1
|
Elias G, Majdalani G, Renard D, Faour G, Mouillot F. Multiple asynchronous drought facets drive Mediterranean natural and cultivated ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 969:178990. [PMID: 40024045 DOI: 10.1016/j.scitotenv.2025.178990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 02/24/2025] [Accepted: 02/24/2025] [Indexed: 03/04/2025]
Abstract
Drought is a keystone constraint with far-reaching implications for agro-environmental threats. Yet, drought indices are mostly hydro-meteorological or agricultural, obscuring evidence of the key role agro-ecosystem diversity plays in buffering the consequences of regional climatic variability. We then question how contrasted drought facets could differentially drive the functioning of agro-ecosystems, and whether the interannual asynchrony of these facets might prevent multi-crisis events. Here, we examine how a multifaceted characterization of yearly drought events differentially relates to key agro-environmental sectors and test how these drought facets synchronize over Lebanon, a Middle Eastern drought-prone country grappling with socio-economic and political crises. Using parsimonious multiple linear regression (MLR) models, we captured the combined functional roles of six yearly drought facets (duration, onset, offset, drying rate, peak drought day, and mean intensity of episodic rainfall pulses) on major agro-environmental sectors, including winter wheat yield, tree-ring radial growth, and area burned by wildfires. Delayed drought offset and faster spring soil moisture drying rates appeared more closely associated to increased burned areas (R2 = 0.25), while drought onset and autumn rainfall pulses from the previous year were negatively linked to winter wheat yield (R2 = 0.12), and tree radial growth switched from a control by drought onset and to duration with increasing altitude (R2 = 0.33). The observed asynchrony in agro-environmental response to climate variability over the 1960-2020 period appears to buffer the occurrence of concomitant extremes, a pattern that we could relate to the asynchrony in their controlling drought facets. By demonstrating the functional role of each drought facet, we conclude on the efficiency of a compound functionally-sound drought facets index for synchronous agro-environmental climate crisis warning.
Collapse
Affiliation(s)
- Georgie Elias
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, 1919 Route de Mende, CEDEX 5, 34293 Montpellier, France
| | - Georgia Majdalani
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, 1919 Route de Mende, CEDEX 5, 34293 Montpellier, France
| | - Delphine Renard
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, 1919 Route de Mende, CEDEX 5, 34293 Montpellier, France
| | - Ghaleb Faour
- National Center for Remote Sensing, National Council for Scientific Research (CNRS), Riad al Soloh, Beirut 1107 2260, Lebanon
| | - Florent Mouillot
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, 1919 Route de Mende, CEDEX 5, 34293 Montpellier, France.
| |
Collapse
|
2
|
Salomón RL, Camarero JJ. Stem Growth and Dehydration Responses of Mediterranean Tree Species to Atmospheric and Soil Drought. PLANT, CELL & ENVIRONMENT 2025; 48:866-881. [PMID: 39363554 PMCID: PMC11615415 DOI: 10.1111/pce.15177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/21/2024] [Accepted: 09/13/2024] [Indexed: 10/05/2024]
Abstract
Stem growth responses to soil and atmospheric drought are critical to forecasting the tree carbon sink strength. Yet, responses of drought-prone forests remain uncertain despite global aridification trends. Stem diameter variations at an hourly resolution were monitored in five Mediterranean tree species from a mesic and a xeric site for 6 and 12 years. Stem growth and dehydration responses to soil (REW) and atmospheric (VPD) drought were explored at different timescales. Annually, growth was determined by the number of growing days and hours. Seasonally, growth was bimodal (autumn growth ≈ 8%-18% of annual growth), varying among species and sites across the hydrometeorological space, while dehydration consistently responded to REW. Sub-daily, substantial growth occurred during daytime, with nighttime-to-daytime ratios ranging between 1.2 and 3.5 (Arbutus unedo ≈ Quercus faginea < Quercus ilex < Pinus halepensis in the mesic site, and Juniperus thurifera < P. halepensis in the xeric site). Overall, time windows favourable for growth were limited by soil (rather than atmospheric) drought, modulating annual and seasonal growth in Mediterranean species, and stems maintained non-negligible growth during daytime. These patterns contrast with observations from wetter or cooler biomes, demonstrating the growth plasticity of drought-prone species to more arid climate conditions.
Collapse
Affiliation(s)
- Roberto L. Salomón
- Departamento de Sistemas y Recursos Naturales, Research Group FORESCENTUniversidad Politécnica de MadridMadridSpain
| | | |
Collapse
|
3
|
Oswald SW, Aubrey DP. Season of drought affects growth, but not nonstructural carbohydrates dynamics, in Pinus taeda saplings. TREE PHYSIOLOGY 2024; 44:119-133. [PMID: 38307514 DOI: 10.1093/treephys/tpae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 01/09/2024] [Accepted: 01/21/2024] [Indexed: 02/04/2024]
Abstract
In temperate evergreen conifers, growth occurs mostly in summer but photosynthesis proceeds year-round; thus, nonstructural carbohydrates (NSCs) increase in winter but decrease in summer. Given that mild drought reduces growth but not photosynthesis, a drought in summer should increase NSCs more than one in winter. However, the active regulation hypothesis suggests that to increase future drought resilience, plants might downregulate growth to increase NSCs after a winter drought even if NSCs do not increase during the drought. To test whether this is so, potted Pinus taeda saplings (age $<\kern-3pt1$ year) were subjected to 6-month droughts in a greenhouse with one treatment receiving drought during winter (September-March), and another during summer (March-September). Both treatments were compared with a control. To measure dry biomass and NSCs, we harvested plants monthly following each drought, while to assess changes in growth rates, we measured height and diameter monthly. While we observed seasonal variation and an overall increase during the study, we found no drought-related changes in NSC dynamics; however, drought did reduce growth. Furthermore, drought in winter did reduce growth during the following summer, but the reduction was less than for a drought in summer. We conclude that the effect of drought on NSCs was too small to detect in our plants. While better control of soil water would have reduced a major source of uncertainty, plants with larger NSC reserves or more intense stress would also yield easier-to-detect effects. Although not definitive, our results suggest that water stress does not lead to dramatic changes in seasonal NSC dynamics in its aftermath, despite what one might expect under the active regulation hypothesis.
Collapse
Affiliation(s)
- Scott W Oswald
- Warnell School of Forestry, University of Georgia, 180 E Green St, Athens, GA 30602, USA
- Savannah River Ecology Laboratory, Savannah River Site, Bldg. 737-A, Aiken, SC 29802, USA
| | - Doug P Aubrey
- Warnell School of Forestry, University of Georgia, 180 E Green St, Athens, GA 30602, USA
- Savannah River Ecology Laboratory, Savannah River Site, Bldg. 737-A, Aiken, SC 29802, USA
| |
Collapse
|
4
|
Lee SJ, Lee AR, Byeon JG, Oh SH. Pre-drought effects on northern temperate trees and vine invasion in forest gaps hindering regeneration. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175707. [PMID: 39179041 DOI: 10.1016/j.scitotenv.2024.175707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/28/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
Northern temperate coniferous forests serve as crucial connectors between boreal and temperate forests, yet they are vulnerable to various stressors such as climate change and human activities. Severe drought poses a significant threat to plant species within these forests, prompting recent research into its impacts. However, many studies lack explicit definitions of post-disturbance vegetation processes and fail to identify potential interactions with disturbance factors, necessitating comprehensive discussions. This study examines the effects of drought on tree growth patterns of the main dominant species in northern temperate regions: Abies nephrolepis and Picea jezoensis, along with two commonly associated Betula ermanii, and Quercus mongolica. Additionally, new disturbance factors in forests inhabited by these species (A. nephrolepis and P. jezoensis) were evaluated based on community classification. The study sites were located in the Mt. Baekdu (Changbai) and South Korea regions, which are positioned at the southern limit of the phytogeographical patterns of target species. Results indicate that A. nephrolepis and P. jezoensis exhibit high levels of recovery and resilience, while B. ermanii and Q. mongolica demonstrate high resistance. Species-specific responses align with drought intensity, with resistance, recovery, and resilience decreasing notably with increasing pre-drought radial growth. South Korean forests, the invasion of the vine species Tripterygium regelii after the death of A. nephrolepis in the overstory vegetation threatens the regeneration of new trees. However, certain environmental factors, such as high rock exposure and dense overstory canopy, limit vine invasion. Based on the results, pre-drought radial growth emerges as a key determinant in how trees respond to drought. Additionally, the results suggest the potential for new disturbances to emerge in forest gaps due to overstory vegetation mortality induced by global warming. These findings contribute to a deeper understanding of increasing drought stress, aid in identifying climate refugia, and inform conservation priorities based on habitat characteristics.
Collapse
Affiliation(s)
- Seung-Jae Lee
- Department of Forestry, The Graduate School of Kyungpook National University, Daegu 41566, Republic of Korea
| | - Ah-Rim Lee
- Department of Forestry, The Graduate School of Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jun-Gi Byeon
- Baekdudaegan National Arboretum, Korea Arboreta and Gardens Institute, Bonghwa 36209, Republic of Korea
| | - Seung-Hwan Oh
- School of Forest Sciences and Landscape Architecture, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
5
|
Papin V, Bosc A, Sanchez L, Bouffier L. Integrating environmental gradients into breeding: application of genomic reactions norms in a perennial species. Heredity (Edinb) 2024; 133:160-172. [PMID: 38942781 PMCID: PMC11349766 DOI: 10.1038/s41437-024-00702-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 06/17/2024] [Accepted: 06/17/2024] [Indexed: 06/30/2024] Open
Abstract
Global warming threatens the productivity of forest plantations. We propose here the integration of environmental information into a genomic evaluation scheme using individual reaction norms, to enable the quantification of resilience in forest tree improvement and conservation strategies in the coming decades. Random regression models were used to fit wood ring series, reflecting the longitudinal phenotypic plasticity of tree growth, according to various environmental gradients. The predictive ability of the models was considered to select the most relevant environmental gradient, namely a gradient derived from an ecophysiological model and combining trunk water potential and temperature. Even if the individual ranking was preserved over most of the environmental gradient, strong genotype x environment interactions were detected in the extreme unfavorable part of the gradient, which includes environmental conditions that are very likely to be more frequent in the future. Combining genomic information and longitudinal data allowed to predict the growth of individuals in environments where they have not been observed. Phenotyping of 50% of the individuals in all the environments studied allowed to predict the growth of the remaining 50% of individuals in all these environments with a predictive ability of 0.25. Without changing the total number of observations, adding observations in a reduced number of environments for the individuals to be predicted, while decreasing the number of individuals phenotyped in all environments, increased the predictive ability to 0.59, highlighting the importance of phenotypic data allocation. We found that genomic reaction norms are useful for the characterization and prediction of the function of genetic parameters and facilitate breeding in a climate change context.
Collapse
Affiliation(s)
- Victor Papin
- INRAE, BIOGECO, UMR 1202, 69 route d'Arcachon, 33610 Cestas, France. University of Bordeaux, BIOGECO, UMR 1202, 33400, Talence, France
| | - Alexandre Bosc
- ISPA, Bordeaux Sciences Agro, INRAE, 33140, Villenave d'Ornon, France
| | - Leopoldo Sanchez
- INRAE-ONF, BioForA, UMR 0588, 2163 Avenue de la Pomme de Pin, CS 40001 Ardon, 45075, Cedex 2, Orléans, France
| | - Laurent Bouffier
- INRAE, BIOGECO, UMR 1202, 69 route d'Arcachon, 33610 Cestas, France. University of Bordeaux, BIOGECO, UMR 1202, 33400, Talence, France.
| |
Collapse
|
6
|
Mašek J, Dorado-Liñán I, Treml V. Responses of stem growth and canopy greenness of temperate conifers to dry spells. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2024; 68:1533-1544. [PMID: 38630139 PMCID: PMC11281975 DOI: 10.1007/s00484-024-02682-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/02/2024] [Accepted: 04/11/2024] [Indexed: 07/28/2024]
Abstract
Dry spells strongly influence biomass production in forest ecosystems. Their effects may last several years following a drought event, prolonging growth reduction and therefore restricting carbon sequestration. Yet, our understanding of the impact of dry spells on the vitality of trees' above-ground biomass components (e.g., stems and leaves) at a landscape level remains limited. We analyzed the responses of Pinus sylvestris and Picea abies to the four most severe drought years in topographically complex sites. To represent stem growth and canopy greenness, we used chronologies of tree-ring width and time series of the Normalized Difference Vegetation Index (NDVI). We analyzed the responses of radial tree growth and NDVI to dry spells using superposed epoch analysis and further explored this relationship using mixed-effect models. Our results show a stronger and more persistent response of radial growth to dry spells and faster recovery of canopy greenness. Canopy greenness started to recover the year after the dry spell, whereas radial tree growth remained reduced for the two subsequent years and did not recover the pre-drought level until the fourth year after the event. Stem growth and canopy greenness were influenced by climatic conditions during and after drought events, while the effect of topography was marginal. The opposite responses of stem growth and canopy greenness following drought events suggest a different impact of dry spells on trees´ sink and source compartments. These results underscore the crucial importance of understanding the complexities of tree growth as a major sink of atmospheric carbon.
Collapse
Affiliation(s)
- Jiří Mašek
- Department of Physical Geography and Geoecology, Faculty of Science, Charles University, Albertov 6, 128 43, Prague, Czech Republic.
| | - Isabel Dorado-Liñán
- Dpto. de Sistemas y Recursos Naturales, Universidad Politécnica de Madrid, Madrid, Spain
| | - Václav Treml
- Department of Physical Geography and Geoecology, Faculty of Science, Charles University, Albertov 6, 128 43, Prague, Czech Republic
| |
Collapse
|
7
|
Li X, Song Z, Hu Y, Qiao J, Chen Y, Wang S, Yue P, Chen M, Ke Y, Xu C, Yu Q, Zuo X. Drought intensity and post-drought precipitation determine vegetation recovery in a desert steppe in Inner Mongolia, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167449. [PMID: 37832659 DOI: 10.1016/j.scitotenv.2023.167449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023]
Abstract
Extreme drought events are expected to increase in frequency and severity, posing significant threats to ecosystems worldwide. While considerable research has been concentrated on the effects of climate extremes on the stability of grasslands, the process by which grassland productivity may recover after extreme drought events are still not well understood. Here, we conducted a four-year (2019-2022) recovery investigation after four-year's (2015-2018) extreme drought treatments of different intensities (control, press and pulse) to explore the vegetation recovery of desert-grassland ecosystems Inner Mongolia, China. Press drought involved a 66 % reduction in natural precipitation from May to August, while pulse drought reduced it by 100 % during June and July. We found that both press and pulse droughts led to a sharp decrease in aboveground net primary productivity (ANPP) after four years, primarily due to reduced growth, density, and productivity of annual and perennial plants. However, ANPP under pulse drought could recover fully after four years of stopping of drought treatment, and it could not under press drought. Additionally, community structure (i.e., species richness, plant density, and height) fully recovered within 1 year after the end of the two extreme drought treatments. Both plant density and height contributed to the ANPP recovery after press and pulse droughts. Structural equation modeling (SEM) results further revealed that the reduction in ANPP during the extreme drought was primarily due to a decrease in plant density caused by reduced soil water content. The recovery of ANPP in pulse drought was directly caused by increased soil water content in the post-extreme drought. These results suggest that drought intensity and precipitation determine ANPP recovery in a degraded desert steppe. Our findings are crucial for deepening understanding of the processes and mechanisms of ecosystem recovery after extreme drought, as well as for the successful management and protection of grassland ecosystems.
Collapse
Affiliation(s)
- Xiangyun Li
- Urat Desert-grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Stress Physiology and Ecology in Cold and Arid Region, Gansu Province, Lanzhou 730000, China
| | - Zhaobin Song
- Urat Desert-grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Stress Physiology and Ecology in Cold and Arid Region, Gansu Province, Lanzhou 730000, China
| | - Ya Hu
- Urat Desert-grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou 730000, China; Key Laboratory of Stress Physiology and Ecology in Cold and Arid Region, Gansu Province, Lanzhou 730000, China
| | - Jingjuan Qiao
- Urat Desert-grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Stress Physiology and Ecology in Cold and Arid Region, Gansu Province, Lanzhou 730000, China
| | - Yuheng Chen
- Ecology and Biodiversity Group, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Shaokun Wang
- Urat Desert-grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou 730000, China; Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou 730000, China; Key Laboratory of Stress Physiology and Ecology in Cold and Arid Region, Gansu Province, Lanzhou 730000, China
| | - Ping Yue
- Urat Desert-grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou 730000, China; Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou 730000, China; Key Laboratory of Stress Physiology and Ecology in Cold and Arid Region, Gansu Province, Lanzhou 730000, China
| | - Min Chen
- Urat Desert-grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou 730000, China; Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou 730000, China; Key Laboratory of Stress Physiology and Ecology in Cold and Arid Region, Gansu Province, Lanzhou 730000, China
| | - Yuguang Ke
- Hulunber Grassland Ecosystem National Observation and Research Station, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, 100081 Beijing, China
| | - Chong Xu
- Hulunber Grassland Ecosystem National Observation and Research Station, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, 100081 Beijing, China
| | - Qiang Yu
- School of Grassland Science, Beijing Forestry University, Beijing 10008, China
| | - Xiaoan Zuo
- Urat Desert-grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou 730000, China; Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou 730000, China; Key Laboratory of Stress Physiology and Ecology in Cold and Arid Region, Gansu Province, Lanzhou 730000, China.
| |
Collapse
|
8
|
Wang X, Xu T, Xu C, Liu H, Chen Z, Li Z, Li X, Wu X. Enhanced growth resistance but no decline in growth resilience under long-term extreme droughts. GLOBAL CHANGE BIOLOGY 2024; 30:e17038. [PMID: 37987223 DOI: 10.1111/gcb.17038] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/19/2023] [Accepted: 10/29/2023] [Indexed: 11/22/2023]
Abstract
The frequency, intensity, and duration of extreme droughts, with devastating impacts on tree growth and survival, have increased with climate change over the past decades. Assessing growth resistance and resilience to drought is a crucial prerequisite for understanding the responses of forest functioning to drought events. However, the responses of growth resistance and resilience to extreme droughts with different durations across different climatic zones remain unclear. Here, we investigated the spatiotemporal patterns in growth resistance and resilience in response to extreme droughts with different durations during 1901-2015, relying on tree-ring chronologies from 2389 forest stands over the mid- and high-latitudinal Northern Hemisphere, species-specific plant functional traits, and diverse climatic factors. The findings revealed that growth resistance and resilience under 1-year droughts were higher in humid regions than in arid regions. Significant higher growth resistance was observed under 2-year droughts than under 1-year droughts in both arid and humid regions, while growth resilience did not show a significant difference. Temporally, tree growth became less resistant and resilient to 1-year droughts in 1980-2015 than in 1901-1979 in both arid and humid regions. As drought duration lengthened, the predominant impacts of climatic factors on growth resistance and resilience weakened and instead foliar economic traits, plant hydraulic traits, and soil properties became much more important in both climatic regions; in addition, such trends were also observed temporally. Finally, we found that most of the Earth system models (ESMs) used in this study overestimated growth resistance and underestimated growth resilience under both 1-year and 2-year droughts. A comprehensive ecophysiological understanding of tree growth responses to longer and intensified drought events is urgently needed, and a specific emphasis should be placed on improving the performance of ESMs.
Collapse
Affiliation(s)
- Xiaona Wang
- State Key Laboratory of Earth Surface Processes and Resources Ecology, Beijing Normal University, Beijing, China
- Faculty of Geographical Science, Beijing Normal University, Beijing, China
| | - Taoran Xu
- State Key Laboratory of Earth Surface Processes and Resources Ecology, Beijing Normal University, Beijing, China
- Faculty of Geographical Science, Beijing Normal University, Beijing, China
| | - Chenxi Xu
- Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
| | - Hongyan Liu
- Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Zhenju Chen
- Tree-Ring Laboratory, Research Station of Liaohe-River Plain Forest Ecosystem CFERN, College of Forestry, Shenyang Agricultural University, Shenyang, China
| | - Zongshan Li
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Ximeng Li
- College of Life and Environmental Science, Minzu University of China, Beijing, China
| | - Xiuchen Wu
- State Key Laboratory of Earth Surface Processes and Resources Ecology, Beijing Normal University, Beijing, China
- Faculty of Geographical Science, Beijing Normal University, Beijing, China
- Academy of Plateau Science and Sustainability, People's Government of Qinghai Province & Beijing Normal University, Xining, China
| |
Collapse
|
9
|
Bai Y, Liu M, Guo Q, Wu G, Wang W, Li S. Diverse responses of gross primary production and leaf area index to drought on the Mongolian Plateau. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166507. [PMID: 37619736 DOI: 10.1016/j.scitotenv.2023.166507] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/04/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
Drought is a crucial factor regulating vegetation growth on the Mongolian Plateau (MP). Previous studies of drought effects on the MP have mainly concentrated on drought characterization, while the response of vegetation to drought remains unclear. To close this knowledge gap, we examined the response of MP vegetation to drought in terms of gross primary production (GPP) and leaf area index (LAI) from 1982 to 2018. Our findings show that intra-seasonally the frequency of drought occurrence in autumn had a greater impact on GPP (relative importance over 70 %), while the intensity of drought was more influential for LAI (relative importance approximately 60 %). Inter-seasonally, summer droughts had the most pronounced effect on vegetation (with median standardized anomalies of -0.72 for GPP and -0.4 for LAI, respectively). Additionally, we found that meteorological drought was more consistent with atmospheric aridity (high vapor pressure deficit) than soil drought (low soil moisture). This study advances knowledge of vegetation's susceptibility to climate extremes and improves the precision of predicting ecosystem response to climate change.
Collapse
Affiliation(s)
- Yu Bai
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100190, China
| | - Menghang Liu
- University of Chinese Academy of Sciences, Beijing 100190, China; Key Laboratory of Regional Sustainable Development Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Qun Guo
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Genan Wu
- Institute of Spacecraft Application System Engineering, China Academy of Space Technology, Beijing 100094, China
| | - Weimin Wang
- Shenzhen Ecological Environmental Monitoring Center of Guangdong Province, Shenzhen 518049, China; Guangdong Greater Bay Area, Change and Comprehensive Treatment of Regional Ecology and Environment, National Observation and Research Station, Shenzhen 523722, China; State Environmental Protection Scientific Observation and Research Station for Ecology and Environment of Rapid Urbanization Region, Shenzhen 518000, China
| | - Shenggong Li
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
10
|
Umaña MN. The interplay of drought and hurricanes on tree recovery: insights from dynamic and weak functional responses. Proc Biol Sci 2023; 290:20231732. [PMID: 37727090 PMCID: PMC10509583 DOI: 10.1098/rspb.2023.1732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 08/16/2023] [Indexed: 09/21/2023] Open
Abstract
Identifying the functional traits that enable recovery after extreme events is necessary for assessing forest persistence and functioning. However, the variability of traits mediating responses to disturbances presents a significant limitation, as these relationships may be contingent on the type of disturbance and change over time. This study investigates the effects of traits on tree growth-for short and longer terms-in response to two vastly different extreme climatic events (droughts and hurricanes) in a Puerto Rican forest. I found that trees display a dynamic functional response to extreme climatic events. Leaf traits associated with efficient photosynthesis mediated faster tree growth after hurricanes, while trees with low wood density and high water use efficiency displayed faster growth after drought. In the longer term, over both drought and hurricanes, tree size was the only significant predictor of growth, with faster growth for smaller trees. However, despite finding significant trait-growth relationships, the predictive power of traits was overall low. As the frequency of extreme events increases due to climate change, understanding the dynamic relationships between traits and tree growth is necessary for identifying strategies for recovery.
Collapse
Affiliation(s)
- María Natalia Umaña
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
11
|
Schmied G, Hilmers T, Mellert KH, Uhl E, Buness V, Ambs D, Steckel M, Biber P, Šeho M, Hoffmann YD, Pretzsch H. Nutrient regime modulates drought response patterns of three temperate tree species. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161601. [PMID: 36646222 DOI: 10.1016/j.scitotenv.2023.161601] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Against the backdrop of global change, the intensity, duration, and frequency of droughts are projected to increase and threaten forest ecosystems worldwide. Tree responses to drought are complex and likely to vary among species, drought characteristics, and site conditions. Here, we examined the drought response patterns of three major temperate tree species, s. fir (Abies alba), E. beech (Fagus sylvatica), and N. spruce (Picea abies), along an ecological gradient in the South - Central - East part of Germany that included a total of 37 sites with varying climatic and soil conditions. We relied on annual tree-ring data to assess the influence of different drought characteristics and (micro-) site conditions on components of tree resilience and to detect associated temporal changes. Our study revealed that nutrient regime, drought frequency, and hydraulic conditions in the previous and subsequent years were the main determinants of drought responses, with pronounced differences among species. Specifically, we found that (a) higher drought frequency was associated with higher resistance and resilience for N. spruce and E. beech; (b) more favorable climatic conditions in the two preceding and following years increased drought resilience and determined recovery potential of E. beech after extreme drought; (c) a site's nutrient regime, rather than micro-site differences in water availability, determined drought responses, with trees growing on sites with a balanced nutrient regime having a higher capacity to withstand extreme drought stress; (d) E. beech and N. spruce experienced a long-term decline in resilience. Our results indicate that trees under extreme drought stress benefit from a balanced nutrient supply and highlight the relevance of water availability immediately after droughts. Observed long-term trends confirm that N. spruce is suffering from persistent climatic changes, while s. fir is coping better. These findings might be especially relevant for monitoring, scenario analyses, and forest ecosystem management.
Collapse
Affiliation(s)
- Gerhard Schmied
- Chair for Forest Growth and Yield Science, TUM School of Life Sciences, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany.
| | - Torben Hilmers
- Chair for Forest Growth and Yield Science, TUM School of Life Sciences, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany
| | - Karl-Heinz Mellert
- Bavarian Office for Forest Genetics, Bavarian State Ministry of Food, Agriculture and Forestry (StMELF), Forstamtsplatz 1, 83317 Teisendorf, Germany
| | - Enno Uhl
- Chair for Forest Growth and Yield Science, TUM School of Life Sciences, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany; Bavarian State Institute of Forestry (LWF), Bavarian State Ministry of Food, Agriculture and Forestry (StMELF), Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany
| | - Vincent Buness
- Bavarian State Institute of Forestry (LWF), Bavarian State Ministry of Food, Agriculture and Forestry (StMELF), Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany
| | - Dominik Ambs
- Chair for Forest Growth and Yield Science, TUM School of Life Sciences, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany
| | - Mathias Steckel
- Forst Baden-Württemberg (AöR), State Forest Enterprise Baden-Württemberg, Germany
| | - Peter Biber
- Chair for Forest Growth and Yield Science, TUM School of Life Sciences, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany
| | - Muhidin Šeho
- Bavarian Office for Forest Genetics, Bavarian State Ministry of Food, Agriculture and Forestry (StMELF), Forstamtsplatz 1, 83317 Teisendorf, Germany
| | - Yves-Daniel Hoffmann
- Bavarian Office for Forest Genetics, Bavarian State Ministry of Food, Agriculture and Forestry (StMELF), Forstamtsplatz 1, 83317 Teisendorf, Germany
| | - Hans Pretzsch
- Chair for Forest Growth and Yield Science, TUM School of Life Sciences, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany
| |
Collapse
|
12
|
Zhang P, Jiao L, Wei M, Wu X, Du D, Xue R. Drought timing and severity affect radial growth of Picea crassifolia at different elevations in the western Qilian Mountains. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2022; 66:2449-2462. [PMID: 36201038 DOI: 10.1007/s00484-022-02368-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/05/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
In the context of continued global climate change, the intensity and frequency of droughts have increased to varying degrees in many places. Due to the complexity of drought events, the mechanisms by which trees respond to drought are not well understood. In this study, we analyzed the growth trends of Qinghai spruce (Picea crassifolia) at different elevations in the western part of Qilian Mountains and the dynamic response to climate change. We also compared the differences in radial growth of trees at different elevations in response to drought events in the growing and non-growing seasons based on resistance (Rt), recovery (Rc), and resilience (Rs). The results showed that (1) trees at all three elevations were limited by drought stress and the lower the elevation the more sensitive the trees were to drought. (2) The response of middle- and low-elevation trees to the standardized precipitation evaporation index in June of that year was stable. (3) Growing season drought limits radial growth of trees more than non-growing season drought, and Rt is smaller and Rc is larger at low elevations. With increasing drought severity, trees at all three elevations exhibited a trend of decreasing Rt and Rs and increasing Rc. (4) There were significant differences in the growth trends of trees at the three elevations. Therefore, we should continuously pay attention to the dynamics of the forest ecosystem in the western part of Qilian Mountains and take improved measures to cope with the adverse effects of drought on Qinghai spruce.
Collapse
Affiliation(s)
- Peng Zhang
- College of Geography and Environment Sciences, Northwest Normal University, Lanzhou, 730070, China
- Key Laboratory of Resource Environment and Sustainable Development of Oasis, Gansu Province, Lanzhou, 730070, China
| | - Liang Jiao
- College of Geography and Environment Sciences, Northwest Normal University, Lanzhou, 730070, China.
- Key Laboratory of Resource Environment and Sustainable Development of Oasis, Gansu Province, Lanzhou, 730070, China.
| | - Mengyuan Wei
- College of Geography and Environment Sciences, Northwest Normal University, Lanzhou, 730070, China
- Key Laboratory of Resource Environment and Sustainable Development of Oasis, Gansu Province, Lanzhou, 730070, China
| | - Xuan Wu
- College of Geography and Environment Sciences, Northwest Normal University, Lanzhou, 730070, China
- Key Laboratory of Resource Environment and Sustainable Development of Oasis, Gansu Province, Lanzhou, 730070, China
| | - Dashi Du
- College of Geography and Environment Sciences, Northwest Normal University, Lanzhou, 730070, China
- Key Laboratory of Resource Environment and Sustainable Development of Oasis, Gansu Province, Lanzhou, 730070, China
| | - Ruhong Xue
- College of Geography and Environment Sciences, Northwest Normal University, Lanzhou, 730070, China
- Key Laboratory of Resource Environment and Sustainable Development of Oasis, Gansu Province, Lanzhou, 730070, China
| |
Collapse
|
13
|
Dong B, Yu Y, Pereira P. Non-growing season drought legacy effects on vegetation growth in southwestern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 846:157334. [PMID: 35842151 DOI: 10.1016/j.scitotenv.2022.157334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/03/2022] [Accepted: 07/09/2022] [Indexed: 06/15/2023]
Abstract
Water availability influences terrestrial ecosystems' composition, structure, and function. Recently, climate change increased drought periods frequency and length in many parts of the world, including southwestern China, a biodiversity hotspot. Although the drought impacts on ecosystems are well known, studies are scarce in subtropical areas of China. This work studied the drought legacy effects on vegetation growth in southwestern China using Normalized Difference Vegetation Index (NDVI) and the Standardized Precipitation Evapotranspiration Index (SPEI), with a particular focus on non-growing season extreme drought events. Pervasive non-growing season drought legacy effects were found in the first growing season in most parts of southwestern China. The highest impacts were identified in forests, while the effects in grass were less severe. At the regional scale, horizontal and vertical spatial patterns of drought legacy effects were heterogeneous, and the highest impacts were found in warmer and wetter forests and alpine grasslands. Our study highlights that severe drought conditions may dramatically affect vegetation growth in southwestern China.
Collapse
Affiliation(s)
- Bogang Dong
- School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China
| | - Yang Yu
- School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China; Jixian National Forest Ecosystem Observation and Research Station, CNERN, School of Soil and Water Conservation, Beijing Forestry University, China.
| | - Paulo Pereira
- Environmental Management Center, Mykolas Romeris University, Ateities g. 20, LT-08303 Vilnius, Lithuania
| |
Collapse
|
14
|
Jing M, Zhu L, Liu S, Cao Y, Zhu Y, Yan W. Warming-induced drought leads to tree growth decline in subtropics: Evidence from tree rings in central China. FRONTIERS IN PLANT SCIENCE 2022; 13:964400. [PMID: 36212337 PMCID: PMC9539437 DOI: 10.3389/fpls.2022.964400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/25/2022] [Indexed: 06/16/2023]
Abstract
Subtropical forests provide diverse ecosystem services to human society. However, how subtropical tree species respond to climate change is still unclear. Using a dendrochronological method, we studied the radial growth patterns and species-specific responses of four main tree species in subtropical China to recent warming and drought. Results showed that the long-term drought caused by global warming and reduced precipitation since 1997 had resulted in the growth decline of Pinus massoniana, Castanea henryi and Castanopsis eyrei but not for Liquidambar formosana. Four species had similar sensitivities to the previous year and the current year, which is probably due to the carryover effect and temporal autocorrelation of climate data. Tree growth was positively correlated with growing season precipitation and relative humidity while negatively correlated with vapor pressure deficit. The negative relationship of tree radial growth with temperatures in the previous and current summer and the positive correlation with precipitation gradually strengthened after 1997. Therefore, we highlighted that drought-induced tree decline in subtropical forests is probably a common phenomenon, and it needed to verify by more tree-ring studies on a large scale. The species-specific responses of tree radial growth to climate change are not obvious, but they still should be considered in regional carbon balance and forest dynamics. Considering future climate change, species that are more drought tolerant should be considered as potential plantation species.
Collapse
Affiliation(s)
- Mengdan Jing
- National Engineering Laboratory for Applied Technology of Forestry and Ecology in South China, Central South University of Forestry and Technology, Changsha, China
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, China
| | - Liangjun Zhu
- National Engineering Laboratory for Applied Technology of Forestry and Ecology in South China, Central South University of Forestry and Technology, Changsha, China
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, China
| | - Shuguang Liu
- National Engineering Laboratory for Applied Technology of Forestry and Ecology in South China, Central South University of Forestry and Technology, Changsha, China
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, China
| | - Yang Cao
- Institute of Soil and Water Conservation, Northwest A&F University, Xianyang, Shaanxi, China
| | - Yu Zhu
- National Engineering Laboratory for Applied Technology of Forestry and Ecology in South China, Central South University of Forestry and Technology, Changsha, China
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, China
| | - Wende Yan
- National Engineering Laboratory for Applied Technology of Forestry and Ecology in South China, Central South University of Forestry and Technology, Changsha, China
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, China
| |
Collapse
|
15
|
Müller LM, Bahn M. Drought legacies and ecosystem responses to subsequent drought. GLOBAL CHANGE BIOLOGY 2022; 28:5086-5103. [PMID: 35607942 PMCID: PMC9542112 DOI: 10.1111/gcb.16270] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/29/2022] [Accepted: 05/03/2022] [Indexed: 05/19/2023]
Abstract
Climate change is expected to increase the frequency and severity of droughts. These events, which can cause significant perturbations of terrestrial ecosystems and potentially long-term impacts on ecosystem structure and functioning after the drought has subsided are often called 'drought legacies'. While the immediate effects of drought on ecosystems have been comparatively well characterized, our broader understanding of drought legacies is just emerging. Drought legacies can relate to all aspects of ecosystem structure and functioning, involving changes at the species and the community scale as well as alterations of soil properties. This has consequences for ecosystem responses to subsequent drought. Here, we synthesize current knowledge on drought legacies and the underlying mechanisms. We highlight the relevance of legacy duration to different ecosystem processes using examples of carbon cycling and community composition. We present hypotheses characterizing how intrinsic (i.e. biotic and abiotic properties and processes) and extrinsic (i.e. drought timing, severity, and frequency) factors could alter resilience trajectories under scenarios of recurrent drought events. We propose ways for improving our understanding of drought legacies and their implications for subsequent drought events, needed to assess the longer-term consequences of droughts on ecosystem structure and functioning.
Collapse
Affiliation(s)
- Lena M. Müller
- Department of EcologyUniversity of InnsbruckInnsbruckAustria
| | - Michael Bahn
- Department of EcologyUniversity of InnsbruckInnsbruckAustria
| |
Collapse
|
16
|
Zlobin IE. Linking the growth patterns of coniferous species with their performance under climate aridization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 831:154971. [PMID: 35367548 DOI: 10.1016/j.scitotenv.2022.154971] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/19/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
Tree growth is highly sensitive to water deficit. At the same time, growth processes substantially influence tree performance under water stress by changing the root-absorbing surface, leaf-transpiring surface, amount of conducting xylem, etc. Drought-induced growth suppression is often higher in conifers than in broadleaf species. This review is devoted to the relations between the growth of coniferous plants and their performance under increasing climate aridization in the temperate and boreal zones of the Northern Hemisphere. For adult trees, available evidence suggests that increasing the frequency and severity of water deficit would be more detrimental to those plants that have higher growth in favorable conditions but decrease growth more prominently under water shortage, compared to trees whose growth is less sensitive to moisture availability. Not only the overall sensitivity of growth processes to water supply but also the asymmetry in response to lower-than-average and higher-than-average moisture conditions can be important for the performance of coniferous trees under upcoming adverse climate change. To fully understand the tree response under future climate change, the responses to both drier and wetter years need to be analyzed separately. In coniferous seedlings, more active growth is usually linked with better drought survival, although physiological reasons for such a link can be different. Growth stability under exacerbating summer water deficit in coniferous plants can be maintained by more active spring growth and/or by a bimodal growth pattern; each strategy has specific advantages and drawbacks. The optimal choice of growth strategy would be critical for future reforestation programs.
Collapse
Affiliation(s)
- Ilya E Zlobin
- K.A. Timiryazev Institute of Plant Physiology, RAS, 35 Botanicheskaya St., Moscow 127276, Russia.
| |
Collapse
|
17
|
Vilonen L, Ross M, Smith MD. What happens after drought ends: synthesizing terms and definitions. THE NEW PHYTOLOGIST 2022; 235:420-431. [PMID: 35377474 PMCID: PMC9322664 DOI: 10.1111/nph.18137] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/18/2022] [Indexed: 05/22/2023]
Abstract
Drought is intensifying globally with climate change, creating an urgency to understand ecosystem response to drought both during and after these events end to limit loss of ecosystem functioning. The literature is replete with studies of how ecosystems respond during drought, yet there are far fewer studies focused on ecosystem dynamics after drought ends. Furthermore, while the terms used to describe drought can be variable and inconsistent, so can those that describe ecosystem responses following drought. With this review, we sought to evaluate and create clear definitions of the terms that ecologists use to describe post-drought responses. We found that legacy effects, resilience and recovery were used most commonly with respect to post-drought ecosystem responses, but the definitions used to describe these terms were variable. Based on our review of the literature, we propose a framework for generalizing ecosystem responses after drought ends, which we refer to as 'the post-drought period'. We suggest that future papers need to clearly describe characteristics of the imposed drought, and we encourage authors to use the term post-drought period as a general term that encompasses responses after drought ends and use other terms as more specific descriptors of responses during the post-drought period.
Collapse
Affiliation(s)
- Leena Vilonen
- Department of BiologyColorado State UniversityFort CollinsCO80521USA
- Graduate Degree Program in EcologyColorado State UniversityFort CollinsCO80521USA
| | - Maggie Ross
- Department of BiologyColorado State UniversityFort CollinsCO80521USA
- Graduate Degree Program in EcologyColorado State UniversityFort CollinsCO80521USA
| | - Melinda D. Smith
- Department of BiologyColorado State UniversityFort CollinsCO80521USA
- Graduate Degree Program in EcologyColorado State UniversityFort CollinsCO80521USA
| |
Collapse
|
18
|
Gazol A, Camarero JJ, Sánchez-Salguero R, Zavala MA, Serra-Maluquer X, Gutiérrez E, de Luis M, Sangüesa-Barreda G, Novak K, Rozas V, Tíscar PA, Linares JC, Martínez Del Castillo E, Ribas M, García-González I, Silla F, Camison Á, Génova M, Olano JM, Hereş AM, Yuste JC, Longares LA, Hevia A, Galván JD, Ruiz-Benito P. Tree growth response to drought partially explains regional-scale growth and mortality patterns in Iberian forests. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2022; 32:e2589. [PMID: 35333426 DOI: 10.1002/eap.2589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 10/07/2021] [Accepted: 10/18/2021] [Indexed: 06/14/2023]
Abstract
Tree-ring data has been widely used to inform about tree growth responses to drought at the individual scale, but less is known about how tree growth sensitivity to drought scales up driving changes in forest dynamics. Here, we related tree-ring growth chronologies and stand-level forest changes in basal area from two independent data sets to test if tree-ring responses to drought match stand forest dynamics (stand basal area growth, ingrowth, and mortality). We assessed if tree growth and changes in forest basal area covary as a function of spatial scale and tree taxa (gymnosperm or angiosperm). To this end, we compared a tree-ring network with stand data from the Spanish National Forest Inventory. We focused on the cumulative impact of drought on tree growth and demography in the period 1981-2005. Drought years were identified by the Standardized Precipitation Evapotranspiration Index, and their impacts on tree growth by quantifying tree-ring width reductions. We hypothesized that forests with greater drought impacts on tree growth will also show reduced stand basal area growth and ingrowth and enhanced mortality. This is expected to occur in forests dominated by gymnosperms on drought-prone regions. Cumulative growth reductions during dry years were higher in forests dominated by gymnosperms and presented a greater magnitude and spatial autocorrelation than for angiosperms. Cumulative drought-induced tree growth reductions and changes in forest basal area were related, but initial stand density and basal area were the main factors driving changes in basal area. In drought-prone gymnosperm forests, we observed that sites with greater growth reductions had lower stand basal area growth and greater mortality. Consequently, stand basal area, forest growth, and ingrowth in regions with large drought impacts was significantly lower than in regions less impacted by drought. Tree growth sensitivity to drought can be used as a predictor of gymnosperm demographic rates in terms of stand basal area growth and ingrowth at regional scales, but further studies may try to disentangle how initial stand density modulates such relationships. Drought-induced growth reductions and their cumulative impacts have strong potential to be used as early-warning indicators of regional forest vulnerability.
Collapse
Affiliation(s)
- Antonio Gazol
- Instituto Pirenaico de Ecología (IPE-CSIC), Zaragoza, Spain
| | | | - Raúl Sánchez-Salguero
- Instituto Pirenaico de Ecología (IPE-CSIC), Zaragoza, Spain
- Departamento de Sistemas Físicos, Químicos y Naturales, Univ. Pablo de Olavide, Sevilla, Spain
| | - Miguel A Zavala
- Universidad de Alcalá, Grupo de Ecología y Restauración Forestal, Departamento Ciencias de la Vida, Campus Universitario, Madrid, Spain
| | | | - Emilia Gutiérrez
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona, Spain
| | - Martín de Luis
- Departamento de Geografía y Ordenación del Territorio - IUCA, Universidad de Zaragoza, Zaragoza, Spain
| | - Gabriel Sangüesa-Barreda
- Instituto Pirenaico de Ecología (IPE-CSIC), Zaragoza, Spain
- EiFAB-iuFOR, Campus Duques de Soria, University of Valladolid, Soria, Spain
| | - Klemen Novak
- Department of Wood Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
- Departamento de Ecología, Universidad de Alicante, Alicante, Spain
| | - Vicente Rozas
- EiFAB-iuFOR, Campus Duques de Soria, University of Valladolid, Soria, Spain
| | - Pedro A Tíscar
- Centro de Capacitación y Experimentación Forestal, Cazorla, Spain
| | - Juan C Linares
- Departamento de Sistemas Físicos, Químicos y Naturales, Univ. Pablo de Olavide, Sevilla, Spain
| | | | - Montse Ribas
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona, Spain
| | - Ignacio García-González
- Departamento de Botánica, Escola Politécnica Superior de Enxeñaría, Campus Terra, Universidade de Santiago de Compostela, Lugo, Spain
| | - Fernando Silla
- Departamento de Biología Animal, Parasitología, Ecología, Edafología y Química Agrícola, Universidad de Salamanca, Salamanca, Spain
| | - Álvaro Camison
- Ingeniería Forestal y del Medio Natural, Universidad de Extremadura, Plasencia, Spain
| | - Mar Génova
- Departamento de Sistemas y Recursos Naturales, Universidad Politécnica de Madrid, Madrid, Spain
| | - José M Olano
- EiFAB-iuFOR, Campus Duques de Soria, University of Valladolid, Soria, Spain
| | - Ana-Maria Hereş
- Department of Forest Sciences, Transilvania University of Braşov, Braşov, Romania
- Basque Centre for Climate Change (BC3), Leioa, Spain
| | - Jorge Curiel Yuste
- Basque Centre for Climate Change (BC3), Leioa, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Luis A Longares
- Departamento de Geografía y Ordenación del Territorio - IUCA, Universidad de Zaragoza, Zaragoza, Spain
| | - Andrea Hevia
- Departamento de Ciencias Agroforestales, Universidad de Huelva, Huelva, Spain
| | | | - Paloma Ruiz-Benito
- Universidad de Alcalá, Grupo de Ecología y Restauración Forestal, Departamento Ciencias de la Vida, Campus Universitario, Madrid, Spain
- Remote Sensing Research Group, Department of Geology, Geography and Environment, University of Alcalá, Alcalá de Henares, Spain
| |
Collapse
|
19
|
Species- and Age-Specific Growth Reactions to Extreme Droughts of the Keystone Tree Species across Forest-Steppe and Sub-Taiga Habitats of South Siberia. FORESTS 2022. [DOI: 10.3390/f13071027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Over the coming decades, climate change can decrease forest productivity and stability in many semiarid regions. Tree-ring width (TRW) analysis allows estimation of tree sensitivity to droughts, including resistance (Rt) and resilience (Rc) indexes. It helps to find adaptive potential of individual trees and forest populations. On a forest stand scale, it is affected by habitat conditions and species’ ecophysiological characteristics, and on individual scale by tree genotype, age, and size. This study investigated TRW response to droughts in forest-steppe and sub-taiga of southern Siberia for keystone species Scots pine (Pinus sylvestris L.), Siberian larch (Larix sibirica Ledeb.), and silver birch (Betula pendula Roth.). Chronologies reacted positively to the Standardized Precipitation-Evapotranspiration Index (SPEI) of the previous July–September and current April–July. Depressed tree growth across region and droughts lasting over both intra-seasonal intervals were registered in 1965, 1974, and 1999. TRW-based Rt and Rc for these droughts did not reveal age- or size-related patterns. Higher growth stability indexes were observed for birch in sub-taiga and for conifers in forest-steppe. Larch at all sites had disadvantage against pine for 1965 and 1999 droughts aggravated by pest outbreaks, but adapted better to drought in 1974. Site aridity affected both tree growth stability and intensity of climatic response.
Collapse
|
20
|
Serra-Maluquer X, Gazol A, Anderegg WRL, Martínez-Vilalta J, Mencuccini M, Camarero JJ. Wood density and hydraulic traits influence species' growth response to drought across biomes. GLOBAL CHANGE BIOLOGY 2022; 28:3871-3882. [PMID: 35124877 DOI: 10.1111/gcb.16123] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 12/17/2021] [Accepted: 01/16/2022] [Indexed: 06/14/2023]
Abstract
Tree species display a wide variety of water-use strategies, growth rates and capacity to tolerate drought. However, if we want to forecast species capacity to cope with increasing aridity and drought, we need to identify which measurable traits confer resilience to drought across species. Here, we use a global tree ring network (65 species; 1931 site series of ring-width indices-RWI) to evaluate the relationship of long-term growth-drought sensitivity (RWI-SPEI drought index relationship) and short-term growth response to extreme drought episodes (resistance, recovery and resilience indices) with functional traits related to leaf, wood and hydraulic properties. Furthermore, we assess the influence of climate (temperature, precipitation and climatic water deficit) on these trait-growth relationships. We found a close correspondence between the long-term relationship between RWI and SPEI and resistance and recovery of tree growth to severe drought episodes. Species displaying a stronger RWI-SPEI relationship to drought and low resistance and high recovery to extreme drought episodes tended to have a higher wood density (WD) and more negative leaf minimum water potential (Ψmin). Such associations were largely maintained when accounting for direct climate effects. Our results indicate that, at a cross-species level and global scale, wood and hydraulic functional traits explain species' growth responses to drought at short- and long-term scales. These trait-growth response relationships can improve our understanding of the cross-species capacity to withstand climate change and inform models to better predict drought effects on forest ecosystem dynamics.
Collapse
Affiliation(s)
| | - Antonio Gazol
- Instituto Pirenaico de Ecología (IPE-CSIC), Zaragoza, Spain
| | | | - Jordi Martínez-Vilalta
- CREAF, Bellaterra (Cerdanyola del Vallés), Catalonia, Spain
- Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Catalonia, Spain
| | - Maurizio Mencuccini
- CREAF, Bellaterra (Cerdanyola del Vallés), Catalonia, Spain
- ICREA, Barcelona, Spain
| | | |
Collapse
|
21
|
Jia G, Chen L, Yu X, Liu Z. Soil water stress overrides the benefit of water-use efficiency from rising CO 2 and temperature in a cold semi-arid poplar plantation. PLANT, CELL & ENVIRONMENT 2022; 45:1172-1186. [PMID: 35037279 DOI: 10.1111/pce.14260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 09/15/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
The counteractive effect of atmospheric CO2 (ca ) enrichment and drought stress on tree growth results in great uncertainty in the growth patterns of forest plantations in cold semi-arid regions. We analysed tree ring chronologies and carbon isotopes in Populus simonii plantations in cold semi-arid areas in northern China over the past four decades. We hypothesized that the hydraulic stress from drought would override the stimulating effect of increasing ca and temperature (T) on stem growth (basal area increment [BAI]). We found the stimulating effect of rising ca and T on the growth, indicated by continuous increase of intrinsic water-use efficiency in all stands and a positive correlation between T and BAI. However, these effects failed to alleviate the negative impacts of drought on tree growth. Concurrent acceleration of BAI reversed during the intensive drought episodes. Water stress resulted from inaccessibility of roots to deep soil water rather than from lack of precipitation, suggested by the decoupling of BAI from precipitation and vapour pressure deficit. Local soil water limitation might also cause greater stomatal regulation in declining trees, indicated by lower intercellular CO2 concentration. Thus, site-specific soil moisture conditions growth sensitivity to global warming resulting in site-specific decline episodes in drought-prone areas.
Collapse
Affiliation(s)
- Guodong Jia
- Key Laboratory of State Forestry Administration on Soil and Water Conservation, Beijing Forestry University, Beijing, China
- School of Soil and Water Conservation, Beijing Forestry University, Beijing, China
| | - Lixin Chen
- Key Laboratory of State Forestry Administration on Soil and Water Conservation, Beijing Forestry University, Beijing, China
- School of Soil and Water Conservation, Beijing Forestry University, Beijing, China
| | - Xinxiao Yu
- Key Laboratory of State Forestry Administration on Soil and Water Conservation, Beijing Forestry University, Beijing, China
- School of Soil and Water Conservation, Beijing Forestry University, Beijing, China
| | - Ziqiang Liu
- School of Forestry, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
22
|
Gao S, Liang E, Liu R, Babst F, Camarero JJ, Fu YH, Piao S, Rossi S, Shen M, Wang T, Peñuelas J. An earlier start of the thermal growing season enhances tree growth in cold humid areas but not in dry areas. Nat Ecol Evol 2022; 6:397-404. [PMID: 35228669 DOI: 10.1038/s41559-022-01668-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 01/13/2022] [Indexed: 11/09/2022]
Abstract
Climatic warming alters the onset, duration and cessation of the vegetative season. While previous studies have shown a tight link between thermal conditions and leaf phenology, less is known about the impacts of phenological changes on tree growth. Here, we assessed the relationships between the start of the thermal growing season and tree growth across the extratropical Northern Hemisphere using 3,451 tree-ring chronologies and daily climatic data for 1948-2014. An earlier start of the thermal growing season promoted growth in regions with high ratios of precipitation to temperature but limited growth in cold-dry regions. Path analyses indicated that an earlier start of the thermal growing season enhanced growth primarily by alleviating thermal limitations on wood formation in boreal forests and by lengthening the period of growth in temperate and Mediterranean forests. Semi-arid and dry subalpine forests, however, did not benefit from an earlier onset of growth and a longer growing season, presumably due to associated water loss and/or more frequent early spring frosts. These emergent patterns of how climatic impacts on wood phenology affect tree growth at regional to hemispheric scales hint at how future phenological changes may affect the carbon sequestration capacity of extratropical forest ecosystems.
Collapse
Affiliation(s)
- Shan Gao
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| | - Eryuan Liang
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China.
| | - Ruishun Liu
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| | - Flurin Babst
- School of Natural Resources and the Environment, University of Arizona, Tucson, AZ, USA.,Laboratory of Tree-Ring Research, University of Arizona, Tucson, AZ, USA
| | | | - Yongshuo H Fu
- College of Water Sciences, Beijing Normal University, Beijing, China
| | - Shilong Piao
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China.,Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Sergio Rossi
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Chicoutimi, Quebec, Canada.,Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Miaogen Shen
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, China
| | - Tao Wang
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| | - Josep Peñuelas
- CREAF, Cerdanyola del Valles, Barcelona, Spain.,CSIC, Global Ecology Unit CREAF-CSIC-UAB, Barcelona, Spain
| |
Collapse
|
23
|
Behzad HM, Jiang Y, Arif M, Wu C, He Q, Zhao H, Lv T. Tunneling-induced groundwater depletion limits long-term growth dynamics of forest trees. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 811:152375. [PMID: 34914990 DOI: 10.1016/j.scitotenv.2021.152375] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/29/2021] [Accepted: 12/09/2021] [Indexed: 05/20/2023]
Abstract
Human interventions such as tunnel construction have caused groundwater depletion, which substantially affected the functions of forest tree species and their communities. However, the extent to which tunneling-induced groundwater depletion (TIGD) degrades their function levels at various spatial-temporal scales under varying climate conditions remains still unclear. Researchers used stand-scale dendrological records to track and extract the effects of TIGD associated with a single or series of tunneling events (three tunneling events during 1999-2001, 2006-2008, and 2010-2013) on short- and long-term growth levels of two dominant drought-tolerant tree species across (karst and non-karst) landscapes affected by tunnel construction and landscapes not subjected to tunnel construction in a mountainous forest ecosystem located in the southwest of China. The results showed that growth responses of both trees stand to TIGD, and the TIGD-linked water losses of other available water sources were negative and widespread across tunnel-affected landscapes, particularly in the karst landscapes known as delicate landscapes. Tree stands with faster (more vigorous) growth rates showed more significant adverse growth levels in response to either tunneling-induced or drought-induced water stresses. Also, they showed the highest recovered growth levels in response to favorable climatic conditions. Moreover, the growth level in the tunnel-affected forest never fully recovered during six years of very wet weather (2012-2018) after the construction of the final (third) tunnel in 2010-2013. Current research shows that tunnel construction has a cumulatively detrimental impact on the long-term survival of the forest. Even with the mediation of long-term very wet circumstances, it can substantially restrict the development dynamics of the forest compared to drought.
Collapse
Affiliation(s)
- Hamid M Behzad
- Chongqing Key Laboratory of Karst Environment & School of Geographical Sciences, Southwest University, Chongqing 400715, China
| | - Yongjun Jiang
- Chongqing Key Laboratory of Karst Environment & School of Geographical Sciences, Southwest University, Chongqing 400715, China.
| | - Muhammad Arif
- Key Laboratory of Eco-Environments in the Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Chao Wu
- Chongqing Key Laboratory of Karst Environment & School of Geographical Sciences, Southwest University, Chongqing 400715, China
| | - QiuFang He
- Chongqing Key Laboratory of Karst Environment & School of Geographical Sciences, Southwest University, Chongqing 400715, China
| | - Haijuan Zhao
- Chongqing Key Laboratory of Karst Environment & School of Geographical Sciences, Southwest University, Chongqing 400715, China
| | - Tongru Lv
- Chongqing Key Laboratory of Karst Environment & School of Geographical Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
24
|
Treml V, Mašek J, Tumajer J, Rydval M, Čada V, Ledvinka O, Svoboda M. Trends in climatically driven extreme growth reductions of Picea abies and Pinus sylvestris in Central Europe. GLOBAL CHANGE BIOLOGY 2022; 28:557-570. [PMID: 34610189 DOI: 10.1111/gcb.15922] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 09/23/2021] [Accepted: 09/25/2021] [Indexed: 06/13/2023]
Abstract
Extreme tree growth reductions represent events of abrupt forest productivity decline and carbon sequestration reduction. An increase in their magnitude can represent an early warning signal of impending tree mortality. Yet the long-term trends in extreme growth reductions remain largely unknown. We analyzed the trends in the proportion of trees exhibiting extreme growth reductions in two Central-European conifer species-Pinus sylvestris (PISY) and Picea abies (PCAB)-between 1901 and 2018. We used a novel approach for extreme growth reduction quantification by relating their size to their mean recurrence interval. Twenty-eight sites throughout Czechia and Slovakia with 1120 ring width series representing high- and low-elevation forests were inspected for extreme growth reductions with recurrence intervals of 15 and 50 years along with their link to climatic drivers. Our results show the greatest growth reductions at low-elevation PCAB sites, indicating high vulnerability of PCAB to drought. The proportions of trees exhibiting extreme growth reductions increased over time at low-elevation PCAB, decreased recently following an abrupt increase in the 1970-1980s at high-elevation PCAB, and showed nonsignificant trends in high- and low-elevation PISY. Climatic drivers of extreme growth reductions, however, shifted over time for all site categories as the proportion of low-temperature-induced extreme growth reductions declined since the 1990s, whereas events caused by drought consistently increased in frequency during the same period. We observed higher growth volatility at the lower range of distribution compared with the upper range margin of PISY and PCAB. This will undoubtedly considerably impact tree growth and vitality as temperatures and incidence of drought in Central Europe are expected to further increase with ongoing climate change.
Collapse
Affiliation(s)
- Václav Treml
- Department of Physical Geography and Geoecology, Faculty of Science, Charles University, Prague, Czechia
| | - Jiří Mašek
- Department of Physical Geography and Geoecology, Faculty of Science, Charles University, Prague, Czechia
| | - Jan Tumajer
- Department of Physical Geography and Geoecology, Faculty of Science, Charles University, Prague, Czechia
| | - Miloš Rydval
- Department of Forest Ecology, Faculty of Forestry and Wood Science, Czech University of Life Science, Prague, Czechia
| | - Vojtěch Čada
- Department of Forest Ecology, Faculty of Forestry and Wood Science, Czech University of Life Science, Prague, Czechia
| | | | - Miroslav Svoboda
- Department of Forest Ecology, Faculty of Forestry and Wood Science, Czech University of Life Science, Prague, Czechia
| |
Collapse
|
25
|
Drought Drives Growth and Mortality Rates in Three Pine Species under Mediterranean Conditions. FORESTS 2021. [DOI: 10.3390/f12121700] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Drought constrains tree growth in regions with seasonal water deficit where growth decline can lead to tree death. This has been observed in regions such as the western Mediterranean Basin, which is a climate-warming hotspot. However, we lack information on intra- and inter-specific comparisons of growth rates and responses to water shortage in these hotspots, considering tree species with different drought tolerance. We sampled several sites located in north-eastern Spain showing dieback and high mortality rates of three pine species (Pinus sylvestris, Pinus pinaster, Pinus halepensis). We dated death years and reconstructed the basal area increment of coexisting living and recently dead trees using tree ring data. Then, we calculated bootstrapped Pearson correlations between a drought index and growth. Finally, we used linear mixed-effects models to determine differences in growth trends and the response to drought of living and dead trees. Mortality in P. sylvestris and P. pinaster peaked in response to the 2012 and 2017 droughts, respectively, and in sites located near the species’ xeric distribution limits. In P. halepensis, tree deaths occurred most years. Dead trees showed lower growth rates than living trees in five out of six sites. There was a strong growth drop after the 1980s when climate shifted towards warmer and drier conditions. Tree growth responded positively to wet climate conditions, particularly in the case of living trees. Accordingly, growth divergence between living and dead trees during dry periods reflected cumulative drought impacts on trees. If aridification continues, tree drought mortality would increase, particularly in xeric distribution limits of tree species.
Collapse
|
26
|
A Review of Forest Ecosystem Vulnerability and Resilience: Implications for the Rocky Desertification Control. SUSTAINABILITY 2021. [DOI: 10.3390/su132111849] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
With a changing climate and socio-economic development, ecological problems are increasingly serious, research on ecosystem vulnerability and ecological resilience has become a hot topic of study for various institutions. Forests, the “lungs of the earth”, have also been damaged to varying degrees. In recent years, scholars have conducted numerous studies on the vulnerability and resilience of forest ecosystems, but there is a lack of a systematic elaboration of them. The results of a statistical analysis of 217 related documents show: (1) the number of studies published rises wave upon wave in time series, which indicates that this area of study is still at the stage of rising; (2) the research content is concentrated in four dimensions—ecosystem vulnerability assessment, ecosystem vulnerability model prediction, ecological resilience, and management strategies—among which the ecosystem vulnerability assessment research content mainly discusses the evaluation methods and models; (3) the research areas are mainly concentrated in China and the United States, with different degrees of distribution in European countries; and (4) the research institutions are mainly the educational institutions and forestry bureaus in various countries. In addition, this paper also reveals the frontier theory of forest ecosystem vulnerability and resilience research from three aspects—theoretical research, index system, and technical methods—puts forward the problems of current research, and suggests that a universally applicable framework for forest ecosystem vulnerability and resilience research should be built in the future, and theoretical research should be strengthened to comprehensively understand the characteristics of forest ecosystems so that sustainable management strategies can be proposed according to local conditions.
Collapse
|
27
|
Bohner T, Diez J. Tree resistance and recovery from drought mediated by multiple abiotic and biotic processes across a large geographic gradient. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 789:147744. [PMID: 34051506 DOI: 10.1016/j.scitotenv.2021.147744] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 05/07/2021] [Accepted: 05/09/2021] [Indexed: 06/12/2023]
Abstract
Worldwide, increasing severity of droughts threatens to change forest ecosystem functioning and community structure. Understanding how forest resilience is determined by its two underlying components, resistance and recovery, will help elucidate the mechanisms of drought responses and help inform management strategies. However, drought responses are shaped by complex processes across different scales, including species-specific drought strategies, tree size, competition, local environmental conditions, and the intensity of the drought event. Here, we quantified the reduction in tree growth during drought (an inverse measure of drought resistance) and post-drought recovery for three montane conifers (Abies concolor, Pinus jeffreyi, and Pinus lambertiana) in California. We used tree ring analysis to quantify responses to drought events of varying intensity between 1895 and 2018 across a geographic climatic gradient, to examine the roles of tree size (DBH) and competition (tree density) in mediating drought responses. We found that years of more intense drought corresponded with larger growth reductions and recovery rates were lower following drought years where trees suffered larger reductions. We found little variation among species in their growth reductions during drought events, but significant differences among species in their recovery post-drought. Across the geographic gradient, trees in the driest locations were susceptible to large growth reductions, signaling either strong sensitivity to drought intensity or exposure to the most extreme drought conditions. These growth reductions were not always compensated for by higher recovery rates. We also found that larger trees were more susceptible to drought due to a steeper negative relationship between recovery rates and the intensity of growth reduction during the drought. Contrary to expectations, recovery rates following the most detrimental drought years were higher in denser forests. Our results demonstrate the importance of considering how factors at various spatial and temporal scales affect the different components of drought responses.
Collapse
Affiliation(s)
- Teresa Bohner
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA.
| | - Jeffrey Diez
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| |
Collapse
|
28
|
Dual Roles of Water Availability in Forest Vigor: A Multiperspective Analysis in China. REMOTE SENSING 2020. [DOI: 10.3390/rs13010091] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Water availability is one of the most important resources for forest growth. However, due to its complex spatio-temporal relationship with other climatic factors (e.g., temperature and solar radiation), it paradoxically shows both positive and negative correlations (i.e., dual roles) with forest vigor for unknown reasons. In this study, a multiperspective analysis that combined the deficit of the Normalized Difference Vegetation Index (dNDVI) and multitimescale Standardized Precipitation Evapotranspiration Index (SPEI) was conducted for the forests in China, from which their correlation strengths and directions (positive or negative) were linked with spatio-temporal patterns of environmental temperature (T) and water balance (WB) (i.e., precipitation minus potential evapotranspiration). In this way, the reasons for the inconsistent roles of water were revealed. The results showed that the roles of water availability greatly depended on T, WB, and seasonality (i.e., growing or pregrowing season) for both planted and natural forests. Specifically, a negative role of water availability mainly occurred in regions of T below its specific threshold (i.e., T ≤ Tthreshold) during the pregrowing season. In contrast, a positive role was mainly observed in warm environments (T > Tthreshold) during the pregrowing season and in dry environments where WB was below its specific threshold (i.e., WB ≤ WBthreshold) during the growing season. The values of Tthreshold and WBthreshold were related to the vegetation type, with Tthreshold ranging from 1.3 to 4.7 °C and WBthreshold ranging from 129.1 to 238.8 mm/month, respectively. Our study revealed that the values of Tthreshold and WBthreshold for a specific forest were stable, and did not change with the SPEI time-scales. Our results reveal the dual roles of water availability in forest vigor and highlight the importance of environmental climate and seasonality, which jointly affect the roles of water availability in forest vigor. These should be considered when monitoring and/or predicting the impacts of drought on forests in the future.
Collapse
|
29
|
Peltier DMP, Ogle K. Tree growth sensitivity to climate is temporally variable. Ecol Lett 2020; 23:1561-1572. [DOI: 10.1111/ele.13575] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/14/2020] [Accepted: 06/25/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Drew M. P. Peltier
- Center for Ecosystem Science and Society Northern Arizona University Flagstaff Arizona USA
- School of Informatics, Computing, and Cyber Systems Northern Arizona University Flagstaff Arizona USA
| | - Kiona Ogle
- Center for Ecosystem Science and Society Northern Arizona University Flagstaff Arizona USA
- School of Informatics, Computing, and Cyber Systems Northern Arizona University Flagstaff Arizona USA
- Department of Biological Sciences Northern Arizona University Flagstaff Arizona USA
| |
Collapse
|
30
|
Bose AK, Gessler A, Bolte A, Bottero A, Buras A, Cailleret M, Camarero JJ, Haeni M, Hereş A, Hevia A, Lévesque M, Linares JC, Martinez‐Vilalta J, Matías L, Menzel A, Sánchez‐Salguero R, Saurer M, Vennetier M, Ziche D, Rigling A. Growth and resilience responses of Scots pine to extreme droughts across Europe depend on predrought growth conditions. GLOBAL CHANGE BIOLOGY 2020; 26:4521-4537. [PMID: 32388882 PMCID: PMC7383776 DOI: 10.1111/gcb.15153] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 03/19/2020] [Accepted: 04/30/2020] [Indexed: 05/11/2023]
Abstract
Global climate change is expected to further raise the frequency and severity of extreme events, such as droughts. The effects of extreme droughts on trees are difficult to disentangle given the inherent complexity of drought events (frequency, severity, duration, and timing during the growing season). Besides, drought effects might be modulated by trees' phenotypic variability, which is, in turn, affected by long-term local selective pressures and management legacies. Here we investigated the magnitude and the temporal changes of tree-level resilience (i.e., resistance, recovery, and resilience) to extreme droughts. Moreover, we assessed the tree-, site-, and drought-related factors and their interactions driving the tree-level resilience to extreme droughts. We used a tree-ring network of the widely distributed Scots pine (Pinus sylvestris) along a 2,800 km latitudinal gradient from southern Spain to northern Germany. We found that the resilience to extreme drought decreased in mid-elevation and low productivity sites from 1980-1999 to 2000-2011 likely due to more frequent and severe droughts in the later period. Our study showed that the impact of drought on tree-level resilience was not dependent on its latitudinal location, but rather on the type of sites trees were growing at and on their growth performances (i.e., magnitude and variability of growth) during the predrought period. We found significant interactive effects between drought duration and tree growth prior to drought, suggesting that Scots pine trees with higher magnitude and variability of growth in the long term are more vulnerable to long and severe droughts. Moreover, our results indicate that Scots pine trees that experienced more frequent droughts over the long-term were less resistant to extreme droughts. We, therefore, conclude that the physiological resilience to extreme droughts might be constrained by their growth prior to drought, and that more frequent and longer drought periods may overstrain their potential for acclimation.
Collapse
Affiliation(s)
- Arun K. Bose
- WSL Swiss Federal Institute for Forest, Snow and Landscape ResearchBirmensdorfSwitzerland
- Forestry and Wood Technology DisciplineKhulna UniversityKhulnaBangladesh
| | - Arthur Gessler
- WSL Swiss Federal Institute for Forest, Snow and Landscape ResearchBirmensdorfSwitzerland
- Institute of Terrestrial EcosystemsETH ZurichZurichSwitzerland
- SwissForestLabBirmensdorfSwitzerland
| | - Andreas Bolte
- Thünen Institute of Forest EcosystemsEberswaldeGermany
| | - Alessandra Bottero
- WSL Swiss Federal Institute for Forest, Snow and Landscape ResearchBirmensdorfSwitzerland
- SwissForestLabBirmensdorfSwitzerland
| | - Allan Buras
- Land Surface‐Atmosphere InteractionsTechnische Universitat MünchenFreisingGermany
| | - Maxime Cailleret
- UMR RECOVER/Ecosystèmes Méditerranéens et RisquesINRAEAix‐en‐Provencecedex 5France
| | | | - Matthias Haeni
- WSL Swiss Federal Institute for Forest, Snow and Landscape ResearchBirmensdorfSwitzerland
| | - Ana‐Maria Hereş
- Department of Forest SciencesTransilvania University of BraşovBraşovRomania
- BC3 ‐ Basque Centre for Climate ChangeScientific Campus of the University of the Basque CountryLeioaSpain
| | - Andrea Hevia
- Departamento de Ciencias AgroforestalesUniversidad de HuelvaPalos de la FronteraSpain
| | | | - Juan C. Linares
- Depto. Sistemas Físicos, Químicos y NaturalesUniversidad Pablo de OlavideSevillaSpain
| | - Jordi Martinez‐Vilalta
- CREAFBellaterra (Cerdanyola del Vallès)Spain
- Universitat Autònoma de BarcelonaBellaterra (Cerdanyola del Vallès)Spain
| | - Luis Matías
- Departamento de Biología Vegetal y EcologíaFacultad de BiologíaUniversidad de SevillaSevillaSpain
| | - Annette Menzel
- EcoclimatologyTechnische Universität MünchenFreisingGermany
- Institute for Advanced StudyTechnische Universität MünchenGarchingGermany
| | - Raúl Sánchez‐Salguero
- Depto. Sistemas Físicos, Químicos y NaturalesUniversidad Pablo de OlavideSevillaSpain
| | - Matthias Saurer
- WSL Swiss Federal Institute for Forest, Snow and Landscape ResearchBirmensdorfSwitzerland
| | - Michel Vennetier
- UMR RECOVER/Ecosystèmes Méditerranéens et RisquesINRAEAix‐en‐Provencecedex 5France
| | - Daniel Ziche
- Thünen Institute of Forest EcosystemsEberswaldeGermany
- Faculty of Forest and EnvironmentEberswalde University for Sustainable DevelopmentEberswaldeGermany
| | - Andreas Rigling
- WSL Swiss Federal Institute for Forest, Snow and Landscape ResearchBirmensdorfSwitzerland
- Institute of Terrestrial EcosystemsETH ZurichZurichSwitzerland
- SwissForestLabBirmensdorfSwitzerland
| |
Collapse
|
31
|
Li X, Piao S, Wang K, Wang X, Wang T, Ciais P, Chen A, Lian X, Peng S, Peñuelas J. Temporal trade-off between gymnosperm resistance and resilience increases forest sensitivity to extreme drought. Nat Ecol Evol 2020; 4:1075-1083. [DOI: 10.1038/s41559-020-1217-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 05/05/2020] [Indexed: 01/15/2023]
|
32
|
Radial Growth Adaptability to Drought in Different Age Groups of Picea schrenkiana Fisch. & C.A. Mey in the Tianshan Mountains of Northwestern China. FORESTS 2020. [DOI: 10.3390/f11040455] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Forest ecosystems are strongly impacted by extreme climate, and the age effects of radial growth under drought can provide profound understanding of the adaptation strategy of a tree species to climate change. Schrenk spruce (Picea schrenkiana Fisch. & C.A. Mey) trees of three age groups (young, middle-aged, and old) were collected to establish the tree-ring width chronologies in the eastern Tianshan Mountains of northwestern China. Meanwhile, we analyzed and compared the response and resistance disparities of radial growth to drought in trees of different age groups. The results showed that (1) drought stress caused by increasing temperatures was the main factor limiting the radial growth of Schrenk spruce, (2) the old and young trees were more susceptible to drought stress than the middle-aged trees, as suggested by the responses of Schrenk spruce trees and based on the SPEI (standardized precipitation evapotranspiration index), and (3) the difference of the resistance indexes (resistance, recovery, resilience, and relative resilience) of three age groups to drought supported that the resistance values were in the order middle age > young age > old age, but the recovery, resilience, and relative resilience values were in the order old age > young age > middle age. These results will provide a basis for the ecological restoration and scientific management of dominant coniferous tree species of different age groups in the sub-alpine forest ecosystems of the arid regions under climate change scenarios.
Collapse
|
33
|
Kannenberg SA, Schwalm CR, Anderegg WRL. Ghosts of the past: how drought legacy effects shape forest functioning and carbon cycling. Ecol Lett 2020; 23:891-901. [DOI: 10.1111/ele.13485] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/29/2019] [Accepted: 02/12/2020] [Indexed: 01/06/2023]
|
34
|
Tree-Ring Analysis Reveals Density-Dependent Vulnerability to Drought in Planted Mongolian Pines. FORESTS 2020. [DOI: 10.3390/f11010098] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Population density influences tree responses to environmental stresses, such as drought and high temperature. Prolonged drought negatively affects the health of Mongolian pines in forests planted by the Three-North Shelter Forest Program in North China. To understand the relationship between stand density and drought-induced forest decline, and to generate information regarding the development of future management strategies, we analyzed the vulnerability to drought of planted Mongolian pines at three stand densities. A tree-ring width index for trees from each density was established from tree-ring data covering the period 1988–2018 and was compared for differences in radial growth. Resistance (Rt), recovery (Rc), resilience (Rs), and relative resilience (RRs) in response to drought events were calculated from the smoothed basal area increment (BAI) curves. The high-density (HDT) group showed a consistently lower tree-ring width than the border trees (BT) and low-density (LDT) groups. The BAI curve of the HDT group started to decrease five years earlier than the LDT and BT groups. Pearson correlation analysis revealed that the radial growth of all of the groups was related to precipitation, relative humidity (RH), potential evapotranspiration (ET0), and standardized precipitation evapotranspiration index (SPEI) in the previous October and the most recent July, indicating that Mongolian pine trees of different densities had similar growth–climate relationships. Over the three decades, the trees experienced three severe drought events, each causing reduced tree-ring width and BAI. All of the groups showed similar Rc to each drought event, but the HDT group exhibited significantly lower Rt, Rs, and RRs than the BT group, suggesting that the HDT trees were more vulnerable to repeated drought stress. The RRs of the HDT group decreased progressively after each drought event and attained <0 after the third event. All of the groups showed similar trends regarding water consumption under varying weather conditions, but the HDT group showed significantly reduced whole-tree hydraulic capability compared with the other two groups. From these results, HDT trees exhibit ecophysiological memory effects from successive droughts, including sap flux dysfunction and higher competition index, which may prevent recovery of pre-drought growth rates. HDT trees may be at greater risk of mortality under future drought disturbance.
Collapse
|
35
|
Peltier DMP, Ogle K. Legacies of more frequent drought in ponderosa pine across the western United States. GLOBAL CHANGE BIOLOGY 2019; 25:3803-3816. [PMID: 31155807 DOI: 10.1111/gcb.14720] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 05/23/2019] [Indexed: 06/09/2023]
Abstract
Despite widespread interest in drought legacies-multiyear impacts of drought on tree growth-the key implication of reported drought legacies remains unaddressed: as impaired growth and slow recovery associated with drought legacies are pervasive across forest ecosystems, what is the impact of more frequent drought conditions? We investigated the assumption that either multiple drought years occurring during a short period (multiyear droughts), or droughts occurring during the recovery period from previous drought (compounded droughts), are detrimental to subsequent growth. There is evidence that drought responses may vary among populations of widespread species, leading us to examine regional differences in responses of the conifer Pinus ponderosa to historic drought frequency in the western United States. More frequent drought conditions incurred additional growth declines and shifts in growth-climate sensitivities in the years following drought relative to single-drought events, with 'triple-droughts' being worse than 'double-droughts'. Notably, prediction skill was not strongly reduced when ignoring compounded droughts, a consequence of the temporally comprehensive formulation of our stochastic antecedent model that accounts for the climatic memory of tree growth. We argue that incorporating drought-induced temporal variability in tree growth sensitivities can aid inference gained from statistical models, where more simplistic models could overestimate the severity of drought legacies. We also found regional differences in response to repeated drought, and suggest plastic post-drought sensitivities and climatic memory may represent beneficial physiological adjustments in interior regions. Within-species variability may thus mediate forest responses to increasing drought frequency under future climate change, but experimental approaches using more species are necessary to improve our understanding of the mechanisms that underlie drought legacy effects on tree growth.
Collapse
Affiliation(s)
- Drew M P Peltier
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, Arizona
| | - Kiona Ogle
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, Arizona
| |
Collapse
|
36
|
Spatial Upscaling of Tree-Ring-Based Forest Response to Drought with Satellite Data. REMOTE SENSING 2019. [DOI: 10.3390/rs11202344] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We have integrated the observational capability of satellite remote sensing with plot-scale tree-ring data to upscale the evaluation of forest responses to drought. Satellite data, such as the normalized difference vegetation index (NDVI), can provide a spatially continuous measure with limited temporal coverage, while tree-ring width index (RWI) provides an accurate assessment with a much longer time series at local scales. Here, we explored the relationship between RWI and NDVI of three dominant species in the Southwestern United States (SWUS) and predicted RWI spatial distribution from 2001 to 2017 based on Moderate Resolution Imaging Spectroradiometer (MODIS) 1-km resolution NDVI data with stringent quality control. We detected the optimum time windows (around June–August) during which the RWI and NDVI were most closely correlated for each species, when the canopy growth had the greatest effect on growth of tree trunks. Then, using our upscaling algorithm of NDVI-based RWI, we were able to detect the significant impact of droughts in 2002 and in 2011–2014, which supported the validity of this algorithm in quantifying forest response to drought on a large scale.
Collapse
|
37
|
Liu X, Zhou T, Luo H, Xu P, Gao S, Liu J. Models ignoring spatial heterogeneities of forest age will significantly overestimate the climate effects on litterfall in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 661:492-503. [PMID: 30677693 DOI: 10.1016/j.scitotenv.2019.01.162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 01/13/2019] [Accepted: 01/13/2019] [Indexed: 06/09/2023]
Abstract
Litterfall is an important process that links vegetation and soil pools and plays an important role in the maintenance of soil fertility. Although studies indicated that climate will significantly affect forest litterfall, the role of biotic factors such as the spatial heterogeneity of forest age, remains unclear. In this study, we built an updated dataset of litterfall in China and explored the key drivers affecting forest litterfall by establishing optimal linear mixed models (OLMMs). The potential bias of models and their spatial patterns were then evaluated based on the OLMMs and remotely sensed and China's forest inventory data. The results showed the mean annual temperature (MAT) and forest age were the key drivers affecting forest litterfall. Abiotic factors and forest age and height together accounted for 77.5% of the variation in observed litterfall. Although forest age and height did not apparently enhance the coefficient of determination (R2), these factors significantly decreased spatial errors. Therefore, if the model contains only climate factors and the spatial patterns of biotic factors are ignored, it will produce high spatial errors (-52% to 92%). In addition, when forest age and height were not considered, variation of litterfall explained by forest age was inappropriately attributed to MAT, which significantly overestimated the importance of climate factors on forest litterfall. Specifically, litterfall was overestimated for young forests and underestimated for old forests if the model did not contain forest age in China. Models that ignored forest age significantly overestimated the contribution of climatic factors on forest litterfall and produced high spatially specific errors. The comparison of the litterfall modeled by OLMMs and the remote sensing-based net primary production (NPP) indicated that litterfall and NPP are strongly dependent, and the ratio of litterfall to NPP linearly increased with forest age.
Collapse
Affiliation(s)
- Xia Liu
- Key Laboratory of Environmental Change and Natural Disaster of Ministry of Education, Academy of Disaster Reduction and Emergency Management, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China; State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing 100875, China
| | - Tao Zhou
- Key Laboratory of Environmental Change and Natural Disaster of Ministry of Education, Academy of Disaster Reduction and Emergency Management, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China; State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing 100875, China.
| | - Hui Luo
- Key Laboratory of Environmental Change and Natural Disaster of Ministry of Education, Academy of Disaster Reduction and Emergency Management, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China; State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing 100875, China
| | - Peipei Xu
- Key Laboratory of Environmental Change and Natural Disaster of Ministry of Education, Academy of Disaster Reduction and Emergency Management, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China; State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing 100875, China
| | - Shan Gao
- Key Laboratory of Environmental Change and Natural Disaster of Ministry of Education, Academy of Disaster Reduction and Emergency Management, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China; State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing 100875, China
| | - Jiajia Liu
- Key Laboratory of Environmental Change and Natural Disaster of Ministry of Education, Academy of Disaster Reduction and Emergency Management, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China; State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
38
|
Drought-Affected Populus simonii Carr. Show Lower Growth and Long-Term Increases in Intrinsic Water-Use Efficiency Prior to Tree Mortality. FORESTS 2018. [DOI: 10.3390/f9090564] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The Three-North Shelter Forest (TNSF) is a critical ecological barrier against sandstorms in northern China, but has shown extensive decline and death in Populus simonii Carr. in the last decade. We investigated the characteristics—tree-ring width, basal area increment (BAI), carbon isotope signature (13Ccor), and intrinsic water-use efficiency (iWUE)—of now-dead, dieback, and non-dieback trees in TNSF shelterbelts of Zhangbei County. Results from the three groups were compared to understand the long-term process of preceding drought-induced death and to identify potential early-warning proxies of drought-triggered damage. The diameter at breast height (DBH) was found to decrease with the severity of dieback, showing an inverse relationship. In all three groups, both tree-ring width and BAI showed quadratic relationships with age, and peaks earlier in the now-dead and dieback groups than in the non-dieback group. The tree-ring width and BAI became significantly lower in the now-dead and dieback groups than in the non-dieback group from 17 to 26 years before death, thus, these parameters can serve as early-warning signals for future drought-induced death. The now-dead and dieback groups had significantly higher δ13Ccor and iWUEs than the non-dieback group at 7–16 years prior to the mortality, indicating a more conservative water-use strategy under drought stress compared with non-dieback trees, possibly at the cost of canopy defoliation and long-term shoot dieback. The iWUE became significantly higher in the now-dead group than in the dieback group at 0–7 years before death, about 10 years later than the divergence of BAI. After the iWUE became significantly different among the groups, the now-dead trees showed lower growth and died over the next few years. This indicates that, for the TNSF shelterbelts studied, an abrupt iWUE increase can be used as a warning signal for acceleration of impending drought-induced tree death. In general, we found that long-term drought decreased growth and increased iWUE of poplar tree. Successive droughts could drive dieback and now-dead trees to their physiological limits of drought tolerance, potentially leading to decline and mortality episodes.
Collapse
|