1
|
Das SK, Fisher PB. MDA-9/Syntenin as a therapeutic cancer metastasis target: current molecular and preclinical understanding. Expert Opin Ther Targets 2025; 29:75-92. [PMID: 40056146 PMCID: PMC12047740 DOI: 10.1080/14728222.2025.2472042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 02/08/2025] [Accepted: 02/21/2025] [Indexed: 03/10/2025]
Abstract
INTRODUCTION Metastasis is a principal cause of patient morbidity and death from solid cancers with current therapies being inadequate. AREAS COVERED Detailed genomic analyses document mutational differences between the initial tumor and metastatic clones, posing a challenge to current targeted therapies, which focus predominantly on the phenotype of primary tumors. Considering the diverse signaling cascades and numerous compensatory pathways in metastasis, designing broad-spectrum anti-metastatic therapies remains challenging. Although significant anti-cancer activity is evident in specific patients with advanced cancers and metastases treated with single or combination immunotherapies, there are limitations, i.e. toxicity, immune inhibitory 'cold' tumors and the tumor microenvironment (TME), and intra- and intertumoral heterogeneity. Accordingly, multidisciplinary strategies are required to attack metastases and the TME to obtain optimal therapeutic responses. EXPERT OPINION To create potent anti-metastatic agents, defining critical genes/proteins and drugs controlling discrete steps in the metastatic cascade are mandatory. Melanoma differentiation-associated gene-9 (MDA-9), Syndecan Binding Protein (SDCBP) or Syntenin (MDA-9/Syntenin) is robustly expressed and serves essential roles in cancer disease progression through protein-protein interactions with additional metastasis-associated molecules and pathways. The importance of MDA-9/Syntenin in the metastatic process is now established and first-in-class inhibitory molecules look promising with some moving toward clinical evaluation.
Collapse
Affiliation(s)
- Swadesh K. Das
- VCU Institute of Molecular Medicine, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
- VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Paul B. Fisher
- VCU Institute of Molecular Medicine, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
- VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| |
Collapse
|
2
|
Bavafa A, Izadpanahi M, Hosseini E, Hajinejad M, Abedi M, Forouzanfar F, Sahab-Negah S. Exosome: an overview on enhanced biogenesis by small molecules. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-024-03762-9. [PMID: 39862264 DOI: 10.1007/s00210-024-03762-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 12/23/2024] [Indexed: 01/27/2025]
Abstract
Exosomes are extracellular vesicles that received attention for their potential use in the treatment of various injuries. They communicate intercellularly by transferring genetic and bioactive molecules from parent cells. Although exosomes hold immense promise for treating neurodegenerative and oncological diseases, their actual clinical use is very limited because of their biogenesis and secretion. Recent studies have shown that small molecules can significantly enhance exosome biogenesis, thereby remarkably improving yield, functionality, and therapeutic effects. These molecules modulate critical pathways toward optimum exosome production in a mode that is either ESCRT dependent or ESCRT independent. Improved exosome biogenesis may provide new avenues for targeted cancer therapy, neuroprotection in neurodegenerative diseases, and regenerative medicine in wound healing. This review explores the role of small molecules in enhancing exosome biogenesis and secretion, highlights their underlying mechanisms, and discusses emerging clinical applications. By addressing current challenges and focusing on translational opportunities, this study provides a foundation for advancing cell-free therapies in regenerative medicine and beyond.
Collapse
Affiliation(s)
- Amir Bavafa
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Izadpanahi
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elham Hosseini
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehrdad Hajinejad
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Qaen Faculty of Medical Sciences, Birjand University of Medical Sciences, Birjand, Iran
| | - Mahsa Abedi
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Institute for Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Fatemeh Forouzanfar
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Sajad Sahab-Negah
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran.
| |
Collapse
|
3
|
Murphy H, Huang Q, Jensen J, Weber N, Mendonça L, Ly H, Liang Y. Characterization of bi-segmented and tri-segmented recombinant Pichinde virus particles. J Virol 2024; 98:e0079924. [PMID: 39264155 PMCID: PMC11494906 DOI: 10.1128/jvi.00799-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 08/29/2024] [Indexed: 09/13/2024] Open
Abstract
Mammarenaviruses include several highly virulent pathogens (e.g., Lassa virus) capable of causing severe hemorrhagic fever diseases for which there are no approved vaccines and limited treatment options. Mammarenaviruses are enveloped, bi-segmented ambisense RNA viruses. There is limited knowledge about cellular proteins incorporated into progeny virion particles and their potential biological roles in viral infection. Pichinde virus (PICV) is a prototypic arenavirus used to characterize mammarenavirus replication and pathogenesis. We have developed a recombinant PICV with a tri-segmented RNA genome as a viral vector platform. Whether the tri-segmented virion differs from the wild-type bi-segmented one in viral particle morphology and protein composition has not been addressed. In this study, recombinant PICV (rPICV) virions with a bi-segmented (rP18bi) and a tri-segmented (rP18tri) genome were purified by density-gradient ultracentrifugation and analyzed by cryo-electron microscopy and mass spectrometry. Both virion types are pleomorphic with spherical morphology and have no significant difference in size despite rP18tri having denser particles. Both virion types also contain similar sets of cellular proteins. Among the highly enriched virion-associated cellular proteins are components of the endosomal sorting complex required for transport pathway and vesicle trafficking, such as ALIX, Tsg101, VPS, CHMP, and Ras-associated binding proteins, which have known functions in virus assembly and budding. Other enriched cellular proteins include peripheral and transmembrane proteins, chaperone proteins, and ribosomal proteins; their biological roles in viral infection warrant further analysis. Our study provides important insights into mammarenavirus particle formation and aids in the future development of viral vectors and antiviral discovery.IMPORTANCEMammarenaviruses, such as Lassa virus, are enveloped RNA viruses that can cause severe hemorrhagic fever diseases (Lassa fever) with no approved vaccine and limited therapeutic options. Cellular proteins incorporated into progeny virion particles and their biological roles in mammarenavirus infection have not been well characterized. Pichinde virus (PICV) is a prototypic mammarenavirus used as a surrogate model for Lassa fever. We used cryo-electron microscopy and proteomic analysis to characterize the morphology and protein contents of the purified PICV particles that package either two (bi-segmented) or three (tri-segmented) genomic RNA segments. Our results demonstrate a similar virion morphology but different particle density for the bi- and tri-segmented viral particles and reveal major virion-associated cellular proteins. This study provides important insights into the virus-host interactions that can be used for antiviral development and optimizing arenavirus-based vaccine vectors.
Collapse
Affiliation(s)
- Hannah Murphy
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - Qinfeng Huang
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - Jacob Jensen
- Department of Biochemistry, Molecular Biology and Biophysics, College of Biological Sciences, University of Minnesota, Twin Cities, Minneapolis, Minnesota, USA
| | - Noah Weber
- Department of Biochemistry, Molecular Biology and Biophysics, College of Biological Sciences, University of Minnesota, Twin Cities, Minneapolis, Minnesota, USA
| | - Luiza Mendonça
- Department of Biochemistry, Molecular Biology and Biophysics, College of Biological Sciences, University of Minnesota, Twin Cities, Minneapolis, Minnesota, USA
| | - Hinh Ly
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - Yuying Liang
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, USA
| |
Collapse
|
4
|
Zhao T, Yang X, Duan G, Chen J, He K, Chen Y, Luo S. Phosphorylation-regulated phase separation of syndecan-4 and syntenin promotes the biogenesis of exosomes. Cell Prolif 2024; 57:e13645. [PMID: 38601993 PMCID: PMC11471451 DOI: 10.1111/cpr.13645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/08/2024] [Accepted: 03/27/2024] [Indexed: 04/12/2024] Open
Abstract
The biogenesis of exosomes that mediate cell-to-cell communication by transporting numerous biomolecules to neighbouring cells is an essential cellular process. The interaction between the transmembrane protein syndecan-4 (SDC4) and cytosolic protein syntenin plays a key role in the biogenesis of exosomes. However, how the relatively weak binding of syntenin to SDC4 efficiently enables syntenin sorting for packaging into exosomes remains unclear. Here, we demonstrate for the first time that SDC4 can undergo liquid-liquid phase separation (LLPS) to form condensates both in vitro and in the cell membrane and that, the SDC4 cytoplasmic domain (SDC4-CD) is a key contributor to this process. The phase separation of SDC4 greatly enhances the recruitment of syntenin to the plasma membrane (PM) despite the weak SDC4-syntenin interaction, facilitating syntenin sorting for inclusion in exosomes. Interestingly, phosphorylation at the only serine (179) in the SDC4-CD (Ser179) disrupts SDC4 LLPS, and inhibited phosphorylation or dephosphorylation restores the SDC4 LLPS to promote its recruitment of syntenin to the PM and syntenin inclusion into exosomes. This research reveals a novel phosphorylation-regulated phase separation property of SDC4 in the PM through which SDC4 efficiently recruits cytosolic syntenin and facilitates the biogenesis of exosomes, providing potential intervention targets for exosome-mediated biomedical events.
Collapse
Affiliation(s)
- Tian Zhao
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and TechnologyBeijing University of Chemical TechnologyBeijingChina
| | - Xiaolan Yang
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and TechnologyBeijing University of Chemical TechnologyBeijingChina
| | - Guangfei Duan
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and TechnologyBeijing University of Chemical TechnologyBeijingChina
| | - Jialin Chen
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and TechnologyBeijing University of Chemical TechnologyBeijingChina
| | - Kefeng He
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and TechnologyBeijing University of Chemical TechnologyBeijingChina
| | - Yong‐Xiang Chen
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of ChemistryTsinghua UniversityBeijingChina
| | - Shi‐Zhong Luo
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and TechnologyBeijing University of Chemical TechnologyBeijingChina
| |
Collapse
|
5
|
Chavda VP, Luo G, Bezbaruah R, Kalita T, Sarma A, Deka G, Duo Y, Das BK, Shah Y, Postwala H. Unveiling the promise: Exosomes as game-changers in anti-infective therapy. EXPLORATION (BEIJING, CHINA) 2024; 4:20230139. [PMID: 39439498 PMCID: PMC11491308 DOI: 10.1002/exp.20230139] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 01/23/2024] [Indexed: 10/25/2024]
Abstract
Extracellular vesicles (EVs)-based intercellular communication (through exosomes, microvesicles, and apoptotic bodies) is conserved across all kingdoms of life. In recent years, exosomes have gained much attention for targeted pharmaceutical administration due to their unique features, nanoscale size, and capacity to significantly contribute to cellular communication. As drug delivery vehicles, exosomes have several advantages over alternative nanoparticulate drug delivery technologies. A key advantage lies in their comparable makeup to the body's cells, which makes them non-immunogenic. However, exosomes vesicles face several challenges, including a lack of an effective and standard production technique, decreased drug loading capacity, limited characterization techniques, and underdeveloped isolation and purification procedures. Exosomes are well known for their long-term safety and natural ability to transport intercellular nucleic acids and medicinal compounds across the blood-brain-barrier (BBB). Therefore, in addition to revealing new insights into exosomes' distinctiveness, the growing availability of new analytical tools may drive the development of next-generation synthetic systems. Herein, light is shed on exosomes as drug delivery vehicles in anti-infective therapy by reviewing the literature on primary articles published between 2002 and 2023. Additionally, the benefits and limitations of employing exosomes as vehicles for therapeutic drug delivery are also discussed.
Collapse
Affiliation(s)
- Vivek P. Chavda
- Department of Pharmaceutics and Pharmaceutical TechnologyL. M. College of PharmacyAhmedabadGujaratIndia
| | - Guanghong Luo
- Department of Radiation OncologyShenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology)ShenzhenGuangdongChina
| | - Rajashri Bezbaruah
- Department of Pharmaceutical SciencesFaculty of Science and EngineeringDibrugarh UniversityDibrugarhAssamIndia
| | - Tutumoni Kalita
- School of Pharmaceutical SciencesGirijananda Chowdhury University, AzaraGuwahatiAssamIndia
| | - Anupam Sarma
- School of Pharmaceutical SciencesGirijananda Chowdhury University, AzaraGuwahatiAssamIndia
| | - Gitima Deka
- College of PharmacyYeungnam UniversityGyeonsanRepublic of Korea
| | - Yanhong Duo
- Wyss Institute for Biologically Inspired EngineeringHarvard UniversityBostonMassachusettsUSA
| | - Bhrigu Kumar Das
- School of Pharmaceutical SciencesGirijananda Chowdhury University, AzaraGuwahatiAssamIndia
| | - Yesha Shah
- PharmD SectionL. M. College of PharmacyAhmedabadGujaratIndia
| | - Humzah Postwala
- PharmD SectionL. M. College of PharmacyAhmedabadGujaratIndia
| |
Collapse
|
6
|
Putthanbut N, Lee JY, Borlongan CV. Extracellular vesicle therapy in neurological disorders. J Biomed Sci 2024; 31:85. [PMID: 39183263 PMCID: PMC11346291 DOI: 10.1186/s12929-024-01075-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/16/2024] [Indexed: 08/27/2024] Open
Abstract
Extracellular vesicles (EVs) are vital for cell-to-cell communication, transferring proteins, lipids, and nucleic acids in various physiological and pathological processes. They play crucial roles in immune modulation and tissue regeneration but are also involved in pathogenic conditions like inflammation and degenerative disorders. EVs have heterogeneous populations and cargo, with numerous subpopulations currently under investigations. EV therapy shows promise in stimulating tissue repair and serving as a drug delivery vehicle, offering advantages over cell therapy, such as ease of engineering and minimal risk of tumorigenesis. However, challenges remain, including inconsistent nomenclature, complex characterization, and underdeveloped large-scale production protocols. This review highlights the recent advances and significance of EVs heterogeneity, emphasizing the need for a better understanding of their roles in disease pathologies to develop tailored EV therapies for clinical applications in neurological disorders.
Collapse
Affiliation(s)
- Napasiri Putthanbut
- Department of Neurosurgery, Center of Aging and Brain Repair, University of South Florida, Tampa, USA
- Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Salaya, Thailand
| | - Jea Young Lee
- Department of Neurosurgery, Center of Aging and Brain Repair, University of South Florida, Tampa, USA
| | - Cesario V Borlongan
- Department of Neurosurgery, Center of Aging and Brain Repair, University of South Florida, Tampa, USA.
| |
Collapse
|
7
|
Chen V, Zhang J, Chang J, Beg MA, Vick L, Wang D, Gupta A, Wang Y, Zhang Z, Dai W, Kim M, Song S, Pereira D, Zheng Z, Sodhi K, Shapiro JI, Silverstein RL, Malarkannan S, Chen Y. CD36 restricts lipid-associated macrophages accumulation in white adipose tissues during atherogenesis. Front Cardiovasc Med 2024; 11:1436865. [PMID: 39156133 PMCID: PMC11327822 DOI: 10.3389/fcvm.2024.1436865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/01/2024] [Indexed: 08/20/2024] Open
Abstract
Visceral white adipose tissues (WAT) regulate systemic lipid metabolism and inflammation. Dysfunctional WAT drive chronic inflammation and facilitate atherosclerosis. Adipose tissue-associated macrophages (ATM) are the predominant immune cells in WAT, but their heterogeneity and phenotypes are poorly defined during atherogenesis. The scavenger receptor CD36 mediates ATM crosstalk with other adipose tissue cells, driving chronic inflammation. Here, we combined the single-cell RNA sequencing technique with cell metabolic and functional assays on major WAT ATM subpopulations using a diet-induced atherosclerosis mouse model (Apoe-null). We also examined the role of CD36 using Apoe/Cd36 double-null mice. Based on transcriptomics data and differential gene expression analysis, we identified a previously undefined group of ATM displaying low viability and high lipid metabolism and labeled them as "unhealthy macrophages". Their phenotypes suggest a subpopulation of ATM under lipid stress. We also identified lipid-associated macrophages (LAM), which were previously described in obesity. Interestingly, LAM increased 8.4-fold in Apoe/Cd36 double-null mice on an atherogenic diet, but not in Apoe-null mice. The increase in LAM was accompanied by more ATM lipid uptake, reduced adipocyte hypertrophy, and less inflammation. In conclusion, CD36 mediates a delicate balance between lipid metabolism and inflammation in visceral adipose tissues. Under atherogenic conditions, CD36 deficiency reduces inflammation and increases lipid metabolism in WAT by promoting LAM accumulation.
Collapse
Affiliation(s)
- Vaya Chen
- Versiti Blood Research Institute, Milwaukee, WI, United States
| | - Jue Zhang
- Versiti Blood Research Institute, Milwaukee, WI, United States
| | - Jackie Chang
- Versiti Blood Research Institute, Milwaukee, WI, United States
| | - Mirza Ahmar Beg
- Versiti Blood Research Institute, Milwaukee, WI, United States
| | - Lance Vick
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Dandan Wang
- Versiti Blood Research Institute, Milwaukee, WI, United States
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Ankan Gupta
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Yaxin Wang
- Versiti Blood Research Institute, Milwaukee, WI, United States
| | - Ziyu Zhang
- Versiti Blood Research Institute, Milwaukee, WI, United States
| | - Wen Dai
- Versiti Blood Research Institute, Milwaukee, WI, United States
| | - Mindy Kim
- Versiti Blood Research Institute, Milwaukee, WI, United States
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Shan Song
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Kidney Diseases, Shijiazhuang, China
| | - Duane Pereira
- Department of Surgery, Biomedical Sciences, and Medicine, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
| | - Ze Zheng
- Versiti Blood Research Institute, Milwaukee, WI, United States
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Komal Sodhi
- Department of Surgery, Biomedical Sciences, and Medicine, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
| | - Joseph I. Shapiro
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Roy L. Silverstein
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Subramaniam Malarkannan
- Versiti Blood Research Institute, Milwaukee, WI, United States
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Yiliang Chen
- Versiti Blood Research Institute, Milwaukee, WI, United States
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
8
|
Fallahi S, Zangbar HS, Farajdokht F, Rahbarghazi R, Mohaddes G, Ghiasi F. Exosomes as a therapeutic tool to promote neurorestoration and cognitive function in neurological conditions: Achieve two ends with a single effort. CNS Neurosci Ther 2024; 30:e14752. [PMID: 38775149 PMCID: PMC11110007 DOI: 10.1111/cns.14752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 03/16/2024] [Accepted: 04/13/2024] [Indexed: 05/25/2024] Open
Abstract
Exosomes possess a significant role in intercellular communications. In the nervous system, various neural cells release exosomes that not only own a role in intercellular communications but also eliminate the waste of cells, maintain the myelin sheath, facilitate neurogenesis, and specifically assist in normal cognitive function. In neurological conditions including Parkinson's disease (PD), Alzheimer's disease (AD), traumatic brain injury (TBI), and stroke, exosomal cargo like miRNAs take part in the sequela of conditions and serve as a diagnostic tool of neurological disorders, too. Exosomes are not only a diagnostic tool but also their inhibition or administration from various sources like mesenchymal stem cells and serum, which have shown a worthy potential to treat multiple neurological disorders. In addition to neurodegenerative manifestations, cognitive deficiencies are an integral part of neurological diseases, and applying exosomes in improving both aspects of these diseases has been promising. This review discusses the status of exosome therapy in improving neurorestorative and cognitive function following neurological disease.
Collapse
Affiliation(s)
- Solmaz Fallahi
- Drug Applied Research CenterTabriz University of Medical SciencesTabrizIran
- Department of PhysiologyTabriz University of Medical SciencesTabrizIran
| | - Hamid Soltani Zangbar
- Department of Neuroscience and Cognition, Faculty of Advanced Medical SciencesTabriz University of Medical SciencesTabrizIran
| | - Fereshteh Farajdokht
- Drug Applied Research CenterTabriz University of Medical SciencesTabrizIran
- Department of PhysiologyTabriz University of Medical SciencesTabrizIran
- Neurosciences Research CenterTabriz University of Medical SciencesTabrizIran
| | - Reza Rahbarghazi
- Department of Applied Cell Sciences, Faculty of Advanced Medical SciencesTabriz University of Medical SciencesTabrizIran
| | - Gisou Mohaddes
- Drug Applied Research CenterTabriz University of Medical SciencesTabrizIran
- Department of PhysiologyTabriz University of Medical SciencesTabrizIran
- Department of Neuroscience and Cognition, Faculty of Advanced Medical SciencesTabriz University of Medical SciencesTabrizIran
- Neurosciences Research CenterTabriz University of Medical SciencesTabrizIran
- Department of Biomedical EducationCalifornia Health Sciences University, College of Osteopathic MedicineClovisCaliforniaUSA
| | - Fariba Ghiasi
- Drug Applied Research CenterTabriz University of Medical SciencesTabrizIran
- Department of PhysiologyTabriz University of Medical SciencesTabrizIran
| |
Collapse
|
9
|
Rahimian S, Najafi H, Afzali B, Doroudian M. Extracellular Vesicles and Exosomes: Novel Insights and Perspectives on Lung Cancer from Early Detection to Targeted Treatment. Biomedicines 2024; 12:123. [PMID: 38255228 PMCID: PMC10813125 DOI: 10.3390/biomedicines12010123] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/24/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Lung cancer demands innovative approaches for early detection and targeted treatment. In addressing this urgent need, exosomes play a pivotal role in revolutionizing both the early detection and targeted treatment of lung cancer. Their remarkable capacity to encapsulate a diverse range of biomolecules, traverse biological barriers, and be engineered with specific targeting molecules makes them highly promising for both diagnostic markers and precise drug delivery to cancer cells. Furthermore, an in-depth analysis of exosomal content and biogenesis offers crucial insights into the molecular profile of lung tumors. This knowledge holds significant potential for the development of targeted therapies and innovative diagnostic strategies for cancer. Despite notable progress in this field, challenges in standardization and cargo loading persist. Collaborative research efforts are imperative to maximize the potential of exosomes and advance the field of precision medicine for the benefit of lung cancer patients.
Collapse
Affiliation(s)
| | | | | | - Mohammad Doroudian
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran 14911-15719, Iran; (S.R.); (H.N.); (B.A.)
| |
Collapse
|
10
|
van de Wakker SI, Bauzá‐Martinez J, Ríos Arceo C, Manjikian H, Snijders Blok CJB, Roefs MT, Willms E, Maas RGC, Pronker MF, de Jong OG, Wu W, Görgens A, El Andaloussi S, Sluijter JPG, Vader P. Size matters: Functional differences of small extracellular vesicle subpopulations in cardiac repair responses. J Extracell Vesicles 2024; 13:e12396. [PMID: 38179654 PMCID: PMC10767609 DOI: 10.1002/jev2.12396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/22/2023] [Indexed: 01/06/2024] Open
Abstract
Cardiac progenitor cell (CPC)-derived small extracellular vesicles (sEVs) exhibit great potential to stimulate cardiac repair. However, the multifaceted nature of sEV heterogeneity presents a challenge in understanding the distinct mechanisms underlying their regenerative abilities. Here, a dual-step multimodal flowthrough and size-exclusion chromatography method was applied to isolate and separate CPC-derived sEV subpopulations to study the functional differences related to cardiac repair responses. Three distinct sEV subpopulations were identified with unique protein profiles. Functional cell assays for cardiac repair-related processes demonstrated that the middle-sized and smallest-sized sEV subpopulations exhibited the highest pro-angiogenic and anti-fibrotic activities. Proteasome activity was uniquely seen in the smallest-sized subpopulation. The largest-sized subpopulation showed no effect in any of the functional assays. This research uncovers the existence of sEV subpopulations, each characterized by a distinct composition and biological function. Enhancing our understanding of sEV heterogeneity will provide valuable insights into sEV mechanisms of action, ultimately accelerating the translation of sEV therapeutics.
Collapse
Affiliation(s)
- Simonides Immanuel van de Wakker
- Department of Experimental Cardiology, Regenerative Medicine Center Utrecht, Circulatory health Research CenterUniversity Utrecht, University Medical Center UtrechtUtrechtThe Netherlands
| | - Julia Bauzá‐Martinez
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical SciencesUtrecht UniversityUtrechtThe Netherlands
| | - Carla Ríos Arceo
- Department of Experimental Cardiology, Regenerative Medicine Center Utrecht, Circulatory health Research CenterUniversity Utrecht, University Medical Center UtrechtUtrechtThe Netherlands
| | - Herak Manjikian
- Department of Experimental Cardiology, Regenerative Medicine Center Utrecht, Circulatory health Research CenterUniversity Utrecht, University Medical Center UtrechtUtrechtThe Netherlands
| | - Christian Jamie Bernard Snijders Blok
- Department of Experimental Cardiology, Regenerative Medicine Center Utrecht, Circulatory health Research CenterUniversity Utrecht, University Medical Center UtrechtUtrechtThe Netherlands
| | - Marieke Theodora Roefs
- Department of Experimental Cardiology, Regenerative Medicine Center Utrecht, Circulatory health Research CenterUniversity Utrecht, University Medical Center UtrechtUtrechtThe Netherlands
| | - Eduard Willms
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular ScienceLa Trobe UniversityMelbourneAustralia
| | - Renee Goverdina Catharina Maas
- Department of Experimental Cardiology, Regenerative Medicine Center Utrecht, Circulatory health Research CenterUniversity Utrecht, University Medical Center UtrechtUtrechtThe Netherlands
| | - Matti Feije Pronker
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical SciencesUtrecht UniversityUtrechtThe Netherlands
| | - Olivier Gerrit de Jong
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS)Utrecht UniversityUtrechtThe Netherlands
| | - Wei Wu
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical SciencesUtrecht UniversityUtrechtThe Netherlands
- Singapore Immunology Network (SIgN), Agency for ScienceTechnology and Research (A*STAR)SingaporeSingapore
- Department of PharmacyNational University of SingaporeSingaporeSingapore
| | - André Görgens
- Department of Laboratory MedicineKarolinska InstituteStockholm, HuddingeSweden
- Institute for Transfusion Medicine, University Hospital EssenUniversity of Duisburg‐EssenEssenGermany
| | - Samir El Andaloussi
- Department of Laboratory MedicineKarolinska InstituteStockholm, HuddingeSweden
| | - Joost Petrus Gerardus Sluijter
- Department of Experimental Cardiology, Regenerative Medicine Center Utrecht, Circulatory health Research CenterUniversity Utrecht, University Medical Center UtrechtUtrechtThe Netherlands
| | - Pieter Vader
- Department of Experimental Cardiology, Regenerative Medicine Center Utrecht, Circulatory health Research CenterUniversity Utrecht, University Medical Center UtrechtUtrechtThe Netherlands
- CDL ResearchUniversity Medical Center UtrechtUtrechtThe Netherlands
| |
Collapse
|
11
|
Sun S, Cai X, Shao J, Zhang G, Liu S, Wang H. Machine learning-based approach for efficient prediction of diagnosis, prognosis and lymph node metastasis of papillary thyroid carcinoma using adhesion signature selection. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:20599-20623. [PMID: 38124567 DOI: 10.3934/mbe.2023911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
The association between adhesion function and papillary thyroid carcinoma (PTC) is increasingly recognized; however, the precise role of adhesion function in the pathogenesis and prognosis of PTC remains unclear. In this study, we employed the robust rank aggregation algorithm to identify 64 stable adhesion-related differentially expressed genes (ARDGs). Subsequently, using univariate Cox regression analysis, we identified 16 prognostic ARDGs. To construct PTC survival risk scoring models, we employed Lasso Cox and multivariate + stepwise Cox regression methods. Comparative analysis of these models revealed that the Lasso Cox regression model (LPSRSM) displayed superior performance. Further analyses identified age and LPSRSM as independent prognostic factors for PTC. Notably, patients classified as low-risk by LPSRSM exhibited significantly better prognosis, as demonstrated by Kaplan-Meier survival analyses. Additionally, we investigated the potential impact of adhesion feature on energy metabolism and inflammatory responses. Furthermore, leveraging the CMAP database, we screened 10 drugs that may improve prognosis. Finally, using Lasso regression analysis, we identified four genes for a diagnostic model of lymph node metastasis and three genes for a diagnostic model of tumor. These gene models hold promise for prognosis and disease diagnosis in PTC.
Collapse
Affiliation(s)
- Shuo Sun
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Beihua University, Beihua University, Jilin 132013, China
| | - Xiaoni Cai
- Department of General Surgery, Shangyu People's Hospital of Shaoxing, the Second Affiliated Hospital of Zhejiang University Medical College Hospital, Shaoxing 312399, China
| | - Jinhai Shao
- Department of General Surgery, Shangyu People's Hospital of Shaoxing, the Second Affiliated Hospital of Zhejiang University Medical College Hospital, Shaoxing 312399, China
| | - Guimei Zhang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun 130061, China
| | - Shan Liu
- Department of Nuclear Medicine, The Second Hospital of Jilin University, Jilin University, Changchun 130041, China
| | - Hongsheng Wang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Beihua University, Beihua University, Jilin 132013, China
| |
Collapse
|
12
|
Leblanc R, Ghossoub R, Goubard A, Castellano R, Fares J, Camoin L, Audebert S, Balzano M, Bou‐Tayeh B, Fauriat C, Vey N, Garciaz S, Borg J, Collette Y, Aurrand‐Lions M, David G, Zimmermann P. Downregulation of stromal syntenin sustains AML development. EMBO Mol Med 2023; 15:e17570. [PMID: 37819151 PMCID: PMC10630886 DOI: 10.15252/emmm.202317570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 10/13/2023] Open
Abstract
The crosstalk between cancer and stromal cells plays a critical role in tumor progression. Syntenin is a small scaffold protein involved in the regulation of intercellular communication that is emerging as a target for cancer therapy. Here, we show that certain aggressive forms of acute myeloid leukemia (AML) reduce the expression of syntenin in bone marrow stromal cells (BMSC). Stromal syntenin deficiency, in turn, generates a pro-tumoral microenvironment. From serial transplantations in mice and co-culture experiments, we conclude that syntenin-deficient BMSC stimulate AML aggressiveness by promoting AML cell survival and protein synthesis. This pro-tumoral activity is supported by increased expression of endoglin, a classical marker of BMSC, which in trans stimulates AML translational activity. In short, our study reveals a vicious signaling loop potentially at the heart of AML-stroma crosstalk and unsuspected tumor-suppressive effects of syntenin that need to be considered during systemic targeting of syntenin in cancer therapy.
Collapse
Affiliation(s)
- Raphael Leblanc
- Team Spatio‐Temporal Regulation of Cell Signaling‐Scaffolds and Phosphoinositides, Equipe Labellisée Ligue 2018, Centre de Recherche en Cancérologie de Marseille (CRCM)Institut Paoli‐Calmettes, Aix‐Marseille Université, Inserm, CNRSMarseilleFrance
| | - Rania Ghossoub
- Team Spatio‐Temporal Regulation of Cell Signaling‐Scaffolds and Phosphoinositides, Equipe Labellisée Ligue 2018, Centre de Recherche en Cancérologie de Marseille (CRCM)Institut Paoli‐Calmettes, Aix‐Marseille Université, Inserm, CNRSMarseilleFrance
| | - Armelle Goubard
- TrGET Preclinical Platform, Centre de Recherche en Cancérologie de Marseille, Inserm, CNRSAix‐Marseille Université, Institut Paoli‐CalmettesMarseilleFrance
| | - Rémy Castellano
- TrGET Preclinical Platform, Centre de Recherche en Cancérologie de Marseille, Inserm, CNRSAix‐Marseille Université, Institut Paoli‐CalmettesMarseilleFrance
| | - Joanna Fares
- Team Spatio‐Temporal Regulation of Cell Signaling‐Scaffolds and Phosphoinositides, Equipe Labellisée Ligue 2018, Centre de Recherche en Cancérologie de Marseille (CRCM)Institut Paoli‐Calmettes, Aix‐Marseille Université, Inserm, CNRSMarseilleFrance
| | - Luc Camoin
- Proteomics and Mass Spectrometry Platform, Centre de Recherche en Cancérologie de MarseilleAix‐Marseille Université, Inserm, CNRS, Institut Paoli CalmettesMarseilleFrance
| | - Stephane Audebert
- Proteomics and Mass Spectrometry Platform, Centre de Recherche en Cancérologie de MarseilleAix‐Marseille Université, Inserm, CNRS, Institut Paoli CalmettesMarseilleFrance
| | - Marielle Balzano
- Team Spatio‐Temporal Regulation of Cell Signaling‐Scaffolds and Phosphoinositides, Equipe Labellisée Ligue 2018, Centre de Recherche en Cancérologie de Marseille (CRCM)Institut Paoli‐Calmettes, Aix‐Marseille Université, Inserm, CNRSMarseilleFrance
| | - Berna Bou‐Tayeh
- Team Immunity and Cancer, Centre de Recherche en Cancérologie de MarseilleAix‐Marseille Université, Inserm, CNRS, Institut Paoli CalmettesMarseilleFrance
| | - Cyril Fauriat
- Team Immunity and Cancer, Centre de Recherche en Cancérologie de MarseilleAix‐Marseille Université, Inserm, CNRS, Institut Paoli CalmettesMarseilleFrance
| | - Norbert Vey
- Aix‐Marseille Univ, Inserm, CNRS, Institut Paoli‐Calmettes, CRCMMarseilleFrance
| | - Sylvain Garciaz
- Aix‐Marseille Univ, Inserm, CNRS, Institut Paoli‐Calmettes, CRCMMarseilleFrance
| | - Jean‐Paul Borg
- Proteomics and Mass Spectrometry Platform, Centre de Recherche en Cancérologie de MarseilleAix‐Marseille Université, Inserm, CNRS, Institut Paoli CalmettesMarseilleFrance
| | - Yves Collette
- TrGET Preclinical Platform, Centre de Recherche en Cancérologie de Marseille, Inserm, CNRSAix‐Marseille Université, Institut Paoli‐CalmettesMarseilleFrance
| | - Michel Aurrand‐Lions
- Team Leuko/Stromal Interactions in Normal and Pathological Hematopoiesis, Centre de Recherche en Cancérologie de Marseille, Aix‐Marseille Université, Inserm, CNRS, Institut Paoli CalmettesMarseilleFrance
| | - Guido David
- Team Spatio‐Temporal Regulation of Cell Signaling‐Scaffolds and Phosphoinositides, Equipe Labellisée Ligue 2018, Centre de Recherche en Cancérologie de Marseille (CRCM)Institut Paoli‐Calmettes, Aix‐Marseille Université, Inserm, CNRSMarseilleFrance
- Department of Human GeneticsK U LeuvenLeuvenBelgium
| | - Pascale Zimmermann
- Team Spatio‐Temporal Regulation of Cell Signaling‐Scaffolds and Phosphoinositides, Equipe Labellisée Ligue 2018, Centre de Recherche en Cancérologie de Marseille (CRCM)Institut Paoli‐Calmettes, Aix‐Marseille Université, Inserm, CNRSMarseilleFrance
- Department of Human GeneticsK U LeuvenLeuvenBelgium
| |
Collapse
|
13
|
Islam MK, Khan M, Gidwani K, Witwer KW, Lamminmäki U, Leivo J. Lectins as potential tools for cancer biomarker discovery from extracellular vesicles. Biomark Res 2023; 11:85. [PMID: 37773167 PMCID: PMC10540341 DOI: 10.1186/s40364-023-00520-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/01/2023] [Indexed: 10/01/2023] Open
Abstract
Extracellular vesicles (EVs) have considerable potential as diagnostic, prognostic, and therapeutic agents, in large part because molecular patterns on the EV surface betray the cell of origin and may also be used to "target" EVs to specific cells. Cancer is associated with alterations to cellular and EV glycosylation patterns, and the surface of EVs is enriched with glycan moieties. Glycoconjugates of EVs play versatile roles in cancer including modulating immune response, affecting tumor cell behavior and site of metastasis and as such, paving the way for the development of innovative diagnostic tools and novel therapies. Entities that recognize specific glycans, such as lectins, may thus be powerful tools to discover and detect novel cancer biomarkers. Indeed, the past decade has seen a constant increase in the number of published articles on lectin-based strategies for the detection of EV glycans. This review explores the roles of EV glycosylation in cancer and cancer-related applications. Furthermore, this review summarizes the potential of lectins and lectin-based methods for screening, targeting, separation, and possible identification of improved biomarkers from the surface of EVs.
Collapse
Affiliation(s)
- Md Khirul Islam
- Department of Life Technologies, Division of Biotechnology, University of Turku, Kiinamyllynkatu 10, 20014, Turku, Finland.
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland.
| | - Misba Khan
- Department of Life Technologies, Division of Biotechnology, University of Turku, Kiinamyllynkatu 10, 20014, Turku, Finland
| | - Kamlesh Gidwani
- Department of Life Technologies, Division of Biotechnology, University of Turku, Kiinamyllynkatu 10, 20014, Turku, Finland
| | - Kenneth W Witwer
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Urpo Lamminmäki
- Department of Life Technologies, Division of Biotechnology, University of Turku, Kiinamyllynkatu 10, 20014, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Janne Leivo
- Department of Life Technologies, Division of Biotechnology, University of Turku, Kiinamyllynkatu 10, 20014, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| |
Collapse
|
14
|
van de Wakker SI, Meijers FM, Sluijter JPG, Vader P. Extracellular Vesicle Heterogeneity and Its Impact for Regenerative Medicine Applications. Pharmacol Rev 2023; 75:1043-1061. [PMID: 37280097 DOI: 10.1124/pharmrev.123.000841] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/20/2023] [Accepted: 05/01/2023] [Indexed: 06/08/2023] Open
Abstract
Extracellular vesicles (EVs) are cell-derived membrane-enclosed particles that are involved in physiologic and pathologic processes. EVs are increasingly being studied for therapeutic applications in the field of regenerative medicine. Therapeutic application of stem cell-derived EVs has shown great potential to stimulate tissue repair. However, the exact mechanisms through which they induce this effect have not been fully clarified. This may to a large extent be attributed to a lack of knowledge on EV heterogeneity. Recent studies suggest that EVs represent a heterogeneous population of vesicles with distinct functions. The heterogeneity of EVs can be attributed to differences in their biogenesis, and as such, they can be classified into distinct populations that can then be further subcategorized into various subpopulations. A better understanding of EV heterogeneity is crucial for elucidating their mechanisms of action in tissue regeneration. This review provides an overview of the latest insights on EV heterogeneity related to tissue repair, including the different characteristics that contribute to such heterogeneity and the functional differences among EV subtypes. It also sheds light on the challenges that hinder clinical translation of EVs. Additionally, innovative EV isolation techniques for studying EV heterogeneity are discussed. Improved knowledge of active EV subtypes would promote the development of tailored EV therapies and aid researchers in the translation of EV-based therapeutics to the clinic. SIGNIFICANCE STATEMENT: Within this review we discuss the differences in regenerative properties of extracellular vesicle (EV) subpopulations and implications of EV heterogeneity for development of EV-based therapeutics. We aim to provide new insights into which aspects are leading to heterogeneity in EV preparations and stress the importance of EV heterogeneity studies for clinical applications.
Collapse
Affiliation(s)
- Simonides Immanuel van de Wakker
- Department of Experimental Cardiology, University Medical Center Utrecht, Utrecht University, The Netherlands (S.I.V.D.W., F.M.M., J.P.G.S., P.V.) and CDL Research, University Medical Center Utrecht, The Netherlands (P.V.)
| | - Fleur Michelle Meijers
- Department of Experimental Cardiology, University Medical Center Utrecht, Utrecht University, The Netherlands (S.I.V.D.W., F.M.M., J.P.G.S., P.V.) and CDL Research, University Medical Center Utrecht, The Netherlands (P.V.)
| | - Joost Petrus Gerardus Sluijter
- Department of Experimental Cardiology, University Medical Center Utrecht, Utrecht University, The Netherlands (S.I.V.D.W., F.M.M., J.P.G.S., P.V.) and CDL Research, University Medical Center Utrecht, The Netherlands (P.V.)
| | - Pieter Vader
- Department of Experimental Cardiology, University Medical Center Utrecht, Utrecht University, The Netherlands (S.I.V.D.W., F.M.M., J.P.G.S., P.V.) and CDL Research, University Medical Center Utrecht, The Netherlands (P.V.)
| |
Collapse
|
15
|
Papadakos SP, Machairas N, Stergiou IE, Arvanitakis K, Germanidis G, Frampton AE, Theocharis S. Unveiling the Yin-Yang Balance of M1 and M2 Macrophages in Hepatocellular Carcinoma: Role of Exosomes in Tumor Microenvironment and Immune Modulation. Cells 2023; 12:2036. [PMID: 37626849 PMCID: PMC10453902 DOI: 10.3390/cells12162036] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/03/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a primary liver cancer with a high mortality rate and limited treatment options. Recent research has brought attention to the significant importance of intercellular communication in the progression of HCC, wherein exosomes have been identified as critical agents facilitating cell-to-cell signaling. In this article, we investigate the impact of macrophages as both sources and targets of exosomes in HCC, shedding light on the intricate interplay between exosome-mediated communication and macrophage involvement in HCC pathogenesis. It investigates how exosomes derived from HCC cells and other cell types within the tumor microenvironment (TME) can influence macrophage behavior, polarization, and recruitment. Furthermore, the section explores the reciprocal interactions between macrophage-derived exosomes and HCC cells, stromal cells, and other immune cells, elucidating their role in tumor growth, angiogenesis, metastasis, and immune evasion. The findings presented here contribute to a better understanding of the role of macrophage-derived exosomes in HCC progression and offer new avenues for targeted interventions and improved patient outcomes.
Collapse
Affiliation(s)
- Stavros P. Papadakos
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 10679 Athens, Greece;
| | - Nikolaos Machairas
- Second Department of Propaedeutic Surgery, National and Kapodistrian University of Athens, Laikon General Hospital, 11527 Athens, Greece;
| | - Ioanna E. Stergiou
- Pathophysiology Department, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Konstantinos Arvanitakis
- Division of Gastroenterology and Hepatology, First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, St. Kiriakidi 1, 54636 Thessaloniki, Greece; (K.A.); (G.G.)
- Basic and Translational Research Unit (BTRU), Special Unit for Biomedical Research and Education (BRESU), Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Georgios Germanidis
- Division of Gastroenterology and Hepatology, First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, St. Kiriakidi 1, 54636 Thessaloniki, Greece; (K.A.); (G.G.)
- Basic and Translational Research Unit (BTRU), Special Unit for Biomedical Research and Education (BRESU), Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Adam Enver Frampton
- Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital, London W12 0NN, UK
- Oncology Section, Surrey Cancer Research Institute, Department of Clinical and Experimental Medicine, FHMS, University of Surrey, The Leggett Building, Daphne Jackson Road, Guildford GU2 7WG, UK
- HPB Surgical Unit, Royal Surrey NHS Foundation Trust, Guildford GU2 7XX, UK
| | - Stamatios Theocharis
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 10679 Athens, Greece;
| |
Collapse
|
16
|
Jiang W, Wang X, Tao D, Zhao X. Identification of common genetic characteristics of rheumatoid arthritis and major depressive disorder by bioinformatics analysis and machine learning. Front Immunol 2023; 14:1183115. [PMID: 37415981 PMCID: PMC10320004 DOI: 10.3389/fimmu.2023.1183115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/07/2023] [Indexed: 07/08/2023] Open
Abstract
Introduction Depression is the most common comorbidity of rheumatoid arthritis (RA). In particular, major depressive disorder (MDD) and rheumatoid arthritis share highly overlapping mental and physical manifestations, such as depressed mood, sleep disturbance, fatigue, pain, and worthlessness. This overlap and indistinguishability often lead to the misattribution of physical and mental symptoms of RA patients to depression, and even, the depressive symptoms of MDD patients are ignored when receiving RA treatment. This has serious consequences, since the development of objective diagnostic tools to distinguish psychiatric symptoms from similar symptoms caused by physical diseases is urgent. Methods Bioinformatics analysis and machine learning. Results The common genetic characteristics of rheumatoid arthritis and major depressive disorder are EAF1, SDCBP and RNF19B. Discussion We discovered a connection between RA and MDD through immune infiltration studies: monocyte infiltration. Futhermore, we explored the correlation between the expression of the 3 marker genes and immune cell infiltration using the TIMER 2.0 database. This may help to explain the potential molecular mechanism by which RA and MDD increase the morbidity of each other.
Collapse
Affiliation(s)
- Wen Jiang
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xiaochuan Wang
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Dongxia Tao
- Nurse Department, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xin Zhao
- Department of Operation Room, The First Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
17
|
Lee KM, Seo EC, Lee JH, Kim HJ, Hwangbo C. The Multifunctional Protein Syntenin-1: Regulator of Exosome Biogenesis, Cellular Function, and Tumor Progression. Int J Mol Sci 2023; 24:ijms24119418. [PMID: 37298370 DOI: 10.3390/ijms24119418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/20/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Syntenin acts as an adaptor and scaffold protein through its two PSD-95, Dlg, and ZO-1 (PDZ) domains, participating in multiple signaling pathways and modulating cellular physiology. It has been identified as an oncogene, promoting cancer development, metastasis, and angiogenesis in various carcinomas. Syntenin-1 is also associated with the production and release of exosomes, small extracellular vesicles that play a significant role in intercellular communication by containing bioactive molecules such as proteins, lipids, and nucleic acids. The trafficking of exosomes involves a complex interplay of various regulatory proteins, including syntenin-1, which interacts with its binding partners, syndecan and activated leukocyte cell adhesion molecule (ALIX). Exosomal transfer of microRNAs, a key cargo, can regulate the expression of various cancer-related genes, including syntenin-1. Targeting the mechanism involving the regulation of exosomes by syntenin-1 and microRNAs may provide a novel treatment strategy for cancer. This review highlights the current understanding of syntenin-1's role in regulating exosome trafficking and its associated cellular signaling pathways.
Collapse
Affiliation(s)
- Kwang-Min Lee
- Division of Life Science, College of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
- Division of Applied Life Science (BK21 Four), Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Eun-Chan Seo
- Division of Life Science, College of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
- Division of Applied Life Science (BK21 Four), Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jeong-Hyung Lee
- Department of Biochemistry (BK21 Four), College of Natural Sciences, Kangwon National University, Chuncheon 24414, Republic of Korea
| | - Hyo-Jin Kim
- Division of Life Science, College of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
- Division of Applied Life Science (BK21 Four), Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Cheol Hwangbo
- Division of Life Science, College of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
- Division of Applied Life Science (BK21 Four), Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
18
|
Palacio PL, Pleet ML, Reátegui E, Magaña SM. Emerging role of extracellular vesicles in multiple sclerosis: From cellular surrogates to pathogenic mediators and beyond. J Neuroimmunol 2023; 377:578064. [PMID: 36934525 PMCID: PMC10124134 DOI: 10.1016/j.jneuroim.2023.578064] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/06/2023] [Accepted: 03/05/2023] [Indexed: 03/16/2023]
Abstract
Multiple Sclerosis (MS) is a chronic, inflammatory demyelinating disease of the central nervous system (CNS) driven by a complex interplay of genetic and environmental factors. While the therapeutic arsenal has expanded significantly for management of relapsing forms of MS, treatment of individuals with progressive MS is suboptimal. This treatment inequality is in part due to an incomplete understanding of pathomechanisms at different stages of the disease-underscoring the critical need for new biomarkers. Extracellular vesicles (EVs) and their bioactive cargo have emerged as endogenous nanoparticles with great theranostic potential-as diagnostic and prognostic biomarkers and ultimately as therapeutic candidates for precision nanotherapeutics. The goals of this review are to: 1) summarize the current data investigating the role of EVs and their bioactive cargo in MS pathogenesis, 2) provide a high level overview of advances and challenges in EV isolation and characterization for translational studies, and 3) conclude with future perspectives on this evolving field.
Collapse
Affiliation(s)
- Paola Loreto Palacio
- Department of Pediatrics, Division of Neurology, Nationwide Children's Hospital, Columbus, OH, USA
| | - Michelle L Pleet
- Viral Immunology Section, Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Eduardo Reátegui
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, USA
| | - Setty M Magaña
- Department of Pediatrics, Division of Neurology, Nationwide Children's Hospital, Columbus, OH, USA.
| |
Collapse
|
19
|
Oshchepkova A, Zenkova M, Vlassov V. Extracellular Vesicles for Therapeutic Nucleic Acid Delivery: Loading Strategies and Challenges. Int J Mol Sci 2023; 24:ijms24087287. [PMID: 37108446 PMCID: PMC10139028 DOI: 10.3390/ijms24087287] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Extracellular vesicles (EVs) are membrane vesicles released into the extracellular milieu by cells of various origins. They contain different biological cargoes, protecting them from degradation by environmental factors. There is an opinion that EVs have a number of advantages over synthetic carriers, creating new opportunities for drug delivery. In this review, we discuss the ability of EVs to function as carriers for therapeutic nucleic acids (tNAs), challenges associated with the use of such carriers in vivo, and various strategies for tNA loading into EVs.
Collapse
Affiliation(s)
- Anastasiya Oshchepkova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia
| | - Marina Zenkova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia
| | - Valentin Vlassov
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia
| |
Collapse
|
20
|
Mignogna G, Fabrizi C, Correani V, Giorgi A, Maras B. Rab11A Depletion in Microglia-Derived Extracellular Vesicle Proteome upon Beta-Amyloid Treatment. Cell Biochem Biophys 2023:10.1007/s12013-023-01133-4. [PMID: 36995559 DOI: 10.1007/s12013-023-01133-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 03/16/2023] [Indexed: 03/31/2023]
Abstract
Microglia, the macrophage-like glial cells, behave as sentinels against exogenous pathogens invading the neural tissue. Their commitment is not only confined to the defensive function, but they also perform balancing trophic activities such as neuronal postnatal development, remodeling and pruning of synapses. Likewise, microglia-derived extracellular vesicles (EVs) can play strategic roles in maintaining a healthy brain by modulating neuronal activity and by controlling neurite outgrowth as well as innate immune response. Nevertheless, strong evidence also points to their role in the development of neurodegenerative pathologies such as Alzheimer's disease (AD). Here, we explored EV protein content released by BV2 microglial cells in a resting state and after stimulation with beta-amyloid peptides (Aβ), mimicking conditions occurring in AD. In the resting BV2 cells, we extended the list of proteins present in mouse microglia EV cargo with respect to those reported in the Vesiclepedia exosome database while, in amyloid-triggered microglia, we highlighted a pronounced drop in EV protein content. Focusing on Rab11A, a key factor in the recycling routes of amyloid species, we observed a dramatic decrease of this protein in Aβ-treated microglia EV cargo with respect to the EVs from the untreated sample. This decrease might affect the delivery of Rab11A to neurons thus increasing the harmful amyloid burden in neuronal cells that eventually may lead to their death. We tentatively proposed that alterations observed in EVs derived from Aβ-treated microglia may represent molecular features that, among others, shape the disease-associated microglial phenotype, a recently proposed subset of microglial population, present in neurodegenerative pathologies.
Collapse
Affiliation(s)
- Giuseppina Mignogna
- Dipartimento di Scienze Biochimiche, Sapienza Università di Roma, Rome, Italy
| | - Cinzia Fabrizi
- Dipartimento di Scienze, Anatomiche Istologiche Medico-Legali e dell'Apparato Locomotore Sapienza Università di Roma, Rome, Italy
| | - Virginia Correani
- Dipartimento di Scienze Biochimiche, Sapienza Università di Roma, Rome, Italy
| | - Alessandra Giorgi
- Dipartimento di Scienze Biochimiche, Sapienza Università di Roma, Rome, Italy
| | - Bruno Maras
- Dipartimento di Scienze Biochimiche, Sapienza Università di Roma, Rome, Italy.
| |
Collapse
|
21
|
Revisiting the Syndecans: Master Signaling Regulators with Prognostic and Targetable Therapeutic Values in Breast Carcinoma. Cancers (Basel) 2023; 15:cancers15061794. [PMID: 36980680 PMCID: PMC10046401 DOI: 10.3390/cancers15061794] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023] Open
Abstract
Syndecans (SDC1 to 4), a family of cell surface heparan sulfate proteoglycans, are frequently expressed in mammalian tissues. SDCs are aberrantly expressed either on tumor or stromal cells, influencing cancer initiation and progression through their pleiotropic role in different signaling pathways relevant to proliferation, cell-matrix adhesion, migration, invasion, metastasis, cancer stemness, and angiogenesis. In this review, we discuss the key roles of SDCs in the pathogenesis of breast cancer, the most common malignancy in females worldwide, focusing on the prognostic significance and molecular regulators of SDC expression and localization in either breast tumor tissue or its microenvironmental cells and the SDC-dependent epithelial–mesenchymal transition program. This review also highlights the molecular mechanisms underlying the roles of SDCs in regulating breast cancer cell behavior via modulation of nuclear hormone receptor signaling, microRNA expression, and exosome biogenesis and functions, as well as summarizing the potential of SDCs as promising candidate targets for therapeutic strategies against breast cancer.
Collapse
|
22
|
Lee Y, Graham P, Li Y. Extracellular vesicles as a novel approach for breast cancer therapeutics. Cancer Lett 2023; 555:216036. [PMID: 36521658 DOI: 10.1016/j.canlet.2022.216036] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/28/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022]
Abstract
Breast cancer (BC) still lacks effective management approaches to control metastatic and therapy-resistant disease. Extracellular vesicles (EVs), with a diameter of 50-1000 nm, are secreted by all types of living cells, are protected by a lipid bilayer and encapsulate biological cargos including RNAs, proteins and lipids. They play an important role in intercellular communications and are significantly associated with pathological conditions. Accumulating evidence indicates that cancer cells secrete EVs and communicate with neighboring cells within the tumor microenvironment (TME), which plays an important role in BC metastasis, immune escape and chemoresistance, thus providing a new therapeutic window. EVs can stimulate angiogenesis and extracellular matrix remodeling, establish premetastatic niches, inhibit immune response and promote cancer metastasis. Recent advances have demonstrated that EVs are a potential therapeutic target or carrier and have emerged as promising strategies for BC treatment. In this review, we summarize the role of EVs in BC metastasis, chemoresistance and immune escape, which provides the foundation for developing novel therapeutic approaches. We also focus on current EV-based drug delivery strategies in BC and EV cargo-targeted BC therapy and discuss the limitations and future perspectives of EV-based drug delivery in BC.
Collapse
Affiliation(s)
- Yujin Lee
- St George and Sutherland Clinical Campuses, School of Clinical Medicine, UNSW Sydney, Kensington, NSW, 2052, Australia; Cancer Care Centre, St. George Hospital, Kogarah, NSW, 2217, Australia
| | - Peter Graham
- St George and Sutherland Clinical Campuses, School of Clinical Medicine, UNSW Sydney, Kensington, NSW, 2052, Australia; Cancer Care Centre, St. George Hospital, Kogarah, NSW, 2217, Australia
| | - Yong Li
- St George and Sutherland Clinical Campuses, School of Clinical Medicine, UNSW Sydney, Kensington, NSW, 2052, Australia; Cancer Care Centre, St. George Hospital, Kogarah, NSW, 2217, Australia.
| |
Collapse
|
23
|
Tang H, Wang L, Li S, Wei X, Lv M, Zhong F, Liu Y, Liu J, Fu B, Zhu Q, Wang D, Liu J, Ruan K, Gao J, Xu W. Inhibitors against Two PDZ Domains of MDA-9 Suppressed Migration of Breast Cancer Cells. Int J Mol Sci 2023; 24:ijms24043431. [PMID: 36834839 PMCID: PMC9964117 DOI: 10.3390/ijms24043431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Melanoma differentiation-associated gene 9 (MDA-9) is a small adaptor protein with tandem PDZ domains that promotes tumor progression and metastasis in various human cancers. However, it is difficult to develop drug-like small molecules with high affinity due to the narrow groove of the PDZ domains of MDA-9. Herein, we identified four novel hits targeting the PDZ1 and PDZ2 domains of MDA-9, namely PI1A, PI1B, PI2A, and PI2B, using a protein-observed nuclear magnetic resonance (NMR) fragment screening method. We also solved the crystal structure of the MDA-9 PDZ1 domain in complex with PI1B and characterized the binding poses of PDZ1-PI1A and PDZ2-PI2A, guided by transferred paramagnetic relaxation enhancement. The protein-ligand interaction modes were then cross-validated by the mutagenesis of the MDA-9 PDZ domains. Competitive fluorescence polarization experiments demonstrated that PI1A and PI2A blocked the binding of natural substrates to the PDZ1 and PDZ2 domains, respectively. Furthermore, these inhibitors exhibited low cellular toxicity, but suppressed the migration of MDA-MB-231 breast carcinoma cells, which recapitulated the phenotype of MDA-9 knockdown. Our work has paved the way for the development of potent inhibitors using structure-guided fragment ligation in the future.
Collapse
Affiliation(s)
- Heng Tang
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Lei Wang
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Shuju Li
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Xiaoli Wei
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Mengqi Lv
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Fumei Zhong
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Yaqian Liu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Jiuyang Liu
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Bangguo Fu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Qizhi Zhu
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Dan Wang
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Jiajia Liu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Ke Ruan
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Jia Gao
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- Correspondence: (J.G.); (W.X.)
| | - Weiping Xu
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- Correspondence: (J.G.); (W.X.)
| |
Collapse
|
24
|
Mardi N, Haiaty S, Rahbarghazi R, Mobarak H, Milani M, Zarebkohan A, Nouri M. Exosomal transmission of viruses, a two-edged biological sword. Cell Commun Signal 2023; 21:19. [PMID: 36691072 PMCID: PMC9868521 DOI: 10.1186/s12964-022-01037-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 12/28/2022] [Indexed: 01/24/2023] Open
Abstract
As a common belief, most viruses can egress from the host cells as single particles and transmit to uninfected cells. Emerging data have revealed en bloc viral transmission as lipid bilayer-cloaked particles via extracellular vesicles especially exosomes (Exo). The supporting membrane can be originated from multivesicular bodies during intra-luminal vesicle formation and autophagic response. Exo are nano-sized particles, ranging from 40-200 nm, with the ability to harbor several types of signaling molecules from donor to acceptor cells in a paracrine manner, resulting in the modulation of specific signaling reactions in target cells. The phenomenon of Exo biogenesis consists of multiple and complex biological steps with the participation of diverse constituents and molecular pathways. Due to similarities between Exo biogenesis and virus replication and the existence of shared pathways, it is thought that viruses can hijack the Exo biogenesis machinery to spread and evade immune cells. To this end, Exo can transmit complete virions (as single units or aggregates), separate viral components, and naked genetic materials. The current review article aims to scrutinize challenges and opportunities related to the exosomal delivery of viruses in terms of viral infections and public health. Video Abstract.
Collapse
Affiliation(s)
- Narges Mardi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sanya Haiaty
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Imam Reza St., Golgasht St., Tabriz, Iran
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Halimeh Mobarak
- Stem Cell Research Center, Tabriz University of Medical Sciences, Imam Reza St., Golgasht St., Tabriz, Iran
| | - Morteza Milani
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Zarebkohan
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Nouri
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
25
|
Wolf A, Tanguy E, Wang Q, Gasman S, Vitale N. Phospholipase D and cancer metastasis: A focus on exosomes. Adv Biol Regul 2023; 87:100924. [PMID: 36272918 DOI: 10.1016/j.jbior.2022.100924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 09/30/2022] [Accepted: 10/10/2022] [Indexed: 03/01/2023]
Abstract
In mammals, phospholipase D (PLD) enzymes involve 6 isoforms, of which only three have established lipase activity to produce the signaling lipid phosphatidic acid (PA). This phospholipase activity has been postulated to contribute to cancer progression for over three decades now, but the exact mechanisms involved have yet to be uncovered. Indeed, using various models, an altered PLD activity has been proposed altogether to increase cell survival rate, promote angiogenesis, boost rapamycin resistance, and favor metastasis. Although for some part, the molecular pathways by which this increase in PA is pro-oncogenic are partially known, the pleiotropic functions of PA make it quite difficult to distinguish which among these simple signaling pathways is responsible for each of these PLD facets. In this review, we will describe an additional potential contribution of PA generated by PLD1 and PLD2 in the biogenesis, secretion, and uptake of exosomes. Those extracellular vesicles are now viewed as membrane vehicles that carry informative molecules able to modify the fate of receiving cells at distance from the original tumor to favor homing of metastasis. The perspectives for a better understanding of these complex role of PLDs will be discussed.
Collapse
Affiliation(s)
- Alexander Wolf
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Emeline Tanguy
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Qili Wang
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Stéphane Gasman
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Nicolas Vitale
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France.
| |
Collapse
|
26
|
Kim JH, Lee CH, Baek MC. Dissecting exosome inhibitors: therapeutic insights into small-molecule chemicals against cancer. Exp Mol Med 2022; 54:1833-1843. [PMID: 36446847 PMCID: PMC9707221 DOI: 10.1038/s12276-022-00898-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 09/29/2022] [Accepted: 10/03/2022] [Indexed: 11/30/2022] Open
Abstract
Intensive research in the field of cancer biology has revealed unique methods of communication between cells through extracellular vesicles called exosomes. Exosomes are released from a broad spectrum of cell types and serve as functional mediators under physiological or pathological conditions. Hence, blocking the release of exosome bio carriers may prove useful for slowing the progression of certain types of cancers. Therefore, efforts are being made to develop exosome inhibitors to be used both as research tools and as therapies in clinical trials. Thus, studies on exosomes may lead to a breakthrough in cancer research, for which new clinical targets for different types of cancers are urgently needed. In this review, we briefly outline exosome inhibitors and discuss their modes of action and potential for use as therapeutic tools for cancer.
Collapse
Affiliation(s)
- Jong Hyun Kim
- grid.412072.20000 0004 0621 4958Department of Biochemistry, School of Medicine, Daegu Catholic University, Daegu, 42472 South Korea
| | - Chan-Hyeong Lee
- grid.258803.40000 0001 0661 1556Department of Molecular Medicine, CMRI, Exosome Convergence Research Center (ECRC), School of Medicine, Kyungpook National University, Daegu, 41944 South Korea
| | - Moon-Chang Baek
- grid.258803.40000 0001 0661 1556Department of Molecular Medicine, CMRI, Exosome Convergence Research Center (ECRC), School of Medicine, Kyungpook National University, Daegu, 41944 South Korea
| |
Collapse
|
27
|
Tenchov R, Sasso JM, Wang X, Liaw WS, Chen CA, Zhou QA. Exosomes─Nature's Lipid Nanoparticles, a Rising Star in Drug Delivery and Diagnostics. ACS NANO 2022; 16:17802-17846. [PMID: 36354238 PMCID: PMC9706680 DOI: 10.1021/acsnano.2c08774] [Citation(s) in RCA: 259] [Impact Index Per Article: 86.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/21/2022] [Indexed: 05/03/2023]
Abstract
Exosomes are a subgroup of nanosized extracellular vesicles enclosed by a lipid bilayer membrane and secreted by most eukaryotic cells. They represent a route of intercellular communication and participate in a wide variety of physiological and pathological processes. The biological roles of exosomes rely on their bioactive cargos, including proteins, nucleic acids, and lipids, which are delivered to target cells. Their distinctive properties─innate stability, low immunogenicity, biocompatibility, and good biomembrane penetration capacity─allow them to function as superior natural nanocarriers for efficient drug delivery. Another notably favorable clinical application of exosomes is in diagnostics. They hold various biomolecules from host cells, which are indicative of pathophysiological conditions; therefore, they are considered vital for biomarker discovery in clinical diagnostics. Here, we use data from the CAS Content Collection and provide a landscape overview of the current state and delineate trends in research advancement on exosome applications in therapeutics and diagnostics across time, geography, composition, cargo loading, and development pipelines. We discuss exosome composition and pathway, from their biogenesis and secretion from host cells to recipient cell uptake. We assess methods for exosome isolation and purification, their clinical applications in therapy and diagnostics, their development pipelines, the exploration goals of the companies, the assortment of diseases they aim to treat, development stages of their research, and publication trends. We hope this review will be useful for understanding the current knowledge in the field of medical applications of exosomes, in an effort to further solve the remaining challenges in fulfilling their potential.
Collapse
Affiliation(s)
- Rumiana Tenchov
- CAS, a Division of the American Chemical
Society, 2540 Olentangy River Rd, Columbus, Ohio 43202, United
States
| | - Janet M. Sasso
- CAS, a Division of the American Chemical
Society, 2540 Olentangy River Rd, Columbus, Ohio 43202, United
States
| | - Xinmei Wang
- CAS, a Division of the American Chemical
Society, 2540 Olentangy River Rd, Columbus, Ohio 43202, United
States
| | - Wen-Shing Liaw
- CAS, a Division of the American Chemical
Society, 2540 Olentangy River Rd, Columbus, Ohio 43202, United
States
| | - Chun-An Chen
- CAS, a Division of the American Chemical
Society, 2540 Olentangy River Rd, Columbus, Ohio 43202, United
States
| | - Qiongqiong Angela Zhou
- CAS, a Division of the American Chemical
Society, 2540 Olentangy River Rd, Columbus, Ohio 43202, United
States
| |
Collapse
|
28
|
Zhu J, Tan Z, Zhang J, An M, Khaykin VM, Cuneo KC, Parikh ND, Lubman DM. Sequential Method for Analysis of CTCs and Exosomes from the Same Sample of Patient Blood. ACS OMEGA 2022; 7:37581-37588. [PMID: 36312392 PMCID: PMC9609053 DOI: 10.1021/acsomega.2c04428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Circulating tumor cells (CTCs) and exosomes, both released from the primary tumor into peripheral blood, are a promising source of cancer biomarkers. They are detectable in the blood and carry a large diversity of biological molecules, which can be used for the diagnosis and monitoring of minimally invasive cancers. However, due to their intrinsic differences in counts, size, and molecular contents, studies have focused on only one type of vesicle. Herein, we have developed an integrated system to sequentially isolate CTCs and exosomes from a single patient blood sample for further profiling and analysis. The CTCs are isolated using a commercial filtration method and then the remaining blood is processed using multiple cycles of ultracentrifugation to isolate the exosomes. The method uses two available technologies where the eluent from CTC isolation is usually discarded and interfaces them, so that the eluent can be interfaced to exosome isolation methods. The CTCs are identified based on fluorescence staining of their surface markers, while the exosomes are analyzed using transmission electron microscopy, nanosight tracking analysis, and mass spec proteomic analysis. This analysis showed CTCs detected by their surface markers for metastatic hepatocellular carcinoma (HCC), while essentially none were detected for cirrhosis. The exosome analysis resulted in the identification of ∼500-1000 exosome proteins per sample confirmed by detection of exosome surface markers CD9, CD63, CD81, and TSG101 in addition to proteins related to cancer progression. Proteins enriched in HCC exosomes were shown to be involved in the immune response, metastasis, and proliferation.
Collapse
Affiliation(s)
- Jianhui Zhu
- Department
of Surgery, The University of Michigan, 1150 West Medical Center Drive, Ann Arbor, Michigan 48109, United States
| | - Zhijing Tan
- Department
of Surgery, The University of Michigan, 1150 West Medical Center Drive, Ann Arbor, Michigan 48109, United States
| | - Jie Zhang
- Department
of Surgery, The University of Michigan, 1150 West Medical Center Drive, Ann Arbor, Michigan 48109, United States
| | - Mingrui An
- Department
of Surgery, The University of Michigan, 1150 West Medical Center Drive, Ann Arbor, Michigan 48109, United States
| | - Valerie M. Khaykin
- Division
of Gastroenterology and Hepatology, University
of Michigan Medical Center, Ann
Arbor, Michigan 48109, United States
| | - Kyle C. Cuneo
- Department
of Radiation Oncology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Neehar D. Parikh
- Division
of Gastroenterology and Hepatology, University
of Michigan Medical Center, Ann
Arbor, Michigan 48109, United States
| | - David M. Lubman
- Department
of Surgery, The University of Michigan, 1150 West Medical Center Drive, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
29
|
Presence of Intact Hepatitis B Virions in Exosomes. Cell Mol Gastroenterol Hepatol 2022; 15:237-259. [PMID: 36184032 PMCID: PMC9676402 DOI: 10.1016/j.jcmgh.2022.09.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 09/23/2022] [Accepted: 09/23/2022] [Indexed: 02/21/2023]
Abstract
BACKGROUND & AIMS Hepatitis B virus (HBV) was identified as an enveloped DNA virus with a diameter of 42 nm. Multivesicular bodies play a central role in HBV egress and exosome biogenesis. In light of this, it was studied whether intact virions wrapped in exosomes are released by HBV-producing cells. METHODS Robust methods for efficient separation of exosomes from virions were established. Exosomes were subjected to limited detergent treatment for release of viral particles. Electron microscopy of immunogold labeled ultrathin sections of purified exosomes was performed for characterization of exosomal HBV. Exosome formation/release was affected by inhibitors or Crispr/Cas-mediated gene silencing. Infectivity/uptake of exosomal HBV was investigated in susceptible and non-susceptible cells. RESULTS Exosomes could be isolated from supernatants of HBV-producing cells, which are characterized by the presence of exosomal and HBV markers. These exosomal fractions could be separated from the fractions containing free virions. Limited detergent treatment of exosomes causes stepwise release of intact HBV virions and naked capsids. Inhibition of exosome morphogenesis impairs the release of exosome-wrapped HBV. Electron microscopy confirmed the presence of intact virions in exosomes. Moreover, the presence of large hepatitis B virus surface antigen on the surface of exosomes derived from HBV expressing cells was observed, which conferred exosome-encapsulated HBV initiating infection in susceptible cells in a , large hepatitis B virus surface antigen/Na+-taurocholate co-transporting polypeptide-dependent manner. The uptake of exosomal HBV with low efficiency was also observed in non-permissive cells. CONCLUSION These data indicate that a fraction of intact HBV virions can be released as exosomes. This reveals a so far not described release pathway for HBV.
Collapse
|
30
|
Clark GC, Hampton JD, Koblinski JE, Quinn B, Mahmoodi S, Metcalf O, Guo C, Peterson E, Fisher PB, Farrell NP, Wang XY, Mikkelsen RB. Radiation induces ESCRT pathway dependent CD44v3 + extracellular vesicle production stimulating pro-tumor fibroblast activity in breast cancer. Front Oncol 2022; 12:913656. [PMID: 36106109 PMCID: PMC9465418 DOI: 10.3389/fonc.2022.913656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 08/03/2022] [Indexed: 02/03/2023] Open
Abstract
Despite recent advances in radiotherapeutic strategies, acquired resistance remains a major obstacle, leading to tumor recurrence for many patients. Once thought to be a strictly cancer cell intrinsic property, it is becoming increasingly clear that treatment-resistance is driven in part by complex interactions between cancer cells and non-transformed cells of the tumor microenvironment. Herein, we report that radiotherapy induces the production of extracellular vesicles by breast cancer cells capable of stimulating tumor-supporting fibroblast activity, facilitating tumor survival and promoting cancer stem-like cell expansion. This pro-tumor activity was associated with fibroblast production of the paracrine signaling factor IL-6 and was dependent on the expression of the heparan sulfate proteoglycan CD44v3 on the vesicle surface. Enzymatic removal or pharmaceutical inhibition of its heparan sulfate side chains disrupted this tumor-fibroblast crosstalk. Additionally, we show that the radiation-induced production of CD44v3+ vesicles is effectively silenced by blocking the ESCRT pathway using a soluble pharmacological inhibitor of MDA-9/Syntenin/SDCBP PDZ1 domain activity, PDZ1i. This population of vesicles was also detected in the sera of human patients undergoing radiotherapy, therefore representing a potential biomarker for radiation therapy and providing an opportunity for clinical intervention to improve treatment outcomes.
Collapse
Affiliation(s)
- Gene Chatman Clark
- Virginia Commonwealth University, Richmond, VA, United States,Department of Biochemistry, Virginia Commonwealth University, Richmond, VA, United States,*Correspondence: Gene Chatman Clark,
| | - James David Hampton
- Virginia Commonwealth University, Richmond, VA, United States,Department of Biochemistry, Virginia Commonwealth University, Richmond, VA, United States
| | - Jennifer E. Koblinski
- Virginia Commonwealth University, Richmond, VA, United States,Department of Pathology, Virginia Commonwealth University, Richmond, VA, United States
| | - Bridget Quinn
- Virginia Commonwealth University, Richmond, VA, United States,Department of Radiation Oncology, Virginia Commonwealth University, Richmond, VA, United States
| | - Sitara Mahmoodi
- Virginia Commonwealth University, Richmond, VA, United States
| | - Olga Metcalf
- University of Virginia, Charlottesville, VA, United States
| | - Chunqing Guo
- Virginia Commonwealth University, Richmond, VA, United States,Department of Human Molecular Genetics, Virginia Commonwealth University, Richmond, VA, United States,VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Erica Peterson
- Virginia Commonwealth University, Richmond, VA, United States,VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Paul B. Fisher
- Virginia Commonwealth University, Richmond, VA, United States,Department of Human Molecular Genetics, Virginia Commonwealth University, Richmond, VA, United States,VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States,Virginia Commonwealth University (VCU) Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Nicholas P. Farrell
- Virginia Commonwealth University, Richmond, VA, United States,VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States,Department of Chemistry, Virginia Commonwealth University, Richmond, VA, United States
| | - Xiang-Yang Wang
- Virginia Commonwealth University, Richmond, VA, United States,University of Virginia, Charlottesville, VA, United States,VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States,Virginia Commonwealth University (VCU) Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Ross B. Mikkelsen
- Virginia Commonwealth University, Richmond, VA, United States,Department of Radiation Oncology, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
31
|
Huang Y, Liu Z, Li N, Tian C, Yang H, Huo Y, Li Y, Zhang J, Yu Z. Parkinson's Disease Derived Exosomes Aggravate Neuropathology in SNCA*A53T Mice. Ann Neurol 2022; 92:230-245. [PMID: 35596947 DOI: 10.1002/ana.26421] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Accumulation of α-synuclein (α-syn) in neurons is a prominent feature of Parkinson's disease (PD). Recently, researchers have considered that extracellular vesicles (EVs) may play an important role in protein exportation and propagation, and α-syn-containing EVs derived from the central nervous system (CNS) have been detected in peripheral blood. However, mechanistic insights into CNS-derived EVs have not been well-described. METHODS Likely neurogenic EVs were purified from the plasma of PD patients and healthy controls using a well-established immunoprecipitation assay with anti-L1CAM-coated beads. A Prnp-SNCAA53T transgenic PD mouse model was used to evaluate the neuronal pathology induced by PD-derived L1CAM-purified EVs. EV-associated microRNA (miRNA) profiling was used to screen for altered miRNAs in PD-derived L1CAM-purified EVs. RESULTS PD patient-derived L1CAM-purified (likely neurogenic) EVs facilitated α-syn pathology and neuron loss in Prnp-SNCAA53T transgenic PD mice. The miRNA, novel_miR_44438, was significantly increased in the PD group, which promoted α-syn accumulation and neuronal degeneration in a dose-dependent manner. Novel _miR_44438 directly targets NDST1 mRNA and inhibits the function of heparan sulfate, thus preventing exosome biogenesis and α-syn release from exosomes. INTERPRETATION Novel_miR_44438 in PD-derived L1CAM-purified EVs inhibits the α-syn efflux from neurons thereby promoting the pathological accumulation and aggregation of α-syn. ANN NEUROL 2022;92:230-245.
Collapse
Affiliation(s)
- Yang Huang
- Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Centre, Beijing, China
| | - Zongran Liu
- Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Centre, Beijing, China
| | - Na Li
- Department of Immunology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu Province, China
| | - Chen Tian
- Department of Pathology, The First Affiliated Hospital and School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Han Yang
- Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Centre, Beijing, China
| | - Yanfei Huo
- Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Centre, Beijing, China
| | - Yang Li
- Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Centre, Beijing, China
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Jing Zhang
- Department of Pathology, The First Affiliated Hospital and School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
- National Health and Disease Human Brain Tissue Resource Center, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Zhenwei Yu
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| |
Collapse
|
32
|
Viktorsson K, Hååg P, Shah CH, Franzén B, Arapi V, Holmsten K, Sandström P, Lewensohn R, Ullén A. Profiling of extracellular vesicles of metastatic urothelial cancer patients to discover protein signatures related to treatment outcome. Mol Oncol 2022; 16:3620-3641. [PMID: 35838333 PMCID: PMC9580890 DOI: 10.1002/1878-0261.13288] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 05/21/2022] [Accepted: 07/13/2022] [Indexed: 11/19/2022] Open
Abstract
The prognosis of metastatic urothelial carcinoma (mUC) patients is poor, and early prediction of systemic therapy response would be valuable to improve outcome. In this exploratory study, we investigated protein profiles in sequential plasma‐isolated extracellular vesicles (EVs) from a subset of mUC patients treated within a Phase I trial with vinflunine combined with sorafenib. The isolated EVs were of exosome size and expressed exosome markers CD9, TSG101 and SYND‐1. We found, no association between EVs/ml plasma at baseline and progression‐free survival (PFS). Protein profiling of EVs, using an antibody‐based 92‐plex Proximity Extension Assay on the Oncology II® platform, revealed a heterogeneous protein expression pattern. Qlucore bioinformatic analyses put forward a protein signature comprising of SYND‐1, TNFSF13, FGF‐BP1, TFPI‐2, GZMH, ABL1 and ERBB3 to be putatively associated with PFS. Similarly, a protein signature from EVs that related to best treatment response was found, which included FR‐alpha, TLR 3, TRAIL and FASLG. Several of the markers in the PFS or best treatment response signatures were also identified by a machine learning classification algorithm. In conclusion, protein profiling of EVs isolated from plasma of mUC patients shows a potential to identify protein signatures that may associate with PFS and/or treatment response.
Collapse
Affiliation(s)
- Kristina Viktorsson
- Department of Oncology-Pathology, Karolinska Institutet, SE-171 64, Solna, Sweden
| | - Petra Hååg
- Department of Oncology-Pathology, Karolinska Institutet, SE-171 64, Solna, Sweden
| | - Carl-Henrik Shah
- Department of Oncology-Pathology, Karolinska Institutet, SE-171 64, Solna, Sweden.,Department of Pelvic cancer, Genitourinary oncology and urology unit, Karolinska University Hospital, SE-171 64, Solna, Sweden
| | - Bo Franzén
- Department of Oncology-Pathology, Karolinska Institutet, SE-171 64, Solna, Sweden
| | - Vasiliki Arapi
- Department of Oncology-Pathology, Karolinska Institutet, SE-171 64, Solna, Sweden
| | - Karin Holmsten
- Department of Oncology-Pathology, Karolinska Institutet, SE-171 64, Solna, Sweden.,Department of Oncology, Capio Sankt Görans Hospital, SE-112 19, Stockholm, Sweden
| | - Per Sandström
- Department of Oncology-Pathology, Karolinska Institutet, SE-171 64, Solna, Sweden
| | - Rolf Lewensohn
- Department of Oncology-Pathology, Karolinska Institutet, SE-171 64, Solna, Sweden.,Theme Cancer, Medical Unit head and neck, lung, and skin tumors, Thoracic Oncology Center, Karolinska University Hospital, SE-171 64, Solna, Sweden
| | - Anders Ullén
- Department of Oncology-Pathology, Karolinska Institutet, SE-171 64, Solna, Sweden.,Department of Pelvic cancer, Genitourinary oncology and urology unit, Karolinska University Hospital, SE-171 64, Solna, Sweden
| |
Collapse
|
33
|
Thuault S, Ghossoub R, David G, Zimmermann P. A Journey on Extracellular Vesicles for Matrix Metalloproteinases: A Mechanistic Perspective. Front Cell Dev Biol 2022; 10:886381. [PMID: 35669514 PMCID: PMC9163832 DOI: 10.3389/fcell.2022.886381] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/27/2022] [Indexed: 12/15/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are key players in matrix remodeling and their function has been particularly investigated in cancer biology. Indeed, through extracellular matrix (ECM) degradation and shedding of diverse cell surface macromolecules, they are implicated in different steps of tumor development, from local expansion by growth to tissue invasion and metastasis. Interestingly, MMPs are also components of extracellular vesicles (EVs). EVs are membrane-limited organelles that cells release in their extracellular environment. These "secreted" vesicles are now well accepted players in cell-to-cell communication. EVs have received a lot of interest in recent years as they are also envisioned as sources of biomarkers and as potentially outperforming vehicles for the delivery of therapeutics. Molecular machineries governing EV biogenesis, cargo loading and delivery to recipient cells are complex and still under intense investigation. In this review, we will summarize the state of the art of our knowledge about the molecular mechanisms implicated in MMP trafficking and secretion. We focus on MT1-MMP, a major effector of invasive cell behavior. We will also discuss how this knowledge is of interest for a better understanding of EV-loading of MMPs. Such knowledge might be of use to engineer novel strategies for cancer treatment. A better understanding of these mechanisms could also be used to design more efficient EV-based therapies.
Collapse
Affiliation(s)
- Sylvie Thuault
- Centre de Recherche en Cancérologie de Marseille (CRCM), Equipe Labellisée Ligue 2018, CNRS, Inserm, Institut Paoli Calmettes, Aix-Marseille Université, Marseille, France
| | - Rania Ghossoub
- Centre de Recherche en Cancérologie de Marseille (CRCM), Equipe Labellisée Ligue 2018, CNRS, Inserm, Institut Paoli Calmettes, Aix-Marseille Université, Marseille, France
| | - Guido David
- Centre de Recherche en Cancérologie de Marseille (CRCM), Equipe Labellisée Ligue 2018, CNRS, Inserm, Institut Paoli Calmettes, Aix-Marseille Université, Marseille, France
- Department of Human Genetics, KU Leuven, University of Leuven, Leuven, Belgium
| | - Pascale Zimmermann
- Centre de Recherche en Cancérologie de Marseille (CRCM), Equipe Labellisée Ligue 2018, CNRS, Inserm, Institut Paoli Calmettes, Aix-Marseille Université, Marseille, France
- Department of Human Genetics, KU Leuven, University of Leuven, Leuven, Belgium
| |
Collapse
|
34
|
Plasma-Enabled Smart Nanoexosome Platform as Emerging Immunopathogenesis for Clinical Viral Infection. Pharmaceutics 2022; 14:pharmaceutics14051054. [PMID: 35631640 PMCID: PMC9145689 DOI: 10.3390/pharmaceutics14051054] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/08/2022] [Accepted: 05/11/2022] [Indexed: 02/01/2023] Open
Abstract
Smart nanoexosomes are nanosized structures enclosed in lipid bilayers that are structurally similar to the viruses released by a variety of cells, including the cells lining the respiratory system. Of particular importance, the interaction between smart nanoexosomes and viruses can be used to develop antiviral drugs and vaccines. It is possible that nanoexosomes will be utilized and antibodies will be acquired more successfully for the transmission of an immune response if reconvalescent plasma (CP) is used instead of reconvalescent plasma exosomes (CPExo) in this concept. Convalescent plasma contains billions of smart nanoexosomes capable of transporting a variety of molecules, including proteins, lipids, RNA and DNA among other viral infections. Smart nanoexosomes are released from virus-infected cells and play an important role in mediating communication between infected and uninfected cells. Infections use the formation, production and release of smart nanoexosomes to enhance the infection, transmission and intercellular diffusion of viruses. Cell-free smart nanoexosomes produced by mesenchymal stem cells (MSCs) could also be used as cell-free therapies in certain cases. Smart nanoexosomes produced by mesenchymal stem cells can also promote mitochondrial function and heal lung injury. They can reduce cytokine storms and restore the suppression of host antiviral defenses weakened by viral infections. This study examines the benefits of smart nanoexosomes and their roles in viral transmission, infection, treatment, drug delivery and clinical applications. We also explore some potential future applications for smart nanoexosomes in the treatment of viral infections.
Collapse
|
35
|
Shan Y, Zhou P, Zhou Q, Yang L. Extracellular Vesicles in the Progression and Therapeutic Resistance of Nasopharyngeal Carcinoma. Cancers (Basel) 2022; 14:2289. [PMID: 35565418 PMCID: PMC9101631 DOI: 10.3390/cancers14092289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/30/2022] [Accepted: 05/02/2022] [Indexed: 02/07/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) is an epithelial malignancy largely associated with Epstein-Barr virus (EBV) infection, which is frequently reported in east and southeast Asia. Extracellular vesicles (EVs) originate from the endosome or plasma membrane, which plays a critical role in tumor pathogenesis for their character of cell-cell communication and its cargos, including proteins, RNA, and other molecules that can target recipient cells and affect their progression. To date, numerous studies have indicated that EVs have crucial significance in the progression, metastasis, and therapeutic resistance of NPC. In this review, we not only summarize the interaction of NPC cells and the tumor microenvironment (TME) through EVs, but also explain the role of EVs in radiation and drug resistance of NPC, which poses a severe threat to cancer therapy. Therefore, EVs may show great potential as biomarkers in the early diagnosis of interfered targets of NPC therapy.
Collapse
Affiliation(s)
- Yunhan Shan
- Department of Oncology, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410078, China; (Y.S.); (P.Z.); (Q.Z.)
- Cancer Research Institute, School of Basic Medicine Science, Central South University, Changsha 410078, China
- Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Peijun Zhou
- Department of Oncology, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410078, China; (Y.S.); (P.Z.); (Q.Z.)
- Cancer Research Institute, School of Basic Medicine Science, Central South University, Changsha 410078, China
| | - Qin Zhou
- Department of Oncology, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410078, China; (Y.S.); (P.Z.); (Q.Z.)
| | - Lifang Yang
- Department of Oncology, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410078, China; (Y.S.); (P.Z.); (Q.Z.)
- Cancer Research Institute, School of Basic Medicine Science, Central South University, Changsha 410078, China
| |
Collapse
|
36
|
Rezaie J, Akbari A, Rahbarghazi R. Inhibition of extracellular vesicle biogenesis in tumor cells: A possible way to reduce tumorigenesis. Cell Biochem Funct 2022; 40:248-262. [PMID: 35285964 DOI: 10.1002/cbf.3695] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/14/2022] [Accepted: 02/21/2022] [Indexed: 12/17/2022]
Abstract
Most eukaryotic cells secrete extracellular vesicles (EVs), which contribute to intracellular communication through transferring different biomolecules such as proteins, RNAs, and lipids to cells. Two main types of EVs are exosomes and microvesicles. Exosomes originate from multivesicular bodies, while microvesicles are shed from the plasma membrane. Mechanisms of exosomes and microvesicle biogenesis/trafficking are complex and many molecules are involved in their biogenesis and secretion. Tumor-derived EVs contain oncogenic molecules that promote tumor growth, metastasis, immune surveillance, angiogenesis, and chemoresistance. A growing body of evidence indicates various compounds can inhibit biogenesis and secretion of EVs from cells and several experiments were conducted to use EVs-inhibitors for understanding the biology of the cells or for understanding the pathology of several diseases like cancer. However, the nontargeting effects of drugs/inhibitors remain a concern. Our current knowledge of EVs biogenesis and their inhibition from tumor cells may provide an avenue for cancer management. In this review, we shed light on exosomes and microvesicles biogenesis, key roles of tumor-derived EVs, and discuss methods used to inhibition of EVs by different inhibitors.
Collapse
Affiliation(s)
- Jafar Rezaie
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Ali Akbari
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
37
|
Ghossoub R, Leblanc R, David G, Zimmermann P. [Tetraspanins and syndecans: Partners in crime for 'dealing' exosomes?]. Med Sci (Paris) 2021; 37:1101-1107. [PMID: 34928212 DOI: 10.1051/medsci/2021202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Exosomes are small extracellular vesicles derived from endosomal compartments. The molecular mechanisms supporting the biology of exosomes, from their biogenesis to their internalization by target cells, rely on 'dedicated' membrane proteins. These mechanisms of action need to be further clarified. This will help to better understand how exosome composition and heterogeneity are established. This would also help to rationalize their use as source of biomarkers and therapeutic tools. Here we discuss how syndecans and tetraspanins, two families of membrane scaffold proteins, cooperate to regulate different steps of exosome biology.
Collapse
Affiliation(s)
- Rania Ghossoub
- Centre de recherche en cancérologie de Marseille (CRCM), Aix-Marseille Université, Inserm, CNRS, Équipe labellisée Ligue 2018, Institut Paoli-Calmettes, 27 bd Leï Roure, 13009 Marseille, France
| | - Raphael Leblanc
- Centre de recherche en cancérologie de Marseille (CRCM), Aix-Marseille Université, Inserm, CNRS, Équipe labellisée Ligue 2018, Institut Paoli-Calmettes, 27 bd Leï Roure, 13009 Marseille, France
| | - Guido David
- Centre de recherche en cancérologie de Marseille (CRCM), Aix-Marseille Université, Inserm, CNRS, Équipe labellisée Ligue 2018, Institut Paoli-Calmettes, 27 bd Leï Roure, 13009 Marseille, France - Department of Human Genetics, Katholieke Universiteit (KU) Leuven, Herestraat 49 box 604, B-3000 Louvain, Belgique
| | - Pascale Zimmermann
- Centre de recherche en cancérologie de Marseille (CRCM), Aix-Marseille Université, Inserm, CNRS, Équipe labellisée Ligue 2018, Institut Paoli-Calmettes, 27 bd Leï Roure, 13009 Marseille, France - Department of Human Genetics, Katholieke Universiteit (KU) Leuven, Herestraat 49 box 604, B-3000 Louvain, Belgique
| |
Collapse
|
38
|
Rapraeger AC. Syndecans and Their Synstatins: Targeting an Organizer of Receptor Tyrosine Kinase Signaling at the Cell-Matrix Interface. Front Oncol 2021; 11:775349. [PMID: 34778093 PMCID: PMC8578902 DOI: 10.3389/fonc.2021.775349] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 09/27/2021] [Indexed: 01/11/2023] Open
Abstract
Receptor tyrosine kinases (RTKs) and integrin matrix receptors have well-established roles in tumor cell proliferation, invasion and survival, often functioning in a coordinated fashion at sites of cell-matrix adhesion. Central to this coordination are syndecans, another class of matrix receptor, that organize RTKs and integrins into functional units, relying on docking motifs in the syndecan extracellular domains to capture and localize RTKs (e.g., EGFR, IGF-1R, VEGFR2, HER2) and integrins (e.g., αvβ3, αvβ5, α4β1, α3β1, α6β4) to sites of adhesion. Peptide mimetics of the docking motifs in the syndecans, called “synstatins”, prevent assembly of these receptor complexes, block their signaling activities and are highly effective against tumor cell invasion and survival and angiogenesis. This review describes our current understanding of these four syndecan-coupled mechanisms and their inhibitory synstatins (SSTNIGF1R, SSTNVEGFR2, SSTNVLA-4, SSTNEGFR and SSTNHER2).
Collapse
Affiliation(s)
- Alan C Rapraeger
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
39
|
Shi H, Wang M, Sun Y, Yang D, Xu W, Qian H. Exosomes: Emerging Cell-Free Based Therapeutics in Dermatologic Diseases. Front Cell Dev Biol 2021; 9:736022. [PMID: 34722517 PMCID: PMC8553038 DOI: 10.3389/fcell.2021.736022] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/20/2021] [Indexed: 12/17/2022] Open
Abstract
Exosomes are lipid bilayer vesicles released by multiple cell types. These bioactive vesicles are gradually becoming a leading star in intercellular communication involving in various pathological and physiological process. Exosomes convey specific and bioactive transporting cargos, including lipids, nucleic acids and proteins which can be reflective of their parent cells, rendering them attractive in cell-free therapeutics. Numerous findings have confirmed the crucial role of exosomes in restraining scars, burning, senescence and wound recovery. Moreover, the biology research of exosomes in cutting-edge studies are emerging, allowing for the development of particular guidelines and quality control methodology, which favor their possible application in the future. In this review, we discussed therapeutic potential of exosomes in different relevant mode of dermatologic diseases, as well as the various molecular mechanisms. Furthermore, given the advantages of favorable biocompatibility and transporting capacity, the bioengineering modification of exosomes is also involved.
Collapse
Affiliation(s)
- Hui Shi
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Institute of Stem Cell, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Min Wang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Institute of Stem Cell, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yaoxiang Sun
- Department of Clinical Laboratory, The Affiliated Yixing Hospital of Jiangsu University, Yixing, China
| | - Dakai Yang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Institute of Stem Cell, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Wenrong Xu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Institute of Stem Cell, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Hui Qian
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Institute of Stem Cell, School of Medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|
40
|
Ye Y, Hao J, Hong Z, Wu T, Ge X, Qian B, Chen X, Zhang F. Downregulation of MicroRNA-145-5p in Activated Microglial Exosomes Promotes Astrocyte Proliferation by Removal of Smad3 Inhibition. Neurochem Res 2021; 47:382-393. [PMID: 34623564 DOI: 10.1007/s11064-021-03446-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 08/04/2021] [Accepted: 09/02/2021] [Indexed: 01/08/2023]
Abstract
In spinal cord injury, microglial activation plays an important role during the inflammatory process. Specifically, the cellular and molecular interactions between microglia and astrocytes are of critical importance. Cells can communicate with each other through the substances carried by exosomes, and overproliferated astrocytes would create a physical and chemical barrier that prevents neurite regeneration, thereby interfering with functional recovery. On the other hand, Smad3 is an important factor in the proliferation, migration, and apoptosis of astrocytes. In this study, supernatant and purified exosomes were collected from LPS-treated microglia and co-cultured with astrocytes. The results showed that astrocytic proliferation was promoted with higher levels of Smad3. Furthermore, miRNA sequencing analysis was performed on microglial exosomes after inflammation. The results revealed a differential expression of miR-145-5p in the exosomes. The Dual-Luciferase assay showed that miR-145-5p could bind to Smad3 mRNA and regulate the levels of Smad3 protein at the post-transcriptional level. Subsequently, exosomes were transfected with miR-145-5p mimics, and astrocytes after mechanical injury were cultured with these exosomes for 24 h. The levels of Smad3 and phosphor-Smad3 proteins were analyzed by western blot and qRT-PCR. CCK8 and flow cytometry showed lower proliferation of astrocytes after co-culturing with the exosomes transfected with the miR-145-5p mimic. This study finds that miR-145-5p was found to be a negative regulator of astrocyte proliferation, and that its downregulation promotes smad3 activity and thus astrocyte proliferation.
Collapse
Affiliation(s)
- Yong Ye
- Medical School of Nantong University, Nantong, 226001, Jiangsu, China.,Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong, 226001, Jiangsu, China
| | - Jie Hao
- Department of Orthopedics, Affiliated Hospital of Nantong University, 20th Xisi Road, Nantong, 226001, Jiangsu, China
| | - Zhou Hong
- Medical School of Nantong University, Nantong, 226001, Jiangsu, China.,Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong, 226001, Jiangsu, China
| | - Tong Wu
- Medical School of Nantong University, Nantong, 226001, Jiangsu, China.,Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong, 226001, Jiangsu, China
| | - Xingyu Ge
- Medical School of Nantong University, Nantong, 226001, Jiangsu, China
| | - Boyu Qian
- Medical School of Nantong University, Nantong, 226001, Jiangsu, China.,Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong, 226001, Jiangsu, China
| | - Xiaoqing Chen
- Department of Orthopedics, Affiliated Hospital of Nantong University, 20th Xisi Road, Nantong, 226001, Jiangsu, China.
| | - Feng Zhang
- Department of Orthopedics, Affiliated Hospital of Nantong University, 20th Xisi Road, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
41
|
Santos NJ, Barquilha CN, Barbosa IC, Macedo RT, Lima FO, Justulin LA, Barbosa GO, Carvalho HF, Felisbino SL. Syndecan Family Gene and Protein Expression and Their Prognostic Values for Prostate Cancer. Int J Mol Sci 2021; 22:ijms22168669. [PMID: 34445387 PMCID: PMC8395474 DOI: 10.3390/ijms22168669] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/06/2021] [Accepted: 08/09/2021] [Indexed: 12/24/2022] Open
Abstract
Prostate cancer (PCa) is the leading cause of cancer-associated mortality in men, and new biomarkers are still needed. The expression pattern and protein tissue localization of proteoglycans of the syndecan family (SDC 1-4) and syntenin-1 (SDCBP) were determined in normal and prostatic tumor tissue from two genetically engineered mouse models and human prostate tumors. Studies were validated using SDC 1-4 and SDCBP mRNA levels and patient survival data from The Cancer Genome Atlas and CamCAP databases. RNAseq showed increased expression of Sdc1 in Pb-Cre4/Ptenf/f mouse Pca and upregulation of Sdc3 expression and downregulation of Sdc2 and Sdc4 when compared to the normal prostatic tissue in Pb-Cre4/Trp53f/f-;Rb1f/f mouse tumors. These changes were confirmed by immunohistochemistry. In human PCa, SDC 1-4 and SDCBP immunostaining showed variable localization. Furthermore, Kaplan-Meier analysis showed that patients expressing SDC3 had shorter prostate-specific survival than those without SDC3 expression (log-rank test, p = 0.0047). Analysis of the MSKCC-derived expression showed that SDC1 and SDC3 overexpression is predictive of decreased biochemical recurrence-free survival (p = 0.0099 and p = 0.045, respectively), and SDC4 overexpression is predictive of increased biochemical recurrence-free survival (p = 0.035). SDC4 overexpression was associated with a better prognosis, while SDC1 and SDC3 were associated with more aggressive tumors and a worse prognosis.
Collapse
Affiliation(s)
- Nilton José Santos
- Department of Structural and Functional BIology, Institute of Bioscience of Botucatu (IBB), São Paulo State University, Botucatu 18618-689, SP, Brazil; (N.J.S.); (C.N.B.); (I.C.B.); (L.A.J.)
- Department of Structural and Functional Biology, Institute of Biology (IB), UNICAMP—State University of Campinas, Campinas 13083-970, SP, Brazil; (G.O.B.); (H.F.C.)
| | - Caroline Nascimento Barquilha
- Department of Structural and Functional BIology, Institute of Bioscience of Botucatu (IBB), São Paulo State University, Botucatu 18618-689, SP, Brazil; (N.J.S.); (C.N.B.); (I.C.B.); (L.A.J.)
- Department of Structural and Functional Biology, Institute of Biology (IB), UNICAMP—State University of Campinas, Campinas 13083-970, SP, Brazil; (G.O.B.); (H.F.C.)
| | - Isabela Correa Barbosa
- Department of Structural and Functional BIology, Institute of Bioscience of Botucatu (IBB), São Paulo State University, Botucatu 18618-689, SP, Brazil; (N.J.S.); (C.N.B.); (I.C.B.); (L.A.J.)
- Department of Structural and Functional Biology, Institute of Biology (IB), UNICAMP—State University of Campinas, Campinas 13083-970, SP, Brazil; (G.O.B.); (H.F.C.)
| | - Rodrigo Tavares Macedo
- Botucatu School of Medicine (FMB), São Paulo State University, Botucatu 01049-010, SP, Brazil; (R.T.M.); (F.O.L.)
| | - Flávio Oliveira Lima
- Botucatu School of Medicine (FMB), São Paulo State University, Botucatu 01049-010, SP, Brazil; (R.T.M.); (F.O.L.)
| | - Luis Antônio Justulin
- Department of Structural and Functional BIology, Institute of Bioscience of Botucatu (IBB), São Paulo State University, Botucatu 18618-689, SP, Brazil; (N.J.S.); (C.N.B.); (I.C.B.); (L.A.J.)
| | - Guilherme Oliveira Barbosa
- Department of Structural and Functional Biology, Institute of Biology (IB), UNICAMP—State University of Campinas, Campinas 13083-970, SP, Brazil; (G.O.B.); (H.F.C.)
| | - Hernandes F. Carvalho
- Department of Structural and Functional Biology, Institute of Biology (IB), UNICAMP—State University of Campinas, Campinas 13083-970, SP, Brazil; (G.O.B.); (H.F.C.)
| | - Sérgio Luis Felisbino
- Department of Structural and Functional BIology, Institute of Bioscience of Botucatu (IBB), São Paulo State University, Botucatu 18618-689, SP, Brazil; (N.J.S.); (C.N.B.); (I.C.B.); (L.A.J.)
- Correspondence:
| |
Collapse
|
42
|
Han J, Shi Y, Willis G, Imani J, Kwon MY, Li G, Ayaub E, Ghanta S, Ng J, Hwang N, Tsoyi K, El-Chemaly S, Kourembanas S, Mitsialis SA, Rosas IO, Liu X, Perrella MA. Mesenchymal stromal cell-derived syndecan-2 regulates the immune response during sepsis to foster bacterial clearance and resolution of inflammation. FEBS J 2021; 289:417-435. [PMID: 34355516 PMCID: PMC8766882 DOI: 10.1111/febs.16154] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 06/28/2021] [Accepted: 08/04/2021] [Indexed: 12/15/2022]
Abstract
Sepsis is a life-threatening process related to a dysregulated host response to an underlying infection, which results in organ dysfunction and poor outcomes. Therapeutic strategies using mesenchymal stromal cells (MSCs) are under investigation for sepsis, with efforts to improve cellular utility. Syndecan (SDC) proteins are transmembrane proteoglycans involved with cellular signaling events including tissue repair and modulating inflammation. Bone marrow-derived human MSCs express syndecan-2 (SDC2) at a level higher than other SDC family members; thus, we explored SDC2 in MSC function. Administration of human MSCs silenced for SDC2 in experimental sepsis resulted in decreased bacterial clearance, and increased tissue injury and mortality compared with wild-type MSCs. These findings were associated with a loss of resolution of inflammation in the peritoneal cavity, and higher levels of proinflammatory mediators in organs. MSCs silenced for SDC2 had a decreased ability to promote phagocytosis of apoptotic neutrophils by macrophages in the peritoneum, and also a diminished capability to convert macrophages from a proinflammatory to a proresolution phenotype via cellular or paracrine actions. Extracellular vesicles are a paracrine effector of MSCs that may contribute to resolution of inflammation, and their production was dramatically reduced in SDC2-silenced human MSCs. Collectively, these data demonstrate the importance of SDC2 for cellular and paracrine function of human MSCs during sepsis.
Collapse
Affiliation(s)
- Junwen Han
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,School of Life Sciences, Beijing University of Chinese Medicine, China
| | - Yuanyuan Shi
- School of Life Sciences, Beijing University of Chinese Medicine, China
| | - Gareth Willis
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, MA, USA
| | - Jewel Imani
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Min-Young Kwon
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Gu Li
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Ehab Ayaub
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Sailaja Ghanta
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Julie Ng
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Narae Hwang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Konstantin Tsoyi
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Souheil El-Chemaly
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Stella Kourembanas
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, MA, USA
| | - S Alex Mitsialis
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, MA, USA
| | - Ivan O Rosas
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Xiaoli Liu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,Department of Pediatric Newborn Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Mark A Perrella
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,Department of Pediatric Newborn Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
43
|
Hamdan Y, Mazini L, Malka G. Exosomes and Micro-RNAs in Aging Process. Biomedicines 2021; 9:968. [PMID: 34440172 PMCID: PMC8393989 DOI: 10.3390/biomedicines9080968] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/06/2021] [Accepted: 07/15/2021] [Indexed: 12/14/2022] Open
Abstract
Exosomes are the main actors of intercellular communications and have gained great interest in the new cell-free regenerative medicine. These nanoparticles are secreted by almost all cell types and contain lipids, cytokines, growth factors, messenger RNA, and different non-coding RNA, especially micro-RNAs (mi-RNAs). Exosomes' cargo is released in the neighboring microenvironment but is also expected to act on distant tissues or organs. Different biological processes such as cell development, growth and repair, senescence, migration, immunomodulation, and aging, among others, are mediated by exosomes and principally exosome-derived mi-RNAs. Moreover, their therapeutic potential has been proved and reinforced by their use as biomarkers for disease diagnostics and progression. Evidence has increasingly shown that exosome-derived mi-RNAs are key regulators of age-related diseases, and their involvement in longevity is becoming a promising issue. For instance, mi-RNAs such as mi-RNA-21, mi-RNA-29, and mi-RNA-34 modulate tissue functionality and regeneration by targeting different tissues and involving different pathways but might also interfere with long life expectancy. Human mi-RNAs profiling is effectively related to the biological fluids that are reported differently between young and old individuals. However, their underlying mechanisms modulating cell senescence and aging are still not fully understood, and little was reported on the involvement of mi-RNAs in cell or tissue longevity. In this review, we summarize exosome biogenesis and mi-RNA synthesis and loading mechanism into exosomes' cargo. Additionally, we highlight the molecular mechanisms of exosomes and exosome-derived mi-RNA regulation in the different aging processes.
Collapse
Affiliation(s)
| | - Loubna Mazini
- Institute of Biological Sciences, Université Mohammed VI Polytechnique, Lot 660 Hay Moulay Rachid, Ben Guerir 3150, Morocco; (Y.H.); (G.M.)
| | | |
Collapse
|
44
|
Heparan sulfate analogues regulate tumor-derived exosome formation that attenuates exosome functions in tumor processes. Int J Biol Macromol 2021; 187:481-491. [PMID: 34298051 DOI: 10.1016/j.ijbiomac.2021.07.110] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 07/03/2021] [Accepted: 07/16/2021] [Indexed: 12/13/2022]
Abstract
Heparan sulfate (HS) is involved in many biological activities, including the biogenesis and uptake of exosomes, which are related to the occurrence and development of tumors. This study investigated the role of HS analogues (heparin, low molecular weight heparin, and 6-O-desulfated heparin) in modulating exosome secretion, composition and functions. Exosomes derived from B16F10 cells exposed to different HS analogues were isolated and characterized by TEM, western blotting and Nanosight analyses. The number, size and protein cargo of exosomes secreted by HS analogues-induced B16F10 cells were detected. The findings indicated the reduced tumor-derived exosome secretion and protein cargo as reflected by lower levels of CD63, TSG101, heparinase and IL-6 in exosomes derived from heparin-induced B16F10 cells as compared with 6-O-desulfated heparin-induced tumor cells. Further functional assays demonstrated that exosomes from tumor cells exposed to heparin weakened tumor proliferation, migration and invasion most significantly among various exosomes derived from B16F10 cells treated with different HS analogues. Moreover, the sulfate group at 6-O position of heparan sulfate has been proved to play an important role in tumor-derived exosome formation and functions. This study suggested a vital view to develop more specific and efficient HS-based strategies in cancer treatment for targeting tumor-derived exosomes.
Collapse
|
45
|
Shan X, Zhang C, Mai C, Hu X, Cheng N, Chen W, Peng D, Wang L, Ji Z, Xie Y. The Biogenesis, Biological Functions, and Applications of Macrophage-Derived Exosomes. Front Mol Biosci 2021; 8:715461. [PMID: 34368234 PMCID: PMC8333870 DOI: 10.3389/fmolb.2021.715461] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/09/2021] [Indexed: 12/11/2022] Open
Abstract
Macrophage-derived exosomes have been implicated on the modulation of inflammatory processes. Recent studies have shown that macrophage-derived exosomes contribute to the progression of many diseases such as cancer, atherosclerosis, diabetes and heart failure. This review describes the biogenesis of macrophage-derived exosomes and their biological functions in different diseases. In addition, the challenges facing the use of macrophage-derived exosomes as delivery tools for drugs, genes, and proteins in clinical applications are described. The application of macrophage-derived exosomes in the diagnosis and treatment of diseases is also discussed.
Collapse
Affiliation(s)
- Xiaoxiao Shan
- School of Pharmacy, Anhui Academy of Chinese Medicine, , Anhui University of Traditional Chinese MedicineHefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China.,Anhui Province Key Laboratory of Pharmaceutical Technology and Application, Hefei, China
| | - Caiyun Zhang
- School of Pharmacy, Anhui Academy of Chinese Medicine, , Anhui University of Traditional Chinese MedicineHefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China.,Anhui Province Key Laboratory of Pharmaceutical Technology and Application, Hefei, China
| | - Chutian Mai
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Avenida Wai Long, China
| | - Xuerui Hu
- School of Pharmacy, Anhui Academy of Chinese Medicine, , Anhui University of Traditional Chinese MedicineHefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China.,Anhui Province Key Laboratory of Pharmaceutical Technology and Application, Hefei, China
| | - Nuo Cheng
- School of Pharmacy, Anhui Academy of Chinese Medicine, , Anhui University of Traditional Chinese MedicineHefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China.,Anhui Province Key Laboratory of Pharmaceutical Technology and Application, Hefei, China
| | - Weidong Chen
- School of Pharmacy, Anhui Academy of Chinese Medicine, , Anhui University of Traditional Chinese MedicineHefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China.,Anhui Province Key Laboratory of Pharmaceutical Technology and Application, Hefei, China
| | - Daiyin Peng
- School of Pharmacy, Anhui Academy of Chinese Medicine, , Anhui University of Traditional Chinese MedicineHefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Lei Wang
- School of Pharmacy, Anhui Academy of Chinese Medicine, , Anhui University of Traditional Chinese MedicineHefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China.,Anhui Province Key Laboratory of Pharmaceutical Technology and Application, Hefei, China
| | - Zhaojie Ji
- School of Pharmacy, Anhui Academy of Chinese Medicine, , Anhui University of Traditional Chinese MedicineHefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Ying Xie
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Avenida Wai Long, China
| |
Collapse
|
46
|
Zhang T, Ma S, Lv J, Wang X, Afewerky HK, Li H, Lu Y. The emerging role of exosomes in Alzheimer's disease. Ageing Res Rev 2021; 68:101321. [PMID: 33727157 DOI: 10.1016/j.arr.2021.101321] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/20/2021] [Accepted: 03/08/2021] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD), manifested by memory loss and a decline in cognitive functions, is the most prevalent neurodegenerative disease accounting for 60-80 % of dementia cases. But, to-date, there is no effective treatment available to slow or stop the progression of AD. Exosomes are small extracellular vesicles that carry constituents, such as functional messenger RNAs, non-coding RNAs, proteins, lipids, DNA, and other bioactive substances of their source cells. In the brain, exosomes are likely to be sourced by almost all cell types and involve in cell communication to regulate cellular functions. The yet, accumulated evidence on the roles of exosomes and their constituents in the AD pathological process suggests their significance as additional biomarkers and therapeutic targets for AD. This review summarizes the current reported research findings on exosomes roles in the pathogenesis, diagnosis, and treatment of AD.
Collapse
|
47
|
Huda MN, Nafiujjaman M, Deaguero IG, Okonkwo J, Hill ML, Kim T, Nurunnabi M. Potential Use of Exosomes as Diagnostic Biomarkers and in Targeted Drug Delivery: Progress in Clinical and Preclinical Applications. ACS Biomater Sci Eng 2021; 7:2106-2149. [PMID: 33988964 PMCID: PMC8147457 DOI: 10.1021/acsbiomaterials.1c00217] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 05/03/2021] [Indexed: 12/13/2022]
Abstract
Exosomes are cell-derived vesicles containing heterogeneous active biomolecules such as proteins, lipids, mRNAs, receptors, immune regulatory molecules, and nucleic acids. They typically range in size from 30 to 150 nm in diameter. An exosome's surfaces can be bioengineered with antibodies, fluorescent dye, peptides, and tailored for small molecule and large active biologics. Exosomes have enormous potential as a drug delivery vehicle due to enhanced biocompatibility, excellent payload capability, and reduced immunogenicity compared to alternative polymeric-based carriers. Because of active targeting and specificity, exosomes are capable of delivering their cargo to exosome-recipient cells. Additionally, exosomes can potentially act as early stage disease diagnostic tools as the exosome carries various protein biomarkers associated with a specific disease. In this review, we summarize recent progress on exosome composition, biological characterization, and isolation techniques. Finally, we outline the exosome's clinical applications and preclinical advancement to provide an outlook on the importance of exosomes for use in targeted drug delivery, biomarker study, and vaccine development.
Collapse
Affiliation(s)
- Md Nurul Huda
- Environmental Science & Engineering, University of Texas at El Paso, El Paso, TX 79968
| | - Md Nafiujjaman
- Department of Biomedical Engineering, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824
| | - Isaac G Deaguero
- Biomedical Engineering, University of Texas at El Paso, El Paso, TX 79968
| | - Jude Okonkwo
- John A Paulson School of Engineering, Harvard University, Cambridge, MA 02138
| | - Meghan L. Hill
- Department of Biomedical Engineering, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824
| | - Taeho Kim
- Department of Biomedical Engineering, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824
| | - Md Nurunnabi
- Environmental Science & Engineering, University of Texas at El Paso, El Paso, TX 79968
- Biomedical Engineering, University of Texas at El Paso, El Paso, TX 79968
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX 79902
- Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968
| |
Collapse
|
48
|
Garcia M, Hoffer L, Leblanc R, Benmansour F, Feracci M, Derviaux C, Egea-Jimenez AL, Roche P, Zimmermann P, Morelli X, Barral K. Fragment-based drug design targeting syntenin PDZ2 domain involved in exosomal release and tumour spread. Eur J Med Chem 2021; 223:113601. [PMID: 34153575 DOI: 10.1016/j.ejmech.2021.113601] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/28/2021] [Accepted: 05/30/2021] [Indexed: 11/17/2022]
Abstract
Syntenin stimulates exosome production and its expression is upregulated in many cancers and implicated in the spread of metastatic tumor. These effects are supported by syntenin PDZ domains interacting with syndecans. We therefore aimed to develop, through a fragment-based drug design approach, novel inhibitors targeting syntenin-syndecan interactions. We describe here the optimization of a fragment, 'hit' C58, identified by in vitro screening of a PDZ-focused fragment library, which binds specifically to the syntenin-PDZ2 domain at the same binding site as the syndecan-2 peptide. X-ray crystallographic structures and computational docking were used to guide our optimization process and lead to compounds 45 and 57 (IC50 = 33 μM and 47 μM; respectively), two representatives of syntenin-syndecan interactions inhibitors, that selectively affect the syntenin-exosome release. These findings demonstrate that it is possible to identify small molecules inhibiting syntenin-syndecan interaction and exosome release that may be useful for cancer therapy.
Collapse
Affiliation(s)
- Manon Garcia
- Centre de Recherche en Cancérologie de Marseille (CRCM), Integrative Structural & Chemical Biology, Aix-Marseille Université, Inserm 1068, CNRS 7258, Institut Paoli Calmettes, 13009, Marseille, France
| | - Laurent Hoffer
- Centre de Recherche en Cancérologie de Marseille (CRCM), Integrative Structural & Chemical Biology, Aix-Marseille Université, Inserm 1068, CNRS 7258, Institut Paoli Calmettes, 13009, Marseille, France
| | - Raphaël Leblanc
- Equipe Labellisée Ligue 2018, Centre de Recherche en Cancérologie de Marseille, Aix-Marseille Université, Inserm1068, CNRS7258, Institut Paoli-Calmettes, 13009 Marseille, France
| | - Fatiha Benmansour
- Centre de Recherche en Cancérologie de Marseille (CRCM), Integrative Structural & Chemical Biology, Aix-Marseille Université, Inserm 1068, CNRS 7258, Institut Paoli Calmettes, 13009, Marseille, France
| | - Mikael Feracci
- Centre de Recherche en Cancérologie de Marseille (CRCM), Integrative Structural & Chemical Biology, Aix-Marseille Université, Inserm 1068, CNRS 7258, Institut Paoli Calmettes, 13009, Marseille, France
| | - Carine Derviaux
- Centre de Recherche en Cancérologie de Marseille (CRCM), Integrative Structural & Chemical Biology, Aix-Marseille Université, Inserm 1068, CNRS 7258, Institut Paoli Calmettes, 13009, Marseille, France
| | - Antonio Luis Egea-Jimenez
- Equipe Labellisée Ligue 2018, Centre de Recherche en Cancérologie de Marseille, Aix-Marseille Université, Inserm1068, CNRS7258, Institut Paoli-Calmettes, 13009 Marseille, France
| | - Philippe Roche
- Centre de Recherche en Cancérologie de Marseille (CRCM), Integrative Structural & Chemical Biology, Aix-Marseille Université, Inserm 1068, CNRS 7258, Institut Paoli Calmettes, 13009, Marseille, France
| | - Pascale Zimmermann
- Equipe Labellisée Ligue 2018, Centre de Recherche en Cancérologie de Marseille, Aix-Marseille Université, Inserm1068, CNRS7258, Institut Paoli-Calmettes, 13009 Marseille, France; Department of Human Genetics, K. U. Leuven, B-3000, Leuven, Belgium
| | - Xavier Morelli
- Centre de Recherche en Cancérologie de Marseille (CRCM), Integrative Structural & Chemical Biology, Aix-Marseille Université, Inserm 1068, CNRS 7258, Institut Paoli Calmettes, 13009, Marseille, France
| | - Karine Barral
- Centre de Recherche en Cancérologie de Marseille (CRCM), Integrative Structural & Chemical Biology, Aix-Marseille Université, Inserm 1068, CNRS 7258, Institut Paoli Calmettes, 13009, Marseille, France.
| |
Collapse
|
49
|
Exploring interactions between extracellular vesicles and cells for innovative drug delivery system design. Adv Drug Deliv Rev 2021; 173:252-278. [PMID: 33798644 DOI: 10.1016/j.addr.2021.03.017] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/15/2021] [Accepted: 03/25/2021] [Indexed: 02/06/2023]
Abstract
Extracellular vesicles (EVs) are submicron cell-secreted structures containing proteins, nucleic acids and lipids. EVs can functionally transfer these cargoes from one cell to another to modulate physiological and pathological processes. Due to their presumed biocompatibility and capacity to circumvent canonical delivery barriers encountered by synthetic drug delivery systems, EVs have attracted considerable interest as drug delivery vehicles. However, it is unclear which mechanisms and molecules orchestrate EV-mediated cargo delivery to recipient cells. Here, we review how EV properties have been exploited to improve the efficacy of small molecule drugs. Furthermore, we explore which EV surface molecules could be directly or indirectly involved in EV-mediated cargo transfer to recipient cells and discuss the cellular reporter systems with which such transfer can be studied. Finally, we elaborate on currently identified cellular processes involved in EV cargo delivery. Through these topics, we provide insights in critical effectors in the EV-cell interface which may be exploited in nature-inspired drug delivery strategies.
Collapse
|
50
|
Pessolano E, Belvedere R, Novizio N, Filippelli A, Perretti M, Whiteford J, Petrella A. Mesoglycan connects Syndecan-4 and VEGFR2 through Annexin A1 and formyl peptide receptors to promote angiogenesis in vitro. FEBS J 2021; 288:6428-6446. [PMID: 34058069 PMCID: PMC9290969 DOI: 10.1111/febs.16043] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/06/2021] [Accepted: 05/28/2021] [Indexed: 12/11/2022]
Abstract
Mesoglycan is a mixture of glycosaminoglycans (GAG) with fibrinolytic effects and the potential to enhance skin wound repair. Here, we have used endothelial cells isolated from wild‐type (WT) and Syndecan‐4 null (Sdc4‐/‐) C57BL/6 mice to demonstrate that mesoglycan promotes cell motility and in vitro angiogenesis acting on the co‐receptor Syndecan‐4 (SDC4). This latter is known to participate in the formation and release of extracellular vesicles (EVs). We characterized EVs released by HUVECs and assessed their effect on angiogenesis. Particularly, we focused on Annexin A1 (ANXA1) containing EVs, since they may contribute to tube formation via interactions with Formyl peptide receptors (FPRs). In our model, the bond ANXA1‐FPRs stimulates the release of vascular endothelial growth factor (VEGF‐A) that interacts with vascular endothelial receptor‐2 (VEGFR2) and activates the pathway enhancing cell motility in an autocrine manner, as shown by wound healing/invasion assays, and the induction of endothelial to mesenchymal transition (EndMT). Thus, we have shown for the first time that mesoglycan exerts its pro‐angiogenic effects in the healing process triggering the activation of the three interconnected molecular axis: mesoglycan‐SDC4, EVs‐ANXA1‐FPRs, and VEGF‐A‐VEGFR2.
Collapse
Affiliation(s)
- Emanuela Pessolano
- Department of Pharmacy, University of Salerno, Fisciano, Italy.,The William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, UK
| | | | - Nunzia Novizio
- Department of Pharmacy, University of Salerno, Fisciano, Italy
| | - Amelia Filippelli
- Department of Medicine, Surgery, and Dentistry, University of Salerno, Baronissi, Italy
| | - Mauro Perretti
- The William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, UK
| | - James Whiteford
- The William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, UK
| | | |
Collapse
|