1
|
Conen F, Einbock A. Release of ice-nucleating particles from leaves during rainfall. THE SCIENCE OF NATURE - NATURWISSENSCHAFTEN 2025; 112:29. [PMID: 40131494 PMCID: PMC11937213 DOI: 10.1007/s00114-025-01980-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/13/2025] [Accepted: 03/13/2025] [Indexed: 03/27/2025]
Abstract
Plant surfaces are a major source of particles able to initiate ice formation in clouds little below 0 °C. Rainfall promotes the release of such ice-nucleating particles (INPs) from vegetation. However, the pattern of their release throughout rain events remains unexplored. Here, we investigate at a high temporal resolution INP dynamics in rain impacting and running off single leaflets of Juglans regia during two rain events and relate the results to total INP inventories on the leaflets. Throughout both events, leaf runoff was distinctly enriched in INPs as compared with rainwater. A large fraction of INPs washed off during rainfall was released already at the beginning of the events. Except for the highest temperature interval, less than 40% of detachable INPs from leaf surfaces had been removed after the rain events. We hypothesise that surfactant excretion of INP-producing bacteria shapes the observed pattern of release.
Collapse
Affiliation(s)
- Franz Conen
- Department of Environmental Sciences, University of Basel, 4056, Basel, Switzerland.
| | - Annika Einbock
- Department of Environmental Sciences, University of Basel, 4056, Basel, Switzerland
| |
Collapse
|
2
|
Tarn MD, Shaw KJ, Foster PB, West JS, Johnston ID, McCluskey DK, Peyman SA, Murray BJ. Microfluidics for the biological analysis of atmospheric ice-nucleating particles: Perspectives and challenges. BIOMICROFLUIDICS 2025; 19:011502. [PMID: 40041008 PMCID: PMC11878220 DOI: 10.1063/5.0236911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/14/2024] [Indexed: 03/06/2025]
Abstract
Atmospheric ice-nucleating particles (INPs) make up a vanishingly small proportion of atmospheric aerosol but are key to triggering the freezing of supercooled liquid water droplets, altering the lifetime and radiative properties of clouds and having a substantial impact on weather and climate. However, INPs are notoriously difficult to model due to a lack of information on their global sources, sinks, concentrations, and activity, necessitating the development of new instrumentation for quantifying and characterizing INPs in a rapid and automated manner. Microfluidic technology has been increasingly adopted by ice nucleation research groups in recent years as a means of performing droplet freezing analysis of INPs, enabling the measurement of hundreds or thousands of droplets per experiment at temperatures down to the homogeneous freezing of water. The potential for microfluidics extends far beyond this, with an entire toolbox of bioanalytical separation and detection techniques developed over 30 years for medical applications. Such methods could easily be adapted to biological and biogenic INP analysis to revolutionize the field, for example, in the identification and quantification of ice-nucleating bacteria and fungi. Combined with miniaturized sampling techniques, we can envisage the development and deployment of microfluidic sample-to-answer platforms for automated, user-friendly sampling and analysis of biological INPs in the field that would enable a greater understanding of their global and seasonal activity. Here, we review the various components that such a platform would incorporate to highlight the feasibility, and the challenges, of such an endeavor, from sampling and droplet freezing assays to separations and bioanalysis.
Collapse
Affiliation(s)
- Mark D. Tarn
- School of Earth and Environment, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Kirsty J. Shaw
- Faculty of Science and Engineering, Manchester Metropolitan University, Manchester M1 5GD, United Kingdom
| | | | - Jon S. West
- Protecting Crops and Environment Department, Rothamsted Research, Harpenden AL5 2JQ, United Kingdom
| | - Ian D. Johnston
- School of Physics, Engineering and Computer Science, University of Hertfordshire, College Lane, Hatfield AL10 9AB, United Kingdom
| | - Daniel K. McCluskey
- School of Physics, Engineering and Computer Science, University of Hertfordshire, College Lane, Hatfield AL10 9AB, United Kingdom
| | | | - Benjamin J. Murray
- School of Earth and Environment, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
3
|
Jang J, Park J, Hwang CY, Gim Y, Park KT, Yoon YJ, Seo M, Lee BY. Selective transmission of airborne bacterial communities from the ocean to the atmosphere over the Northern Pacific Ocean. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177462. [PMID: 39528211 DOI: 10.1016/j.scitotenv.2024.177462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/24/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
This study simultaneously measured the taxonomic diversity of bacterial communities in both seawater and PM2.5 aerosol samples collected from the Northern Pacific Ocean during a cruise covering 7724 km between 37°N 126°E and 58°N 179°E. The relative abundance of Proteobacteria, Cyanobacteria, and Firmicutes were found to be more prevalent in aerosol samples (39 ± 16 %, 5.1 ± 1.9 %, and 3.2 ± 1.7 %, respectively) than in seawater samples (26 ± 9 %, 3.8 ± 1.7 %, and 0.02 ± 0.09 %, respectively). The preferential aerosolization of bacterial communities such as Proteobacteria and Firmicutes was likely to be accompanied by a terrestrial origin and high hydrophobicity. Cyanobacteria could undergo increased aerosolization, possibly because of their smaller size in the significantly higher salinity open ocean (32.8 ± 0.14 PSU) compared to those in lower salinity coastal areas (31.3 ± 1.4 PSU). The results of this study indicated that bacterial properties substantially affect their transfer from the ocean to the atmosphere, possibly influencing climate change and public health.
Collapse
Affiliation(s)
- Jiyi Jang
- Division of Ocean and Atmospheric Sciences, Korea Polar Research Institute (KOPRI), Incheon, 21990, South Korea
| | - Jiyeon Park
- Division of Ocean and Atmospheric Sciences, Korea Polar Research Institute (KOPRI), Incheon, 21990, South Korea.
| | - Chung Yeon Hwang
- School of Earth and Environmental Sciences and Research Institute of Oceanography, Seoul National University, Seoul 08826, South Korea
| | - Yeontae Gim
- Division of Ocean and Atmospheric Sciences, Korea Polar Research Institute (KOPRI), Incheon, 21990, South Korea
| | - Ki-Tae Park
- Department of Environmental Sciences and Biotechnology, Hallym University, Gangwon-do 24252, South Korea
| | - Young Jun Yoon
- Division of Ocean and Atmospheric Sciences, Korea Polar Research Institute (KOPRI), Incheon, 21990, South Korea
| | - Minju Seo
- Division of Ocean and Atmospheric Sciences, Korea Polar Research Institute (KOPRI), Incheon, 21990, South Korea; University of Science and Technology (UST), Daejeon 34113, South Korea
| | - Bang Yong Lee
- Division of Ocean and Atmospheric Sciences, Korea Polar Research Institute (KOPRI), Incheon, 21990, South Korea
| |
Collapse
|
4
|
Renzer G, Eufemio RJ, Schwidetzky R, Fröhlich-Nowoisky J, Bonn M, Meister K. Polyol-Induced 100-Fold Enhancement of Bacterial Ice Nucleation Efficiency. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2024; 128:21604-21608. [PMID: 39720333 PMCID: PMC11664577 DOI: 10.1021/acs.jpcc.4c07422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/26/2024]
Abstract
Ice-nucleating proteins (INPs) from bacteria like Pseudomonas syringae are among the most effective ice nucleators known. However, large INP aggregates with maximum ice nucleation activity (at approximately -2 °C) typically account for less than 1% of the overall ice nucleation activity in bacterial samples. This study demonstrates that polyols significantly enhance the assembly of INPs into large aggregates, dramatically improving bacterial ice nucleation efficiency. Simple compounds like polyvinyl alcohol increased the abundance of large INP aggregates by a factor of 100. This remarkable boost in ice nucleation efficiency is attributed to the stabilization of INP aggregates through membrane-polyol interactions that stabilize INP interactions and reduce structural fluctuations. The ability to regulate the abundance of large INP aggregates in bacterial ice nucleators enables fine-tuning ice nucleation processes at much lower concentrations for specific biomedical and technological purposes.
Collapse
Affiliation(s)
- Galit Renzer
- Department
for Molecular Spectroscopy, Max Planck Institute
for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Rosemary J. Eufemio
- Department
of Chemistry and Biochemistry, Boise State
University, 2133 Cesar Chavez, Boise, 83725 Idaho, United States
| | - Ralph Schwidetzky
- Department
for Molecular Spectroscopy, Max Planck Institute
for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Janine Fröhlich-Nowoisky
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Hahn-Meitner-Weg 1, 55128 Mainz, Germany
| | - Mischa Bonn
- Department
for Molecular Spectroscopy, Max Planck Institute
for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Konrad Meister
- Department
for Molecular Spectroscopy, Max Planck Institute
for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Department
of Chemistry and Biochemistry, Boise State
University, 2133 Cesar Chavez, Boise, 83725 Idaho, United States
| |
Collapse
|
5
|
Enríquez-de-Salamanca Á. Environmental and social impacts of carbon sequestration. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2024; 20:1812-1838. [PMID: 38651985 DOI: 10.1002/ieam.4925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/25/2024]
Abstract
Climate change requires major mitigation efforts, mainly emission reduction. Carbon sequestration and avoided deforestation are complementary mitigation strategies that can promote nature conservation and local development but may also have undesirable impacts. We reviewed 246 articles citing impacts, risks, or concerns from carbon projects, and 78 others related to this topic. Most of the impacts cited focus on biodiversity, especially in afforestation projects, and on social effects related to avoided deforestation projects. Concerns were raised about project effectiveness, the permanence of carbon stored, and leakage. Recommendations include accounting for uncertainty, assessing both mitigation and contribution to climate change, defining permanence, creating contingency plans, promoting local projects, proposing alternative livelihoods, ensuring a fair distribution of benefits, combining timber production and carbon sequestration, ensuring sustainable development and minimizing leakage. A holistic approach that combines carbon sequestration, nature conservation, and poverty alleviation must be applied. The potential occurrence of negative impacts does not invalidate carbon projects but makes it advisable to conduct proper environmental impact assessments, considering direct and indirect impacts, minimizing the negative effects while maximizing the positive ones, and weighing the trade-offs between them to guide decision-making. Public participation and transparency are essential. Integr Environ Assess Manag 2024;20:1812-1838. © 2024 SETAC.
Collapse
Affiliation(s)
- Álvaro Enríquez-de-Salamanca
- Department of Biodiversity, Ecology and Evolution, Faculty of Biological Sciences, Universidad Complutense de Madrid, Madrid, Spain
- Draba Ingeniería y Consultoría Medioambiental, San Lorenzo de El Escorial, Spain
| |
Collapse
|
6
|
Beattie GA, Bayliss KL, Jacobson DA, Broglie R, Burkett-Cadena M, Sessitsch A, Kankanala P, Stein J, Eversole K, Lichens-Park A. From Microbes to Microbiomes: Applications for Plant Health and Sustainable Agriculture. PHYTOPATHOLOGY 2024; 114:1742-1752. [PMID: 38776137 DOI: 10.1094/phyto-02-24-0054-kc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Plant-microbe interaction research has had a transformative trajectory, from individual microbial isolate studies to comprehensive analyses of plant microbiomes within the broader phytobiome framework. Acknowledging the indispensable role of plant microbiomes in shaping plant health, agriculture, and ecosystem resilience, we underscore the urgent need for sustainable crop production strategies in the face of contemporary challenges. We discuss how the synergies between advancements in 'omics technologies and artificial intelligence can help advance the profound potential of plant microbiomes. Furthermore, we propose a multifaceted approach encompassing translational considerations, transdisciplinary research initiatives, public-private partnerships, regulatory policy development, and pragmatic expectations for the practical application of plant microbiome knowledge across diverse agricultural landscapes. We advocate for strategic collaboration and intentional transdisciplinary efforts to unlock the benefits offered by plant microbiomes and address pressing global issues in food security. By emphasizing a nuanced understanding of plant microbiome complexities and fostering realistic expectations, we encourage the scientific community to navigate the transformative journey from discoveries in the laboratory to field applications. As companies specializing in agricultural microbes and microbiomes undergo shifts, we highlight the necessity of understanding how to approach sustainable agriculture with site-specific management solutions. While cautioning against overpromising, we underscore the excitement of exploring the many impacts of microbiome-plant interactions. We emphasize the importance of collaborative endeavors with societal partners to accelerate our collective capacity to harness the diverse and yet-to-be-discovered beneficial activities of plant microbiomes.
Collapse
Affiliation(s)
- Gwyn A Beattie
- International Alliance for Phytobiomes Research, Eau Claire, WI 54701, U.S.A
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA 50014, U.S.A
| | - Kirsty L Bayliss
- Food Futures Institute, Murdoch University, Murdoch, Western Australia 6150, Australia
| | - Daniel A Jacobson
- Oak Ridge National Laboratory, Biosciences Division, Oak Ridge, TN 37830, U.S.A
| | - Richard Broglie
- International Alliance for Phytobiomes Research, Eau Claire, WI 54701, U.S.A
| | | | - Angela Sessitsch
- International Alliance for Phytobiomes Research, Eau Claire, WI 54701, U.S.A
- Bioresources Unit, AIT Austrian Institute of Technology, 3430 Tulln, Austria
| | | | - Joshua Stein
- International Alliance for Phytobiomes Research, Eau Claire, WI 54701, U.S.A
- Eversole Associates, Arlington, MA 02476, U.S.A
| | - Kellye Eversole
- International Alliance for Phytobiomes Research, Eau Claire, WI 54701, U.S.A
- Eversole Associates, Arlington, MA 02476, U.S.A
| | - Ann Lichens-Park
- International Alliance for Phytobiomes Research, Eau Claire, WI 54701, U.S.A
| |
Collapse
|
7
|
Garrido Zornoza M, Mitarai N, Haerter JO. Stochastic microbial dispersal drives local extinction and global diversity. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231301. [PMID: 39076806 PMCID: PMC11285425 DOI: 10.1098/rsos.231301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/17/2024] [Accepted: 02/20/2024] [Indexed: 07/31/2024]
Abstract
Airborne dispersal of microorganisms is a ubiquitous migration mechanism, allowing otherwise independent microbial habitats to interact via biomass exchange. Here, we study the ecological implications of such advective transport using a simple spatial model for bacteria-phage interactions: the population dynamics at each habitat are described by classical Lotka-Volterra equations; however, species populations are taken as integer, that is, a discrete, positive extinction threshold exists. Spatially, species can spread from habitat to habitat by stochastic airborne dispersal. In any given habitat, the spatial biomass exchange causes incessant population density oscillations, which, as a consequence, occasionally drive species to extinction. The balance between local extinction events and dispersal-induced migration allows species to persist globally, even though diversity would be depleted by competitive exclusion, locally. The disruptive effect of biomass dispersal thus acts to increase microbial diversity, allowing system-scale coexistence of multiple species that would not coexist locally.
Collapse
Affiliation(s)
| | - Namiko Mitarai
- The Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Jan O. Haerter
- The Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark
- Constructor University, Bremen, Germany
- Leibniz Centre for Tropical Marine Research, Bremen, Germany
- Department of Physics and Astronomy, University of Potsdam, Potsdam, Germany
| |
Collapse
|
8
|
Mohaimin AZ, Krishnamoorthy S, Shivanand P. A critical review on bioaerosols-dispersal of crop pathogenic microorganisms and their impact on crop yield. Braz J Microbiol 2024; 55:587-628. [PMID: 38001398 PMCID: PMC10920616 DOI: 10.1007/s42770-023-01179-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Bioaerosols are potential sources of pathogenic microorganisms that can cause devastating outbreaks of global crop diseases. Various microorganisms, insects and viroids are known to cause severe crop diseases impeding global agro-economy. Such losses threaten global food security, as it is estimated that almost 821 million people are underfed due to global crisis in food production. It is estimated that global population would reach 10 billion by 2050. Hence, it is imperative to substantially increase global food production to about 60% more than the existing levels. To meet the increasing demand, it is essential to control crop diseases and increase yield. Better understanding of the dispersive nature of bioaerosols, seasonal variations, regional diversity and load would enable in formulating improved strategies to control disease severity, onset and spread. Further, insights on regional and global bioaerosol composition and dissemination would help in predicting and preventing endemic and epidemic outbreaks of crop diseases. Advanced knowledge of the factors influencing disease onset and progress, mechanism of pathogen attachment and penetration, dispersal of pathogens, life cycle and the mode of infection, aid the development and implementation of species-specific and region-specific preventive strategies to control crop diseases. Intriguingly, development of R gene-mediated resistant varieties has shown promising results in controlling crop diseases. Forthcoming studies on the development of an appropriately stacked R gene with a wide range of resistance to crop diseases would enable proper management and yield. The article reviews various aspects of pathogenic bioaerosols, pathogen invasion and infestation, crop diseases and yield.
Collapse
Affiliation(s)
- Abdul Zul'Adly Mohaimin
- Environmental and Life Sciences Programme, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Bandar Seri Begawan, BE1410, Brunei Darussalam
| | - Sarayu Krishnamoorthy
- Environmental and Life Sciences Programme, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Bandar Seri Begawan, BE1410, Brunei Darussalam
| | - Pooja Shivanand
- Environmental and Life Sciences Programme, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Bandar Seri Begawan, BE1410, Brunei Darussalam.
| |
Collapse
|
9
|
Huang Z, Yu X, Liu Q, Maki T, Alam K, Wang Y, Xue F, Tang S, Du P, Dong Q, Wang D, Huang J. Bioaerosols in the atmosphere: A comprehensive review on detection methods, concentration and influencing factors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168818. [PMID: 38036132 DOI: 10.1016/j.scitotenv.2023.168818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 12/02/2023]
Abstract
In the past few decades, especially since the outbreak of the coronavirus disease (COVID-19), the effects of atmospheric bioaerosols on human health, the environment, and climate have received great attention. To evaluate the impacts of bioaerosols quantitatively, it is crucial to determine the types of bioaerosols in the atmosphere and their spatial-temporal distribution. We provide a concise summary of the online and offline observation strategies employed by the global research community to sample and analyze atmospheric bioaerosols. In addition, the quantitative distribution of bioaerosols is described by considering the atmospheric bioaerosols concentrations at various time scales (daily and seasonal changes, for example), under various weather, and different underlying surfaces. Finally, a comprehensive summary of the reasons for the spatiotemporal distribution of bioaerosols is discussed, including differences in emission sources, the impact process of meteorological factors and environmental factors. This review of information on the latest research progress contributes to the emergence of further observation strategies that determine the quantitative dynamics of public health and ecological effects of bioaerosols.
Collapse
Affiliation(s)
- Zhongwei Huang
- Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China; Collaborative Innovation Center for Western Ecological Safety, Lanzhou University, Lanzhou 730000, China
| | - Xinrong Yu
- Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
| | - Qiantao Liu
- Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
| | - Teruya Maki
- Department of Life Science, Faculty of Science and Engineering, Kindai University, Higashiosaka, Osaka, Japan
| | - Khan Alam
- Department of Physics, University of Peshawar, Peshawar 25120, Pakistan
| | - Yongkai Wang
- Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
| | - Fanli Xue
- Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
| | - Shihan Tang
- Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
| | - Pengyue Du
- Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
| | - Qing Dong
- Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
| | - Danfeng Wang
- Collaborative Innovation Center for Western Ecological Safety, Lanzhou University, Lanzhou 730000, China
| | - Jianping Huang
- Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China; Collaborative Innovation Center for Western Ecological Safety, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
10
|
Ellison D, Pokorný J, Wild M. Even cooler insights: On the power of forests to (water the Earth and) cool the planet. GLOBAL CHANGE BIOLOGY 2024; 30:e17195. [PMID: 38389196 DOI: 10.1111/gcb.17195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/31/2023] [Accepted: 01/07/2024] [Indexed: 02/24/2024]
Abstract
Scientific innovation is overturning conventional paradigms of forest, water, and energy cycle interactions. This has implications for our understanding of the principal causal pathways by which tree, forest, and vegetation cover (TFVC) influence local and global warming/cooling. Many identify surface albedo and carbon sequestration as the principal causal pathways by which TFVC affects global warming/cooling. Moving toward the outer latitudes, in particular, where snow cover is more important, surface albedo effects are perceived to overpower carbon sequestration. By raising surface albedo, deforestation is thus predicted to lead to surface cooling, while increasing forest cover is assumed to result in warming. Observational data, however, generally support the opposite conclusion, suggesting surface albedo is poorly understood. Most accept that surface temperatures are influenced by the interplay of surface albedo, incoming shortwave (SW) radiation, and the partitioning of the remaining, post-albedo, SW radiation into latent and sensible heat. However, the extent to which the avoidance of sensible heat formation is first and foremost mediated by the presence (absence) of water and TFVC is not well understood. TFVC both mediates the availability of water on the land surface and drives the potential for latent heat production (evapotranspiration, ET). While latent heat is more directly linked to local than global cooling/warming, it is driven by photosynthesis and carbon sequestration and powers additional cloud formation and top-of-cloud reflectivity, both of which drive global cooling. TFVC loss reduces water storage, precipitation recycling, and downwind rainfall potential, thus driving the reduction of both ET (latent heat) and cloud formation. By reducing latent heat, cloud formation, and precipitation, deforestation thus powers warming (sensible heat formation), which further diminishes TFVC growth (carbon sequestration). Large-scale tree and forest restoration could, therefore, contribute significantly to both global and surface temperature cooling through the principal causal pathways of carbon sequestration and cloud formation.
Collapse
Affiliation(s)
- David Ellison
- Natural Resource Policy Group (NARP), Environmental Systems Science, ETH Zurich, Zurich, Switzerland
- Land Systems and Sustainable Land Management Unit (LS-SLM), Institute of Geography, University of Bern, Bern, Switzerland
| | | | - Martin Wild
- Institute for Atmospheric and Climate Science, Environmental Systems Science, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
11
|
Saibu S, Uhanie Perera I, Suzuki S, Rodó X, Fujiyoshi S, Maruyama F. Resistomes in freshwater bioaerosols and their impact on drinking and recreational water safety: A perspective. ENVIRONMENT INTERNATIONAL 2024; 183:108377. [PMID: 38103344 DOI: 10.1016/j.envint.2023.108377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/07/2023] [Accepted: 12/07/2023] [Indexed: 12/19/2023]
Abstract
Antibiotic resistance genes (ARGs) are widespread environmental pollutants of biological origin that pose a significant threat to human, animal, and plant health, as well as to ecosystems. ARGs are found in soil, water, air, and waste, and several pathways for global dissemination in the environment have been described. However, studies on airborne ARG transport through atmospheric particles are limited. The ARGs in microorganisms inhabiting an environment are referred to as the "resistome". A global search was conducted of air-resistome studies by retrieving bioaerosol ARG-related papers published in the last 30 years from PubMed. We found that there is no dedicated methodology for isolating ARGs in bioaerosols; instead, conventional methods for microbial culture and metagenomic analysis are used in combination with standard aerosol sampling techniques. There is a dearth of information on the bioaerosol resistomes of freshwater environments and their impact on freshwater sources used for drinking and recreational activities. More studies of aerobiome freshwater environments are needed to ensure the safe use of water and sanitation. In this review we outline and synthesize the few studies that address the freshwater air microbiome (from tap water, bathroom showers, rivers, lakes, and swimming pools) and their resistomes, as well as the likely impacts on drinking and recreational waters. We also discuss current knowledge gaps for the freshwater airborne resistome. This review will stimulate new investigations of the atmospheric microbiome, particularly in areas where both air and water quality are of public health concern.
Collapse
Affiliation(s)
- Salametu Saibu
- Department of Microbiology, Lagos State University of Ojo, Lagos, Nigeria
| | - Ishara Uhanie Perera
- Section of Microbial Genomics and Ecology, Planetary Health and Innovation Science Center (PHIS), The IDEC Institute, Hiroshima University, Japan
| | - Satoru Suzuki
- Graduate School of Science and Engineering, Center for Marine Environmental Studies, Ehime University, Japan
| | - Xavier Rodó
- ICREA and CLIMA Program, Barcelona Institute for Global Health (-ISGlobal), Barcelona, Spain
| | - So Fujiyoshi
- Section of Microbial Genomics and Ecology, Planetary Health and Innovation Science Center (PHIS), The IDEC Institute, Hiroshima University, Japan
| | - Fumito Maruyama
- Section of Microbial Genomics and Ecology, Planetary Health and Innovation Science Center (PHIS), The IDEC Institute, Hiroshima University, Japan.
| |
Collapse
|
12
|
Noirmain F, Baray JL, Deguillaume L, Van Baelen J, Latour D. Exploring the size-dependent dynamics of photosynthetic cells in rainwater: The influence of atmospheric variables and rain characteristics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167746. [PMID: 37827319 DOI: 10.1016/j.scitotenv.2023.167746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/09/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
The presence of microalgae in the atmosphere raises health and environmental concerns. Despite recent scientific advances, our knowledge of the origins and dynamics of photosynthetic cells in relation to atmospheric processes is limited due to a lack of empirical data. To address this gap, we conducted a one-year survey, collecting and analyzing rainwater samples. This study proposes to investigate the temporal dynamics of photosynthetic cells based on their size in combination with a unique dataset of variables of interest: type of rain and its characteristics, local meteorology, concentrations of inorganic chemical species, and long-range air mass transport. The analysis of the biochemical composition of rainwater, along with its correlation with the origin of air masses using ions as tracers, provides evidence of the long-range transport of photosynthetic cells. Additionally, our study reveals distinct removal mechanisms from the atmosphere for photosynthetic cells depending on their size. Our results suggest that convective events with high-intensity rainfall led to the efficient removal of medium-sized photosynthetic cells (4-15 μm) from the atmosphere. However, removal mechanisms for small (<4 μm) and large-sized cells (>15 μm) are not influenced by microphysical rainfall characteristics and seem to be governed by different atmospheric processes: dry deposition is proposed to be a significant mechanism for the removal of large-sized photosynthetic cells, while small-sized cells detected in rain are correlated with the horizontal wind speed and duration of rainfall, particularly during stratiform events. This implies that the removal of photosynthetic cells from the atmosphere is strongly influenced by environmental variables, which are expected to vary in response to global change. Therefore, it is crucial to enhance the monitoring of photosynthetic cells in relation to atmospheric processes and investigate the potential impact of the dissemination of genetic material from distant sources on recipient ecosystems.
Collapse
Affiliation(s)
- Fanny Noirmain
- Université Clermont Auvergne, CNRS, Laboratoire Microorganismes: Genome, Environnement (LMGE), UMR6023, Clermont-Ferrand, France.
| | - Jean-Luc Baray
- Université Clermont Auvergne, CNRS, Laboratoire de Météorologie Physique (LaMP), UMR6016, Clermont-Ferrand, France; Université Clermont Auvergne, CNRS, Observatoire de Physique du Globe de Clermont Ferrand (OPGC), UAR833, Clermont-Ferrand, France
| | - Laurent Deguillaume
- Université Clermont Auvergne, CNRS, Laboratoire de Météorologie Physique (LaMP), UMR6016, Clermont-Ferrand, France; Université Clermont Auvergne, CNRS, Observatoire de Physique du Globe de Clermont Ferrand (OPGC), UAR833, Clermont-Ferrand, France
| | - Joël Van Baelen
- Université de La Réunion, CNRS, Météo-France, Laboratoire de l'Atmosphère et des Cyclones (LACy), UMR8105, St Denis de la Réunion, France
| | - Delphine Latour
- Université Clermont Auvergne, CNRS, Laboratoire Microorganismes: Genome, Environnement (LMGE), UMR6023, Clermont-Ferrand, France
| |
Collapse
|
13
|
Hanlon R, Jimenez-Sanchez C, Benson J, Aho K, Morris C, Seifried TM, Baloh P, Grothe H, Schmale D. Diversity and ice nucleation activity of Pseudomonas syringae in drone-based water samples from eight lakes in Austria. PeerJ 2023; 11:e16390. [PMID: 38047025 PMCID: PMC10691352 DOI: 10.7717/peerj.16390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 10/11/2023] [Indexed: 12/05/2023] Open
Abstract
Bacteria from the Pseudomonas syringae complex (comprised of at least 15 recognized species and more than 60 different pathovars of P. syringae sensu stricto) have been cultured from clouds, rain, snow, streams, rivers, and lakes. Some strains of P. syringae express an ice nucleation protein (hereafter referred to as ice+) that catalyzes the heterogeneous freezing of water. Though P. syringae has been sampled intensively from freshwater sources in the U.S. and France, little is known about the genetic diversity and ice nucleation activity of P. syringae in other parts of the world. We investigated the haplotype diversity and ice nucleation activity at -8 °C (ice+) of strains of P. syringae from water samples collected with drones in eight freshwater lakes in Austria. A phylogenetic analysis of citrate synthase (cts) sequences from 271 strains of bacteria isolated from a semi-selective medium for Pseudomonas revealed that 69% (188/271) belonged to the P. syringae complex and represented 32 haplotypes in phylogroups 1, 2, 7, 9, 10, 13, 14 and 15. Strains within the P. syringae complex were identified in all eight lakes, and seven lakes contained ice+ strains. Partial 16S rDNA sequences were analyzed from a total of 492 pure cultures of bacteria isolated from non-selective medium. Nearly half (43.5%; 214/492) were associated with the genus Pseudomonas. Five of the lakes (ALT, GRU, GOS, GOL, and WOR) were all distinguished by high levels of Pseudomanas (p ≤ 0.001). HIN, the highest elevation lake, had the highest percentage of ice+ strains. Our work highlights the potential for uncovering new haplotypes of P. syringae in aquatic habitats, and the use of robotic technologies to sample and characterize microbial life in remote settings.
Collapse
Affiliation(s)
- Regina Hanlon
- School of Plant and Environmental Sciences, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, Virginia, United States
| | - Celia Jimenez-Sanchez
- School of Plant and Environmental Sciences, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, Virginia, United States
| | - James Benson
- School of Plant and Environmental Sciences, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, Virginia, United States
| | - Ken Aho
- Department of Biological Sciences, Idaho State University, Pocatello, Idaho, United States
| | - Cindy Morris
- Institut National de la Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Montfavet, France
| | - Teresa M. Seifried
- Faculty of Technical Chemistry, TU Wien, Institute of Materials Chemistry, Vienna, Austria
| | - Philipp Baloh
- Faculty of Technical Chemistry, TU Wien, Institute of Materials Chemistry, Vienna, Austria
| | - Hinrich Grothe
- Faculty of Technical Chemistry, TU Wien, Institute of Materials Chemistry, Vienna, Austria
| | - David Schmale
- School of Plant and Environmental Sciences, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, Virginia, United States
| |
Collapse
|
14
|
Aich R, Pal P, Chakraborty S, Jana B. Preferential Ordering and Organization of Hydration Water Favor Nucleation of Ice by Ice-Nucleating Proteins over Antifreeze Proteins. J Phys Chem B 2023; 127:6038-6048. [PMID: 37395194 DOI: 10.1021/acs.jpcb.3c01641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Bacteria containing ice-nucleating proteins (INPs) evolved in nature to nucleate ice at the high sub-zero ambiance. The ability of the INPs to induce order in the hydration layer and their aggregation propensity appear to be key factors of their ice nucleation abilities. However, the mechanism of the process of ice nucleation by INPs is yet to be understood clearly. Here, we have performed all-atom molecular dynamics simulations and analyzed the structure and dynamics of the hydration layer around the proposed ice-nucleating surface of a model INP. Results are compared with the hydration of a topologically similar non-ice-binding protein (non-IBP) and another ice-growth inhibitory antifreeze protein (sbwAFP). We observed that the hydration structure around the ice-nucleating surface of INP is highly ordered and the dynamics of the hydration water are slower, compared to the non-IBP. Even the ordering of the hydration layer is more evident around the ice-binding surface of INP, compared to the antifreeze protein sbwAFP. Particularly with increasing repeat units of INP, we observe an increased population of ice-like water. Interestingly, the distances between the hydroxyl groups of the threonine ladder and its associated channel water of the ice-binding surface (IBS) of INP in the X and Y direction mimic the oxygen atom distances of the basal plane of hexagonal ice. However, the structural synergies between the hydroxyl group distances of the threonine ladder and its associated channel water of the IBS of sbwAFP and oxygen atom distances of the basal plane are less evident. This difference makes the IBS of the INP a better template for ice nucleation than AFP, although both of them bind to the ice surface efficiently.
Collapse
Affiliation(s)
- Rahul Aich
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Prasun Pal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Sandipan Chakraborty
- Center for Innovation in Molecular and Pharmaceutical Sciences (CIMPS), Dr. Reddy's Institution of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad 5000046, India
| | - Biman Jana
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
15
|
Lindow S. History of Discovery and Environmental Role of Ice Nucleating Bacteria. PHYTOPATHOLOGY 2023; 113:605-615. [PMID: 36122194 DOI: 10.1094/phyto-07-22-0256-ia] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The phenomenon of biological ice nucleation that is exhibited by a variety of bacteria is a fascinating phenotype, which has been shown to incite frost damage to frost-sensitive plants and has been proposed to contribute to atmospheric processes that affect the water cycle and earth's radiation balance. This review explores the several possible drivers for the evolutionary origin of the ice nucleation phenotype. These bacteria and the gene required for this phenotype have also been exploited in processes as diverse as reporter gene assays to assess environmentally responsive gene expression in various plant pathogenic and environmental bacteria and in the detection of foodborne human pathogens when coupled with host-specific bacteriophage, whereas ice nucleating bacteria themselves have been exploited in the production of artificial snow for recreation and oil exploration and in the process of freezing of various food products. This review also examines the historical development of our understanding of ice nucleating bacteria, details of the genetic determinants of ice nucleation, and features of the aggregates of membrane-bound ice nucleation protein necessary for catalyzing ice. Lastly, this review also explores the role of these bacteria in limiting the supercooling ability of plants and the strategies and limitations of avoiding plant frost damage by managing these bacterial populations by bactericides, antagonistic bacteria, or cultural control strategies.
Collapse
Affiliation(s)
- Steven Lindow
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720
| |
Collapse
|
16
|
Keuschnig C, Vogel TM, Barbaro E, Spolaor A, Koziol K, Björkman MP, Zdanowicz C, Gallet JC, Luks B, Layton R, Larose C. Selection processes of Arctic seasonal glacier snowpack bacterial communities. MICROBIOME 2023; 11:35. [PMID: 36864462 PMCID: PMC9979512 DOI: 10.1186/s40168-023-01473-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Arctic snowpack microbial communities are continually subject to dynamic chemical and microbial input from the atmosphere. As such, the factors that contribute to structuring their microbial communities are complex and have yet to be completely resolved. These snowpack communities can be used to evaluate whether they fit niche-based or neutral assembly theories. METHODS We sampled snow from 22 glacier sites on 7 glaciers across Svalbard in April during the maximum snow accumulation period and prior to the melt period to evaluate the factors that drive snowpack metataxonomy. These snowpacks were seasonal, accumulating in early winter on bare ice and firn and completely melting out in autumn. Using a Bayesian fitting strategy to evaluate Hubbell's Unified Neutral Theory of Biodiversity at multiple sites, we tested for neutrality and defined immigration rates at different taxonomic levels. Bacterial abundance and diversity were measured and the amount of potential ice-nucleating bacteria was calculated. The chemical composition (anions, cations, organic acids) and particulate impurity load (elemental and organic carbon) of the winter and spring snowpack were also characterized. We used these data in addition to geographical information to assess possible niche-based effects on snow microbial communities using multivariate and variable partitioning analysis. RESULTS While certain taxonomic signals were found to fit the neutral assembly model, clear evidence of niche-based selection was observed at most sites. Inorganic chemistry was not linked directly to diversity, but helped to identify predominant colonization sources and predict microbial abundance, which was tightly linked to sea spray. Organic acids were the most significant predictors of microbial diversity. At low organic acid concentrations, the snow microbial structure represented the seeding community closely, and evolved away from it at higher organic acid concentrations, with concomitant increases in bacterial numbers. CONCLUSIONS These results indicate that environmental selection plays a significant role in structuring snow microbial communities and that future studies should focus on activity and growth. Video Abstract.
Collapse
Affiliation(s)
- Christoph Keuschnig
- Formerly at Univ Lyon, CNRS, INSA Lyon, Université Claude Bernard Lyon 1, Ecole Centrale de Lyon, Ampère, UMR5005, 69134, Ecully Cedex, France
- Currently at Interface Geochemistry, German Research Center for Geosciences, GFZ, Potsdam, Germany
| | - Timothy M Vogel
- Univ Lyon, CNRS, INSA Lyon, Université Claude Bernard Lyon 1, Ecole Centrale de Lyon, Ampère, UMR5005, 69134, Ecully Cedex, France
| | - Elena Barbaro
- Institute of Polar Sciences, ISP-CNR, Via Torino 155, 30170, Venice Mestre, Italy
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino 155, 30172, Venice, Italy
| | - Andrea Spolaor
- Institute of Polar Sciences, ISP-CNR, Via Torino 155, 30170, Venice Mestre, Italy
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino 155, 30172, Venice, Italy
| | - Krystyna Koziol
- Department of Environmental Change and Geochemistry, Faculty of Geographical Sciences, the Kazimierz Wielki University in Bydgoszcz, Bydgoszcz, Poland
| | - Mats P Björkman
- Department of Earth Sciences, University of Gothenburg, Box 460, SE-40530, Gothenburg, Sweden
| | - Christian Zdanowicz
- Department of Earth Sciences, Uppsala University, Villavägen 16, SE-75236, Uppsala, Sweden
| | | | - Bartłomiej Luks
- Institute of Geophysics, Polish Academy of Sciences, Księcia Janusza 64, 01-452, Warsaw, Poland
| | - Rose Layton
- Formerly at Univ Lyon, CNRS, INSA Lyon, Université Claude Bernard Lyon 1, Ecole Centrale de Lyon, Ampère, UMR5005, 69134, Ecully Cedex, France
| | - Catherine Larose
- Univ Lyon, CNRS, INSA Lyon, Université Claude Bernard Lyon 1, Ecole Centrale de Lyon, Ampère, UMR5005, 69134, Ecully Cedex, France.
| |
Collapse
|
17
|
Einbock A, Burtscher E, Frey C, Conen F. Export of ice-nucleating particles from watersheds: results from the Amazon and Tocantins river plumes. ROYAL SOCIETY OPEN SCIENCE 2023; 10:220878. [PMID: 36778950 PMCID: PMC9905975 DOI: 10.1098/rsos.220878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
We examined ice-nucleating particles (INPs) in the plumes of the Tocantins and Amazon rivers, which drain watersheds with different proportions of degraded land. The concentration of INPs active at -15°C (INP-15) was an order of magnitude lower in the Tocantins (mean = 13.2 ml-1; s.d. = 7.8 ml-1), draining the more degraded watershed, compared with the Amazon (mean = 175.8 ml-1; s.d. = 11.2 ml-1), where the concentration was also significantly higher than in Atlantic surface waters (mean = 3.2 ml-1; s.d. = 2.3 ml-1). Differences in heat tolerance suggest that INPs emitted by the Amazon rainforest to the atmosphere or washed into the river might originate from contrasting sources on top of and below the rainforest canopy, respectively. For the Amazon River, we estimate a daily discharge of 1018 INP-15 to Atlantic waters. Rivers in cooler climate zones tend to have much higher concentrations of INPs and could, despite a smaller water volume discharged, transfer even larger absolute numbers of INP-15 to shelf waters than does the Amazon. To what extent these terrestrial INPs become aerosolized by breaking waves and bubble-bursting remains an open question.
Collapse
Affiliation(s)
- Annika Einbock
- Department of Environmental Sciences, University of Basel, Bernoullistrasse 30, 4056 Basel Switzerland
| | - Emma Burtscher
- Department of Environmental Sciences, University of Basel, Bernoullistrasse 30, 4056 Basel Switzerland
| | - Claudia Frey
- Department of Environmental Sciences, University of Basel, Bernoullistrasse 30, 4056 Basel Switzerland
| | - Franz Conen
- Department of Environmental Sciences, University of Basel, Bernoullistrasse 30, 4056 Basel Switzerland
| |
Collapse
|
18
|
Kozjek M, Vengust D, Radošević T, Žitko G, Koren S, Toplak N, Jerman I, Butala M, Podlogar M, Viršek MK. Dissecting giant hailstones: A glimpse into the troposphere with its diverse bacterial communities and fibrous microplastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:158786. [PMID: 36116646 DOI: 10.1016/j.scitotenv.2022.158786] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/02/2022] [Accepted: 09/11/2022] [Indexed: 06/15/2023]
Abstract
The formation of giant hailstones is a rare weather event that has devastating consequences in inhabited areas. This hazard has been occurring more frequently and with greater size of hailstones in recent years, and thus needs to be better understood. While the generally accepted mechanism is thought to be a process similar to the formation of smaller hailstones but with exceptional duration and stronger updrafts, recent evidence suggests that biotic and abiotic factors also influence the growth of these unusually large ice chunks. In this study, we improved these findings by determining the distribution of a wide variety of these factors throughout the hail volume and expanding the search to include new particles that are common in the environment and are of anthropogenic origin. We melted the concentric layers of several giant hailstones that fell to the ground over a small region in Slovenia in 2019. The samples, up to 13 cm in diameter, were analyzed for biotic and abiotic constituents that could have influenced their formation. Using 16S rRNA-based metagenomics approaches, we identified a highly diverse bacterial community, and by using scanning electron microscopy and Raman spectroscopy, we found natural and synthetic fibers concentrated in the cores of the giant hailstones. For the first time, we were able to detect the existence of microplastic fibers in giant hailstones and determine the changes in the distribution of sand within the volume of the samples. Our results suggest that changes in the composition of hail layers and their great diversity are important factors that should be considered in research. It also appears that anthropogenic microfiber pollutants were a significant factor in the formation of the giant hailstones analyzed in this study.
Collapse
Affiliation(s)
- Marko Kozjek
- Institute for water of the Republic of Slovenia, Einspielerjeva 6, 1000 Ljubljana, Slovenia; University of Ljubljana, Biotechnical Faculty, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Damjan Vengust
- Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia
| | - Tina Radošević
- Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia
| | - Gregor Žitko
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, Večna pot 113, 1000 Ljubljana, Slovenia; National institute for chemistry, Hajdrihova ulica 19, 1000 Ljubljana, Slovenia
| | - Simon Koren
- Omega d.o.o., Dolinškova ulica 8, 1000 Ljubljana, Slovenia
| | - Nataša Toplak
- Omega d.o.o., Dolinškova ulica 8, 1000 Ljubljana, Slovenia
| | - Ivan Jerman
- National institute for chemistry, Hajdrihova ulica 19, 1000 Ljubljana, Slovenia
| | - Matej Butala
- University of Ljubljana, Biotechnical Faculty, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Matejka Podlogar
- Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia; University of Ljubljana, Faculty of Chemistry and Chemical Technology, Večna pot 113, 1000 Ljubljana, Slovenia
| | - Manca Kovač Viršek
- Institute for water of the Republic of Slovenia, Einspielerjeva 6, 1000 Ljubljana, Slovenia.
| |
Collapse
|
19
|
Sofiev M, Sofieva S, Palamarchuk J, Šaulienė I, Kadantsev E, Atanasova N, Fatahi Y, Kouznetsov R, Kuula J, Noreikaite A, Peltonen M, Pihlajamäki T, Saarto A, Svirskaite J, Toiviainen L, Tyuryakov S, Šukienė L, Asmi E, Bamford D, Hyvärinen AP, Karppinen A. Bioaerosols in the atmosphere at two sites in Northern Europe in spring 2021: Outline of an experimental campaign. ENVIRONMENTAL RESEARCH 2022; 214:113798. [PMID: 35810819 DOI: 10.1016/j.envres.2022.113798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/07/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
A coordinated observational and modelling campaign targeting biogenic aerosols in the air was performed during spring 2021 at two locations in Northern Europe: Helsinki (Finland) and Siauliai (Lithuania), approximately 500 km from each other in north-south direction. The campaign started on March 1, 2021 in Siauliai (12 March in Helsinki) and continued till mid-May in Siauliai (end of May in Helsinki), thus recording the transition of the atmospheric biogenic aerosols profile from winter to summer. The observations included a variety of samplers working on different principles. The core of the program was based on 2- and 2.4--hourly sampling in Helsinki and Siauliai, respectively, with sticky slides (Hirst 24-h trap in Helsinki, Rapid-E slides in Siauliai). The slides were subsequently processed extracting the DNA from the collected aerosols, which was further sequenced using the 3-rd generation sequencing technology. The core sampling was accompanied with daily and daytime sampling using standard filter collectors. The hourly aerosol concentrations at the Helsinki monitoring site were obtained with a Poleno flow cytometer, which could recognize some of the aerosol types. The sampling campaign was supported by numerical modelling. For every sample, SILAM model was applied to calculate its footprint and to predict anthropogenic and natural aerosol concentrations, at both observation sites. The first results confirmed the feasibility of the DNA collection by the applied techniques: all but one delivered sufficient amount of DNA for the following analysis, in over 40% of the cases sufficient for direct DNA sequencing without the PCR step. A substantial variability of the DNA yield has been noticed, generally not following the diurnal variations of the total-aerosol concentrations, which themselves showed variability not related to daytime. An expected upward trend of the biological material amount towards summer was observed but the day-to-day variability was large. The campaign DNA analysis produced the first high-resolution dataset of bioaerosol composition in the North-European spring. It also highlighted the deficiency of generic DNA databases in applications to atmospheric biota: about 40% of samples were not identified with standard bioinformatic methods.
Collapse
Affiliation(s)
- Mikhail Sofiev
- Finnish Meteorological Institute, Helsinki, Finland; Vilnius University, Vilnius, Lithuania.
| | - Svetlana Sofieva
- Finnish Meteorological Institute, Helsinki, Finland; University of Helsinki, Helsinki, Finland
| | | | | | | | - Nina Atanasova
- Finnish Meteorological Institute, Helsinki, Finland; University of Helsinki, Helsinki, Finland
| | - Yalda Fatahi
- Finnish Meteorological Institute, Helsinki, Finland
| | | | - Joel Kuula
- Finnish Meteorological Institute, Helsinki, Finland
| | | | - Martina Peltonen
- Finnish Meteorological Institute, Helsinki, Finland; University of Helsinki, Helsinki, Finland
| | | | | | - Julija Svirskaite
- Finnish Meteorological Institute, Helsinki, Finland; University of Helsinki, Helsinki, Finland
| | | | | | | | - Eija Asmi
- Finnish Meteorological Institute, Helsinki, Finland
| | | | | | | |
Collapse
|
20
|
Rojas MVR, Alonso DP, Dropa M, Razzolini MTP, de Carvalho DP, Ribeiro KAN, Ribolla PEM, Sallum MAM. Next-Generation High-Throughput Sequencing to Evaluate Bacterial Communities in Freshwater Ecosystem in Hydroelectric Reservoirs. Microorganisms 2022; 10:1398. [PMID: 35889116 PMCID: PMC9322053 DOI: 10.3390/microorganisms10071398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/07/2022] [Accepted: 07/07/2022] [Indexed: 02/01/2023] Open
Abstract
The quality of aquatic ecosystems is a major public health concern. The assessment and management of a freshwater system and the ecological monitoring of microorganisms that are present in it can provide indicators of the environment and water quality to protect human and animal health. with bacteria is. It is a major challenge to monitor the microbiological bacterial contamination status of surface water associated with anthropogenic activities within rivers and freshwater reservoirs. Understanding the composition of aquatic microbial communities can be beneficial for the early detection of pathogens, improving our knowledge of their ecological niches, and characterizing the assemblages of microbiota responsible for the degradation of contaminants and microbial substrates. The present study aimed to characterize the bacterial microbiota of water samples collected alongside the Madeira River and its small tributaries in rural areas near the Santo Antonio Energia hydroelectric power plant (SAE) reservoir in the municipality of Porto Velho, Rondonia state, Western Brazil. An Illumina 16s rRNA metagenomic approach was employed and the physicochemical characteristics of the water sample were assessed. We hypothesized that both water metagenomics and physicochemical parameters would vary across sampling sites. The most abundant genera found in the study were Acinetobacter, Deinococcus, and Pseudomonas. PERMANOVA and ANCOM analysis revealed that collection points sampled at the G4 location presented a significantly different microbiome compared to any other group, with the Chlamidomonadaceae family and Enhydrobacter genus being significantly more abundant. Our findings support the use of metagenomics to assess water quality standards for the protection of human and animal health in this microgeographic region.
Collapse
Affiliation(s)
- Martha Virginia R. Rojas
- Departamento de Epidemiologia, Faculdade de Saúde Pública, Universidade de São Paulo, São Paulo 01246-904, Brazil; (M.V.R.R.); (M.A.M.S.)
- FUNDUNESP—Fundação para o Desenvolvimento da UNESP, São Paulo 01009-906, Brazil
| | - Diego Peres Alonso
- Departamento de Epidemiologia, Faculdade de Saúde Pública, Universidade de São Paulo, São Paulo 01246-904, Brazil; (M.V.R.R.); (M.A.M.S.)
- Instituto de Biotecnologia da UNESP (IBTEC-Campus Botucatu), São Paulo 18607-440, Brazil;
| | - Milena Dropa
- Departamento de Saúde Ambiental, Faculdade de Saúde Pública, Universidade de São Paulo, São Paulo 01246-904, Brazil; (M.D.); (M.T.P.R.)
| | - Maria Tereza P. Razzolini
- Departamento de Saúde Ambiental, Faculdade de Saúde Pública, Universidade de São Paulo, São Paulo 01246-904, Brazil; (M.D.); (M.T.P.R.)
| | | | | | | | - Maria Anice M. Sallum
- Departamento de Epidemiologia, Faculdade de Saúde Pública, Universidade de São Paulo, São Paulo 01246-904, Brazil; (M.V.R.R.); (M.A.M.S.)
| |
Collapse
|
21
|
Morris CE, Ramirez N, Berge O, Lacroix C, Monteil C, Chandeysson C, Guilbaud C, Blischke A, Sigurbjörnsdóttir MA, Vilhelmsson OÞ. Pseudomonas syringae on Plants in Iceland Has Likely Evolved for Several Million Years Outside the Reach of Processes That Mix This Bacterial Complex across Earth’s Temperate Zones. Pathogens 2022; 11:pathogens11030357. [PMID: 35335680 PMCID: PMC8951587 DOI: 10.3390/pathogens11030357] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/03/2022] [Accepted: 03/08/2022] [Indexed: 12/04/2022] Open
Abstract
Here we report, for the first time, the occurrence of the bacteria from the species complex Pseudomonas syringae in Iceland. We isolated this bacterium from 35 of the 38 samples of angiosperms, moss, ferns and leaf litter collected across the island from five habitat categories (boreal heath, forest, subalpine and glacial scrub, grazed pasture, lava field). The culturable populations of P. syringae on these plants varied in size across 6 orders of magnitude, were as dense as 107 cfu g−1 and were composed of strains in phylogroups 1, 2, 4, 6, 7, 10 and 13. P. syringae densities were significantly greatest on monocots compared to those on dicots and mosses and were about two orders of magnitude greater in grazed pastures compared to all other habitats. The phylogenetic diversity of 609 strains of P. syringae from Iceland was compared to that of 933 reference strains of P. syringae from crops and environmental reservoirs collected from 27 other countries based on a 343 bp sequence of the citrate synthase (cts) housekeeping gene. Whereas there were examples of identical cts sequences across multiple countries and continents among the reference strains indicating mixing among these countries and continents, the Icelandic strains grouped into monophyletic lineages that were unique compared to all of the reference strains. Based on estimates of the time of divergence of the Icelandic genetic lineages of P. syringae, the geological, botanical and land use history of Iceland, and atmospheric circulation patterns, we propose scenarios whereby it would be feasible for P. syringae to have evolved outside the reach of processes that tend to mix this bacterial complex across the planet elsewhere.
Collapse
Affiliation(s)
- Cindy E. Morris
- INRAE, Pathologie Végétale, F-84140 Montfavet, France; (O.B.); (C.L.); (C.M.); (C.C.); (C.G.)
- Correspondence:
| | - Natalia Ramirez
- Faculty of Natural Resource Sciences, University of Akureyri, 600 Akureyri, Iceland; (N.R.); (M.A.S.); (O.Þ.V.)
| | - Odile Berge
- INRAE, Pathologie Végétale, F-84140 Montfavet, France; (O.B.); (C.L.); (C.M.); (C.C.); (C.G.)
| | - Christelle Lacroix
- INRAE, Pathologie Végétale, F-84140 Montfavet, France; (O.B.); (C.L.); (C.M.); (C.C.); (C.G.)
| | - Cécile Monteil
- INRAE, Pathologie Végétale, F-84140 Montfavet, France; (O.B.); (C.L.); (C.M.); (C.C.); (C.G.)
| | - Charlotte Chandeysson
- INRAE, Pathologie Végétale, F-84140 Montfavet, France; (O.B.); (C.L.); (C.M.); (C.C.); (C.G.)
| | - Caroline Guilbaud
- INRAE, Pathologie Végétale, F-84140 Montfavet, France; (O.B.); (C.L.); (C.M.); (C.C.); (C.G.)
| | - Anett Blischke
- ÍSOR, Iceland GeoSurvey, Rangárvöllum við Hlíðarfjallsveg, 600 Akureyri, Iceland;
| | | | - Oddur Þ. Vilhelmsson
- Faculty of Natural Resource Sciences, University of Akureyri, 600 Akureyri, Iceland; (N.R.); (M.A.S.); (O.Þ.V.)
| |
Collapse
|
22
|
Lukas M, Schwidetzky R, Eufemio RJ, Bonn M, Meister K. Toward Understanding Bacterial Ice Nucleation. J Phys Chem B 2022; 126:1861-1867. [PMID: 35084861 PMCID: PMC8919256 DOI: 10.1021/acs.jpcb.1c09342] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Bacterial ice nucleators
(INs) are among the most effective ice
nucleators known and are relevant for freezing processes in agriculture,
the atmosphere, and the biosphere. Their ability to facilitate ice
formation is due to specialized ice-nucleating proteins (INPs) anchored
to the outer bacterial cell membrane, enabling the crystallization
of water at temperatures up to −2 °C. In this Perspective,
we highlight the importance of functional aggregation of INPs for
the exceptionally high ice nucleation activity of bacterial ice nucleators.
We emphasize that the bacterial cell membrane, as well as environmental
conditions, is crucial for a precise functional INP aggregation. Interdisciplinary
approaches combining high-throughput droplet freezing assays with
advanced physicochemical tools and protein biochemistry are needed
to link changes in protein structure or protein–water interactions
with changes on the functional level.
Collapse
Affiliation(s)
- Max Lukas
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| | | | | | - Mischa Bonn
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - Konrad Meister
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany.,University of Alaska Southeast, Juneau, Alaska 99801, United States
| |
Collapse
|
23
|
Šantl-Temkiv T, Amato P, Casamayor EO, Lee PKH, Pointing SB. OUP accepted manuscript. FEMS Microbiol Rev 2022; 46:6524182. [PMID: 35137064 PMCID: PMC9249623 DOI: 10.1093/femsre/fuac009] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/31/2022] [Accepted: 02/06/2022] [Indexed: 11/30/2022] Open
Abstract
The atmosphere connects habitats across multiple spatial scales via airborne dispersal of microbial cells, propagules and biomolecules. Atmospheric microorganisms have been implicated in a variety of biochemical and biophysical transformations. Here, we review ecological aspects of airborne microorganisms with respect to their dispersal, activity and contribution to climatic processes. Latest studies utilizing metagenomic approaches demonstrate that airborne microbial communities exhibit pronounced biogeography, driven by a combination of biotic and abiotic factors. We quantify distributions and fluxes of microbial cells between surface habitats and the atmosphere and place special emphasis on long-range pathogen dispersal. Recent advances have established that these processes may be relevant for macroecological outcomes in terrestrial and marine habitats. We evaluate the potential biological transformation of atmospheric volatile organic compounds and other substrates by airborne microorganisms and discuss clouds as hotspots of microbial metabolic activity in the atmosphere. Furthermore, we emphasize the role of microorganisms as ice nucleating particles and their relevance for the water cycle via formation of clouds and precipitation. Finally, potential impacts of anthropogenic forcing on the natural atmospheric microbiota via emission of particulate matter, greenhouse gases and microorganisms are discussed.
Collapse
Affiliation(s)
- Tina Šantl-Temkiv
- Department of Biology, Aarhus University, DK-8000 Aarhus, Denmark
- Stellar Astrophysics Centre, Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus, Denmark
| | - Pierre Amato
- Institut de Chimie de Clermont-Ferrand, SIGMA Clermont, CNRS, Université Clermont Auvergne, 63178, Clermont-Ferrand, France
| | - Emilio O Casamayor
- Centre for Advanced Studies of Blanes, Spanish Council for Research (CSIC), 17300, Blanes, Spain
| | - Patrick K H Lee
- School of Energy and Environment, City University of Hong Kong, Hong Kong, China
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China
| | - Stephen B Pointing
- Corresponding author: Yale-NUS College, National University of Singapore, 16 College Avenue West, Singapore 138527. Tel: +65 6601 1000; E-mail:
| |
Collapse
|
24
|
Baloh P, Hanlon R, Anderson C, Dolan E, Pacholik G, Stinglmayr D, Burkart J, Felgitsch L, Schmale DG, Grothe H. Seasonal ice nucleation activity of water samples from alpine rivers and lakes in Obergurgl, Austria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 800:149442. [PMID: 34426361 DOI: 10.1016/j.scitotenv.2021.149442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 06/29/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
Heterogeneous ice nucleation plays an important role in many environmental processes such as ice cloud formation, freezing of water bodies or biological freeze protection in the cryosphere. New information is needed about the seasonal availability, nature, and activity of ice nucleating particles (INPs) in alpine environments. These INPs trigger the phase transition from liquid water to solid ice at elevated subzero temperatures. We collected water samples from a series of alpine rivers and lakes (two valleys and their rivers, an artificial pond, and a natural lake system) in Obergurgl, Austria in June 2016, July 2016, November 2016, and May 2017. Each alpine river and lake was sampled multiple times across different seasons, depending on site access during different times of the year. Water samples were filtered through a 0.22 μm membrane filter to separate microbial INPs from the water, and both fractions were analyzed for ice nucleation activity (INA) by an emulsion freezing method. Microorganisms were cultured from the filters, and the cultures then analyzed for INA. Portions of the filtered samples were concentrated by lyophilization to observe potential enhancement of INA. Two sediment samples were taken as reference points for inorganic INPs. Sub-micron INPs were observed in all of the alpine water sources studied, and a seasonal shift to a higher fraction of microbial ice nucleators cultured on selective media was observed during the winter collections. Particles larger than 0.22 μm showed INA, and microbes were cultured from this fraction. Results from 60 samples gave evidence of a seasonal change in INA, presence of submicrometer INPs, and show the abundance of culturable microorganisms, with late spring and early summer showing the most active biological INPs. With additional future research on this topic ski resorts could make use of such knowledge of geographical and seasonal trends of microbial INPs in freshwater habitats in order to improve the production of artificial snow.
Collapse
Affiliation(s)
- Philipp Baloh
- Institute of Materials Chemistry, TU Wien, Vienna, Austria
| | - Regina Hanlon
- School of Plant and Environmental Sciences, Blacksburg, VA, USA
| | | | - Eoin Dolan
- Institute of Materials Chemistry, TU Wien, Vienna, Austria
| | | | | | - Julia Burkart
- Institute of Materials Chemistry, TU Wien, Vienna, Austria; Faculty of Physics, University of Vienna, Vienna, Austria
| | | | - David G Schmale
- School of Plant and Environmental Sciences, Blacksburg, VA, USA
| | - Hinrich Grothe
- Institute of Materials Chemistry, TU Wien, Vienna, Austria.
| |
Collapse
|
25
|
Moore RA, Martinetti D, Bigg EK, Christner BC, Morris CE. Climatic and landscape changes as drivers of environmental feedback that influence rainfall frequency in the United States. GLOBAL CHANGE BIOLOGY 2021; 27:6381-6393. [PMID: 34553813 PMCID: PMC9292682 DOI: 10.1111/gcb.15876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 06/13/2023]
Abstract
Previous studies have identified regions where the occurrence of rainfall significantly increases or decreases the probability for subsequent rainfall over periods that range from a few days to several weeks. These observable phenomena are termed "rainfall feedback" (RF). To better understand the land-atmosphere interactions involved in RF, the behavior of RF patterns was analyzed using data from 1849 to 2016 at ~3000 sites in the contiguous United States. We also considered changes in major land-use types and applied a geographically weighted regression model technique for analyzing the predictors of RF. This approach identified non-linear and spatially non-stationary relationships between RF, climate, land use, and land type. RF patterns in certain regions of the United States are predictable by modeling variables associated with climate, season, and land use. The model outputs also demonstrate the extent to which the effect of precipitation, temperature, and land use on RF depend on season and location. Specifically, major changes were observed for land use associated with agriculture in the western United States, which had negative and positive influences on RF in summer and winter, respectively. In contrast, developed land in the eastern United States correlated with positive RF values in summer but with negative ones in winter. We discuss how changes in climate and land use would be expected to affect land-atmosphere interactions, as well as the possible role that physical mechanisms and rain-enhanced bioaerosol emissions may play in the spatiotemporal changes observed for historical patterns of rainfall frequency in the United States.
Collapse
Affiliation(s)
- Rachel A. Moore
- School of Earth and Atmospheric Sciences at the Georgia Institute of TechnologyAtlantaGA30318
| | | | | | - Brent C. Christner
- Department of Microbiology and Cell ScienceUniversity of FloridaGainesvilleFLUSA
| | | |
Collapse
|
26
|
Bashir I, War AF, Rafiq I, Reshi ZA, Rashid I, Shouche YS. Phyllosphere microbiome: Diversity and functions. Microbiol Res 2021; 254:126888. [PMID: 34700185 DOI: 10.1016/j.micres.2021.126888] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/15/2021] [Accepted: 09/30/2021] [Indexed: 12/28/2022]
Abstract
Phyllosphere or aerial surface of plants represents the globally largest and peculiar microbial habitat that inhabits diverse and rich communities of bacteria, fungi, viruses, cyanobacteria, actinobacteria, nematodes, and protozoans. These hyperdiverse microbial communities are related to the host's specific functional traits and influence the host's physiology and the ecosystem's functioning. In the last few years, significant advances have been made in unravelling several aspects of phyllosphere microbiology, including diversity and microbial community composition, dynamics, and functional interactions. This review highlights the current knowledge about the assembly, structure, and composition of phyllosphere microbial communities across spatio-temporal scales, besides functional significance of different microbial communities to the plant host and the surrounding environment. The knowledge will help develop strategies for modelling and manipulating these highly beneficial microbial consortia for furthering scientific inquiry into their interactions with the host plants and also for their useful and economic utilization.
Collapse
Affiliation(s)
- Iqra Bashir
- Department of Botany, University of Kashmir, Srinagar, 190006, Jammu and Kashmir, India.
| | - Aadil Farooq War
- Department of Botany, University of Kashmir, Srinagar, 190006, Jammu and Kashmir, India
| | - Iflah Rafiq
- Department of Botany, University of Kashmir, Srinagar, 190006, Jammu and Kashmir, India
| | - Zafar A Reshi
- Department of Botany, University of Kashmir, Srinagar, 190006, Jammu and Kashmir, India
| | - Irfan Rashid
- Department of Botany, University of Kashmir, Srinagar, 190006, Jammu and Kashmir, India
| | | |
Collapse
|
27
|
Núñez A, García AM, Moreno DA, Guantes R. Seasonal changes dominate long-term variability of the urban air microbiome across space and time. ENVIRONMENT INTERNATIONAL 2021; 150:106423. [PMID: 33578068 DOI: 10.1016/j.envint.2021.106423] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/25/2021] [Accepted: 01/25/2021] [Indexed: 05/24/2023]
Abstract
Compared to soil or aquatic ecosystems, the atmosphere is still an underexplored environment for microbial diversity. In this study, we surveyed the composition, variability and sources of microbes (bacteria and fungi) in the near surface atmosphere of a highly populated area, spanning ~ 4,000 Km2 around the city center of Madrid (Spain), in different seasonal periods along two years. We found a core of abundant bacterial genera robust across space and time, most of soil origin, while fungi were more sensitive to environmental conditions. Microbial communities showed clear seasonal patterns driven by variability of environmental factors, mainly temperature and accumulated rain, while local sources played a minor role. We also identified taxa in both groups characteristic of seasonal periods, but not of specific sampling sites or plant coverage. The present study suggests that the near surface atmosphere of urban environments contains an ecosystem stable across relatively large spatial and temporal scales, with a rather homogenous composition, modulated by climatic variations. As such, it contributes to our understanding of the long-term changes associated to the human exposome in the air of highly populated areas.
Collapse
Affiliation(s)
- Andrés Núñez
- Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid (ETSII-UPM), Madrid, Spain; Department of Genetics and Microbiology, Facultad de Biología, Universidad de Murcia, Murcia, Spain
| | - Ana M García
- Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid (ETSII-UPM), Madrid, Spain
| | - Diego A Moreno
- Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid (ETSII-UPM), Madrid, Spain; Facultad de Farmacia, Universidad de Castilla-La Mancha (FF-UCLM), Albacete, Spain.
| | - Raúl Guantes
- Department of Condensed Matter Physics and Material Science Institute 'Nicolás Cabrera', Science Faculty, Universidad Autónoma de Madrid, Madrid, Spain; Institute for Condensed Matter Physics (IFIMAC), Science Faculty, Universidad Autónoma de Madrid, Madrid, Spain.
| |
Collapse
|
28
|
Ma Y, Fort T, Marais A, Lefebvre M, Theil S, Vacher C, Candresse T. Leaf-associated fungal and viral communities of wild plant populations differ between cultivated and natural ecosystems. PLANT-ENVIRONMENT INTERACTIONS (HOBOKEN, N.J.) 2021; 2:87-99. [PMID: 37284285 PMCID: PMC10168098 DOI: 10.1002/pei3.10043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 03/04/2021] [Accepted: 03/08/2021] [Indexed: 06/08/2023]
Abstract
Plants are colonized by diverse fungal and viral communities that influence their growth and survival as well as ecosystem functioning. Viruses interact with both plants and the fungi they host. Our understanding of plant-fungi-virus interactions is very limited, especially in wild plants. Combining metagenomic and culturomic approaches, we assessed the richness, diversity, and composition of leaf-associated fungal and viral communities from pools of herbaceous wild plants representative of four sites corresponding to cultivated or natural ecosystems. We identified 161 fungal families and 18 viral families comprising 249 RNA-dependent RNA polymerase-based operational taxonomic units (RdRp OTUs) from leaves. Fungal culturomics captured 12.3% of the fungal diversity recovered with metagenomic approaches and, unexpectedly, retrieved viral OTUs that were almost entirely different from those recovered by leaf metagenomics. Ecosystem management had a significant influence on both leaf mycobiome and virome, with a higher fungal community richness in natural ecosystems and a higher viral family richness in cultivated ecosystems, suggesting that leaf-associated fungal and viral communities are under the influence of different ecological drivers. Both the leaf-associated fungal and viral community compositions showed a strong site-specificity. Further research is needed to confirm these trends and unravel the factors structuring plant-fungi-virus interactions in wild plant populations.
Collapse
Affiliation(s)
- Yuxin Ma
- Univ. BordeauxINRAEUMR 1332 BFPVillenave d’Ornon cedexFrance
| | | | - Armelle Marais
- Univ. BordeauxINRAEUMR 1332 BFPVillenave d’Ornon cedexFrance
| | - Marie Lefebvre
- Univ. BordeauxINRAEUMR 1332 BFPVillenave d’Ornon cedexFrance
| | - Sébastien Theil
- Univ. BordeauxINRAEUMR 1332 BFPVillenave d’Ornon cedexFrance
- Present address:
INRA UMRF20, côte de ReyneAurillac15000France
| | | | | |
Collapse
|
29
|
Ladin ZS, Ferrell B, Dums JT, Moore RM, Levia DF, Shriver WG, D'Amico V, Trammell TLE, Setubal JC, Wommack KE. Assessing the efficacy of eDNA metabarcoding for measuring microbial biodiversity within forest ecosystems. Sci Rep 2021; 11:1629. [PMID: 33452291 PMCID: PMC7811025 DOI: 10.1038/s41598-020-80602-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/11/2020] [Indexed: 01/29/2023] Open
Abstract
We investigated the nascent application and efficacy of sampling and sequencing environmental DNA (eDNA) in terrestrial environments using rainwater that filters through the forest canopy and understory vegetation (i.e., throughfall). We demonstrate the utility and potential of this method for measuring microbial communities and forest biodiversity. We collected pure rainwater (open sky) and throughfall, successfully extracted DNA, and generated over 5000 unique amplicon sequence variants. We found that several taxa including Mycoplasma sp., Spirosoma sp., Roseomonas sp., and Lactococcus sp. were present only in throughfall samples. Spiroplasma sp., Methylobacterium sp., Massilia sp., Pantoea sp., and Sphingomonas sp. were found in both types of samples, but more abundantly in throughfall than in rainwater. Throughfall samples contained Gammaproteobacteria that have been previously found to be plant-associated, and may contribute to important functional roles. We illustrate how this novel method can be used for measuring microbial biodiversity in forest ecosystems, foreshadowing the utility for quantifying both prokaryotic and eukaryotic lifeforms. Leveraging these methods will enhance our ability to detect extant species, describe new species, and improve our overall understanding of ecological community dynamics in forest ecosystems.
Collapse
Affiliation(s)
- Zachary S Ladin
- Department of Plant and Soil Sciences, University of Delaware, 264 Townsend Hall, Newark, DE, 19716, USA.
| | - Barbra Ferrell
- Department of Plant and Soil Sciences, Delaware Biotechnology Institute, University of Delaware, Newark, DE, 19716, USA
| | - Jacob T Dums
- Biotechnology Program, North Carolina State University, Raleigh, NC, 27695, USA
| | - Ryan M Moore
- Department of Plant and Soil Sciences, Delaware Biotechnology Institute, University of Delaware, Newark, DE, 19716, USA
| | - Delphis F Levia
- Department of Entomology and Wildlife Ecology, University of Delaware, 250 Townsend Hall, Newark, DE, 19716, USA
| | - W Gregory Shriver
- Departments of Geography and Spatial Sciences and Plant and Soil Sciences, University of Delaware, 216C Pearson Hall, Newark, DE, 19716, USA
| | - Vincent D'Amico
- US Forest Service, Northern Research Station, Newark, DE, USA
| | - Tara L E Trammell
- Department of Plant and Soil Sciences, University of Delaware, 264 Townsend Hall, Newark, DE, 19716, USA
| | - João Carlos Setubal
- Instituto de Química, University of Sao Paulo, São Paulo, SP, 05508-000, Brazil
| | - K Eric Wommack
- Department of Plant and Soil Sciences, University of Delaware, 264 Townsend Hall, Newark, DE, 19716, USA
| |
Collapse
|
30
|
Huang S, Hu W, Chen J, Wu Z, Zhang D, Fu P. Overview of biological ice nucleating particles in the atmosphere. ENVIRONMENT INTERNATIONAL 2021; 146:106197. [PMID: 33271442 DOI: 10.1016/j.envint.2020.106197] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 10/01/2020] [Accepted: 10/05/2020] [Indexed: 05/14/2023]
Abstract
Biological particles in the Earth's atmosphere are a distinctive category of ice nucleating particles (INPs) due to their capability of facilitating ice crystal formation in clouds at relatively warm temperatures. Field observations and model simulations have shown that biological INPs affect cloud and precipitation formation and regulate regional or even global climate, although there are considerable uncertainties in modeling and large gaps between observed and model simulated contribution of biological particles to atmospheric INPs. This paper overviews the latest researches about biological INPs in the atmosphere. Firstly, we describe the primary ice nucleation mechanisms, and measurements and model simulations of atmospheric biological INPs. Secondly, we summarize the ice nucleating properties of biological INPs from diverse sources such as soils or dust, vegetation (e.g., leaves and pollen grains), sea spray, and fresh waters, and controlling factors of biological INPs in the atmosphere. Then we review the abundance and distribution of atmospheric biological INPs in diverse ecosystems. Finally, we discuss the open questions in further studies on atmospheric biological INPs, including the requirements for developing novel detection techniques and simulation models, as well as the comprehensive investigation of characteristics and influencing factors of atmospheric biological INPs.
Collapse
Affiliation(s)
- Shu Huang
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Wei Hu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China.
| | - Jie Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Zhijun Wu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Daizhou Zhang
- Faculty of Environmental and Symbiotic Sciences, Prefectural University of Kumamoto, Kumamoto 862-8502, Japan
| | - Pingqing Fu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
31
|
Woo C, Yamamoto N. Falling bacterial communities from the atmosphere. ENVIRONMENTAL MICROBIOME 2020; 15:22. [PMID: 33902752 PMCID: PMC8066439 DOI: 10.1186/s40793-020-00369-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 11/28/2020] [Indexed: 05/05/2023]
Abstract
BACKGROUND Bacteria emitted into the atmosphere eventually settle to the pedosphere via sedimentation (dry deposition) or precipitation (wet deposition), constituting a part of the global cycling of substances on Earth, including the water cycle. In this study, we aim to investigate the taxonomic compositions and flux densities of bacterial deposition, for which little is known regarding the relative contributions of each mode of atmospheric deposition, the taxonomic structures and memberships, and the aerodynamic properties in the atmosphere. RESULTS Precipitation was found to dominate atmospheric bacterial deposition, contributing to 95% of the total flux density at our sampling site in Korea, while bacterial communities in precipitation were significantly different from those in sedimentation, in terms of both their structures and memberships. Large aerodynamic diameters of atmospheric bacteria were observed, with an annual mean of 8.84 μm, which appears to be related to their large sedimentation velocities, with an annual mean of 1.72 cm s- 1 for all bacterial taxa combined. The observed mean sedimentation velocity for atmospheric bacteria was larger than the previously reported mean sedimentation velocities for fungi and plants. CONCLUSIONS Large aerodynamic diameters of atmospheric bacteria, which are likely due to the aggregation and/or attachment to other larger particles, are thought to contribute to large sedimentation velocities, high efficiencies as cloud nuclei, and large amounts of precipitation of atmospheric bacteria. Moreover, the different microbiotas between precipitation and sedimentation might indicate specific bacterial involvement and/or selective bacterial growth in clouds. Overall, our findings add novel insight into how bacteria participate in atmospheric processes and material circulations, including hydrological circulation, on Earth.
Collapse
Affiliation(s)
- Cheolwoon Woo
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, 08826, Republic of Korea
| | - Naomichi Yamamoto
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, 08826, Republic of Korea.
- Institute of Health and Environment, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
32
|
Fones HN. Presence of ice-nucleating Pseudomonas on wheat leaves promotes Septoria tritici blotch disease (Zymoseptoria tritici) via a mutually beneficial interaction. Sci Rep 2020; 10:17738. [PMID: 33082401 PMCID: PMC7575590 DOI: 10.1038/s41598-020-74615-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 09/09/2020] [Indexed: 11/09/2022] Open
Abstract
Zymoseptoria tritici causes Septoria tritici blotch (STB) of wheat, an economically important disease causing yield losses of up to 10% despite the use of fungicides and resistant cultivars. Z. tritici infection is symptomless for around 10 days, during which time the fungus grows randomly across the leaf surface prior to entry through stomata. Wounded leaves show faster, more extensive STB, suggesting that wounds facilitate fungal entry. Wheat leaves also host epiphytic bacteria; these include ice-nucleating (INA+) bacteria, which induce frost damage at warmer temperatures than it otherwise occurs. Here, STB is shown to be more rapid and severe when wheat is exposed to both INA+ bacteria and sub-zero temperatures. This suggests that ice-nucleation-induced wounding of the wheat leaf provides additional openings for fungal entry. INA+ bacterial populations are shown to benefit from the presence of Z. tritici, indicating that this microbial interaction is mutualistic. Finally, control of INA+ bacteria is shown to reduce STB.
Collapse
Affiliation(s)
- Helen N Fones
- Biosciences, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK.
| |
Collapse
|
33
|
Jin S, Liu Y, Deiseroth M, Liu J, Backus EHG, Li H, Xue H, Zhao L, Zeng XC, Bonn M, Wang J. Use of Ion Exchange To Regulate the Heterogeneous Ice Nucleation Efficiency of Mica. J Am Chem Soc 2020; 142:17956-17965. [PMID: 32985179 DOI: 10.1021/jacs.0c00920] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Heterogeneous ice nucleation (HIN) triggered by mineral surfaces typically exposed to various ions can have a significant impact on the regional atmosphere and climate. However, the dependence of HIN on the nature of the mineral surface ions is still largely unexplored due to the complexity of mineral surfaces. Because K+ on the atomically flat (001) surface of mica can be readily replaced by different cations through ion exchange, muscovite mica was selected; its simple nature provides a very straightforward system that can serve as the model for investigating the effects of mineral surface ions on HIN. Our experiments show that the surface (001) of H+-exchanged mica displays markedly higher HIN efficiencies than that of Na-/K-mica. Vibrational sum-frequency generation spectroscopy reveals that H-mica induces substantially less orientation ordering than Na-/K-mica within the contact water layer at the interface. Molecular dynamics simulations suggest that the HIN efficiency of mica depends on the positional arrangement and orientation of the interfacial water. The formation of the hexagonal ice Ih basal-type structure in the first water layer atop the mica surface facilitates HIN, which is determined by the size of the protruding ions atop the mica surface and by the surface adsorption energy. The orientational distribution is optimal for HIN when 25% of the water molecules in the first water layer atop the mica surface have one OH group pointing up and 25% have one OH group pointing down, which, in turn, is determined by the surface charge distribution.
Collapse
Affiliation(s)
- Shenglin Jin
- Key Laboratory of Green Printing, Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yuan Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.,Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Malte Deiseroth
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - Jie Liu
- Key Laboratory of Green Printing, Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Ellen H G Backus
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany.,Department of Physical Chemistry, University of Vienna, Währinger Strasse 42, 1090 Wien, Austria
| | - Hui Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Han Xue
- Key Laboratory of Green Printing, Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Lishan Zhao
- Key Laboratory of Green Printing, Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiao Cheng Zeng
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Mischa Bonn
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - Jianjun Wang
- Key Laboratory of Green Printing, Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
34
|
Wildland fire as an atmospheric source of viable microbial aerosols and biological ice nucleating particles. ISME JOURNAL 2020; 15:461-472. [PMID: 33009511 DOI: 10.1038/s41396-020-00788-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 09/09/2020] [Accepted: 09/18/2020] [Indexed: 11/08/2022]
Abstract
The environmental sources of microbial aerosols and processes by which they are emitted into the atmosphere are not well characterized. In this study we analyzed microbial cells and biological ice nucleating particles (INPs) in smoke emitted from eight prescribed wildland fires in North Florida. When compared to air sampled prior to ignition, samples of the air-smoke mixtures contained fivefold higher concentrations of microbial cells (6.7 ± 1.3 × 104 cells m-3) and biological INPs (2.4 ± 0.91 × 103 INPs m-3 active at temperatures ≥ -15 °C), and these data significantly positively correlated with PM10. Various bacteria could be cultured from the smoke samples, and the nearest neighbors of many of the isolates are plant epi- and endophytes, suggesting vegetation was a source. Controlled laboratory combustion experiments indicated that smoke emitted from dead vegetation contained significantly higher numbers of cells, INPs, and culturable bacteria relative to the green shrubs tested. Microbial viability of smoke aerosols based on formazan production and epifluorescent microscopy revealed no significant difference in the viable fraction (~80%) when compared to samples of ambient air. From these data, we estimate each fire aerosolized an average of 7 ± 4 × 109 cells and 2 ± 1 × 108 biological INPs per m2 burned and conclude that emissions from wildland fire are sources of viable microbial aerosols to the atmosphere.
Collapse
|
35
|
Detection of Airborne Biological Particles in Indoor Air Using a Real-Time Advanced Morphological Parameter UV-LIF Spectrometer and Gradient Boosting Ensemble Decision Tree Classifiers. ATMOSPHERE 2020. [DOI: 10.3390/atmos11101039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We present results from a study evaluating the utility of supervised machine learning to classify single particle ultraviolet laser-induced fluorescence (UV-LIF) signatures to investigate airborne primary biological aerosol particle (PBAP) concentrations in a busy, multifunctional building using a Multiparameter Bioaerosol Spectrometer. First we introduce and demonstrate a gradient boosting ensemble decision tree algorithm’s ability to accurately classify laboratory generated PBAP samples into broad taxonomic classes with a high level of accuracy. We then develop a framework to appraise the classification accuracy and performance using the Hellinger distance metric to compare product parameter probability density function similarity; this framework showed that key training classes were sufficiently different in terms of particle fluorescence and morphology to facilitate classification. We also demonstrate the utility of including advanced morphological parameters to minimise inter-class conflation and improve classification confidence, where relying on the fluorescent spectra alone would likely result in misattribution. Finally, we apply these methods to ambient data collected within a large multi-functional building where ambient bacterial- and fungal-like classes were identified to display trends corresponding to human activity; fungal-like classes displayed a consistent diurnal trend with a maximum at midday and hourly peaks correlating to movements within the building; bacteria-like aerosol displayed complex, episodic events during opening hours. All PBAP classes fell to low baseline concentrations when the building was unoccupied overnight and at weekends.
Collapse
|
36
|
Sarda-Estève R, Baisnée D, Guinot B, Mainelis G, Sodeau J, O’Connor D, Besancenot JP, Thibaudon M, Monteiro S, Petit JE, Gros V. Atmospheric Biodetection Part I: Study of Airborne Bacterial Concentrations from January 2018 to May 2020 at Saclay, France. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E6292. [PMID: 32872373 PMCID: PMC7504533 DOI: 10.3390/ijerph17176292] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/20/2020] [Accepted: 08/24/2020] [Indexed: 11/16/2022]
Abstract
Background: The monitoring of bioaerosol concentrations in the air is a relevant endeavor due to potential health risks associated with exposure to such particles and in the understanding of their role in climate. In this context, the atmospheric concentrations of bacteria were measured from January 2018 to May 2020 at Saclay, France. The aim of the study was to understand the seasonality, the daily variability, and to identify the geographical origin of airborne bacteria. Methods: 880 samples were collected daily on polycarbonate filters, extracted with purified water, and analyzed using the cultivable method and flow cytometry. A source receptor model was used to identify the origin of bacteria. Results: A tri-modal seasonality was identified with the highest concentrations early in spring and over the summer season with the lowest during the winter season. Extreme changes occurred daily due to rapid changes in meteorological conditions and shifts from clean air masses to polluted ones. Conclusion: Our work points toward bacterial concentrations originating from specific seasonal-geographical ecosystems. During pollution events, bacteria appear to rise from dense urban areas or are transported long distances from their sources. This key finding should drive future actions to better control the dispersion of potential pathogens in the air, like persistent microorganisms originating from contaminated areas.
Collapse
Affiliation(s)
- Roland Sarda-Estève
- Laboratoire des Sciences du Climat et de l’Environnement, LSCE/IPSL, Unité mixte de recherche CEA-CNRS-UVSQ, 91190 Saint-Aubin, France; (D.B.); (J.-E.P.); (V.G.)
| | - Dominique Baisnée
- Laboratoire des Sciences du Climat et de l’Environnement, LSCE/IPSL, Unité mixte de recherche CEA-CNRS-UVSQ, 91190 Saint-Aubin, France; (D.B.); (J.-E.P.); (V.G.)
| | - Benjamin Guinot
- Laboratoire d’Aérologie, Université Toulouse III, CNRS, UPS, 31400 Toulouse, France;
- Réseau National de Surveillance Aérobiologique, 69690 Brussieu, France; (J.P.B.); (M.T.)
| | - Gediminas Mainelis
- Department of Environmental Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901-8525, USA;
| | - John Sodeau
- Department of Chemistry and Environmental Research Institute, University College Cork, T12 YN60 Cork, Ireland;
| | - David O’Connor
- School of Chemical and Pharmaceutical Sciences, Technological University of Dublin, D06F793 Dublin 6, Ireland;
| | - Jean Pierre Besancenot
- Réseau National de Surveillance Aérobiologique, 69690 Brussieu, France; (J.P.B.); (M.T.)
| | - Michel Thibaudon
- Réseau National de Surveillance Aérobiologique, 69690 Brussieu, France; (J.P.B.); (M.T.)
| | - Sara Monteiro
- Themo Fisher Scientific, 18 avenue de Quebec, 91941 Villebon Courtaboeuf, France;
| | - Jean-Eudes Petit
- Laboratoire des Sciences du Climat et de l’Environnement, LSCE/IPSL, Unité mixte de recherche CEA-CNRS-UVSQ, 91190 Saint-Aubin, France; (D.B.); (J.-E.P.); (V.G.)
| | - Valérie Gros
- Laboratoire des Sciences du Climat et de l’Environnement, LSCE/IPSL, Unité mixte de recherche CEA-CNRS-UVSQ, 91190 Saint-Aubin, France; (D.B.); (J.-E.P.); (V.G.)
| |
Collapse
|
37
|
Tarn MD, Sikora SNF, Porter GCE, Wyld BV, Alayof M, Reicher N, Harrison AD, Rudich Y, Shim JU, Murray BJ. On-chip analysis of atmospheric ice-nucleating particles in continuous flow. LAB ON A CHIP 2020; 20:2889-2910. [PMID: 32661539 DOI: 10.1039/d0lc00251h] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Ice-nucleating particles (INPs) are of atmospheric importance because they catalyse the freezing of supercooled cloud droplets, strongly affecting the lifetime and radiative properties of clouds. There is a need to improve our knowledge of the global distribution of INPs, their seasonal cycles and long-term trends, but our capability to make these measurements is limited. Atmospheric INP concentrations are often determined using assays involving arrays of droplets on a cold stage, but such assays are frequently limited by the number of droplets that can be analysed per experiment, often involve manual processing (e.g. pipetting of droplets), and can be susceptible to contamination. Here, we present a microfluidic platform, the LOC-NIPI (Lab-on-a-Chip Nucleation by Immersed Particle Instrument), for the generation of water-in-oil droplets and their freezing in continuous flow as they pass over a cold plate for atmospheric INP analysis. LOC-NIPI allows the user to define the number of droplets analysed by simply running the platform for as long as required. The use of small (∼100 μm diameter) droplets minimises the probability of contamination in any one droplet and therefore allows supercooling all the way down to homogeneous freezing (around -36 °C), while a temperature probe in a proxy channel provides an accurate measure of temperature without the need for temperature modelling. The platform was validated using samples of pollen extract and Snomax®, with hundreds of droplets analysed per temperature step and thousands of droplets being measured per experiment. Homogeneous freezing of purified water was studied using >10 000 droplets with temperature increments of 0.1 °C. The results were reproducible, independent of flow rate in the ranges tested, and the data compared well to conventional instrumentation and literature data. The LOC-NIPI was further benchmarked in a field campaign in the Eastern Mediterranean against other well-characterised instrumentation. The continuous flow nature of the system provides a route, with future development, to the automated monitoring of atmospheric INP at field sites around the globe.
Collapse
Affiliation(s)
- Mark D Tarn
- School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, UK. and School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, UK.
| | | | - Grace C E Porter
- School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, UK. and School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, UK.
| | - Bethany V Wyld
- School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, UK.
| | - Matan Alayof
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Naama Reicher
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | - Yinon Rudich
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Jung-Uk Shim
- School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, UK.
| | - Benjamin J Murray
- School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
38
|
Abstract
The terrestrial biosphere-atmosphere interface provides a key chemical, biological, and physical lower boundary for the atmosphere. The presence of vegetation itself modifies the physical boundary, or the biogeophysical aspects of the system, by controlling important climate drivers such as soil moisture, light environment, and temperature. The leaf surface area of the terrestrial biosphere provides additional surface area for emissions, and it can be up to 55% of the total Earth's surface area during the boreal summer. Vegetation also influences the biogeochemical aspects of the system by emitting a broad suite of reactive trace gases such as biogenic volatile organic compound (BVOC) emissions and climate-relevant primary biological aerosol particles (PBAP). Many of these emissions are a function of meteorological and climatological conditions at the surface, including temperature, light environment, soil moisture, and winds. Once emitted, they can be processed in the troposphere through a suite of chemical reactions. BVOC can contribute to the formation of ozone and secondary organic aerosols (SOA), and PBAP can rupture to form smaller particles with climatic relevance. These emissions and subsequent aerosol products can influence atmospheric processes that affect the surface climate, such as the attenuation of radiation, the formation of greenhouse gases such as ozone that can feedback to surface air temperature, and the alteration of clouds and subsequent precipitation. These atmospheric changes can then feedback to the land surface and emissions themselves, creating positive or negative feedback loops that can dampen or amplify the emission response. For the dominant BVOC isoprene, the feedback response to temperature can be positive or negative depending on ambient temperatures that drive isoprene emissions. The feedback response to soil moisture and precipitation can be positive, negative, or uncoupled depending on the moisture content of the soil and the total atmospheric aerosol loading. For light, the isoprene response can be positive or negative depending on the role of diffuse light. Overall, these feedbacks highlight the dynamical response of the biosphere to changing atmospheric conditions across a range of time scales, from minutes for trace gases and aerosols, to months for phenological changes, to years for land cover and land use change. The dynamic aspect of this system requires us to understand, simulate, and predict the complex feedbacks between the biosphere and atmosphere and understand their role in the simulation and understanding of climate and global change. From the observational perspective, these feedbacks are challenging to identify in observations, and predictive modeling tools provide a crucial link for understanding how these feedbacks will change under warming climate scenarios.
Collapse
Affiliation(s)
- Allison L. Steiner
- Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, Michigan 48109-2143, United States
| |
Collapse
|
39
|
Krishnamoorthy S, Muthalagu A, Priyamvada H, Akkal S, Valsan AE, Raghunathan R, Kanawade VP, Gunthe SS. On distinguishing the natural and human-induced sources of airborne pathogenic viable bioaerosols: characteristic assessment using advanced molecular analysis. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-2965-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
|
40
|
Cheng B, Yue S, Hu W, Ren L, Deng J, Wu L, Fu P. Summertime fluorescent bioaerosol particles in the coastal megacity Tianjin, North China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 723:137966. [PMID: 32229379 DOI: 10.1016/j.scitotenv.2020.137966] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/13/2020] [Accepted: 03/14/2020] [Indexed: 06/10/2023]
Abstract
Primary biological particles are an important subset of atmospheric aerosols. They have significant impacts on climate change and public health. Tianjin is a coastal megacity in the North China Plain, which is affected by both anthropogenic activities and marine air masses. To study the abundance and dynamic change of bioaerosols in Tianjin, fluorescent biological aerosol particles (FBAPs) in Tianjin were investigated by a wideband integrated bioaerosol sensor (WIBS-4A) in terms of number concentrations and size distributions in summer (11th -25th August 2018). Meanwhile, total suspended particles were collected and analyzed for chemical compounds to identify potential sources of bioaerosols. WIBS data showed that fluorescent biological particles exhibited two peaks at sunrise (~7:00) and in the evening (~20:00), which were probably caused by the enhancement of fungal spores and bacteria. Three rain events occurred during the observation period. Precipitation enhanced the abundance of biological particles, which were likely released from vegetation leaves, resuspended from soil surfaces, and/or carried by raindrops from high altitudes. The abundance of biological particles showed no significant correlation with Na+ (r = -0.17), indicating the air masses from marine areas carried limited biological particles compared to those from continental areas.
Collapse
Affiliation(s)
- Borong Cheng
- Institute of Surface-Earth System Science, Tianjin University, Tianjin 300072, China
| | - Siyao Yue
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Hu
- Institute of Surface-Earth System Science, Tianjin University, Tianjin 300072, China; State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China.
| | - Lujie Ren
- Institute of Surface-Earth System Science, Tianjin University, Tianjin 300072, China
| | - Junjun Deng
- Institute of Surface-Earth System Science, Tianjin University, Tianjin 300072, China
| | - Libin Wu
- Institute of Surface-Earth System Science, Tianjin University, Tianjin 300072, China
| | - Pingqing Fu
- Institute of Surface-Earth System Science, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
41
|
Schwidetzky R, Kunert AT, Bonn M, Pöschl U, Ramløv H, DeVries AL, Fröhlich-Nowoisky J, Meister K. Inhibition of Bacterial Ice Nucleators Is Not an Intrinsic Property of Antifreeze Proteins. J Phys Chem B 2020; 124:4889-4895. [PMID: 32437152 DOI: 10.1021/acs.jpcb.0c03001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cold-adapted organisms use antifreeze proteins (AFPs) or ice-nucleating proteins (INPs) for the survival in freezing habitats. AFPs have been reported to be able to inhibit the activity of INPs, a property that would be of great physiological relevance. The generality of this effect is not understood, and for the few known examples of INP inhibition by AFPs, the molecular mechanisms remain unclear. Here, we report a comprehensive evaluation of the effects of five different AFPs on the activity of bacterial ice nucleators using a high-throughput ice nucleation assay. We find that bacterial INPs are inhibited by certain AFPs, while others show no effect. Thus, the ability to inhibit the activity of INPs is not an intrinsic property of AFPs, and the interactions of INPs and different AFPs proceed through protein-specific rather than universal molecular mechanisms.
Collapse
Affiliation(s)
| | - Anna T Kunert
- Max Planck Institute for Chemistry, 55128 Mainz, Germany
| | - Mischa Bonn
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - Ulrich Pöschl
- Max Planck Institute for Chemistry, 55128 Mainz, Germany
| | | | - Arthur L DeVries
- University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | | | - Konrad Meister
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany.,University of Alaska Southeast, Juneau, Alaska 99801, United States
| |
Collapse
|
42
|
Li W, Liu L, Xu L, Zhang J, Yuan Q, Ding X, Hu W, Fu P, Zhang D. Overview of primary biological aerosol particles from a Chinese boreal forest: Insight into morphology, size, and mixing state at microscopic scale. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 719:137520. [PMID: 32126409 DOI: 10.1016/j.scitotenv.2020.137520] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 02/20/2020] [Accepted: 02/22/2020] [Indexed: 05/05/2023]
Abstract
Biological aerosols play an important role in atmospheric chemistry, clouds, climate, and public health. Here, we studied the morphology and composition of primary biological aerosol particles (PBAPs) collected in the Lesser Khingan Mountain boreal forest of China in summertime using transmission electron microscopy (TEM) and scanning electron microscopy (SEM). C, N, O, P, K, and Si were detected in most of the PBAPs, and P represented a major marker to discriminate the PBAPs. Of all detected particles >100 nm in diameter, 13% by number were identified as PBAPs. We found that one type of PBAPs mostly appeared as similar rod-like shapes with an aspect ratio > 1.5. Size distribution of the rod-like PBAPs displays two typical peaks at 1.4 μm and 3.5 μm, which likely are bacteria and fungal particles. The second most PBAPs were identified as fungal spores with ovoid, sub-globular or elongated shapes with a smooth surface and small protuberances with their dominant size range of 2-5 μm. Moreover, we found some large brochosomal clusters containing hundreds of brochosomes with a size range of 200-700 nm and a shape like a truncated icosahedron. We estimated that mass concentration of PBAPs approximately 1.9 μg m-3 and contributed 47% of the in situ PM2.5-10 mass. The detection frequency and concentration of PBAPs were higher at night than in the daytime, suggesting that the relative humidity dramatically enhanced the PBAPs emissions in the boreal forest. Our study also showed that the fresh PBAPs displayed weak hygroscopicity with a growth factor of ~1.09 at RH = 94%. TEM analysis revealed that about 20% of the rod-like PBAPs were internally mixed with metal, mineral dust, and inorganic salts in the boreal forest air. This work for the first time provides the overview of individual PBAPs from nanoscale to microscale in Chinese boreal forest air.
Collapse
Affiliation(s)
- Weijun Li
- Key Laboratory of Geoscience Big Data and Deep Resource of Zhejiang Province, Department of Atmospheric Sciences, School of Earth Sciences, Zhejiang University, Hangzhou, Zhejiang, 310027, China.
| | - Lei Liu
- Key Laboratory of Geoscience Big Data and Deep Resource of Zhejiang Province, Department of Atmospheric Sciences, School of Earth Sciences, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Liang Xu
- Key Laboratory of Geoscience Big Data and Deep Resource of Zhejiang Province, Department of Atmospheric Sciences, School of Earth Sciences, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Jian Zhang
- Key Laboratory of Geoscience Big Data and Deep Resource of Zhejiang Province, Department of Atmospheric Sciences, School of Earth Sciences, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Qi Yuan
- Key Laboratory of Geoscience Big Data and Deep Resource of Zhejiang Province, Department of Atmospheric Sciences, School of Earth Sciences, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Xiaokun Ding
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Wei Hu
- Institute of Surface-Earth System Science, Tianjin University, 300072, Tianjin, China
| | - Pingqing Fu
- Institute of Surface-Earth System Science, Tianjin University, 300072, Tianjin, China
| | - Daizhou Zhang
- Faculty of Environmental and Symbiotic Sciences, Prefectural University of Kumamoto, Kumamoto 862-8502, Japan
| |
Collapse
|
43
|
Freezing from the inside: Ice nucleation in Escherichia coli and Escherichia coli ghosts by inner membrane bound ice nucleation protein InaZ. Biointerphases 2020; 15:031003. [PMID: 32429672 DOI: 10.1116/1.5142174] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Ice nucleation (IN) active bacteria such as Pseudomonas syringae promote the growth of ice crystals more effectively than any material known. Using the specialized ice nucleation protein (INP) InaZ, P. syringae-the well studied epiphytic plant pathogen-attacks plants by frost damage and, likewise fascinating, drives ice nucleation within clouds when airborne in the atmosphere by linkage to the Earth's water cycle. While ice nucleation proteins play a tremendous role for life on the planet, the molecular details of their activity on the bacterial membrane surface are largely unknown. Bacterial ghosts (BGs) derived from Escherichia coli can be used as simplified model systems to study the mode of action of InaZ. In this work, the authors used BGs to study the role of InaZ localization on the luminal side of the bacterial inner membrane. Naturally, P. syringae INPs are displayed on the surface of the outer membrane; so in contrast, the authors engineered an N-terminal truncated form of inaZ lacking the transport sequence for anchoring of InaZ on the outer membrane. This construct was fused to N- and C-terminal inner membrane anchors and expressed in Escherichia coli C41. The IN activity of the corresponding living recombinant E. coli catalyzing interfacial ice formation of supercooled water at high subzero temperatures was tested by a droplet-freezing assay and surface spectroscopy. The median freezing temperature (T50) of the parental living E. coli C41 cells without INP was detected at -20.1 °C and with inner membrane anchored INPs at a T50 value between -7 and -9 °C, demonstrating that the induction of IN from the inside of the bacterium by inner membrane anchored INPs facing the luminal inner membrane side is very similar to IN induced by bacterial INPs located at the outer membrane. Bacterial ghosts derived from these different constructs showed first droplet freezing values between -6 and -8 °C, whereas E. coli C41 BGs alone without carrying inner membrane anchored INPs exhibit a T50 of -18.9 °C. Sum frequency generation spectroscopy showed structural ordered water at the BG/water interface, which increased close to the water melting point. Together, this indicates that the more efficient IN of INP-BGs compared to their living parental strains can be explained by the free access of inner membrane anchored INP constructs to ultrapure water filling the inner space of the BGs.
Collapse
|
44
|
González-Toril E, Osuna S, Viúdez-Moreiras D, Navarro-Cid I, Toro SDD, Sor S, Bardera R, Puente-Sánchez F, de Diego-Castilla G, Aguilera Á. Impacts of Saharan Dust Intrusions on Bacterial Communities of the Low Troposphere. Sci Rep 2020; 10:6837. [PMID: 32321958 PMCID: PMC7176723 DOI: 10.1038/s41598-020-63797-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 03/31/2020] [Indexed: 11/30/2022] Open
Abstract
We have analyzed the bacterial community of a large Saharan dust event in the Iberian Peninsula and, for the first time, we offer new insights regarding the bacterial distribution at different altitudes of the lower troposphere and the replacement of the microbial airborne structure as the dust event receeds. Samples from different open-air altitudes (surface, 100 m and 3 km), were obtained onboard the National Institute for Aerospace Technology (INTA) C-212 aircrafts. Samples were collected during dust and dust-free air masses as well two weeks after the dust event. Samples related in height or time scale seems to show more similar community composition patterns compared with unrelated samples. The most abundant bacterial species during the dust event, grouped in three different phyla: (a) Proteobacteria: Rhizobiales, Sphingomonadales, Rhodobacterales, (b) Actinobacteria: Geodermatophilaceae; (c) Firmicutes: Bacillaceae. Most of these taxa are well known for being extremely stress-resistant. After the dust intrusion, Rhizobium was the most abundant genus, (40-90% total sequences). Samples taken during the flights carried out 15 days after the dust event were much more similar to the dust event samples compared with the remaining samples. In this case, Brevundimonas, and Methylobacterium as well as Cupriavidus and Mesorizobium were the most abundant genera.
Collapse
Affiliation(s)
- Elena González-Toril
- Centro de Astrobiología (CSIC-INTA). Carretera de Ajalvir Km 4, Torrejón de Ardoz, 28850, Madrid, Spain
| | - Susana Osuna
- Centro de Astrobiología (CSIC-INTA). Carretera de Ajalvir Km 4, Torrejón de Ardoz, 28850, Madrid, Spain
| | - Daniel Viúdez-Moreiras
- Centro de Astrobiología (CSIC-INTA). Carretera de Ajalvir Km 4, Torrejón de Ardoz, 28850, Madrid, Spain
| | - Ivan Navarro-Cid
- Centro de Astrobiología (CSIC-INTA). Carretera de Ajalvir Km 4, Torrejón de Ardoz, 28850, Madrid, Spain
| | - Silvia Díaz Del Toro
- Department of Genetics, Physiology and Microbiology. Biology Faculty. C/José Antonio Novais, 12, Universidad Complutense de Madrid (UCM), 28040, Madrid, Spain
| | - Suthyvann Sor
- Aerodinamic Department (INTA). Carretera de Ajalvir Km 4, Torrejón de Ardoz, 28850, Madrid, Spain
| | - Rafael Bardera
- Aerodinamic Department (INTA). Carretera de Ajalvir Km 4, Torrejón de Ardoz, 28850, Madrid, Spain
| | - Fernando Puente-Sánchez
- Systems Biology Program. Centro Nacional de Biotecnología. C/ Darwin n° 3, Campus de Cantoblanco, 28049, Madrid, Spain
| | | | - Ángeles Aguilera
- Centro de Astrobiología (CSIC-INTA). Carretera de Ajalvir Km 4, Torrejón de Ardoz, 28850, Madrid, Spain.
| |
Collapse
|
45
|
Lukas M, Schwidetzky R, Kunert AT, Pöschl U, Fröhlich-Nowoisky J, Bonn M, Meister K. Electrostatic Interactions Control the Functionality of Bacterial Ice Nucleators. J Am Chem Soc 2020; 142:6842-6846. [PMID: 32223131 DOI: 10.1021/jacs.9b13069] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Bacterial ice-nucleating proteins (INPs) promote heterogeneous ice nucleation more efficiently than any other material. The details of their working mechanism remain elusive, but their high activity has been shown to involve the formation of functional INP aggregates. Here we reveal the importance of electrostatic interactions for the activity of INPs from the bacterium Pseudomonas syringae by combining a high-throughput ice nucleation assay with surface-specific sum-frequency generation spectroscopy. We determined the charge state of nonviable P. syringae as a function of pH by monitoring the degree of alignment of the interfacial water molecules and the corresponding ice nucleation activity. The net charge correlates with the ice nucleation activity of the INP aggregates, which is minimal at the isoelectric point. In contrast, the activity of INP monomers is less affected by pH changes. We conclude that electrostatic interactions play an essential role in the formation of the highly efficient functionally aligned INP aggregates, providing a mechanism for promoting aggregation under conditions of stress that prompt the bacteria to nucleate ice.
Collapse
Affiliation(s)
- M Lukas
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - R Schwidetzky
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - A T Kunert
- Max Planck Institute for Chemistry, 55128 Mainz, Germany
| | - U Pöschl
- Max Planck Institute for Chemistry, 55128 Mainz, Germany
| | | | - M Bonn
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - K Meister
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany.,University of Alaska Southeast, Juneau, Alaska 99801, United States
| |
Collapse
|
46
|
Aho KA, Weber CF, Christner BC, Vinatzer BA, Morris CE, Joyce R, Failor KC, Werth JT, Bayless‐Edwards ALH, Schmale DG. Spatiotemporal patterns of microbial composition and diversity in precipitation. ECOL MONOGR 2019. [DOI: 10.1002/ecm.1394] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Ken A. Aho
- Biological Sciences Idaho State University Pocatello Idaho 83209‐8007 USA
| | - Carolyn F. Weber
- Biological Sciences Idaho State University Pocatello Idaho 83209‐8007 USA
| | - Brent C. Christner
- Department of Microbiology and Cell Science Biodiversity Institute University of Florida Gainesville Florida 32611 USA
| | - Boris A. Vinatzer
- School of Plant and Environmental Sciences Virginia Tech Blacksburg Virginia 24061‐0331 USA
| | | | - Rachel Joyce
- Department of Microbiology and Cell Science Biodiversity Institute University of Florida Gainesville Florida 32611 USA
| | - Kevin C. Failor
- School of Plant and Environmental Sciences Virginia Tech Blacksburg Virginia 24061‐0331 USA
| | - Jason T. Werth
- Biological Sciences Idaho State University Pocatello Idaho 83209‐8007 USA
| | | | - David G. Schmale
- School of Plant and Environmental Sciences Virginia Tech Blacksburg Virginia 24061‐0331 USA
| |
Collapse
|
47
|
Biological Ice-Nucleating Particles Deposited Year-Round in Subtropical Precipitation. Appl Environ Microbiol 2019; 85:AEM.01567-19. [PMID: 31562166 DOI: 10.1128/aem.01567-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 09/17/2019] [Indexed: 11/20/2022] Open
Abstract
Airborne bacteria that nucleate ice at relatively warm temperatures (>-10°C) can interact with cloud water droplets, affecting the formation of ice in clouds and the residency time of the cells in the atmosphere. We sampled 65 precipitation events in southeastern Louisiana over 2 years to examine the effect of season, meteorological conditions, storm type, and ecoregion source on the concentration and type of ice-nucleating particles (INPs) deposited. INPs sensitive to heat treatment were inferred to be biological in origin, and the highest concentrations of biological INPs (∼16,000 INPs liter-1 active at ≥-10°C) were observed in snow and sleet samples from wintertime nimbostratus clouds with cloud top temperatures as warm as -7°C. Statistical analysis revealed three temperature classes of biological INPs (INPs active from -5 to -10°C, -11 to -12°C, and -13 to -14°C) and one temperature class of INPs that were sensitive to lysozyme (i.e., bacterial INPs, active from -5 to -10°C). Significant correlations between the INP data and abundances of taxa in the Bacteroidetes, Firmicutes, and unclassified bacterial divisions implied that certain members of these phyla may possess the ice nucleation phenotype. The interrelation between the INP classes and fluorescent dissolved organic matter, major ion concentrations (Na+, Cl-, SO4 2-, and NO3 -), and backward air mass trajectories indicated that the highest concentrations of INPs were sourced from high-latitude North American and Asian continental environments, whereas the lowest values were observed when air was sourced from marine ecoregions. The intra- and extracontinental regions identified as sources of biological INPs in precipitation deposited in the southeastern United States suggests that these bioaerosols can disperse and affect meteorological conditions thousands of kilometers from their terrestrial points of origin.IMPORTANCE The particles most effective at inducing the freezing of water in the atmosphere are microbiological in origin; however, information on the species harboring this phenotype, their environmental distribution, and ecological sources are very limited. Analysis of precipitation collected over 2 years in Louisiana showed that INPs active at the warmest temperatures were sourced from terrestrial ecosystems and displayed behaviors that implicated specific bacterial taxa as the source of the ice nucleation activity. The abundance of biological INPs was highest in precipitation from winter storms and implied that their in-cloud concentrations were sufficient to affect the formation of ice and precipitation in nimbostratus clouds.
Collapse
|
48
|
Release of Highly Active Ice Nucleating Biological Particles Associated with Rain. ATMOSPHERE 2019. [DOI: 10.3390/atmos10100605] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Biological particles may play an important role in the climate system by efficiently acting as ice nucleating particles (INPs) at a higher temperature range (e.g., above −20 °C where representative INPs such as mineral dust remain inactive), but there is an obvious lack of direct evidence that these particles serve in this manner. Here, we collected ambient particles under different weather conditions for identifying INPs that are active above −22 °C. The abundance of such efficient INPs increased during or following rainfall events. The extensive characterization of individual particles by three different analyses (particle morphology and composition, heat sensitivity of ice nucleation activities, and biological fingerprinting by DNA staining) revealed that efficient INPs have distinctly biological characteristics, which differ significantly from more abundant, representative, and relatively less active INPs, such as mineral dust. Additionally, by combining the heat-sensitivity experiments and DNA staining techniques, efficient INPs were found to contain heat-sensitive biomaterials and biological cells. Our findings provide direct evidence that biological particles are preferentially released into the atmosphere during rainfall events and act as important atmospheric INPs at higher temperature ranges (warmer than −22 °C), where typical INPs remain inactive.
Collapse
|
49
|
Fan C, Li Y, Liu P, Mu F, Xie Z, Lu R, Qi Y, Wang B, Jin C. Characteristics of airborne opportunistic pathogenic bacteria during autumn and winter in Xi'an, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 672:834-845. [PMID: 30978545 DOI: 10.1016/j.scitotenv.2019.03.412] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 05/23/2023]
Abstract
Bacteria are ubiquitous throughout the earth's lower atmosphere. Bacteria, especially pathogenic bacteria, play an important role in human health. The diversity, composition, and dynamics of airborne bacteria has been widely studied; however, the characteristics of pathogenic bacteria remain poorly understood. In this study, a high throughput sequencing method was used to explore the airborne opportunistic pathogenic bacteria during autumn and winter in Xi'an, China. An aggregated boosted tree (ABT) was developed to determine the relative influence of environmental factors on the proportions of opportunistic pathogenic bacteria. Results showed that significantly more opportunistic pathogenic bacteria were found in winter than in autumn, and more opportunistic pathogenic bacteria were found in fine particulate matters (<2.5 μm) than in PM10 (<10 μm). However, the composition of opportunistic pathogenic bacteria varied in autumn and winter. PM was the main factor affecting the proportions of opportunistic pathogenic bacteria, and air contaminants (PM, sulfur dioxide, nitrogen oxide, carbon monoxide, and ozone) influenced the proportion of opportunistic pathogenic bacteria more than meteorological factors (relative humidity, temperature, and wind speed). Different factors may be responsible for the variances in opportunistic pathogenic bacterial communities in different seasons. This study may provide a reference to support the control of pathogenic bacteria in urban environments during haze events.
Collapse
Affiliation(s)
- Chunlan Fan
- School of Environmental Science and Engineering, Chang'an University, Xi'an 710054, China
| | - Yanpeng Li
- School of Environmental Science and Engineering, Chang'an University, Xi'an 710054, China; Key Laboratory of Subsurface Hydrology and Ecology in Arid Areas, Ministry of Education, Xi'an 710054, PR China.
| | - Pengxia Liu
- School of Environmental Science and Engineering, Chang'an University, Xi'an 710054, China
| | - Feifei Mu
- School of Environmental Science and Engineering, Chang'an University, Xi'an 710054, China
| | - Zhengsheng Xie
- School of Environmental Science and Engineering, Chang'an University, Xi'an 710054, China
| | - Rui Lu
- School of Environmental Science and Engineering, Chang'an University, Xi'an 710054, China
| | - Yuzhen Qi
- School of Environmental Science and Engineering, Chang'an University, Xi'an 710054, China
| | - Beibei Wang
- School of Environmental Science and Engineering, Chang'an University, Xi'an 710054, China
| | - Cheng Jin
- School of Architecture, Chang'an University, Xi'an 710054, China
| |
Collapse
|
50
|
Yahya RZ, Arrieta JM, Cusack M, Duarte CM. Airborne Prokaryote and Virus Abundance Over the Red Sea. Front Microbiol 2019; 10:1112. [PMID: 31214129 PMCID: PMC6554326 DOI: 10.3389/fmicb.2019.01112] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 05/01/2019] [Indexed: 11/13/2022] Open
Abstract
Aeolian dust exerts a considerable influence on atmospheric and oceanic conditions negatively impacting human health, particularly in arid and semi-arid regions like Saudi Arabia. Aeolian dust is often characterized by its mineral and chemical composition; however, there is a microbiological component of natural aerosols that has received comparatively little attention. Moreover, the amount of materials suspended in the atmosphere is highly variable from day to day. Thus, understanding the variability of atmospheric dust loads and suspended microbes throughout the year is essential to clarify the possible effects of dust on the Red Sea ecosystem. Here, we present the first estimates of dust and microbial loads at a coastal site on the Red Sea over a 2-year period, supplemented with measurements from dust samples collected along the Red Sea basin in offshore waters. Weekly average dust loads from a coastal site on the Red Sea ranged from 4.6 to 646.11 μg m-3, while the abundance of airborne prokaryotic cells and viral-like particles (VLPs) ranged from 77,967 to 1,203,792 cells m-3 and from 69,615 to 3,104,758 particles m-3, respectively. To the best of our knowledge, these are the first estimates of airborne microbial abundance in this region. The elevated concentrations of resuspended dust particles and suspended microbes found in the air indicate that airborne microbes may potentially have a large impact on human health and on the Red Sea ecosystem.
Collapse
Affiliation(s)
- Razan Z Yahya
- Division of Biological and Environmental Science and Engineering, Red Sea Research Centre and Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Jesús M Arrieta
- Spanish Institute of Oceanography (IEO), Oceanographic Center of The Canary Islands, Santa Cruz de Tenerife, Spain
| | - Michael Cusack
- Division of Biological and Environmental Science and Engineering, Red Sea Research Centre and Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Carlos M Duarte
- Division of Biological and Environmental Science and Engineering, Red Sea Research Centre and Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|