1
|
Ernetti JR, Prado JS, Toledo LF. Host life stage susceptibility to the chytrid fungus in a Neotropical torrent frog. Fungal Biol 2025; 129:101546. [PMID: 40023531 DOI: 10.1016/j.funbio.2025.101546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 01/29/2025] [Accepted: 01/30/2025] [Indexed: 03/04/2025]
Abstract
Pathogen-host systems become complex when they involve life histories with multiple stages. Understanding these complexities is particularly important for investigating the infection dynamics of the amphibian pathogen Batrachochytrium dendrobatidis (Bd). Here, we investigate whether Bd infection susceptibility differs between host life stages and determine the influence of environmental factors on Bd infection rates across remnant populations of a Neotropical torrent frog. We found that Bd infection probability varies between tadpoles and adults in Hylodes phyllodes, with tadpoles exhibiting a higher likelihood of infection. Tadpoles are tolerant to Bd, acting as zoospore reservoirs, potentially aiding in the pathogen's persistence in the environment and infecting other susceptible hosts. Topographic complexity, species richness, the human footprint, precipitation seasonality and diurnal temperature variations influenced Bd infection rates. Conservation strategies should encompass both host life stages, monitoring from larvae to adults, while also evaluating threats synergistically, such as the human footprint, to effectively predict and mitigate the impact of Bd on susceptible populations.
Collapse
Affiliation(s)
- Julia R Ernetti
- Laboratório de História Natural de Anfíbios Brasileiros (LaHNAB), Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, 13083-862, Brazil; Programa de Pós-Graduação em Ecologia, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, 13083-862, Brazil.
| | - Joelma S Prado
- Laboratório de História Natural de Anfíbios Brasileiros (LaHNAB), Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, 13083-862, Brazil
| | - Luís Felipe Toledo
- Laboratório de História Natural de Anfíbios Brasileiros (LaHNAB), Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, 13083-862, Brazil; Programa de Pós-Graduação em Ecologia, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, 13083-862, Brazil
| |
Collapse
|
2
|
Mangan MJ, McCallum HI, West M, Scheele BC, Gillespie GR, Grogan LF. Differential recruitment drives pathogen-mediated competition between species in an amphibian chytridiomycosis system. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2025; 35:e3085. [PMID: 39821939 PMCID: PMC11751701 DOI: 10.1002/eap.3085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 11/15/2024] [Indexed: 01/30/2025]
Abstract
Pathogens that infect multiple host species have an increased capacity to cause extinctions through parasite-mediated apparent competition. Given unprecedented and continuing losses of biodiversity due to Batrachochytrium dendrobatidis (Bd), the causative fungus of the amphibian skin disease chytridiomycosis, a robust understanding of the mechanisms driving cross-species infection dynamics is essential. Here, we used stage-structured, susceptible-infected compartmental models to explore drivers of Bd-mediated apparent competition between two sympatric amphibians, the critically endangered Litoria spenceri and the non-threatened Litoria lesueurii. We additionally simulated the impact of plausible L. spenceri conservation management interventions on competitive outcomes between these two species. Despite being more susceptible to disease than its competitor, a high relative rate of recruitment allowed the non-threatened L. lesueurii to reach substantially higher densities than L. spenceri in our baseline models, applying a strong absolute force of infection on L. spenceri as an amplifying host. However, simulated management interventions which bolstered L. spenceri recruitment (i.e., captive breeding and release, removal of predatory non-native trout) spurred strong recoveries of L. spenceri while simultaneously (1) increasing the force of Bd infection in the environment and (2) reducing L. lesueurii population density. At high and moderate elevations, combined captive breeding/release and non-native trout removal were sufficient to make L. spenceri the most abundant species. Overall, our results demonstrate the importance of recruitment in moderating pathogen dynamics of multi-host amphibian chytridiomycosis systems. While infection-based parameters are undoubtedly important in Bd management, modifying relative rates of recruitment can substantially alter pathogen-mediated competition between species of an amphibian community.
Collapse
Affiliation(s)
- Madelyn J. Mangan
- Centre for Planetary Health and Food Security, and School of Environment and ScienceGriffith UniversitySouthportQueenslandAustralia
| | - Hamish I. McCallum
- Centre for Planetary Health and Food Security, and School of Environment and ScienceGriffith UniversitySouthportQueenslandAustralia
| | - Matt West
- School of BioSciencesUniversity of MelbourneParkvilleVictoriaAustralia
- Wild Research Pty LtdWarrandyteVictoriaAustralia
| | - Ben C. Scheele
- Fenner School of Environment and SocietyThe Australian National UniversityCanberraAustralian Capital TerritoryAustralia
| | | | - Laura F. Grogan
- Centre for Planetary Health and Food Security, and School of Environment and ScienceGriffith UniversitySouthportQueenslandAustralia
- School of the EnvironmentThe University of QueenslandBrisbaneQueenslandAustralia
| |
Collapse
|
3
|
Jones DK, DiGiacopo DG, Mattes BM, Yates E, Hua J, Hoverman JT, Relyea RA. Naïve and induced tolerance of 15 amphibian populations to three commonly applied insecticides. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 272:106945. [PMID: 38759526 DOI: 10.1016/j.aquatox.2024.106945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/19/2024]
Abstract
Human impacts on ecological communities are pervasive and species must either move or adapt to changing environmental conditions. For environments polluted by contaminants, researchers have found hundreds of target pest species evolving increased tolerance, but we have substantially fewer cases of evolved tolerance in non-target species. When species do evolve increased tolerance, inducible tolerance can provide immediate protection and favor the evolution of increased tolerance over generations via genetic assimilation. Using a model larval amphibian (wood frogs, Rana sylvatica), we examined the tolerance of 15 populations from western Pennsylvania and eastern New York (USA), when first exposed to no pesticide or sublethal concentrations and subsequently exposed to lethal concentrations of three common insecticides (carbaryl, chlorpyrifos, and diazinon). We found high variation in naïve tolerance among the populations for all three insecticides. We also discovered that nearly half of the populations exhibited inducible tolerance, though the degree of inducible tolerance (magnitude of tolerance plasticity; MoTP) varied. We observed a cross-tolerance pattern of the populations between chlorpyrifos and diazinon, but no pattern of similar MoTP among the pesticides. With populations combined from two regions, increased tolerance was not associated with proximity to agricultural fields, but there were correlations between proximity to agriculture and MoTP. Collectively, these results suggests that amphibian populations possess a wide range of naïve tolerance to common pesticides, with many also being able to rapidly induce increased tolerance. Future research should examine inducible tolerance in a wide variety of other taxa and contaminants to determine the ubiquity of these responses to anthropogenic factors.
Collapse
Affiliation(s)
- Devin K Jones
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180 USA; Department. of Forestry and Natural Resources, Purdue Univ., West Lafayette, IN 47907 USA
| | - Devin G DiGiacopo
- Teatown Lake Reservation, 1600 Spring Valley Road, Ossining, NY 10562 USA
| | - Brian M Mattes
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180 USA
| | - Erika Yates
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180 USA
| | - Jessica Hua
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI 53705 USA
| | - Jason T Hoverman
- Department. of Forestry and Natural Resources, Purdue Univ., West Lafayette, IN 47907 USA
| | - Rick A Relyea
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180 USA.
| |
Collapse
|
4
|
Chondrelli N, Kuehn E, Meurling S, Cortázar-Chinarro M, Laurila A, Höglund J. Batrachochytrium dendrobatidis strain affects transcriptomic response in liver but not skin in latitudinal populations of the common toad (Bufo bufo). Sci Rep 2024; 14:2495. [PMID: 38291226 PMCID: PMC10828426 DOI: 10.1038/s41598-024-52975-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 01/25/2024] [Indexed: 02/01/2024] Open
Abstract
Batrachochytrium dendrobatidis (Bd) is a fungal pathogen that has decimated amphibian populations worldwide for several decades. We examined the changes in gene expression in response to Bd infection in two populations of the common toad, Bufo bufo, in a laboratory experiment. We collected B. bufo eggs in southern and northern Sweden, and infected the laboratory-raised metamorphs with two strains of the global panzoonotic lineage Bd-GPL. Differential expression analysis showed significant differences between infected and control individuals in both liver and skin. The skin samples showed no discernible differences in gene expression between the two strains used, while liver samples were differentiated by strain, with one of the strains eliciting no immune response from infected toads. Immune system genes were overexpressed in skin samples from surviving infected individuals, while in liver samples the pattern was more diffuse. Splitting samples by population revealed a stronger immune response in northern individuals. Differences in transcriptional regulation between populations are particularly relevant to study in Swedish amphibians, which may have experienced varying exposure to Bd. Earlier exposure to this pathogen and subsequent adaptation or selection pressure may contribute to the survival of some populations over others, while standing genetic diversity in different populations may also affect the infection outcome.
Collapse
Affiliation(s)
- Niki Chondrelli
- Animal Ecology/Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden.
| | - Emily Kuehn
- Animal Ecology/Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - Sara Meurling
- Animal Ecology/Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - Maria Cortázar-Chinarro
- Animal Ecology/Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
- MEMEG/Department of Biology, Faculty of Science, Lund University, Lund, Sweden
| | - Anssi Laurila
- Animal Ecology/Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - Jacob Höglund
- Animal Ecology/Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| |
Collapse
|
5
|
Meurling S, Siljestam M, Cortazar-Chinarro M, Åhlen D, Rödin-Mörch P, Ågren E, Höglund J, Laurila A. Body size mediates latitudinal population differences in the response to chytrid fungus infection in two amphibians. Oecologia 2024; 204:71-81. [PMID: 38097779 PMCID: PMC10830819 DOI: 10.1007/s00442-023-05489-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/14/2023] [Indexed: 02/02/2024]
Abstract
Factors behind intraspecific variation in sensitivity to pathogens remain poorly understood. We investigated how geographical origin in two North European amphibians affects tolerance to infection by the chytrid fungus Batrachochytrium dendrobatidis (Bd), a generalist pathogen which has caused amphibian population declines worldwide. We exposed newly metamorphosed individuals of moor frog Rana arvalis and common toad Bufo bufo from two latitudinal regions to two different BdGPL strains. We measured survival and growth as infections may cause sub-lethal effects in fitness components even in the absence of mortality. Infection loads were higher in B. bufo than in R. arvalis, and smaller individuals had generally higher infection loads. B. bufo had high mortality in response to Bd infection, whereas there was little mortality in R. arvalis. Bd-mediated mortality was size-dependent and high-latitude individuals were smaller leading to high mortality in the northern B. bufo. Bd exposure led to sub-lethal effects in terms of reduced growth suggesting that individuals surviving the infection may have reduced fitness mediated by smaller body size. In both host species, the Swedish Bd strain caused stronger sublethal effects than the British strain. We suggest that high-latitude populations can be more vulnerable to chytrids than those from lower latitudes and discuss the possible mechanisms how body size and host geographical origin contribute to the present results.
Collapse
Affiliation(s)
- Sara Meurling
- Animal Ecology/ Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - Mattias Siljestam
- Animal Ecology/ Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - Maria Cortazar-Chinarro
- Animal Ecology/ Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
- MEMEG/Department of Biology, Lund University, Lund, Sweden
- Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, Canada
| | - David Åhlen
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Uppsala, Sweden
| | - Patrik Rödin-Mörch
- Animal Ecology/ Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - Erik Ågren
- Department of Pathology and Wildlife Diseases, National Veterinary Institute, Uppsala, Sweden
| | - Jacob Höglund
- Animal Ecology/ Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - Anssi Laurila
- Animal Ecology/ Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
6
|
Basanta MD, Rebollar EA, García-Castillo MG, Parra Olea G. Comparative Analysis of Skin Bacterial Diversity and Its Potential Antifungal Function Between Desert and Pine Forest Populations of Boreal Toads Anaxyrus boreas. MICROBIAL ECOLOGY 2022; 84:257-266. [PMID: 34427721 DOI: 10.1007/s00248-021-01845-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 08/14/2021] [Indexed: 06/13/2023]
Abstract
The skin microbiome in amphibians has gained a lot of attention as some of its members play a protective role against pathogens such as the fungus Batrachochytrium dendrobatidis (Bd). The composition of skin bacterial communities has been suggested as one of the factors explaining differences in susceptibility to Bd among amphibian species and populations. The boreal toad Anaxyrus boreas is known to be susceptible to Bd, and severe population declines in its southeastern range have been documented. However, throughout A. boreas distribution, populations present differences in susceptibility to Bd infections which may be associated with differences in skin microbial diversity. This study compared the skin bacterial diversity and Bd infection levels of A. boreas in one desert population and one pine forest population from Baja California, Mexico. We found that desert and pine forest toad populations exhibit differences in skin bacterial community structure but show similar Bd infection levels. Using a predictive method, we found that the abundance of bacteria with potential Bd-inhibitory properties differed between uninfected and infected individuals but not between populations. Our data suggest that several bacteria in the skin community may be offering protection from Bd infections in these A. boreas populations. This study provides foundational evidence for future studies seeking to understand the skin-microbial variation among boreal toads' populations and its relation with Bd susceptibility.
Collapse
Affiliation(s)
- M Delia Basanta
- Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México, México
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Eria A Rebollar
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Mirna G García-Castillo
- Universidad Politécnica de Huatusco, Huatusco, Veracruz, México
- Facultad de Ciencias Biológicas y Agropecuarias Región: Orizaba-Córdoba, Universidad Veracruzana, Amatlán de Los Reyes, Veracruz, México
| | - Gabriela Parra Olea
- Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México, México.
| |
Collapse
|
7
|
Harper DD, Puglis HJ, Kunz BK, Farag AM. Chloride Toxicity to Native Freshwater Species in Natural and Reconstituted Prairie Pothole Waters. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 82:416-428. [PMID: 35348802 DOI: 10.1007/s00244-022-00927-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
Oil and gas extraction in the Prairie Pothole Region (PPR) of the northern USA has resulted in elevated chloride concentrations in ground and surface water due to widespread contamination with highly saline produced water, or brine. The toxicity of chloride is poorly understood in the high hardness waters characteristic of the region. We evaluated the toxicity of chloride to two endemic species, Daphnia magna (water flea) and Lemna gibba (duckweed), exposed in field-collected waters (hardness ~ 3000 mg/L as CaCO3) and reconstituted waters (hardness 370 mg/L as CaCO3) intended to mimic PPR background waters. We also investigated the role of chloride in the toxicity of water reconstituted to mimic legacy brine-contaminated wetlands, using two populations of native Pseudacris maculata (Boreal Chorus Frog). Chloride toxicity was similar in field-collected and reconstituted waters for both D. magna (LC50s 3070-3788 mg Cl-1/L) and L. gibba (IC50s 2441-2887). Although hardness can ameliorate chloride toxicity at low to high hardness, we did not observe additional protection as hardness increased from 370 to ~ 3000 mg/L. In P. maculata exposures, chloride did not fully explain toxicity. Chloride sensitivity also differed between populations, with mortality at 2000 mg Cl-/L in one population but not the other, and population-specific growth responses. Overall, these results (1) document toxicity to native species at chloride concentrations occurring in the PPR, (2) indicate that very high hardness in the region's waters may not provide additional protection against chloride and (3) highlight challenges of brine investigations, including whether surrogate study populations are representative of local populations.
Collapse
Affiliation(s)
- David D Harper
- Columbia Environmental Research Center - Jackson Field Research Station, U.S. Geological Survey, Jackson, WY, USA.
| | - Holly J Puglis
- Columbia Environmental Research Center, U.S Geological Survey, Columbia, MO, USA
| | - Bethany K Kunz
- Columbia Environmental Research Center, U.S Geological Survey, Columbia, MO, USA
| | - Aїda M Farag
- Columbia Environmental Research Center - Jackson Field Research Station, U.S. Geological Survey, Jackson, WY, USA
| |
Collapse
|
8
|
Smith D, O'Brien D, Hall J, Sergeant C, Brookes LM, Harrison XA, Garner TWJ, Jehle R. Challenging a host-pathogen paradigm: Susceptibility to chytridiomycosis is decoupled from genetic erosion. J Evol Biol 2022; 35:589-598. [PMID: 35167143 PMCID: PMC9306973 DOI: 10.1111/jeb.13987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 02/07/2022] [Indexed: 11/26/2022]
Abstract
The putatively positive association between host genetic diversity and the ability to defend against pathogens has long attracted the attention of evolutionary biologists. Chytridiomycosis, a disease caused by the chytrid fungus Batrachochytrium dendrobatidis (Bd), has emerged in recent decades as a cause of dramatic declines and extinctions across the amphibian clade. Bd susceptibility can vary widely across populations of the same species, but the relationship between standing genetic diversity and susceptibility has remained notably underexplored so far. Here, we focus on a putatively Bd-naive system of two mainland and two island populations of the common toad (Bufo bufo) at the edge of the species' range and use controlled infection experiments and dd-RAD sequencing of >10 000 SNPs across 95 individuals to characterize the role of host population identity, genetic variation and individual body mass in mediating host response to the pathogen. We found strong genetic differentiation between populations and marked variation in their susceptibility to Bd. This variation was not, however, governed by isolation-mediated genetic erosion, and individual heterozygosity was even found to be negatively correlated with survival. Individual survival during infection experiments was strongly positively related to body mass, which itself was unrelated to population of origin or heterozygosity. Our findings underscore the general importance of context-dependency when assessing the role of host genetic variation for the ability of defence against pathogens.
Collapse
Affiliation(s)
- Donal Smith
- School of Science, Engineering and EnvironmentUniversity of SalfordSalfordUK
- Institute of ZoologyZoological Society of LondonLondonUK
| | | | | | - Chris Sergeant
- Institute of ZoologyZoological Society of LondonLondonUK
| | - Lola M. Brookes
- Institute of ZoologyZoological Society of LondonLondonUK
- Highland Amphibian and Reptile ProjectDingwallUK
- MRC Centre for Global Infectious Disease AnalysisImperial College School of Public HealthLondonUK
- Royal Veterinary CollegeHatfieldUK
| | - Xavier A. Harrison
- Institute of ZoologyZoological Society of LondonLondonUK
- Centre for Ecology and ConservationUniversity of ExeterExeterUK
| | | | - Robert Jehle
- School of Science, Engineering and EnvironmentUniversity of SalfordSalfordUK
| |
Collapse
|
9
|
Urbina J, Bredeweg EM, Blaustein AR, Garcia TS. Direct and Latent Effects of Pathogen Exposure Across Native and Invasive Amphibian Life Stages. Front Vet Sci 2021; 8:732993. [PMID: 34778428 PMCID: PMC8585985 DOI: 10.3389/fvets.2021.732993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/28/2021] [Indexed: 11/13/2022] Open
Abstract
Emerging infectious diseases are one of the multiple factors contributing to the current "biodiversity crisis". As part of the worldwide biodiversity crisis, amphibian populations are declining globally. Chytridiomycosis, an emerging infectious disease, caused by the fungal pathogen Batrachochytrium dendrobatidis (Bd), is a major cause of amphibian population declines. This fungus primarily affects keratinized structures in larval, juvenile, and adult amphibians as well as heart function. However, we know little about how Bd can impact embryos as well as potential latent effects of Bd exposure over ontogeny. Using two different Bd strains and multiple exposure times, we examined the effects of Bd exposure in Pacific chorus frog (Pseudacris regilla), Western toad (Anaxyrus boreas) and American bullfrog (Lithobates catesbeianus) life stages. Using a factorial experimental design, embryos of these three species were exposed to Bd at early and late embryonic stages, with some individuals re-exposed after hatching. Embryonic Bd exposure resulted in differential survival as a function of host species, Bd strain and timing of exposure. P. regilla experienced embryonic mortality when exposed during later developmental stages to one Bd strain. There were no differences across the treatments in embryonic mortality of A. boreas and embryonic mortality of L. catesbeianus occurred in all Bd exposure treatments. We detected latent effects in A. boreas and L. catesbeianus larvae, as mortality increased when individuals had been exposed to any of the Bd strains during the embryonic stage. We also detected direct effects on larval mortality in all three anuran species as a function of Bd strain, and when individuals were double exposed (late in the embryonic stage and again as larvae). Our results suggest that exposure to Bd can directly affect embryo survival and has direct and latent effects on larvae survival of both native and invasive species. However, these impacts were highly context dependent, with timing of exposure and Bd strain influencing the severity of the effects.
Collapse
Affiliation(s)
- Jenny Urbina
- Environmental Sciences Graduate Program, Oregon State University, Corvallis, OR, United States
| | - Evan M Bredeweg
- Department of Fisheries, Wildlife and Conservation Sciences, Oregon State University, Corvallis, OR, United States
| | - Andrew R Blaustein
- Department of Integrative Biology, Oregon State University, Corvallis, OR, United States
| | - Tiffany S Garcia
- Department of Fisheries, Wildlife and Conservation Sciences, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
10
|
Rumschlag SL, Roth SA, McMahon TA, Rohr JR, Civitello DJ. Variability in environmental persistence but not per capita transmission rates of the amphibian chytrid fungus leads to differences in host infection prevalence. J Anim Ecol 2021; 91:170-181. [PMID: 34668575 DOI: 10.1111/1365-2656.13612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 09/27/2021] [Indexed: 11/28/2022]
Abstract
Heterogeneities in infections among host populations may arise through differences in environmental conditions through two mechanisms. First, environmental conditions may alter host exposure to pathogens via effects on survival. Second, environmental conditions may alter host susceptibility, making infection more or less likely if contact between a host and pathogen occurs. Further, host susceptibility might be altered through acquired resistance, which hosts can develop, in some systems, through exposure to dead or decaying pathogens and their metabolites. Environmental conditions may alter the rates of pathogen decomposition, influencing the likelihood of hosts developing acquired resistance. The present study primarily tests how environmental context influences the relative contributions of pathogen survival and per capita transmission on host infection prevalence using the amphibian chytrid fungus (Batrachochytrium dendrobatidis; Bd) as a model system. Secondarily, we evaluate how environmental context influences the decomposition of Bd because previous studies have shown that dead Bd and its metabolites can illicit acquired resistance in hosts. We conducted Bd survival and infection experiments and then fit models to discern how Bd mortality, decomposition and per capita transmission rates vary among water sources [e.g. artificial spring water (ASW) or water from three ponds]. We found that infection prevalence differed among water sources, which was driven by differences in mortality rates of Bd, rather than differences in per capita transmission rates. Bd mortality rates varied among pond water treatments and were lower in ASW compared to pond water. These results suggest that variation in Bd infection dynamics could be a function of environmental factors in waterbodies that result in differences in exposure of hosts to live Bd. In contrast to the persistence of live Bd, we found that the rates of decomposition of dead Bd did not vary among water sources, which may suggest that exposure of hosts to dead Bd or its metabolites might not commonly vary among nearby sites. Ultimately, a mechanistic understanding of the environmental dependence of free-living pathogens could lead to a deeper understanding of the patterns of outbreak heterogeneity, which could inform surveillance and management strategies.
Collapse
Affiliation(s)
- Samantha L Rumschlag
- Department of Biological Sciences, Environmental Change Initiative, and Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA.,Department of Integrative Biology, University of South Florida, Tampa, FL, USA
| | - Sadie A Roth
- Department of Integrative Biology, University of South Florida, Tampa, FL, USA.,Department of Natural Resources Management, Texas Tech University, Lubbock, TX, USA
| | - Taegan A McMahon
- Department of Biology, University of Tampa, Tampa, FL, USA.,Department of Biology, Connecticut College, New London, CT, USA
| | - Jason R Rohr
- Department of Biological Sciences, Environmental Change Initiative, and Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA.,Department of Integrative Biology, University of South Florida, Tampa, FL, USA
| | | |
Collapse
|
11
|
Bienentreu JF, Lesbarrères D. Amphibian Disease Ecology: Are We Just Scratching the Surface? HERPETOLOGICA 2020. [DOI: 10.1655/0018-0831-76.2.153] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
| | - David Lesbarrères
- Department of Biology, Laurentian University, Sudbury, ON P3E 2C6, Canada
| |
Collapse
|
12
|
Effects of invasive larval bullfrogs (Rana catesbeiana) on disease transmission, growth and survival in the larvae of native amphibians. Biol Invasions 2020. [DOI: 10.1007/s10530-020-02218-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AbstractThe mechanisms by which invasive species negatively affect native species include competition, predation, and the introduction of novel pathogens. Moreover, if an invasive species is a competent disease reservoir, it may facilitate the long-term maintenance and spread of pathogens in ecological assemblages and drive the extinction of less tolerant or less resistant species. Disease-driven loss of biodiversity is exemplified by the amphibian–chytrid fungus system. The disease chytridiomycosis is caused by the aquatic chytrid fungus Batrachochytrium dendrobatidis (Bd) in anurans and is associated with worldwide amphibian population declines and extinctions. For amphibian species that metamorphose and leave infected aquatic habitats, the mechanisms by which Bd persists over winter in these habitats remains a critical open question. A leading hypothesis is that American bullfrogs (Rana catesbeiana), a worldwide invasive species, are tolerant to Bd and serve as a reservoir host for Bd during winter months and subsequently infect native species that return to breed in spring. Using outdoor mesocosms, we experimentally examined if two strains of Bd could overwinter in aquatic systems, in the presence or absence of bullfrog tadpoles, and if overwintered Bd could be transmitted to tadpoles of two spring-breeding species: Pacific treefrogs (Pseudacris regilla) and Cascades frogs (Rana cascadae). We found that only 4 of 448 total animals (one bullfrog and three spring breeders) tested positive for Bd after overwintering. Moreover, two of the three infected spring breeders emerged from tanks that contained overwintered Bd but in the absence of infected bullfrogs. This suggests that Bd can persist over winter without bullfrogs as a reservoir host. We found no effect of Bd strain on bullfrog survival after overwintering. For Pacific treefrogs, Bd exposure did not significantly affect mass at or time to metamorphosis while exposure to bullfrogs reduced survival. For Cascades frogs, we found an interactive effect of Bd strain and bullfrog presence on time to metamorphosis, but no main or interactive effects on their survival or mass at metamorphosis. In short, bullfrog tadpoles rarely retained and transmitted Bd infection in our experiment and we found limited evidence that Bd successfully overwinters in the absence of bullfrog tadpoles and infects spring-breeding amphibians.
Collapse
|
13
|
Awkerman J, Raimondo S, Schmolke A, Galic N, Rueda-Cediel P, Kapo K, Accolla C, Vaugeois M, Forbes V. Guidance for Developing Amphibian Population Models for Ecological Risk Assessment. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2020; 16:223-233. [PMID: 31538699 PMCID: PMC8425957 DOI: 10.1002/ieam.4215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 07/22/2019] [Accepted: 09/10/2019] [Indexed: 05/05/2023]
Abstract
Despite widespread acceptance of the utility of population modeling and advocacy of this approach for a more ecologically relevant perspective, it is not routinely incorporated in ecological risk assessments (ERA). A systematic framework for situation-specific model development is one of the major challenges to broadly adopting population models in ERA. As risk assessors confront the multitude of species and chemicals requiring evaluation, an adaptable stepwise guide for model parameterization would facilitate this process. Additional guidance on interpretation of model output and evaluating uncertainty would further contribute to establishing consensus on good modeling practices. We build on previous work that created a framework and decision guide for developing population models for ERA by focusing on data types, model structure, and extrinsic stressors relevant to anuran amphibians. Anurans have a unique life cycle with varying habitat requirements and high phenotypic plasticity. These species belong to the amphibian class, which is facing global population decline in large part due to anthropogenic stressors, including chemicals. We synthesize information from databases and literature relevant to amphibian risks to identify traits that influence exposure likelihood, inherent sensitivity, population vulnerability, and environmental constraints. We link these concerns with relevant population modeling methods and structure in order to evaluate pesticide effects with appropriate scale and parameterization. A standardized population modeling approach, with additional guidance for anuran ERA, offers an example method for quantifying population risks and evaluating long-term impacts of chemical stressors to populations. Integr Environ Assess Manag 2020;16:223-233. © 2019 SETAC.
Collapse
Affiliation(s)
- Jill Awkerman
- Gulf Ecology Division, US Environmental Protection Agency, Gulf Breeze, Florida
| | - Sandy Raimondo
- Gulf Ecology Division, US Environmental Protection Agency, Gulf Breeze, Florida
| | | | - Nika Galic
- Syngenta Crop Protection, LLC, Greensboro, North Carolina, USA
| | - Pamela Rueda-Cediel
- College of Biological Sciences, University of Minnesota, St Paul, Minnesota, USA
| | | | - Chiara Accolla
- College of Biological Sciences, University of Minnesota, St Paul, Minnesota, USA
| | - Maxime Vaugeois
- College of Biological Sciences, University of Minnesota, St Paul, Minnesota, USA
| | - Valery Forbes
- College of Biological Sciences, University of Minnesota, St Paul, Minnesota, USA
| |
Collapse
|
14
|
Hammond TT, Blackwood PE, Shablin SA, Richards-Zawacki CL. Relationships between glucocorticoids and infection with Batrachochytrium dendrobatidis in three amphibian species. Gen Comp Endocrinol 2020; 285:113269. [PMID: 31493395 DOI: 10.1016/j.ygcen.2019.113269] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 08/20/2019] [Accepted: 09/03/2019] [Indexed: 11/19/2022]
Abstract
It is often hypothesized that organisms exposed to environmental change may experience physiological stress, which could reduce individual quality and make them more susceptible to disease. Amphibians are amongst the most threatened taxa, particularly in the context of disease, but relatively few studies explore links between stress and disease in amphibian species. Here, we use the fungal pathogen Batrachochytrium dendrobatidis (Bd) and amphibians as an example to explore relationships between disease and glucocorticoids (GCs), metabolic hormones that comprise one important component of the stress response. While previous work is limited, it has largely identified positive relationships between GCs and Bd-infection. However, the causality remains unclear and few studies have integrated both baseline (GC release that is related to standard, physiological functioning) and stress-induced (GC release in response to an acute stressor) measures of GCs. Here, we examine salivary corticosterone before and after exposure to a stressor, in both field and captive settings. We present results for Bd-infected and uninfected individuals of three amphibian species with differential susceptibilities to this pathogen (Rana catesbeiana, R. clamitans, and R. sylvatica). We hypothesized that prior to stress, baseline GCs would be higher in Bd-infected animals, particularly in more Bd-susceptible species. We also expected that after exposure to a stressor, stress-induced GCs would be lower in Bd-infected animals. These species exhibited significant interspecific differences in baseline and stress induced corticosterone, though other variables like sex, body size, and day of year were usually not predictive of corticosterone. In contrast to most previous work, we found no relationships between Bd and corticosterone for two species (R. catesbeiana and R. clamitans), and in the least Bd-tolerant species (R. sylvatica) animals exhibited context-dependent differences in relationships between Bd infection and corticosterone: Bd-positive R. sylvatica had significantly lower baseline and stress-induced corticosterone, with this pattern being stronger in the field than in captivity. These results were surprising, as past work in other species has more often found elevated GCs in Bd-positive animals, a pattern that aligns with well-documented relationships between chronically high GCs, reduced individual quality, and immunosuppression. This work highlights the potential relevance of GCs to disease susceptibility in the context of amphibian declines, while underscoring the importance of characterizing these relationships in diverse contexts.
Collapse
Affiliation(s)
- Talisin T Hammond
- Department of Biological Sciences, University of Pittsburgh, 105 Clapp Hall, 5th Ave at Ruskin Ave, Pittsburgh, PA 15260, USA; San Diego Zoo Institute for Conservation Research, 15600 San Pasqual Valley Rd., Escondido, CA 92027, USA.
| | - Paradyse E Blackwood
- Department of Biological Sciences, University of Pittsburgh, 105 Clapp Hall, 5th Ave at Ruskin Ave, Pittsburgh, PA 15260, USA
| | - Samantha A Shablin
- Department of Biological Sciences, University of Pittsburgh, 105 Clapp Hall, 5th Ave at Ruskin Ave, Pittsburgh, PA 15260, USA
| | - Corinne L Richards-Zawacki
- Department of Biological Sciences, University of Pittsburgh, 105 Clapp Hall, 5th Ave at Ruskin Ave, Pittsburgh, PA 15260, USA
| |
Collapse
|
15
|
Amphibian Skin Microbiota Response to Variable Housing Conditions and Experimental Treatment across Space and Time. J HERPETOL 2019. [DOI: 10.1670/18-120] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
16
|
Bradley PW, Snyder PW, Blaustein AR. Host age alters amphibian susceptibility to Batrachochytrium dendrobatidis, an emerging infectious fungal pathogen. PLoS One 2019; 14:e0222181. [PMID: 31491016 PMCID: PMC6730893 DOI: 10.1371/journal.pone.0222181] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 08/23/2019] [Indexed: 11/18/2022] Open
Abstract
Parasites and pathogens are often aggregated in a minority of susceptible hosts within a population, with a majority of individuals harboring low infection intensities. However, determining the relative importance of host traits to explain this heterogeneity is a challenge. One ecologically important pathogen is Batrachochytrium dendrobatidis (Bd), which causes the disease chytridiomycosis and has been associated with many amphibian population declines worldwide. For many hosts, post-metamorphic stages are generally more susceptible than the larval stage. Yet, examination of the effects of Bd infection at different ages within a life stage, has received little attention. This study investigated the hypothesis that recently-post-metamorphic frogs were more sensitive to chytridiomycosis than older frogs, and that sensitivity to Bd infection decreased as frogs aged. We examined this relationship with Pacific treefrogs (Pseudacris regilla) and red legged frogs (Rana aurora). Age had a strong effect on susceptibility to infection, infection intensity, and survival-but not in the directions we had predicted. In both host species, an increase in age was associated with frogs becoming more susceptible to Bd infection, harboring larger infection intensities, and greater risk of mortality. This suggests that the timing of Bd exposure may influence amphibian population dynamics.
Collapse
Affiliation(s)
- Paul W. Bradley
- Environmental Sciences Graduate Program, Oregon State University, Corvallis, Oregon, United States of America
- * E-mail:
| | - Paul W. Snyder
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon, United States of America
| | - Andrew R. Blaustein
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon, United States of America
| |
Collapse
|
17
|
Effects of Emerging Infectious Diseases on Amphibians: A Review of Experimental Studies. DIVERSITY-BASEL 2018. [DOI: 10.3390/d10030081] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Numerous factors are contributing to the loss of biodiversity. These include complex effects of multiple abiotic and biotic stressors that may drive population losses. These losses are especially illustrated by amphibians, whose populations are declining worldwide. The causes of amphibian population declines are multifaceted and context-dependent. One major factor affecting amphibian populations is emerging infectious disease. Several pathogens and their associated diseases are especially significant contributors to amphibian population declines. These include the fungi Batrachochytrium dendrobatidis and B. salamandrivorans, and ranaviruses. In this review, we assess the effects of these three pathogens on amphibian hosts as found through experimental studies. Such studies offer valuable insights to the causal factors underpinning broad patterns reported through observational studies. We summarize key findings from experimental studies in the laboratory, in mesocosms, and from the field. We also summarize experiments that explore the interactive effects of these pathogens with other contributors of amphibian population declines. Though well-designed experimental studies are critical for understanding the impacts of disease, inconsistencies in experimental methodologies limit our ability to form comparisons and conclusions. Studies of the three pathogens we focus on show that host susceptibility varies with such factors as species, host age, life history stage, population and biotic (e.g., presence of competitors, predators) and abiotic conditions (e.g., temperature, presence of contaminants), as well as the strain and dose of the pathogen, to which hosts are exposed. Our findings suggest the importance of implementing standard protocols and reporting for experimental studies of amphibian disease.
Collapse
|
18
|
Mosher BA, Bailey LL, Muths E, Huyvaert KP. Host-pathogen metapopulation dynamics suggest high elevation refugia for boreal toads. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2018; 28:926-937. [PMID: 29430754 DOI: 10.1002/eap.1699] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 12/18/2017] [Accepted: 01/02/2018] [Indexed: 06/08/2023]
Abstract
Emerging infectious diseases are an increasingly common threat to wildlife. Chytridiomycosis, caused by the fungal pathogen Batrachochytrium dendrobatidis (Bd), is an emerging infectious disease that has been linked to amphibian declines around the world. Few studies exist that explore amphibian-Bd dynamics at the landscape scale, limiting our ability to identify which factors are associated with variation in population susceptibility and to develop effective in situ disease management. Declines of boreal toads (Anaxyrus boreas boreas) in the southern Rocky Mountains are largely attributed to chytridiomycosis but variation exists in local extinction of boreal toads across this metapopulation. Using a large-scale historic data set, we explored several potential factors influencing disease dynamics in the boreal toad-Bd system: geographic isolation of populations, amphibian community richness, elevational differences, and habitat permanence. We found evidence that boreal toad extinction risk was lowest at high elevations where temperatures may be suboptimal for Bd growth and where small boreal toad populations may be below the threshold needed for efficient pathogen transmission. In addition, boreal toads were more likely to recolonize high elevation sites after local extinction, again suggesting that high elevations may provide refuge from disease for boreal toads. We illustrate a modeling framework that will be useful to natural resource managers striving to make decisions in amphibian-Bd systems. Our data suggest that in the southern Rocky Mountains high elevation sites should be prioritized for conservation initiatives like reintroductions.
Collapse
Affiliation(s)
- Brittany A Mosher
- Department of Fish, Wildlife, and Conservation Biology, Colorado State University, Fort Collins, Colorado, 80523, USA
| | - Larissa L Bailey
- Department of Fish, Wildlife, and Conservation Biology, Colorado State University, Fort Collins, Colorado, 80523, USA
| | - Erin Muths
- U.S. Geological Survey, Fort Collins Science Center, 2150 Centre Avenue, Building C, Fort Collins, Colorado, 80526, USA
| | - Kathryn P Huyvaert
- Department of Fish, Wildlife, and Conservation Biology, Colorado State University, Fort Collins, Colorado, 80523, USA
| |
Collapse
|
19
|
Eskew EA, Shock BC, LaDouceur EEB, Keel K, Miller MR, Foley JE, Todd BD. Gene expression differs in susceptible and resistant amphibians exposed to Batrachochytrium dendrobatidis. ROYAL SOCIETY OPEN SCIENCE 2018; 5:170910. [PMID: 29515828 PMCID: PMC5830717 DOI: 10.1098/rsos.170910] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Chytridiomycosis, the disease caused by the fungal pathogen Batrachochytrium dendrobatidis (Bd), has devastated global amphibian biodiversity. Nevertheless, some hosts avoid disease after Bd exposure even as others experience near-complete extirpation. It remains unclear whether the amphibian adaptive immune system plays a role in Bd defence. Here, we describe gene expression in two host species-one susceptible to chytridiomycosis and one resistant-following exposure to two Bd isolates that differ in virulence. Susceptible wood frogs (Rana sylvatica) had high infection loads and mortality when exposed to the more virulent Bd isolate but lower infection loads and no fatal disease when exposed to the less virulent isolate. Resistant American bullfrogs (R. catesbeiana) had high survival across treatments and rapidly cleared Bd infection or avoided infection entirely. We found widespread upregulation of adaptive immune genes and downregulation of important metabolic and cellular maintenance components in wood frogs after Bd exposure, whereas American bullfrogs showed little gene expression change and no evidence of an adaptive immune response. Wood frog responses suggest that adaptive immune defences may be ineffective against virulent Bd isolates that can cause rapid physiological dysfunction. By contrast, American bullfrogs exhibited robust resistance to Bd that is likely attributable, at least in part, to their continued upkeep of metabolic and skin integrity pathways as well as greater antimicrobial peptide expression compared to wood frogs, regardless of exposure. Greater understanding of these defences will ultimately help conservationists manage chytridiomycosis.
Collapse
Affiliation(s)
- Evan A. Eskew
- Graduate Group in Ecology, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
- EcoHealth Alliance, 460 West 34th Street – 17th Floor, New York, NY 10001, USA
- Author for correspondence: Evan A. Eskew e-mail:
| | - Barbara C. Shock
- Department of Biology, Lincoln Memorial University, 6965 Cumberland Gap Parkway, Harrogate, TN 37752, USA
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | | | - Kevin Keel
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Michael R. Miller
- Department of Animal Science, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Janet E. Foley
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Brian D. Todd
- Department of Wildlife, Fish, and Conservation Biology, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
20
|
Bacigalupe LD, Soto-Azat C, García-Vera C, Barría-Oyarzo I, Rezende EL. Effects of amphibian phylogeny, climate and human impact on the occurrence of the amphibian-killing chytrid fungus. GLOBAL CHANGE BIOLOGY 2017; 23:3543-3553. [PMID: 28055125 DOI: 10.1111/gcb.13610] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 12/20/2016] [Indexed: 06/06/2023]
Abstract
Chytridiomycosis, due to the fungus Batrachochytrium dendrobatidis (Bd), has been associated with the alarming decline and extinction crisis of amphibians worldwide. Because conservation programs are implemented locally, it is essential to understand how the complex interactions among host species, climate and human activities contribute to Bd occurrence at regional scales. Using weighted phylogenetic regressions and model selection, we investigated geographic patterns of Bd occurrence along a latitudinal gradient of 1500 km within a biodiversity hot spot in Chile (1845 individuals sampled from 253 sites and representing 24 species), and its association with climatic, socio-demographic and economic variables. Analyses show that Bd prevalence decreases with latitude although it has increased by almost 10% between 2008 and 2013, possibly reflecting an ongoing spread of Bd following the introduction of Xenopus laevis. Occurrence of Bd was higher in regions with high gross domestic product (particularly near developed centers) and with a high variability in rainfall regimes, whereas models including other bioclimatic or geographic variables, including temperature, exhibited substantially lower fit and virtually no support based on Akaike weights. In addition, Bd prevalence exhibited a strong phylogenetic signal, with five species having high numbers of infected individuals and higher prevalence than the average of 13.3% across all species. Taken together, our results highlight that Bd in Chile might still be spreading south, facilitated by a subset of species that seem to play an important epidemiological role maintaining this pathogen in the communities, in combination with climatic and human factors affecting the availability and quality of amphibian breeding sites. This information may be employed to design conservation strategies and mitigate the impacts of Bd in the biodiversity hot spot of southern Chile, and similar studies may prove useful to disentangle the role of different factors contributing to the emergence and spread of this catastrophic disease.
Collapse
Affiliation(s)
- Leonardo D Bacigalupe
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Avda. Rector Eduardo Morales s/n, Edificio Pugín, Valdivia, Chile
| | - Claudio Soto-Azat
- Centro de Investigación para la Sustentabilidad, Facultad de Ecología y Recursos Naturales, Universidad Andres Bello, República 440, Santiago, Chile
| | - Cristobal García-Vera
- Dirección General de Aguas, Ministerio de Obras Públicas, Riquelme 465, Coyhaique, Chile
| | - Ismael Barría-Oyarzo
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Avda. Rector Eduardo Morales s/n, Edificio Pugín, Valdivia, Chile
| | - Enrico L Rezende
- Facultad de Ecología y Recursos Naturales, Universidad Andres Bello, República 440, Santiago, Chile
| |
Collapse
|
21
|
Blooi M, Laking AE, Martel A, Haesebrouck F, Jocque M, Brown T, Green S, Vences M, Bletz MC, Pasmans F. Host niche may determine disease-driven extinction risk. PLoS One 2017; 12:e0181051. [PMID: 28704480 PMCID: PMC5509289 DOI: 10.1371/journal.pone.0181051] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 06/26/2017] [Indexed: 12/31/2022] Open
Abstract
The fungal pathogen Batrachochytrium dendrobatidis (Bd) drives declines and extinctions in amphibian communities. However, not all regions and species are equally affected. Here, we show that association with amphibian aquatic habitat types (bromeliad phytotelmata versus stream) across Central America results in the odds of being threatened by Bd being five times higher in stream microhabitats. This differential threat of Bd was supported in our study by a significantly lower prevalence of Bd in bromeliad-associated amphibian species compared to riparian species in Honduran cloud forests. Evidence that the bromeliad environment is less favorable for Bd transmission is exemplified by significantly less suitable physicochemical conditions and higher abundance of Bd-ingesting micro-eukaryotes present in bromeliad water. These factors may inhibit aquatic Bd zoospore survival and the development of an environmental reservoir of the pathogen. Bromeliad phytotelmata thus may act as environmental refuges from Bd, which contribute to protecting associated amphibian communities against chytridiomycosis-driven amphibian declines that threaten the nearby riparian communities.
Collapse
Affiliation(s)
- Mark Blooi
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Alexandra E. Laking
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
- Operation Wallacea, Hope House, Old Bolingbroke, Lincolnshire, United Kingdom
| | - An Martel
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Freddy Haesebrouck
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Merlijn Jocque
- Operation Wallacea, Hope House, Old Bolingbroke, Lincolnshire, United Kingdom
- Hopkins Marine Station, Stanford University, Pacific Grove, California, United States of America
| | - Tom Brown
- Operation Wallacea, Hope House, Old Bolingbroke, Lincolnshire, United Kingdom
| | - Stephen Green
- Operation Wallacea, Hope House, Old Bolingbroke, Lincolnshire, United Kingdom
- Centre for Applied Zoology, Cornwall College Newquay, Cornwall, United Kingdom
| | - Miguel Vences
- Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
| | - Molly C. Bletz
- Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
| | - Frank Pasmans
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
22
|
Hua J, Wuerthner VP, Jones DK, Mattes B, Cothran RD, Relyea RA, Hoverman JT. Evolved pesticide tolerance influences susceptibility to parasites in amphibians. Evol Appl 2017; 10:802-812. [PMID: 29151872 PMCID: PMC5680434 DOI: 10.1111/eva.12500] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 05/26/2017] [Indexed: 01/08/2023] Open
Abstract
Because ecosystems throughout the globe are contaminated with pesticides, there is a need to understand how natural populations cope with pesticides and the implications for ecological interactions. From an evolutionary perspective, there is evidence that pesticide tolerance can be achieved via two mechanisms: selection for constitutive tolerance over multiple generations or by inducing tolerance within a single generation via phenotypic plasticity. While both mechanisms can allow organisms to persist in contaminated environments, they might result in different performance trade-offs including population susceptibility to parasites. We have identified 15 wood frog populations that exist along a gradient from close to agriculture and high, constitutive pesticide tolerance to far from agriculture and inducible pesticide tolerance. Using these populations, we investigated the relationship between evolutionary responses to the common insecticide carbaryl and host susceptibility to the trematode Echinoparyphium lineage 3 and ranavirus using laboratory exposure assays. For Echinoparyphium, we discovered that wood frog populations living closer to agriculture with high, constitutive tolerance experienced lower loads than populations living far from agriculture with inducible pesticide tolerance. For ranavirus, we found no relationship between the mechanism of evolved pesticide tolerance and survival, but populations living closer to agriculture with high, constitutive tolerance experienced higher viral loads than populations far from agriculture with inducible tolerance. Land use and mechanisms of evolved pesticide tolerance were associated with susceptibility to parasites, but the direction of the relationship is dependent on the type of parasite, underscoring the complexity between land use and disease outcomes. Collectively, our results demonstrate that evolved pesticide tolerance can indirectly influence host-parasite interactions and underscores the importance of including evolutionary processes in ecotoxicological studies.
Collapse
Affiliation(s)
- Jessica Hua
- Biological Sciences Department Binghamton University (SUNY) Binghamton NY USA
| | - Vanessa P Wuerthner
- Biological Sciences Department Binghamton University (SUNY) Binghamton NY USA
| | - Devin K Jones
- Department of Biological Sciences Rensselaer Polytechnic Institute Troy NY USA
| | - Brian Mattes
- Department of Biological Sciences Rensselaer Polytechnic Institute Troy NY USA
| | - Rickey D Cothran
- Biological Sciences Department Southwestern Oklahoma State University Weatherford OK USA
| | - Rick A Relyea
- Department of Biological Sciences Rensselaer Polytechnic Institute Troy NY USA
| | - Jason T Hoverman
- Department of Forestry and Natural Resources Purdue University West Lafayette IN USA
| |
Collapse
|
23
|
Otero JS, Hirsch GE, Klafke JZ, Porto FG, de Almeida AS, Nascimento S, Schmidt A, da Silva B, Pereira RLD, Jaskulski M, Parisi MM, dos Santos Guarda N, Moresco RN, Aita CAM, Viecili PRN. Inhibitory effect of Campomanesia xanthocarpa in platelet aggregation: Comparison and synergism with acetylsalicylic acid. Thromb Res 2017; 154:42-49. [DOI: 10.1016/j.thromres.2017.03.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 02/15/2017] [Accepted: 03/21/2017] [Indexed: 02/07/2023]
|
24
|
Dang TD, Searle CL, Blaustein AR. Virulence variation among strains of the emerging infectious fungus Batrachochytrium dendrobatidis (Bd) in multiple amphibian host species. DISEASES OF AQUATIC ORGANISMS 2017; 124:233-239. [PMID: 28492179 DOI: 10.3354/dao03125] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Emerging infectious diseases have been documented in numerous plant and animal populations. The infectious disease amphibian chytridiomycosis, caused by the fungus Batrachochytrium dendrobatidis (Bd), is associated with global amphibian population declines. While much Bd-amphibian research has centered on response variation in hosts, a paucity of information exists on how variation in the pathogen, such as strain differences, affects infection dynamics. To examine how different Bd strains may differentially impact multiple hosts, we conducted laboratory experiments to measure 2 infection outcomes, viz. host survival and pathogen load, in 3 amphibian host species (Pacific treefrog, western toad, and Cascades frog) after exposure to 3 different Bd strains (an additional fourth Bd strain was tested in toads only). Our results confirm that the infection response differs among host species. Western toads experienced significant mortality, but Pacific treefrogs and Cascades frogs did not. Interestingly, our experiment also captured strain-dependent virulence variation but only in 1 host species, the western toad. Increased mortality was observed in 2 of the 4 Bd strains tested in this host species. Toads were also the only host species found to have variable pathogen load dependent on strain type; individuals exposed to the Panama strain harbored significantly higher loads compared to all other strains. These findings underscore the dynamic nature of Bd infection, showing that virulence can vary contingent on host and strain type. We highlight the importance of both host- and pathogen-dependent factors in determining overall infection virulence and show the need for in vivo testing to fully assess pathogenicity.
Collapse
Affiliation(s)
- Trang D Dang
- Department of Integrative Biology, Cordley Hall, Oregon State University, Corvallis, OR 97331, USA
| | | | | |
Collapse
|
25
|
Romansic JM, Johnson JE, Wagner RS, Hill RH, Gaulke CA, Vredenburg VT, Blaustein AR. Complex interactive effects of water mold, herbicide, and the fungus Batrachochytrium dendrobatidis on Pacific treefrog Hyliola regilla hosts. DISEASES OF AQUATIC ORGANISMS 2017; 123:227-238. [PMID: 28322209 DOI: 10.3354/dao03094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Infectious diseases pose a serious threat to global biodiversity. However, their ecological impacts are not independent of environmental conditions. For example, the pathogenic fungus Batrachochytrium dendrobatidis (Bd), which has contributed to population declines and extinctions in many amphibian species, interacts with several environmental factors to influence its hosts, but potential interactions with other pathogens and environmental contaminants are understudied. We examined the combined effects of Bd, a water mold (Achlya sp.), and the herbicide Roundup® Regular (hereafter, Roundup®) on larval Pacific treefrog Hyliola regilla hosts. We employed a 2 wk, fully factorial laboratory experiment with 3 ecologically realistic levels (0, 1, and 2 mg l-1 of active ingredient) of field-formulated Roundup®, 2 Achlya treatments (present and absent), and 2 Bd treatments (present and absent). Our results were consistent with sublethal interactive effects involving all 3 experimental factors. When Roundup® was absent, the proportion of Bd-exposed larvae infected with Bd was elevated in the presence of Achlya, consistent with Achlya acting as a synergistic cofactor that facilitated the establishment of Bd infection. However, this Achlya effect became nonsignificant at 1 mg l-1 of the active ingredient of Roundup® and disappeared at the highest Roundup® concentration. In addition, Roundup® decreased Bd loads among Bd-exposed larvae. Our study suggests complex interactive effects of a water mold and a contaminant on Bd infection in amphibian hosts. Achlya and Roundup® were both correlated with altered patterns of Bd infection, but in different ways, and Roundup® appeared to remove the influence of Achlya on Bd.
Collapse
Affiliation(s)
- John M Romansic
- Department of Integrative Biology, 3029 Cordley Hall, Oregon State University, Corvallis, Oregon 97331, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Adams AJ, Kupferberg SJ, Wilber MQ, Pessier AP, Grefsrud M, Bobzien S, Vredenburg VT, Briggs CJ. Extreme drought, host density, sex, and bullfrogs influence fungal pathogen infection in a declining lotic amphibian. Ecosphere 2017. [DOI: 10.1002/ecs2.1740] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Andrea J. Adams
- Department of Ecology, Evolution, and Marine Biology; University of California; Santa Barbara California 93106 USA
| | - Sarah J. Kupferberg
- Department of Integrative Biology; University of California; Berkeley California 94720 USA
| | - Mark Q. Wilber
- Department of Ecology, Evolution, and Marine Biology; University of California; Santa Barbara California 93106 USA
| | - Allan P. Pessier
- Department of Veterinary Microbiology and Pathology; College of Veterinary Medicine; Washington State University; Pullman Washington 99164 USA
| | - Marcia Grefsrud
- California Department of Fish and Wildlife; Bay Delta Region Napa California 94558 USA
| | - Steve Bobzien
- East Bay Regional Park District; Oakland California 94605 USA
| | | | - Cheryl J. Briggs
- Department of Ecology, Evolution, and Marine Biology; University of California; Santa Barbara California 93106 USA
| |
Collapse
|
27
|
Jones DK, Dang TD, Urbina J, Bendis RJ, Buck JC, Cothran RD, Blaustein AR, Relyea RA. Effect of Simultaneous Amphibian Exposure to Pesticides and an Emerging Fungal Pathogen, Batrachochytrium dendrobatidis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:671-679. [PMID: 28001054 DOI: 10.1021/acs.est.6b06055] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Amphibian declines have been linked to numerous factors, including pesticide use and the fungal pathogen Batrachochytrium dendrobatidis (Bd). Moreover, research has suggested a link between amphibian sensitivity to Bd and pesticide exposure. We simultaneously exposed postmetamorphic American toads (Anaxyrus americanus), western toads (A. boreas), spring peepers (Pseudacris crucifer), Pacific treefrogs (P. regilla), leopard frogs (Lithobates pipiens), and Cascades frogs (Rana cascadae) to a factorial combination of two pathogen treatments (Bd+, Bd-) and four pesticide treatments (control, ethanol vehicle, herbicide mixture, and insecticide mixture) for 14 d to quantify survival and infection load. We found no interactive effects of pesticides and Bd on anuran survival and no effects of pesticides on infection load. Mortality following Bd exposure increased in spring peepers and American toads and was dependent upon snout-vent length in western toads, American toads, and Pacific treefrogs. Previous studies reported effects of early sublethal pesticide exposure on amphibian Bd sensitivity and infection load at later life stages, but we found simultaneous exposure to sublethal pesticide concentrations and Bd had no such effect on postmetamorphic juvenile anurans. Future research investigating complex interactions between pesticides and Bd should employ a variety of pesticide formulations and Bd strains and follow the effects of exposure throughout ontogeny.
Collapse
Affiliation(s)
- Devin K Jones
- Department of Biological Sciences, Rensselaer Polytechnic Institute , Troy, New York 12180, United States
| | | | | | - Randall J Bendis
- Department of Biological Sciences, University of Pittsburgh , Pittsburgh, Pennsylvania 15260, United States
| | - Julia C Buck
- Marine Science Institute, University of California Santa Barbara , Santa Barbara, California 93106, United States
| | - Rickey D Cothran
- Department of Biological Sciences, Southwestern Oklahoma State University , Weatherford, Oklahoma 73096, United States
| | | | - Rick A Relyea
- Department of Biological Sciences, Rensselaer Polytechnic Institute , Troy, New York 12180, United States
| |
Collapse
|
28
|
Projecting the Global Distribution of the Emerging Amphibian Fungal Pathogen, Batrachochytrium dendrobatidis, Based on IPCC Climate Futures. PLoS One 2016; 11:e0160746. [PMID: 27513565 PMCID: PMC4981458 DOI: 10.1371/journal.pone.0160746] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 07/25/2016] [Indexed: 11/19/2022] Open
Abstract
Projected changes in climate conditions are emerging as significant risk factors to numerous species, affecting habitat conditions and community interactions. Projections suggest species range shifts in response to climate change modifying environmental suitability and is supported by observational evidence. Both pathogens and their hosts can shift ranges with climate change. We consider how climate change may influence the distribution of the emerging infectious amphibian chytrid fungus, Batrachochytrium dendrobatidis (Bd), a pathogen associated with worldwide amphibian population losses. Using an expanded global Bd database and a novel modeling approach, we examined a broad set of climate metrics to model the Bd-climate niche globally and regionally, then project how climate change may influence Bd distributions. Previous research showed that Bd distribution is dependent on climatic variables, in particular temperature. We trained a machine-learning model (random forest) with the most comprehensive global compilation of Bd sampling records (~5,000 site-level records, mid-2014 summary), including 13 climatic variables. We projected future Bd environmental suitability under IPCC scenarios. The learning model was trained with combined worldwide data (non-region specific) and also separately per region (region-specific). One goal of our study was to estimate of how Bd spatial risks may change under climate change based on the best available data. Our models supported differences in Bd-climate relationships among geographic regions. We projected that Bd ranges will shift into higher latitudes and altitudes due to increased environmental suitability in those regions under predicted climate change. Specifically, our model showed a broad expansion of areas environmentally suitable for establishment of Bd on amphibian hosts in the temperate zones of the Northern Hemisphere. Our projections are useful for the development of monitoring designs in these areas, especially for sensitive species and those vulnerable to multiple threats.
Collapse
|
29
|
Stoler AB, Berven KA, Raffel TR. Leaf Litter Inhibits Growth of an Amphibian Fungal Pathogen. ECOHEALTH 2016; 13:392-404. [PMID: 26935822 DOI: 10.1007/s10393-016-1106-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 01/29/2016] [Accepted: 02/09/2016] [Indexed: 06/05/2023]
Abstract
Past studies have found a heterogeneous distribution of the amphibian chytrid fungal pathogen, Batrachochytrium dendrobatidis (Bd). Recent studies have accounted for some of this heterogeneity through a positive association between canopy cover and Bd abundance, which is attributed to the cooling effect of canopy cover. We questioned whether leaf litter inputs that are also associated with canopy cover might also alter Bd growth. Leaf litter inputs exhibit tremendous interspecific chemical variation, and we hypothesized that Bd growth varies with leachate chemistry. We also hypothesized that Bd uses leaf litter as a growth substrate. To test these hypotheses, we conducted laboratory trials in which we exposed cultures of Bd to leachate of 12 temperate leaf litter species at varying dilutions. Using a subset of those 12 litter species, we also exposed Bd to pre-leached litter substrate. We found that exposure to litter leachate and substrate reduced Bd spore and sporangia densities, although there was substantial variation among treatments. In particular, Bd densities were inversely correlated with concentrations of phenolic acids. We conducted a field survey of phenolic concentrations in natural wetlands which verified that the leachate concentrations in our lab study are ecologically relevant. Our study reinforces prior indications that positive associations between canopy cover and Bd abundance are likely mediated by water temperature effects, but this phenomenon might be counteracted by changes in aquatic chemistry from leaf litter inputs.
Collapse
Affiliation(s)
- Aaron B Stoler
- Department of Biological Sciences, Oakland University, Rochester, MI, USA.
- 1115 Center for Biotechnology and Integrative Sciences, Department of Biological Sciences, Rensselaer Polytechnic Institute, 110 8th St, Troy, NY, 12180, USA.
| | - Keith A Berven
- Department of Biological Sciences, Oakland University, Rochester, MI, USA
| | - Thomas R Raffel
- Department of Biological Sciences, Oakland University, Rochester, MI, USA
| |
Collapse
|
30
|
Abstract
The ubiquitous use of pesticides has increased concerns over their direct and indirect effects on disease dynamics. While studies examining the effects of pesticides on host-parasite interactions have largely focused on how pesticides influence the host, few studies have considered the effects of pesticides on parasites. We investigated the toxicity of six common insecticides at six environmentally-relevant concentrations to cercariae of the trematode Echinoparyphium from two populations. All six insecticides reduced the survival of cercariae (overall difference between mortality in control vs pesticide exposure = 86·2 ± 8·7%) but not in a predictable dose-dependent manner. These results suggest that Echinoparyphium are sensitive to a broad range of insecticides commonly used in the USA. The lack of a clear dose-dependent response in Echinoparyphium highlights the potential limitations of toxicity assays in predicting pesticide toxicity to parasites. Finally, population-level variation in cercarial susceptibility to pesticides underscores the importance of accounting for population variation as overlooking this variation can limit our ability to predict toxicity in nature. Collectively, this work demonstrates that consideration of pesticide toxicity to parasites is important to understanding how pesticides ultimately shape disease dynamics in nature.
Collapse
|
31
|
Woodhams DC, Bell SC, Bigler L, Caprioli RM, Chaurand P, Lam BA, Reinert LK, Stalder U, Vazquez VM, Schliep K, Hertz A, Rollins-Smith LA. Life history linked to immune investment in developing amphibians. CONSERVATION PHYSIOLOGY 2016; 4:cow025. [PMID: 27928507 PMCID: PMC5001151 DOI: 10.1093/conphys/cow025] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 05/09/2016] [Accepted: 05/14/2016] [Indexed: 05/03/2023]
Abstract
The broad diversity of amphibian developmental strategies has been shaped, in part, by pathogen pressure, yet trade-offs between the rate of larval development and immune investment remain poorly understood. The expression of antimicrobial peptides (AMPs) in skin secretions is a crucial defense against emerging amphibian pathogens and can also indirectly affect host defense by influencing the composition of skin microbiota. We examined the constitutive or induced expression of AMPs in 17 species at multiple life-history stages. We found that AMP defenses in tadpoles of species with short larval periods (fast pace of life) were reduced in comparison with species that overwinter as tadpoles and grow to a large size. A complete set of defensive peptides emerged soon after metamorphosis. These findings support the hypothesis that species with a slow pace of life invest energy in AMP production to resist potential pathogens encountered during the long larval period, whereas species with a fast pace of life trade this investment in defense for more rapid growth and development.
Collapse
Affiliation(s)
- Douglas C Woodhams
- Department of Biology, University of Massachusetts Boston, 100 Morrissey Blvd., Boston, MA 02125, USA
- Corresponding author: Department of Biology, University of Massachusetts Boston, 100 Morrissey Blvd., Boston, MA 02125, USA. Tel: +1 617 287 6679.
| | - Sara C Bell
- College of Marine and Environmental Sciences, James Cook University, Townsville, QLD 4811, Australia
| | - Laurent Bigler
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Richard M Caprioli
- Mass Spectrometry Research Center and Department of Biochemistry, Vanderbilt University, Nashville, TN 37232-8575, USA
| | - Pierre Chaurand
- Department of Chemistry, Université de Montréal, Montreal, QC, Canada H3T 1J4
| | - Brianna A Lam
- Department of Biology, James Madison University, MSC 7801, Harrisonburg, VA 22807, USA
| | - Laura K Reinert
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232-2363, USA
| | - Urs Stalder
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | | | - Klaus Schliep
- Department of Biology, University of Massachusetts Boston, 100 Morrissey Blvd., Boston, MA 02125, USA
| | - Andreas Hertz
- Department of Biology, University of Massachusetts Boston, 100 Morrissey Blvd., Boston, MA 02125, USA
| | - Louise A Rollins-Smith
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232-2363, USA
- Department of Biological Science, Vanderbilt University, Nashville, TN 37235-1634, USA
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN 37232-2363, USA
| |
Collapse
|