf V, Bremer B, Witt J, Kraft A, Cornberg M, Hinrichs JB, Meyer BC, Wedemeyer H, Xu CJ, Falk CS, Maasoumy B. Insertion of a transjugular intrahepatic portosystemic shunt leads to sustained reversal of systemic inflammation in patients with decompensated liver cirrhosis. Clin Mol Hepatol 2025; 31:240-255. [PMID: 39568127 PMCID: PMC11791575 DOI: 10.3350/cmh.2024.0587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 11/04/2024] [Accepted: 11/18/2024] [Indexed: 11/22/2024] Open
Abstract
BACKGROUND/AIMS Systemic Inflammation (SI) is considered a key mechanism in disease progression and development of complications in decompensated liver cirrhosis. SI is mainly driven by portal hypertension and bacterial translocation. Transjugular intrahepatic portosystemic shunt (TIPS) insertion represents an effective treatment for portal hypertension. This study aims to investigate the impact of TIPS insertion on SI and bacterial translocation. METHODS We prospectively included 59 cirrhotic patients undergoing TIPS insertion. Blood samples were collected at TIPS insertion and follow-up (FU) 1, 3, 6, and 12 months thereafter. At all time points, we performed a comprehensive analysis of SI including 43 soluble inflammatory markers (SIMs), and surrogates of bacterial translocation (sCD14, sCD163). To investigate long-term kinetics of SI, C-reactive protein (CRP) and white blood cells (WBC) were retrospectively analyzed in a cohort of 177 patients up to 3 years after TIPS insertion. RESULTS At TIPS insertion, 30/43 SIMs, sCD14, and sCD163 measured significantly higher in cirrhotic patients compared to healthy controls. By FU6 25 SIMs and sCD14 measured at significantly lower levels compared to baseline. Interestingly, in patients with TIPS indication of refractory ascites, IL-6 decreased to levels documented in earlier stages of cirrhosis. In long-term follow-up, CRP levels significantly decreased after TIPS insertion, which translated into lower mortality in Cox regression analysis (HR 0.968, p=0.042). Notably, patients with residual ascites post-TIPS showed significantly higher CRP and IL-6 levels across all follow-ups compared to patients with resolved ascites. CONCLUSION Decreasing portal hypertension via TIPS insertion leads to a significant attenuation of SI and bacterial translocation over time.
Collapse
Affiliation(s)
- Anja Tiede
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Hannover-Braunschweig, Germany
| | - Lena Stockhoff
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
- Niels-Stensen-Kliniken Marienhospital, Osnabrück, Germany
| | - Zhaoli Liu
- Center for Individualized Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany
- TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture Between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
| | - Hannah Rieland
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Jim B. Mauz
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Valerie Ohlendorf
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Birgit Bremer
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Jennifer Witt
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Anke Kraft
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Hannover-Braunschweig, Germany
- Center for Individualized Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany
- TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture Between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
| | - Markus Cornberg
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Hannover-Braunschweig, Germany
- Center for Individualized Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany
- TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture Between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
- Cluster of Excellence RESIST (EXC2155), Hannover Medical School, Hannover, Germany
| | - Jan B. Hinrichs
- St. Bernward Hospital, Radiology, Hildesheim, Germany
- Hannover Medical School, Department of Diagnostic and Interventional Radiology, Hannover, Germany
| | - Bernhard C. Meyer
- Hannover Medical School, Department of Diagnostic and Interventional Radiology, Hannover, Germany
| | - Heiner Wedemeyer
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Hannover-Braunschweig, Germany
- Cluster of Excellence RESIST (EXC2155), Hannover Medical School, Hannover, Germany
| | - Cheng-Jian Xu
- Center for Individualized Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany
- TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture Between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
| | - Christine S. Falk
- Cluster of Excellence RESIST (EXC2155), Hannover Medical School, Hannover, Germany
- Institute of Transplant Immunology, Hannover Medical School, Hannover, Germany
| | - Benjamin Maasoumy
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Hannover-Braunschweig, Germany
- Cluster of Excellence RESIST (EXC2155), Hannover Medical School, Hannover, Germany
| |
Collapse
|
2
|
Oyelade T, Moore KP, Mani AR. Physiological network approach to prognosis in cirrhosis: A shifting paradigm. Physiol Rep 2024; 12:e16133. [PMID: 38961593 PMCID: PMC11222171 DOI: 10.14814/phy2.16133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/12/2024] [Accepted: 06/24/2024] [Indexed: 07/05/2024] Open
Abstract
Decompensated liver disease is complicated by multi-organ failure and poor prognosis. The prognosis of patients with liver failure often dictates clinical management. Current prognostic models have focused on biomarkers considered as individual isolated units. Network physiology assesses the interactions among multiple physiological systems in health and disease irrespective of anatomical connectivity and defines the influence or dependence of one organ system on another. Indeed, recent applications of network mapping methods to patient data have shown improved prediction of response to therapy or prognosis in cirrhosis. Initially, different physical markers have been used to assess physiological coupling in cirrhosis including heart rate variability, heart rate turbulence, and skin temperature variability measures. Further, the parenclitic network analysis was recently applied showing that organ systems connectivity is impaired in patients with decompensated cirrhosis and can predict mortality in cirrhosis independent of current prognostic models while also providing valuable insights into the associated pathological pathways. Moreover, network mapping also predicts response to intravenous albumin in patients hospitalized with decompensated cirrhosis. Thus, this review highlights the importance of evaluating decompensated cirrhosis through the network physiologic prism. It emphasizes the limitations of current prognostic models and the values of network physiologic techniques in cirrhosis.
Collapse
Affiliation(s)
- Tope Oyelade
- Institute for Liver and Digestive Health, Division of MedicineUCLLondonUK
- Network Physiology Laboratory, Division of MedicineUCLLondonUK
| | - Kevin P. Moore
- Institute for Liver and Digestive Health, Division of MedicineUCLLondonUK
| | - Ali R. Mani
- Institute for Liver and Digestive Health, Division of MedicineUCLLondonUK
- Network Physiology Laboratory, Division of MedicineUCLLondonUK
| |
Collapse
|
3
|
Zhang H, Xiang X, Wang C, Li T, Xiao X, He L. Different effects of acute and chronic oxidative stress on the intestinal flora and gut-liver axis in weaned piglets. Front Microbiol 2024; 15:1414486. [PMID: 38952442 PMCID: PMC11215049 DOI: 10.3389/fmicb.2024.1414486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/04/2024] [Indexed: 07/03/2024] Open
Abstract
Introduction Oxidative stress plays a pivotal role in modulating the balance of intestinal flora and the gut-liver axis, while also serving as a key determinant of the growth potential of weaned piglets. However, few studies have subdivided and compared acute and chronic oxidative stress. Methods In this study, an intestinal model of acute oxidative stress in weaned piglets using paraquat (PQ) and a chronic oxidative stress model using D-galactosa in weaned piglets were conducted. And we further systematically compare their effects. Results Both acute and chronic oxidative stress models impaired intestinal barrier function and liver function. Chronic stress caused by D-galactose can result in severe redox dysregulation, while acute stress caused by paraquat can lead to inflammation and liver damage. Additionally, the components involved in the CAR pathway were expressed differently. Chronic or acute oxidative stress can reduce the diversity and composition of intestinal flora. In the PQ group, the richness of Mogibacterium and Denitratisoma improved, but in the D-gal group, the richness of Catenisphaera and Syntrophococcus increased. Discussion Not only does this research deepen our understanding of the effects of acute and chronic oxidative stress on intestinal functions, but it also characterizes characteristic changes in the gut flora, potentially identifying novel therapeutic targets and opening new avenues for future research.
Collapse
Affiliation(s)
- Hongyu Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People’s Hospital), Changsha, China
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Laboratory of Animal Nutrition and Hunan Health, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Xuan Xiang
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Chenyu Wang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Laboratory of Animal Nutrition and Hunan Health, College of Life Sciences, Hunan Normal University, Changsha, China
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Tiejun Li
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Xuping Xiao
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People’s Hospital), Changsha, China
| | - Liuqin He
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Laboratory of Animal Nutrition and Hunan Health, College of Life Sciences, Hunan Normal University, Changsha, China
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| |
Collapse
|
4
|
Qian Z, Xiong W, Mao X, Li J. Macrophage Perspectives in Liver Diseases: Programmed Death, Related Biomarkers, and Targeted Therapy. Biomolecules 2024; 14:700. [PMID: 38927103 PMCID: PMC11202214 DOI: 10.3390/biom14060700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/06/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Macrophages, as important immune cells of the organism, are involved in maintaining intrahepatic microenvironmental homeostasis and can undergo rapid phenotypic changes in the injured or recovering liver. In recent years, the crucial role of macrophage-programmed cell death in the development and regression of liver diseases has become a research hotspot. Moreover, macrophage-targeted therapeutic strategies are emerging in both preclinical and clinical studies. Given the macrophages' vital role in complex organismal environments, there is tremendous academic interest in developing novel therapeutic strategies that target these cells. This review provides an overview of the characteristics and interactions between macrophage polarization, programmed cell death, related biomarkers, and macrophage-targeted therapies. It aims to deepen the understanding of macrophage immunomodulation and molecular mechanisms and to provide a basis for the treatment of macrophage-associated liver diseases.
Collapse
Affiliation(s)
- Zibing Qian
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, China; (Z.Q.); (W.X.)
| | - Wanyuan Xiong
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, China; (Z.Q.); (W.X.)
| | - Xiaorong Mao
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, China; (Z.Q.); (W.X.)
- Department of Infectious Disease, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Junfeng Li
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, China; (Z.Q.); (W.X.)
- Institute of Infectious Diseases, The First Hospital of Lanzhou University, Lanzhou 730000, China
- Department of Hepatology, The First Hospital of Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
5
|
Efremova I, Maslennikov R, Poluektova E, Medvedev O, Kudryavtseva A, Krasnov G, Fedorova M, Romanikhin F, Zharkova M, Zolnikova O, Bagieva G, Ivashkin V. Presepsin as a biomarker of bacterial translocation and an indicator for the prescription of probiotics in cirrhosis. World J Hepatol 2024; 16:822-831. [PMID: 38818295 PMCID: PMC11135270 DOI: 10.4254/wjh.v16.i5.822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/12/2024] [Accepted: 04/12/2024] [Indexed: 05/22/2024] Open
Abstract
BACKGROUND The gut-liver axis and bacterial translocation are important in cirrhosis, but there is no available universal biomarker of cellular bacterial translocation, for which presepsin may be a candidate. AIM To evaluate the relationship of the blood presepsin levels with the state of the gut microbiota in cirrhosis in the absence of obvious infection. METHODS This study included 48 patients with Child-Pugh cirrhosis classes B and C and 15 healthy controls. The fecal microbiome was assessed using 16S rRNA gene sequencing. Plasma levels of presepsin were measured. A total of 22 patients received a probiotic (Saccharomyces boulardii) for 3 months. RESULTS Presepsin levels were higher in patients with cirrhosis than in healthy individuals [342 (91-2875) vs 120 (102-141) pg/mL; P = 0.048]. Patients with elevated presepsin levels accounted for 56.3% of all included patients. They had lower levels of serum albumin and higher levels of serum total bilirubin and overall severity of cirrhosis as assessed using the Child-Pugh scale. Patients with elevated presepsin levels had an increased abundance of the main taxa responsible for bacterial translocation, namely Bacilli and Proteobacteria (including the main class Gammaproteobacteria and the minor taxa Xanthobacteraceae and Stenotrophomonas), and a low abundance of bacteria from the family Lachnospiraceae (including the minor genus Fusicatenibacter), which produce short-chain fatty acids that have a positive effect on intestinal barrier function. The presepsin level directly correlated with the relative abundance of Bacilli, Proteobacteria, and inversely correlated with the abundance of Lachnospiraceae and Propionibacteriaceae. After 3 months of taking the probiotic, the severity of cirrhosis on the Child-Pugh scale decreased significantly only in the group with elevated presepsin levels [from 9 (8-11) to 7 (6-9); P = 0.004], while there were no significant changes in the group with normal presepsin levels [from 8 (7-8) to 7 (6-8); P = 0.123]. A high level of presepsin before the prescription of the probiotic was an independent predictor of a greater decrease in Child-Pugh scores (P = 0.046), as well as a higher level of the Child-Pugh scale (P = 0.042), but not the C-reactive protein level (P = 0.679) according to multivariate linear regression analysis. CONCLUSION The level of presepsin directly correlates with the abundance in the gut microbiota of the main taxa that are substrates of bacterial translocation in cirrhosis. This biomarker, in the absence of obvious infection, seems important for assessing the state of the gut-liver axis in cirrhosis and deciding on therapy targeted at the gut microbiota in this disease.
Collapse
Affiliation(s)
- Irina Efremova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
| | - Roman Maslennikov
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
- Department of Scientific, Scientific Community for the Promotion of the Clinical Study of the Human Microbiome, Moscow 119435, Russia.
| | - Elena Poluektova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
- Department of Scientific, Scientific Community for the Promotion of the Clinical Study of the Human Microbiome, Moscow 119435, Russia
| | - Oleg Medvedev
- Department of Pharmacology, Lomonosov Moscow State University, Moscow 119192, Russia
| | - Anna Kudryavtseva
- Department of Post-Genomic Research Laboratory, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - George Krasnov
- Department of Post-Genomic Research Laboratory, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Maria Fedorova
- Department of Post-Genomic Research Laboratory, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Filipp Romanikhin
- Department of Pharmacology, Lomonosov Moscow State University, Moscow 119192, Russia
| | - Maria Zharkova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
| | - Oxana Zolnikova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
| | - Gyunay Bagieva
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
| | - Vladimir Ivashkin
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
- Department of Scientific, Scientific Community for the Promotion of the Clinical Study of the Human Microbiome, Moscow 119435, Russia
| |
Collapse
|
6
|
Gallo P, Flagiello V, Falcomatà A, Di Pasquale G, D’Avanzo G, Terracciani F, Picardi A, Vespasiani-Gentilucci U. Approaching the Sarcopenic Patient with Nonalcoholic Steatohepatitis-related Cirrhosis. J Clin Transl Hepatol 2024; 12:278-286. [PMID: 38426198 PMCID: PMC10899871 DOI: 10.14218/jcth.2023.00207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 10/31/2023] [Accepted: 11/09/2023] [Indexed: 03/02/2024] Open
Abstract
Sarcopenia is a well-known complication of chronic liver disease (CLD), and it is almost always observed in patients with cirrhosis, at least in those with decompensated disease. Since nonalcoholic fatty liver disease (NAFLD), recently renamed metabolic dysfunction-associated steatotic liver disease (MASLD), is becoming the leading cause of end-stage liver disease, a new scenario characterized by the frequent coexistence of NAFLD, obesity, and sarcopenia is emerging. Although it is not yet resolved whether the bidirectional relationship between sarcopenia and NAFLD subtends causal determinants, it is clear that the interaction of these two conditions is associated with an increased risk of poor outcomes. Notably, during the course of CLD, deregulation of the liver-muscle-adipose tissue axis has been described. Unfortunately, owing to the lack of properly designed studies, specific therapeutic guidelines for patients with sarcopenia in the context of NAFLD-related CLD have not yet been defined. Strategies aimed to induce the loss of fat mass together with the maintenance of lean body mass seem most appropriate. This can be achieved by properly designed diets integrated with specific nutritional supplementations and accompanied by adequate physical exercise. Future studies aiming to add to the knowledge of the correct assessment and approach to sarcopenia in the context of NAFLD-related CLD are eagerly awaited.
Collapse
Affiliation(s)
- Paolo Gallo
- Operative Research Unit of Clinical Medicine and Hepatology, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, Roma, Italy
| | - Valentina Flagiello
- Operative Research Unit of Clinical Medicine and Hepatology, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, Roma, Italy
| | - Andrea Falcomatà
- Operative Research Unit of Clinical Medicine and Hepatology, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, Roma, Italy
| | - Giulia Di Pasquale
- Operative Research Unit of Clinical Medicine and Hepatology, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, Roma, Italy
| | - Giorgio D’Avanzo
- Operative Research Unit of Clinical Medicine and Hepatology, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, Roma, Italy
| | - Francesca Terracciani
- Operative Research Unit of Clinical Medicine and Hepatology, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, Roma, Italy
| | - Antonio Picardi
- Operative Research Unit of Clinical Medicine and Hepatology, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, Roma, Italy
- Research Unit of Hepatology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, Roma, Italy
| | - Umberto Vespasiani-Gentilucci
- Operative Research Unit of Clinical Medicine and Hepatology, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, Roma, Italy
- Research Unit of Hepatology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, Roma, Italy
| |
Collapse
|
7
|
Juanola A, Ma AT, de Wit K, Gananandan K, Roux O, Zaccherini G, Jiménez C, Tonon M, Solé C, Villaseca C, Uschner FE, Graupera I, Pose E, Moreta MJ, Campion D, Beuers U, Mookerjee RP, Francoz C, Durand F, Vargas V, Piano S, Alonso S, Trebicka J, Laleman W, Asrani SK, Soriano G, Alessandria C, Serra-Burriel M, Morales-Ruiz M, Torres F, Allegretti AS, Krag A, Caraceni P, Watson H, Abraldes JG, Solà E, Kamath PS, Hernaez R, Ginès P. Novel prognostic biomarkers in decompensated cirrhosis: a systematic review and meta-analysis. Gut 2023; 73:156-165. [PMID: 37884354 DOI: 10.1136/gutjnl-2023-329923] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 09/18/2023] [Indexed: 10/28/2023]
Abstract
BACKGROUND Patients with decompensated cirrhosis experience high mortality rates. Current prognostic scores, including the model for end-stage liver disease (MELD), may underperform in settings other than in those they were initially developed. Novel biomarkers have been proposed to improve prognostication accuracy and even to predict development of complications. METHODS We performed a systematic review and meta-analysis on novel urine and blood biomarkers and their ability to predict 90-day mortality in patients with decompensated cirrhosis. Secondary outcomes included 28-day and 1-year mortality, and development of acute-on-chronic liver failure, acute kidney injury and other complications. To overcome differences in units, temporal changes in assays and reporting heterogeneity, we used the ratio of means (RoM) as measure of association for assessing strength in predicting outcomes. An RoM>1 implies that the mean biomarker level is higher in those that develop the outcome than in those that do not. RESULTS Of 6629 unique references, 103 were included, reporting on 29 different biomarkers, with a total of 31 362 biomarker patients. Most studies were prospective cohorts of hospitalised patients (median Child-Pugh-Turcotte score of 9 and MELD score of 18). The pooled 90-day mortality rate was 0.27 (95% CI 0.24 to 0.29). The RoM for predicting 90-day mortality was highest for interleukin 6 (IL-6) (2.56, 95% CI 2.39 to 2.74), followed by urinary neutrophil gelatinase-associated lipocalin (uNGAL) (2.42, 95% CI 2.20 to 2.66) and copeptin (2.33, 95% CI 2.17 to 2.50). These RoMs were all higher than for MELD (1.44, 95% CI 1.42 to 1.46). CONCLUSION Novel biomarkers, including IL-6, uNGAL and copeptin, can probably improve prognostication of patients with decompensated cirrhosis compared with MELD alone.
Collapse
Affiliation(s)
- Adrià Juanola
- Liver Unit, Hospital Clinic de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomediques August Pi i Sunyer, Barcelona, Spain
- Centro de Investigacion Biomedica en Red Enfermedades Hepaticas y Digestivas, Barcelona, Spain
| | - Ann Thu Ma
- Toronto Centre for Liver Disease Francis Family Liver Clinic, Toronto General Hospital, Toronto, Ontario, Canada
| | - Koos de Wit
- Gastroenterology and Hepatology, Amsterdam UMC Location AMC, Amsterdam, The Netherlands
| | - Kohilan Gananandan
- Institute for Liver and Digestive Health, University College London, London, UK
| | - Olivier Roux
- Department of Hepatology, Beaujon Hospital, Clichy, France
| | - Giacomo Zaccherini
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
- Unit of Semeiotics, Liver and Alcohol-related Diseases, University of Bologna Hospital of Bologna Sant'Orsola-Malpighi Polyclinic, Bologna, Italy
| | - César Jiménez
- Liver Unit, Department of Internal Medicine, Hospital Vall d'Hebron, Barcelona, Spain
| | - Marta Tonon
- Department of Medicine (DIMED), University of Padova, Padova, Italy
| | - Cristina Solé
- Department of Gastroenterology and Hepatology, Consorci Corporació Sanitària Parc Taulí, Sabadell, Spain
| | - Clara Villaseca
- Digestive Disease Department, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Frank E Uschner
- Department of Internal Medicine B, University of Münster, Munster, Germany
| | - Isabel Graupera
- Liver Unit, Hospital Clinic de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomediques August Pi i Sunyer, Barcelona, Spain
- Centro de Investigacion Biomedica en Red Enfermedades Hepaticas y Digestivas, Barcelona, Spain
| | - Elisa Pose
- Liver Unit, Hospital Clinic de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomediques August Pi i Sunyer, Barcelona, Spain
- Centro de Investigacion Biomedica en Red Enfermedades Hepaticas y Digestivas, Barcelona, Spain
| | - Maria José Moreta
- Liver Unit, Hospital Clinic de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomediques August Pi i Sunyer, Barcelona, Spain
| | - Daniela Campion
- Division of Gastroenterology and Hepatology, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Torino, Italy
| | - Ulrich Beuers
- Gastroenterology & Hepatology, Amsterdam University Medical Centres, Amsterdam, The Netherlands
| | - Rajeshawar P Mookerjee
- Institute of Liver and Digestive Health, University College London Medical School, London, UK
| | - Claire Francoz
- Department of Hepatology, Beaujon Hospital, Clichy, France
| | - Francois Durand
- DHU Unity, Pôle des Maladies de l'Appareil Digestif, Service d'Hépatologie, Centre de Référence des Maladies Vasculaires du Foie, Hôpital Beaujon, AP-HP, Clichy, France
- Université Denis Diderot-Paris 7, Paris, France
| | - Victor Vargas
- Liver Unit, Department of Internal Medicine, Hospital Vall d'Hebron, Barcelona, Spain
| | - Salvatore Piano
- Department of Medicine (DIMED), University of Padova, Padova, Italy
| | - Sonia Alonso
- Digestive Disease Department, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Jonel Trebicka
- Department of Internal Medicine B, University of Münster, Munster, Germany
- European Foundation for the Study of Chronic Liver Failure, Barcelona, Spain
| | - Wim Laleman
- Division of Liver and Biliopanreatic Disorders, KU Leuven, University of Leuven, Leuven, Belgium
| | - Sumeet K Asrani
- Division of Hepatology, Department of Medicine, Baylor University Medical Center at Dallas, Dallas, Texas, USA
| | - German Soriano
- Department of Gastroenterology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Carlo Alessandria
- Division of Gastroenterology and Hepatology, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Torino, Italy
| | - Miquel Serra-Burriel
- University of Zurich Institute of Epidemiology Biostatistics and Prevention, Zurich, Switzerland
| | - Manuel Morales-Ruiz
- Biochemistry and Molecular Genetics Department-CDB, Hospital Clinic de Barcelona, Barcelona, Spain
| | - Ferran Torres
- Biostatistics and Data Management Core Facility, IDIBAPS, Hospital Clinic Barcelona, Barcelona, Spain
- Biostatistics Unit, Faculty of Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Andrew S Allegretti
- Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Aleksander Krag
- Department of Gastroenterology, Odense University Hospital, University of Southern Denmark, Odense, Denmark
| | - Paolo Caraceni
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | | | - Juan G Abraldes
- Division of Gastroenterology (Liver Unit), University of Alberta, Edmonton, Alberta, Canada
| | - Elsa Solà
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, California, USA
| | - Patrick S Kamath
- Gastroenterology and Hepatology, Mayo Medical School, Rochester, Minnesota, USA
| | - Ruben Hernaez
- Gastroenterology and Hepatology, Baylor College of Medicine, Houston, Texas, USA
- Gastroenterology and Hepatology, Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas, USA
| | - Pere Ginès
- Liver Unit, Hospital Clinic de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomediques August Pi i Sunyer, Barcelona, Spain
- Centro de Investigacion Biomedica en Red Enfermedades Hepaticas y Digestivas, Barcelona, Spain
- Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Catalonia, Spain
| |
Collapse
|
8
|
Maslennikov R, Poluektova E, Zolnikova O, Sedova A, Kurbatova A, Shulpekova Y, Dzhakhaya N, Kardasheva S, Nadinskaia M, Bueverova E, Nechaev V, Karchevskaya A, Ivashkin V. Gut Microbiota and Bacterial Translocation in the Pathogenesis of Liver Fibrosis. Int J Mol Sci 2023; 24:16502. [PMID: 38003692 PMCID: PMC10671141 DOI: 10.3390/ijms242216502] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/11/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
Cirrhosis is the end result of liver fibrosis in chronic liver diseases. Studying the mechanisms of its development and developing measures to slow down and regress it based on this knowledge seem to be important tasks for medicine. Currently, disorders of the gut-liver axis have great importance in the pathogenesis of cirrhosis. However, gut dysbiosis, which manifests as increased proportions in the gut microbiota of Bacilli and Proteobacteria that are capable of bacterial translocation and a decreased proportion of Clostridia that strengthen the intestinal barrier, occurs even at the pre-cirrhotic stage of chronic liver disease. This leads to the development of bacterial translocation, a process by which those microbes enter the blood of the portal vein and then the liver tissue, where they activate Kupffer cells through Toll-like receptor 4. In response, the Kupffer cells produce profibrogenic cytokines, which activate hepatic stellate cells, stimulating their transformation into myofibroblasts that produce collagen and other elements of the extracellular matrix. Blocking bacterial translocation with antibiotics, probiotics, synbiotics, and other methods could slow down the progression of liver fibrosis. This was shown in a number of animal models but requires further verification in long-term randomized controlled trials with humans.
Collapse
Affiliation(s)
- Roman Maslennikov
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, 119048 Moscow, Russia (A.S.); (N.D.); (M.N.); (E.B.)
- The Interregional Public Organization “Scientific Community for the Promotion of the Clinical Study of the Human Microbiome”, 119048 Moscow, Russia
| | - Elena Poluektova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, 119048 Moscow, Russia (A.S.); (N.D.); (M.N.); (E.B.)
- The Interregional Public Organization “Scientific Community for the Promotion of the Clinical Study of the Human Microbiome”, 119048 Moscow, Russia
| | - Oxana Zolnikova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, 119048 Moscow, Russia (A.S.); (N.D.); (M.N.); (E.B.)
| | - Alla Sedova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, 119048 Moscow, Russia (A.S.); (N.D.); (M.N.); (E.B.)
| | - Anastasia Kurbatova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, 119048 Moscow, Russia (A.S.); (N.D.); (M.N.); (E.B.)
| | - Yulia Shulpekova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, 119048 Moscow, Russia (A.S.); (N.D.); (M.N.); (E.B.)
| | - Natyia Dzhakhaya
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, 119048 Moscow, Russia (A.S.); (N.D.); (M.N.); (E.B.)
| | - Svetlana Kardasheva
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, 119048 Moscow, Russia (A.S.); (N.D.); (M.N.); (E.B.)
| | - Maria Nadinskaia
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, 119048 Moscow, Russia (A.S.); (N.D.); (M.N.); (E.B.)
| | - Elena Bueverova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, 119048 Moscow, Russia (A.S.); (N.D.); (M.N.); (E.B.)
| | - Vladimir Nechaev
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, 119048 Moscow, Russia (A.S.); (N.D.); (M.N.); (E.B.)
| | - Anna Karchevskaya
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, 119048 Moscow, Russia (A.S.); (N.D.); (M.N.); (E.B.)
| | - Vladimir Ivashkin
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, 119048 Moscow, Russia (A.S.); (N.D.); (M.N.); (E.B.)
- The Interregional Public Organization “Scientific Community for the Promotion of the Clinical Study of the Human Microbiome”, 119048 Moscow, Russia
| |
Collapse
|
9
|
Crane H, Gofton C, Sharma A, George J. MAFLD: an optimal framework for understanding liver cancer phenotypes. J Gastroenterol 2023; 58:947-964. [PMID: 37470858 PMCID: PMC10522746 DOI: 10.1007/s00535-023-02021-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 07/05/2023] [Indexed: 07/21/2023]
Abstract
Hepatocellular carcinoma has a substantial global mortality burden which is rising despite advancements in tackling the traditional viral risk factors. Metabolic (dysfunction) associated fatty liver disease (MAFLD) is the most prevalent liver disease, increasing in parallel with the epidemics of obesity, diabetes and systemic metabolic dysregulation. MAFLD is a major factor behind this sustained rise in HCC incidence, both as a single disease entity and often via synergistic interactions with other liver diseases. Mechanisms behind MAFLD-related HCC are complex but is crucially underpinned by systemic metabolic dysregulation with variable contributions from interacting disease modifiers related to environment, genetics, dysbiosis and immune dysregulation. MAFLD-related HCC has a distinct clinical presentation, most notably its common occurrence in non-cirrhotic liver disease. This is just one of several major challenges to effective surveillance programmes. The response of MAFLD-related HCC to immune-checkpoint therapy is currently controversial, and is further complicated by the high prevalence of MAFLD in individuals with HCC from viral aetiologies. In this review, we highlight the current data on epidemiology, clinical characteristics, outcomes and screening controversies. In addition, concepts that have arisen because of the MAFLD paradigm such as HCC in MAFLD/NAFLD non-overlapping groups, dual aetiology tumours and MAFLD sub-phenotypes is reviewed.
Collapse
Affiliation(s)
- Harry Crane
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, New South Wales, Australia.
- Department of Gastroenterology and Hepatology, Royal North Shore Hospital, 1 Reserve Road, St Leonards, New South Wales, Australia.
| | - Cameron Gofton
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, New South Wales, Australia
- Department of Gastroenterology and Hepatology, Royal North Shore Hospital, 1 Reserve Road, St Leonards, New South Wales, Australia
| | - Ankur Sharma
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, 6 Verdun Street, Nedlands, Perth, WA, 6009, Australia
- Curtin Medical School, Curtin Health Innovation Research Institute (CHIRI), Curtin University, Perth, WA, 6102, Australia
| | - Jacob George
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
10
|
Zhang LP, Wang HF, Zhai XR, Zhou CB, Yuan JH, Ma YN, Yao ZT, Huang S, Li WZ, Jiao YM, Wang FS, Zou ZS, Zhang JY, Zeng QL. Pyroptotic MAITs link microbial translocation with severity of alcohol-associated liver disease. Hepatol Commun 2023; 7:e0159. [PMID: 37204414 PMCID: PMC10538909 DOI: 10.1097/hc9.0000000000000159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 02/19/2023] [Indexed: 05/20/2023] Open
Abstract
BACKGROUND Mucosal-associated invariant T cells (MAITs) are markedly reduced in patients with alcohol-associated liver disease (ALD); however, the potential mechanism underlying MAITs' loss remains elusive. Hence, we aimed to explore what induced MAITs' loss and its clinical significance. METHODS The characteristics of pyroptotic MAITs were evaluated in a cohort of patients with ALD, including 41 patients with alcohol-associated liver cirrhosis (ALC) and 21 patients with ALC complicated with severe alcoholic hepatitis (ALC + SAH). RESULTS In patients with ALD, blood MAITs were significantly decreased, hyperactivated, and displayed enhanced cell death through pyroptosis. The frequencies of pyroptotic MAITs increased with disease severity in patients with ALC and patients with ALC + SAH. These frequencies were negatively associated with the frequencies of MAITs and positively correlated with the levels of MAITs' activation, plasma levels of intestinal fatty acid-binding protein (a marker of intestinal enterocyte damage), soluble CD14, lipopolysaccharide-binding protein, and peptidoglycan recognition proteins (surrogate markers of microbial translocation). Pyroptotic MAITs were also found in the liver of patients with ALD. Interestingly, MAITs underwent further activation and pyroptosis in vitro under stimulation by Escherichia coli or direct bilirubin. Notably, blocking IL-18 signaling reduced the activation and frequencies of pyroptotic MAITs. CONCLUSIONS The loss of MAITs in patients with ALD is, at least in part, due to cell death from pyroptosis and is associated with the severity of ALD. Such increased pyroptosis may be affected by dysregulated inflammatory responses to intestinal microbial translocation or direct bilirubin.
Collapse
Affiliation(s)
- Li-Ping Zhang
- Department of Infectious Diseases and Hepatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou City, Henan Province, China
| | - Hui-Fang Wang
- Department of Infectious Diseases and Hepatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou City, Henan Province, China
| | - Xing-Ran Zhai
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Chun-Bao Zhou
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Jin-Hong Yuan
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Ye-Nv Ma
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Zeng-Tao Yao
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Shuo Huang
- Department of Infectious Diseases and Hepatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, China
| | - Wei-Zhe Li
- Department of Infectious Diseases and Hepatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, China
| | - Yan-Mei Jiao
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Fu-Sheng Wang
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Zheng-Sheng Zou
- Department of Liver Disease, Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Ji-Yuan Zhang
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Qing-Lei Zeng
- Department of Infectious Diseases and Hepatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, China
| |
Collapse
|
11
|
Cai S, Lin N, Yang Y, Ma W, Wang Y, Lin X, Wang X, Zhao X. The value of contrast-enhanced portal vein imaging at the hepatobiliary phase obtained with gadobenate dimeglumine for predicting decompensation and transplant-free survival in chronic liver disease. Eur Radiol 2023; 33:3425-3434. [PMID: 36897349 DOI: 10.1007/s00330-023-09489-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 01/26/2023] [Accepted: 02/06/2023] [Indexed: 03/11/2023]
Abstract
OBJECTIVES To investigate the value of contrast-enhanced portal vein imaging at the hepatobiliary phase obtained with gadobenate dimeglumine for predicting clinical outcomes in patients with chronic liver disease (CLD). METHODS Three hundred and fourteen CLD patients who underwent gadobenate dimeglumine-enhanced hepatic magnetic resonance imaging were stratified into three groups: nonadvanced CLD (n = 116), compensated advanced CLD (n = 120), and decompensated advanced CLD (n = 78) groups. The liver-to-portal vein contrast ratio (LPC) and liver-spleen contrast ratio (LSC) at the hepatobiliary phase were measured. The value of LPC for predicting hepatic decompensation and transplant-free survival was assessed using Cox regression analysis and Kaplan-Meier analysis. RESULTS The diagnostic performance of LPC was significantly better than LSC in evaluating the severity of CLD. During a median follow-up period of 53.0 months, the LPC was a significant predictor for hepatic decompensation (p < 0.001) in patients with compensated advanced CLD. The predictive performance of LPC was higher than that of the model for end-stage liver disease score (p = 0.006). With the optimal cut-off value, patients with LPC ≤ 0.98 had a higher cumulative incidence of hepatic decompensation than patients with LPC > 0.98 (p < 0.001). The LPC was also a significant predictive factor for transplant-free survival in patients with compensated advanced CLD (p = 0.007) and those with decompensated advanced CLD (p = 0.002). CONCLUSIONS Contrast-enhanced portal vein imaging at the hepatobiliary phase obtained with gadobenate dimeglumine is a valuable imaging biomarker for predicting hepatic decompensation and transplant-free survival in CLD patients. KEY POINTS • The liver-to-portal vein contrast ratio (LPC) significantly outperformed liver-spleen contrast ratio in evaluating the severity of chronic liver disease. • The LPC was a significant predictor for hepatic decompensation in patients with compensated advanced chronic liver disease. • The LPC was a significant predictor for transplant-free survival in patients with compensated and those with decompensated advanced chronic liver disease.
Collapse
Affiliation(s)
- Shuo Cai
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province, 250021, China
| | - Nan Lin
- Department of Medical Imaging, Shandong Public Health Clinical Center, Jinan, Shandong Province, 250021, China
| | - Yongqing Yang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province, 250021, China
| | - Wenjing Ma
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province, 250021, China
| | - Yu Wang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province, 250021, China
| | - Xiangtao Lin
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province, 250021, China
| | - Ximing Wang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province, 250021, China.
| | - Xinya Zhao
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province, 250021, China.
| |
Collapse
|
12
|
Li Z, Zhang F, Sun M, Liu J, Zhao L, Liu S, Li S, Wang B. The modulatory effects of gut microbes and metabolites on blood–brain barrier integrity and brain function in sepsis-associated encephalopathy. PeerJ 2023; 11:e15122. [PMID: 37009158 PMCID: PMC10064995 DOI: 10.7717/peerj.15122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/03/2023] [Indexed: 03/30/2023] Open
Abstract
Background
Intestinal microbiota homeostasis and the gut-brain axis are key players associated with host health and alterations in metabolic, inflammatory, and neurodegenerative disorders. Sepsis-associated encephalopathy (SAE), which is closely associated with bacterial translocation, is a common secondary organ dysfunction and an urgent, unsolved problem affecting patient quality of life. Our study examined the neuroprotective effects of the gut microbiome and short-chain fatty acid (SCFA) metabolites on SAE.
Methods
Male C57BL/6 mice were administered SCFAs in drinking water, then subjected to cecal ligation and puncture (CLP) surgery to induce SAE. 16S rRNA sequencing was used to investigate gut microbiome changes. The open field test (OFT) and Y-maze were performed to evaluate brain function. The permeability of the blood–brain barrier (BBB) was assessed by Evans blue (EB) staining. Hematoxylin and eosin (HE) staining was used to examine intestinal tissue morphology. The expression levels of tight junction (TJ) proteins and inflammatory cytokines was assessed by western blots and immunohistochemistry. In vitro, bEND.3 cells were incubated with SCFAs and then with lipopolysaccharide (LPS). Immunofluorescence was used to examine the expression of TJ proteins.
Results
The composition of the gut microbiota was altered in SAE mice; this change may be related to SCFA metabolism. SCFA treatment significantly alleviated behavioral dysfunction and neuroinflammation in SAE mice. SCFAs upregulated occludin and ZO-1 expression in the intestine and brain in SAE mice and LPS-treated cerebromicrovascular cells.
Conclusions
These findings suggested that disturbances in the gut microbiota and SCFA metabolites play key roles in SAE. SCFA supplementation could exert neuroprotective effects against SAE by preserving BBB integrity.
Collapse
Affiliation(s)
- Zhaoying Li
- Department of Anesthesiology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou Province, China
- Institute of Anesthesiology, Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Fangxiang Zhang
- Department of Anesthesiology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou Province, China
| | - Meisha Sun
- Department of Anesthesiology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou Province, China
| | - Jia Liu
- Department of Anesthesiology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou Province, China
| | - Li Zhao
- Department of Anesthesiology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou Province, China
| | - Shuchun Liu
- Department of Anesthesiology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou Province, China
| | - Shanshan Li
- Department of Anesthesiology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou Province, China
| | - Bin Wang
- Department of Anesthesiology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou Province, China
| |
Collapse
|
13
|
Mastrotto F, Pirazzini M, Negro S, Salama A, Martinez-Pomares L, Mantovani G. Sulfation at Glycopolymer Side Chains Switches Activity at the Macrophage Mannose Receptor (CD206) In Vitro and In Vivo. J Am Chem Soc 2022; 144:23134-23147. [PMID: 36472883 PMCID: PMC9782796 DOI: 10.1021/jacs.2c10757] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Indexed: 12/12/2022]
Abstract
The mannose receptor (CD206) is an endocytic receptor expressed by selected innate immune cells and nonvascular endothelium, which plays a critical role in both homeostasis and pathogen recognition. Although its involvement in the development of several diseases and viral infections is well established, molecular tools able to both provide insight on the chemistry of CD206-ligand interactions and, importantly, effectively modulate its activity are currently lacking. Using novel SO4-3-Gal-glycopolymers targeting its cysteine-rich lectin ectodomain, this study uncovers and elucidates a previously unknown mechanism of CD206 blockade involving the formation of stable intracellular SO4-3-Gal-glycopolymer-CD206 complexes that prevents receptor recycling to the cell membrane. Further, we show that SO4-3-Gal glycopolymers inhibit CD206 both in vitro and in vivo, revealing hitherto unknown receptor function and demonstrating their potential as CD206 modulators within future immunotherapies.
Collapse
Affiliation(s)
- Francesca Mastrotto
- School
of Pharmacy, University of Nottingham, Nottingham NG7 2RD, U.K.
- School
of Life Sciences, University of Nottingham, Nottingham NG7 2RD, U.K.
- Department
of Pharmaceutical and Pharmacological Sciences, University of Padova, via F. Marzolo 5, Padova 35131, Italy
| | - Marco Pirazzini
- Department
of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, Padova 35131, Italy
| | - Samuele Negro
- Department
of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, Padova 35131, Italy
| | - Alan Salama
- Department
of Renal Medicine, University College London, London NW3 2PF, U.K.
| | | | | |
Collapse
|
14
|
Fujinaga Y, Namisaki T, Tsuji Y, Suzuki J, Murata K, Takeda S, Takaya H, Inoue T, Noguchi R, Fujimoto Y, Enomoto M, Nishimura N, Kitagawa K, Kaji K, Kawaratani H, Akahane T, Mitoro A, Yoshiji H. Macrophage Activation Markers Predict Liver-Related Complications in Primary Biliary Cholangitis. Int J Mol Sci 2022; 23:9814. [PMID: 36077228 PMCID: PMC9456095 DOI: 10.3390/ijms23179814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 08/26/2022] [Accepted: 08/27/2022] [Indexed: 11/16/2022] Open
Abstract
Primary biliary cholangitis (PBC) has a wide variation in clinical presentation and course. There is no significant correlation between these symptoms and the disease stage, although patients with more advanced stages generally have more symptoms. It is important to develop biomarkers in order to identify patients with an increased risk of complications and end-stage liver disease. This study investigated surrogate markers for risk estimation of PBC-related complications, including a study population of 77 patients with PBC who underwent liver biopsy and were measured for serum levels of macrophage activation markers, soluble CD163 (sCD163), soluble mannose receptor (sMR), and zonulin. Patients with PBC were divided into symptomatic (Group S, n = 20) and asymptomatic (Group A, n = 57) groups. The correlations of histological stages based on both Scheuer and Nakanuma classifications with the three serum markers were investigated. The Nakanuma classification involves grading for liver fibrosis and bile duct loss. The three biomarkers were assessed for their diagnostic ability to identify patients with PBC having high risk of developing complications. The predictive factors of these complications were examined as well. Group S had significantly higher serum sMR (p = 0.011) and sCD163 (p = 0.048) levels versus Group A. A composite index of sMR and sCD163 measurements had significantly better prediction performance than sCD163 alone (p = 0.012), although not when compared to sMR alone (p = 0.129). Serum sMR was an independent factor for developing complications on both univariate (Odds ratio (OR) = 30.20, 95% confidence interval (95% CI): 3.410−267.0, p = 0.00220), and multivariate (OR = 33.70, 95% CI: 3.6600−311.0, p = 0.0019) analyses. Patients with PBC having sMR of ≥56.6 had a higher incidence of clinical complications versus those with a sMR of <56.6. Serum sMR predicts the development of complications in patients with PBC. sMR plus sCD163 showed better predictive power than either marker alone, although the addition of sCD163 did not improve the predictive power of sMR. Future prospective studies are required in order to validate the findings of the present study.
Collapse
Affiliation(s)
- Yukihisa Fujinaga
- Department of Gastroenterology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8522, Nara, Japan
| | - Tadashi Namisaki
- Department of Gastroenterology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8522, Nara, Japan
| | - Yuki Tsuji
- Department of Gastroenterology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8522, Nara, Japan
| | - Junya Suzuki
- Department of Gastroenterology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8522, Nara, Japan
| | - Koji Murata
- Department of Gastroenterology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8522, Nara, Japan
| | - Soichi Takeda
- Department of Gastroenterology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8522, Nara, Japan
| | - Hiroaki Takaya
- Department of Gastroenterology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8522, Nara, Japan
| | - Takashi Inoue
- Department of Evidence-Based Medicine, Nara Medical University, 840 Shijo-cho, Kashihara 634-8522, Nara, Japan
| | - Ryuichi Noguchi
- Department of Gastroenterology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8522, Nara, Japan
| | - Yuki Fujimoto
- Department of Gastroenterology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8522, Nara, Japan
| | - Masahide Enomoto
- Department of Gastroenterology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8522, Nara, Japan
| | - Norihisa Nishimura
- Department of Gastroenterology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8522, Nara, Japan
| | - Koh Kitagawa
- Department of Gastroenterology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8522, Nara, Japan
| | - Kosuke Kaji
- Department of Gastroenterology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8522, Nara, Japan
| | - Hideto Kawaratani
- Department of Gastroenterology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8522, Nara, Japan
| | - Takemi Akahane
- Department of Gastroenterology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8522, Nara, Japan
| | - Akira Mitoro
- Department of Gastroenterology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8522, Nara, Japan
| | - Hitoshi Yoshiji
- Department of Gastroenterology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8522, Nara, Japan
| |
Collapse
|
15
|
Liakina V, Strainiene S, Stundiene I, Maksimaityte V, Kazenaite E. Gut microbiota contribution to hepatocellular carcinoma manifestation in non-alcoholic steatohepatitis. World J Hepatol 2022; 14:1277-1290. [PMID: 36158907 PMCID: PMC9376773 DOI: 10.4254/wjh.v14.i7.1277] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 04/27/2022] [Accepted: 07/11/2022] [Indexed: 02/06/2023] Open
Abstract
Recently, the gut microbiota has been recognized as an obvious active player in addition to liver steatosis/steatohepatitis in the pathophysiological mechanisms of the development of hepatocellular carcinoma (HCC), even in the absence of cirrhosis. Evidence from clinical and experimental studies shows the association of specific changes in the gut microbiome and the direct contribution to maintaining liver inflammation and/or cancerogenesis in nonalcoholic fatty liver disease-induced HCC. The composition of the gut microbiota differs significantly in obese and lean individuals, especially in the abundance of pro-inflammatory lipopolysaccharide-producing phyla, and, after establishing steatohepatitis, it undergoes minor changes during the progression of the disease toward advanced fibrosis. Experimental studies proved that the microbiota of obese subjects can induce steatohepatitis in normally fed mice. On the contrary, the transplantation of healthy microbiota to obese mice relieves steatosis. However, further studies are needed to confirm these findings and the mechanisms involved. In this review, we have evaluated well-documented clinical and experimental research on the role of the gut microbiota in the manifestation and promotion of HCC in nonalcoholic steatohepatitis (NASH). Furthermore, a literature review of microbiota alterations and consequences of dysbiosis for the promotion of NASH-induced HCC was performed, and the advantages and limitations of the microbiota as an early marker of the diagnosis of HCC were discussed.
Collapse
Affiliation(s)
- Valentina Liakina
- Centre of Hepatology, Gastroenterology and Dietetics, Clinic of Gastroenterology, Nephrourology and Surgery, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius 01513, Lithuania
- Department of Chemistry and Bioengineering, Faculty of Fundamental Sciences, Vilnius Gediminas Technical University (VILNIUS TECH), Vilnius 10223, Lithuania.
| | - Sandra Strainiene
- Faculty of Medicine, Vilnius University, Vilnius 01513, Lithuania
- Therapeutic and Radiological Department, Antakalnis Polyclinic, Vilnius 10207, Lithuania
| | - Ieva Stundiene
- Centre of Hepatology, Gastroenterology and Dietetics, Clinic of Gastroenterology, Nephrourology and Surgery, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius 01513, Lithuania
| | - Vaidota Maksimaityte
- Centre of Hepatology, Gastroenterology and Dietetics, Clinic of Gastroenterology, Nephrourology and Surgery, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius 01513, Lithuania
| | - Edita Kazenaite
- Centre of Hepatology, Gastroenterology and Dietetics, Clinic of Gastroenterology, Nephrourology and Surgery, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius 01513, Lithuania
- Department of Pathology, Forensic Medicine and Pharmacology, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius 01513, Lithuania
| |
Collapse
|
16
|
Geng A, Flint E, Bernsmeier C. Plasticity of monocytes and macrophages in cirrhosis of the liver. FRONTIERS IN NETWORK PHYSIOLOGY 2022; 2:937739. [PMID: 36926073 PMCID: PMC10013015 DOI: 10.3389/fnetp.2022.937739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/27/2022] [Indexed: 06/06/2023]
Abstract
Cirrhosis of the liver is a systemic condition with raising prevalence worldwide. Patients with cirrhosis are highly susceptible to develop bacterial infections leading to acute decompensation and acute-on-chronic liver failure both associated with a high morbidity and mortality and sparse therapeutic options other than transplantation. Mononuclear phagocytes play a central role in innate immune responses and represent a first line of defence against pathogens. Their function includes phagocytosis, killing of bacteria, antigen presentation, cytokine production as well as recruitment and activation of immune effector cells. Liver injury and development of cirrhosis induces activation of liver resident Kupffer cells and recruitment of monocytes to the liver. Damage- and pathogen-associated molecular patterns promote systemic inflammation which involves multiple compartments besides the liver, such as the circulation, gut, peritoneal cavity and others. The function of circulating monocytes and tissue macrophages is severely impaired and worsens along with cirrhosis progression. The underlying mechanisms are complex and incompletely understood. Recent 'omics' technologies help to transform our understanding of cellular diversity and function in health and disease. In this review we point out the current state of knowledge on phenotypical and functional changes of monocytes and macrophages during cirrhosis evolution in different compartments and their role in disease progression. We also discuss the value of potential prognostic markers for cirrhosis-associated immuneparesis, and future immunotherapeutic strategies that may reduce the need for transplantation and death.
Collapse
Affiliation(s)
- Anne Geng
- Translational Hepatology, Department of Biomedicine, University of Basel, Basel, Switzerland
- Department of Biomedicine, University of Basel and University Centre for Gastrointestinal and Liver Diseases, Basel, Switzerland
| | - Emilio Flint
- Translational Hepatology, Department of Biomedicine, University of Basel, Basel, Switzerland
- Department of Biomedicine, University of Basel and University Centre for Gastrointestinal and Liver Diseases, Basel, Switzerland
| | - Christine Bernsmeier
- Translational Hepatology, Department of Biomedicine, University of Basel, Basel, Switzerland
- Department of Biomedicine, University of Basel and University Centre for Gastrointestinal and Liver Diseases, Basel, Switzerland
| |
Collapse
|
17
|
Soluble mannose receptor CD206 and von Willebrand factor are early biomarkers to identify patients at risk for severe or necrotizing acute pancreatitis. J Intensive Care 2022; 10:28. [PMID: 35690841 PMCID: PMC9188125 DOI: 10.1186/s40560-022-00619-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 05/30/2022] [Indexed: 11/10/2022] Open
Abstract
Background In acute pancreatitis (AP), microcirculatory dysfunction and leukocyte activation contribute to organ damage, inflammation, and mortality. Given the role of macrophage activation, monocyte recruitment, and microthrombus formation in the early pathogenesis of AP, we examined the macrophage activation marker soluble mannose receptor (sCD206) and the endothelial function marker von Willebrand factor (vWF) in patients admitted for AP. Methods In an exploratory analysis, serum sCD206 and plasma vWF were prospectively analyzed on day 1 and day 3 in 81 patients with AP admitted to the hospital. In addition, blood samples from 59 patients with early AP admitted to the intensive care unit and symptom onset < 24 h were retrospectively analyzed. Patients were dichotomized as per study protocol into two groups: (i) “non-severe edematous AP” including patients with mild AP without organ failure and patients with transient organ failure that resolves within 48 h and (ii) “severe/necrotizing AP” including patients with severe AP and persistent organ failure > 48 h and/or patients with local complications. Results In the prospective cohort, 17% developed severe/necrotizing pancreatitis compared with 56% in the ICU cohort. Serum concentrations of sCD206 on admission were higher in patients with severe/necrotizing AP than in patients with non-severe edematous AP (prospective: 1.57 vs. 0.66 mg/l, P = 0.005; ICU: 1.76 vs. 1.25 mg/l, P = 0.006), whereas other inflammatory markers (leukocytes, C-reactive protein, procalcitonin) and disease severity (SOFA, SAPS II, APACHE II) did not show significant differences. Patients with severe/necrotizing AP had a greater increase in sCD206 than patients with non-severe edematous AP at day 3 in the prospective cohort. In contrast to routine coagulation parameters, vWF antigen levels were elevated on admission (prospective cohort: 375 vs. 257%, P = 0.02; ICU cohort: 240 vs. 184%, P = 0.03). When used as continuous variables, sCD206 and VWF antigen remained predictors of severe/necrotizing AP after adjustment for etiology and age in both cohorts. Conclusions sCD206 identifies patients at risk of severe AP at earlier timepoints than routine markers of inflammation and coagulation. Prospective studies are needed to investigate whether incorporating early or repeated measurements into the existing scoring system will better identify patients at increased risk for complications of AP. Supplementary Information The online version contains supplementary material available at 10.1186/s40560-022-00619-2.
Collapse
|
18
|
Raszeja-Wyszomirska J, Niewiński G, Graczyńska A, Morawiec S, Janik MK, Kornasiewicz O. Clinical Implication of Plasma CD163 in Patients With Acute-on-Chronic Liver Failure. Transplant Proc 2022; 54:1011-1016. [PMID: 35523597 DOI: 10.1016/j.transproceed.2022.02.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND It was postulated that CD163 plasma level should be incorporated into existing predictive systems to improve prognostic performance in patients with acute-on-chronic liver failure (ACLF). PATIENTS AND METHODS Plasma CD163 was assessed in 24 consecutive patients with ACLF (17 male, 7 female; mean age 54.9 years; 50% with alcohol-related liver disease) and compered with the existing scoring tools to predict the availability of transplantation or survival without liver transplant (LT). RESULTS There were no differences in plasma CD163 levels between graft recipients and deceased patients on the waiting list or transplant survivors vs nonsurvivors. CD163 did not correlate with CLIF-ACLF, CLIF Consortium organ failure score (CLIF-OF), and ACLF grades (all P < .05). However, sequential organ failure assessment (SOFA), CLIF Consortium acute-on-chronic liver failure score (CLIF-C) ACLF, and CLIF-C OF scores correlated significantly with mortality (P < .01) in contrast to Child-Pugh scale and Model for End-Stage Liver Disease score (all P > .05). Transplanted survivors and deceased individuals differed robustly with respect to the SOFA and CLIF-SOFA scores and the CLIF-C OF, CLIF-C Grade, and CLIF-C ACLF scales (all P < .05). CLIF-C performed well in ACLF prognostication with an area under receiver operating characteristic curve (AUROC) 0.893 (95% CI, 0.766-1), surpassing in that respect CD163 with AUROC of 0.664 (95% CI, 0417-0.911). CONCLUSIONS Our preliminary results showed that the plasma CD163 level in patients with ACLF played only a minor role in predicting LT futility/benefit, with no impact on the narrow transplant window. Moreover, to optimize LT outcomes, newly developed CLIF-C scales showed superior predictive value.
Collapse
Affiliation(s)
| | - Grzegorz Niewiński
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Warsaw, Poland.
| | | | | | - Maciej K Janik
- Liver and Internal Medicine Unit, Medical University of Warsaw, Warsaw, Poland.
| | - Oskar Kornasiewicz
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Warsaw, Poland.
| |
Collapse
|
19
|
Suk KT, Koh H. New perspective on fecal microbiota transplantation in liver diseases. J Gastroenterol Hepatol 2022; 37:24-33. [PMID: 34734433 DOI: 10.1111/jgh.15729] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 01/01/2023]
Abstract
Chronic liver disease including non-alcoholic fatty liver disease and alcohol-related liver disease is one of the most common diseases worldwide. The gut-liver axis plays an important role in the pathogenesis of liver disease. Small intestinal bacterial overgrowth, dysbiosis, leaky bowel, bacterial translocation, and imbalanced metabolites are related to the progression of chronic liver disease. Recently, novel therapeutic approaches for microbiota modulation such as personalized diet, probiotics, prebiotics, antibiotics, engineered microbiotas, phage therapy, stomach operation, and fecal microbiota transplantation (FMT) have been proposed with numerous promising results in the effectiveness and clinical application. Although the evidence is still lacking, FMT, a type of fecal bacteriotherapy, has been known as a candidate for the treatment of liver disease. This review article focuses on the most recent advances in our understanding of FMT in chronic liver disease such as non-alcoholic and alcohol-related liver disease.
Collapse
Affiliation(s)
- Ki Tae Suk
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| | - Hong Koh
- Department of Pediatrics, Severance Fecal Microbiota Transplantation Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
20
|
Wang Y, Wang S, Jing H, Zhang T, Song N, Xu S. CircRNA-IGLL1/miR-15a/RNF43 axis mediates ammonia-induced autophagy in broilers jejunum via Wnt/β-catenin pathway. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118332. [PMID: 34637826 DOI: 10.1016/j.envpol.2021.118332] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 09/30/2021] [Accepted: 10/07/2021] [Indexed: 06/13/2023]
Abstract
With the continued increase of global ammonia emission, the damage to human or animal caused by ammonia pollution has attracted wide attention. The noncoding RNAs have been reported to regulate a variety of biological processes under different environmental stimulation via ceRNA (competing endogenous RNA) networks. Autophagy is a hallmark of tissue damage from air pollution. However, the specific role of circular RNAs (circRNAs) in the injury of intestinal tissue caused by autophagy remains unclear. Here, we established 42-days old ammonia-exposed broiler models and observed that autophagy flux in broiler jejunum was activated under ammonia exposure. Meanwhile, a total of eight significantly dysregulated expressed circRNAs were obtained and a circRNAs-miRNAs-genes interaction networks were constructed by bioinformatics analysis. Furthermore, an axis named circRNA-IGLL1/miR-15a/RNF43 was predicted to participate in the excessive autophagy by targeting RNF43. The target relationship was proved by dual-luciferase reporter assay in vitro. Mechanistically, downregulated circRNA-IGLL1 could suppress the expression of RNF43 in ammonia-exposed jejunum and the Wnt/β-catenin pathway was activated. Inhibition of miR-15a reversed autophagy caused by downregulated circRNA-IGLL1. CircRNA-IGLL1 could competitively bind miR-15a to regulate RNF43 expression, thus modulating the occurrence of autophagy. Taken together, our results showed that circRNA-IGLL1/miR-15a/RNF43 axis is involved in ammonia-induced intestinal autophagy in broilers.
Collapse
Affiliation(s)
- Yue Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Shengchen Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Hongyuan Jing
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Tianyi Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Nuan Song
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
21
|
Maslennikov R, Ivashkin V, Efremova I, Poluektova E, Shirokova E. Gut-liver axis in cirrhosis: Are hemodynamic changes a missing link? World J Clin Cases 2021; 9:9320-9332. [PMID: 34877269 PMCID: PMC8610853 DOI: 10.12998/wjcc.v9.i31.9320] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/03/2021] [Accepted: 09/07/2021] [Indexed: 02/06/2023] Open
Abstract
Recent evidence suggests that the condition of the gut and its microbiota greatly influence the course of liver disease, especially cirrhosis. This introduces the concept of the gut-liver axis, which can be imagined as a chain connected by several links. Gut dysbiosis, small intestinal bacterial overgrowth, and intestinal barrier alteration lead to bacterial translocation, resulting in systemic inflammation. Systemic inflammation further causes vasodilation, arterial hypotension, and hyperdynamic circulation, leading to the aggravation of portal hypertension, which contributes to the development of complications of cirrhosis, resulting in a poorer prognosis. The majority of the data underlying this model were obtained initially from animal experiments, and most of these correlations were further reproduced in studies including patients with cirrhosis. However, despite the published data on the relationship of the disorders of the gut microbiota with the complications of cirrhosis and the proposed pathogenetic role of hemodynamic disorders in their development, the direct relations between gut dysbiosis and hemodynamic changes in this disease are poorly studied. They remain a missing link in the gut-liver axis and a challenge for future research.
Collapse
Affiliation(s)
- Roman Maslennikov
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
- The Interregional Public Organization "Scientific Community for the Promotion of the Clinical Study of the Human Microbiome", Moscow 119435, Russia
- Department of Internal Medicine, Consultative and Diagnostic Center of the Moscow City Health Department, Moscow 107564, Russia
| | - Vladimir Ivashkin
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
| | - Irina Efremova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
| | - Elena Poluektova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
- The Interregional Public Organization "Scientific Community for the Promotion of the Clinical Study of the Human Microbiome", Moscow 119435, Russia
| | - Elena Shirokova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
| |
Collapse
|
22
|
Zhu T, Mao J, Zhong Y, Huang C, Deng Z, Cui Y, Liu J, Wang H. L. reuteri ZJ617 inhibits inflammatory and autophagy signaling pathways in gut-liver axis in piglet induced by lipopolysaccharide. J Anim Sci Biotechnol 2021; 12:110. [PMID: 34641957 PMCID: PMC8513206 DOI: 10.1186/s40104-021-00624-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 08/01/2021] [Indexed: 01/14/2023] Open
Abstract
Background This study investigated the protective effects of L. reuteri ZJ617 on intestinal and liver injury and the underlying mechanisms in modulating inflammatory, autophagy, and apoptosis signaling pathways in a piglet challenged with lipopolysaccharide (LPS). Methods Duroc × Landrace × Large White piglets were assigned to 3 groups (n = 6/group): control (CON) and LPS groups received oral phosphate-buffered saline for 2 weeks before intraperitoneal injection (i.p.) of physiological saline or LPS (25 μg/kg body weight), respectively, while the ZJ617 + LPS group was orally inoculated with ZJ617 for 2 weeks before i.p. of LPS. Piglets were sacrificed 4 h after LPS injection to determine intestinal integrity, serum biochemical parameters, inflammatory signaling involved in molecular and liver injury pathways. Results Compared with controls, LPS stimulation significantly increased intestinal phosphorylated-p38 MAPK, phosphorylated-ERK and JNK protein levels and decreased IκBα protein expression, while serum LPS, TNF-α, and IL-6 concentrations (P < 0.05) increased. ZJ617 pretreatment significantly countered the effects induced by LPS alone, with the exception of p-JNK protein levels. Compared with controls, LPS stimulation significantly increased LC3, Atg5, and Beclin-1 protein expression (P < 0.05) but decreased ZO-1, claudin-3, and occludin protein expression (P < 0.05) and increased serum DAO and D-xylose levels, effects that were all countered by ZJ617 pretreatment. LPS induced significantly higher hepatic LC3, Atg5, Beclin-1, SOD-2, and Bax protein expression (P < 0.05) and lower hepatic total bile acid (TBA) levels (P < 0.05) compared with controls. ZJ617 pretreatment significantly decreased hepatic Beclin-1, SOD2, and Bax protein expression (P < 0.05) and showed a tendency to decrease hepatic TBA (P = 0.0743) induced by LPS treatment. Pretreatment of ZJ617 before LPS injection induced the production of 5 significant metabolites in the intestinal contents: capric acid, isoleucine 1TMS, glycerol-1-phosphate byproduct, linoleic acid, alanine-alanine (P < 0.05). Conclusions These results demonstrated that ZJ617 pretreatment alleviated LPS-induced intestinal tight junction protein destruction, and intestinal and hepatic inflammatory and autophagy signal activation in the piglets. Supplementary Information The online version contains supplementary material available at 10.1186/s40104-021-00624-9.
Collapse
Affiliation(s)
- Tao Zhu
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Science, Zhejiang University, Hangzhou, 310058, China
| | - Jiangdi Mao
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Science, Zhejiang University, Hangzhou, 310058, China
| | - Yifan Zhong
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Science, Zhejiang University, Hangzhou, 310058, China
| | | | - Zhaoxi Deng
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Science, Zhejiang University, Hangzhou, 310058, China
| | - Yanjun Cui
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Science, Zhejiang University, Hangzhou, 310058, China
| | - Jianxin Liu
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Science, Zhejiang University, Hangzhou, 310058, China
| | - Haifeng Wang
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Science, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
23
|
Zhang Y, Huang C, Nie Y, Liu Q, Xiao N, Liu L, Zhu X. Soluble CD163 Is a Predictor of Mortality in Patients With Decompensated Cirrhosis. Front Med (Lausanne) 2021; 8:698502. [PMID: 34336902 PMCID: PMC8319469 DOI: 10.3389/fmed.2021.698502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/21/2021] [Indexed: 12/22/2022] Open
Abstract
Background: Soluble CD163 (sCD163) is a scavenger receptor membrane protein expressed almost exclusively on Kupffer cells and other macrophages. It was found to be associated with the severity of liver cirrhosis. The aim of the present study was to determine whether the novel biomarker sCD163 predicts outcomes in patients with decompensated cirrhosis. Materials and Methods: A single-center, observational, prospective study with 345 decompensated cirrhosis patients was conducted in the Gastroenterology Department between January 2017 and December 2020. Their plasma samples were tested by enzyme-linked immunosorbent assay (ELISA) for sCD163 within 24 hours of admission. These patients were followed up at 28 days, 3 months and 6 months. The independent risk factors were identified with uni- and multivariate logistic regression analyses. We evaluated the predictive performance of the new scoring system (including sCD163) and the original scoring system. Results: The sCD163 level was significantly higher in non-surviving patients than in surviving patients. Positive associations were found between sCD163 levels and the Child-Turcotte-Pugh (CTP), Model for End-Stage Liver Disease (MELD) and albumin-bilirubin (ALBI) scores. Logistic regression confirmed that sCD163 was an independent risk factor for 28-day, 3-month, and 6-month mortality. The areas under the receiver operating characteristic curves (AUROCs) of the use of sCD163 for the prediction of 28-day, 3-month, and 6-month mortality were relatively higher (AUROCs: 0.856; 0.823 and 0.811, respectively). The AUROCs of the new scores obtained by adding sCD163 to the original scoring systems (CTP + sCD163, MELD + sCD163 and ALBI + sCD163) showed that the new scoring systems had better predictive performance than the original scoring systems at all time points (P < 0.001). Conclusion: sCD163 is a prognostic predictor of short-term and long-term outcomes in decompensated cirrhosis patients. Accordingly, the addition of sCD163 to the original clinical scoring systems improved their prognostic performance.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Chenkai Huang
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yuan Nie
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qi Liu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Nanxi Xiao
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Linxiang Liu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xuan Zhu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
24
|
Pérez-Hernández EG, Delgado-Coello B, Luna-Reyes I, Mas-Oliva J. New insights into lipopolysaccharide inactivation mechanisms in sepsis. Biomed Pharmacother 2021; 141:111890. [PMID: 34229252 DOI: 10.1016/j.biopha.2021.111890] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/03/2021] [Accepted: 06/28/2021] [Indexed: 02/06/2023] Open
Abstract
The complex pathophysiology of sepsis makes it a syndrome with limited therapeutic options and a high mortality rate. Gram-negative bacteria containing lipopolysaccharides (LPS) in their outer membrane correspond to the most common cause of sepsis. Since the gut is considered an important source of LPS, intestinal damage has been considered a cause and a consequence of sepsis. Although important in the maintenance of the intestinal epithelial cell homeostasis, the microbiota has been considered a source of LPS. Recent studies have started to shed light on how sepsis is triggered by dysbiosis, and an increased inflammatory state of the intestinal epithelial cells, expanding the understanding of the gut-liver axis in sepsis. Here, we review the gut-liver interaction in Gram-negative sepsis, exploring the mechanisms of LPS inactivation, including the recently described contribution of an isoform of the cholesteryl-ester transfer protein (CETPI). Although several key questions remain to be answered when the pathophysiology of sepsis is reviewed, new contributions coming to light exploring the way LPS might be inactivated in vivo, suggest that new applications might soon reach the clinical setting.
Collapse
Affiliation(s)
| | - Blanca Delgado-Coello
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico
| | - Ismael Luna-Reyes
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico
| | - Jaime Mas-Oliva
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico.
| |
Collapse
|
25
|
Transition to decompensation and acute-on-chronic liver failure: Role of predisposing factors and precipitating events. J Hepatol 2021; 75 Suppl 1:S36-S48. [PMID: 34039491 DOI: 10.1016/j.jhep.2020.12.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/08/2020] [Accepted: 12/08/2020] [Indexed: 12/13/2022]
Abstract
The transition from compensated to decompensated cirrhosis results from a complex interplay of predisposing and precipitating factors and represents an inflection point in the probability of a patient surviving. With the progression of cirrhosis, patients accumulate multiple disorders (e.g. altered liver architecture, portal hypertension, local and systemic inflammation, bacterial translocation, gut dysbiosis, kidney vasoconstriction) that predispose them to decompensation. On the background of these factors, precipitating events (e.g. bacterial infection, alcoholic hepatitis, variceal haemorrhage, drug-induced liver injury, flare of liver disease) lead to acute decompensation (ascites, hepatic encephalopathy, variceal bleeding, jaundice) and/or organ failures, which characterise acute-on-chronic liver failure. In this review paper, we will discuss the current hypotheses and latest evidences regarding predisposing and precipitating factors associated with the transition to decompensated liver disease.
Collapse
|
26
|
Zhang H, Wang MY, Teng YN, Wang XD, Cao HT. Observation on the clinical effect of high-dose Intravenous Immunoglobulin combined with low-dose prednisone acetate in the treatment of patients with Kawasaki Disease. Pak J Med Sci 2021; 37:1122-1127. [PMID: 34290794 PMCID: PMC8281197 DOI: 10.12669/pjms.37.4.4023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/25/2021] [Indexed: 11/19/2022] Open
Abstract
Objective: To evaluate the clinical effect of high-dose intravenous immunoglobulin (HDIVIG) single dose and pulse therapy combined with small-dose prednisone acetate in the treatment of patients with Kawasaki disease (KD). Methods: Eighty patients with KD from Baoding Children’s Hospital, China, were randomly divided into two groups: the experimental group and the control group, each with 40 cases. Patients in the experimental group were treated with HDIVIG single dose, pulse therapy combined with low-dose prednisone acetate, while patients in the control group were treated with conventional-dose immunoglobulin. Patients in both groups were treated with aspirin orally, and given symptomatic treatment including anti-inflammatory, nutritional support, correction of water and electrolyte disturbance and acid-base balance. Peripheral venous blood samples were drawn from all patients at the time of admission, Day-1, Day-7 and Day-14 after treatment, and in the basic state of getting up in the morning, and then the levels of tumor necrosis factor (TNF-a), C-reactive protein (CRP), interleukin-6 (IL-6) and other inflammatory factors were detected by enzyme-linked immunosorbent assay (ELISA). The time of body temperature falling to normal, lymph node swelling recovery, hands and feet swelling, mucosal hyperemia regression after treatment in the two groups was recorded, and the treatment effect of the two groups was comprehensively evaluated. Results: After treatment, the levels of inflammatory factors such as TNF-a, CRP, IL-6 in the experimental group were significantly lower than those in the control group, with a statistically significant difference (P<0.05). In addition, the time of body temperature falling to normal, lymph node swelling recovery, hands and feet swelling, and mucosal hyperemia regression in the experimental group was significantly shorter than that in the control group (p=0.00). The effective rate of the experimental group was 95% and that of the control group was 80%, with a statistically significant difference (p=0.04). Conclusion: HDIVIG single dose, pulse therapy combined with small-dose prednisone acetate has a favourable therapeutic effect in the treatment of patients with KD, by which the inflammatory factors can be significantly improved, clinical symptoms and weight can be quickly ameliorated, and therapeutic effect can be enhanced.
Collapse
Affiliation(s)
- Hao Zhang
- Hao Zhang, Department of Cardiology, Baoding City Children Respiratory and Digestive Diseases Clinical Research Key Laboratory, Baoding 071000, China. Baoding children's Hospital, Baoding 071000, China
| | - Mei-Ying Wang
- Mei-ying Wang, Department of Laboratory Medicine, Baoding children's Hospital, Baoding 071000, China
| | - Yong-Nan Teng
- Yong-nan Teng, Department of Gastroenterology, Baoding children's Hospital, Baoding 071000, China
| | - Xiao-Dan Wang
- Xiao-dan Wang, Department of Anesthesiology, Baoding children's Hospital, Baoding 071000, China
| | - Hai-Tao Cao
- Hai-tao Cao, Department of Laboratory Medicine, Army 82nd Group Military Hospital, Baoding 071000, China
| |
Collapse
|
27
|
Singanayagam A, Triantafyllou E. Macrophages in Chronic Liver Failure: Diversity, Plasticity and Therapeutic Targeting. Front Immunol 2021; 12:661182. [PMID: 33868313 PMCID: PMC8051585 DOI: 10.3389/fimmu.2021.661182] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/18/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic liver injury results in immune-driven progressive fibrosis, with risk of cirrhosis development and impact on morbidity and mortality. Persistent liver cell damage and death causes immune cell activation and inflammation. Patients with advanced cirrhosis additionally experience pathological bacterial translocation, exposure to microbial products and chronic engagement of the immune system. Bacterial infections have a high incidence in cirrhosis, with spontaneous bacterial peritonitis being the most common, while the subsequent systemic inflammation, organ failure and immune dysregulation increase the mortality risk. Tissue-resident and recruited macrophages play a central part in the development of inflammation and fibrosis progression. In the liver, adipose tissue, peritoneum and intestines, diverse macrophage populations exhibit great phenotypic and functional plasticity determined by their ontogeny, epigenetic programming and local microenvironment. These changes can, at different times, promote or ameliorate disease states and therefore represent potential targets for macrophage-directed therapies. In this review, we discuss the evidence for macrophage phenotypic and functional alterations in tissue compartments during the development and progression of chronic liver failure in different aetiologies and highlight the potential of macrophage modulation as a therapeutic strategy for liver disease.
Collapse
Affiliation(s)
- Arjuna Singanayagam
- Infection and Immunity Clinical Academic Group, St. George’s University Hospitals NHS Foundation Trust, London, United Kingdom
| | - Evangelos Triantafyllou
- Section of Hepatology and Gastroenterology, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| |
Collapse
|
28
|
Yang YJ, Kim DJ. An Overview of the Molecular Mechanisms Contributing to Musculoskeletal Disorders in Chronic Liver Disease: Osteoporosis, Sarcopenia, and Osteoporotic Sarcopenia. Int J Mol Sci 2021; 22:2604. [PMID: 33807573 PMCID: PMC7961345 DOI: 10.3390/ijms22052604] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/28/2021] [Accepted: 03/02/2021] [Indexed: 02/07/2023] Open
Abstract
The prevalence of osteoporosis and sarcopenia is significantly higher in patients with liver disease than in those without liver disease and osteoporosis and sarcopenia negatively influence morbidity and mortality in liver disease, yet these musculoskeletal disorders are frequently overlooked in clinical practice for patients with chronic liver disease. The objective of this review is to provide a comprehensive understanding of the molecular mechanisms of musculoskeletal disorders accompanying the pathogenesis of liver disease. The increased bone resorption through the receptor activator of nuclear factor kappa (RANK)-RANK ligand (RANKL)-osteoprotegerin (OPG) system and upregulation of inflammatory cytokines and decreased bone formation through increased bilirubin and sclerostin and lower insulin-like growth factor-1 are important mechanisms for osteoporosis in patients with liver disease. Sarcopenia is associated with insulin resistance and obesity in non-alcoholic fatty liver disease, whereas hyperammonemia, low amount of branched chain amino acids, and hypogonadism contributes to sarcopenia in liver cirrhosis. The bidirectional crosstalk between muscle and bone through myostatin, irisin, β-aminoisobutyric acid (BAIBA), osteocalcin, as well as the activation of the RANK and the Wnt/β-catenin pathways are associated with osteosarcopenia. The increased understandings for these musculoskeletal disorders would be contributes to the development of effective therapies targeting the pathophysiological mechanism involved.
Collapse
Affiliation(s)
- Young Joo Yang
- Department of Internal Medicine, Hallym University College of Medicine, Gangwon-do, Chuncheon 24252, Korea;
- Institute for Liver and Digestive Diseases, Hallym University, Gangwon-do, Chuncheon 24253, Korea
| | - Dong Joon Kim
- Department of Internal Medicine, Hallym University College of Medicine, Gangwon-do, Chuncheon 24252, Korea;
- Institute for Liver and Digestive Diseases, Hallym University, Gangwon-do, Chuncheon 24253, Korea
| |
Collapse
|
29
|
Nishikawa H, Enomoto H, Nishiguchi S, Iijima H. Sarcopenic Obesity in Liver Cirrhosis: Possible Mechanism and Clinical Impact. Int J Mol Sci 2021; 22:1917. [PMID: 33671926 PMCID: PMC7919019 DOI: 10.3390/ijms22041917] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/08/2021] [Accepted: 02/11/2021] [Indexed: 02/07/2023] Open
Abstract
The picture of chronic liver diseases (CLDs) has changed considerably in recent years. One of them is the increase of non-alcoholic fatty liver disease. More and more CLD patients, even those with liver cirrhosis (LC), tend to be presenting with obesity these days. The annual rate of muscle loss increases with worsening liver reserve, and thus LC patients are more likely to complicate with sarcopenia. LC is also characterized by protein-energy malnutrition (PEM). Since the PEM in LC can be invariable, the patients probably present with sarcopenic obesity (Sa-O), which involves both sarcopenia and obesity. Currently, there is no mention of Sa-O in the guidelines; however, the rapidly increasing prevalence and poorer clinical consequences of Sa-O are recognized as an important public health problem, and the diagnostic value of Sa-O is expected to increase in the future. Sa-O involves a complex interplay of physiological mechanisms, including increased inflammatory cytokines, oxidative stress, insulin resistance, hormonal disorders, and decline of physical activity. The pathogenesis of Sa-O in LC is diverse, with a lot of perturbations in the muscle-liver-adipose tissue axis. Here, we overview the current knowledge of Sa-O, especially focusing on LC.
Collapse
Affiliation(s)
- Hiroki Nishikawa
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan; (H.E.); (H.I.)
- Center for Clinical Research and Education, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan
| | - Hirayuki Enomoto
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan; (H.E.); (H.I.)
| | - Shuhei Nishiguchi
- Department of Internal Medicine, Kano General Hospital, Osaka 531-0041, Japan;
| | - Hiroko Iijima
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan; (H.E.); (H.I.)
| |
Collapse
|
30
|
Gantzel RH, Kjær MB, Laursen TL, Kazankov K, George J, Møller HJ, Grønbæk H. Macrophage Activation Markers, Soluble CD163 and Mannose Receptor, in Liver Fibrosis. Front Med (Lausanne) 2021; 7:615599. [PMID: 33490096 PMCID: PMC7820116 DOI: 10.3389/fmed.2020.615599] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/11/2020] [Indexed: 12/19/2022] Open
Abstract
Macrophages are essential components of the human host immune system, which upon activation facilitates a broad pallet of immunomodulatory events including release of pro- or anti-inflammatory cytokines and chemokines, restoration of immune homeostasis and/or wound healing. Moreover, some macrophage phenotypes are crucially involved in fibrogenesis through stimulation of myofibroblasts, while others promote fibrolysis. During the last decades, the role of resident liver macrophages viz. Kupffer cells and recruited monocytes/macrophages in acute and chronic liver diseases has gained interest and been extensively investigated. Specifically, the scavenger receptors CD163 and mannose receptor (CD206), expressed by macrophages, are of utmost interest since activation by various stimuli induce their shedding to the circulation. Thus, quantifying concentrations of these soluble biomarkers may be of promising clinical relevance in estimating the severity of inflammation and fibrosis and to predict outcomes such as survival. Here, we review the existing literature on soluble CD163 and soluble mannose receptor in liver diseases with a particular focus on their relationship to hepatic fibrosis in metabolic associated fatty liver disease, as well as in chronic hepatitis B and C.
Collapse
Affiliation(s)
| | - Mikkel Breinholt Kjær
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | - Tea Lund Laursen
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | - Konstantin Kazankov
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark.,Institute for Liver and Digestive Health, University College London, London, United Kingdom
| | - Jacob George
- Storr Liver Centre, Westmead Institute for Medical Research, University of Sydney and Westmead Hospital, Westmead, NSW, Australia
| | - Holger Jon Møller
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
| | - Henning Grønbæk
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
31
|
Plaza-Díaz J, Solís-Urra P, Rodríguez-Rodríguez F, Olivares-Arancibia J, Navarro-Oliveros M, Abadía-Molina F, Álvarez-Mercado AI. The Gut Barrier, Intestinal Microbiota, and Liver Disease: Molecular Mechanisms and Strategies to Manage. Int J Mol Sci 2020; 21:8351. [PMID: 33171747 PMCID: PMC7664383 DOI: 10.3390/ijms21218351] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/31/2020] [Accepted: 11/05/2020] [Indexed: 02/06/2023] Open
Abstract
Liver disease encompasses pathologies as non-alcoholic fatty liver disease, non-alcoholic steatohepatitis, alcohol liver disease, hepatocellular carcinoma, viral hepatitis, and autoimmune hepatitis. Nowadays, underlying mechanisms associating gut permeability and liver disease development are not well understood, although evidence points to the involvement of intestinal microbiota and their metabolites. Animal studies have shown alterations in Toll-like receptor signaling related to the leaky gut syndrome by the action of bacterial lipopolysaccharide. In humans, modifications of the intestinal microbiota in intestinal permeability have also been related to liver disease. Some of these changes were observed in bacterial species belonging Roseburia, Streptococcus, and Rothia. Currently, numerous strategies to treat liver disease are being assessed. This review summarizes and discusses studies addressed to determine mechanisms associated with the microbiota able to alter the intestinal barrier complementing the progress and advancement of liver disease, as well as the main strategies under development to manage these pathologies. We highlight those approaches that have shown improvement in intestinal microbiota and barrier function, namely lifestyle changes (diet and physical activity) and probiotics intervention. Nevertheless, knowledge about how such modifications are beneficial is still limited and specific mechanisms involved are not clear. Thus, further in-vitro, animal, and human studies are needed.
Collapse
Affiliation(s)
- Julio Plaza-Díaz
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada;
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18071 Granada, Spain
| | - Patricio Solís-Urra
- Faculty of Education and Social Sciences, Universidad Andres Bello, Viña del Mar 2531015, Chile;
| | - Fernando Rodríguez-Rodríguez
- IRyS Research Group, School of Physical Education, Pontificia Universidad Católica de Valparaíso, Valparaíso 2374631, Chile; (F.R.-R.); (J.O.-A.)
| | - Jorge Olivares-Arancibia
- IRyS Research Group, School of Physical Education, Pontificia Universidad Católica de Valparaíso, Valparaíso 2374631, Chile; (F.R.-R.); (J.O.-A.)
- Escuela de Pedagogía en Educación Física, Facultad de Educación, Universidad de las Américas, Santiago 8370035, Chile
| | - Miguel Navarro-Oliveros
- BioCritic. Group for Biomedical Research in Critical Care Medicine, 47005 Valladolid, Spain;
| | - Francisco Abadía-Molina
- Institute of Nutrition and Food Technology “José Mataix”, Center of Biomedical Research, University of Granada, Avda. del Conocimiento s/n. 18016 Armilla, Granada, Spain;
- Department of Cell Biology, School of Sciences, University of Granada, 18071 Granada, Spain
| | - Ana I. Álvarez-Mercado
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18071 Granada, Spain
- Institute of Nutrition and Food Technology “José Mataix”, Center of Biomedical Research, University of Granada, Avda. del Conocimiento s/n. 18016 Armilla, Granada, Spain;
| |
Collapse
|
32
|
Yu Q, Wu L, Ji J, Feng J, Dai W, Li J, Wu J, Guo C. Gut Microbiota, Peroxisome Proliferator-Activated Receptors, and Hepatocellular Carcinoma. J Hepatocell Carcinoma 2020; 7:271-288. [PMID: 33150145 PMCID: PMC7605923 DOI: 10.2147/jhc.s277870] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/10/2020] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant tumors in the world. HCC incidence rate is sixth and mortality is fourth worldwide. However, HCC pathogenesis and molecular mechanisms remain unclear. The incidence of HCC is associated with genetic, environmental, and metabolic factors. The role of gut microbiota in the pathogenesis of HCC has attracted researchers' attention because of anatomical and functional interactions between liver and intestine. Studies have demonstrated the involvement of gut microbiota in the development of HCC and chronic liver diseases, such as alcoholic liver disease (ALD), nonalcoholic fatty liver disease (NAFLD), and liver cirrhosis. Peroxisome proliferator-activated receptors (PPARs) are a group of receptors with diverse biological functions. Natural and synthetic PPAR agonists show potential for treatment of NAFLD, liver fibrosis, and HCC. Recent studies have demonstrated that PPARs take part in gut microbiota inhabitation and adaptation. This manuscript reviews the role of gut microbiota in the development of HCC and precancerous diseases, the role of PPARs in modulation of gut microbiota and HCC, and potential of gut microbiota for HCC diagnosis and treatment.
Collapse
Affiliation(s)
- Qiang Yu
- Department of Gastroenterology, Putuo People’s Hospital, Tongji University School of Medicine, Shanghai200060, People’s Republic of China
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai200072, People’s Republic of China
| | - Liwei Wu
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai200072, People’s Republic of China
| | - Jie Ji
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai200072, People’s Republic of China
| | - Jiao Feng
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai200072, People’s Republic of China
| | - Weiqi Dai
- Department of Gastroenterology, Putuo People’s Hospital, Tongji University School of Medicine, Shanghai200060, People’s Republic of China
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai200072, People’s Republic of China
- Shanghai Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai200336, People’s Republic of China
| | - Jingjing Li
- Department of Gastroenterology, Putuo People’s Hospital, Tongji University School of Medicine, Shanghai200060, People’s Republic of China
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai200072, People’s Republic of China
| | - Jianye Wu
- Department of Gastroenterology, Putuo People’s Hospital, Tongji University School of Medicine, Shanghai200060, People’s Republic of China
| | - Chuanyong Guo
- Department of Gastroenterology, Putuo People’s Hospital, Tongji University School of Medicine, Shanghai200060, People’s Republic of China
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai200072, People’s Republic of China
| |
Collapse
|
33
|
Blesl A, Jüngst C, Lammert F, Fauler G, Rainer F, Leber B, Feldbacher N, Stromberger S, Wildburger R, Spindelböck W, Fickert P, Horvath A, Stadlbauer V. Secondary Sclerosing Cholangitis in Critically Ill Patients Alters the Gut-Liver Axis: A Case Control Study. Nutrients 2020; 12:E2728. [PMID: 32906634 PMCID: PMC7551864 DOI: 10.3390/nu12092728] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 12/12/2022] Open
Abstract
Secondary sclerosing cholangitis in critically ill patients (SC-CIP) occurs after long-term intensive care treatment. This study aimed to assess the gut-liver axis in SC-CIP. Stool microbiome composition, gut permeability, bacterial translocation and serum bile acid profiles of 18 SC-CIP patients compared to 11 patients after critical illness without liver disease (CIP controls), 21 patients with cirrhosis and 21 healthy controls were studied. 16S rDNA was isolated from stool and sequenced using the Illumina technique. Diamine oxidase, zonulin, soluble CD14 (sCD14) and lipopolysaccharide binding protein were measured in serum and calprotectin in stool. Serum bile acids were analyzed by high-performance liquid chromatography-mass spectrometry (HPLC-MS). Reduced microbiome alpha diversity and altered beta diversity were seen in SC-CIP, CIP controls and cirrhosis compared to healthy controls. SC-CIP patients showed a shift towards pathogenic taxa and an oralization. SC-CIP, CIP controls and cirrhotic patients presented with impaired gut permeability, and biomarkers of bacterial translocation were increased in SC-CIP and cirrhosis. Total serum bile acids were elevated in SC-CIP and cirrhosis and the bile acid profile was altered in SC-CIP, CIP controls and cirrhosis. In conclusions, observed alterations of the gut-liver axis in SC-CIP cannot solely be attributed to liver disease, but may also be secondary to long-term intensive care treatment.
Collapse
Affiliation(s)
- Andreas Blesl
- Division for Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria; (F.R.); (N.F.); (W.S.); (P.F.); (A.H.); (V.S.)
| | - Christoph Jüngst
- Division for Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Zürich, 8032 Zürich, Switzerland;
- Department of Medicine II, Saarland University Medical Center, Saarland University, 66421 Homburg, Germany;
| | - Frank Lammert
- Department of Medicine II, Saarland University Medical Center, Saarland University, 66421 Homburg, Germany;
| | - Günter Fauler
- Institute for Medical and Chemical Laboratory Diagnosis, Medical University of Graz, 8036 Graz, Austria;
| | - Florian Rainer
- Division for Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria; (F.R.); (N.F.); (W.S.); (P.F.); (A.H.); (V.S.)
| | - Bettina Leber
- Department of Surgery, Division of Transplantation Surgery, Medical University of Graz, 8036 Graz, Austria;
| | - Nicole Feldbacher
- Division for Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria; (F.R.); (N.F.); (W.S.); (P.F.); (A.H.); (V.S.)
| | - Silvia Stromberger
- AUVA Rehabilitation Clinic Tobelbad, 8144 Tobelbad, Austria; (S.S.); (R.W.)
| | - Renate Wildburger
- AUVA Rehabilitation Clinic Tobelbad, 8144 Tobelbad, Austria; (S.S.); (R.W.)
| | - Walter Spindelböck
- Division for Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria; (F.R.); (N.F.); (W.S.); (P.F.); (A.H.); (V.S.)
| | - Peter Fickert
- Division for Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria; (F.R.); (N.F.); (W.S.); (P.F.); (A.H.); (V.S.)
| | - Angela Horvath
- Division for Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria; (F.R.); (N.F.); (W.S.); (P.F.); (A.H.); (V.S.)
| | - Vanessa Stadlbauer
- Division for Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria; (F.R.); (N.F.); (W.S.); (P.F.); (A.H.); (V.S.)
| |
Collapse
|
34
|
Skytthe MK, Graversen JH, Moestrup SK. Targeting of CD163 + Macrophages in Inflammatory and Malignant Diseases. Int J Mol Sci 2020; 21:E5497. [PMID: 32752088 PMCID: PMC7432735 DOI: 10.3390/ijms21155497] [Citation(s) in RCA: 145] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 02/07/2023] Open
Abstract
The macrophage is a key cell in the pro- and anti-inflammatory response including that of the inflammatory microenvironment of malignant tumors. Much current drug development in chronic inflammatory diseases and cancer therefore focuses on the macrophage as a target for immunotherapy. However, this strategy is complicated by the pleiotropic phenotype of the macrophage that is highly responsive to its microenvironment. The plasticity leads to numerous types of macrophages with rather different and, to some extent, opposing functionalities, as evident by the existence of macrophages with either stimulating or down-regulating effect on inflammation and tumor growth. The phenotypes are characterized by different surface markers and the present review describes recent progress in drug-targeting of the surface marker CD163 expressed in a subpopulation of macrophages. CD163 is an abundant endocytic receptor for multiple ligands, quantitatively important being the haptoglobin-hemoglobin complex. The microenvironment of inflammation and tumorigenesis is particular rich in CD163+ macrophages. The use of antibodies for directing anti-inflammatory (e.g., glucocorticoids) or tumoricidal (e.g., doxorubicin) drugs to CD163+ macrophages in animal models of inflammation and cancer has demonstrated a high efficacy of the conjugate drugs. This macrophage-targeting approach has a low toxicity profile that may highly improve the therapeutic window of many current drugs and drug candidates.
Collapse
Affiliation(s)
- Maria K. Skytthe
- Department of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark; (M.K.S.); (S.K.M.)
| | - Jonas Heilskov Graversen
- Department of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark; (M.K.S.); (S.K.M.)
| | - Søren K. Moestrup
- Department of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark; (M.K.S.); (S.K.M.)
- Department of Biomedicine, Aarhus University, 8200 Aarhus, Denmark
| |
Collapse
|
35
|
Nishikawa H, Enomoto H, Nishiguchi S, Iijima H. Liver Cirrhosis and Sarcopenia from the Viewpoint of Dysbiosis. Int J Mol Sci 2020; 21:5254. [PMID: 32722100 PMCID: PMC7432211 DOI: 10.3390/ijms21155254] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/15/2020] [Accepted: 07/19/2020] [Indexed: 02/06/2023] Open
Abstract
Sarcopenia in patients with liver cirrhosis (LC) has been attracting much attention these days because of the close linkage to adverse outcomes. LC can be related to secondary sarcopenia due to protein metabolic disorders and energy metabolic disorders. LC is associated with profound alterations in gut microbiota and injuries at the different levels of defensive mechanisms of the intestinal barrier. Dysbiosis refers to a state in which the diversity of gut microbiota is decreased by decreasing the bacterial species and the number of bacteria that compose the gut microbiota. The severe disturbance of intestinal barrier in LC can result in dysbiosis, several bacterial infections, LC-related complications, and sarcopenia. Here in this review, we will summarize the current knowledge of the relationship between sarcopenia and dysbiosis in patients with LC.
Collapse
Affiliation(s)
- Hiroki Nishikawa
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Hyogo College of Medicine, Nishinomiya 6638136, Japan; (H.E.); (H.I.)
- Center for Clinical Research and Education, Hyogo College of Medicine, Nishinomiya 6638136, Japan
| | - Hirayuki Enomoto
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Hyogo College of Medicine, Nishinomiya 6638136, Japan; (H.E.); (H.I.)
| | | | - Hiroko Iijima
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Hyogo College of Medicine, Nishinomiya 6638136, Japan; (H.E.); (H.I.)
| |
Collapse
|
36
|
Stadlbauer V, Engertsberger L, Komarova I, Feldbacher N, Leber B, Pichler G, Fink N, Scarpatetti M, Schippinger W, Schmidt R, Horvath A. Dysbiosis, gut barrier dysfunction and inflammation in dementia: a pilot study. BMC Geriatr 2020; 20:248. [PMID: 32690030 PMCID: PMC7372911 DOI: 10.1186/s12877-020-01644-2] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 07/09/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Dementia is an increasing public health threat worldwide. The pathogenesis of dementia has not been fully elucidated yet. Inflammatory processes are hypothesized to play an important role as a driver for cognitive decline but the origin of inflammation is not clear. We hypothesize that disturbances in gut microbiome composition, gut barrier dysfunction, bacterial translocation and resulting inflammation are associated with cognitive dysfunction in dementia. METHODS To test this hypothesis, a cohort of 23 patients with dementia and 18 age and sex matched controls without cognitive impairments were studied. Gut microbiome composition, gut barrier dysfunction, bacterial translocation and inflammation were assessed from stool and serum samples. Malnutrition was assessed by Mini Nutritional Assessment Short Form (MNA-SF), detailed information on drug use was collected. Microbiome composition was assessed by 16S rRNA sequencing, QIIME 2 and Calypso 7.14 tools. RESULTS Dementia was associated with dysbiosis characterized by differences in beta diversity and changes in taxonomic composition. Gut permeability was increased as evidenced by increased serum diamine oxidase (DAO) levels and systemic inflammation was confirmed by increased soluble cluster of differentiation 14 levels (sCD14). BMI and statin use had the strongest impact on microbiome composition. CONCLUSION Dementia is associated with changes in gut microbiome composition and increased biomarkers of gut permeability and inflammation. Lachnospiraceae NK4A136 group as potential butyrate producer was reduced in dementia. Malnutrition and drug intake were factors, that impact on microbiome composition. Increasing butyrate producing bacteria and targeting malnutrition may be promising therapeutic targets in dementia. TRIAL REGISTRATION NCT03167983 .
Collapse
Affiliation(s)
- Vanessa Stadlbauer
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria. .,Center of Biomarker Research in Medicine (CBmed), Graz, Austria.
| | - Lara Engertsberger
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria
| | - Irina Komarova
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria
| | - Nicole Feldbacher
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria.,Center of Biomarker Research in Medicine (CBmed), Graz, Austria
| | - Bettina Leber
- Department of Surgery, Division of Transplantation Surgery, Medical University of Graz, Graz, Austria
| | - Gerald Pichler
- Department of Neurology, Geriatric Health Centers Graz, Albert Schweitzer Hospital, Graz, Austria
| | - Nicole Fink
- Department of Neurology, Geriatric Health Centers Graz, Albert Schweitzer Hospital, Graz, Austria
| | - Monika Scarpatetti
- Department of Neurology, Geriatric Health Centers Graz, Albert Schweitzer Hospital, Graz, Austria
| | - Walter Schippinger
- Department of Neurology, Geriatric Health Centers Graz, Albert Schweitzer Hospital, Graz, Austria
| | - Reinhold Schmidt
- Clinical Division of Neurogeriatrics, Department of Neurology, Medical University of Graz, Graz, Austria
| | - Angela Horvath
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria.,Center of Biomarker Research in Medicine (CBmed), Graz, Austria
| |
Collapse
|
37
|
Gao B, Emami A, Nath S, Schnabl B. Microbial Products and Metabolites Contributing to Alcohol-Related Liver Disease. Mol Nutr Food Res 2020; 65:e2000023. [PMID: 32583604 DOI: 10.1002/mnfr.202000023] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/01/2020] [Indexed: 02/06/2023]
Abstract
As a serious public health concern, alcohol-related liver disease is associated with dysregulations in the intestinal barrier function and the gut microbiota. The liver and gut communicate via the gut-liver axis, through which microbial products and metabolites translocate to the liver. Here, the current knowledge of various microbial products and metabolites which contribute to the alcohol-related liver diseases, including bile acids, indole-3-acetic acid, butyrate, long-chain fatty acids, endotoxin, cytolysin, β-glucan, and candidalysin is reviewed. Some of these might serve as therapeutic targets for alcohol-related liver disease.
Collapse
Affiliation(s)
- Bei Gao
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Atoosa Emami
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Shilpa Nath
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA.,Department of Medicine, VA San Diego Healthcare System, San Diego, CA, 92093, USA
| |
Collapse
|
38
|
Nielsen MC, Hvidbjerg Gantzel R, Clària J, Trebicka J, Møller HJ, Grønbæk H. Macrophage Activation Markers, CD163 and CD206, in Acute-on-Chronic Liver Failure. Cells 2020; 9:cells9051175. [PMID: 32397365 PMCID: PMC7290463 DOI: 10.3390/cells9051175] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/29/2020] [Accepted: 05/04/2020] [Indexed: 02/06/2023] Open
Abstract
Macrophages facilitate essential homeostatic functions e.g., endocytosis, phagocytosis, and signaling during inflammation, and express a variety of scavenger receptors including CD163 and CD206, which are upregulated in response to inflammation. In healthy individuals, soluble forms of CD163 and CD206 are constitutively shed from macrophages, however, during inflammation pathogen- and damage-associated stimuli induce this shedding. Activation of resident liver macrophages viz. Kupffer cells is part of the inflammatory cascade occurring in acute and chronic liver diseases. We here review the existing literature on sCD163 and sCD206 function and shedding, and potential as biomarkers in acute and chronic liver diseases with a particular focus on Acute-on-Chronic Liver Failure (ACLF). In multiple studies sCD163 and sCD206 are elevated in relation to liver disease severity and established as reliable predictors of morbidity and mortality. However, differences in expression- and shedding-stimuli for CD163 and CD206 may explain dissimilarities in prognostic utility in patients with acute decompensation of cirrhosis and ACLF.
Collapse
Affiliation(s)
- Marlene Christina Nielsen
- Department of Clinical Biochemistry, Aarhus University Hospital, 8200 Aarhus N, Denmark; (M.C.N.); (H.J.M.)
| | - Rasmus Hvidbjerg Gantzel
- Department of Hepatology & Gastroenterology, Aarhus University Hospital, 8200 Aarhus N, Denmark;
| | - Joan Clària
- European Foundation for the Study of Chronic Liver Failure (EF-CLIF), 08021 Barcelona, Spain; (J.C.); (J.T.)
- Department of Biochemistry and Molecular Genetics, Hospital Clínic-IDIBAPS, 08036 Barcelona, Spain
| | - Jonel Trebicka
- European Foundation for the Study of Chronic Liver Failure (EF-CLIF), 08021 Barcelona, Spain; (J.C.); (J.T.)
- Translational Hepatology, Department of Internal Medicine I, Goethe University Frankfurt, 60323 Frankfurt, Germany
| | - Holger Jon Møller
- Department of Clinical Biochemistry, Aarhus University Hospital, 8200 Aarhus N, Denmark; (M.C.N.); (H.J.M.)
| | - Henning Grønbæk
- Department of Hepatology & Gastroenterology, Aarhus University Hospital, 8200 Aarhus N, Denmark;
- Correspondence: ; Tel.: +45-21-67-92-81
| |
Collapse
|
39
|
Kaji K, Saikawa S, Takaya H, Fujinaga Y, Furukawa M, Kitagawa K, Ozutsumi T, Kaya D, Tsuji Y, Sawada Y, Kawaratani H, Moriya K, Namisaki T, Akahane T, Mitoro A, Yoshiji H. Rifaximin Alleviates Endotoxemia with Decreased Serum Levels of Soluble CD163 and Mannose Receptor and Partial Modification of Gut Microbiota in Cirrhotic Patients. Antibiotics (Basel) 2020; 9:145. [PMID: 32235367 PMCID: PMC7235723 DOI: 10.3390/antibiotics9040145] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 03/24/2020] [Accepted: 03/26/2020] [Indexed: 12/24/2022] Open
Abstract
Rifaximin is a poorly absorbable antibiotic against hepatic encephalopathy (HE). This observational study aimed to elucidate the effect of rifaximin on intestinal permeability and gut microbiota in patients with decompensated cirrhosis. Thirty patients with decompensated cirrhosis were assessed by ammonia level, neuropsychological testing, endotoxin activity (EA), and serum proinflammatory cytokines at baseline and after four weeks of rifaximin treatment (1200 mg/day). Intestinal permeability was indicated by serum soluble CD163 (sCD163), mannose receptor (sMR), and zonulin levels. To evaluate the gut microbiome, 16S ribosomal RNA gene sequencing was applied. Rifaximin ameliorated hyperammonemia and cognitive dysfunction, although it did not change the serum proinflammatory cytokine levels. It decreased EA levels as well as serum levels of sCD163 and sMR, but not zonulin, and both decreases in sCD163 and sMR showed positive correlations with EA decrease (ΔsCD163: Correlation coefficient (R) = 0.680, p = 0.023; ΔsMR: R = 0.613, p = 0.014, vs. ΔEA). Gut microbial analysis revealed that the richness and complexity of species were unchanged while the abundance of the Streptococcus genus was reduced after treatment with rifaximin. Collectively, rifaximin alleviated HE and endotoxemia with improved intestinal hyperpermeability in patients with decompensated cirrhosis, and this effect is partially involved in a gut microbial change.
Collapse
Affiliation(s)
- Kosuke Kaji
- Department of gastroenterology, Nara Medical University, Kashihara 634-8522, Japan; (S.S.); (H.T.); (Y.F.); (M.F.); (K.K.); (T.O.); (D.K.); (Y.T.); (Y.S.); (H.K.); (K.M.); (T.N.); (T.A.); (A.M.); (H.Y.)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Gala KS, Vatsalya V. Emerging Noninvasive Biomarkers, and Medical Management Strategies for Alcoholic Hepatitis: Present Understanding and Scope. Cells 2020; 9:E524. [PMID: 32106390 PMCID: PMC7140524 DOI: 10.3390/cells9030524] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 02/16/2020] [Accepted: 02/19/2020] [Indexed: 12/12/2022] Open
Abstract
Alcohol use disorder is associated with a wide array of hepatic pathologies ranging from steatosis to alcoholic-related cirrhosis (AC), alcoholic hepatitis (AH), or hepatocellular carcinoma (HCC). Biomarkers are categorized into two main categories: biomarkers associated with alcohol consumption and biomarkers of alcoholic liver disease (ALD). No ideal biomarker has been identified to quantify the degree of hepatocyte death or severity of AH, even though numerous biomarkers have been associated with AH. This review provides information of some of the novel and latest biomarkers that are being investigated and have shown a substantial association with the degree and severity of liver injury and inflammation. Importantly, they can be measured noninvasively. In this manuscript, we consolidate the present understanding and prospects of these biomarkers; and their application in assessing the severity and progression of the alcoholic liver disease (ALD). We also review current and upcoming management options for AH.
Collapse
Affiliation(s)
- Khushboo S. Gala
- Division of Internal Medicine, University of Louisville, Louisville, KY 40202; USA
| | - Vatsalya Vatsalya
- Division of Gastroenterology, Hepatology, and Nutrition, University of Louisville, Louisville, KY 40202, USA
- Robley Rex VA Medical Center, Louisville, KY 40292, USA
| |
Collapse
|
41
|
Li C, Xiao P, Lin D, Zhong HJ, Zhang R, Zhao ZG, He XX. Risk Factors for Intestinal Barrier Impairment in Patients With Essential Hypertension. Front Med (Lausanne) 2020; 7:543698. [PMID: 33585498 PMCID: PMC7873557 DOI: 10.3389/fmed.2020.543698] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 12/24/2020] [Indexed: 01/26/2023] Open
Abstract
Background: Previous studies have indicated an association between hypertension and intestinal barrier dysfunction in mice models. The present study aims to investigate the association between hypertension and intestinal barrier impairment in humans and identify the novel potential risk factors for hypertension. Methods: Medical data from consecutive inpatients were retrospectively pooled from patient records. We compared intestinal barrier serum markers [diamine oxidase (DAO), lipopolysaccharide (LPS), and D-lactate] between those patients with and without hypertension. Moreover, the associations between intestinal barrier markers and cardiovascular risk, hypertension history, blood pressure control, hypertensive complications, and antihypertensive medication history were also analyzed. Results: Overall, 106 hypertensive and 251 normotensive subjects were included. Patients with hypertension had a higher level of DAO (28.30 vs. 18.73%, P = 0.044) and LPS (22.64 vs. 11.16%, P = 0.005). In hypertensive patients, multivariate logistic regression analyses showed that long hypertension history (≥20 years), poor control of diastolic blood pressure, cardiac and renal complications, and use of multiple antihypertensive medications were risk factors for elevated DAO, while the use of multiple antihypertensive medications was a risk factor for elevated D-lactate (P < 0.05). Conclusions: Hypertension is associated with impairment of intestinal barrier, especially in patients with long duration, poor blood pressure control, cardiac and renal complications, and use of multiple antihypertensive medications. The current study indicates that intestinal barrier dysfunction might be a potential predictor of hypertension.
Collapse
Affiliation(s)
- Cao Li
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ping Xiao
- Department of Gastroenterology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Da Lin
- Department of Gastroenterology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Hao-Jie Zhong
- Department of Gastroenterology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- Graduate School, Guangdong Medical University, Zhanjiang, China
| | - Ran Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Zhi-gang Zhao
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- *Correspondence: Zhi-gang Zhao
| | - Xing-Xiang He
- Department of Gastroenterology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- Xing-Xiang He
| |
Collapse
|
42
|
Deng Y, Fan X, Ran Y, Xu X, Lin L, Cui B, Hou L, Zhao T, Wang Y, Su Z, Jiang X, Zhao W, Wang B, Sun C. Prognostic impact of neutrophil-to-lymphocyte ratio in cirrhosis: A propensity score matching analysis with a prespecified cut-point. Liver Int 2019; 39:2153-2163. [PMID: 31408916 DOI: 10.1111/liv.14211] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/31/2019] [Accepted: 08/05/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS An elevated neutrophil-to-lymphocyte ratio (NLR) has received attention as a prognostic surrogate across chronic liver diseases. However, an exact threshold has not been fully elucidated. METHODS A total number of 589 patients with cirrhosis (LC) were included. The value of NLR was calculated and its optimal cut-off was initially determined by X-tile program. Independent predictors of 90-day mortality were identified with Cox regression model. The Kaplan-Meier method was used to generate survival curves. To reduce influences of selection bias and possible confounders, a 1:2 propensity score matching (PSM) was performed. RESULTS The X-tile indicated that the difference in survival was most significant for NLR more than 8.9. Serum NLR > 8.9 was an independent indicator in the entire cohort and PSM subset (HR 4.268, 95% CI 2.211-8.238, P < .001; HR 4.209, 95% CI 1.448-12.238, P = .008 respectively). Subgroup analysis showed that NLR > 8.9 was an independent risk factor of 90-day mortality regardless of age, gender, CTP or MELD score. CONCLUSIONS The value of NLR more than 8.9 is a feasible cut-off across clinical settings among applicable population. The adding of NLR to other conventional predictive systems has the potential to provide incremental value without extra economic cost.
Collapse
Affiliation(s)
- You Deng
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaofei Fan
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Ying Ran
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Xin Xu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Lin Lin
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
- Department of Internal Medicine, Tianjin Medical University General Hospital Airport Site, Tianjin Airport Economic Area, Tianjin, China
| | - Binxin Cui
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
- Department of Internal Medicine, Tianjin Medical University General Hospital Airport Site, Tianjin Airport Economic Area, Tianjin, China
| | - Lijun Hou
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Tianming Zhao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Ya Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhengyan Su
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Xihui Jiang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Wei Zhao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Chao Sun
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
- Department of Internal Medicine, Tianjin Medical University General Hospital Airport Site, Tianjin Airport Economic Area, Tianjin, China
| |
Collapse
|
43
|
Costantini A, Viola N, Berretta A, Galeazzi R, Matacchione G, Sabbatinelli J, Storci G, De Matteis S, Butini L, Rippo MR, Procopio AD, Caraceni D, Antonicelli R, Olivieri F, Bonafè M. Age-related M1/M2 phenotype changes in circulating monocytes from healthy/unhealthy individuals. Aging (Albany NY) 2019; 10:1268-1280. [PMID: 29885276 PMCID: PMC6046240 DOI: 10.18632/aging.101465] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 05/30/2018] [Indexed: 01/10/2023]
Abstract
Macrophage polarization is a candidate biomarker of disease-related inflammatory status, but its modulation during aging has not been investigated. To do this, the M1/M2 profile was assessed by CD80/CD163 gating in classical (CD14++CD16-), intermediate (CD14++CD16+), and non-classical (CD14lowCD16+) monocytes from 31 healthy subjects (CTRs) of different ages. Cytofluorimetric analysis showed a significantly different CD80/CD163 distribution in the three subsets, as more than 80% of classical and intermediate monocytes were CD80+CD163+, whereas most non-classical monocytes were CD80-CD163- and CD163+. Non-classical CD163+ monocytes were significantly higher whereas classical CD163+ and CD80-CD163- monocytes significantly lower in older than younger CTRs (cut-off, 65 years), suggesting different age-related trends for M2 subsets. To establish whether an M1/M2 imbalance could be associated with disease, 21 patients with acute myocardial infarction (AMI) were compared with older CTRs. The AMI patients showed a significantly decreased proportion of CD163+CD80+ and an increased proportion of CD163+ and CD163-CD80- cells among classical monocytes, opposite trends to those observed in healthy aging. Moreover, a significantly greater proportion of intermediate and non-classical CD80+ monocytes suggested a shift to a pro-inflammatory phenotype. Overall, CD163/CD80 cytofluorimetric characterization of circulating monocytes provides additional information about their polarization and could be an innovative tool to monitor aging.
Collapse
Affiliation(s)
- Andrea Costantini
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy.,Azienda Ospedaliero Universitaria Ospedali Riuniti, Ancona, Italy
| | - Nadia Viola
- Azienda Ospedaliero Universitaria Ospedali Riuniti, Ancona, Italy
| | | | - Roberta Galeazzi
- Clinical and Molecular Laboratory, I.N.R.C.A. (Italian National Research Centre on Aging)-IRCCS, Ancona, Italy
| | - Giulia Matacchione
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
| | - Jacopo Sabbatinelli
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
| | - Gianluca Storci
- Department of Experimental, Diagnostic and Specialty Medicine, DIMES, Alma Mater Studiorum, Bologna, Italy
| | - Serena De Matteis
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Luca Butini
- Azienda Ospedaliero Universitaria Ospedali Riuniti, Ancona, Italy
| | - Maria Rita Rippo
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
| | - Antonio Domenico Procopio
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy.,Center of Clinical Pathology and Innovative Therapy, I.N.R.C.A. (Italian National Research Centre on Aging)-IRCCS, Ancona, Italy
| | - Daniele Caraceni
- Department of Cardiology, I.N.R.C.A. (Italian National Research Centre on Aging)-IRCCS, Ancona, Italy
| | - Roberto Antonicelli
- Department of Cardiology, I.N.R.C.A. (Italian National Research Centre on Aging)-IRCCS, Ancona, Italy
| | - Fabiola Olivieri
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy.,Center of Clinical Pathology and Innovative Therapy, I.N.R.C.A. (Italian National Research Centre on Aging)-IRCCS, Ancona, Italy
| | - Massimiliano Bonafè
- Department of Experimental, Diagnostic and Specialty Medicine, DIMES, Alma Mater Studiorum, Bologna, Italy.,Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| |
Collapse
|
44
|
Liu Z, Li N, Fang H, Chen X, Guo Y, Gong S, Niu M, Zhou H, Jiang Y, Chang P, Chen P. Enteric dysbiosis is associated with sepsis in patients. FASEB J 2019; 33:12299-12310. [PMID: 31465241 DOI: 10.1096/fj.201900398rr] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Sepsis is defined as a life-threatening organ dysfunction caused by a dysregulated host response to microbial infection. For decades, the potential role of gut microbiota in sepsis pathogenesis has been revealed. However, the systemic and functional link between gut microbiota and sepsis has remained unexplored. To address this gap in knowledge, we carried out systematic analyses on clinical stool samples from patients with sepsis, including 16S rDNA sequencing, metabolomics, and metaproteomics analyses. In addition, we performed fecal microbiota transplantation from human to mice to validate the roles of gut microbiota on sepsis progression. We found that the composition of gut microbiota was significantly disrupted in patients with sepsis compared with healthy individuals. Besides, the microbial functions were significantly altered in septic feces as identified by metabolomics and metaproteomics analyses. Interestingly, mice that received septic feces exhibited more severe hepatic inflammation and injury than mice that received healthy feces after cecal ligation and puncture. Finally, several strains of intestinal microbiota and microbial metabolites were corelated with serum total bilirubin levels in patients with sepsis. Taken together, our data indicated that sepsis development is associated with the disruption of gut microbiota at both compositional and functional levels, and such enteric dysbiosis could promote organ inflammation and injury during sepsis.-Liu, Z., Li, N., Fang, H., Chen, X., Guo, Y., Gong, S., Niu, M., Zhou, H., Jiang, Y., Chang, P., Chen, P. Enteric dysbiosis is associated with sepsis in patients.
Collapse
Affiliation(s)
- Zhanguo Liu
- Department of Intensive Care Unit, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Na Li
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, Southern Medical University, Guangzhou, China.,State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, China
| | - Heng Fang
- Department of Intensive Care Unit, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaojiao Chen
- Microbiome Medicine Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yuexun Guo
- Department of Intensive Care Unit, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Shenhai Gong
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, Southern Medical University, Guangzhou, China.,State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, China
| | - Mengwei Niu
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, Southern Medical University, Guangzhou, China.,State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, China
| | - Hongwei Zhou
- Microbiome Medicine Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yong Jiang
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, Southern Medical University, Guangzhou, China.,State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, China
| | - Ping Chang
- Department of Intensive Care Unit, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Peng Chen
- Department of Intensive Care Unit, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, Southern Medical University, Guangzhou, China.,State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, China.,Microbiome Medicine Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
45
|
Nielsen MC, Andersen MN, Rittig N, Rødgaard-Hansen S, Grønbaek H, Moestrup SK, Møller HJ, Etzerodt A. The macrophage-related biomarkers sCD163 and sCD206 are released by different shedding mechanisms. J Leukoc Biol 2019; 106:1129-1138. [PMID: 31242338 DOI: 10.1002/jlb.3a1218-500r] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 05/30/2019] [Accepted: 06/17/2019] [Indexed: 01/05/2023] Open
Abstract
The hemoglobin receptor CD163 and the mannose receptor CD206 are both expressed on the surface of human macrophages. Upon inflammatory activation, the receptors are shed from the macrophage surface generating soluble products. The plasma concentration of both soluble CD163 (sCD163) and soluble CD206 (sCD206) are increased in several diseases, including inflammatory conditions and cancer. Here, we show that in contrast to CD163, LPS-mediated shedding of CD206 in humans is slow and a result of indirect signaling. Although both sCD163 and sCD206 were increased in response to LPS stimulation in vivo, only CD163 was shed from LPS-stimulated macrophages in vitro. Although both sCD163 and sCD206 were released from cultured macrophages stimulated with zymosan and PMA, shedding of CD206 was generally slower and less efficient and not reduced by inhibitors against the major protease classes. These data indicate that CD163 and CD206 are shed from the macrophages by very different mechanisms potentially involving distinctive inflammatory processes.
Collapse
Affiliation(s)
| | - Morten Nørgaard Andersen
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark.,Department of Biomedicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Nikolaj Rittig
- Department of Internal Medicine and Endocrinology, Aarhus University Hospital, Aarhus, Denmark
| | | | - Henning Grønbaek
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | - Søren Kragh Moestrup
- Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Holger Jon Møller
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
| | - Anders Etzerodt
- Department of Biomedicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| |
Collapse
|
46
|
Uchiyama K, Naito Y, Takagi T. Intestinal microbiome as a novel therapeutic target for local and systemic inflammation. Pharmacol Ther 2019; 199:164-172. [PMID: 30877020 DOI: 10.1016/j.pharmthera.2019.03.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 03/06/2019] [Indexed: 12/19/2022]
Abstract
Recently, the pathogenesis of systemic inflammatory disease such as inflammatory bowel disease (IBD), multiple sclerosis (MS), systemic inflammatory arthritis, asthma, and non-alcoholic fatty liver disease has been reported to be related to the dysbiosis of gut microbiota. The contribution of special bacteria for the development of those diseases has been elucidated by disease animal models such as germ-free mice. Besides, the contribution by several bacteria for the pathogenesis of those diseases has been suggested by detailed analysis of the 16 small ribosomal subunit RNA (16S rRNA) from stool samples of the patients. Gut microbiota-targeted treatment for systemic inflammatory diseases such as fecal microbiota transplant (FMT), and probiotics has been now reported. Though there are several issues to be understood, these treatments have been highlighted as an innovative approach to intractable systemic inflammatory disease. In the present review, recent reports regarding the relation between gut microbiota and systemic inflammatory diseases are discussed with treatments to target gut microbiota.
Collapse
Affiliation(s)
- Kazuhiko Uchiyama
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan.
| | - Yuji Naito
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Tomohisa Takagi
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; Department for Medical Innovation and Translational Medical Science, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| |
Collapse
|
47
|
Chu H, Duan Y, Yang L, Schnabl B. Small metabolites, possible big changes: a microbiota-centered view of non-alcoholic fatty liver disease. Gut 2019; 68:359-370. [PMID: 30171065 DOI: 10.1136/gutjnl-2018-316307] [Citation(s) in RCA: 238] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 08/02/2018] [Accepted: 08/06/2018] [Indexed: 12/13/2022]
Abstract
The spectrum of non-alcoholic fatty liver disease (NAFLD) ranges from simple hepatic steatosis, commonly associated with obesity, to non-alcoholic steatohepatitis, which can progress to fibrosis, cirrhosis and hepatocellular carcinoma. NAFLD pathophysiology involves environmental, genetic and metabolic factors, as well as changes in the intestinal microbiota and their products. Dysfunction of the intestinal barrier can contribute to NAFLD development and progression. Although there are technical limitations in assessing intestinal permeability in humans and the number of patients in these studies is rather small, fewer than half of the patients have increased intestinal permeability and translocation of bacterial products. Microbe-derived metabolites and the signalling pathways they affect might play more important roles in development of NAFLD. We review the microbial metabolites that contribute to the development of NAFLD, such as trimethylamine, bile acids, short-chain fatty acids and ethanol. We discuss the mechanisms by which metabolites produced by microbes might affect disease progression and/or serve as therapeutic targets or biomarkers for NAFLD.
Collapse
Affiliation(s)
- Huikuan Chu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Medicine, University of California San Diego, San Diego, California, USA
| | - Yi Duan
- Department of Medicine, University of California San Diego, San Diego, California, USA.,Department of Medicine, VA San Diego Healthcare System, San Diego, California, USA
| | - Ling Yang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, San Diego, California, USA.,Department of Medicine, VA San Diego Healthcare System, San Diego, California, USA
| |
Collapse
|
48
|
The Macrophage Activation Marker Soluble CD163 is Associated With Early Allograft Dysfunction After Liver Transplantation. J Clin Exp Hepatol 2019; 9:302-311. [PMID: 31360022 PMCID: PMC6637071 DOI: 10.1016/j.jceh.2018.09.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 09/26/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND/OBJECTIVES Soluble CD163 (sCD163), a macrophage activation marker, is upregulated in conditions of macrophage proliferation and activation. Elevated sCD163 levels have been associated with liver disease severity and progression. During liver transplantation, the implanted liver is exposed to ischaemia and reperfusion injury, resulting in an acute inflammatory response and macrophage activation. The relationship between sCD163 levels during liver transplantation and the development of early allograft dysfunction (EAD) has not been investigated. METHODS We included 27 cirrhosis patients (age 55 [range 32-72] years, 23 men) on the waiting list for liver transplantation. Alcohol consumption and viral hepatitis were the most frequent causes for cirrhosis. Patients were characterised by standard biochemical analysis and based on clinical disease severity scores. Information about donor, graft and course of the liver transplantation was recorded. sCD163 levels were measured at the time of liver transplantation before surgery, 2 h after reperfusion, and then at 24 h after transplantation. RESULTS We observed above-normal sCD163 levels at baseline (5.9 mg/L [4.7-8.8]). Two hours after reperfusion, sCD163 levels increased significantly from baseline (8.4 mg/L [7.4-10.9]; P < 0.01). Twenty-four hours after transplantation, sCD163 levels were significantly reduced compared with baseline (3.7 mg/L [2.9-5.5]; P < 0.01). However, in patients with EAD (n = 16), sCD163 levels were increased compared with patients without EAD (4.1 [3.2-7.4] vs. 3.1 [2.8-3.8] mg/L; P = 0.03). CONCLUSIONS We observed elevated sCD163 levels in patients with EAD after liver transplantation, confirming macrophage activation to play a role in EAD. Thus, sCD163 may be used as an early marker for EAD after liver transplantation, but larger studies are warranted to validate these findings.
Collapse
Key Words
- ALK, alkaline phosphatase
- ALT, alanine aminotransferase
- AST, aspartate aminotransferase
- BMI, body mass index
- CIT, cold ischaemic time
- CRP, C-reactive protein
- DBD, deceased brain death
- DCD, deceased cardiac death
- EAD, Early allograft dysfunction
- ELISA, enzyme-linked immunosorbent assay
- Hb, haemoglobin
- I/R, ischaemia/reperfusion
- IL, interleukin
- INR, international normalised ratio
- IQR, interquartile range
- MELD, Model for End-Stage Liver Disease
- NAFLD, nonalcoholic fatty liver disease
- NF-κB, nuclear factor- κB
- PT, prothrombin time
- TNF-α, tumour necrosis factor α
- WBC, white blood cell
- WIT, warm ischaemic time
- graft dysfunction
- liver transplantation
- macrophages
- sCD163
- sCD163, soluble CD163
Collapse
|
49
|
Kimer N, Gudmann NS, Pedersen JS, Møller S, Nielsen MJ, Leeming DJ, Karsdal MA, Møller HJ, Bendtsen F, Grønbæk H. No effect of rifaximin on soluble CD163, mannose receptor or type III and IV neoepitope collagen markers in decompensated cirrhosis: Results from a randomized, placebo controlled trial. PLoS One 2018; 13:e0203200. [PMID: 30183743 PMCID: PMC6124759 DOI: 10.1371/journal.pone.0203200] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 08/16/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND AIMS Macrophages play a significant role in chronic liver disease as reflected by elevated soluble (s)CD163 and mannose receptor (sMR) levels and associated with liver disease severity and prognosis. Extracellular matrix remodelling associated with fibrogenesis may be affected by systemic inflammation induced by bacterial translocation. Therefore, we aimed to investigate the effect of rifaximin-α, an antibiotic with effect on gut bacteria, on sCD163, sMR, and collagen metabolites. METHODS Fifty-four clinically stable patients with decompensated cirrhosis were randomized to 4 weeks treatment with rifaximin-α (n = 36) or placebo (n = 18). Macrophage markers sCD163, sMR and markers of collagen fibrogenesis (C3M and C4M) and formation (PRO-C3 and P4NPS7) were analysed in plasma before and after treatment. RESULTS sCD163 and sMR levels were associated with liver disease severity (MELD score, sCD163 rho = 0.47, p<0.001 and sMR rho = 0.37, p = 0.005). There was no effect of Rifaximin-α on sCD163 levels (median (range) sCD163 5.64(2.02 to 10.8) at baseline versus 4.42(1.98 to 8.92) at follow-up in the rifaximin-α group and 4.85 (2.29 to 12.1) at baseline versus 4.32 (1.98 to 12.4) at follow-up in the placebo-group), p = 0.34); nor sMR levels, p = 0.34. Also in patients with elevated lipopolysaccharide binding protein (> 5.9 μg/ml, 38 patients) there was no effect of rifaximin-α on sCD163 (p = 0.49) or sMR levels (p = 0.32). CONCLUSION We confirmed that macrophage activation markers sCD163 and sMR are directly associated to liver disease severity (MELD score). However, rifaximin-α has no effect on sCD163, sMR or collagen markers in decompensated cirrhosis and does therefore not seem to interfere with macrophage activation or fibrogenesis.
Collapse
Affiliation(s)
- Nina Kimer
- Gastro Unit, Medical Division, Copenhagen University Hospital Amager Hvidovre, Hvidovre, Denmark
- Centre of Diagnostic Imaging and Research, Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | | | - Julie Steen Pedersen
- Gastro Unit, Medical Division, Copenhagen University Hospital Amager Hvidovre, Hvidovre, Denmark
| | - Søren Møller
- Centre of Diagnostic Imaging and Research, Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | | | | | | | - Holger Jon Møller
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
| | - Flemming Bendtsen
- Gastro Unit, Medical Division, Copenhagen University Hospital Amager Hvidovre, Hvidovre, Denmark
| | - Henning Grønbæk
- Department of Hepatology & Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
50
|
Solé C, Pose E, Solà E. Editorial: macrophage activation markers predict prognosis and decompensation in patients with cirrhosis-linking gut permeability, inflammation and cirrhosis progression. Aliment Pharmacol Ther 2018; 47:851-853. [PMID: 29446139 DOI: 10.1111/apt.14523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Affiliation(s)
- C Solé
- Liver Unit, Hospital Clinic of Barcelona, University of Barcelona, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - E Pose
- Liver Unit, Hospital Clinic of Barcelona, University of Barcelona, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - E Solà
- Liver Unit, Hospital Clinic of Barcelona, University of Barcelona, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| |
Collapse
|