1
|
Liu A, Deng X, Hou S, Xi Y, Xu K. Activated Immune and Complement C3 Are Potential Contributors in MASH via Stimulating Neutrophil Extracellular Traps. Cells 2025; 14:740. [PMID: 40422243 DOI: 10.3390/cells14100740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2025] [Revised: 05/16/2025] [Accepted: 05/17/2025] [Indexed: 05/28/2025] Open
Abstract
The number of metabolic dysfunction-associated steatotic liver disease (MASLD) patients is increasing rapidly. More attention has been paid to the relationship between immunity and MASLD. This study explored the roles of serum autoantibodies, immunoglobulins, and complements in MASLD. A total of 182 MASLD patients were investigated and grouped by autoantibody or NAS scores. Correlation between immunology and clinical features was assessed. In addition, metabolic dysfunction-associated steatohepatitis (MASH) models were constructed to verify the findings. Neutrophils were isolated from mice and treated with complement C3 to investigate the association between C3 and neutrophil extracellular traps (NETs). IgG, IgM, and NAS scores in the autoantibody positive group were significantly higher than those in the autoantibody negative group. Antinuclear antibodies (ANA), IgA, IgE, IgG, C3, C4, ALT, and AST were related to MASH. Meanwhile, IgA and C3 correlated with the severity of MASLD. The ROC curve showed that IgA > 2.990 g/L or C3 > 1.115 g/L predicted the presence of MASH. More importantly, IgG, activated C3, and NETs were increased in MASH. C3 stimulation directly induced NET formation in the neutrophils. Immunity systems were activated in MASH and elevated IgG activated C3 to stimulate the production of NETs, thus exacerbating MASH.
Collapse
Affiliation(s)
- Ao Liu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Xiaoling Deng
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Shuhui Hou
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Yuwen Xi
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Keshu Xu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| |
Collapse
|
2
|
Reed RM, Zelek WM, Morgan BP, Whelehan G, Lockhart S, O'Rahilly S, Witard OC, Whyte MB, Goff LM. Plasma complement system markers and their association with cardiometabolic risk factors: an ethnic comparison of White European and Black African men. Am J Physiol Endocrinol Metab 2025; 328:E611-E619. [PMID: 40047170 DOI: 10.1152/ajpendo.00419.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/27/2025] [Accepted: 02/27/2025] [Indexed: 04/08/2025]
Abstract
Populations of Black African (BA) ancestry are disproportionately affected by cardiometabolic diseases, possibly due to dysregulation of the complement system. This study aimed to determine relationships between fasting complement markers and cardiometabolic risk in BA and White European (WE) men, and whether postprandial complement response differs by ethnicity. Eighty-eight BA and 97 WE men [age = 44.4 (42.0-47.6) yr, body mass index (BMI) = 29.2 ± 4.5 kg·m-2] were assessed for fasting plasma complement markers and cardiometabolic risk factors. A second cohort (n = 20 men, 10 BA) [age = 31.0 ± 1.1 yr, BMI = 27.1 (26.0-28.6) kg·m-2] men underwent a moderate-to-high-fat feeding protocol to measure postprandial plasma complement, serum insulin, plasma glucose, triacylglycerol (TAG), and nonesterified fatty acids. C4 and Factor D were lower, and iC3b was higher in BA compared with WE men. C3 and C4 were strongly associated with all adiposity markers in both ethnicities, but the WE cohort showed stronger associations between C3 and subcutaneous adipose tissue, C5 and WC, and iC3b and visceral adipose tissue compared with BA. C3 was associated with all cardiometabolic risk factors in both ethnicities. Associations between C5 and cholesterol, C4 and TAG, and terminal complement complex and (both total and LDL)-cholesterol were only observed in the WE cohort. There was a trend toward ethnic differences in postprandial Factor D (P = 0.097) and iC3b (P = 0.085). The weaker associations between the complement system markers with adiposity and lipid profiles in BA compared with WE men suggest ethnic differences in the determinants of complement production and activation, whereby adipose tissue may play a less important role in BA men.NEW & NOTEWORTHY The present study found that markers of the complement system were less strongly associated with adiposity and lipid profiles in Black African men compared with White European men, suggesting ethnic differences in the determinants of complement production and activation. In Black African men, adipose tissue may play a less important role in complement production and activation and also in the link with traditional cardiometabolic risk factors.
Collapse
Affiliation(s)
- Reuben M Reed
- Department of Nutritional Sciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Wioleta M Zelek
- Dementia Research Institute Cardiff, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - B Paul Morgan
- Dementia Research Institute Cardiff, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Gráinne Whelehan
- Diabetes Research Centre, University of Leicester, Leicester, United Kingdom
- NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, United Kingdom
| | - Sam Lockhart
- MRC Metabolic Diseases Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Stephen O'Rahilly
- MRC Metabolic Diseases Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Oliver C Witard
- Centre for Human & Applied Physiological Sciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Martin B Whyte
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Louise M Goff
- Diabetes Research Centre, University of Leicester, Leicester, United Kingdom
- NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
3
|
Nguyen VD, Hughes TR, Zhou Y. From complement to complosome in non-alcoholic fatty liver disease: When location matters. Liver Int 2024; 44:316-329. [PMID: 38010880 DOI: 10.1111/liv.15796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/21/2023] [Accepted: 11/09/2023] [Indexed: 11/29/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a growing public health threat and becoming the leading cause of liver transplantation. Nevertheless, no approved specific treatment is currently available for NAFLD. The pathogenesis of NAFLD is multifaceted and not yet fully understood. Accumulating evidence suggests a significant role of the complement system in the development and progression of NAFLD. Here, we provide an overview of the complement system, incorporating the novel concept of complosome, and summarise the up-to-date evidence elucidating the association between complement dysregulation and the pathogenesis of NAFLD. In this process, the extracellular complement system is activated through various pathways, thereby directly contributing to, or working together with other immune cells in the disease development and progression. We also introduce the complosome and assess the evidence that implicates its potential influence in NAFLD through its direct impact on hepatocytes or non-parenchymal liver cells. Additionally, we expound upon how complement system and the complosome may exert their effects in relation with hepatic zonation in NAFLD. Furthermore, we discuss the potential therapeutic implications of targeting the complement system, extracellularly and intracellularly, for NAFLD treatment. Finally, we present future perspectives towards a better understanding of the complement system's contribution to NAFLD.
Collapse
Affiliation(s)
- Van-Dien Nguyen
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
- Systems Immunity Research Institute, Cardiff University, Cardiff, UK
| | - Timothy R Hughes
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
- Systems Immunity Research Institute, Cardiff University, Cardiff, UK
| | - You Zhou
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
- Systems Immunity Research Institute, Cardiff University, Cardiff, UK
| |
Collapse
|
4
|
Ruiz-Ponce M, Cuesta-López L, López-Montilla MD, Pérez-Sánchez C, Ortiz-Buitrago P, Barranco A, Gahete MD, Herman-Sánchez N, Lucendo AJ, Navarro P, López-Pedrera C, Escudero-Contreras A, Collantes-Estévez E, López-Medina C, Arias-de la Rosa I, Barbarroja N. Decoding clinical and molecular pathways of liver dysfunction in Psoriatic Arthritis: Impact of cumulative methotrexate doses. Biomed Pharmacother 2023; 168:115779. [PMID: 37913737 DOI: 10.1016/j.biopha.2023.115779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/13/2023] [Accepted: 10/20/2023] [Indexed: 11/03/2023] Open
Abstract
BACKGROUND The occurrence of liver abnormalities in Psoriatic Arthritis (PsA) has gained significant recognition. Identifying key factors at the clinical and molecular level can help to detect high-risk patients for non-alcoholic fatty liver disease in PsA. OBJECTIVES to investigate the influence of PsA and cumulative doses of methotrexate on liver function through comprehensive in vivo and in vitro investigations. METHODS A cross-sectional study involving 387 subjects was conducted, 200 patients with PsA, 87 NAFLD-non-PsA patients, and 100 healthy donors (HDs), age and sex-matched. Additionally, a retrospective longitudinal study was carried out, including 83 PsA patients since initiation with methotrexate. Detailed clinical, and laboratory parameters along with liver disease risk were analyzed. In vitro, experiments with hepatocyte cell line (HEPG2) were conducted. RESULTS PsA patients present increased liver disease risk associated with the presence of cardiometabolic comorbidities, inflammatory markers, onychopathy, and psoriasis. The treatment with PsA serum on hepatocytes encompassed inflammatory, fibrotic, cell stress, and apoptotic processes. At the molecular level, methotrexate impacts liver biology, although the cumulative doses did not affect those alterations, causing any potential damage to liver function at the clinical level. Finally, anti-PDE-4 or anti-JAK decreased the inflammatory profile induced by PsA serum on hepatocytes. CONCLUSION 1)This study identifies the complex link between liver disease risk, comorbidities, and disease-specific features in PsA patients. 2)Methotrexate dose in PsA patients had no significant effect on liver parameters, confirmed by hepatocyte in vitro studies. 3)Anti-PDE-4 and anti-JAK therapies show promise in reducing PsA serum-induced hepatocyte activation, potentially aiding liver complication management.
Collapse
Affiliation(s)
- M Ruiz-Ponce
- Rheumatology service/Department of Medical and Surgical Sciences, Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC)/ /University of Cordoba/ Reina Sofia University Hospital, Córdoba, Spain
| | - L Cuesta-López
- Rheumatology service/Department of Medical and Surgical Sciences, Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC)/ /University of Cordoba/ Reina Sofia University Hospital, Córdoba, Spain
| | - M D López-Montilla
- Rheumatology service/Department of Medical and Surgical Sciences, Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC)/ /University of Cordoba/ Reina Sofia University Hospital, Córdoba, Spain
| | - C Pérez-Sánchez
- Rheumatology service/Department of Medical and Surgical Sciences, Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC)/ /University of Cordoba/ Reina Sofia University Hospital, Córdoba, Spain; Department of Cell Biology, Physiology and Immunology, Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Córdoba, Spain; Cobiomic Bioscience S.L, Cordoba, Spain
| | - P Ortiz-Buitrago
- Rheumatology service/Department of Medical and Surgical Sciences, Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC)/ /University of Cordoba/ Reina Sofia University Hospital, Córdoba, Spain
| | - A Barranco
- Rheumatology service/Department of Medical and Surgical Sciences, Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC)/ /University of Cordoba/ Reina Sofia University Hospital, Córdoba, Spain
| | - M D Gahete
- Department of Cell Biology, Physiology and Immunology, Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Córdoba, Spain
| | - N Herman-Sánchez
- Department of Cell Biology, Physiology and Immunology, Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Córdoba, Spain
| | - A J Lucendo
- Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain; Department of Gastroenterology, Hospital General de Tomelloso, Tomelloso, Spain; Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), Spain
| | - P Navarro
- Department of Gastroenterology, Hospital General de Tomelloso, Tomelloso, Spain; Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), Spain
| | - Ch López-Pedrera
- Rheumatology service/Department of Medical and Surgical Sciences, Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC)/ /University of Cordoba/ Reina Sofia University Hospital, Córdoba, Spain
| | - A Escudero-Contreras
- Rheumatology service/Department of Medical and Surgical Sciences, Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC)/ /University of Cordoba/ Reina Sofia University Hospital, Córdoba, Spain
| | - E Collantes-Estévez
- Rheumatology service/Department of Medical and Surgical Sciences, Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC)/ /University of Cordoba/ Reina Sofia University Hospital, Córdoba, Spain
| | - C López-Medina
- Rheumatology service/Department of Medical and Surgical Sciences, Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC)/ /University of Cordoba/ Reina Sofia University Hospital, Córdoba, Spain
| | - I Arias-de la Rosa
- Rheumatology service/Department of Medical and Surgical Sciences, Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC)/ /University of Cordoba/ Reina Sofia University Hospital, Córdoba, Spain.
| | - N Barbarroja
- Rheumatology service/Department of Medical and Surgical Sciences, Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC)/ /University of Cordoba/ Reina Sofia University Hospital, Córdoba, Spain; Cobiomic Bioscience S.L, Cordoba, Spain.
| |
Collapse
|
5
|
Wu X, Fan X, Miyata T, Kim A, Cajigas-Du Ross CK, Ray S, Huang E, Taiwo M, Arya R, Wu J, Nagy LE. Recent Advances in Understanding of Pathogenesis of Alcohol-Associated Liver Disease. ANNUAL REVIEW OF PATHOLOGY 2023; 18:411-438. [PMID: 36270295 PMCID: PMC10060166 DOI: 10.1146/annurev-pathmechdis-031521-030435] [Citation(s) in RCA: 119] [Impact Index Per Article: 59.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Alcohol-associated liver disease (ALD) is one of the major diseases arising from chronic alcohol consumption and is one of the most common causes of liver-related morbidity and mortality. ALD includes asymptomatic liver steatosis, fibrosis, cirrhosis, and alcohol-associated hepatitis and its complications. The progression of ALD involves complex cell-cell and organ-organ interactions. We focus on the impact of alcohol on dysregulation of homeostatic mechanisms and regulation of injury and repair in the liver. In particular, we discuss recent advances in understanding the disruption of balance between programmed cell death and prosurvival pathways, such as autophagy and membrane trafficking, in the pathogenesis of ALD. We also summarize current understanding of innate immune responses, liver sinusoidal endothelial cell dysfunction and hepatic stellate cell activation, and gut-liver and adipose-liver cross talk in response to ethanol. In addition,we describe the current potential therapeutic targets and clinical trials aimed at alleviating hepatocyte injury, reducing inflammatory responses, and targeting gut microbiota, for the treatment of ALD.
Collapse
Affiliation(s)
- Xiaoqin Wu
- Northern Ohio Alcohol Center, Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA;
| | - Xiude Fan
- Northern Ohio Alcohol Center, Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA;
| | - Tatsunori Miyata
- Northern Ohio Alcohol Center, Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA;
| | - Adam Kim
- Northern Ohio Alcohol Center, Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA;
| | - Christina K Cajigas-Du Ross
- Northern Ohio Alcohol Center, Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA;
| | - Semanti Ray
- Northern Ohio Alcohol Center, Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA;
| | - Emily Huang
- Northern Ohio Alcohol Center, Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA;
| | - Moyinoluwa Taiwo
- Northern Ohio Alcohol Center, Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA;
| | - Rakesh Arya
- Northern Ohio Alcohol Center, Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA;
| | - Jianguo Wu
- Northern Ohio Alcohol Center, Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA;
- Department of Molecular Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Laura E Nagy
- Northern Ohio Alcohol Center, Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA;
- Department of Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Molecular Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
6
|
Zhao J, Wu Y, Lu P, Wu X, Han J, Shi Y, Liu Y, Cheng Y, Gao L, Zhao J, Wang Z, Fan X. Association of complement components with the risk and severity of NAFLD: A systematic review and meta-analysis. Front Immunol 2022; 13:1054159. [PMID: 36569882 PMCID: PMC9782972 DOI: 10.3389/fimmu.2022.1054159] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/18/2022] [Indexed: 12/14/2022] Open
Abstract
Background It is generally believed that complement system is strongly associated with the risk of nonalcoholic fatty liver disease (NAFLD). However, complement system contains a variety of complement components, and the relationship between complement components and the risk and severity of NAFLD is inconsistent. The aim of this meta-analysis was to evaluate the association of complement components with the risk and severity of NAFLD. Methods We searched PubMed, Embase, Cochrane Library, Google Scholar, Scopus, and ZhiWang Chinese databases from inception to May 2022 for observational studies reporting the risk of NAFLD with complement components. Random-effects meta-analysis was used to obtain pooled estimates of the effect due to heterogeneity. Results We identified 18 studies with a total of 18560 included subjects. According to recent studies, levels of complement component 3 (C3) (mean difference (MD): 0.43, 95% confidence interval (CI) 0.26-0.60), complement component 4 (C4) (MD: 0.04, 95% CI 0.02-0.07), complement component 5(C5) (MD: 34.03, 95% CI 30.80-37.27), complement factor B (CFB) (MD: 0.22, 95% CI 0.13-0.31) and acylation stimulating protein (ASP) (standard mean difference (SMD): 5.17, 95% CI 2.57-7.77) in patients with NAFLD were significantly higher than those in the control group. However, no statistical significance was obtained in complement factor D (CFD) levels between NAFLD and non-NAFLD (MD=156.51, 95% CI -59.38-372.40). Moreover, the levels of C3, C5, CFB, and ASP in patients with moderate and severe NAFLD were significantly higher than those in patients with mild NAFLD. Except for C4 and CFD, the included studies did not explore the changes in the severity of NAFLD according to the concentration of C4 and CFD. Conclusions This meta-analysis demonstrates that an increase in complement components including C3, C5, CFB, and ASP is associated with an increased risk and severity of NAFLD, indicating that they may be good biomarkers and targets for the diagnosis and treatment of NAFLD. Systematic review registration PROSPERO [https://www.crd.york.ac.uk/PROSPERO/], identifier CRD42022348650.
Collapse
Affiliation(s)
- Jianbo Zhao
- Clinical Medical College, Ningxia Medical University, Yinchuan, Ningxia, China
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan, Shandong, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, China
- Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Jinan, Shandong, China
- Shandong Engineering Research Center of Stem Cell and Gene Therapy for Endocrine and Metabolic Diseases, Jinan, Shandong, China
| | - Yafei Wu
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan, Shandong, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, China
- Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Jinan, Shandong, China
- Shandong Engineering Research Center of Stem Cell and Gene Therapy for Endocrine and Metabolic Diseases, Jinan, Shandong, China
| | - Peng Lu
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan, Shandong, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, China
- Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Jinan, Shandong, China
- Shandong Engineering Research Center of Stem Cell and Gene Therapy for Endocrine and Metabolic Diseases, Jinan, Shandong, China
| | - Xiaoqin Wu
- Department of Inflammation and Immunity, Cleveland Clinic, OH, Cleveland, United States
| | - Junming Han
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan, Shandong, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, China
- Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Jinan, Shandong, China
- Shandong Engineering Research Center of Stem Cell and Gene Therapy for Endocrine and Metabolic Diseases, Jinan, Shandong, China
| | - Yingzhou Shi
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan, Shandong, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, China
- Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Jinan, Shandong, China
- Shandong Engineering Research Center of Stem Cell and Gene Therapy for Endocrine and Metabolic Diseases, Jinan, Shandong, China
| | - Yue Liu
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan, Shandong, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, China
- Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Jinan, Shandong, China
- Shandong Engineering Research Center of Stem Cell and Gene Therapy for Endocrine and Metabolic Diseases, Jinan, Shandong, China
| | - Yiping Cheng
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan, Shandong, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, China
- Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Jinan, Shandong, China
- Shandong Engineering Research Center of Stem Cell and Gene Therapy for Endocrine and Metabolic Diseases, Jinan, Shandong, China
| | - Ling Gao
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan, Shandong, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, China
- Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Jinan, Shandong, China
- Shandong Engineering Research Center of Stem Cell and Gene Therapy for Endocrine and Metabolic Diseases, Jinan, Shandong, China
| | - Jiajun Zhao
- Clinical Medical College, Ningxia Medical University, Yinchuan, Ningxia, China
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan, Shandong, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, China
- Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Jinan, Shandong, China
- Shandong Engineering Research Center of Stem Cell and Gene Therapy for Endocrine and Metabolic Diseases, Jinan, Shandong, China
| | - Zhen Wang
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan, Shandong, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, China
- Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Jinan, Shandong, China
- Shandong Engineering Research Center of Stem Cell and Gene Therapy for Endocrine and Metabolic Diseases, Jinan, Shandong, China
| | - Xiude Fan
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan, Shandong, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, China
- Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Jinan, Shandong, China
- Shandong Engineering Research Center of Stem Cell and Gene Therapy for Endocrine and Metabolic Diseases, Jinan, Shandong, China
| |
Collapse
|
7
|
Non-alcoholic fatty liver disease and liver secretome. Arch Pharm Res 2022; 45:938-963. [PMCID: PMC9703441 DOI: 10.1007/s12272-022-01419-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/15/2022] [Indexed: 11/29/2022]
|
8
|
Guo Z, Fan X, Yao J, Tomlinson S, Yuan G, He S. The role of complement in nonalcoholic fatty liver disease. Front Immunol 2022; 13:1017467. [PMID: 36248852 PMCID: PMC9562907 DOI: 10.3389/fimmu.2022.1017467] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/13/2022] [Indexed: 11/14/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) has become a leading cause of chronic liver diseases globally. NAFLD includes a range of hepatic manifestations, starting with liver steatosis and potentially evolving towards nonalcoholic steatohepatitis, cirrhosis or even hepatocellular carcinoma. Although the pathogenesis of NAFLD is incompletely understood, insulin resistance and lipid metabolism disorder are implicated. The complement system is an essential part of the immune system, but it is also involved in lipid metabolism. In particular, activation of the alternative complement pathway and the production of complement activation products such as C3a, C3adesArg (acylation stimulating protein or ASP) and C5a, are strongly associated with insulin resistance, lipid metabolism disorder, and hepatic inflammation. In this review, we briefly summarize research on the role of the complement system in NAFLD, aiming to provide a basis for the development of novel therapeutic strategies for NAFLD.
Collapse
Affiliation(s)
- Zhenya Guo
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Guangxi Medical University, Nanning, China
| | - Xiude Fan
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jianni Yao
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Guangxi Medical University, Nanning, China
| | - Stephen Tomlinson
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
| | - Guandou Yuan
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Guangxi Medical University, Nanning, China
| | - Songqing He
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Guangxi Medical University, Nanning, China
| |
Collapse
|
9
|
Barbarroja N, Ruiz-Ponce M, Cuesta-López L, Pérez-Sánchez C, López-Pedrera C, Arias-de la Rosa I, Collantes-Estévez E. Nonalcoholic fatty liver disease in inflammatory arthritis: Relationship with cardiovascular risk. Front Immunol 2022; 13:997270. [PMID: 36211332 PMCID: PMC9539434 DOI: 10.3389/fimmu.2022.997270] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/07/2022] [Indexed: 11/13/2022] Open
Abstract
Liver disease is one of the most important causes of morbidity and mortality worldwide whose prevalence is dramatically increasing. The first sign of hepatic damage is inflammation which could be accompanied by the accumulation of fat called non-alcoholic fatty liver disease (NAFLD), causing damage in the hepatocytes. This stage can progress to fibrosis where the accumulation of fibrotic tissue replaces healthy tissue reducing liver function. The next stage is cirrhosis, a late phase of fibrosis where a high percentage of liver tissue has been replaced by fibrotic tissue and liver functionality is substantially impaired. There is a close interplay of cardiovascular disease (CVD) and hepatic alterations, where different mechanisms mediating this relation between the liver and systemic vasculature have been described. In chronic inflammatory diseases such as rheumatoid arthritis (RA) and psoriatic arthritis (PsA), in which the CVD risk is high, hepatic alterations seem to be more prevalent compared to the general population and other rheumatic disorders. The pathogenic mechanisms involved in the development of this comorbidity are still unraveled, although chronic inflammation, autoimmunity, treatments, and metabolic deregulation seem to have an important role. In this review, we will discuss the involvement of liver disease in the cardiovascular risk associated with inflammatory arthritis, the pathogenic mechanisms, and the recognized factors involved. Likewise, monitoring of the liver disease risk in routine clinical practice through both, classical and novel techniques and indexes will be exposed. Finally, we will examine the latest controversies that have been raised about the effects of the current therapies used to control the inflammation in RA and PsA, in the liver damage of those patients, such as methotrexate, leflunomide or biologics.
Collapse
|
10
|
Seidel F, Kleemann R, van Duyvenvoorde W, van Trigt N, Keijzer N, van der Kooij S, van Kooten C, Verschuren L, Menke A, Kiliaan AJ, Winter J, Hughes TR, Morgan BP, Baas F, Fluiter K, Morrison MC. Therapeutic Intervention with Anti-Complement Component 5 Antibody Does Not Reduce NASH but Does Attenuate Atherosclerosis and MIF Concentrations in Ldlr-/-.Leiden Mice. Int J Mol Sci 2022; 23:ijms231810736. [PMID: 36142647 PMCID: PMC9506266 DOI: 10.3390/ijms231810736] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/07/2022] [Accepted: 09/10/2022] [Indexed: 11/30/2022] Open
Abstract
Background: Chronic inflammation is an important driver in the progression of non-alcoholic steatohepatitis (NASH) and atherosclerosis. The complement system, one of the first lines of defense in innate immunity, has been implicated in both diseases. However, the potential therapeutic value of complement inhibition in the ongoing disease remains unclear. Methods: After 20 weeks of high-fat diet (HFD) feeding, obese Ldlr-/-.Leiden mice were treated twice a week with an established anti-C5 antibody (BB5.1) or vehicle control. A separate group of mice was kept on a chow diet as a healthy reference. After 12 weeks of treatment, NASH was analyzed histopathologically, and genome-wide hepatic gene expression was analyzed by next-generation sequencing and pathway analysis. Atherosclerotic lesion area and severity were quantified histopathologically in the aortic roots. Results: Anti-C5 treatment considerably reduced complement system activity in plasma and MAC deposition in the liver but did not affect NASH. Anti-C5 did, however, reduce the development of atherosclerosis, limiting the total lesion size and severity independently of an effect on plasma cholesterol but with reductions in oxidized LDL (oxLDL) and macrophage migration inhibitory factor (MIF). Conclusion: We show, for the first time, that treatment with an anti-C5 antibody in advanced stages of NASH is not sufficient to reduce the disease, while therapeutic intervention against established atherosclerosis is beneficial to limit further progression.
Collapse
Affiliation(s)
- Florine Seidel
- Department of Metabolic Health Research, Netherlands Organisation for Applied Scientific Research (TNO), 2333 CK Leiden, The Netherlands
- Department Medical Imaging, Anatomy, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, 6525 EZ Nijmegen, The Netherlands
- Correspondence:
| | - Robert Kleemann
- Department of Metabolic Health Research, Netherlands Organisation for Applied Scientific Research (TNO), 2333 CK Leiden, The Netherlands
| | - Wim van Duyvenvoorde
- Department of Metabolic Health Research, Netherlands Organisation for Applied Scientific Research (TNO), 2333 CK Leiden, The Netherlands
| | - Nikki van Trigt
- Department of Metabolic Health Research, Netherlands Organisation for Applied Scientific Research (TNO), 2333 CK Leiden, The Netherlands
| | - Nanda Keijzer
- Department of Metabolic Health Research, Netherlands Organisation for Applied Scientific Research (TNO), 2333 CK Leiden, The Netherlands
| | - Sandra van der Kooij
- Department of Internal Medicine (Nephrology) and Transplant Center, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Cees van Kooten
- Department of Internal Medicine (Nephrology) and Transplant Center, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Lars Verschuren
- Department of Microbiology and Systems Biology, Netherlands Organisation for Applied Scientific Research (TNO), 3704 HE Zeist, The Netherlands
| | - Aswin Menke
- Department of Metabolic Health Research, Netherlands Organisation for Applied Scientific Research (TNO), 2333 CK Leiden, The Netherlands
| | - Amanda J. Kiliaan
- Department Medical Imaging, Anatomy, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, 6525 EZ Nijmegen, The Netherlands
| | - Johnathan Winter
- Complement Biology Group, Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
- UK Dementia Research Institute Cardiff, School of Medicine, Cardiff University, Cardiff CF24 4HQ, UK
| | - Timothy R. Hughes
- Complement Biology Group, Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
- UK Dementia Research Institute Cardiff, School of Medicine, Cardiff University, Cardiff CF24 4HQ, UK
| | - B. Paul Morgan
- Complement Biology Group, Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
- UK Dementia Research Institute Cardiff, School of Medicine, Cardiff University, Cardiff CF24 4HQ, UK
| | - Frank Baas
- Department of Clinical Genetics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Kees Fluiter
- Department of Clinical Genetics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Martine C. Morrison
- Department of Metabolic Health Research, Netherlands Organisation for Applied Scientific Research (TNO), 2333 CK Leiden, The Netherlands
| |
Collapse
|
11
|
Tao X, Chen L, Zhao Y, Liu Y, Shi R, Jiang B, Mi Y, Xu L. A Novel Noninvasive Diagnostic Model of HBV-Related Inflammation in Chronic Hepatitis B Virus Infection Patients With Concurrent Nonalcoholic Fatty Liver Disease. Front Med (Lausanne) 2022; 9:862879. [PMID: 35402467 PMCID: PMC8984271 DOI: 10.3389/fmed.2022.862879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 02/14/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND AND AIMS Patients with chronic hepatitis B virus infection (CBI) with concurrent nonalcoholic fatty liver disease (NAFLD) is becoming increasingly common in clinical practice, and it is quite important to identify the etiology when hepatitis occurs. A noninvasive diagnostic model was constructed to identify patients who need antihepatitis B virus (HBV) therapies [histologic activity index (HAI) ≥ 4] in patients with CBI with concurrent NAFLD by analyzing clinical routine parameters. APPROACH AND RESULTS In total, 303 out of 502 patients with CBI with concurrent NAFLD proven by liver biopsy from January 2017 to December 2020 in the Tianjin Second People's Hospital were enrolled and they were divided into the HBV-related inflammation (HBV-I) group (HAI ≥ 4,176 cases) and the non-HBV-I group (HAI < 4,127 cases) according to hepatic pathology. The univariate analysis and multivariate logistic regression analysis were performed on the two groups of patients, and then the HBV-I model of patients with CBI with concurrent NAFLD was constructed. The areas under receiver operating characteristic curves (AUROCs) were used to evaluate the parameters of the regression formula. Another 115 patients with CBI with concurrent NAFLD proven by liver biopsy from January 2021 to January 2022 were enrolled as the validation group. There were some statistical differences in demographic data, biochemical indicators, immune function, thyroid function, virology indicator, and blood routine indicators between the two groups (P < 0.05) and liver stiffness measurement (LSM) in the HBV-I group was significantly higher than those in the non-HBV-I group (P < 0.05). While controlled attenuation parameters (CAP) in the HBV-I group were lower than those in the non-HBV-I group (P < 0.05); (2) We developed a novel model by logistic regression analysis: HBV-I = -0.020 × CAP + 0.424 × LSM + 0.376 × lg (HBV DNA) + 0.049 × aspartate aminotransferase (AST) and the accuracy rate was 82.5%. The area under the receiver operating characteristic (AUROC) is 0.907, the cutoff value is 0.671, the sensitivity is 89.30%, the specificity is 77.80%, the positive predictive value is 90.34%, and the negative predictive value is 81.89%; (3) The AUROC of HBV-I in the validation group was 0.871 and the overall accuracy rate is 86.96%. CONCLUSION Our novel model HBV-I [combining CAP, LSM, lg (HBV DNA), and AST] shows promising utility for predicting HBV-I in patients with CBI with concurrent NAFLD with high sensitivity, accuracy, and repeatability, which may contribute to clinical application.
Collapse
Affiliation(s)
- Xuemei Tao
- Clinical School of the Second People's Hospital, Tianjin Medical University, Tianjin, China
- Department of Hepatology, Tianjin Second People's Hospital, Tianjin, China
| | - Lin Chen
- Clinical School of the Second People's Hospital, Tianjin Medical University, Tianjin, China
- Department of Hepatology, Tianjin Second People's Hospital, Tianjin, China
| | - Youfei Zhao
- Clinical School of the Second People's Hospital, Tianjin Medical University, Tianjin, China
- Department of Hepatology, Tianjin Second People's Hospital, Tianjin, China
| | - Yonggang Liu
- Tianjin Research Institute of Liver Diseases, Tianjin, China
| | - Ruifang Shi
- Tianjin Research Institute of Liver Diseases, Tianjin, China
| | - Bei Jiang
- Tianjin Research Institute of Liver Diseases, Tianjin, China
| | - Yuqiang Mi
- Clinical School of the Second People's Hospital, Tianjin Medical University, Tianjin, China
- Department of Hepatology, Tianjin Second People's Hospital, Tianjin, China
| | - Liang Xu
- Clinical School of the Second People's Hospital, Tianjin Medical University, Tianjin, China
- Department of Hepatology, Tianjin Second People's Hospital, Tianjin, China
| |
Collapse
|
12
|
Feng L, Zhao Y, Wang WL. Association between complement C3 and the prevalence of metabolic-associated fatty liver disease in a Chinese population: a cross-sectional study. BMJ Open 2021; 11:e051218. [PMID: 34711595 PMCID: PMC8557272 DOI: 10.1136/bmjopen-2021-051218] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVES Recently studies demonstrated that adipose tissue can produce and release complement C3 and serum complement C3 levels were associated with diabetes mellitus, metabolic syndrome and non-alcoholic fatty liver disease (NAFLD). Thus, we plan to investigate the association of complement C3 levels and the presence of metabolic-associated fatty liver disease (MAFLD). DESIGN Observational study with a cross-sectional sample. SETTING This study surveyed 4729 participants in Zhejiang province, China. PARTICIPANTS 55 participants were excluded for acute infection and 1001 participants were excluded for lack of ultrasonography diagnoses and complete or partial absence of laboratory tests. The final sample size was 3673 participants. OUTCOME MEASURES Spearman correlation analysis was used to examine the correlations between complement C3 levels and variables. Binary logistic regression was carried out to evaluate the association between complement C3 levels and the presence of MAFLD after adjustment for demographic and biochemical variables. Mediation effects were used to explore whether insulin resistance (IR), hyperlipidaemia and obesity mediated the association between complement C3 and MAFLD. RESULTS Participants with MAFLD had higher complement C3 levels and complement C3 levels were closely associated with body mass index, waist circumference, alanine aminotransferase, aspartate aminotransferase, γ-glutamyl transpeptidase and homoeostasis model assessment (HOMA)-IR. The presence of MAFLD increased with the increase of complement C3 levels and the presence of MAFLD were highest in the HOMA-IR ≥2.5 participants. We found the OR and Cl of standardised C3 for MAFLD was 1.333 (1.185-1.500), each 1 SD increase in C3 would increase the presence of MAFLD by 33.3%, and obesity partly mediated the effect of complement C3 on the presence of MAFLD. CONCLUSIONS The present results suggest that complement C3 can be used as a risk factor for the presence of MAFLD after adjustment for confounding variables and obesity may partly mediate the effect of complement C3 on the presence of MAFLD.
Collapse
Affiliation(s)
- Limin Feng
- Department of Laboratory Medicine, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, Zhejiang, China
| | - Ying Zhao
- Department of Laboratory Medicine, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, Zhejiang, China
| | - Wei-Lin Wang
- Department of Hepatobiliary and Pancreatic Surgery, Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou, Zhejiang, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, China
| |
Collapse
|
13
|
Li L, Huang L, Yang A, Feng X, Mo Z, Zhang H, Yang X. Causal Relationship Between Complement C3, C4, and Nonalcoholic Fatty Liver Disease: Bidirectional Mendelian Randomization Analysis. PHENOMICS (CHAM, SWITZERLAND) 2021; 1:211-221. [PMID: 36939807 PMCID: PMC9590569 DOI: 10.1007/s43657-021-00023-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 08/07/2021] [Accepted: 08/18/2021] [Indexed: 02/07/2023]
Abstract
The complement system is activated during the development of nonalcoholic fatty liver disease (NAFLD). We aimed to evaluate the causal relationship between serum C3 and C4 levels and NAFLD. After exclusion criteria, a total of 1600 Chinese Han men from the Fangchenggang Area Male Health and Examination Survey cohort were enrolled in cross-sectional analysis, while 572 participants were included in the longitudinal analysis (average follow-up of 4 years). We performed a bidirectional Mendelian randomization (MR) analysis using two C3-related, eight C4-related and three NAFLD-related gene loci as instrumental variables to evaluate the causal associations between C3, C4, and NAFLD risk in cross-sectional analysis. Per SD increase in C3 levels was significantly associated with higher risk of NAFLD (OR = 1.65, 95% CI 1.40, 1.94) in cross-sectional analysis while C4 was not (OR = 1.04, 95% CI 0.89, 1.21). Longitudinal analysis produced similar results (HRC3 = 1.20, 95% CI 1.02, 1.42; HRC4 = 1.10, 95% CI 0.94, 1.28). In MR analysis, there were no causal relationships for genetically determined C3 levels and NAFLD risk using unweighted or weighted GRS_C3 (βE_unweighted = -0.019, 95% CI -0.019, -0.019, p = 0.202; βE_weighted = -0.019, 95% CI -0.019, -0.019, p = 0.322). Conversely, serum C3 levels were significantly effected by the genetically determined NAFLD (βE_unweighted = 0.020, 95% CI 0.020, 0.020, p = 0.004; βE_weighted = 0.021, 95% CI 0.020, 0.021, p = 0.004). Neither the direction from C4 to NAFLD nor the one from NAFLD to C4 showed significant association. Our results support that the change in serum C3 levels but not C4 levels might be caused by NAFLD in Chinese Han men. Supplementary Information The online version contains supplementary material available at 10.1007/s43657-021-00023-0.
Collapse
Affiliation(s)
- Longman Li
- grid.256607.00000 0004 1798 2653Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, 530021 Guangxi China
- Nanhu Zhuxi Community Healthcare Center, Qingxiu District, Nanning, 530021 Guangxi China
- grid.412594.fDepartment of Urology, Institute of Urology and Nephrology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021 Guangxi China
| | - Lulu Huang
- grid.256607.00000 0004 1798 2653Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, 530021 Guangxi China
| | - Aimin Yang
- grid.194645.b0000000121742757School of Public Health, The University of Hong Kong, Hong Kong SAR, 999077 China
| | - Xiuming Feng
- grid.256607.00000 0004 1798 2653Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, 530021 Guangxi China
- grid.256607.00000 0004 1798 2653Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, 530021 Guangxi China
| | - Zengnan Mo
- grid.256607.00000 0004 1798 2653Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, 530021 Guangxi China
- grid.412594.fDepartment of Urology, Institute of Urology and Nephrology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021 Guangxi China
| | - Haiying Zhang
- grid.256607.00000 0004 1798 2653Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, 530021 Guangxi China
- grid.256607.00000 0004 1798 2653Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, 530021 Guangxi China
| | - Xiaobo Yang
- grid.256607.00000 0004 1798 2653Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, 530021 Guangxi China
- grid.256607.00000 0004 1798 2653Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, 530021 Guangxi China
- grid.440719.f0000 0004 1800 187XDepartment of Public Health, School of Medicine, Guangxi University of Science and Technology, Liuzhou, 545006 Guangxi China
| |
Collapse
|
14
|
Han J, Zhang X. Complement Component C3: A Novel Biomarker Participating in the Pathogenesis of Non-alcoholic Fatty Liver Disease. Front Med (Lausanne) 2021; 8:653293. [PMID: 34395461 PMCID: PMC8358116 DOI: 10.3389/fmed.2021.653293] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 07/07/2021] [Indexed: 12/16/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is currently the most common cause of chronic liver disorder worldwide. The pathological spectrum of NAFLD ranges from simple steatosis to non-alcoholic steatohepatitis (NASH) that induces progressive liver cirrhosis and eventually hepatocellular carcinoma (HCC). However, the molecular mechanisms driving the transformation of NASH are obscure. There is a compelling need for understanding the pathogenic mechanisms of NASH, and thereby providing new insight into mechanism-based therapy. Currently, several studies reported that complement system, an innate immune system, played an important role in the pathogenesis of NAFLD, which was also proved by our recent study. Complement component 3 (C3), a protein of the innate immune system, plays a hub role in the complement system. Herein, we present a review on the role and molecular mechanism of C3 in NASH as well as its implication in NASH diagnosis and treatment.
Collapse
Affiliation(s)
- Juqiang Han
- Institute of Liver Disease, The 7th Medical Centre of Chinese People Liberation Army General Hospital, Beijing, China.,The Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Institute of Digestive Disease, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiang Zhang
- The Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Institute of Digestive Disease, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
15
|
Santiesteban-Lores LE, Carneiro MC, Isaac L, Bavia L. Complement System in Alcohol-Associated Liver Disease. Immunol Lett 2021; 236:37-50. [PMID: 34111475 DOI: 10.1016/j.imlet.2021.05.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/20/2021] [Accepted: 05/25/2021] [Indexed: 12/19/2022]
Abstract
Innate immunity contributes effectively to the development of Alcohol-Associated liver disease (ALD). Particularly, human studies and murine models of ALD have shown that Complement activation plays an important role during the initial and later stages of ALD. The Complement System may contribute to the pathogenesis of this disease since it has been shown that ethanol-derived metabolic products activate the Complement cascade on liver membranes, leading to hepatocellular damage. However, studies evaluating the plasma levels of Complement proteins in ALD patients present contradictory results in some cases, and do not establish a well-marked role for each Complement component. The impairment of leukocyte chemoattractant activity observed in these patients may contribute to the susceptibility to bacterial infections in the latter stages of the disease. On the other hand, murine models of ALD have provided more detailed insights into the mechanisms that link the Complement System to the pathogenesis of the disease. It has been observed that Classical pathway can be activated via C1q binding to apoptotic cells in the liver and contributes to the development of hepatic inflammation. C3 contributes to the accumulation of triglycerides in the liver and in adipose tissue, while C5 seems to be involved with inflammation and liver injury after chronic ethanol consumption. In this review, we present a compendium of studies evaluating the role of Complement in human and murine models of ALD. We also discuss potential therapies to human ALD, highlighting the use of Complement inhibitors.
Collapse
Affiliation(s)
| | | | - Lourdes Isaac
- Institute of Biomedical Sciences, University of São Paulo, Brazil
| | - Lorena Bavia
- Institute of Biomedical Sciences, University of São Paulo, Brazil.
| |
Collapse
|
16
|
Liang J, Li H, Fu J, Liang Q, Liu T, Yang F, Zhang B, Bai X, Wen Z. A model incorporating serum C3 complement levels may be useful for diagnosing biliary atresia in infants. GASTROENTEROLOGIA Y HEPATOLOGIA 2021; 45:47-58. [PMID: 34029644 DOI: 10.1016/j.gastrohep.2021.02.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/01/2021] [Accepted: 02/08/2021] [Indexed: 11/15/2022]
Abstract
INTRODUCTION Correctly identifying patients with biliary atresia (BA), while avoiding invasive diagnostic methods is challenging. The purpose of this study was to determine the value of serum immune indicators for distinguishing BA from other causes of cholestasis in infants. PATIENTS AND METHODS The data of infants with a surgical/histological diagnosis of BA and those with other causes of cholestatic jaundice were retrospectively analyzed. Patients were divided into a BA group and a cholestasis control (CC) group. Biochemical parameters, major lymphocyte subsets, immunoglobin and C3 and C4 complement levels were compared between the groups. RESULTS A total of 129 infants with BA and 63 with other causes of cholestasis (CC control group) with a median age of 2.2 months were included in the analysis. The levels of CD3+ T cells, CD3+CD4+ T cells, and premature T cells and the levels of C3 and C4 were all significantly higher in the BA group compared to the CC group (all P<0.05). Pair-wise correlation analyses indicated that C3 and C4 had a significant positive correlation with γ-GT in the BA group, but not in the CC group. Five indices were found to be significantly associated with BA: stool color, globulin, γ-GT, C3 and C4. A model incorporating stool color, gamma-glutamyl transpeptidase level, and C3 level exhibited an area under the ROC curve (AUC) of 0.93, and a sensitivity of 93% and specificity of 83% for the diagnosis of BA. CONCLUSIONS Models incorporating serum C3 levels may be useful for accurately diagnosing BA in infants.
Collapse
Affiliation(s)
- Jiankun Liang
- Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Huixian Li
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Jie Fu
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Qifeng Liang
- Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Tao Liu
- Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Fengxia Yang
- Isolation Clinic, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Bingbing Zhang
- Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xiaoling Bai
- Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Zhe Wen
- Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
17
|
HFD-induced hepatic lipid accumulation and inflammation are decreased in Factor D deficient mouse. Sci Rep 2020; 10:17593. [PMID: 33067533 PMCID: PMC7568538 DOI: 10.1038/s41598-020-74617-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/30/2020] [Indexed: 12/12/2022] Open
Abstract
Excessive intake of fat causes accumulation of fat in liver, leading to non-alcoholic fatty liver disease (NAFLD). High-fat diet (HFD) upregulates the expression of Factor D, a complement pathway component, in the liver of mice. However, the functions of Factor D in liver are not well known. Therefore, the current study investigated the relationship between Factor D and hepatic lipid accumulation using CRISPR/Cas9-mediated Factor D knockout (FD-KO) mice. Factor D deficiency downregulated expression of genes related to fatty acid uptake and de novo lipogenesis in the liver. Furthermore, Factor D deficiency reduced the expression of inflammatory factors (Tnf and Ccl2) and fibrosis markers and decreased accumulation of F4/80-positive macrophages. These data suggest that the Factor D deficiency improved hepatic lipid accumulation and hepatic inflammation in HFD-fed mice.
Collapse
|
18
|
Zhou Y, Yuan G, Zhong F, He S. Roles of the complement system in alcohol-induced liver disease. Clin Mol Hepatol 2020; 26:677-685. [PMID: 33053939 PMCID: PMC7641541 DOI: 10.3350/cmh.2020.0094] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/15/2020] [Accepted: 08/25/2020] [Indexed: 12/19/2022] Open
Abstract
Alcohol-induced liver disease (ALD) is a complex disorder, with a disease spectrum ranging from steatosis to steatohepatitis, cirrhosis, and hepatocellular carcinoma. Although the pathogenesis of ALD is incompletely understood and currently no effective drugs are available for ALD, several lines of evidence suggest that complement activation and oxidative stress play crucial roles in the pathogenesis of ALD. Complement activation can regulate the production of ROS and influence oxidative stress in ALD. Precise regulation of the complement system in ALD may be a rational and novel avenue to postpone and even reverse the progression of disease and simultaneously promote the repair of liver injury. In this mini-review, we briefly summarize the recent research progress, especially focusing on the role of complement and oxidative stress-induced transfer RNA-derived fragments, which might help us to better understand the pathogenesis of ALD and provide aid in the development of novel therapeutic strategies for ALD.
Collapse
Affiliation(s)
- Yi Zhou
- Division of Hepatobiliary Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Guandou Yuan
- Division of Hepatobiliary Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Fudi Zhong
- Division of Hepatobiliary Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Songqing He
- Division of Hepatobiliary Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
19
|
Małecki P, Tracz J, Łuczak M, Figlerowicz M, Mazur-Melewska K, Służewski W, Mania A. Serum proteome assessment in nonalcoholic fatty liver disease in children: a preliminary study. Expert Rev Proteomics 2020; 17:623-632. [PMID: 32921203 DOI: 10.1080/14789450.2020.1810020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVES Nonalcoholic fatty disease (NAFLD) affects 3-10% of the pediatric population, making it the most common chronic liver disease among children. The aim of the study is to identify potential biomarkers enabling the diagnosis of NAFLD and monitoring the course of the disease. METHODS Proteome analysis was performed in a group of 30 patients (19 boys and 11 girls) in total, of whom 16 children had previously diagnosed NAFLD based on the abdominal ultrasound after excluding other diseases of this organ. RESULTS A total of 297 proteins have been identified. Thirty-seven proteins (responsible for inflammation, stress response, and regulation of this process) differentiating both experimental groups were identified. Up-regulated proteins included afamin, retinol-binding protein-4, complement components, and hemopexin; while serum protease inhibitors, clusterin, immunoglobulin chains, and vitamin D binding protein were found in the down-regulated group. The correlation between selected proteins and indicators of noninvasive assessment of liver fibrosis (APRI, FIB-4) as well as differences between the serum proteome of patients with normal weight, overweight, and obesity were also assessed. CONCLUSION The plasma protein profile is significantly altered in nonalcoholic liver disease in children and may prove to be a valuable source of biomarkers to evaluate the extent of liver disease.
Collapse
Affiliation(s)
- Paweł Małecki
- Department of Infectious Diseases, Poznan University of Medical Sciences , Poznan, Poland
| | - Joanna Tracz
- Institute of Bioorganic Chemistry Polish Academy of Sciences , Poznań, Poland
| | - Magdalena Łuczak
- Institute of Bioorganic Chemistry Polish Academy of Sciences , Poznań, Poland
| | - Magdalena Figlerowicz
- Department of Infectious Diseases, Poznan University of Medical Sciences , Poznan, Poland
| | | | - Wojciech Służewski
- Department of Infectious Diseases, Poznan University of Medical Sciences , Poznan, Poland
| | - Anna Mania
- Department of Infectious Diseases, Poznan University of Medical Sciences , Poznan, Poland
| |
Collapse
|
20
|
Sims NA, Martin TJ. Osteoclasts Provide Coupling Signals to Osteoblast Lineage Cells Through Multiple Mechanisms. Annu Rev Physiol 2019; 82:507-529. [PMID: 31553686 DOI: 10.1146/annurev-physiol-021119-034425] [Citation(s) in RCA: 174] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bone remodeling is essential for the repair and replacement of damaged and old bone. The major principle underlying this process is that osteoclast-mediated resorption of a quantum of bone is followed by osteoblast precursor recruitment; these cells differentiate to matrix-producing osteoblasts, which form new bone to replace what was resorbed. Evidence from osteopetrotic syndromes indicate that osteoclasts not only resorb bone, but also provide signals to promote bone formation. Osteoclasts act upon osteoblast lineage cells throughout their differentiation by facilitating growth factor release from resorbed matrix, producing secreted proteins and microvesicles, and expressing membrane-bound factors. These multiple mechanisms mediate the coupling of bone formation to resorption in remodeling. Additional interactions of osteoclasts with osteoblast lineage cells, including interactions with canopy and reversal cells, are required to achieve coordination between bone formation and resorption during bone remodeling.
Collapse
Affiliation(s)
- Natalie A Sims
- Bone Cell Biology and Disease Unit, St. Vincent's Institute of Medical Research, Melbourne, Victoria 3065, Australia; , .,Department of Medicine, The University of Melbourne, St. Vincent's Hospital, Melbourne, Victoria 3065, Australia
| | - T John Martin
- Bone Cell Biology and Disease Unit, St. Vincent's Institute of Medical Research, Melbourne, Victoria 3065, Australia; , .,Department of Medicine, The University of Melbourne, St. Vincent's Hospital, Melbourne, Victoria 3065, Australia
| |
Collapse
|
21
|
Zhong F, Hu Z, Jiang K, Lei B, Wu Z, Yuan G, Luo H, Dong C, Tang B, Zheng C, Yang S, Zeng Y, Guo Z, Yu S, Su H, Zhang G, Qiu X, Tomlinson S, He S. Complement C3 activation regulates the production of tRNA-derived fragments Gly-tRFs and promotes alcohol-induced liver injury and steatosis. Cell Res 2019; 29:548-561. [PMID: 31076642 PMCID: PMC6796853 DOI: 10.1038/s41422-019-0175-2] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 04/12/2019] [Indexed: 12/23/2022] Open
Abstract
Complement is known to play a role in alcoholic fatty liver disease (AFLD), but the underlying mechanisms are poorly understood, thereby constraining the development of a rational approach for therapeutic intervention in the complement system. C3 deficiency has been shown to impart protective effects against ethanol-induced hepatic steatosis and inflammation. Here we demonstrate a protection effect in wild-type mice by treatment with CR2-Crry, a specific inhibitor of C3 activation. The expression of glycine transfer (t) RNA-derived fragments (Gly-tRFs) is upregulated in ethanol-fed mice and inhibition of Gly-tRFs in vivo decreases chronic ethanol feeding-induced hepatosteatosis without affecting inflammation. The expression of Gly-tRF was downregulated in C3-deficient or CR2-Crry-treated mice, but not in C5-deficient mice; Gly-tRF expression was restored by the C3 activation products C3a or Asp (C3a-des-Arg) via the regulation of CYP2E1. Transcriptome profiling of hepatic tissues showed that Gly-tRF inhibitors upregulate the expression of sirtuin1 (Sirt1) and subsequently affect downstream lipogenesis and β-oxidation pathways. Mechanistically, Gly-tRF interacts with AGO3 to downregulate Sirt1 expression via sequence complementarity in the 3' UTR. Notably, the expression levels of C3d, CYP2E1 and Gly-tRF are upregulated, whereas Sirt1 is decreased in AFLD patients compared to healthy controls. Collectively, our findings suggest that C3 activation products contribute to hepatosteatosis by regulating the expression of Gly-tRF. Complement inhibition at the C3 activation step and treatment with Gly-tRF inhibitors may be potential and precise therapeutic approaches for AFLD.
Collapse
Affiliation(s)
- Fudi Zhong
- Division of Hepatobiliary Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Zhigao Hu
- Division of Hepatobiliary Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
- Laboratory of Liver Injury and Repair, Nanning, Guangxi, China
| | - Keqing Jiang
- Division of Hepatobiliary Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Biao Lei
- Division of Hepatobiliary Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Zhan Wu
- Division of Hepatobiliary Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Guandou Yuan
- Division of Hepatobiliary Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Hongliang Luo
- Division of Hepatobiliary Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Chunqiang Dong
- Division of Hepatobiliary Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Bo Tang
- Division of Hepatobiliary Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Chaowen Zheng
- Laboratory of Liver Injury and Repair, Nanning, Guangxi, China
| | - Shuai Yang
- Laboratory of Liver Injury and Repair, Nanning, Guangxi, China
| | - Yonglian Zeng
- Division of Hepatobiliary Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Zhenya Guo
- Division of Hepatobiliary Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Shuiping Yu
- Division of Hepatobiliary Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Huizhao Su
- Division of Hepatobiliary Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Guo Zhang
- Department of Gastroenterology, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Xiaoqiang Qiu
- Laboratory of Liver Injury and Repair, Nanning, Guangxi, China
| | - Stephen Tomlinson
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
| | - Songqing He
- Division of Hepatobiliary Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China.
- Laboratory of Liver Injury and Repair, Nanning, Guangxi, China.
| |
Collapse
|
22
|
Bijnen M, van Greevenbroek MMJ, van der Kallen CJH, Scheijen JL, van de Waarenburg MPH, Stehouwer CDA, Wouters K, Schalkwijk CG. Hepatic Fat Content and Liver Enzymes Are Associated with Circulating Free and Protein-Bound Advanced Glycation End Products, Which Are Associated with Low-Grade Inflammation: The CODAM Study. J Diabetes Res 2019; 2019:6289831. [PMID: 31218233 PMCID: PMC6536997 DOI: 10.1155/2019/6289831] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/28/2019] [Accepted: 03/05/2019] [Indexed: 01/11/2023] Open
Abstract
Advanced glycation end products (AGEs) accumulate in fatty livers and may contribute to low-grade inflammation (LGI), potentially via their receptor, RAGE. It is unknown if the AGE accumulation in fatty livers results in elevated circulating AGEs. In a cohort study, we investigated the association of liver fat and hepatocellular damage with circulating AGEs and soluble RAGE (sRAGE) and subsequently the association of circulating AGEs and sRAGE with LGI. Cross-sectional associations of liver fat percentage (eLF%; ln-transformed) and liver enzymes (LE score; standardized) with circulating AGEs (free CML, CEL, and MG-H1 in nM and protein-bound CML, CEL, and pentosidine in nmol/mmol lysine; ln-transformed) and sRAGE (pg/ml, ln-transformed) and additionally of AGEs and sRAGE with LGI (standardized) were determined by multiple linear regression. eLF% was positively associated with circulating free CEL (β = 0.090; 95% CI 0.041; 0.139) but inversely with protein-bound CML (β = -0.071; 95% CI -0.108; -0.034). Similarly, the LE score was positively associated with free CML (β = 0.044; 95% CI 0.012; 0.076) and CEL (β = 0.040; 95% CI 0.009; 0.072) but inversely with protein-bound CML (β = -0.037; 95% CI -0.060; -0.013). Free CML (β = 0.297; 95% CI 0.049; 0.545) was positively associated with LGI, while protein-bound CML (β = -0.547; 95% CI -0.888; -0.207) was inversely associated, although this association was absent after adjustment for BMI. eLF% and LE score were not associated with sRAGE and sRAGE not with LGI after adjustment for BMI. Liver fat and enzymes were positively associated with circulating free AGEs, which were associated with LGI. In contrast, inverse relations were observed of liver fat and enzymes with circulating protein-bound AGEs and of protein-bound AGEs with LGI. These data suggest that hepatic steatosis and inflammation affect the formation and degradation of hepatic protein-bound AGEs resulting in elevated circulating free AGE levels. These alterations in AGE levels might influence LGI, but this is likely independent of RAGE.
Collapse
Affiliation(s)
- Mitchell Bijnen
- Department of Internal Medicine, MUMC, Maastricht, Netherlands
- CARIM, MUMC, Maastricht, Netherlands
| | | | | | - Jean L. Scheijen
- Department of Internal Medicine, MUMC, Maastricht, Netherlands
- CARIM, MUMC, Maastricht, Netherlands
| | | | - Coen D. A. Stehouwer
- Department of Internal Medicine, MUMC, Maastricht, Netherlands
- CARIM, MUMC, Maastricht, Netherlands
| | - Kristiaan Wouters
- Department of Internal Medicine, MUMC, Maastricht, Netherlands
- CARIM, MUMC, Maastricht, Netherlands
| | - Casper G. Schalkwijk
- Department of Internal Medicine, MUMC, Maastricht, Netherlands
- CARIM, MUMC, Maastricht, Netherlands
| |
Collapse
|
23
|
Almanza D, Gharaee-Kermani M, Zhilin-Roth A, Rodriguez-Nieves JA, Colaneri C, Riley T, Macoska JA. Nonalcoholic Fatty Liver Disease Demonstrates a Pre-fibrotic and Premalignant Molecular Signature. Dig Dis Sci 2019; 64:1257-1269. [PMID: 30519850 PMCID: PMC6512804 DOI: 10.1007/s10620-018-5398-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 11/27/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Metabolic syndrome contributing to nonalcoholic fatty liver disease (NAFLD) can lead to hepatic dysfunction, steatohepatitis, cirrhosis, and hepatocellular carcinoma. AIMS In this study, we tested whether diet-induced fatty liver in a mouse model physiologically mimicked human NAFLD, and whether transcriptional alterations in mouse fatty liver signified risk for the development of hepatitis, cirrhosis, and/or hepatocellular carcinoma. METHODS SAMP6 strain mice were fed a low-fat diet or high-fat diet (HFD) for 6 months. Mouse livers were isolated and subjected to histology, immunohistochemistry, and whole transcriptome RNA sequencing. Sequences were aligned to the mouse reference genome, and gene expression signatures were analyzed using bioinformatics tools including Cufflinks, Pathview, Cytoscape, ClueGO, and GOstats. RESULTS Consistent with NAFLD, livers from HFD-fed mice demonstrated steatosis, high levels of inflammation, an up-regulation of genes encoding proteins associated with the complement pathway and immune responses, and down-regulation of those associated with metabolic processes. These livers also showed an up-regulation of genes associated with fibrosis and malignant transformation but no histological evidence of either pathobiology or DNA damage. CONCLUSIONS HFD-fed mice exhibited NAFLD that had incompletely transitioned from fatty liver to NASH. Importantly, bioinformatics approaches identified pre-fibrotic and premalignant signatures, suggesting that the pathogenesis of both fibrosis and cancer may initiate in fatty livers well before associated histological changes are evident.
Collapse
Affiliation(s)
- Diego Almanza
- 0000 0004 0386 3207grid.266685.9Department of Biology, University of Massachusetts Boston, Boston, USA ,0000 0004 0386 3207grid.266685.9Center for Personalized Cancer Therapy, The University of Massachusetts Boston, Room 4601, Integrated Sciences Complex, 100 Morrissey Blvd., Boston, MA 02125 USA
| | - Mehrnaz Gharaee-Kermani
- 0000 0004 0386 3207grid.266685.9Department of Biology, University of Massachusetts Boston, Boston, USA ,0000 0004 0386 3207grid.266685.9Center for Personalized Cancer Therapy, The University of Massachusetts Boston, Room 4601, Integrated Sciences Complex, 100 Morrissey Blvd., Boston, MA 02125 USA
| | - Alisa Zhilin-Roth
- 0000 0004 0386 3207grid.266685.9Department of Biology, University of Massachusetts Boston, Boston, USA ,0000 0004 0386 3207grid.266685.9Center for Personalized Cancer Therapy, The University of Massachusetts Boston, Room 4601, Integrated Sciences Complex, 100 Morrissey Blvd., Boston, MA 02125 USA
| | - Jose A. Rodriguez-Nieves
- 0000 0004 0386 3207grid.266685.9Center for Personalized Cancer Therapy, The University of Massachusetts Boston, Room 4601, Integrated Sciences Complex, 100 Morrissey Blvd., Boston, MA 02125 USA
| | - Cory Colaneri
- 0000 0004 0386 3207grid.266685.9Department of Biology, University of Massachusetts Boston, Boston, USA
| | - Todd Riley
- 0000 0004 0386 3207grid.266685.9Department of Biology, University of Massachusetts Boston, Boston, USA ,0000 0004 0386 3207grid.266685.9Center for Personalized Cancer Therapy, The University of Massachusetts Boston, Room 4601, Integrated Sciences Complex, 100 Morrissey Blvd., Boston, MA 02125 USA
| | - Jill A. Macoska
- 0000 0004 0386 3207grid.266685.9Department of Biology, University of Massachusetts Boston, Boston, USA ,0000 0004 0386 3207grid.266685.9Center for Personalized Cancer Therapy, The University of Massachusetts Boston, Room 4601, Integrated Sciences Complex, 100 Morrissey Blvd., Boston, MA 02125 USA
| |
Collapse
|
24
|
Xin Y, Hertle E, van der Kallen CJH, Schalkwijk CG, Stehouwer CDA, van Greevenbroek MMJ. Complement C3 and C4, but not their regulators or activated products, are associated with incident metabolic syndrome: the CODAM study. Endocrine 2018; 62:617-627. [PMID: 30132263 PMCID: PMC6244913 DOI: 10.1007/s12020-018-1712-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 08/07/2018] [Indexed: 12/13/2022]
Abstract
PURPOSE We investigated the associations of components of the alternative (C3, C3a, Bb, factor D [FD], factor H [FH], properdin) and the classical complement pathway (C4, C1q, C1-inhibitor [C1-INH]) with prevalent and incident metabolic syndrome in a cohort with a moderately increased risk of cardiometabolic disease. METHODS The study cohort was comprised of 574 participants (61% men, age 59.6 ± 7.0 years) at baseline and 489 participants after 7-year follow-up. Multiple logistic regression analyses were done to investigate the associations of concentrations of baseline plasma complement (standardized values) with prevalent and incident (in those without metabolic syndrome at baseline, n = 189) metabolic syndrome. RESULTS C3 (odds ratio (OR) = 1.48 [95% confidence interval: 1.02; 2.14]) and C4 (OR = 1.95 [1.32; 2.88]), but none of the other complement components were associated with incident metabolic syndrome (n = 40 cases). Notably, in the cross-sectional analyses, we did observe higher levels of C3a (OR = 1.25 [1.03; 1.52]), FH (OR = 2.93 [2.24; 3.83]), and properdin (OR = 1.88 [1.50; 2.34]), in addition to C3 (OR = 3.60 [2.73; 4.75]) and C4 (OR = 1.39 [1.13; 1.69]), in those with the metabolic syndrome compared to those without, while no association was observed for FD, Bb, C1q, or C1-INH. CONCLUSIONS In the cross-sectional analyses, the effects sizes (standardized regression coefficients) for C3 and C4 were similar to those of (some of) the regulators and activators, yet only C3 and C4 were associated with incident disease. These findings suggest a role for C3 and C4, but not their regulators or activated products, in the development of the metabolic syndrome.
Collapse
Affiliation(s)
- Ying Xin
- Department of Internal Medicine, Maastricht University Medical Centre and CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| | - Elisabeth Hertle
- Department of Internal Medicine, Maastricht University Medical Centre and CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| | - Carla J H van der Kallen
- Department of Internal Medicine, Maastricht University Medical Centre and CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| | - Casper G Schalkwijk
- Department of Internal Medicine, Maastricht University Medical Centre and CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| | - Coen D A Stehouwer
- Department of Internal Medicine, Maastricht University Medical Centre and CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| | - Marleen M J van Greevenbroek
- Department of Internal Medicine, Maastricht University Medical Centre and CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
25
|
Lin CJ, Hu ZG, Yuan GD, Lei B, He SQ. Complements are involved in alcoholic fatty liver disease, hepatitis and fibrosis. World J Hepatol 2018; 10:662-669. [PMID: 30386459 PMCID: PMC6206158 DOI: 10.4254/wjh.v10.i10.662] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 07/26/2018] [Accepted: 08/01/2018] [Indexed: 02/06/2023] Open
Abstract
The complement system is a key component of the body's immune system. When abnormally activated, this system can induce inflammation and damage to normal tissues and participate in the development and progression of a variety of diseases. In the past, many scholars believed that alcoholic liver disease (ALD) is induced by the stress of ethanol on liver cells, including oxidative stress and dysfunction of mitochondria and protease bodies, causing hepatocyte injury and apoptosis. Recent studies have shown that complement activation is also involved in the genesis and development of ALD. This review focuses on the roles of complement activation in ALD and of therapeutic intervention in complement-activation pathways. We intend to provide new ideas on the diagnosis and treatment of ALD.
Collapse
Affiliation(s)
- Cheng-Jie Lin
- Department of Hepatopancreatobiliary Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Zhi-Gao Hu
- Department of Hepatopancreatobiliary Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Guan-Dou Yuan
- Department of Hepatopancreatobiliary Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Biao Lei
- Department of Hepatopancreatobiliary Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Song-Qing He
- Department of Hepatopancreatobiliary Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China.
| |
Collapse
|
26
|
Núñez K, Thevenot P, Alfadhli A, Cohen A. Complement Activation in Liver Transplantation: Role of Donor Macrosteatosis and Implications in Delayed Graft Function. Int J Mol Sci 2018; 19:1750. [PMID: 29899265 PMCID: PMC6032339 DOI: 10.3390/ijms19061750] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 05/28/2018] [Accepted: 06/08/2018] [Indexed: 12/16/2022] Open
Abstract
The complement system anchors the innate inflammatory response by triggering both cell-mediated and antibody-mediated immune responses against pathogens. The complement system also plays a critical role in sterile tissue injury by responding to damage-associated molecular patterns. The degree and duration of complement activation may be a critical variable controlling the balance between regenerative and destructive inflammation following sterile injury. Recent studies in kidney transplantation suggest that aberrant complement activation may play a significant role in delayed graft function following transplantation, confirming results obtained from rodent models of renal ischemia/reperfusion (I/R) injury. Deactivating the complement cascade through targeting anaphylatoxins (C3a/C5a) might be an effective clinical strategy to dampen reperfusion injury and reduce delayed graft function in liver transplantation. Targeting the complement cascade may be critical in donor livers with mild to moderate steatosis, where elevated lipid burden amplifies stress responses and increases hepatocyte turnover. Steatosis-driven complement activation in the donor liver may also have implications in rejection and thrombolytic complications following transplantation. This review focuses on the roles of complement activation in liver I/R injury, strategies to target complement activation in liver I/R, and potential opportunities to translate these strategies to transplanting donor livers with mild to moderate steatosis.
Collapse
Affiliation(s)
- Kelley Núñez
- Institute of Translational Research, Ochsner Health System, New Orleans, LA 70121, USA.
| | - Paul Thevenot
- Institute of Translational Research, Ochsner Health System, New Orleans, LA 70121, USA.
| | - Abeer Alfadhli
- Institute of Translational Research, Ochsner Health System, New Orleans, LA 70121, USA.
| | - Ari Cohen
- Institute of Translational Research, Ochsner Health System, New Orleans, LA 70121, USA.
| |
Collapse
|
27
|
Longitudinal associations of the alternative and terminal pathways of complement activation with adiposity: The CODAM study. Obes Res Clin Pract 2017; 12:286-292. [PMID: 29174517 DOI: 10.1016/j.orcp.2017.11.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 10/25/2017] [Accepted: 11/03/2017] [Indexed: 12/19/2022]
Abstract
OBJECTIVE To investigate longitudinal associations of components of the alternative (C3, C3a, Bb, factor D [FD], factor H [FH], and properdin) and the terminal complement pathway (C5a, sC5b-9) with adiposity. METHODS A prospective human cohort study (n=574 at baseline, n=489 after 7 years follow-up) was analyzed. Generalized estimating equations were used to evaluate the longitudinal associations between complement components (standardized values) and adiposity (main outcome BMI [kg/m2]). Multiple linear regression models were used to investigate the associations between change in complement levels and change in BMI. Analyses were adjusted for age, sex, medication and lifestyle. RESULTS Over the 7-year period, baseline C3 was positively associated with BMI (β=1.72 [95% confidence interval (CI): 1.35; 2.09]). Positive associations were also observed for C3a (β=0.64 [0.31; 0.97]), FD (β=1.00 [0.59; 1.42]), FH (β=1.17 [0.82; 1.53]), and properdin (β=0.60 [0.28; 0.92]), but not for Bb, C5a or sC5b-9. Moreover, changes in C3 (β=0.52 [0.34; 0.71]) and FH (β=0.51 [0.32; 0.70]) were significantly associated with changes in BMI. CONCLUSIONS The complement system, particularly activation of the alternative pathway, may be involved in development of adiposity. Whether individual aspects of alternative pathway activation have a causal role in human obesity, remains to be investigated.
Collapse
|
28
|
Ursini F, Russo E, Mauro D, Abenavoli L, Ammerata G, Serrao A, Grembiale RD, De Sarro G, Olivieri I, D'angelo S. Complement C3 and fatty liver disease in Rheumatoid arthritis patients: a cross-sectional study. Eur J Clin Invest 2017; 47:728-735. [PMID: 28796299 DOI: 10.1111/eci.12798] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 08/06/2017] [Indexed: 12/31/2022]
Abstract
BACKGROUND Recent evidence suggested a potential role of complement fraction C3 as a biomarker of nonalcoholic fatty liver disease (NAFLD) in the general population. Aim of this study was to evaluate the performance of C3 for prediction of NAFLD in RA patients. MATERIALS AND METHODS For the present study, consecutive RA patients were recruited. NAFLD was diagnosed according to predefined ultrasonographic (US) criteria. For comparison, the hepatic steatosis index (HSI) was calculated. RESULTS Of 164 consecutive RA patients, 41 (25%) were diagnosed with NAFLD. The NAFLD group had a significant lower proportion of females (P = 0·04), higher BMI (P < 0·0001), C-reactive protein (P = 0·04), complement C3 (P = 0·001) and HSI (P = 0·003). In a logistic regression model, only male sex (OR 2·65, 95% CI: 1·08-6·50, P = 0·03), increasing BMI (OR 1·22, 95% CI: 1·02-1·46, P = 0·03) and complement C3 (OR 5·05, 95% CI: 1·06-23·93, P = 0·04) were associated with higher likelihood of being diagnosed with NAFLD. Finally, we built ROC curves for BMI, complement C3 and their combination for prediction of having NAFLD. The best cut-off for BMI was 28·5 kg/m2 and yielded a sensitivity of 66% and a specificity of 71%; the best cut-off for complement C3 was 1·23 g/L and yielded a sensitivity of 76% and a specificity of 64% for classification of NAFLD cases. CONCLUSIONS Our results provide preliminary evidence for a potential role of complement C3 as a surrogate biomarker of NAFLD in RA patients.
Collapse
Affiliation(s)
- Francesco Ursini
- Department of Health Sciences, University of Catanzaro "Magna Graecia", Catanzaro, Italy.,Rheumatology Department of Lucania, "San Carlo" Hospital of Potenza and "Madonna delle Grazie" Hospital of Matera, Potenza, Italy
| | - Emilio Russo
- Department of Health Sciences, University of Catanzaro "Magna Graecia", Catanzaro, Italy
| | - Daniele Mauro
- Centre for Experimental Medicine & Rheumatology, William Harvey Research Institute - Queen Mary University of London, London, UK
| | - Ludovico Abenavoli
- Department of Health Sciences, University of Catanzaro "Magna Graecia", Catanzaro, Italy
| | - Giorgio Ammerata
- Department of Health Sciences, University of Catanzaro "Magna Graecia", Catanzaro, Italy
| | | | - Rosa Daniela Grembiale
- Department of Health Sciences, University of Catanzaro "Magna Graecia", Catanzaro, Italy
| | | | - Ignazio Olivieri
- Rheumatology Department of Lucania, "San Carlo" Hospital of Potenza and "Madonna delle Grazie" Hospital of Matera, Potenza, Italy
| | - Salvatore D'angelo
- Rheumatology Department of Lucania, "San Carlo" Hospital of Potenza and "Madonna delle Grazie" Hospital of Matera, Potenza, Italy
| |
Collapse
|
29
|
Xu C, Chen Y, Xu L, Miao M, Li Y, Yu C. Serum complement C3 levels are associated with nonalcoholic fatty liver disease independently of metabolic features in Chinese population. Sci Rep 2016; 6:23279. [PMID: 27029598 PMCID: PMC4814815 DOI: 10.1038/srep23279] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 03/03/2016] [Indexed: 12/14/2022] Open
Abstract
Serum complement C3 levels are closely associated with obesity and related metabolic disorders. This study aimed to investigate the association between serum complement C3 levels with non-alcoholic fatty liver disease (NAFLD). A cross-sectional study was performed among adults who took their annual health examinations at Zhenhai Lianhua Hospital, Ningbo, China during 2014. We included 7540 participants (5069 men and 2471 women) in this study. NAFLD patients had higher serum complement C3 levels (P < 0.001), and these levels were positively associated with both NAFLD prevalence and severity (P < 0.001). The above association remains true among lean and metabolic syndrome-free participants. Multivariable regression analysis showed that serum complement C3 was independently associated with risk for NAFLD (OR = 5.231; 95% CI: 3.169-8.635). Serum complement C3 level is positively associated with prevalence and severity of NAFLD, and this association is independent of obesity and metabolic syndrome.
Collapse
Affiliation(s)
- Chengfu Xu
- Department of Gastroenterology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yi Chen
- Department of Gastroenterology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Lei Xu
- Department of Gastroenterology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Department of Gastroenterology, Ningbo First Hospital, Ningbo, China
| | - Min Miao
- Department of Internal Medicine, Zhenhai Lianhua Hospital, Ningbo, China
| | - Youming Li
- Department of Gastroenterology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Chaohui Yu
- Department of Gastroenterology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
30
|
Association between complement C3 and prevalence of fatty liver disease in an adult population: a cross-sectional study from the Tianjin Chronic Low-Grade Systemic Inflammation and Health (TCLSIHealth) cohort study. PLoS One 2015; 10:e0122026. [PMID: 25856141 PMCID: PMC4391843 DOI: 10.1371/journal.pone.0122026] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 02/05/2015] [Indexed: 01/13/2023] Open
Abstract
Activation of the innate immune system plays a key role in the development of fatty liver disease (FLD). The complement system is a major humoral component of the innate immune response and complement C3 plays a central role, implying that C3 may be a powerful predictor or therapeutic target for FLD. However, few studies have assessed the association between C3 and FLD in a large population. Here we use a cross-sectional study to investigate the link between serum C3 levels and FLD. Participants were recruited from Tianjin Medical University's General Hospital-Health Management Centre. Serum C3 was measured using immunoturbidimetry method and FLD was diagnosed by liver ultrasonography. Multiple logistic regression analysis was used to examine the association between quartiles of C3 and FLD prevalence. The overall prevalence of nonalcoholic fatty liver disease (NAFLD) and alcoholic fatty liver disease (AFLD) were 37.3% and 10.1%, respectively. After adjusting for covariates, the odds ratio of having NAFLD or AFLD (only in males) in the fourth quartile of C3 compared with the first quartile was 4.13 times greater (95% confidence interval, 2.97-5.77) (trend P values < 0.0001) and 2.09 times greater (95% confidence interval, 1.08-4.18) (trend P values = 0.02). This is the first study to demonstrate that serum C3 levels are independently associated with a higher prevalence of NAFLD and AFLD (only in males) in an adult population. Further studies are needed to establish a causal link and determine the precise role of C3 in FLD.
Collapse
|
31
|
Shen H, French BA, Liu H, Tillman BC, French SW. Increased activity of the complement system in the liver of patients with alcoholic hepatitis. Exp Mol Pathol 2014; 97:338-44. [PMID: 25217811 DOI: 10.1016/j.yexmp.2014.09.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 09/08/2014] [Indexed: 12/19/2022]
Abstract
Inflammation has been suggested as a mechanism underlying the development of alcoholic hepatitis (AH). The activation of the complement system plays an important role in inflammation. Although it has been shown that ethanol-induced activation of the complement system contributes to the pathophysiology of ethanol-induced liver injury in mice, whether ethanol consumption activates the complement system in the human liver has not been investigated. Using antibodies against C1q, C3, and C5, the immunoreactivity of the complement system in patients with AH was examined by immunohistochemistry and quantified by morphometric image analysis. The immunoreactivity intensity of C1q, C3, and C5 in patients with AH was significantly higher than that seen in normal controls. Further, the gene expression of C1q, C3, and C5 was examined using real-time PCR. There were increases in the levels of C1q and C5, but not C3 mRNA in AH. Moreover, the immunoreactivity of C5a receptor (C5aR) also increased in AH. To explore the functional implication of the activation of the complement system in AH, we examined the colocalization of C5aR in Mallory-Denk bodies (MDBs) forming balloon hepatocytes. C5aR was focally overexpressed in the MDB forming cells. Collectively, our study suggests that alcohol consumption increases the activity of the complement system in the liver cells, which contributes to the inflammation-associated pathogenesis of AH.
Collapse
Affiliation(s)
- Hong Shen
- Department of Pathology, Harbor-UCLA Medical Center, Torrance, CA 90509, USA.
| | - Barbara A French
- LA BioMed at Harbor-UCLA Medical Center, Torrance, CA 90509, USA
| | - Hui Liu
- LA BioMed at Harbor-UCLA Medical Center, Torrance, CA 90509, USA
| | | | - Samuel W French
- LA BioMed at Harbor-UCLA Medical Center, Torrance, CA 90509, USA; Department of Pathology, Harbor-UCLA Medical Center, Torrance, CA 90509, USA
| |
Collapse
|
32
|
The complement system in human cardiometabolic disease. Mol Immunol 2014; 61:135-48. [PMID: 25017306 DOI: 10.1016/j.molimm.2014.06.031] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 06/18/2014] [Accepted: 06/23/2014] [Indexed: 02/07/2023]
Abstract
The complement system has been implicated in obesity, fatty liver, diabetes and cardiovascular disease (CVD). Complement factors are produced in adipose tissue and appear to be involved in adipose tissue metabolism and local inflammation. Thereby complement links adipose tissue inflammation to systemic metabolic derangements, such as low-grade inflammation, insulin resistance and dyslipidaemia. Furthermore, complement has been implicated in pathophysiological mechanisms of diet- and alcohol induced liver damage, hyperglycaemia, endothelial dysfunction, atherosclerosis and fibrinolysis. In this review, we summarize current evidence on the role of the complement system in several processes of human cardiometabolic disease. C3 is the central component in complement activation, and has most widely been studied in humans. C3 concentrations are associated with insulin resistance, liver dysfunction, risk of the metabolic syndrome, type 2 diabetes and CVD. C3 can be activated by the classical, the lectin and the alternative pathway of complement activation; and downstream activation of C3 activates the terminal pathway. Complement may also be activated via extrinsic proteases of the coagulation, fibrinolysis and the kinin systems. Studies on the different complement activation pathways in human cardiometabolic disease are limited, but available evidence suggests that they may have distinct roles in processes underlying cardiometabolic disease. The lectin pathway appeared beneficial in some studies on type 2 diabetes and CVD, while factors of the classical and the alternative pathway were related to unfavourable cardiometabolic traits. The terminal complement pathway was also implicated in insulin resistance and liver disease, and appears to have a prominent role in acute and advanced CVD. The available human data suggest a complex and potentially causal role for the complement system in human cardiometabolic disease. Further, preferably longitudinal studies are needed to disentangle which aspects of the complement system and complement activation affect the different processes in human cardiometabolic disease.
Collapse
|
33
|
Affiliation(s)
- T John Martin
- St. Vincent's Institute of Medical Research, and University of Melbourne Department of Medicine, Melbourne, Australia
| |
Collapse
|
34
|
Wlazlo N, van Greevenbroek MMJ, Ferreira I, Feskens EJM, van der Kallen CJH, Schalkwijk CG, Bravenboer B, Stehouwer CDA. Complement factor 3 is associated with insulin resistance and with incident type 2 diabetes over a 7-year follow-up period: the CODAM Study. Diabetes Care 2014; 37:1900-9. [PMID: 24760264 DOI: 10.2337/dc13-2804] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Immune dysregulation can affect insulin resistance (IR) and β-cell function and hence contribute to development of type 2 diabetes mellitus (T2DM). The complement system, as a regulator of immune and inflammatory homeostasis, may be a relevant contributor therein. However, longitudinal studies focusing on complement as a determinant of T2DM and IR are scarce. Therefore, we prospectively investigated the association of plasma complement factor 3 (C3) with (estimates of) IR in muscle, liver, and adipocytes, as well as with glucose tolerance, including incident T2DM. RESEARCH DESIGN AND METHODS Fasting C3, nonesterified fatty acids, glucose, and insulin (the latter two during oral glucose tolerance tests) were measured at baseline (n = 545) and after 7 years of follow-up (n = 394) in a prospective cohort study. RESULTS Over the 7-year period, C3 levels (per 0.1 g/L) were longitudinally associated with higher homeostasis model assessment of IR (HOMA2-IR; β = 15.2% [95% CI 12.9-17.6]), hepatic IR (β = 6.1% [95% CI 4.7-7.4]), adipocyte IR (β = 16.0% [95% CI 13.0-19.1]), fasting glucose (β = 1.8% [95% CI 1.2-2.4]), 2-h glucose (β = 5.2% [95% CI 3.7-6.7]), and area under the curve for glucose (β = 3.6% [95% CI 2.7-4.6]). In addition, greater changes in C3 (per 0.1 g/L) were associated with greater changes in HOMA2-IR (β = 0.08 [95% CI 0.02-0.15]) and greater changes in hepatic IR (β = 0.87 [95% CI 0.12-1.61]) over 7 years, but not glucose tolerance. Moreover, baseline C3 was associated with the 7-year incidence of T2DM (odds ratio 1.5 [95% CI 1.1-2.0]). CONCLUSIONS Changes in C3 were associated with changes in several measures of IR and may reflect progression of metabolic dysregulation, which eventually leads to abnormalities in glucose tolerance and T2DM.
Collapse
Affiliation(s)
- Nick Wlazlo
- Department of Internal Medicine, Catharina Hospital, Eindhoven, the NetherlandsCARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the NetherlandsDepartment of Internal Medicine/Laboratory for Metabolism and Vascular Medicine, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Marleen M J van Greevenbroek
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the NetherlandsDepartment of Internal Medicine/Laboratory for Metabolism and Vascular Medicine, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Isabel Ferreira
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the NetherlandsDepartment of Internal Medicine/Laboratory for Metabolism and Vascular Medicine, Maastricht University Medical Centre, Maastricht, the NetherlandsDepartment of Clinical Epidemiology and Medical Technology Assessment, Maastricht University Medical Centre, Maastricht, the NetherlandsCAPHRI School for Public Health and Primary Care, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Edith J M Feskens
- Division of Human Nutrition, Section of Nutrition and Epidemiology, Wageningen University, Wageningen, the Netherlands
| | - Carla J H van der Kallen
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the NetherlandsDepartment of Internal Medicine/Laboratory for Metabolism and Vascular Medicine, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Casper G Schalkwijk
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the NetherlandsDepartment of Internal Medicine/Laboratory for Metabolism and Vascular Medicine, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Bert Bravenboer
- Department of Internal Medicine, Catharina Hospital, Eindhoven, the Netherlands
| | - Coen D A Stehouwer
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the NetherlandsDepartment of Internal Medicine/Laboratory for Metabolism and Vascular Medicine, Maastricht University Medical Centre, Maastricht, the Netherlands
| |
Collapse
|
35
|
Chiu YH, Tsai JJ, Lin SL, Lin MY. Lactobacillus casei MYL01 modulates the proinflammatory state induced by ethanol in an in vitro model. J Dairy Sci 2014; 97:2009-16. [PMID: 24485689 DOI: 10.3168/jds.2013-7514] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Accepted: 12/15/2013] [Indexed: 12/12/2022]
Abstract
Accumulating studies have suggested that probiotics have beneficial effects on liver injury but the underlying mechanism has remained unclear. Toll-like receptors (TLR) expressed on immune cells and hepatocytes recognize bacterial components that are translocated from the gut into the portal vein. To date, it has been demonstrated that ethanol alone, without microbial components, is able to activate TLR, leading to promotion of proinflammatory cytokine production. Because the enhanced signaling of TLR triggers persistent inflammation, we hypothesized that development of hepatocyte TLR tolerance to repetitive stimulation plays an important role in protecting the liver from hypergeneration of proinflammatory cytokines. In this study, we showed that Lactobacillus casei MYL01 modulated the proinflammatory state induced by ethanol and investigated in detail the mechanism underlying the observation that L. casei MYL01 gave rise to TLR tolerance toward ethanol stimulation. The effects of L. casei MYL01 in the attenuation of ethanol-induced liver damage were due to enhancement of IL-10 production, which limited the proinflammatory process. Furthermore, better defense of hepatocytes against ethanol challenge by treatment of L. casei MYL01 was attributed to previous induction of toll interacting protein (TOLLIP) and suppressor of cytokine signaling (SOCS)1 and SOCS3 expression via activation of TLR1, TLR2, TLR6, and TLR9, an action that cross-regulated ethanol-TLR4-nuclear factor κB signal transduction events. This finding might help establish an in vitro platform for selecting hepatoprotective probiotic strains in terms of ethanol-induced liver damage.
Collapse
Affiliation(s)
- Yi-Heng Chiu
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan, Republic of China
| | - Jaw-Ji Tsai
- Department of Internal Medicine, Veterans General Hospital International Medical Service Centre, Taichung 40705, Republic of China
| | - Shiao-Lin Lin
- Department of Neurology, Chong Guang Hospital, Miaoli County 35159, Taiwan, Republic of China
| | - Meei-Yn Lin
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan, Republic of China.
| |
Collapse
|
36
|
Rezvani R, Smith J, Lapointe M, Marceau P, Tchernof A, Cianflone K. Complement receptors C5aR and C5L2 are associated with metabolic profile, sex hormones, and liver enzymes in obese women pre- and postbariatric surgery. J Obes 2014; 2014:383102. [PMID: 24796007 PMCID: PMC3984800 DOI: 10.1155/2014/383102] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE Obesity is associated with metabolic dysfunction with sex differences and chronic, low-grade inflammation.We proposed that hepatic expression of immune complement C3 related receptors (C3aR, C5aR, and C5L2) would be associated with pre- or postmenopausal status and metabolic profile in severely obese women. We hypothesized that C5L2/C5aR ratio, potentially influencing the ASP/C5L2 metabolic versus C5a/C5aR immune response, would predict metabolic profiles after weight loss surgery. MATERIALS AND METHODS Fasting plasma (hormone, lipid, and enzyme analysis) and liver biopsies (RT-PCR gene expression) were obtained from 91 women during surgery. RESULTS Hepatic C5L2 mRNA expression was elevated in pre- versus postmenopausal women (P < 0.01) and correlated positively with circulating estradiol, estrone, ApoB, ApoA1, ApoA1/B, waist circumference, age, and LDL-C (all P < 0.05).While plasma ASP was lower in pre- versus postmenopausal women (P < 0.01), the hepatic C5L2/C5aR mRNA ratio was increased (P < 0.001) and correlated positively with estrone (P < 0.01) and estradiol (P < 0.001) and negatively with circulating ApoB and liver enzymes ALT, AST, and GGT (all P < 0.05). Over 12 months postoperatively, liver enzymes in low C5L2/C5aR mRNA ratio group remained higher (ALP and ALT, P < 0.05, AST and GGT, P < 0.001 2-way-ANOVA). CONCLUSION C5L2-C5aR association with other mediators including estrogens may contribute to hepatic metabolic and inflammatory function.
Collapse
Affiliation(s)
- Reza Rezvani
- Centre de Recherche de l'Institut Universitaire de Cardiologie & Pneumologie de Québec, Université Laval, Y4332, 2725 Chemin Ste-Foy, Québec, QC, Canada G1V 4G5
| | - Jessica Smith
- Centre de Recherche de l'Institut Universitaire de Cardiologie & Pneumologie de Québec, Université Laval, Y4332, 2725 Chemin Ste-Foy, Québec, QC, Canada G1V 4G5
| | - Marc Lapointe
- Centre de Recherche de l'Institut Universitaire de Cardiologie & Pneumologie de Québec, Université Laval, Y4332, 2725 Chemin Ste-Foy, Québec, QC, Canada G1V 4G5
| | - Picard Marceau
- Centre de Recherche de l'Institut Universitaire de Cardiologie & Pneumologie de Québec, Université Laval, Y4332, 2725 Chemin Ste-Foy, Québec, QC, Canada G1V 4G5
| | - Andre Tchernof
- Centre de Recherche de l'Institut Universitaire de Cardiologie & Pneumologie de Québec, Université Laval, Y4332, 2725 Chemin Ste-Foy, Québec, QC, Canada G1V 4G5
| | - Katherine Cianflone
- Centre de Recherche de l'Institut Universitaire de Cardiologie & Pneumologie de Québec, Université Laval, Y4332, 2725 Chemin Ste-Foy, Québec, QC, Canada G1V 4G5
- *Katherine Cianflone:
| |
Collapse
|