1
|
Liu J, Kang J, Zou T, Hu M, Zhang Y, Lin S, Liang Y, Zhong J, Zhao Y, Wei X, Zhang C. Functional cobalt-doped hydrogel scaffold enhances concurrent vascularization and neurogenesis. J Nanobiotechnology 2025; 23:179. [PMID: 40205442 PMCID: PMC11984231 DOI: 10.1186/s12951-025-03218-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 02/10/2025] [Indexed: 04/11/2025] Open
Abstract
Achieving functional tissue regeneration hinges on the coordinated growth of intricate blood vessels and nerves within the defect area. However, current strategies do not offer a reliable and effective way to fulfill this critical need. To address this challenge, a three-dimensional (3D) gelatin methacryloyl-multi-walled carbon nanotube/cobalt (GelMA-MWCNTs/Co) hydrogel with controlled release of cobalt (Co) ions was developed for hypoxia-mimicking and dual beneficial effects on promoting vasculogenesis and neurogenesis. GelMA-MWCNTs/Co hydrogel exhibited sustained release of Co ions, promoting laden cell viability and long-term cell survival. GelMA-MWCNTs/Co hydrogel effectively enhanced human umbilical vein endothelial cells (HUVECs) vasculogenesis when cocultured with stem cells from apical papilla (SCAP). Moreover, this hydrogel facilitated the interaction between the pre-formed vascular and neural-like structures generated by electrical stimulation-induced SCAP (iSCAP). Furthermore, our in vivo study revealed that the GelMA-MWCNTs/Co hydrogel remarkably enhanced neovascularization and accelerated anastomosis with the host vasculature. The pre-vascularized scaffolds boosted the presence of neural differentiated SCAP in the regenerated tissue. This study provided proof of integrating functional Co ions release materials and dental-derived stem cells within a hydrogel scaffold as a promising potential for achieving simultaneous vascularization and neurogenesis.
Collapse
Affiliation(s)
- Junqing Liu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Jun Kang
- Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Ting Zou
- Shenzhen Clinical College of Stomatology, School of Stomatology, Southern Medical University, Shenzhen Stomatology Hospital (Pingshan) of Southern Medical University, Shenzhen, China
| | - Mingxin Hu
- Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Yuchen Zhang
- Department of Obstetrics, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shulan Lin
- Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Ye Liang
- Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Jialin Zhong
- Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Yi Zhao
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University, Fuzhou, China
| | - Xi Wei
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Chengfei Zhang
- Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
2
|
Mehanna RA, Elkafrawy H, Essawy MM, Ibrahim SS, Awaad AK, Khalil NA, Kholief MA, Sallam A, Hamed HA, Barkat MA, ElKady MF, Thabet EH. Small extracellular vesicles enhance the survival of Sca-1+ cardiac stem cells against ROS-induced ischemic-reoxygenation injury in vitro. Biol Res 2025; 58:12. [PMID: 40045367 PMCID: PMC11881436 DOI: 10.1186/s40659-025-00593-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 02/10/2025] [Indexed: 03/09/2025] Open
Abstract
BACKGROUND Ischemic reperfusion (IR) generates reactive oxygen species (ROS) that inevitably result in myocardial cell death and heart failure. The regenerative power of cardiac progenitor/stem pools (CSCs), especially the Sca1+ population, in response to IR injury remains unclear. METHODS Our work sought to investigate whether small extracellular vesicles (sEVs) isolated from bone marrow-mesenchymal stem cells (BMMSCs) could rescue CSCs, specifically Sca-1+/CSCs, from IR by increasing their proliferative capacity and limiting their apoptosis in vitro. The Sca-1+/CSCs-IR model was induced by the oxygen-glucose deprivation/reoxygenation method (OGD/R). The effects of treatment with BMMSCs-derived sEVs on oxidative stress, cell proliferation, apoptosis, and cell cycle were assessed. To further test the mechanistic action, we assessed the PTEN/pAkt/HIF-1α pathway. RESULTS Compared to hypoxic untreated CSCs, BMMSCs-derived sEVs-treated cells had shifted from their quiescent to proliferative phase (p > 0.05) and showed decreased apoptosis (p < 0.001). sEVs-treated CSCs were predominately in the S phase (11.8 ± 0.9%) (p < 0.01). We identified an abundance of miRNA-21-5P in BMMSCs. HIF-1α expression was highest in CSCs treated with sEVs (p < 0.05). Moreover, miRNA-21-5p-rich sEVs shifted the redox state, reducing oxidative stress and promoting balance (p > 0.05). CONCLUSION Conditioning Sca-1+/CSCs, an essential population in the postnatal heart, with sEVs rich in miRNA-21 robustly enhanced the proliferation, and synthesis phase of the cell cycle, and stabilized HIF-1α while alleviating oxidative stress and apoptosis. Such sEVs rich in miRNA-21-5p can be further used as a preconditioning tool to enhance endogenous Sca-1+/CSCs regeneration in response to IR injury.
Collapse
Affiliation(s)
- Radwa A Mehanna
- Medical Physiology Department, Faculty of Medicine, Alexandria University, Alexandria, 21500, Egypt.
- Center of Excellence for Research in Regenerative Medicine and Applications (CERRMA), Faculty of Medicine, Alexandria University, Alexandria, 21500, Egypt.
| | - Hagar Elkafrawy
- Center of Excellence for Research in Regenerative Medicine and Applications (CERRMA), Faculty of Medicine, Alexandria University, Alexandria, 21500, Egypt
- Medical Biochemistry Department, Faculty of Medicine, Alexandria University, Alexandria, 21500, Egypt
| | - Marwa M Essawy
- Center of Excellence for Research in Regenerative Medicine and Applications (CERRMA), Faculty of Medicine, Alexandria University, Alexandria, 21500, Egypt
- Oral Pathology Department, Faculty of Dentistry, Alexandria University, Alexandria, 21500, Egypt
| | - Samar S Ibrahim
- Center of Excellence for Research in Regenerative Medicine and Applications (CERRMA), Faculty of Medicine, Alexandria University, Alexandria, 21500, Egypt
- Biotechnology Department, Center of Excellence for Research in Regenerative Medicine and Applications (CERRMA), Faculty of Medicine, Alexandria University, Alexandria, 21500, Egypt
| | - Ashraf K Awaad
- Center of Excellence for Research in Regenerative Medicine and Applications (CERRMA), Faculty of Medicine, Alexandria University, Alexandria, 21500, Egypt
- Molecular Biology Department, Center of Excellence for Research in Regenerative Medicine and Applications (CERRMA), Faculty of Medicine, Alexandria University, Alexandria, 21500, Egypt
| | - Nehal A Khalil
- Center of Excellence for Research in Regenerative Medicine and Applications (CERRMA), Faculty of Medicine, Alexandria University, Alexandria, 21500, Egypt
- Medical Biochemistry Department, Faculty of Medicine, Alexandria University, Alexandria, 21500, Egypt
| | - Marwa A Kholief
- Center of Excellence for Research in Regenerative Medicine and Applications (CERRMA), Faculty of Medicine, Alexandria University, Alexandria, 21500, Egypt
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Alexandria University, Alexandria, 21500, Egypt
| | - Abeer Sallam
- Medical Physiology Department, Faculty of Medicine, Alexandria University, Alexandria, 21500, Egypt
- Center of Excellence for Research in Regenerative Medicine and Applications (CERRMA), Faculty of Medicine, Alexandria University, Alexandria, 21500, Egypt
| | - Heba A Hamed
- Center of Excellence for Research in Regenerative Medicine and Applications (CERRMA), Faculty of Medicine, Alexandria University, Alexandria, 21500, Egypt
- Histology and Cell Biology Department, Faculty of Medicine, Alexandria University, Alexandria, 21500, Egypt
| | - Mona A Barkat
- Center of Excellence for Research in Regenerative Medicine and Applications (CERRMA), Faculty of Medicine, Alexandria University, Alexandria, 21500, Egypt
- Human Anatomy and Embryology Department, Faculty of Medicine, Alexandria University, Alexandria, 21500, Egypt
| | - Mohamed F ElKady
- Center of Excellence for Research in Regenerative Medicine and Applications (CERRMA), Faculty of Medicine, Alexandria University, Alexandria, 21500, Egypt
- Medical Biophysics Department, Faculty of Medicine, Alexandria University, Alexandria, 21500, Egypt
| | - Eman H Thabet
- Medical Physiology Department, Faculty of Medicine, Alexandria University, Alexandria, 21500, Egypt
- Center of Excellence for Research in Regenerative Medicine and Applications (CERRMA), Faculty of Medicine, Alexandria University, Alexandria, 21500, Egypt
| |
Collapse
|
3
|
Chen J, Choi JJY, Lin PY, Huang EJ. Pathogenesis of Germinal Matrix Hemorrhage: Insights from Single-Cell Transcriptomics. ANNUAL REVIEW OF PATHOLOGY 2025; 20:221-243. [PMID: 39401848 PMCID: PMC11759652 DOI: 10.1146/annurev-pathmechdis-111523-023446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
The germinal matrix harbors neurogenic niches in the subpallium of the prenatal human brain that produce abundant GABAergic neurons. In preterm infants, the germinal matrix is particularly vulnerable to developing hemorrhage, which disrupts neurogenesis and causes severe neurodevelopmental sequelae. However, the disease mechanisms that promote germinal matrix hemorrhage remain unclear. Here, we review recent advances using single-cell transcriptomics to uncover novel mechanisms that govern neurogenesis and angiogenesis in the germinal matrix of the prenatal human brain. These approaches also reveal the critical role of immune-vascular interaction that promotes vascular morphogenesis in the germinal matrix and how proinflammatory factors from activated neutrophils and monocytes can disrupt this process, leading to hemorrhage. Collectively, these results reveal fundamental disease mechanisms and therapeutic interventions for germinal matrix hemorrhage.
Collapse
Affiliation(s)
- Jiapei Chen
- Weill Institute for Neurosciences, University of California, San Francisco, California, USA
- Department of Pathology, University of California, San Francisco, California, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, California, USA;
| | - Jennifer Ja-Yoon Choi
- Weill Institute for Neurosciences, University of California, San Francisco, California, USA
- Department of Pathology, University of California, San Francisco, California, USA
| | - Pin-Yeh Lin
- Weill Institute for Neurosciences, University of California, San Francisco, California, USA
- Department of Pathology, University of California, San Francisco, California, USA
| | - Eric J Huang
- Pathology Service, Veterans Administration Health Care System, San Francisco, California, USA
- Weill Institute for Neurosciences, University of California, San Francisco, California, USA
- Department of Pathology, University of California, San Francisco, California, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, California, USA;
| |
Collapse
|
4
|
Bernou C, Mouthon MA, Daynac M, Kortulewski T, Demaille B, Barroca V, Couillard-Despres S, Dechamps N, Ménard V, Bellenger L, Antoniewski C, Chicheportiche AD, Boussin FD. Switching of RNA splicing regulators in immature neuroblasts during adult neurogenesis. eLife 2024; 12:RP87083. [PMID: 39576691 PMCID: PMC11584179 DOI: 10.7554/elife.87083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2024] Open
Abstract
The lateral wall of the mouse subventricular zone harbors neural stem cells (NSC, B cells) which generate proliferating transient-amplifying progenitors (TAP, C cells) that ultimately give rise to neuroblasts (NB, A cells). Molecular profiling at the single-cell level struggles to distinguish these different cell types. Here, we combined transcriptome analyses of FACS-sorted cells and single-cell RNAseq to demonstrate the existence of an abundant, clonogenic and multipotent population of immature neuroblasts (iNB cells) at the transition between TAP and migrating NB (mNB). iNB are reversibly engaged in neuronal differentiation. Indeed, they keep molecular features of both undifferentiated progenitors, plasticity and unexpected regenerative properties. Strikingly, they undergo important progressive molecular switches, including changes in the expression of splicing regulators leading to their differentiation in mNB subdividing them into two subtypes, iNB1 and iNB2. Due to their plastic properties, iNB could represent a new target for regenerative therapy of brain damage.
Collapse
Affiliation(s)
- Corentin Bernou
- Université Paris Cité, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, LRP/iRCM, Fontenay-aux-Roses, France
- Université Paris-Saclay, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, LRP/iRCM, Fontenay-aux-Roses, France
| | - Marc-André Mouthon
- Université Paris Cité, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, LRP/iRCM, Fontenay-aux-Roses, France
- Université Paris-Saclay, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, LRP/iRCM, Fontenay-aux-Roses, France
| | - Mathieu Daynac
- Université Paris Cité, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, LRP/iRCM, Fontenay-aux-Roses, France
- Université Paris-Saclay, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, LRP/iRCM, Fontenay-aux-Roses, France
| | - Thierry Kortulewski
- Université Paris Cité, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, LRP/iRCM, Fontenay-aux-Roses, France
- Université Paris-Saclay, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, LRP/iRCM, Fontenay-aux-Roses, France
| | - Benjamin Demaille
- Université Paris Cité, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, LRP/iRCM, Fontenay-aux-Roses, France
- Université Paris-Saclay, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, LRP/iRCM, Fontenay-aux-Roses, France
| | - Vilma Barroca
- Université Paris Cité, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, LRP/iRCM, Fontenay-aux-Roses, France
- Université Paris-Saclay, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, LRP/iRCM, Fontenay-aux-Roses, France
| | - Sebastien Couillard-Despres
- Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
- Institute of Experimental Neuroregeneration, Paracelsus Medical University, Salzburg, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Nathalie Dechamps
- Université Paris Cité, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, LRP/iRCM, Fontenay-aux-Roses, France
- Université Paris-Saclay, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, LRP/iRCM, Fontenay-aux-Roses, France
| | - Véronique Ménard
- Université Paris Cité, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, LRP/iRCM, Fontenay-aux-Roses, France
- Université Paris-Saclay, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, LRP/iRCM, Fontenay-aux-Roses, France
| | - Léa Bellenger
- Inserm, ARTbio Bioinformatics Analysis Facility, Sorbonne Université, CNRS, Institut de Biologie Paris Seine, Paris, France
| | - Christophe Antoniewski
- ARTbio Bioinformatics Analysis Facility, Sorbonne Université, CNRS, Institut de Biologie Paris Seine, Paris, France
| | - Alexandra Déborah Chicheportiche
- Université Paris Cité, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, LRP/iRCM, Fontenay-aux-Roses, France
- Université Paris-Saclay, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, LRP/iRCM, Fontenay-aux-Roses, France
| | - François Dominique Boussin
- Université Paris Cité, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, LRP/iRCM, Fontenay-aux-Roses, France
- Université Paris-Saclay, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, LRP/iRCM, Fontenay-aux-Roses, France
| |
Collapse
|
5
|
Wang M, Xing S, Liu Y, An Z, Liu X, Liu T, Zhang H, Dai Y, Yang H, Wang Y, Wang Y. 2-Acetylacteoside improves recovery after ischemic stroke by promoting neurogenesis via the PI3K/Akt pathway. Free Radic Biol Med 2024; 225:415-429. [PMID: 39396583 DOI: 10.1016/j.freeradbiomed.2024.10.268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/30/2024] [Accepted: 10/03/2024] [Indexed: 10/15/2024]
Abstract
Ischemic stroke induces adult neurogenesis in the subventricular zone (SVZ), even in elderly patients. Harnessing of this neuroregenerative response presents the therapeutic potential for post-stroke recovery. We found that phenylethanoid glycosides (PhGs) derived from Cistanche deserticola aid neural repair after stroke by promoting neurogenesis. Among these, 2-acetylacteoside had the most potent on the proliferation of neural stem cells (NSCs) in vitro. Furthermore, 2-acetylacteoside was shown to alleviate neural dysfunction by increase neurogenesis both in vivo and in vitro. RNA-sequencing analysis highlighted differentially expressed genes within the PI3K/Akt signaling pathway. The candidate target Akt was validated as being regulated by 2-acetylacteoside, which, in turn, enhanced the proliferation and differentiation of cultured NSCs after oxygen-glucose deprivation/reoxygenation (OGD/R), as evidenced by Western blot analysis. Subsequent analysis using cultured NSCs from adult subventricular zones (SVZ) confirmed that 2-acetylacteoside enhanced the expression of phosphorylated Akt (p-Akt), and its effect on NSC neurogenesis was shown to be dependent on the PI3K/Akt pathway. In summary, our findings elucidate for the first time the role of 2-acetylacteoside in enhancing neurological recovery, primarily by promoting neurogenesis via Akt activation following ischemic brain injury, which offers a novel strategy for long-term cerebrological recovery in ischemic stroke.
Collapse
Affiliation(s)
- Meng Wang
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, 211166, China
| | - Songyu Xing
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, 211166, China
| | - Yang Liu
- ICU, Nanjing Gaochun People's Hospital, 53 Maoshan Road, Gaochun District, Nanjing, 211300, China
| | - Zongren An
- ICU, Nanjing Gaochun People's Hospital, 53 Maoshan Road, Gaochun District, Nanjing, 211300, China
| | - Xu Liu
- Qilu Medical University, Shandong, 255300, China
| | - Tao Liu
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Han Zhang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yifan Dai
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, 211166, China; Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, 211166, China; Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Haiyuan Yang
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, 211166, China; Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, 211166, China; Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, 211166, China.
| | - Yu Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Ying Wang
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, 211166, China; Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, 211166, China; Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
6
|
Artamonov MY, Sokov EL. Intraosseous Delivery of Mesenchymal Stem Cells for the Treatment of Bone and Hematological Diseases. Curr Issues Mol Biol 2024; 46:12672-12693. [PMID: 39590346 PMCID: PMC11592824 DOI: 10.3390/cimb46110752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
Mesenchymal stem cells are used most in regenerative medicine due to their capacities in differentiation and immune modulation. The intraosseous injection of MSC into the bone has been recommended because of expected outcomes for retention, bioavailability, and enhanced therapeutic efficacy, particularly in conditions involving the bone, such as osteoporosis and osteonecrosis. A review of the intraosseous delivery of mesenchymal stem cells in comparison with intravenous and intra-arterial delivery methods will be subjected to critical examination. This delivery mode fares better regarding paracrine signaling and immunomodulation attributes, which are the cornerstone of tissue regeneration and inflammation reduction. The local complications and technical challenges still apply with this method. This study was more focused on further research soon to be conducted to further elucidate long-term safety and efficacy of intraosseous mesenchymal stem cell therapy. Though much has been achieved with very impressive progress in this field, it is worth noting that more studies need to be put into place so that this technique can be established as a routine approach, especially with further research in biomaterials, gene therapy, and personalized medicine.
Collapse
Affiliation(s)
| | - Evgeniy L. Sokov
- Department of Algology and Rehabilitation, Peoples’ Friendship University, Moscow 117198, Russia;
| |
Collapse
|
7
|
Nisar A, Khan S, Li W, Hu L, Samarawickrama PN, Gold NM, Zi M, Mehmood SA, Miao J, He Y. Hypoxia and aging: molecular mechanisms, diseases, and therapeutic targets. MedComm (Beijing) 2024; 5:e786. [PMID: 39415849 PMCID: PMC11480526 DOI: 10.1002/mco2.786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024] Open
Abstract
Aging is a complex biological process characterized by the gradual decline of cellular functions, increased susceptibility to diseases, and impaired stress responses. Hypoxia, defined as reduced oxygen availability, is a critical factor that influences aging through molecular pathways involving hypoxia-inducible factors (HIFs), oxidative stress, inflammation, and epigenetic modifications. This review explores the interconnected roles of hypoxia in aging, highlighting how hypoxic conditions exacerbate cellular damage, promote senescence, and contribute to age-related pathologies, including cardiovascular diseases, neurodegenerative disorders, cancer, metabolic dysfunctions, and pulmonary conditions. By examining the molecular mechanisms linking hypoxia to aging, we identify key pathways that serve as potential therapeutic targets. Emerging interventions such as HIF modulators, antioxidants, senolytics, and lifestyle modifications hold promise in mitigating the adverse effects of hypoxia on aging tissues. However, challenges such as the heterogeneity of aging, lack of reliable biomarkers, and safety concerns regarding hypoxia-targeted therapies remain. This review emphasizes the need for personalized approaches and advanced technologies to develop effective antiaging interventions. By integrating current knowledge, this review provides a comprehensive framework that underscores the importance of targeting hypoxia-induced pathways to enhance healthy aging and reduce the burden of age-related diseases.
Collapse
Affiliation(s)
- Ayesha Nisar
- Key Laboratory of Genetic Evolution & Animal Models, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
- Kunming College of Life ScienceUniversity of Chinese Academy of SciencesKunmingChina
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
| | - Sawar Khan
- Department of Cell Biology, School of Life SciencesCentral South UniversityChangshaHunanChina
- Institute of Molecular Biology and BiotechnologyThe University of LahoreLahorePakistan
| | - Wen Li
- Department of EndocrinologyThe Second Affiliated Hospital of Dali University (the Third People's Hospital of Yunnan Province)KunmingYunnanChina
| | - Li Hu
- Key Laboratory of Genetic Evolution & Animal Models, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
- Kunming College of Life ScienceUniversity of Chinese Academy of SciencesKunmingChina
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
| | - Priyadarshani Nadeeshika Samarawickrama
- Key Laboratory of Genetic Evolution & Animal Models, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
- Kunming College of Life ScienceUniversity of Chinese Academy of SciencesKunmingChina
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
| | - Naheemat Modupeola Gold
- Key Laboratory of Genetic Evolution & Animal Models, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
- Kunming College of Life ScienceUniversity of Chinese Academy of SciencesKunmingChina
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
| | - Meiting Zi
- Key Laboratory of Genetic Evolution & Animal Models, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
| | | | - Jiarong Miao
- Department of GastroenterologyThe First Affiliated Hospital of Kunming Medical UniversityKunmingYunnanChina
| | - Yonghan He
- Key Laboratory of Genetic Evolution & Animal Models, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
- Kunming College of Life ScienceUniversity of Chinese Academy of SciencesKunmingChina
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
| |
Collapse
|
8
|
Xue J, Xue J, Ru Y, Zhang G, Yin H, Liu D. Ultrasound assessment of insular development in adequate-for-gestational-age fetuses and fetuses with early-onset fetal growth restriction using 3D-ICRV technology. Front Med (Lausanne) 2024; 11:1393115. [PMID: 39444811 PMCID: PMC11496279 DOI: 10.3389/fmed.2024.1393115] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 09/20/2024] [Indexed: 10/25/2024] Open
Abstract
Objective This study aimed to evaluate the growth trajectory of the insula in adequate-for-gestational-age (AGA) and early-onset fetal growth restriction (FGR) fetuses and analyze the difference between the two groups using three-dimensional inversion crytal and realistic vue technique (3D-ICRV). Methods Singleton pregnant women, with a gestational age ranging from 20 to 32+6 weeks, who underwent routine examinations at Shandong Maternal and Child Care Hospital between March 2023 and December 2023 were included. The participants were divided into two groups: the FGR and AGA fetuses. Three-dimensional volumes were obtained using transabdominal ultrasound in the transverse section of the fetal hypothalamus based on different gestational ages. 3D-ICRV rendering technology was used for 3D imaging of the fetal insula. Volumes with a clear display of the insula were selected. We observed the morphology of the insula, and measured the area and circumference of the insula. By evaluating the growth trajectory of the insula in AGA and FGR fetuses, differences in insular development between the two groups were compared. Results Overall, 203 participants were included in this study, with 164 and 39 in the AGA and FGR groups, respectively. The 3D volumes were successfully acquired, and the area and circumference of the insula were measured using 3D-ICRV imaging technology. We found that as gestational age increased, the area and circumference of the insula gradually increased and showed positive correlations with the gestational age, with no significant changes in morphology. The growth rate of insular area and insular circumference in the FGR group is slower than that in the AGA group (insular area: 0.15 vs 0.19 cm2 / week, insular circumference: 0.25 vs 0.28 cm / week). The area and circumference of the insula in the FGR group were significantly different from those in the AGA group (insular area: p = 0.003, insular circumference: p = 0.004). Conclusion The measured values of the insula using 3D-ICRV identify the differences in insular development between the FGR and AGA fetuses. The findings of this study have important implications for the prenatal evaluation of cortical development and maturity in FGR fetuses and further clinical consultation and management.
Collapse
Affiliation(s)
- Jinfeng Xue
- School of Medical Imaging, Shandong Second Medical University, Weifang, China
- Department of Ultrasound, Shandong Provincial Maternal and Child Health Care Hospital, Jinan, China
| | - Jinluan Xue
- Medical Department, Liaocheng Third People’s Hospital, Liaocheng, China
| | - Yanhui Ru
- Department of Ultrasound, Shandong Provincial Maternal and Child Health Care Hospital, Jinan, China
| | - Ge Zhang
- Department of Ultrasound, Shandong Provincial Maternal and Child Health Care Hospital, Jinan, China
| | - Hong Yin
- Department of Ultrasound, Shandong Provincial Maternal and Child Health Care Hospital, Jinan, China
| | - Dequan Liu
- Department of Ultrasound, Shandong Provincial Maternal and Child Health Care Hospital, Jinan, China
| |
Collapse
|
9
|
Sánchez-Ramírez E, Ung TPL, Stringari C, Aguilar-Arnal L. Emerging Functional Connections Between Metabolism and Epigenetic Remodeling in Neural Differentiation. Mol Neurobiol 2024; 61:6688-6707. [PMID: 38340204 PMCID: PMC11339152 DOI: 10.1007/s12035-024-04006-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/30/2024] [Indexed: 02/12/2024]
Abstract
Stem cells possess extraordinary capacities for self-renewal and differentiation, making them highly valuable in regenerative medicine. Among these, neural stem cells (NSCs) play a fundamental role in neural development and repair processes. NSC characteristics and fate are intricately regulated by the microenvironment and intracellular signaling. Interestingly, metabolism plays a pivotal role in orchestrating the epigenome dynamics during neural differentiation, facilitating the transition from undifferentiated NSC to specialized neuronal and glial cell types. This intricate interplay between metabolism and the epigenome is essential for precisely regulating gene expression patterns and ensuring proper neural development. This review highlights the mechanisms behind metabolic regulation of NSC fate and their connections with epigenetic regulation to shape transcriptional programs of stemness and neural differentiation. A comprehensive understanding of these molecular gears appears fundamental for translational applications in regenerative medicine and personalized therapies for neurological conditions.
Collapse
Affiliation(s)
- Edgar Sánchez-Ramírez
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Thi Phuong Lien Ung
- Laboratory for Optics and Biosciences, Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, Palaiseau, France
| | - Chiara Stringari
- Laboratory for Optics and Biosciences, Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, Palaiseau, France
| | - Lorena Aguilar-Arnal
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| |
Collapse
|
10
|
Karpinska B, Foyer CH. Superoxide signalling and antioxidant processing in the plant nucleus. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4599-4610. [PMID: 38460122 PMCID: PMC11317529 DOI: 10.1093/jxb/erae090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/08/2024] [Indexed: 03/11/2024]
Abstract
The superoxide anion radical (O2·-) is a one-electron reduction product of molecular oxygen. Compared with other forms of reactive oxygen species (ROS), superoxide has limited reactivity. Nevertheless, superoxide reacts with nitric oxide, ascorbate, and the iron moieties of [Fe-S] cluster-containing proteins. Superoxide has largely been neglected as a signalling molecule in the plant literature in favour of the most stable ROS form, hydrogen peroxide. However, superoxide can accumulate in plant cells, particularly in meristems, where superoxide dismutase activity and ascorbate accumulation are limited (or absent), or when superoxide is generated within the lipid environment of membranes. Moreover, oxidation of the nucleus in response to environmental stresses is a widespread phenomenon. Superoxide is generated in many intracellular compartments including mitochondria, chloroplasts, and on the apoplastic/cell wall face of the plasma membrane. However, nuclear superoxide production and functions remain poorly documented in plants. Accumulating evidence suggests that the nuclear pools of antioxidants such as glutathione are discrete and separate from the cytosolic pools, allowing compartment-specific signalling in the nucleus. We consider the potential mechanisms of superoxide generation and targets in the nucleus, together with the importance of antioxidant processing in regulating superoxide signalling.
Collapse
Affiliation(s)
- Barbara Karpinska
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Christine H Foyer
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| |
Collapse
|
11
|
He Y, Dong N, Wang X, Lv RJ, Yu Q, Yue HM. Obstructive sleep apnea affects cognition: dual effects of intermittent hypoxia on neurons. Sleep Breath 2024; 28:1051-1065. [PMID: 38308748 DOI: 10.1007/s11325-024-03001-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 02/05/2024]
Abstract
Obstructive sleep apnea (OSA) is a common respiratory disorder. Multiple organs, especially the central nervous system (CNS), are damaged, and dysfunctional when intermittent hypoxia (IH) occurs during sleep for a long time. The quality of life of individuals with OSA is significantly impacted by cognitive decline, which also escalates the financial strain on their families. Consequently, the development of novel therapies becomes imperative. IH induces oxidative stress, endoplasmic reticulum stress, iron deposition, and neuroinflammation in neurons. Synaptic dysfunction, reactive gliosis, apoptosis, neuroinflammation, and inhibition of neurogenesis can lead to learning and long-term memory impairment. In addition to nerve injury, the role of IH in neuroprotection was also explored. While causing neuron damage, IH activates the neuronal self-repairing mechanism by regulating antioxidant capacity and preventing toxic protein deposition. By stimulating the proliferation and differentiation of neural stem cells (NSCs), IH has the potential to enhance the ratio of neonatal neurons and counteract the decline in neuron numbers. This review emphasizes the perspectives and opportunities for the neuroprotective effects of IH and informs novel insights and therapeutic strategies in OSA.
Collapse
Affiliation(s)
- Yao He
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Na Dong
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Xiao Wang
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Ren-Jun Lv
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Qin Yu
- Department of Respiratory and Critical Care Medicine, The First Hospital of Lanzhou University, Lanzhou, China
| | - Hong-Mei Yue
- Department of Respiratory and Critical Care Medicine, The First Hospital of Lanzhou University, Lanzhou, China.
| |
Collapse
|
12
|
Putra M, Hamidi OP, Driver C, Peek EE, Bolt MA, Gumina D, Reeves SA, Hobbins JC. Corpus Callosum Length and Cerebellar Vermian Height in Fetal Growth Restriction. Fetal Diagn Ther 2024; 51:255-266. [PMID: 38461813 DOI: 10.1159/000538123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 01/14/2024] [Indexed: 03/12/2024]
Abstract
INTRODUCTION Growth-restricted fetuses may have changes in their neuroanatomical structures that can be detected in prenatal imaging. We aim to compare corpus callosal length (CCL) and cerebellar vermian height (CVH) measurements between fetal growth restriction (FGR) and control fetuses and to correlate them with cerebral Doppler velocimetry in growth-restricted fetuses. METHODS This was a prospective cohort of FGR after 20 weeks of gestation with ultrasound measurements of CCL and CVH. Control cohort was assembled from fetuses without FGR who had growth ultrasound after 20 weeks of gestation. We compared differences of CCL or CVH between FGR and controls. We also tested for the correlations of CCL and CVH with middle cerebral artery (MCA) pulsatility index (PI) and vertebral artery (VA) PI in the FGR group. CCL and CVH measurements were adjusted by head circumference (HC). RESULTS CCL and CVH were obtained in 68 and 55 fetuses, respectively. CCL/HC was smaller in FGR fetuses when compared to control fetuses (difference = 0.03, 95% CI: [0.02, 0.04], p < 0.001). CVH/HC was larger in FGR fetuses compared to NG fetuses (difference = 0.1, 95% CI: [-0.01, 0.02], p = < 0.001). VA PI multiples of the median were inversely correlated with CVH/HC (rho = -0.53, p = 0.007), while CCL/HC was not correlated with VA PI. Neither CCL/HC nor CVH/HC was correlated with MCA PI. CONCLUSIONS CCL/HC and CVH/HC measurements show differences in growth-restricted fetuses compared to a control cohort. We also found an inverse relationship between VA PI and CVH/HC. The potential use of neurosonography assessment in FGR assessment requires continued explorations.
Collapse
Affiliation(s)
- Manesha Putra
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Odessa P Hamidi
- St. Luke's University Health Network, Bethlehem, Pennsylvania, USA
| | - Camille Driver
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Emma E Peek
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Matthew A Bolt
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado-Denver Anschutz Medical Campus, Aurora, Colorado, USA
| | - Diane Gumina
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Shane A Reeves
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - John C Hobbins
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
13
|
Xu X, Passalacqua M, Rice B, Demesa-Arevalo E, Kojima M, Takebayashi Y, Harris B, Sakakibara H, Gallavotti A, Gillis J, Jackson D. Large-scale single-cell profiling of stem cells uncovers redundant regulators of shoot development and yield trait variation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.04.583414. [PMID: 38496543 PMCID: PMC10942292 DOI: 10.1101/2024.03.04.583414] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Stem cells in plant shoots are a rare population of cells that produce leaves, fruits and seeds, vital sources for food and bioethanol. Uncovering regulators expressed in these stem cells will inform crop engineering to boost productivity. Single-cell analysis is a powerful tool for identifying regulators expressed in specific groups of cells. However, accessing plant shoot stem cells is challenging. Recent single-cell analyses of plant shoots have not captured these cells, and failed to detect stem cell regulators like CLAVATA3 and WUSCHEL . In this study, we finely dissected stem cell-enriched shoot tissues from both maize and arabidopsis for single-cell RNA-seq profiling. We optimized protocols to efficiently recover thousands of CLAVATA3 and WUSCHEL expressed cells. A cross-species comparison identified conserved stem cell regulators between maize and arabidopsis. We also performed single-cell RNA-seq on maize stem cell overproliferation mutants to find additional candidate regulators. Expression of candidate stem cell genes was validated using spatial transcriptomics, and we functionally confirmed roles in shoot development. These candidates include a family of ribosome-associated RNA-binding proteins, and two families of sugar kinase genes related to hypoxia signaling and cytokinin hormone homeostasis. These large-scale single-cell profiling of stem cells provide a resource for mining stem cell regulators, which show significant association with yield traits. Overall, our discoveries advance the understanding of shoot development and open avenues for manipulating diverse crops to enhance food and energy security.
Collapse
|
14
|
Putra M, Peek E, Hobbins JC. Fetal insular measurements in pregnancy with estimated fetal weight <10th centile and childhood neurodevelopmental outcomes. Am J Obstet Gynecol 2024; 230:85.e1-85.e15. [PMID: 37442246 DOI: 10.1016/j.ajog.2023.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/15/2023]
Abstract
BACKGROUND A growing body of evidence suggests that fetal growth restriction is associated with changes in brain structures as a result of chronic hypoxia. However, less is known about the effects of growth restriction on the fetal insula, particularly in less severely affected late-onset growth-restricted fetuses. OBJECTIVE This study aimed to (1) compare sonographic insular measurements between fetal-growth restricted, small-for-gestational-age, and appropriate-for-gestational-age control fetuses; and (2) evaluate the association of sonographic insular measurements with perinatal and neurodevelopmental outcomes in fetuses categorized as fetal-growth restricted or small-for-gestational-age. STUDY DESIGN This was a cohort study of singleton nonanomalous pregnancies with an estimated fetal weight <10th centile. Using data from the last examination before delivery, fetal insular depth, Sylvian fissure depth, hypoechoic insular zone thickness, circumference, and area were measured. All measurements were adjusted for by head circumference. Neurodevelopmental outcomes were evaluated at 2 to 3 years of age using the Bayley-III scales. Kruskal-Wallis H tests were performed to compare insular measurements between groups. Paired t tests were used to compare insular measurements between appropriate-for-gestational-age fetuses and gestational age-matched growth-restricted fetuses. Insular measurements for patients with and without an adverse perinatal outcome were compared using independent-samples t-tests. Spearman correlations were performed to evaluate the relationship of insular measurements to the percentile scores for each of the 5 Bayley-III subscales and to a summative percentile of these subscales. RESULTS A total of 89 pregnancies were included in the study; 68 of these pregnancies had an estimated fetal weight <10th percentile (fetal-growth restricted: n=39; small-for-gestational-age: n=29). The appropriate-for-gestational-age cohort consisted of 21 pregnancies. The gestational age at measurement was similar between fetal-growth restricted and small-for-gestational-age groups, but lower in the appropriate-for-gestational-age group. Differences between groups were noted in normalized insular depth, Sylvian fissure depth, and hypoechoic insular zone (P<.01). Normalized insular depth and hypoechoic insular zone circumference were larger in the growth-restricted cohort (P<.01). Normalized Sylvian fissure depth was smaller in the growth-restricted cohort (P<.01). There were no significant differences in insular measurements between pregnancies with and without an adverse perinatal outcome. Bayley-III results were available in 32 of the growth-restricted cases. Of all insular measurements, hypoechoic insular zone circumference was inversely correlated with the adaptive behavior Bayley-III score. CONCLUSION In our cohort, fetuses with estimated fetal weight <10th percentile had smaller Sylvian fissure depths and larger insular depths and hypoechoic insular zone circumferences than normally grown controls. A larger hypoechoic insular zone circumference was substantially correlated with worse neurodevelopmental outcomes in early childhood. We speculate that enlargement of this region may be an indication of accelerated neuronal maturation in growth-restricted fetuses with mild hypoxia.
Collapse
Affiliation(s)
- Manesha Putra
- University of Colorado Anschutz Medical Campus, Aurora, CO.
| | - Emma Peek
- University of Colorado Anschutz Medical Campus, Aurora, CO
| | - John C Hobbins
- University of Colorado Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
15
|
Just N, Chevillard PM, Batailler M, Dubois JP, Vaudin P, Pillon D, Migaud M. Multiparametric MR Evaluation of the Photoperiodic Regulation of Hypothalamic Structures in Sheep. Neuroscience 2023; 535:142-157. [PMID: 37913859 DOI: 10.1016/j.neuroscience.2023.10.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/16/2023] [Accepted: 10/24/2023] [Indexed: 11/03/2023]
Abstract
Most organisms on earth, humans included, have developed strategies to cope with environmental day-night and seasonal cycles to survive. For most of them, their physiological and behavioral functions, including the reproductive function, are synchronized with the annual changes of day length, to ensure winter survival and subsequent reproductive success in the following spring. Sheep are sensitive to photoperiod, which also regulates natural adult neurogenesis in their hypothalamus. We postulate that the ovine model represents a good alternative to study the functional and metabolic changes occurring in response to photoperiodic changes in hypothalamic structures of the brain. Here, the impact of the photoperiod on the neurovascular coupling and the metabolism of the hypothalamic structures was investigated at 3T using BOLD fMRI, perfusion-MRI and proton magnetic resonance spectroscopy (1H-MRS). A longitudinal study involving 8 ewes was conducted during long days (LD) and short days (SD) revealing significant BOLD, rCBV and metabolic changes in hypothalamic structures of the ewe brain between LD and SD. More specifically, the transition between LD and SD revealed negative BOLD responses to hypercapnia at the beginning of SD period followed by significant increases in BOLD, rCBV, Glx and tNAA concentrations towards the end of the SD period. These observations suggest longitudinal mechanisms promoting the proliferation and differentiation of neural stem cells within the hypothalamic niche of breeding ewes. We conclude that multiparametric MRI studies including 1H-MRS could be promising non-invasive translational techniques to investigate the existence of natural adult neurogenesis in-vivo in gyrencephalic brains.
Collapse
Affiliation(s)
- Nathalie Just
- INRAE Centre Val de Loire, UMR Physiologie de la Reproduction et des Comportements CNRS, IFCE, INRAE, Université de Tours, 37380 Nouzilly France; Danish Research Centre for Magnetic Resonance (DRCMR), Hvidovre, Denmark.
| | - Pierre Marie Chevillard
- INRAE Centre Val de Loire, UMR Physiologie de la Reproduction et des Comportements CNRS, IFCE, INRAE, Université de Tours, 37380 Nouzilly France
| | - Martine Batailler
- INRAE Centre Val de Loire, UMR Physiologie de la Reproduction et des Comportements CNRS, IFCE, INRAE, Université de Tours, 37380 Nouzilly France
| | - Jean-Philippe Dubois
- INRAE Centre Val de Loire, UMR Physiologie de la Reproduction et des Comportements CNRS, IFCE, INRAE, Université de Tours, 37380 Nouzilly France
| | - Pascal Vaudin
- INRAE Centre Val de Loire, UMR Physiologie de la Reproduction et des Comportements CNRS, IFCE, INRAE, Université de Tours, 37380 Nouzilly France
| | - Delphine Pillon
- INRAE Centre Val de Loire, UMR Physiologie de la Reproduction et des Comportements CNRS, IFCE, INRAE, Université de Tours, 37380 Nouzilly France
| | - Martine Migaud
- INRAE Centre Val de Loire, UMR Physiologie de la Reproduction et des Comportements CNRS, IFCE, INRAE, Université de Tours, 37380 Nouzilly France
| |
Collapse
|
16
|
Habibie YA, Emril DR, Azharuddin A, Syahrizal D. Effect of umbilical cord mesenchymal stem cells on hypoxia-inducible factor-1 alpha (HIF-1α) production in arteriovenous fistula (AVF) animal model: A preliminary study. NARRA J 2023; 3:e225. [PMID: 38455624 PMCID: PMC10919707 DOI: 10.52225/narra.v3i3.225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/28/2023] [Indexed: 03/09/2024]
Abstract
Hypoxia-inducible factor-1 alpha (HIF-1α) is a transcription factor that plays a crucial role in cellular responses to hypoxia, such as in the development of intimal hyperplasia, a common complication in arteriovenous fistula (AVF) creation. While the application of umbilical cord mesenchymal stem cells (UC-MSCs) has shown promise in various regenerative medicine applications, including tissue repair and angiogenesis, the effect of UC-MSCs on HIF-1α level in the AVF has not been tested. Therefore, the aim of this study was to evaluate the effect of UC-MSCs administration on HIF-1α levels in the AVF animal model. An experimental study was conducted on 28 local male rabbits (Lepus domestica) using a post-test-only design. The rabbits were divided randomly into four groups: normal rabbit group (negative control), placebo-treated AVF rabbit group (positive control), AVF rabbits treated with in-situ UC-MSCs injection (one dose, 106 UC-MSCs/kg body weight), and AVF rabbits treated with intravenous UC-MSCs (one dose, 106 UC-MSCs/kg body weight (BW). HIF-1α level was measured using ELISA method after 28 days post-treatment. All data were analyzed using the one-way analysis of variance (ANOVA) and continued with the Duncan's post-hoc test. The data indicated that the levels of HIF-1α were different among all four groups (p<0.001). The post-hoc analysis revealed that the HIF-1α levels in both UC-MSC treated groups were significantly lower compared to untreated AVF rabbits (p<0.05). This study suggests that UC-MSCs could be a promising therapy to prevent and reduce intimal hyperplasia in AVF.
Collapse
Affiliation(s)
- Yopie A. Habibie
- Doctoral Program in Medical Science, Faculty of Medicine, Universitas Syiah Kuala, Banda Aceh, Indonesia
- Division of Thoracic Cardiac and Vascular Surgery, Department of Surgery, Faculty of Medicine, Universitas Syiah Kuala, Banda Aceh, Indonesia
- Division of Thoracic Cardiac and Vascular Surgery, Department of Surgery, Dr. Zainoel Abidin Hospital, Banda Aceh, Indonesia
| | - Dessy R. Emril
- Division of Pain and Headache, Department of Neurology, Faculty of Medicine, Universitas Syiah Kuala, Banda Aceh, Indonesia
- Division of Pain and Headache, Department of Neurology, Dr. Zainoel Abidin Hospital, Banda Aceh, Indonesia
| | - Azharuddin Azharuddin
- Division of Orthopedic and Traumatology, Department of Surgery, Faculty of Medicine, Universitas Syiah Kuala, Banda Aceh, Indonesia
- Division of Orthopedic and Traumatology, Department of Surgery, Dr. Zainoel Abidin Hospital, Banda Aceh, Indonesia
| | - Dedy Syahrizal
- Department of Biochemistry, Faculty of Medicine, Universitas Syiah Kuala, Banda Aceh, Indonesia
| |
Collapse
|
17
|
Zhi Y, Zhu Y, Wang J, Zhao J, Zhao Y. Cortical Organoid-on-a-Chip with Physiological Hypoxia for Investigating Tanshinone IIA-Induced Neural Differentiation. RESEARCH (WASHINGTON, D.C.) 2023; 6:0273. [PMID: 38434243 PMCID: PMC10907018 DOI: 10.34133/research.0273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/04/2023] [Indexed: 03/05/2024]
Abstract
Cortical organoids represent cutting-edge models for mimic human brain development during the early and even middle stage of pregnancy, while they often fail to recreate the complex microenvironmental factors, such as physiological hypoxia. Herein, to recapitulate fetal brain development, we propose a novel cortical organoid-on-a-chip with physiological hypoxia and further explore the effects of tanshinone IIA (Tan IIA) in neural differentiation. The microfluidic chip was designed with a micropillar array for the controlled and efficient generation of cortical organoids. With low oxygen, the generated cortical organoids could recapitulate key aspects of early-gestational human brain development. Compared to organoids in normoxic culturing condition, the promoted neurogenesis, synaptogenesis and neuronal maturation were observed in the present microsystem, suggesting the significance of physiological hypoxia in cortical development. Based on this model, we have found that Chinese herbal drug Tan IIA could promote neural differentiation and maturation, indicating its potential therapeutic effects on neurodevelopmental disorders as well as congenital neuropsychiatric diseases. These results indicate that the proposed biomimetic cortical organoid-on-a-chip model with physiological hypoxia can offer a promising platform to simulate prenatal environment, explore brain development, and screen natural neuroactive components.
Collapse
Affiliation(s)
- Yue Zhi
- Department of Rheumatology and Immunology,
Nanjing Drum Tower Hospital, Clinical Medical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yujuan Zhu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering,
Southeast University, Nanjing, 210096, China
| | - Jinglin Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering,
Southeast University, Nanjing, 210096, China
| | - Junqi Zhao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering,
Southeast University, Nanjing, 210096, China
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology,
Nanjing Drum Tower Hospital, Clinical Medical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering,
Southeast University, Nanjing, 210096, China
- Shenzhen Research Institute,
Southeast University, Shenzhen, 518038, China
| |
Collapse
|
18
|
Andalib E, Kashfi M, Mahmoudvand G, Rezaei E, Mahjoor M, Torki A, Afkhami H. Application of hypoxia-mesenchymal stem cells in treatment of anaerobic bacterial wound infection: wound healing and infection recovery. Front Microbiol 2023; 14:1251956. [PMID: 37869672 PMCID: PMC10586055 DOI: 10.3389/fmicb.2023.1251956] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/18/2023] [Indexed: 10/24/2023] Open
Abstract
Mesenchymal stromal cells, commonly referred to as MSCs, are a type of multipotent stem cells that are typically extracted from adipose tissue and bone marrow. In the field of tissue engineering and regenerative medicine, MSCs and their exosomes have emerged as revolutionary tools. Researchers are now devoting greater attention to MSCs because of their ability to generate skin cells like fibroblasts and keratinocytes, as well as their distinctive potential to decrease inflammation and emit pro-angiogenic molecules at the site of wounds. More recent investigations revealed that MSCs can exert numerous direct and indirect antimicrobial effects that are immunologically mediated. Collectively, these antimicrobial properties can remove bacterial infections when the MSCs are delivered in a therapeutic setting. Regardless of the positive therapeutic potential of MSCs for a multitude of conditions, transplanted MSC cell retention continues to be a major challenge. Since MSCs are typically administered into naturally hypoxic tissues, understanding the impact of hypoxia on the functioning of MSCs is crucial. Hypoxia has been postulated to be among the factors determining the differentiation of MSCs, resulting in the production of inflammatory cytokines throughout the process of tissue regeneration and wound repair. This has opened new horizons in developing MSC-based systems as a potent therapeutic tool in oxygen-deprived regions, including anaerobic wound infection sites. This review sheds light on the role of hypoxia-MSCs in the treatment of anaerobic bacterial wound infection in terms of both their regenerative and antimicrobial activities.
Collapse
Affiliation(s)
- Elahe Andalib
- Department of Microbiology, School of Basic Sciences, Islamic Azad University Science and Research Branch, Tehran, Iran
| | - Mojtaba Kashfi
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Department of Medical Microbiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Golnaz Mahmoudvand
- Student Research Committee, USERN Office, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Elaheh Rezaei
- Department of Microbiology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mohamad Mahjoor
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Department of Immunology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Torki
- Department of Medical Microbiology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Medical Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hamed Afkhami
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| |
Collapse
|
19
|
Fan Y, Li J, Fang B. A Tale of Two: When Neural Stem Cells Encounter Hypoxia. Cell Mol Neurobiol 2023; 43:1799-1816. [PMID: 36308642 PMCID: PMC11412202 DOI: 10.1007/s10571-022-01293-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 10/02/2022] [Indexed: 11/12/2022]
Abstract
Normoxia is defined as an oxygen concentration of 20.9%, as in room air, whereas hypoxia refers to any oxygen concentration less than this. Any physiological oxygen deficiency or tissue oxygen deficiency relative to demand is called hypoxia. Neural stem cells (NSCs) are multipotent stem cells that can differentiate into multiple cell lines such as neurons, oligodendrocytes, and astrocytes. Under hypoxic conditions, the apoptosis rate of NSCs increases remarkably in vitro or in vivo. However, some hypoxia promotes the proliferation and differentiation of NSCs. The difference is related to the oxygen concentration, the duration of hypoxia, the hypoxia tolerance threshold of the NSCs, and the tissue source of the NSCs. The main mechanism of hypoxia-induced proliferation and differentiation involves an increase in cyclin and erythropoietin concentrations, and hypoxia-inducible factors play a key role. Multiple molecular pathways are activated during hypoxia, including Notch, Wnt/β-catenin, PI3K/Akt, and altered microRNA expression. In addition, we review the protective effect of exogenous NSCs transplantation on ischemic or anoxic organs, the therapeutic potential of hypoxic preconditioning on exogenous NSCs and clinical application of NSCs.
Collapse
Affiliation(s)
- Yiting Fan
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, China
| | - Jinshi Li
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, China
| | - Bo Fang
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
20
|
Aboouf MA, Thiersch M, Soliz J, Gassmann M, Schneider Gasser EM. The Brain at High Altitude: From Molecular Signaling to Cognitive Performance. Int J Mol Sci 2023; 24:10179. [PMID: 37373327 DOI: 10.3390/ijms241210179] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/13/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
The brain requires over one-fifth of the total body oxygen demand for normal functioning. At high altitude (HA), the lower atmospheric oxygen pressure inevitably challenges the brain, affecting voluntary spatial attention, cognitive processing, and attention speed after short-term, long-term, or lifespan exposure. Molecular responses to HA are controlled mainly by hypoxia-inducible factors. This review aims to summarize the cellular, metabolic, and functional alterations in the brain at HA with a focus on the role of hypoxia-inducible factors in controlling the hypoxic ventilatory response, neuronal survival, metabolism, neurogenesis, synaptogenesis, and plasticity.
Collapse
Affiliation(s)
- Mostafa A Aboouf
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zürich, 8057 Zurich, Switzerland
- Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, 8057 Zurich, Switzerland
| | - Markus Thiersch
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zürich, 8057 Zurich, Switzerland
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, 8057 Zurich, Switzerland
| | - Jorge Soliz
- Institute Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Faculty of Medicine, Université Laval, Québec, QC G1V 4G5, Canada
| | - Max Gassmann
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zürich, 8057 Zurich, Switzerland
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, 8057 Zurich, Switzerland
| | - Edith M Schneider Gasser
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zürich, 8057 Zurich, Switzerland
- Institute Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Faculty of Medicine, Université Laval, Québec, QC G1V 4G5, Canada
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
21
|
Considine MJ, Foyer CH. Metabolic regulation of quiescence in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:1132-1148. [PMID: 36994639 PMCID: PMC10952390 DOI: 10.1111/tpj.16216] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/19/2023] [Accepted: 03/24/2023] [Indexed: 05/31/2023]
Abstract
Quiescence is a crucial survival attribute in which cell division is repressed in a reversible manner. Although quiescence has long been viewed as an inactive state, recent studies have shown that it is an actively monitored process that is influenced by environmental stimuli. Here, we provide a perspective of the quiescent state and discuss how this process is tuned by energy, nutrient and oxygen status, and the pathways that sense and transmit these signals. We not only highlight the governance of canonical regulators and signalling mechanisms that respond to changes in nutrient and energy status, but also consider the central significance of mitochondrial functions and cues as key regulators of nuclear gene expression. Furthermore, we discuss how reactive oxygen species and the associated redox processes, which are intrinsically linked to energy carbohydrate metabolism, also play a key role in the orchestration of quiescence.
Collapse
Affiliation(s)
- Michael J. Considine
- The UWA Institute of Agriculture and the School of Molecular SciencesThe University of Western AustraliaPerthWestern Australia6009Australia
- The Department of Primary Industries and Regional DevelopmentPerthWestern Australia6000Australia
| | - Christine H. Foyer
- School of Biosciences, College of Life and Environmental SciencesUniversity of BirminghamEdgbastonB15 2TTUK
| |
Collapse
|
22
|
Ni W, Ramalingam M, Li Y, Park JH, Dashnyam K, Lee JH, Bloise N, Fassina L, Visai L, De Angelis MGC, Pedraz JL, Kim HW, Hu J. Immunomodulatory and Anti-inflammatory effect of Neural Stem/Progenitor Cells in the Central Nervous System. Stem Cell Rev Rep 2023; 19:866-885. [PMID: 36650367 DOI: 10.1007/s12015-022-10501-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2022] [Indexed: 01/19/2023]
Abstract
Neuroinflammation is a critical event that responds to disturbed homeostasis and governs various neurological diseases in the central nervous system (CNS). The excessive inflammatory microenvironment in the CNS can adversely affect endogenous neural stem cells, thereby impeding neural self-repair. Therapies with neural stem/progenitor cells (NSPCs) have shown significant inhibitory effects on inflammation, which is mainly achieved through intercellular contact and paracrine signalings. The intercellular contact between NSPCs and immune cells, the activated CNS- resident microglia, and astrocyte plays a critical role in the therapeutic NSPCs homing and immunomodulatory effects. Moreover, the paracrine effect mainly regulates infiltrating innate and adaptive immune cells, activated microglia, and astrocyte through the secretion of bioactive molecules and extracellular vesicles. However, the molecular mechanism involved in the immunomodulatory effect of NSPCs is not well discussed. This article provides a systematic analysis of the immunomodulatory mechanism of NSPCs, discusses efficient ways to enhance its immunomodulatory ability, and gives suggestions on clinical therapy.
Collapse
Affiliation(s)
- Wei Ni
- Department of Clinical Laboratory, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, 213000, Jiangsu, China.,Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Murugan Ramalingam
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan, 31116, Republic of Korea. .,Department of Nanobiomedical Science, BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea. .,Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea. .,School of Basic Medical Sciences, Chengdu University, Chengdu, 610106, People's Republic of China.
| | - Yumeng Li
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan, 31116, Republic of Korea.,Department of Nanobiomedical Science, BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea.,Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
| | - Jeong-Hui Park
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan, 31116, Republic of Korea.,Department of Nanobiomedical Science, BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea.,Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
| | - Khandmaa Dashnyam
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan, 31116, Republic of Korea
| | - Jung-Hwan Lee
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan, 31116, Republic of Korea.,Department of Nanobiomedical Science, BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea.,Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
| | - Nora Bloise
- Department of Molecular Medicine, Centre for Health Technologies (CHT), INSTM UdR of Pavia, University of Pavia, 27100, Pavia, Italy.,Medicina Clinica-Specialistica, UOR5 Laboratorio di Nanotecnologie, ICS Maugeri, IRCCS, 27100, Pavia, Italy
| | - Lorenzo Fassina
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, 27100, Pavia, Italy
| | - Livia Visai
- Department of Molecular Medicine, Centre for Health Technologies (CHT), INSTM UdR of Pavia, University of Pavia, 27100, Pavia, Italy.,Medicina Clinica-Specialistica, UOR5 Laboratorio di Nanotecnologie, ICS Maugeri, IRCCS, 27100, Pavia, Italy
| | | | - Jose Luis Pedraz
- NanoBioCel Research Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), 01006, Vitoria-Gasteiz, Spain.,Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine, Institute of Health Carlos III, 28029, Madrid, Spain
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan, 31116, Republic of Korea. .,Department of Nanobiomedical Science, BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea. .,Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea.
| | - Jiabo Hu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| |
Collapse
|
23
|
Petridi S, Dubal D, Rikhy R, van den Ameele J. Mitochondrial respiration and dynamics of in vivo neural stem cells. Development 2022; 149:285126. [PMID: 36445292 PMCID: PMC10112913 DOI: 10.1242/dev.200870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Neural stem cells (NSCs) in the developing and adult brain undergo many different transitions, tightly regulated by extrinsic and intrinsic factors. While the role of signalling pathways and transcription factors is well established, recent evidence has also highlighted mitochondria as central players in NSC behaviour and fate decisions. Many aspects of cellular metabolism and mitochondrial biology change during NSC transitions, interact with signalling pathways and affect the activity of chromatin-modifying enzymes. In this Spotlight, we explore recent in vivo findings, primarily from Drosophila and mammalian model systems, about the role that mitochondrial respiration and morphology play in NSC development and function.
Collapse
Affiliation(s)
- Stavroula Petridi
- Department of Clinical Neurosciences and MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK
| | - Dnyanesh Dubal
- Department of Clinical Neurosciences and MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK.,Biology, Indian Institute of Science Education and Research, Homi Bhabha Road, Pashan, Pune 411008, India
| | - Richa Rikhy
- Biology, Indian Institute of Science Education and Research, Homi Bhabha Road, Pashan, Pune 411008, India
| | - Jelle van den Ameele
- Department of Clinical Neurosciences and MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK
| |
Collapse
|
24
|
Zhong M, Zeng H, Wang D, Li J, Duan X, Li Y. Structure and activity alteration in adult highland residents' cerebrum: Voxel-based morphometry and amplitude of low-frequency fluctuation study. Front Neurosci 2022; 16:1035308. [PMID: 36507327 PMCID: PMC9730815 DOI: 10.3389/fnins.2022.1035308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/31/2022] [Indexed: 11/25/2022] Open
Abstract
Introduction People living in highland areas may have factors that allow them to adapt to chronic hypoxia, but these physiological mechanisms remain unclear. This study aimed to investigate the brain mechanism in a cohort of adult residents of Tibet, a well-known plateau section in China, by observing differences in brain structure and function in non-plateau populations. Methods The study included 27 Tibetan and 27 non-plateau region residents who were matched in age, sex, and education. All participants underwent high-resolution three-dimensional T1 weighted imaging (3D-T1WI) and resting-state functional magnetic resonance imaging (rs-fMRI) scans on a 1.5 Tesla MR. Gray matter volumes and regional spontaneous neuronal activity (SNA) were calculated and compared between the two groups. Results When comparing gray matter in people living in high altitudes to those living in the flatlands, the results showed positive activation of gray matter in local brain regions (p < 0.05, false discovery rate (FDR) corrected), in the right postcentral [automated atomic labeling (aal)], left postcentral (aal), and right lingual (aal) regions. Comparing the people of high altitude vs. flat land in the brain function study (p < 0.05, FDR corrected), positive activation was found in the right superior motor area (aal) and left superior frontal (aal), and negative activation was found in the right precuneus (aal). Conclusion In high-altitude individuals, larger regional gray matter volumes and higher SNA may represent a compensatory mechanism to adapt to chronic hypoxia.
Collapse
Affiliation(s)
- Minzhi Zhong
- Department of Radiology, Guangzhou Red Cross Hospital, Guangzhou, China
| | - Huaqu Zeng
- Department of Radiotherapy Center, Gaozhou People's Hospital, Guangdong, China
| | - Dongye Wang
- Department of Radiology, Sun Yat-sen Memorial Hospital, Guangzhou, China
| | - Jiesheng Li
- Department of Radiology, Sanshui People's Hospital, Foshan, China
| | - Xuguang Duan
- Department of Radiology, Nyingchi People's Hospital of Tibet Autonomous Region, Nyingchi, China
| | - Yong Li
- Department of Radiology, Sun Yat-sen Memorial Hospital, Guangzhou, China
| |
Collapse
|
25
|
Serial Gene Expression Profiling of Neural Stem Cells Shows Transcriptome Switch by Long-Term Physioxia from Metabolic Adaption to Cell Signaling Profile. Stem Cells Int 2022; 2022:6718640. [PMID: 36411871 PMCID: PMC9675612 DOI: 10.1155/2022/6718640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/30/2022] [Accepted: 10/26/2022] [Indexed: 11/13/2022] Open
Abstract
Oxygen is an essential factor in the cellular microenvironment with pivotal effects on neural development with a particular sensitivity of midbrain neural stem cells (NSCs) to high atmospheric oxygen tension. However, most experiments are still performed at atmospheric O2 levels (21%, normoxia), whereas mammalian brain tissue is physiologically exposed to substantially lower O2 tensions around 3% (physioxia). We here performed serial Affymetrix gene array analyses to detect expression changes in mouse fetal NSCs from both midbrain and cortical tissues when kept at physioxia compared to normoxia. We identified more than 400 O2-regulated genes involved in cellular metabolism, cell proliferation/differentiation, and various signaling pathways. NSCs from both regions showed a low number but high conformity of regulated genes (9 genes in midbrain vs. 34 in cortical NSCs; 8 concordant expression changes) after short-term physioxia (2 days) with metabolic processes and cellular processes being the most prominent GO categories pointing to cellular adaption to lower oxygen levels. Gene expression profiles changed dramatically after long-term physioxia (13 days) with a higher number of regulated genes and more diverse expression patterns when comparing the two NSC types (338 genes in midbrain vs. 121 in cortical NSCs; 75 concordant changes). Most prominently, we observed a reduction of hits in metabolic processes but an increase in biological regulation and signaling pointing to a switch towards signaling processes and stem cell maintenance. Our data may serve as a basis for identifying potential signaling pathways that maintain stem cell characteristics in cortical versus midbrain physioxic stem cell niches.
Collapse
|
26
|
Jung GA, Kim JA, Park HW, Lee H, Chang MS, Cho KO, Song BW, Kim HJ, Kwon YK, Oh IH. Induction of Nanog in neural progenitor cells for adaptive regeneration of ischemic brain. Exp Mol Med 2022; 54:1955-1966. [PMID: 36376495 PMCID: PMC9722910 DOI: 10.1038/s12276-022-00880-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 08/18/2022] [Accepted: 08/24/2022] [Indexed: 11/15/2022] Open
Abstract
NANOG plays a key role in cellular plasticity and the acquisition of the stem cell state during reprogramming, but its role in the regenerative process remains unclear. Here, we show that the induction of NANOG in neuronal cells is necessary for the physiological initiation of neuronal regeneration in response to ischemic stress. Specifically, we found that NANOG was preferentially expressed in undifferentiated neuronal cells, and forced expression of Nanog in neural progenitor cells (NPCs) promoted their self-renewing expansion both in ex-vivo slice cultures and in vitro limiting dilution analysis. Notably, the upstream region of the Nanog gene contains sequence motifs for hypoxia-inducible factor-1 alpha (HIF-1α). Therefore, cerebral neurons exposed to hypoxia significantly upregulated NANOG expression selectively in primitive (CD133+) cells, but not in mature cells, leading to the expansion of NPCs. Notably, up to 80% of the neuronal expansion induced by hypoxia was attributed to NANOG-expressing neuronal cells, whereas knockdown during hypoxia abolished this expansion and was accompanied by the downregulation of other pluripotency-related genes. Moreover, the number of NANOG-expressing neuronal cells were transiently increased in response to ischemic insult, predominantly in the infarct area of brain regions undergoing neurogenesis, but not in non-neurogenic loci. Together, these findings reveal a functional effect of NANOG-induction for the initiation of adaptive neuronal regeneration among heterogeneous NPC subsets, pointing to cellular plasticity as a potential link between regeneration and reprogramming processes.
Collapse
Affiliation(s)
- Gyung-Ah Jung
- Catholic High-Performance Cell Therapy Center & Department of Medical Life Science, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jin-A Kim
- Catholic High-Performance Cell Therapy Center & Department of Medical Life Science, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hwan-Woo Park
- Department of Oral Anatomy, Dental Research Institute & School of Dentistry, Seoul National University, Seoul, Korea
- Department of Cell Biology, Myunggok Medical Research Institute, Konyang University College of Medicine, Daejeon, Korea
| | - Hyemi Lee
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, Korea
| | - Mi-Sook Chang
- Department of Oral Anatomy, Dental Research Institute & School of Dentistry, Seoul National University, Seoul, Korea
| | - Kyung-Ok Cho
- Department of Pharmacology, Department of Biomedicine & Health Sciences, Catholic Neuroscience Institute, Institute of Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Byeong-Wook Song
- College of Medicine, Institute for Bio-Medical Convergence, Catholic Kwandong University, Gangneung-si, 25601, Korea
| | - Hyun-Ju Kim
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, Korea.
| | - Yunhee Kim Kwon
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, Korea.
| | - Il-Hoan Oh
- Catholic High-Performance Cell Therapy Center & Department of Medical Life Science, College of Medicine, The Catholic University of Korea, Seoul, Korea.
- Institute for Regenerative Medical Research, StemMeditech Inc., Seoul, Korea.
| |
Collapse
|
27
|
Richardson RB. The role of oxygen and the Goldilocks range in the development of cataracts induced by space radiation in US astronauts. Exp Eye Res 2022; 223:109192. [DOI: 10.1016/j.exer.2022.109192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/26/2022] [Accepted: 07/13/2022] [Indexed: 11/04/2022]
|
28
|
Azorín-Vega EP, de León CL, García-Reyna MG, Vega-Carrillo HR. Mathematical description of the effect of HIF inhibition on the radiobiological response of LNCaP cells. Appl Radiat Isot 2022; 184:110157. [DOI: 10.1016/j.apradiso.2022.110157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 11/28/2022]
|