1
|
Wang R, Xu J, Cheng S, Ling Z, Sonam W, Yang J, Jin F, Wen J, Lu X, Ma L, Zhang Y, Sun X, Yi C, Sun B. TNFR2/CCR8 bispecific antibody enhances antitumor activity through depleting Ti-Tregs and boosting effector CD8 + T cell function. Oncoimmunology 2025; 14:2497171. [PMID: 40293187 PMCID: PMC12039408 DOI: 10.1080/2162402x.2025.2497171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025] Open
Abstract
Modulation or depletion of tumor-infiltrating Tregs (Ti-Tregs) is a promising strategy in the field of antitumor immunotherapy. However, this approach poses challenges due to the diversity within the Treg population and the lack of precision in targeting Ti-Tregs. To selectively and efficiently eliminate Ti-Tregs while sparing other immune cells, we developed a bispecific antibody, FT10-Fab, targeting TNFR2 and CCR8, which are highly expressed on Ti-Tregs. Our results showed that FT10-Fab outperformed the monotherapies in several tumor models by significantly reducing the proportion of Ti-Tregs while increasing the proportion of CD8+ T cells. FT10-Fab was able to target and eliminate Ti-Tregs expressing TNFR2 or CCR8 (TNFR2+or CCR8+ Tregs), particularly TNFR2+ CCR8+ Tregs, which are the most important proliferative and protumorigenic Tregs. In addition, FT10-Fab relies on CD8+ T cells for its antitumor function and induces robust immune memory. Furthermore, the combination of FT10-Fab with PD-1 blockade showed synergistic therapeutic efficacy against tumors by significantly suppressing Tregs and enhancing effector CD8+ T cell function. Taken together, our findings suggest that precision depletion of Ti-Tregs via the bispecific TNFR2/CCR8 antibody is a potential therapeutic for cancer immunotherapy, while combination with anti-PD1 amplifies the antitumor effect.
Collapse
MESH Headings
- Antibodies, Bispecific/pharmacology
- Animals
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/drug effects
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/drug effects
- Mice
- Receptors, Tumor Necrosis Factor, Type II/immunology
- Receptors, Tumor Necrosis Factor, Type II/antagonists & inhibitors
- Receptors, CCR8/immunology
- Receptors, CCR8/antagonists & inhibitors
- Humans
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/drug effects
- Female
- Cell Line, Tumor
- Immunotherapy/methods
- Mice, Inbred C57BL
- Neoplasms/immunology
- Neoplasms/drug therapy
Collapse
Affiliation(s)
- Ran Wang
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jiefang Xu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Shipeng Cheng
- Key Laboratory of Multi-Cell Systems, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Zhiyang Ling
- Key Laboratory of Multi-Cell Systems, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
- Hiwisdom Company Limited, Shanghai, China
| | - Wangmo Sonam
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| | - Jichao Yang
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| | - Fuquan Jin
- Key Laboratory of Multi-Cell Systems, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Jing Wen
- Key Laboratory of Multi-Cell Systems, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Xiao Lu
- Key Laboratory of Multi-Cell Systems, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Liyan Ma
- Key Laboratory of Multi-Cell Systems, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yaguang Zhang
- Med-X institute, Center for Immunological and Metabolic Diseases, the First Affiliated Hospital of Xi’an JiaoTong University, Xi’an JiaoTong University, Xi’an, Shaanxi, China
| | - Xiaoyu Sun
- Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chunyan Yi
- Key Laboratory of Multi-Cell Systems, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
- Hiwisdom Company Limited, Shanghai, China
| | - Bing Sun
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Key Laboratory of Multi-Cell Systems, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| |
Collapse
|
2
|
Kundu M, Greer YE, Lobanov A, Ridnour L, Donahue RN, Ng Y, Ratnayake S, White K, Voeller D, Weltz S, Chen Q, Lockett SJ, Cam M, Meerzaman D, Wink DA, Weigert R, Lipkowitz S. TRAIL induces cytokine production via the NFkB2 pathway promoting neutrophil chemotaxis and neutrophil-mediated immune-suppression in triple negative breast cancer cells. Cancer Lett 2025; 620:217692. [PMID: 40187604 PMCID: PMC12049148 DOI: 10.1016/j.canlet.2025.217692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 03/31/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a potential cancer therapeutic that induces apoptosis in cancer cells while sparing the non-malignant cells in preclinical models. However, its efficacy in clinical trials has been limited, suggesting unknown mechanisms modulating TRAIL activity in patients. We hypothesized that TRAIL treatment elicits transcriptional changes in triple negative breast cancer (TNBC) cells that alter the immune milieu. RNAseq analysis of MDA-MB-231 cells along with validation in additional cell lines demonstrated that TRAIL induced cytokines such as CXCLs 1, 2, 3, 8,11 and IL-6, which are known to modify neutrophil function. Mechanistically, TRAIL dependent induction of the cytokines was predominantly mediated by death receptor 5, caspase-8 and the non-canonical NFKB2 pathway. These cytokines produced by TRAIL-treated TNBC cells enhanced chemotaxis of normal human donor isolated neutrophils. Using TNBC xenograft models, TRAIL induced activation of NFkB2 pathway, cytokine production and increased neutrophil recruitment into the tumors. Moreover, preincubation of neutrophils in supernatants from TRAIL-treated TNBC cells significantly impaired neutrophil function as measured by reduced respiratory burst and cytotoxic effect against TNBC cells. Transcriptomic analysis of neutrophils incubated with either TRAIL alone or supernatant of TRAIL-treated TNBC cells revealed increased expression of inflammatory cytokines, immune modulatory genes, immune checkpoint genes, and genes implicated in delayed neutrophil apoptosis. Functional studies showed that these neutrophils suppress T cell proliferation and augment Treg suppressive phenotype. Collectively, our study demonstrates a novel role of TRAIL-induced NFKB2-dependent cytokine production that promotes neutrophil chemotaxis and neutrophil-mediated immune suppression.
Collapse
Affiliation(s)
- Manjari Kundu
- Women's Malignancies Branch, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Yoshimi E Greer
- Women's Malignancies Branch, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Alexei Lobanov
- Center for Cancer Research Collaborative Bioinformatics Resource (CCBR), NCI, NIH, Bethesda, MD, USA
| | - Lisa Ridnour
- Cancer Innovation Laboratory, Center for Cancer Research (CCR), NCI, NIH, Frederick, MD, USA
| | - Renee N Donahue
- Center for Immuno-Oncology, CCR, NCI, NIH, Bethesda, MD, USA
| | - Yeap Ng
- Laboratory of Cellular and Molecular Biology, CCR, NCI, NIH, Bethesda, MD, USA
| | - Shashi Ratnayake
- Computational Genomics and Bioinformatics Branch, Center for Biomedical Informatics and Information Technology (CBIIT), NCI, NIH, Rockville, MD, USA
| | - Karley White
- Women's Malignancies Branch, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Donna Voeller
- Women's Malignancies Branch, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Sarah Weltz
- Women's Malignancies Branch, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Qingrong Chen
- Computational Genomics and Bioinformatics Branch, Center for Biomedical Informatics and Information Technology (CBIIT), NCI, NIH, Rockville, MD, USA
| | - Stephen J Lockett
- Optical Microscopy and Analysis Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Maggie Cam
- Center for Cancer Research Collaborative Bioinformatics Resource (CCBR), NCI, NIH, Bethesda, MD, USA
| | - Daoud Meerzaman
- Computational Genomics and Bioinformatics Branch, Center for Biomedical Informatics and Information Technology (CBIIT), NCI, NIH, Rockville, MD, USA
| | - David A Wink
- Cancer Innovation Laboratory, Center for Cancer Research (CCR), NCI, NIH, Frederick, MD, USA
| | - Roberto Weigert
- Laboratory of Cellular and Molecular Biology, CCR, NCI, NIH, Bethesda, MD, USA
| | - Stanley Lipkowitz
- Women's Malignancies Branch, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA.
| |
Collapse
|
3
|
Chalepaki AM, Gkoris M, Chondrou I, Kourti M, Georgakopoulos-Soares I, Zaravinos A. A multi-omics analysis of effector and resting treg cells in pan-cancer. Comput Biol Med 2025; 189:110021. [PMID: 40088713 DOI: 10.1016/j.compbiomed.2025.110021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 02/09/2025] [Accepted: 03/11/2025] [Indexed: 03/17/2025]
Abstract
Regulatory T cells (Tregs) are critical for maintaining the stability of the immune system and facilitating tumor escape through various mechanisms. Resting T cells are involved in cell-mediated immunity and remain in a resting state until stimulated, while effector T cells promote immune responses. Here, we investigated the roles of two gene signatures, one for resting Tregs (FOXP3 and IL2RA) and another for effector Tregs (FOXP3, CTLA-4, CCR8 and TNFRSF9) in pan-cancer. Using data from The Cancer Genome Atlas (TCGA), The Cancer Proteome Atlas (TCPA) and Gene Expression Omnibus (GEO), we focused on the expression profile of the two signatures, the existence of single nucleotide variants (SNVs) and copy number variants (CNVs), methylation, infiltration of immune cells in the tumor and sensitivity to different drugs. Our analysis revealed that both signatures are differentially expressed across different cancer types, and correlate with patient survival. Furthermore, both types of Tregs influence important pathways in cancer development and progression, like apoptosis, epithelial-to-mesenchymal transition (EMT) and the DNA damage pathway. Moreover, a positive correlation was highlighted between the expression of gene markers in both resting and effector Tregs and immune cell infiltration in adrenocortical carcinoma, while mutations in both signatures correlated with enrichment of specific immune cells, mainly in skin melanoma and endometrial cancer. In addition, we reveal the existence of widespread CNVs and hypomethylation affecting both Treg signatures in most cancer types. Last, we identified a few correlations between the expression of CCR8 and TNFRSF9 and sensitivity to several drugs, including COL-3, Chlorambucil and GSK1070916, in pan-cancer. Overall, these findings highlight new evidence that both Treg signatures are crucial regulators of cancer progression, providing potential clinical outcomes for cancer therapy.
Collapse
Affiliation(s)
- Anna-Maria Chalepaki
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus; Cancer Genetics, Genomics and Systems Biology Laboratory, Basic and Translational Cancer Research Center (BTCRC), Nicosia, Cyprus.
| | - Marios Gkoris
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus; Cancer Genetics, Genomics and Systems Biology Laboratory, Basic and Translational Cancer Research Center (BTCRC), Nicosia, Cyprus.
| | - Irene Chondrou
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus.
| | - Malamati Kourti
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus.
| | - Ilias Georgakopoulos-Soares
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, USA.
| | - Apostolos Zaravinos
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus; Cancer Genetics, Genomics and Systems Biology Laboratory, Basic and Translational Cancer Research Center (BTCRC), Nicosia, Cyprus.
| |
Collapse
|
4
|
Tian B, Wang Z, Cao M, Wang N, Jia X, Zhang Y, Zhou J, Liu S, Zhang W, Dong X, Li Z, Xue J, Wang J, Fan GH, Li Q. CCR8 antagonist suppresses liver cancer progression via turning tumor-infiltrating Tregs into less immunosuppressive phenotype. J Exp Clin Cancer Res 2025; 44:113. [PMID: 40186298 PMCID: PMC11969927 DOI: 10.1186/s13046-025-03286-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 01/12/2025] [Indexed: 04/07/2025] Open
Abstract
BACKGROUND Regulatory T cells (Tregs) are the main immunosuppressive cells in tumor immune microenvironment (TIME). However, systemic Treg depletion is not favored due to the crucial role of Tregs in the maintenance of immune homeostasis and prevention of autoimmunity. Recently, CCR8 has been identified as a key chemokine receptor expressed on tumor-infiltrating Tregs and targeted blockade of CCR8 exerts anticancer effect in several cancer types, but whether this pathway is involved in the progression of hepatocellular carcinoma (HCC) remains unclear. METHODS We determined the involvement of CCR8+ Tregs in HCC using human HCC tissues and TCGA database, and examined the anticancer effect and the underlying molecular mechanisms of the CCR8 antagonist, IPG0521m, which was developed in house, in murine liver cancer model with flow cytometry, bulk and single-cell RNA sequencing and Real-Time PCR. RESULTS Remarkable increase in CCR8+ Tregs was observed in human HCC tissues. Treatment of syngeneic liver cancer model with IPG0521m resulted in dramatic inhibition of tumor growth, associated with increased CD8+ T cells in tumor tissues. Bulk RNA sequencing analysis indicated that IPG0521m treatment resulted in remarkable increase in antitumor immunity. Furthermore, single-cell RNA sequencing analysis demonstrated that IPG0521m treatment resulted in a switch of Tregs from high immunosuppression to low immunosuppression phenotype, associated with elevated CD8+ T and NK cell proliferation and cytotoxicity, and decreased myeloid-derived suppressor cells and tumor-associated macrophages in the tumor tissues. CONCLUSIONS IPG0521m inhibited liver cancer growth via reducing the immunosuppressive function of Tregs, thereby boosting anti-cancer immunity. Our study paves the way for the clinical study of CCR8 antagonist in HCC and other cancers.
Collapse
MESH Headings
- Liver Neoplasms/pathology
- Liver Neoplasms/drug therapy
- Liver Neoplasms/immunology
- Liver Neoplasms/genetics
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/metabolism
- Animals
- Mice
- Humans
- Receptors, CCR8/antagonists & inhibitors
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/drug effects
- Lymphocytes, Tumor-Infiltrating/metabolism
- Disease Progression
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/immunology
- Carcinoma, Hepatocellular/pathology
- Tumor Microenvironment/drug effects
- Phenotype
- Disease Models, Animal
- Cell Line, Tumor
- Immune Tolerance
Collapse
Affiliation(s)
- Binle Tian
- Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
- Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Zhilong Wang
- Department of Oncology, Immunophage Biotech Co., Ltd., 10 Lv Zhouhuang Road, Shanghai, 201114, China
| | - Mei Cao
- Department of Gynecology and Obstetrics, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Na Wang
- Department of Antibody Development, Immunophage Biotech Co., Ltd., 10 Lv Zhouhuang Road, Shanghai, 201114, China
| | - Xuebing Jia
- Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
- Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Yuanyuan Zhang
- Department of Oncology, Immunophage Biotech Co., Ltd., 10 Lv Zhouhuang Road, Shanghai, 201114, China
| | - Jingyi Zhou
- Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Sijia Liu
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| | - Wen Zhang
- Department of Oncology, Immunophage Biotech Co., Ltd., 10 Lv Zhouhuang Road, Shanghai, 201114, China
| | - Xiao Dong
- Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Zheng Li
- Department of Autoimmune Disease, Immunophage Biotech Co., Ltd., 10 Lv Zhouhuang Road, Shanghai, 201114, China
| | - Junli Xue
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200123, China.
| | - JianFei Wang
- Excecutive Office, Immunophage Biotech Co., Ltd., 10 Lv Zhouhuang Road, Shanghai, 201114, China.
- Shanghai Laboratory Animal Research Center, Shanghai, 201203, China.
| | - Guo-Huang Fan
- Excecutive Office, Immunophage Biotech Co., Ltd., 10 Lv Zhouhuang Road, Shanghai, 201114, China.
| | - Qi Li
- Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
- Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
| |
Collapse
|
5
|
Ager CR, Obradovic A, McCann P, Chaimowitz M, Wang ALE, Shaikh N, Shah P, Pan SS, Laplaca CJ, Virk RK, Hill JC, Jugler C, DeFranco G, Bhattacharya N, Copple KR, Scher HI, DeCastro GJ, Anderson CB, McKiernan JM, Spina CS, Stein MN, Runcie K, Drake CG, Califano A, Dallos MC. Fc-enhanced anti-CTLA-4 depletes tumor-infiltrating regulatory T cells to augment immune effects of androgen ablation in high-risk prostate cancer. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2024.09.09.24313308. [PMID: 39314954 PMCID: PMC11419205 DOI: 10.1101/2024.09.09.24313308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Despite high rates of post-surgical recurrence in men with high-risk localized prostate cancer (PCa), there is currently no role for neoadjuvant therapy. Tumor infiltrating regulatory T cells (TI-Tregs) limit the antitumor effects of presurgical androgen deprivation therapy (ADT). Therefore, we designed a neoadjuvant clinical trial to test whether Treg depletion via a non-fucosylated anti-CTLA-4 antibody (BMS-986218) is feasible and augments response to ADT. In this single-center, two-arm, open-label study, 24 men with high-risk localized PCa were randomized to ADT with or without BMS-986218 prior to radical prostatectomy. Treatment was well tolerated and feasible. Mechanistic studies indicated BMS-986218 depleted TI-Tregs by engaging CD16a/FCGR3A on tumor macrophages, modulated dendritic cells (DCs), and augmented T cell priming. Depth of Treg depletion and increased DC frequencies were quantitatively associated with improved clinical outcome. Overall, this study supports the feasibility and biological activity of neoadjuvant immunotherapy with ADT + Fc-enhanced anti-CTLA-4 in high-risk localized PCa.
Collapse
Affiliation(s)
- Casey R Ager
- Department of Medicine, Division of Hematology and Oncology, Columbia University Irving Medical Center, New York, NY
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY
- Department of Immunology, Mayo Clinic Arizona, Scottsdale, AZ
- Department of Urology, Mayo Clinic Arizona, Scottsdale, AZ
| | - Aleksandar Obradovic
- Department of Systems Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY
| | - Patrick McCann
- Department of Radiation Oncology, Columbia University Irving Medical Center, New York, NY
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Matthew Chaimowitz
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY
| | - Alexander L E Wang
- Department of Systems Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY
| | - Neha Shaikh
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY
| | - Parin Shah
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY
| | - Samuel S Pan
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY
| | - Caroline J Laplaca
- Department of Urology, Columbia University Irving Medical Center, New York, NY
| | - Renu K Virk
- Department of Pathology, Columbia University Irving Medical Center, New York, NY
| | - Jessica C Hill
- Department of Immunology, Mayo Clinic Arizona, Scottsdale, AZ
| | - Collin Jugler
- Department of Immunology, Mayo Clinic Arizona, Scottsdale, AZ
| | - Grace DeFranco
- Department of Immunology, Mayo Clinic Arizona, Scottsdale, AZ
| | | | - Kade R Copple
- Department of Immunology, Mayo Clinic Arizona, Scottsdale, AZ
| | - Howard I Scher
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | | | | | - James M McKiernan
- Department of Urology, Columbia University Irving Medical Center, New York, NY
| | - Catherine S Spina
- Department of Radiation Oncology, Columbia University Irving Medical Center, New York, NY
| | - Mark N Stein
- Department of Medicine, Division of Hematology and Oncology, Columbia University Irving Medical Center, New York, NY
| | - Karie Runcie
- Department of Medicine, Division of Hematology and Oncology, Columbia University Irving Medical Center, New York, NY
| | - Charles G Drake
- Department of Medicine, Division of Hematology and Oncology, Columbia University Irving Medical Center, New York, NY
- Department of Urology, Columbia University Irving Medical Center, New York, NY
- Current Address: JnJ Innovative Medicine, Springhouse, PA
| | - Andrea Califano
- Department of Systems Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY
- Department of Biochemistry & Molecular Biophysics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA 10032
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA 10032
- Department of Biomedical Informatics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA 10032
- Chan Zuckerberg Biohub New York, New York, NY, USA
| | - Matthew C Dallos
- Department of Medicine, Division of Hematology and Oncology, Columbia University Irving Medical Center, New York, NY
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
6
|
Chen P, Wang H, Tang Z, Shi J, Cheng L, Zhao C, Li X, Zhou C. Selective Depletion of CCR8+Treg Cells Enhances the Antitumor Immunity of Cytotoxic T Cells in Lung Cancer by Dendritic Cells. J Thorac Oncol 2025:S1556-0864(25)00109-1. [PMID: 40056978 DOI: 10.1016/j.jtho.2025.02.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 01/17/2025] [Accepted: 02/22/2025] [Indexed: 04/10/2025]
Abstract
INTRODUCTION Accumulation of regulatory T (Treg) cells, an immunosuppressive population, limits the efficacy of immunotherapy in NSCLC. C-C motif chemokine receptor 8 (CCR8) is selectively expressed in tumor-infiltrating Treg cells and is, therefore, considered an ideal target. METHODS The efficacy and safety of anti-CCR8 monotherapy and its combination with programmed cell death protein-1 (PD1) inhibitor were evaluated in four NSCLC-bearing mice models. To track the dynamic changes in tumor microenvironment, we performed the single-cell RNA sequencing, the single-cell T-cell receptor sequencing analysis, the flow cytometry, the multi-color immunofluorescence, and the Luminex assay on tumors after three, seven, 14, and 21 days of different treatment regimens. Then, in vitro and in vivo experiments were applied to validate our findings and explore molecular mechanisms of the synergistic effects. RESULTS Across four NSCLC-bearing mice models, the combination of CCR8 antibody and PD1 inhibitor significantly reduced tumor growth (p < 0.05) without obvious mouse body weight drops and systemic cytokine storm. The anti-CCR8 therapy synergizes with PD1 blockade by remodeling the tumor microenvironment and disrupting CCR8+Treg-C-C motif chemokine ligand 5 (CCL5)+ dendritic cells (DC) interaction. Mechanistically, therapeutic depletion of CCR8+Treg cells combined with PD1 inhibitor extremely increased interleukin-12 secretion by the Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway activation on CCL5+ DCs, thereby promoting cytotoxic activity of CD8+ T cells. The therapeutic potential of the CCR8 antibody LM-108 in combination with immunotherapy was observed in clinical patients with advanced NSCLC. CONCLUSION Overall, CCR8 expression on tumor-infiltrating Treg cells is correlated with immunosuppressive function on DCs and CD8+ T cells, thus impeding antitumor immunity.
Collapse
Affiliation(s)
- Peixin Chen
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Haowei Wang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Zhuoran Tang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Jinpeng Shi
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Lei Cheng
- Department of Lung Cancer and Immunology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Chao Zhao
- Department of Lung Cancer and Immunology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Xuefei Li
- Department of Lung Cancer and Immunology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Caicun Zhou
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China; Department of Medical Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China.
| |
Collapse
|
7
|
Meyiah A, Khan FI, Alfaki DA, Murshed K, Raza A, Elkord E. The colorectal cancer microenvironment: Preclinical progress in identifying targets for cancer therapy. Transl Oncol 2025; 53:102307. [PMID: 39904281 PMCID: PMC11846588 DOI: 10.1016/j.tranon.2025.102307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/29/2025] [Accepted: 01/30/2025] [Indexed: 02/06/2025] Open
Abstract
Colorectal cancer (CRC) is a common cancer with high mortality rates. Despite progress in treatment, it remains an incurable disease for many patients. In CRC, the tumor microenvironment (TME) plays critical roles in tumor growth, progression, patients' prognosis, and response to treatments. Understanding TME complexities is important for developing effective therapies. In vitro and in vivo preclinical models are critical in understanding the disease, discovering potential targets, and developing effective therapeutics. In this review, we focus on preclinical research studies associated with modulation of the TME in CRC. These models give insights into understanding the role of stroma and immune cell components of the TME in CRC and improve clinical responses, providing insights in novel treatment options. Various studies have focused on targeting the TME in CRC to improve responses to different therapeutic approaches. These include identifying targets for cancer therapies, targeting molecular signaling, and enhancing the efficacy of immunotherapeutic modalities. Furthermore, targeting stromal and angiogenic factors in the TME may provide new therapeutic options. Overall, understanding and targeting the TME in CRC is a promising approach for improving therapeutic outcomes.
Collapse
Affiliation(s)
- Abdo Meyiah
- Department of Biosciences and Bioinformatics & Suzhou Municipal Key Lab of Biomedical Sciences and Translational Immunology, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Faez Iqbal Khan
- Department of Biosciences and Bioinformatics & Suzhou Municipal Key Lab of Biomedical Sciences and Translational Immunology, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Dia Aldeen Alfaki
- Department of Haematology, Al-Zaeim Al-Azhari University, Khartoum, Sudan
| | - Khaled Murshed
- Department of Pathology, Hamad Medical Corporation, Doha, Qatar
| | - Afsheen Raza
- College of Health Sciences, Abu Dhabi University, Abu Dhabi, United Arab Emirates
| | - Eyad Elkord
- Department of Biosciences and Bioinformatics & Suzhou Municipal Key Lab of Biomedical Sciences and Translational Immunology, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China; College of Health Sciences, Abu Dhabi University, Abu Dhabi, United Arab Emirates; Biomedical Research Center, School of Science, Engineering and Environment, University of Salford, Manchester, UK.
| |
Collapse
|
8
|
Li G, Li S, Jiang Y, Chen T, An Z. Unleashing the Power of immune Checkpoints: A new strategy for enhancing Treg cells depletion to boost antitumor immunity. Int Immunopharmacol 2025; 147:113952. [PMID: 39764997 DOI: 10.1016/j.intimp.2024.113952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 12/22/2024] [Accepted: 12/24/2024] [Indexed: 01/29/2025]
Abstract
Regulatory T (Treg) cells, immunosuppressive CD4+ T cells, can impede anti-tumor immunity, complicating cancer treatment. Since their discovery, numerous studies have been dedicated to understand Treg cell biology, with a focus on checkpoint pathways' role in their generation and function. Immune checkpoints, such as PD-1/PD-L1, CTLA-4, TIGIT, TIM-3, and OX40, are pivotal in controlling Treg cell expansion and activity in the tumor microenvironment (TME), affecting their ability to suppress immune responses. This review examines the complex relationship between these checkpoints and Tregs in the TME, and how they influence tumor immunity. We also discuss the therapeutic potential of targeting these checkpoints to enhance anti-tumor immunity, including the use of immune checkpoint blockade (ICB) therapies and novel approaches such as CCR8-targeted therapies. Understanding the interaction between immune checkpoints and Treg cells can lead to more effective immunotherapeutic strategies, such as combining CCR8-targeted therapies with immune checkpoint inhibitors, to improve patient outcomes in cancer treatment.
Collapse
Affiliation(s)
- Guoxin Li
- Department of Oral Biology, School and Hospital of Stomatology, Jilin University, Changchun, China; Key Laboratory of Tooth Development and Bone Remodeling of Jilin Province, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Siqi Li
- Department of Oral Biology, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Yilin Jiang
- Department of Oral Biology, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Tao Chen
- Department of Oral Biology, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Zhengwen An
- Department of Oral Biology, School and Hospital of Stomatology, Jilin University, Changchun, China; Key Laboratory of Tooth Development and Bone Remodeling of Jilin Province, School and Hospital of Stomatology, Jilin University, Changchun, China.
| |
Collapse
|
9
|
Mempel TR, Malehmir M. Chemokines that govern T cell activity in tumors. Curr Opin Immunol 2025; 92:102510. [PMID: 39662216 PMCID: PMC11729545 DOI: 10.1016/j.coi.2024.102510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 11/12/2024] [Accepted: 11/19/2024] [Indexed: 12/13/2024]
Abstract
Local regulation of T cell-mediated immunity to solid tumors occurs at multiple levels, including their recruitment from the bloodstream to the tumor microenvironment (TME), coordinated crosstalk with different subsets of antigen-presenting cells (APCs) controlling their local survival, proliferation, and effector differentiation, as well as their egress from tumors via lymphatics. At each level, chemokines play essential roles, for instance, by guiding directional T cell migration across blood and lymphatic endothelial barriers or by promoting their spatial proximity and direct physical interactions with APCs to enable functional crosstalk. In this article, we will review recent mechanistic insights into the chemokine axes that guide T cell functions in TMEs in light of the emerging functional state heterogeneity of CD8+ effector T cells and our growing understanding of how regulatory T cells restrain antitumor activity.
Collapse
Affiliation(s)
- Thorsten R Mempel
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| | - Mohsen Malehmir
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
10
|
Wen Y, Xia Y, Yang X, Li H, Gao Q. CCR8: a promising therapeutic target against tumor-infiltrating regulatory T cells. Trends Immunol 2025; 46:153-165. [PMID: 39890548 DOI: 10.1016/j.it.2025.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/27/2024] [Accepted: 01/06/2025] [Indexed: 02/03/2025]
Abstract
Tumor-infiltrating regulatory T (TI-Treg) cells constitute key components within the tumor microenvironment (TME) to suppress antitumor immunity and facilitate tumor progression. Although multiple therapies have been developed to eliminate TI-Treg cells, most of them exhibit only modest efficacy and harbor risks of inducing immune-related adverse events (irAEs). Recent studies demonstrate that CC chemokine receptor (CCR)8 is highly and specifically expressed on effector TI-Treg cells in mice and humans, highlighting CCR8 as a promising target for selective TI-Treg cell depletion in the treatment of various cancers. Here, we concentrate on the latest understanding of CCR8 regarding its expression, functions, and regulation, and summarize the current landscape of CCR8-targeted therapies. With favorable efficacy and safety, the latter represent an important class of next-generation putative cancer immunotherapies.
Collapse
Affiliation(s)
- Yuanjia Wen
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Xia
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangping Yang
- The Second Affiliated Hospital of Guangzhou Medical University, Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Guangzhou, China
| | - Huayi Li
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Qinglei Gao
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
11
|
Guo Y, Xie F, Liu X, Ke S, Chen J, Zhao Y, Li N, Wang Z, Yi G, Shen Y, Li D, Zhu C, Zhang Z, Zhao G, Lu H, Li B, Zhao W. Blockade of TNF-α/TNFR2 signalling suppresses colorectal cancer and enhances the efficacy of anti-PD1 immunotherapy by decreasing CCR8+T regulatory cells. J Mol Cell Biol 2024; 16:mjad067. [PMID: 37935468 PMCID: PMC11587560 DOI: 10.1093/jmcb/mjad067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 05/05/2023] [Accepted: 11/02/2023] [Indexed: 11/09/2023] Open
Abstract
The enrichment of regulatory T cells (Tregs) in the tumour microenvironment (TME) has been recognized as one of the major factors in the initiation and development of resistance to immune checkpoint inhibitors. C-C motif chemokine receptor 8 (CCR8), a marker of activated suppressive Tregs, has a significant impact on the functions of Tregs in the TME. However, the regulatory mechanism of CCR8 in Tregs remains unclear. Here, we revealed that a high level of TNF-α in the colorectal cancer (CRC) microenvironment upregulated CCR8 expression in Tregs via the TNFR2/NF-κB signalling pathway and the FOXP3 transcription factor. Furthermore, in both anti-programmed cell death protein 1 (anti-PD1)-responsive and anti-PD1-unresponsive tumour models, PD1 blockade induced CCR8+ Treg infiltration. In both models, Tnfr2 depletion or TNFR2 blockade suppressed tumour progression by reducing CCR8+ Treg infiltration and thus augmented the efficacy of anti-PD1 therapy. Finally, we identified that TNFR2+CCR8+ Tregs but not total Tregs were positively correlated with adverse prognosis in patients with CRC and gastric cancer. Our work reveals the regulatory mechanisms of CCR8 in Tregs and identifies TNFR2 as a promising target for immunotherapy.
Collapse
Affiliation(s)
- Yixian Guo
- Department of Gastrointestinal Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Feng Xie
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xu Liu
- Department of Gastrointestinal Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shouyu Ke
- Department of Gastrointestinal Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jieqiong Chen
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yi Zhao
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ning Li
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine Shanghai 200025, China
| | - Zeyu Wang
- Department of Gastrointestinal Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Gang Yi
- Biotheus Inc., Zhuhai 519080, China
| | - Yanying Shen
- Department of Pathology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Dan Li
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Chunchao Zhu
- Department of Gastrointestinal Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zizhen Zhang
- Department of Gastrointestinal Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Gang Zhao
- Department of Gastrointestinal Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hong Lu
- GI Division, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Bin Li
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wenyi Zhao
- Department of Gastrointestinal Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
12
|
Serrano A, Zalba S, Lasarte JJ, Troconiz IF, Riva N, Garrido MJ. Quantitative Approach to Explore Regulatory T Cell Activity in Immuno-Oncology. Pharmaceutics 2024; 16:1461. [PMID: 39598584 PMCID: PMC11597491 DOI: 10.3390/pharmaceutics16111461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024] Open
Abstract
The failure of immunotherapies in cancer patients is being widely studied due to the complexities present in the tumor microenvironment (TME), where regulatory T cells (Treg) appear to actively participate in providing an immune escape mechanism for tumors. Therefore, therapies to specifically inhibit tumor-infiltrating Treg represent a challenge, because Treg are distributed throughout the body and provide physiological immune homeostasis to prevent autoimmune diseases. Characterization of immunological and functional profiles could help to identify the mechanisms that need to be inhibited or activated to ensure Treg modulation in the tumor. To address this, quantitative in silico approaches based on mechanistic mathematical models integrating multi-scale information from immune and tumor cells and the effect of different therapies have allowed the building of computational frameworks to simulate different hypotheses, some of which have subsequently been experimentally validated. Therefore, this review presents a list of diverse computational mathematical models that examine the role of Treg as a crucial immune resistance mechanism contributing to the failure of immunotherapy. In addition, this review highlights the relevance of certain molecules expressed in Treg that are associated with the TME immunosuppression, which could be incorporated into the mathematical model for a better understanding of the contribution of Treg modulation. Finally, different preclinical and clinical combinations of molecules are also included to show the trend of new therapies targeting Treg.
Collapse
Affiliation(s)
- Alejandro Serrano
- Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; (A.S.); (S.Z.); (I.F.T.)
- Navarra Institute for Health Research (IdisNA), 31008 Pamplona, Spain
| | - Sara Zalba
- Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; (A.S.); (S.Z.); (I.F.T.)
- Navarra Institute for Health Research (IdisNA), 31008 Pamplona, Spain
| | - Juan Jose Lasarte
- Navarra Institute for Health Research (IdisNA), 31008 Pamplona, Spain
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain;
| | - Iñaki F. Troconiz
- Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; (A.S.); (S.Z.); (I.F.T.)
- Navarra Institute for Health Research (IdisNA), 31008 Pamplona, Spain
- Institute of Data Sciences and Artificial Intelligence (DATAI), University of Navarra, 31008 Pamplona, Spain
| | - Natalia Riva
- Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; (A.S.); (S.Z.); (I.F.T.)
- Navarra Institute for Health Research (IdisNA), 31008 Pamplona, Spain
| | - Maria J. Garrido
- Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; (A.S.); (S.Z.); (I.F.T.)
- Navarra Institute for Health Research (IdisNA), 31008 Pamplona, Spain
| |
Collapse
|
13
|
Fu Y, Guo X, Sun L, Cui T, Wu C, Wang J, Liu Y, Liu L. Exploring the role of the immune microenvironment in hepatocellular carcinoma: Implications for immunotherapy and drug resistance. eLife 2024; 13:e95009. [PMID: 39146202 PMCID: PMC11326777 DOI: 10.7554/elife.95009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 08/04/2024] [Indexed: 08/17/2024] Open
Abstract
Hepatocellular carcinoma (HCC), the most common type of liver tumor, is a leading cause of cancer-related deaths, and the incidence of liver cancer is still increasing worldwide. Curative hepatectomy or liver transplantation is only indicated for a small population of patients with early-stage HCC. However, most patients with HCC are not candidates for radical resection due to disease progression, leading to the choice of the conventional tyrosine kinase inhibitor drug sorafenib as first-line treatment. In the past few years, immunotherapy, mainly immune checkpoint inhibitors (ICIs), has revolutionized the clinical strategy for HCC. Combination therapy with ICIs has proven more effective than sorafenib, and clinical trials have been conducted to apply these therapies to patients. Despite significant progress in immunotherapy, the molecular mechanisms behind it remain unclear, and immune resistance is often challenging to overcome. Several studies have pointed out that the complex intercellular communication network in the immune microenvironment of HCC regulates tumor escape and drug resistance to immune response. This underscores the urgent need to analyze the immune microenvironment of HCC. This review describes the immunosuppressive cell populations in the immune microenvironment of HCC, as well as the related clinical trials, aiming to provide insights for the next generation of precision immunotherapy.
Collapse
Affiliation(s)
- Yumin Fu
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, China
| | - Xinyu Guo
- Department of General Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Linmao Sun
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, China
| | - Tianming Cui
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, China
| | - Chenghui Wu
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, China
| | - Jiabei Wang
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, China
| | - Yao Liu
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, China
| | - Lianxin Liu
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, China
| |
Collapse
|
14
|
Guo C, Dai X, Du Y, Xiong X, Gui X. Preclinical development of a novel CCR8/CTLA-4 bispecific antibody for cancer treatment by disrupting CTLA-4 signaling on CD8 T cells and specifically depleting tumor-resident Tregs. Cancer Immunol Immunother 2024; 73:210. [PMID: 39123089 PMCID: PMC11315865 DOI: 10.1007/s00262-024-03794-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024]
Abstract
Anti-CTLA-4 antibodies faced challenges due to frequent adverse events and limited efficacy, which spurred the exploration of next-generation CTLA-4 therapeutics to balance regulatory T cells (Tregs) depletion and CD8 T cells activation. CCR8, identified primarily on tumor-infiltrating Tregs, has become a target of interest due to the anti-tumor effects demonstrated by CCR8 antibody-mediated Tregs depletion. Single-cell RNA sequencing analysis reveals that CCR8-positive Tregs constitute a small subset, with concurrent expression of CCR8 and CTLA-4. Consequently, we proposed a novel bispecific antibody targeting CCR8 and CTLA-4 that had the potential to enhance T cell activation while selectively depleting intratumor Tregs. The candidate molecule 2MW4691 was developed in a tetravalent symmetric format, maintaining a strong binding affinity for CCR8 while exhibiting relatively weaker CTLA-4 binding. This selective binding ability allowed 2MW4691 to target and deplete tumor-infiltrating Tregs with higher specificity. In vitro assays verified the antibody's capacity for antibody-dependent cellular cytotoxicity (ADCC) to Tregs with high level of CTLA-4 expression, but not CD8 T cells with relatively low level of CTLA-4 on cell surface. Also, 2MW4691 inhibited the CTLA-4 pathway and enhanced T cell activation. The in vivo therapeutic efficacy of 2MW4691 was further demonstrated using hCCR8 or hCTLA-4 humanized mouse models and hCCR8/hCTLA-4 double knock-in mouse models. In cynomolgus monkeys, 2MW4691 was well-tolerated, exhibited the anticipated pharmacokinetic profile, and had a minimal impact on the peripheral T cell population. The promising preclinical results supported the further evaluation of 2MW4691 as a next-generation Treg-based therapeutics in clinical trials.
Collapse
Affiliation(s)
- Cuicui Guo
- Mabwell (Shanghai) Bioscience Co., Ltd, Shanghai, 201210, China
| | - Xiaodong Dai
- Mabwell (Shanghai) Bioscience Co., Ltd, Shanghai, 201210, China
| | - Yulei Du
- Mabwell (Shanghai) Bioscience Co., Ltd, Shanghai, 201210, China
| | - Xiumei Xiong
- Mabwell (Shanghai) Bioscience Co., Ltd, Shanghai, 201210, China
| | - Xun Gui
- Mabwell (Shanghai) Bioscience Co., Ltd, Shanghai, 201210, China.
| |
Collapse
|
15
|
Zhao Y, Tang G, Li J, Bian X, Zhou X, Feng J. Integrative transcriptome analysis reveals the molecular events underlying impaired T-cell responses in EGFR-mutant lung cancer. Sci Rep 2024; 14:18366. [PMID: 39112565 PMCID: PMC11306370 DOI: 10.1038/s41598-024-69020-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024] Open
Abstract
EGFR mutations are critical oncogenic drivers in lung adenocarcinoma (LUAD). However, the mechanisms by which they impact the tumor microenvironment (TME) and tumor immunity are unclear. Furthermore, the reasons underlying the poor response of EGFR-mutant (EGFR-MU) LUADs to immunotherapy with PD-1/PD-L1 inhibitors are unknown. Utilizing single-cell RNA (sc-RNA) and bulk RNA sequencing datasets, we conducted high-dimensional weighted gene coexpression network analysis to identify key genes and immune-related pathways contributing to the immunosuppressive TME. EGFR-MU cancer cells downregulated MHC class I genes to evade CD8+ cytotoxic T cells, expressed substantial levels of MHC class II molecules, and engaged with CD4+ regulatory T cells (Tregs). EGFR-MU tumors may recruit Tregs primarily through the CCL17/CCL22/CCR4 axis, leading to a Treg-enriched TME. High levels of MHC class II-positive cancer-associated fibroblasts and tumor endothelial cells were found within EGFR-MU tumors. Owing to the absence of costimulatory factors, they may inhibit rather than activate the tumor antigen-specific CD4+ T-cell response, contributing further to immune suppression. Multiplex immunohistochemistry analyses in a LUAD cohort confirmed increased expression of MHC class II molecules in cancer cells and fibroblasts in EGFR-MU tumors. Our research elucidates the highly immunosuppressive TME in EGFR-MU LUAD and suggests potential targets for effective immunotherapy.
Collapse
Affiliation(s)
- Yu Zhao
- Department of Immunology, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Gu Tang
- Department of Immunology, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Jun Li
- Department of Immunology, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Xiaonan Bian
- Department of Immunology, Medical School of Nantong University, Nantong, Jiangsu, China
- Department of Clinical Laboratory, The Sixth Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Xiaorong Zhou
- Department of Immunology, Medical School of Nantong University, Nantong, Jiangsu, China.
| | - Jian Feng
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China.
| |
Collapse
|
16
|
Peng Q, Jiang H, Cheng X, Wang N, Zhou S, Zhang Y, Yang T, Chen Y, Zhang W, Lv S, Nan W, Wang J, Fan GH, Li J, Zhang J. Cryo-EM Structure and Biochemical Analysis of the Human Chemokine Receptor CCR8. Biochemistry 2024; 63:1892-1900. [PMID: 38985857 DOI: 10.1021/acs.biochem.4c00121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
The C-C motif chemokine receptor 8 (CCR8) is a class A G-protein-coupled receptor that has emerged as a promising therapeutic target in cancer and autoimmune diseases. In the present study, we solved the cryo-electron microscopy (cryo-EM) structure of the human CCR8-Gi complex in the absence of a ligand at 2.58 Å. Structural analysis and comparison revealed that our apo CCR8 structure undergoes some conformational changes and is similar to that in the CCL1-CCR8 complex structure, indicating an active state. In addition, the key residues of CCR8 involved in the recognition of LMD-009, a potent nonpeptide agonist, were investigated by mutating CCR8 and testing the calcium flux induced by LMD-009-CCR8 interaction. Three mutants of CCR8, Y1133.32A, Y1724.64A, and E2867.39A, showed a dramatically decreased ability in mediating calcium mobilization, indicating their key interaction with LMD-009 and key roles in activation. These structural and biochemical analyses enrich molecular insights into the agonism and activation of CCR8 and will facilitate CCR8-targeted therapy.
Collapse
Affiliation(s)
- Qi Peng
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Haihai Jiang
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Xinyu Cheng
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Na Wang
- Cobio Biotechnology Co., Ltd., No. 9 Building, Building 16 of SHUWU, No. 73 Tanmi Road, Jiangbei New District, Nanjing 211500, China
| | - Sili Zhou
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Yuting Zhang
- Shenzhen Crystalo Biopharmaceutical Co., Ltd, Shenzhen, Guangdong 518118, China
| | - Tingting Yang
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Yixiang Chen
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Wei Zhang
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Sijia Lv
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Weiwei Nan
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - JianFei Wang
- Executive Office, Immunophage Biotech Co., Ltd., No 10. Lv Zhou Huan Road, Shanghai 201112, China
| | - Guo-Huang Fan
- Executive Office, Immunophage Biotech Co., Ltd., No 10. Lv Zhou Huan Road, Shanghai 201112, China
| | - Jian Li
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China
| | - Jin Zhang
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| |
Collapse
|
17
|
Kundu M, Greer YE, Lobanov A, Ridnour L, Donahue RN, Ng Y, Ratnayake S, Voeller D, Weltz S, Chen Q, Lockett SJ, Cam M, Meerzaman D, Wink DA, Weigert R, Lipkowitz S. TRAIL-induced cytokine production via NFKB2 pathway promotes neutrophil chemotaxis and immune suppression in triple negative breast cancers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.19.604341. [PMID: 39091795 PMCID: PMC11291031 DOI: 10.1101/2024.07.19.604341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a potential cancer therapeutic that induces apoptosis in cancer cells while sparing the non-malignant cells in preclinical models. However, its efficacy in clinical trials has been limited, suggesting unknown modulatory mechanisms responsible for the lack of TRAIL activity in patients. Here, we hypothesized that TRAIL treatment elicits transcriptional changes in triple negative breast cancer (TNBC) cells that alter the immune milieu. To test this, we performed an RNAseq analysis of MDA-MB-231 cells treated with TRAIL, followed by validation in additional TNBC cell lines. TRAIL significantly induces expression of multiple cytokines such as CXCLs 1, 2, 3, 8,11 and IL-6, which are known to modify neutrophil function. Mechanistically, the induction of these cytokines was predominantly mediated by death receptor 5, caspase 8 (but not caspase 8 enzymatic activity), and the non-canonical NFKB2 pathway. The cytokines produced by the TRAIL-treated TNBC cells enhanced chemotaxis of healthy human donor isolated neutrophils. In vivo , TRAIL treated TNBC murine xenograft tumors showed activation of the NFKB2 pathway, elevated production of CXCLs and IL-6, and increased neutrophil recruitment into the tumors. Moreover, donor isolated neutrophils preincubated in supernatants from TRAIL-treated TNBC cells exhibited impaired cytotoxic effect against TNBC cells. Transcriptomic analysis of neutrophils incubated with either TRAIL alone or supernatant of TRAIL-treated TNBC cells revealed increased expression of inflammatory cytokines, immune modulatory genes, immune checkpoint genes, and genes implicated in delayed neutrophil apoptosis. Functional studies with these neutrophils confirmed their suppressive effect on T cell proliferation and an increase in Treg suppressive phenotype. Collectively, our study demonstrates a novel role of TRAIL-induced NFKB2-dependent cytokine production that promotes neutrophil chemotaxis and immune suppression.
Collapse
|
18
|
Roider HG, Hoff S, Tseng SY, Berndt S, Trautwein M, Filarsky K, Gritzan U, Camps J, Nadler WM, Grudzinska-Goebel J, Ellinger P, Pesch T, Soon CF, Geyer M, Gluske K, Stelte-Ludwig B, Gorjánácz M. Selective depletion of tumor-infiltrating regulatory T cells with BAY 3375968, a novel Fc-optimized anti-CCR8 antibody. Clin Exp Med 2024; 24:122. [PMID: 38856863 PMCID: PMC11164760 DOI: 10.1007/s10238-024-01362-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 04/28/2024] [Indexed: 06/11/2024]
Abstract
Regulatory T cells (Tregs) are known to facilitate tumor progression by suppressing CD8+ T cells within the tumor microenvironment (TME), thereby also hampering the effectiveness of immune checkpoint inhibitors (ICIs). While systemic depletion of Tregs can enhance antitumor immunity, it also triggers undesirable autoimmune responses. Therefore, there is a need for therapeutic agents that selectively target Tregs within the TME without affecting systemic Tregs. In this study, as shown also by others, the chemokine (C-C motif) receptor 8 (CCR8) was found to be predominantly expressed on Tregs within the TME of both humans and mice, representing a unique target for selective depletion of tumor-residing Tregs. Based on this, we developed BAY 3375968, a novel anti-human CCR8 antibody, along with respective surrogate anti-mouse CCR8 antibodies, and demonstrated their in vitro mode-of-action through induction of potent antibody-dependent cellular cytotoxicity (ADCC) and phagocytosis (ADCP) activities. In vivo, anti-mouse CCR8 antibodies effectively depleted Tregs within the TME primarily via ADCP, leading to increased CD8+ T cell infiltration and subsequent tumor growth inhibition across various cancer models. This monotherapeutic efficacy was significantly enhanced in combination with ICIs. Collectively, these findings suggest that CCR8 targeting represents a promising strategy for Treg depletion in cancer therapies. BAY 3375968 is currently under investigation in a Phase I clinical trial (NCT05537740).
Collapse
MESH Headings
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/drug effects
- Receptors, CCR8/immunology
- Receptors, CCR8/antagonists & inhibitors
- Animals
- Mice
- Humans
- Tumor Microenvironment/immunology
- Tumor Microenvironment/drug effects
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/drug effects
- CD8-Positive T-Lymphocytes/immunology
- Female
- Antibody-Dependent Cell Cytotoxicity
- Lymphocyte Depletion
- Cell Line, Tumor
- Phagocytosis/drug effects
- Antibodies, Monoclonal/pharmacology
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/therapeutic use
Collapse
Affiliation(s)
| | | | - Su-Yi Tseng
- Bayer AG, Pharmaceuticals, San Francisco, USA
| | | | | | - Katharina Filarsky
- Bayer AG, Pharmaceuticals, Wuppertal, Germany
- Current address: Roche Diagnostics GmbH, Penzberg, Germany
| | - Uwe Gritzan
- Bayer AG, Pharmaceuticals, Wuppertal, Germany
- Current address: Memorial Sloan Kettering Cancer Center, New York, USA
| | | | | | | | | | | | | | | | | | - Beatrix Stelte-Ludwig
- Bayer AG, Pharmaceuticals, Wuppertal, Germany
- Current address: Vincerx Pharma, Monheim am Rhein, Germany
| | | |
Collapse
|
19
|
Smith H, Arbe-Barnes E, Shah EA, Sivakumar S. Manipulating regulatory T cells: is it the key to unlocking effective immunotherapy for pancreatic ductal adenocarcinoma? Front Immunol 2024; 15:1406250. [PMID: 38873607 PMCID: PMC11170104 DOI: 10.3389/fimmu.2024.1406250] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 05/14/2024] [Indexed: 06/15/2024] Open
Abstract
The five-year survival rates for pancreatic ductal adenocarcinoma (PDAC) have scarcely improved over the last half-century. It is inherently resistant to FDA-approved immunotherapies, which have transformed the outlook for patients with other advanced solid tumours. Accumulating evidence relates this resistance to its hallmark immunosuppressive milieu, which instils progressive dysfunction among tumour-infiltrating effector T cells. This milieu is established at the inception of neoplasia by immunosuppressive cellular populations, including regulatory T cells (Tregs), which accumulate in parallel with the progression to malignant PDAC. Thus, the therapeutic manipulation of Tregs has captured significant scientific and commercial attention, bolstered by the discovery that an abundance of tumour-infiltrating Tregs correlates with a poor prognosis in PDAC patients. Herein, we propose a mechanism for the resistance of PDAC to anti-PD-1 and CTLA-4 immunotherapies and re-assess the rationale for pursuing Treg-targeted therapies in light of recent studies that profiled the immune landscape of patient-derived tumour samples. We evaluate strategies that are emerging to limit Treg-mediated immunosuppression for the treatment of PDAC, and signpost early-stage trials that provide preliminary evidence of clinical activity. In this context, we find a compelling argument for investment in the ongoing development of Treg-targeted immunotherapies for PDAC.
Collapse
Affiliation(s)
- Henry Smith
- School of Medicine and Biomedical Sciences, University of Oxford, Oxford, United Kingdom
| | - Edward Arbe-Barnes
- Institute of Immunology and Transplantation, University College London, London, United Kingdom
| | - Enas Abu Shah
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Shivan Sivakumar
- Institute of Immunology and Immunotherapy, Birmingham Medical School, Birmingham, United Kingdom
- Birmingham Cancer Centre, Queen Elizabeth Hospital, Birmingham, United Kingdom
| |
Collapse
|
20
|
Swatler J, De Luca M, Rotella I, Lise V, Mazza EMC, Lugli E. CD4+ Regulatory T Cells in Human Cancer: Subsets, Origin, and Molecular Regulation. Cancer Immunol Res 2024; 12:393-399. [PMID: 38562083 DOI: 10.1158/2326-6066.cir-23-0517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/18/2023] [Accepted: 12/20/2023] [Indexed: 04/04/2024]
Abstract
CD4+CD25hiFOXP3+ regulatory T cells (Treg) play major roles in the maintenance of immune tolerance, prevention of inflammation, and tissue homeostasis and repair. In contrast with these beneficial roles, Tregs are abundant in virtually all tumors and have been mechanistically linked to disease progression, metastases development, and therapy resistance. Tregs are thus recognized as a major target for cancer immunotherapy. Compared with other sites in the body, tumors harbor hyperactivated Treg subsets whose molecular characteristics are only beginning to be elucidated. Here, we describe current knowledge of intratumoral Tregs and discuss their potential cellular and tissue origin. Furthermore, we describe currently recognized molecular regulators that drive differentiation and maintenance of Tregs in cancer, with a special focus on those signals regulating their chronic immune activation, with relevant implications for cancer progression and therapy.
Collapse
Affiliation(s)
- Julian Swatler
- Laboratory of Translational Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan
| | - Marco De Luca
- Laboratory of Translational Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan
| | - Ivano Rotella
- Laboratory of Translational Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan
| | - Veronica Lise
- Laboratory of Translational Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan
| | | | - Enrico Lugli
- Laboratory of Translational Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan
| |
Collapse
|
21
|
Verhaegen Y, Liu L, Nguyen TT, Loy TV, Schols D, Voet ARD, Dehaen W, De Jonghe S. Identification of novel human CC chemokine receptor 8 (CCR8) antagonists via the synthesis of naphthalene amide and sulfonamide isosteres. Bioorg Chem 2024; 145:107181. [PMID: 38354503 DOI: 10.1016/j.bioorg.2024.107181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/24/2024] [Accepted: 02/03/2024] [Indexed: 02/16/2024]
Abstract
The human CC chemokine receptor 8 (CCR8) has been extensively pursued as target for the treatment of various inflammatory disorders. More recently, the importance of CCR8 in the tumor microenvironment has been demonstrated, spurring the interest in CCR8 antagonism as therapeutic strategy in immuno-oncology. On a previously described naphthalene sulfonamide with CCR8 antagonistic properties, the concept of isosterism was applied, leading to the discovery of novel CCR8 antagonists with IC50 values in the nM range in both the CCL1 competition binding and CCR8 calcium mobilization assay. The excellent CCR8 antagonistic activity of the most potent congeners was rationalized by homology molecular modeling.
Collapse
Affiliation(s)
- Yenthel Verhaegen
- KU Leuven, Department of Chemistry, Sustainable Chemistry for Metals and Molecules, Celestijnenlaan 200F, box 2404, Leuven 3001 Belgium
| | - Libao Liu
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Herestraat 49, box 1043, Leuven 3000 Belgium
| | - Tien T Nguyen
- KU Leuven, Department of Chemistry, Biochemistry, Molecular and Structural Biology, Celestijnenlaan 200G, box 2403 Leuven 3001 Belgium
| | - Tom Van Loy
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Herestraat 49, box 1043, Leuven 3000 Belgium
| | - Dominique Schols
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Herestraat 49, box 1043, Leuven 3000 Belgium
| | - Arnout R D Voet
- KU Leuven, Department of Chemistry, Biochemistry, Molecular and Structural Biology, Celestijnenlaan 200G, box 2403 Leuven 3001 Belgium
| | - Wim Dehaen
- KU Leuven, Department of Chemistry, Sustainable Chemistry for Metals and Molecules, Celestijnenlaan 200F, box 2404, Leuven 3001 Belgium
| | - Steven De Jonghe
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Herestraat 49, box 1043, Leuven 3000 Belgium.
| |
Collapse
|
22
|
Ma M, Li L, Yang SH, Huang C, Zhuang W, Huang S, Xia X, Tang Y, Li Z, Zhao ZB, Chen Q, Qiao G, Lian ZX. Lymphatic endothelial cell-mediated accumulation of CD177 +Treg cells suppresses antitumor immunity in human esophageal squamous cell carcinoma. Oncoimmunology 2024; 13:2327692. [PMID: 38516269 PMCID: PMC10956621 DOI: 10.1080/2162402x.2024.2327692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 03/04/2024] [Indexed: 03/23/2024] Open
Abstract
Regulatory T (Treg) cells are critical in shaping an immunosuppressive microenvironment to favor tumor progression and resistance to therapies. However, the heterogeneity and function of Treg cells in esophageal squamous cell carcinoma (ESCC) remain underexplored. We identified CD177 as a tumor-infiltrating Treg cell marker in ESCC. Interestingly, expression levels of CD177 and PD-1 were mutually exclusive in tumor Treg cells. CD177+ Treg cells expressed high levels of IL35, in association with CD8+ T cell exhaustion, whereas PD-1+ Treg cells expressed high levels of IL10. Pan-cancer analysis revealed that CD177+ Treg cells display increased clonal expansion compared to PD-1+ and double-negative (DN) Treg cells, and CD177+ and PD-1+ Treg cells develop from the same DN Treg cell origin. Importantly, we found CD177+ Treg cell infiltration to be associated with poor overall survival and poor response to anti-PD-1 immunotherapy plus chemotherapy in ESCC patients. Finally, we found that lymphatic endothelial cells are associated with CD177+ Treg cell accumulation in ESCC tumors, which are also decreased after anti-PD-1 immunotherapy plus chemotherapy. Our work identifies CD177+ Treg cell as a tumor-specific Treg cell subset and highlights their potential value as a prognostic marker of survival and response to immunotherapy and a therapeutic target in ESCC.
Collapse
Affiliation(s)
- Min Ma
- Chronic Disease Laboratory, School of Medicine South China University of Technology, Guangzhou, China
- Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Liang Li
- Medical Research Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Shu-Han Yang
- Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Chuan Huang
- Chronic Disease Laboratory, School of Medicine South China University of Technology, Guangzhou, China
- Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Weitao Zhuang
- Department of Thoracic Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Shujie Huang
- Department of Thoracic Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Xin Xia
- Department of Thoracic Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Yong Tang
- Department of Thoracic Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Zijun Li
- Guangdong Provincial Institute of Geriatrics, Concord Medical Center, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Zhi-Bin Zhao
- Medical Research Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Qingyun Chen
- Medical Research Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Guibin Qiao
- Department of Thoracic Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Zhe-Xiong Lian
- Chronic Disease Laboratory, School of Medicine South China University of Technology, Guangzhou, China
- Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| |
Collapse
|
23
|
Chaudhuri SM, Weinberg SE, Wang D, Yalom LK, Montauti E, Iyer R, Tang AY, Torres Acosta MA, Shen J, Mani NL, Wang S, Liu K, Lu W, Bui TM, Manzanares LD, Dehghani Z, Wai CM, Gao B, Wei J, Yue F, Cui W, Singer BD, Sumagin R, Zhang Y, Fang D. Mediator complex subunit 1 architects a tumorigenic Treg cell program independent of inflammation. Cell Rep Med 2024; 5:101441. [PMID: 38428427 PMCID: PMC10983042 DOI: 10.1016/j.xcrm.2024.101441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/18/2023] [Accepted: 02/01/2024] [Indexed: 03/03/2024]
Abstract
While immunotherapy has revolutionized cancer treatment, its safety has been hampered by immunotherapy-related adverse events. Unexpectedly, we show that Mediator complex subunit 1 (MED1) is required for T regulatory (Treg) cell function specifically in the tumor microenvironment. Treg cell-specific MED1 deletion does not predispose mice to autoimmunity or excessive inflammation. In contrast, MED1 is required for Treg cell promotion of tumor growth because MED1 is required for the terminal differentiation of effector Treg cells in the tumor. Suppression of these terminally differentiated Treg cells is sufficient for eliciting antitumor immunity. Both human and murine Treg cells experience divergent paths of differentiation in tumors and matched tissues with non-malignant inflammation. Collectively, we identify a pathway promoting the differentiation of a Treg cell effector subset specific to tumors and demonstrate that suppression of a subset of Treg cells is sufficient for promoting antitumor immunity in the absence of autoimmune consequences.
Collapse
Affiliation(s)
- Shuvam M Chaudhuri
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Samuel E Weinberg
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Dongmei Wang
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Lenore K Yalom
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Elena Montauti
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Radhika Iyer
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Amy Y Tang
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Manuel A Torres Acosta
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Medical Scientist Training Program, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Jian Shen
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Nikita L Mani
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Shengnan Wang
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Kun Liu
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Weiyuan Lu
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Triet M Bui
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Laura D Manzanares
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Zeinab Dehghani
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Ching Man Wai
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Beixue Gao
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Juncheng Wei
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Feng Yue
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Weiguo Cui
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Benjamin D Singer
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Ronen Sumagin
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Yana Zhang
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Deyu Fang
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
24
|
Qin D, Zhang Y, Shu P, Lei Y, Li X, Wang Y. Targeting tumor-infiltrating tregs for improved antitumor responses. Front Immunol 2024; 15:1325946. [PMID: 38500876 PMCID: PMC10944859 DOI: 10.3389/fimmu.2024.1325946] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 02/16/2024] [Indexed: 03/20/2024] Open
Abstract
Immunotherapies have revolutionized the landscape of cancer treatment. Regulatory T cells (Tregs), as crucial components of the tumor immune environment, has great therapeutic potential. However, nonspecific inhibition of Tregs in therapies may not lead to enhanced antitumor responses, but could also trigger autoimmune reactions in patients, resulting in intolerable treatment side effects. Hence, the precision targeting and inhibition of tumor-infiltrating Tregs is of paramount importance. In this overview, we summarize the characteristics and subpopulations of Tregs within tumor microenvironment and their inhibitory mechanisms in antitumor responses. Furthermore, we discuss the current major strategies targeting regulatory T cells, weighing their advantages and limitations, and summarize representative clinical trials targeting Tregs in cancer treatment. We believe that developing therapies that specifically target and suppress tumor-infiltrating Tregs holds great promise for advancing immune-based therapies.
Collapse
Affiliation(s)
- Diyuan Qin
- Cancer Center, Clinical Trial Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Cancer Center, National Medical Products Administration Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yugu Zhang
- Cancer Center, National Medical Products Administration Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Pei Shu
- Cancer Center, Clinical Trial Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Cancer Center, National Medical Products Administration Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yanna Lei
- Cancer Center, National Medical Products Administration Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiaoyu Li
- Cancer Center, Clinical Trial Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Cancer Center, National Medical Products Administration Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yongsheng Wang
- Cancer Center, National Medical Products Administration Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
25
|
Luo Y, Zhou F, Wang X, Yang R, Li Y, Wu X, Ye B. Inhibition of cc chemokine receptor 10 ameliorates osteoarthritis via inhibition of the phosphoinositide-3-kinase/Akt/mammalian target of rapamycin pathway. J Orthop Surg Res 2024; 19:158. [PMID: 38429844 PMCID: PMC10908087 DOI: 10.1186/s13018-024-04642-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 02/22/2024] [Indexed: 03/03/2024] Open
Abstract
BACKGROUND Osteoarthritis (OA) is a joint disease characterized by inflammation and progressive cartilage degradation. Chondrocyte apoptosis is the most common pathological feature of OA. Interleukin-1β (IL-1β), a major inflammatory cytokine that promotes cartilage degradation in OA, often stimulates primary human chondrocytes in vitro to establish an in vitro OA model. Moreover, IL-1β is involved in OA pathogenesis by stimulating the phosphoinositide-3-kinase (PI3K)/Akt and mitogen-activated protein kinases pathways. The G-protein-coupled receptor, cc chemokine receptor 10 (CCR10), plays a vital role in the occurrence and development of various malignant tumors. However, the mechanism underlying the role of CCR10 in the pathogenesis of OA remains unclear. We aimed to evaluate the protective effect of CCR10 on IL-1β-stimulated CHON-001 cells and elucidate the underlying mechanism. METHODS The CHON-001 cells were transfected with a control small interfering RNA (siRNA) or CCR10-siRNA for 24 h, and stimulated with 10 ng/mL IL-1β for 12 h to construct an OA model in vitro. The levels of CCR10, cleaved-caspase-3, MMP-3, MMP-13, Collagen II, Aggrecan, p-PI3K, PI3K, p-Akt, Akt, phosphorylated-mammalian target of rapamycin (p-mTOR), and mTOR were detected using quantitative reverse transcription polymerase chain reaction and western blotting. Viability, cytotoxicity, and apoptosis of CHON-001 cells were assessed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, lactate dehydrogenase assay (LDH), and flow cytometry analysis, respectively. Inflammatory cytokines (TNF-α, IL-6, and IL-8) were assessed using enzyme-linked immunosorbent assay. RESULTS Level of CCR10 was substantially higher in the IL-1β-stimulated CHON-001 cells than that in the control group, whereas CCR10 was down-regulated in the CCR10-siRNA transfected CHON-001 cells compared to that in the control-siRNA group. Notably, CCR10 inhibition alleviated IL-1β-induced inflammatory injury in the CHON-001 cells, as verified by enhanced cell viability, inhibited LDH release, reduced apoptotic cells, and cleaved-caspase-3 expression. Meanwhile, IL-1β induced the release of tumor necrosis factor alpha, IL-6, and IL-8, increase of MMP-3 and MMP-13, and decrease of Collagen II and Aggrecan in the CHON-001 cells, which were reversed by CCR10-siRNA. However, these effects were reversed upon PI3K agonist 740Y-P treatment. Further, IL-1β-induced PI3K/Akt/mTOR signaling pathway activation was inhibited by CCR10-siRNA, which was increased by 740Y-P treatment. CONCLUSION Inhibition of CCR10 alleviates IL-1β-induced chondrocytes injury via PI3K/Akt/mTOR pathway inhibition, suggesting that CCR10 might be a promising target for novel OA therapeutic strategies.
Collapse
Affiliation(s)
- Yan Luo
- General Practice, Wuhan Puren Hospital, Wuhan, 430080, China
| | - Feng Zhou
- Nutrition Department, Wuhan Puren Hospital, Wuhan, 430080, China
| | - Xiaojing Wang
- Cardiology Department, Wuhan Puren Hospital, Wuhan, 430080, China
| | - Runwei Yang
- Rheumatology Immunology Department, Wuhan Puren Hospital, Wuhan, 430080, China
| | - Yi Li
- General Practice, Wuhan Puren Hospital, Wuhan, 430080, China
| | - Xiaochun Wu
- Orthopedics Department, Wuhan Huangpi People's Hospital, Wuhan, 430300, China
| | - Bin Ye
- Orthopedics Department, Wuhan No. 9 Hospital, No. 20 Jilin Street, Wuhan, 430080, China.
| |
Collapse
|
26
|
Attias M, Piccirillo CA. The impact of Foxp3 + regulatory T-cells on CD8 + T-cell dysfunction in tumour microenvironments and responses to immune checkpoint inhibitors. Br J Pharmacol 2024. [PMID: 38325330 DOI: 10.1111/bph.16313] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/23/2023] [Accepted: 01/01/2024] [Indexed: 02/09/2024] Open
Abstract
Immune checkpoint inhibitors (ICIs) have been a breakthrough in cancer therapy, inducing durable remissions in responding patients. However, they are associated with variable outcomes, spanning from disease hyperprogression to complete responses with the onset of immune-related adverse events. The consequences of checkpoint inhibition on Foxp3+ regulatory T (Treg ) cells remain unclear but could provide key insights into these variable outcomes. In this review, we first cover the mechanisms that underlie the development of hot and cold tumour microenvironments, which determine the efficacy of immunotherapy. We then outline how differences in tumour-intrinsic immunogenicity, T-cell trafficking, local metabolic environments and inhibitory checkpoint signalling differentially impair CD8+ T-cell function in tumour microenvironments, all the while promoting Treg -cell suppressive activity. Finally, we focus on the mechanisms that enable the induction of polyfunctional CD8+ T-cells upon checkpoint blockade and discuss the role of ICI-induced Treg -cell reactivation in acquired resistance to treatment.
Collapse
Affiliation(s)
- Mikhaël Attias
- Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada
- Infectious Diseases and Immunity in Global Health Program, The Research Institute of the McGill University Health Centre (RI-MUHC), Montréal, Québec, Canada
- Centre of Excellence in Translational Immunology (CETI), The Research Institute of the McGill University Health Centre (RI-MUHC), Montréal, Québec, Canada
| | - Ciriaco A Piccirillo
- Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada
- Infectious Diseases and Immunity in Global Health Program, The Research Institute of the McGill University Health Centre (RI-MUHC), Montréal, Québec, Canada
- Centre of Excellence in Translational Immunology (CETI), The Research Institute of the McGill University Health Centre (RI-MUHC), Montréal, Québec, Canada
| |
Collapse
|
27
|
Li Y, Liu B, Cao Y, Cai L, Zhou Y, Yang W, Sun T. Metformin-induced reduction of CCR8 enhances the anti-tumor immune response of PD-1 immunotherapy in glioblastoma. Eur J Pharmacol 2024; 964:176274. [PMID: 38142852 DOI: 10.1016/j.ejphar.2023.176274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/26/2023]
Abstract
Immunotherapy strategies targeting the programmed cell death 1 (PD-1) in clinical treatments have shown limited success in controlling glioblastoma malignancies. Metformin exserts antitumor function, yet the underlying mechanisms remain unclear. Here, we investigated whether metformin could enhance the effectiveness of anti-PD-1 therapy by activating the immune system. Whether combination of an anti-PD-1 antibody or not, metformin significantly increased tumor-infiltrating CD4+ T cells while decreased regulatory T (Treg) cells in a mouse GBM model. Additionally, metformin reduced CC motif chemokine receptor CCR8 and elevated Interleukin 17 A (IL-17 A) expressions. Mechanistically, metformin reduces histone acetylation at the CCR8 promotor and inhibits CCR8 expression by upregulating AMP-activated protein kinase (AMPK)-activated sirtuin 2 (SIRT2). Metformin enhances the effectiveness of anti-PD-1 immunotherapy by reducing CCR8 expression on tumor-infiltrating Treg cells, suggesting that metformin has an antitumor effect by alleviating immunosuppression and promoting T cell-mediated immune response.
Collapse
Affiliation(s)
- Yanyan Li
- Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Bin Liu
- Department of Neurosurgery, Qinghai Provincial People's Hospital, Xining, Qinghai, China
| | - Yufei Cao
- Department of Critical Care Medicine, Affiliated First People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lize Cai
- Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Youxin Zhou
- Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Wei Yang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, China.
| | - Ting Sun
- Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
28
|
Liu L, Rangan L, Vanalken N, Kong Q, Schlenner S, De Jonghe S, Schols D, Van Loy T. Development of a cellular model to study CCR8 signaling in tumor-infiltrating regulatory T cells. Cancer Immunol Immunother 2024; 73:11. [PMID: 38231448 PMCID: PMC10794316 DOI: 10.1007/s00262-023-03607-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 11/23/2023] [Indexed: 01/18/2024]
Abstract
The human CC chemokine receptor 8 (CCR8) is specifically expressed on tumor-infiltrating regulatory T cells (TITRs) and is a promising drug target for cancer immunotherapy. However, the role of CCR8 signaling in TITR biology and the effectiveness of CCR8 small molecule antagonists as TITR-targeting immunotherapy remain subjects of ongoing debate. In this work, we generated a novel cellular model of TITRs by culturing peripheral blood mononuclear cell-derived regulatory T cells in medium containing tumor cell-conditioned medium, CD3/CD28 activator, interleukin-2 and 1α,25-dihydroxyvitamin D3. This cellular model (named TITR mimics) highly and stably expressed a series of TITR signature molecules, including CCR8, FOXP3, CD30, CD39, CD134, CD137, TIGIT and Tim-3. Moreover, TITR mimics displayed robust in vitro immunosuppressive activity. To unravel the functional role of CCR8 in TITR mimics, a chemotaxis assay was performed showing strong and CCR8-specific migration toward CCL1, the natural chemokine agonist of CCR8. However, either stimulation (with CCL1) or blocking (with the small molecule antagonist NS-15) of CCR8 signaling did not affect the immunosuppressive activity, proliferation and survival of TITR mimics. Collectively, our work provides a method for the generation of TITR mimics in vitro, which can be used to study TITR biology and to evaluate drug candidates targeting TITRs. Furthermore, our findings suggest that CCR8 signaling primarily regulates migration of these cells.
Collapse
Affiliation(s)
- Libao Liu
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, B-3000, Leuven, Belgium
| | - Laurie Rangan
- Laboratory of Adaptive Immunology, Department of Microbiology, Immunology and Transplantation, KU Leuven, B-3000, Leuven, Belgium
| | - Nathan Vanalken
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, B-3000, Leuven, Belgium
| | - Qianqian Kong
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, B-3000, Leuven, Belgium
| | - Susan Schlenner
- Laboratory of Adaptive Immunology, Department of Microbiology, Immunology and Transplantation, KU Leuven, B-3000, Leuven, Belgium
| | - Steven De Jonghe
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, B-3000, Leuven, Belgium
| | - Dominique Schols
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, B-3000, Leuven, Belgium
| | - Tom Van Loy
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, B-3000, Leuven, Belgium.
| |
Collapse
|
29
|
Santosh Nirmala S, Kayani K, Gliwiński M, Hu Y, Iwaszkiewicz-Grześ D, Piotrowska-Mieczkowska M, Sakowska J, Tomaszewicz M, Marín Morales JM, Lakshmi K, Marek-Trzonkowska NM, Trzonkowski P, Oo YH, Fuchs A. Beyond FOXP3: a 20-year journey unravelling human regulatory T-cell heterogeneity. Front Immunol 2024; 14:1321228. [PMID: 38283365 PMCID: PMC10811018 DOI: 10.3389/fimmu.2023.1321228] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/19/2023] [Indexed: 01/30/2024] Open
Abstract
The initial idea of a distinct group of T-cells responsible for suppressing immune responses was first postulated half a century ago. However, it is only in the last three decades that we have identified what we now term regulatory T-cells (Tregs), and subsequently elucidated and crystallized our understanding of them. Human Tregs have emerged as essential to immune tolerance and the prevention of autoimmune diseases and are typically contemporaneously characterized by their CD3+CD4+CD25high CD127lowFOXP3+ phenotype. It is important to note that FOXP3+ Tregs exhibit substantial diversity in their origin, phenotypic characteristics, and function. Identifying reliable markers is crucial to the accurate identification, quantification, and assessment of Tregs in health and disease, as well as the enrichment and expansion of viable cells for adoptive cell therapy. In our comprehensive review, we address the contributions of various markers identified in the last two decades since the master transcriptional factor FOXP3 was identified in establishing and enriching purity, lineage stability, tissue homing and suppressive proficiency in CD4+ Tregs. Additionally, our review delves into recent breakthroughs in innovative Treg-based therapies, underscoring the significance of distinct markers in their therapeutic utilization. Understanding Treg subsets holds the key to effectively harnessing human Tregs for immunotherapeutic approaches.
Collapse
Affiliation(s)
| | - Kayani Kayani
- Centre for Liver and Gastrointestinal Research and National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
- Department of Academic Surgery, Queen Elizabeth Hospital, University of Birmingham, Birmingham, United Kingdom
- Department of Renal Surgery, Queen Elizabeth Hospital Birmingham, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Mateusz Gliwiński
- Department of Medical Immunology, Medical University of Gdańsk, Gdańsk, Poland
| | - Yueyuan Hu
- Center for Regenerative Therapies Dresden, Technical University Dresden, Dresden, Germany
| | | | | | - Justyna Sakowska
- Department of Medical Immunology, Medical University of Gdańsk, Gdańsk, Poland
| | - Martyna Tomaszewicz
- Department of Medical Immunology, Medical University of Gdańsk, Gdańsk, Poland
| | | | - Kavitha Lakshmi
- Center for Regenerative Therapies Dresden, Technical University Dresden, Dresden, Germany
| | | | - Piotr Trzonkowski
- Department of Medical Immunology, Medical University of Gdańsk, Gdańsk, Poland
| | - Ye Htun Oo
- Centre for Liver and Gastrointestinal Research and National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
- Liver Transplant and Hepatobiliary Unit, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
- Birmingham Advanced Cellular Therapy Facility, University of Birmingham, Birmingham, United Kingdom
- Centre for Rare Diseases, European Reference Network - Rare Liver Centre, Birmingham, United Kingdom
| | - Anke Fuchs
- Center for Regenerative Therapies Dresden, Technical University Dresden, Dresden, Germany
| |
Collapse
|
30
|
Whiteside SK, Grant FM, Alvisi G, Clarke J, Tang L, Imianowski CJ, Zhang B, Evans AC, Wesolowski AJ, Conti AG, Yang J, Lauder SN, Clement M, Humphreys IR, Dooley J, Burton O, Liston A, Alloisio M, Voulaz E, Langhorne J, Okkenhaug K, Lugli E, Roychoudhuri R. Acquisition of suppressive function by conventional T cells limits antitumor immunity upon T reg depletion. Sci Immunol 2023; 8:eabo5558. [PMID: 38100544 PMCID: PMC7615475 DOI: 10.1126/sciimmunol.abo5558] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 01/15/2023] [Accepted: 11/10/2023] [Indexed: 12/17/2023]
Abstract
Regulatory T (Treg) cells contribute to immune homeostasis but suppress immune responses to cancer. Strategies to disrupt Treg cell-mediated cancer immunosuppression have been met with limited clinical success, but the underlying mechanisms for treatment failure are poorly understood. By modeling Treg cell-targeted immunotherapy in mice, we find that CD4+ Foxp3- conventional T (Tconv) cells acquire suppressive function upon depletion of Foxp3+ Treg cells, limiting therapeutic efficacy. Foxp3- Tconv cells within tumors adopt a Treg cell-like transcriptional profile upon ablation of Treg cells and acquire the ability to suppress T cell activation and proliferation ex vivo. Suppressive activity is enriched among CD4+ Tconv cells marked by expression of C-C motif receptor 8 (CCR8), which are found in mouse and human tumors. Upon Treg cell depletion, CCR8+ Tconv cells undergo systemic and intratumoral activation and expansion, and mediate IL-10-dependent suppression of antitumor immunity. Consequently, conditional deletion of Il10 within T cells augments antitumor immunity upon Treg cell depletion in mice, and antibody blockade of IL-10 signaling synergizes with Treg cell depletion to overcome treatment resistance. These findings reveal a secondary layer of immunosuppression by Tconv cells released upon therapeutic Treg cell depletion and suggest that broader consideration of suppressive function within the T cell lineage is required for development of effective Treg cell-targeted therapies.
Collapse
Affiliation(s)
- Sarah K Whiteside
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | - Francis M Grant
- Immunology Programme, Babraham Institute, Babraham Research Campus, Cambridge, Cambridgeshire CB22 3AT, UK
| | - Giorgia Alvisi
- Laboratory of Translational Immunology, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - James Clarke
- La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - Leqi Tang
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | - Charlotte J Imianowski
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | - Baojie Zhang
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | - Alexander C Evans
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | - Alexander J Wesolowski
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | - Alberto G Conti
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | - Jie Yang
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | - Sarah N Lauder
- Division of Infection and Immunity/System Immunity University Research Institute, Cardiff University, Cardiff CF14 4XN, UK
| | - Mathew Clement
- Division of Infection and Immunity/System Immunity University Research Institute, Cardiff University, Cardiff CF14 4XN, UK
| | - Ian R Humphreys
- Division of Infection and Immunity/System Immunity University Research Institute, Cardiff University, Cardiff CF14 4XN, UK
| | - James Dooley
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | - Oliver Burton
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | - Adrian Liston
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | - Marco Alloisio
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Milan, Italy
- Division of Thoracic Surgery, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Emanuele Voulaz
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Milan, Italy
- Division of Thoracic Surgery, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Jean Langhorne
- Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Klaus Okkenhaug
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | - Enrico Lugli
- Laboratory of Translational Immunology, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Rahul Roychoudhuri
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| |
Collapse
|
31
|
Liu S, Tao Z, Lou J, Li R, Fu X, Xu J, Wang T, Zhang L, Shang W, Mao Y, Wang F. CD4 +CCR8 + Tregs in ovarian cancer: a potential effector Tregs for immune regulation. J Transl Med 2023; 21:803. [PMID: 37950246 PMCID: PMC10638792 DOI: 10.1186/s12967-023-04686-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND Tregs are key drivers of immunosuppression in solid tumors. As an important chemokine receptor on Tregs, the regulatory effect of CCR8 on tumor immunity has received more and more attention. However, the current research on CCR8 in the immune microenvironment of ovarian cancer has not been clear. METHODS Bioinformatics analysis was used to compare the transcriptome differences between CD4+ T cells in the peripheral circulation and infiltrated in ovarian tumor tissues. RT-PCR was used to detect the expression levels of chemokine receptor-related differential genes on CD4+ T cells in peripheral blood and ovarian tumor tissues. Multiparameter flow cytometry was used to detect the proportion and phenotypic characteristics of CD4+CCR8+ Tregs and CD4+CCR8- Tregs in different sample types. The expression level of CCR8 ligands was detected at multiple levels. To explore the important role of CCR8-CCL1 and CCR8-CCL18 axis in the migration and invasion of CD4+CCR8+ Tregs into ovarian tumor tissues by establishing a chemotaxis system in vitro. RESULTS In this study, significantly different gene expression profiles were found between peripheral circulating CD4+ T cells and infiltrating CD4+ T cells in ovarian tumor tissues, in which chemokine-chemokine receptor signaling pathway was significantly enriched in all three groups of differential genes. The expression level of CCR8 in infiltrating CD4+ T cells of ovarian cancer tissue was significantly higher than that in peripheral blood of healthy controls and ovarian cancer patients, and high expression of CCR8 was significantly correlated with advanced tumor stage and poor differentiation. CD4+CCR8+ Tregs are the main type of infiltrating CD4+ Tregs in ovarian tumor tissues, which have stronger immunosuppressive phenotypes, secrete more inhibitory cytokines and have stronger proliferation ability. The ligands CCL1 and CCL18 corresponding to CCR8 were significantly overexpressed in ovarian tumor tissues, and the CCR8-CCL1 and CCR8-CCL18 axis played a key role in the migration and infiltration of CD4+CCR8+ Tregs into ovarian tumor tissues. CONCLUSIONS The results of this study may help to understand the phenotypic characteristics and recruitment process of Tregs in the tumor, and provide new ideas for improving the immunosuppressive status of the ovarian cancer microenvironment.
Collapse
Affiliation(s)
- Shuna Liu
- Department of Laboratory Medicine, The First Affiliated Hospital with Nanjing Medical University, No. 300 of Guangzhou Road, Nanjing, 210029, China
- Branch of National Clinical Research Center for Laboratory Medicine, Nanjing, 210029, China
| | - Ziqi Tao
- Department of Laboratory Medicine, The First Affiliated Hospital with Nanjing Medical University, No. 300 of Guangzhou Road, Nanjing, 210029, China
- Branch of National Clinical Research Center for Laboratory Medicine, Nanjing, 210029, China
| | - Jianfang Lou
- Department of Laboratory Medicine, The First Affiliated Hospital with Nanjing Medical University, No. 300 of Guangzhou Road, Nanjing, 210029, China
- Branch of National Clinical Research Center for Laboratory Medicine, Nanjing, 210029, China
| | - Rong Li
- Department of Laboratory Medicine, The First Affiliated Hospital with Nanjing Medical University, No. 300 of Guangzhou Road, Nanjing, 210029, China
- Branch of National Clinical Research Center for Laboratory Medicine, Nanjing, 210029, China
- Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing, 210004, China
| | - Xin Fu
- Department of Laboratory Medicine, The First Affiliated Hospital with Nanjing Medical University, No. 300 of Guangzhou Road, Nanjing, 210029, China
- Branch of National Clinical Research Center for Laboratory Medicine, Nanjing, 210029, China
| | - Juan Xu
- Department of Laboratory Medicine, The First Affiliated Hospital with Nanjing Medical University, No. 300 of Guangzhou Road, Nanjing, 210029, China
- Branch of National Clinical Research Center for Laboratory Medicine, Nanjing, 210029, China
- Department of Laboratory Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, 225300, China
| | - Ting Wang
- Department of Laboratory Medicine, The First Affiliated Hospital with Nanjing Medical University, No. 300 of Guangzhou Road, Nanjing, 210029, China
- Branch of National Clinical Research Center for Laboratory Medicine, Nanjing, 210029, China
| | - Lei Zhang
- Department of Laboratory Medicine, The First Affiliated Hospital with Nanjing Medical University, No. 300 of Guangzhou Road, Nanjing, 210029, China
- Branch of National Clinical Research Center for Laboratory Medicine, Nanjing, 210029, China
- Department of Gynecology, The Affiliated Huaian NO.1 People's Hospital of Nanjing Medical University, Huaian, 223300, China
| | - Wenwen Shang
- Department of Laboratory Medicine, The First Affiliated Hospital with Nanjing Medical University, No. 300 of Guangzhou Road, Nanjing, 210029, China
- Branch of National Clinical Research Center for Laboratory Medicine, Nanjing, 210029, China
| | - Yepeng Mao
- Department of Laboratory Medicine, The First Affiliated Hospital with Nanjing Medical University, No. 300 of Guangzhou Road, Nanjing, 210029, China
- Branch of National Clinical Research Center for Laboratory Medicine, Nanjing, 210029, China
| | - Fang Wang
- Department of Laboratory Medicine, The First Affiliated Hospital with Nanjing Medical University, No. 300 of Guangzhou Road, Nanjing, 210029, China.
- Branch of National Clinical Research Center for Laboratory Medicine, Nanjing, 210029, China.
| |
Collapse
|
32
|
Luo J, He MW, Luo T, Lv GQ. Identification of multiple risk factors for colorectal cancer relapse after laparoscopic radical resection. World J Gastrointest Surg 2023; 15:2211-2221. [PMID: 37969700 PMCID: PMC10642461 DOI: 10.4240/wjgs.v15.i10.2211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/08/2023] [Accepted: 08/18/2023] [Indexed: 10/27/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is a common life-threatening disease that often requires surgical intervention, such as laparoscopic radical resection. However, despite successful surgeries, some patients experience disease relapse. Identifying the risk factors for CRC relapse can help guide clinical interventions and improve patient outcomes. AIM To determine the risk factors that may lead to CRC relapse after laparoscopic radical resection. METHODS We performed a retrospective analysis using the baseline data of 140 patients with CRC admitted to our hospital between January 2018 and January 2020. All included participants were followed up until death or for 3 years. The baseline data and laboratory indicators were compared between the patients who experienced relapse and those who did not experienced relapse. RESULTS Among the 140 patients with CRC, 30 experienced relapse within 3 years after laparoscopic radical resection and 110 did not experience relapse. The relapse group had a higher frequency of rectal tumors with low differentiation and lymphatic vessel invasion than that of the non-relapse group. The expression of serum markers and the prognostic nutritional index were lower, whereas the neutrophil-to-lymphocyte ratio, expression of cytokeratin 19 fragment antigen 21-1, vascular endothelial growth factor, and Chitinase-3-like protein 1 were significantly higher in the relapse group than those in the non-relapse group. The groups did not differ significantly based on other parameters. Logistic regression analysis revealed that all the above significantly altered factors were independent risk factors for CRC relapse. CONCLUSION We identified multiple risk factors for CRC relapse following surgery, which can be considered for the clinical monitoring of patients to reduce disease recurrence and improve patient survival.
Collapse
Affiliation(s)
- Jun Luo
- Department of Gastrointestinal Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong Province, China
| | - Mei-Wen He
- Department of Gastrointestinal Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong Province, China
| | - Ting Luo
- Department of Operating Room, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong Province, China
| | - Guo-Qing Lv
- Department of Gastrointestinal Surgery, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong Province, China
| |
Collapse
|
33
|
Kim N, Kim MH, Pyo J, Lee SM, Jang JS, Lee DW, Kim KW. CCR8 as a Therapeutic Novel Target: Omics-Integrated Comprehensive Analysis for Systematically Prioritizing Indications. Biomedicines 2023; 11:2910. [PMID: 38001911 PMCID: PMC10669377 DOI: 10.3390/biomedicines11112910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/10/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023] Open
Abstract
Target identification is a crucial process in drug development, aiming to identify key proteins, genes, and signal pathways involved in disease progression and their relevance in potential therapeutic interventions. While C-C chemokine receptor 8 (CCR8) has been investigated as a candidate anti-cancer target, comprehensive multi-omics analyzes across various indications are limited. In this study, we conducted an extensive bioinformatics analysis integrating genomics, proteomics, and transcriptomics data to establish CCR8 as a promising anti-cancer drug target. Our approach encompassed data collection from diverse knowledge resources, gene function analysis, differential gene expression profiling, immune cell infiltration assessment, and strategic prioritization of target indications. Our findings revealed strong correlations between CCR8 and specific cancers, notably Breast Invasive Carcinoma (BRCA), Colon Adenocarcinoma (COAD), Head and Neck Squamous Cell Carcinoma (HNSC), Rectum adenocarcinoma (READ), Stomach adenocarcinoma (STAD), and Thyroid carcinoma (THCA). This research advances our understanding of CCR8 as a potential target for anti-cancer drug development, bridging the gap between molecular insights and creating opportunities for personalized treatment of solid tumors.
Collapse
Affiliation(s)
- Nari Kim
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea;
| | - Mi-Hyun Kim
- Research Institute, Trial Informatics Inc., Seoul 05544, Republic of Korea;
| | - Junhee Pyo
- College of Pharmacy, Chungbuk National University, Cheongju 28644, Republic of Korea;
| | - Soo-Min Lee
- Samjin Pharmaceutical Co., Ltd., Seoul 04054, Republic of Korea;
| | - Ji-Sung Jang
- Biomedical Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Republic of Korea;
| | - Do-Wan Lee
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea;
| | - Kyung Won Kim
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea;
- Research Institute, Trial Informatics Inc., Seoul 05544, Republic of Korea;
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea;
| |
Collapse
|
34
|
Liu Y, Liu Z, Yang Y, Cui J, Sun J, Liu Y. The prognostic and biology of tumour-infiltrating lymphocytes in the immunotherapy of cancer. Br J Cancer 2023; 129:1041-1049. [PMID: 37452117 PMCID: PMC10539364 DOI: 10.1038/s41416-023-02321-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 05/04/2023] [Accepted: 06/12/2023] [Indexed: 07/18/2023] Open
Abstract
Tumour immunotherapy has achieved remarkable clinical success in many different types of cancer in the past two decades. The outcome of immune checkpoint inhibitors in cancer patients has been linked to the quality and magnitude of T cell, NK cell, and more recently, B cell within the tumour microenvironment, suggesting that the immune landscape of a tumour is highly connected to patient response and prognosis. It is critical to understanding tumour immune microenvironments for identifying immune modifiers of cancer progression and developing cancer immunotherapies. The infiltration of solid tumours by immune cells with anti-tumour activity is both a strong prognostic factor and a therapeutic goal. Recent approaches and applications of new technologies, especially single-cell mRNA analysis in dissecting tumour microenvironments have brought important insights into the biology of tumour-infiltrating immune cells, revealed a remarkable degree of cellular heterogeneity and distinct patterns of immune response. In this review, we will discuss recent advances in the understanding of tumour infiltrated lymphocytes, their prognostic benefit, and predictive value for immunotherapy.
Collapse
Affiliation(s)
- Yanbin Liu
- Grit Biotechnology Ltd., Building 25, Area C, Sangtian Island Biological Industrial Park, Suzhou Industrial Park, Suzhou, Jiangsu Province, China
| | - Zhenjiang Liu
- Grit Biotechnology Ltd., Building 24, 388 Shengrong Road, Pudong New Area, Shanghai, China
| | - Yixiao Yang
- Grit Biotechnology Ltd., Building 24, 388 Shengrong Road, Pudong New Area, Shanghai, China
| | - Jun Cui
- Grit Biotechnology Ltd., Building 24, 388 Shengrong Road, Pudong New Area, Shanghai, China
| | - Jingwei Sun
- Grit Biotechnology Ltd., Building 24, 388 Shengrong Road, Pudong New Area, Shanghai, China
| | - Yarong Liu
- Grit Biotechnology Ltd., Building 24, 388 Shengrong Road, Pudong New Area, Shanghai, China.
| |
Collapse
|
35
|
Sun T, Liu B, Li Y, Wu J, Cao Y, Yang S, Tan H, Cai L, Zhang S, Qi X, Yu D, Yang W. Oxamate enhances the efficacy of CAR-T therapy against glioblastoma via suppressing ectonucleotidases and CCR8 lactylation. J Exp Clin Cancer Res 2023; 42:253. [PMID: 37770937 PMCID: PMC10540361 DOI: 10.1186/s13046-023-02815-w] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/29/2023] [Indexed: 09/30/2023] Open
Abstract
BACKGROUND Chimeric antigen receptor (CAR)-T immunotherapy fails to treat solid tumors due in part to immunosuppressive microenvironment. Excess lactate produced by tumor glycolysis increases CAR-T immunosuppression. The mechanism of lactate inducing the formation of immunosuppressive microenvironment remains to be further explored. METHODS Immunocyte subpopulations and molecular characteristics were analyzed in the orthotopic xenografts of nude mice using flow cytometry assay and immunohistochemical staining after oxamate, a lactate dehydrogenase A (LDHA) inhibitor, and control T or CAR-T cells injection alone or in combination. RT-qPCR, western blot, flow cytometry, immunofluorescence, luciferase reporter assay, chromatin immunoprecipitation and ELISA were performed to measure the effect of lactate on the regulation of CD39, CD73 and CCR8 in cultured glioma stem cells, CD4 + T cells or macrophages. RESULTS Oxamate promoted immune activation of tumor-infiltrating CAR-T cells through altering the phenotypes of immune molecules and increasing regulatory T (Treg) cells infiltration in a glioblastoma mouse model. Lactate accumulation within cells upregulated CD39, CD73 and CCR8 expressions in both lactate-treated cells and glioma stem cells-co-cultured CD4 + T cells and macrophages, and intracellular lactate directly elevated the activities of these gene promotors through histone H3K18 lactylation. CONCLUSIONS Utilizing lactate generation inhibitor not only reprogramed glucose metabolism of cancer stem cells, but also alleviated immunosuppression of tumor microenvironment and reduced tumor-infiltrating CAR-Treg cells, which may be a potential strategy to enhance CAR-T function in glioblastoma therapy.
Collapse
Affiliation(s)
- Ting Sun
- Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| | - Bin Liu
- Department of Neurosurgery, Qinghai Provincial People's Hospital, Xining, Qinghai, China
| | - Yanyan Li
- Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jie Wu
- Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yufei Cao
- Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Shuangyu Yang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, China
| | - Huiling Tan
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, China
| | - Lize Cai
- Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Shiqi Zhang
- Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xinyue Qi
- Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Dingjia Yu
- Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Wei Yang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
36
|
Dykema AG, Zhang J, Cheung LS, Connor S, Zhang B, Zeng Z, Cherry CM, Li T, Caushi JX, Nishimoto M, Munoz AJ, Ji Z, Hou W, Zhan W, Singh D, Zhang T, Rashid R, Mitchell-Flack M, Bom S, Tam A, Ionta N, Aye THK, Wang Y, Sawosik CA, Tirado LE, Tomasovic LM, VanDyke D, Spangler JB, Anagnostou V, Yang S, Spicer J, Rayes R, Taube J, Brahmer JR, Forde PM, Yegnasubramanian S, Ji H, Pardoll DM, Smith KN. Lung tumor-infiltrating T reg have divergent transcriptional profiles and function linked to checkpoint blockade response. Sci Immunol 2023; 8:eadg1487. [PMID: 37713507 PMCID: PMC10629528 DOI: 10.1126/sciimmunol.adg1487] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 07/25/2023] [Indexed: 09/17/2023]
Abstract
Regulatory T cells (Treg) are conventionally viewed as suppressors of endogenous and therapy-induced antitumor immunity; however, their role in modulating responses to immune checkpoint blockade (ICB) is unclear. In this study, we integrated single-cell RNA-seq/T cell receptor sequencing (TCRseq) of >73,000 tumor-infiltrating Treg (TIL-Treg) from anti-PD-1-treated and treatment-naive non-small cell lung cancers (NSCLC) with single-cell analysis of tumor-associated antigen (TAA)-specific Treg derived from a murine tumor model. We identified 10 subsets of human TIL-Treg, most of which have high concordance with murine TIL-Treg subsets. Only one subset selectively expresses high levels of TNFRSF4 (OX40) and TNFRSF18 (GITR), whose engangement by cognate ligand mediated proliferative programs and NF-κB activation, as well as multiple genes involved in Treg suppression, including LAG3. Functionally, the OX40hiGITRhi subset is the most highly suppressive ex vivo, and its higher representation among total TIL-Treg correlated with resistance to PD-1 blockade. Unexpectedly, in the murine tumor model, we found that virtually all TIL-Treg-expressing T cell receptors that are specific for TAA fully develop a distinct TH1-like signature over a 2-week period after entry into the tumor, down-regulating FoxP3 and up-regulating expression of TBX21 (Tbet), IFNG, and certain proinflammatory granzymes. Transfer learning of a gene score from the murine TAA-specific TH1-like Treg subset to the human single-cell dataset revealed a highly analogous subcluster that was enriched in anti-PD-1-responding tumors. These findings demonstrate that TIL-Treg partition into multiple distinct transcriptionally defined subsets with potentially opposing effects on ICB-induced antitumor immunity and suggest that TAA-specific TIL-Treg may positively contribute to antitumor responses.
Collapse
Affiliation(s)
- Arbor G. Dykema
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins School of Medicine, Baltimore, MD, USA
- The Mark Foundation Center for Advanced Genomics and Imaging, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Jiajia Zhang
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins School of Medicine, Baltimore, MD, USA
- The Mark Foundation Center for Advanced Genomics and Imaging, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Laurene S. Cheung
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Sydney Connor
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Boyang Zhang
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Zhen Zeng
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins School of Medicine, Baltimore, MD, USA
- The Mark Foundation Center for Advanced Genomics and Imaging, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | | | - Taibo Li
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Justina X. Caushi
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Marni Nishimoto
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Andrew J. Munoz
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Zhicheng Ji
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Wenpin Hou
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Wentao Zhan
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Dipika Singh
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Tianbei Zhang
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Rufiaat Rashid
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Marisa Mitchell-Flack
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Sadhana Bom
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Ada Tam
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Nick Ionta
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Thet H. K. Aye
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Yi Wang
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Camille A. Sawosik
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Lauren E. Tirado
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Luke M. Tomasovic
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Derek VanDyke
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
- Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD, USA
| | - Jamie B. Spangler
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
- Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Valsamo Anagnostou
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Stephen Yang
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | | | - Roni Rayes
- Department of Surgery, McGill University, Montreal, Canada
| | - Janis Taube
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins School of Medicine, Baltimore, MD, USA
- The Mark Foundation Center for Advanced Genomics and Imaging, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Julie R. Brahmer
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Patrick M. Forde
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Srinivasan Yegnasubramanian
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Hongkai Ji
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Drew M. Pardoll
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins School of Medicine, Baltimore, MD, USA
- The Mark Foundation Center for Advanced Genomics and Imaging, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Kellie N. Smith
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins School of Medicine, Baltimore, MD, USA
- The Mark Foundation Center for Advanced Genomics and Imaging, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
37
|
Nagira Y, Nagira M, Nagai R, Nogami W, Hirata M, Ueyama A, Yoshida T, Yoshikawa M, Shinonome S, Yoshida H, Haruna M, Miwa H, Chatani N, Ohkura N, Wada H, Tanaka H. S-531011, a Novel Anti-Human CCR8 Antibody, Induces Potent Antitumor Responses through Depletion of Tumor-Infiltrating CCR8-Expressing Regulatory T Cells. Mol Cancer Ther 2023; 22:1063-1072. [PMID: 37420296 PMCID: PMC10477828 DOI: 10.1158/1535-7163.mct-22-0570] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 05/17/2023] [Accepted: 06/30/2023] [Indexed: 07/09/2023]
Abstract
Although regulatory T cells (Treg) are inhibitory immune cells that are essential for maintaining immune homeostasis, Tregs that infiltrate tumor tissue promote tumor growth by suppressing antitumor immunity. Selective reduction of tumor-infiltrating Tregs is, therefore, expected to activate antitumor immunity without affecting immune homeostasis. We previously reported that selective Treg depletion targeted by a C-C motif chemokine receptor 8 (CCR8) resulted in induction of strong antitumor immunity without any obvious autoimmunity in mouse models. Thus, herein, we developed a novel humanized anti-CCR8 monoclonal antibody, S-531011, aimed as a cancer immunotherapy strategy for patients with cancer. S-531011 exclusively recognized human CCR8 among all chemokine receptors and showed potent antibody-dependent cell-mediated cytotoxicity activity toward CCR8+ cells and neutralization activity against CCR8-mediated signaling. We observed that S-531011 reduced tumor-infiltrating CCR8+ Tregs and induced potent antitumor activity in a tumor-bearing human-CCR8 knock-in mouse model. Moreover, combination therapy with S-531011 and anti-mouse programmed cell death 1 (PD-1) antibody strongly suppressed tumor growth compared with anti-PD-1 antibody alone with no observable adverse effects. S-531011 also depleted human tumor-infiltrating Tregs, but not Tregs derived from human peripheral blood mononuclear cells. These results suggest that S-531011 is a promising drug for inducing antitumor immunity without severe side effects in the clinical setting.
Collapse
Affiliation(s)
- Yoji Nagira
- Pharmaceutical Research Division, Shionogi & Co., Ltd., Osaka, Japan
| | - Morio Nagira
- Pharmaceutical Research Division, Shionogi & Co., Ltd., Osaka, Japan
| | - Ryohei Nagai
- Pharmaceutical Research Division, Shionogi & Co., Ltd., Osaka, Japan
| | - Wataru Nogami
- Pharmaceutical Research Division, Shionogi & Co., Ltd., Osaka, Japan
| | - Michinari Hirata
- Pharmaceutical Research Division, Shionogi & Co., Ltd., Osaka, Japan
- Department of Clinical Research in Tumor Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Azumi Ueyama
- Pharmaceutical Research Division, Shionogi & Co., Ltd., Osaka, Japan
- Department of Clinical Research in Tumor Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Tetsuya Yoshida
- Pharmaceutical Research Division, Shionogi & Co., Ltd., Osaka, Japan
- Department of Basic Research in Tumor Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Mai Yoshikawa
- Pharmaceutical Research Division, Shionogi & Co., Ltd., Osaka, Japan
| | - Satomi Shinonome
- Pharmaceutical Research Division, Shionogi & Co., Ltd., Osaka, Japan
| | - Hiroshi Yoshida
- Pharmaceutical Research Division, Shionogi & Co., Ltd., Osaka, Japan
| | - Miya Haruna
- Pharmaceutical Research Division, Shionogi & Co., Ltd., Osaka, Japan
- Department of Clinical Research in Tumor Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hiroto Miwa
- Pharmaceutical Research Division, Shionogi & Co., Ltd., Osaka, Japan
- Department of Clinical Research in Tumor Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Natsumi Chatani
- Pharmaceutical Research Division, Shionogi & Co., Ltd., Osaka, Japan
| | - Naganari Ohkura
- Department of Basic Research in Tumor Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan
- Department of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Hisashi Wada
- Department of Clinical Research in Tumor Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hidekazu Tanaka
- Pharmaceutical Research Division, Shionogi & Co., Ltd., Osaka, Japan
| |
Collapse
|
38
|
Zhang Z, Wang G, Shao X, Wu H, Su X, Zhu L, Ji Z. A Novel Prognostic Biomarker CCR8 for Gastric Cancer and Anti-CCR8 Blockade Attenuate the Immunosuppressive Capacity of Tregs In Vitro. Cancer Biother Radiopharm 2023; 38:415-424. [PMID: 37102694 DOI: 10.1089/cbr.2022.0095] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023] Open
Abstract
Objective: To investigate the immunotherapeutic roles and functions of C-C Motif Chemokine Receptor 8 (CCR8) molecule in gastric cancer (GC). Materials and Methods: Clinicopathological features of 95 GC cases were collected by a follow-up survey. The expression level of CCR8 was measured by immunohistochemistry (IHC) staining and analyzed with the cancer genome atlas database. The relationship between CCR8 expression and Clinicopathological features of GC cases was evaluated by univariate and multivariate analysis. Flow cytometry was used to determine the expression of cytokines and the proliferation of CD4+ regulator T cells (Tregs) and CD8+ T cells. Results: An upregulated expression of CCR8 in GC tissues was associated with tumor grade, nodal metastasis, and overall survival (OS). Tumor-infiltrated Tregs with higher expression of CCR8 produced more IL10 molecules in vitro. In addition, anti-CCR8 blocking downregulated IL10 expression produced by CD4+ Tregs, and reversed the suppression by Tregs on the secretion and proliferation of CD8+ T cells. Conclusion: CCR8 molecule could be a prognostic biomarker for GC cases and a therapeutic target for immune treatments.
Collapse
Affiliation(s)
- Zhigang Zhang
- Medical School of Southeast University, Nanjing, China
- Department of General Surgery, Zhongda Hospital Affiliated to Southeast University, Nanjing, China
| | - Guoqing Wang
- Department of Pathology, Zhongda Hospital Affiliated to Southeast University, Nanjing, China
| | - Xiangyu Shao
- Medical School of Southeast University, Nanjing, China
- Department of General Surgery, Zhongda Hospital Affiliated to Southeast University, Nanjing, China
| | - Hailu Wu
- Medical School of Southeast University, Nanjing, China
| | - Xiangyu Su
- Medical School of Southeast University, Nanjing, China
| | - Long Zhu
- Medical School of Southeast University, Nanjing, China
| | - Zhenling Ji
- Department of General Surgery, Zhongda Hospital Affiliated to Southeast University, Nanjing, China
| |
Collapse
|
39
|
Moreno Ayala MA, Campbell TF, Zhang C, Dahan N, Bockman A, Prakash V, Feng L, Sher T, DuPage M. CXCR3 expression in regulatory T cells drives interactions with type I dendritic cells in tumors to restrict CD8 + T cell antitumor immunity. Immunity 2023; 56:1613-1630.e5. [PMID: 37392735 PMCID: PMC10752240 DOI: 10.1016/j.immuni.2023.06.003] [Citation(s) in RCA: 92] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 03/07/2023] [Accepted: 06/06/2023] [Indexed: 07/03/2023]
Abstract
Infiltration of regulatory T (Treg) cells, an immunosuppressive population of CD4+ T cells, into solid cancers represents a barrier to cancer immunotherapy. Chemokine receptors are critical for Treg cell recruitment and cell-cell interactions in inflamed tissues, including cancer, and thus are an ideal therapeutic target. Here, we show in multiple cancer models that CXCR3+ Treg cells were increased in tumors compared with lymphoid tissues, exhibited an activated phenotype, and interacted preferentially with CXCL9-producing BATF3+ dendritic cells (DCs). Genetic ablation of CXCR3 in Treg cells disrupted DC1-Treg cell interactions and concomitantly increased DC-CD8+ T cell interactions. Mechanistically, CXCR3 ablation in Treg cells increased tumor antigen-specific cross-presentation by DC1s, increasing CD8+ T cell priming and reactivation in tumors. This ultimately impaired tumor progression, especially in combination with anti-PD-1 checkpoint blockade immunotherapy. Overall, CXCR3 is shown to be a critical chemokine receptor for Treg cell accumulation and immune suppression in tumors.
Collapse
Affiliation(s)
- Mariela A Moreno Ayala
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Timothy F Campbell
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Chenyu Zhang
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Noa Dahan
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Alissa Bockman
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Varsha Prakash
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Lawrence Feng
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Theo Sher
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Michel DuPage
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
40
|
Suzuki K, Kunisada Y, Miyamura N, Eikawa S, Hurtado de Mendoza T, Mose ES, Lu C, Kuroda Y, Ruoslahti E, Lowy AM, Sugahara KN. Tumor-resident regulatory T cells in pancreatic cancer express the αvβ5 integrin as a targetable activation marker. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.24.542137. [PMID: 37292693 PMCID: PMC10245898 DOI: 10.1101/2023.05.24.542137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has abundant immunosuppressive regulatory T cells (Tregs), which contribute to a microenvironment resistant to immunotherapy. Here, we report that Tregs in the PDAC tissue, but not those in the spleen, express the αvβ5 integrin in addition to neuropilin-1 (NRP-1), which makes them susceptible to the iRGD tumor-penetrating peptide, which targets cells positive for αv integrin- and NRP-1. As a result, long-term treatment of PDAC mice with iRGD leads to tumor-specific depletion of Tregs and improved efficacy of immune checkpoint blockade. αvβ5 integrin + Tregs are induced from both naïve CD4 + T cells and natural Tregs upon T cell receptor stimulation, and represent a highly immunosuppressive subpopulation of CCR8 + Tregs. This study identifies the αvβ5 integrin as a marker for activated tumor-resident Tregs, which can be targeted to achieve tumor-specific Treg depletion and thereby augment anti-tumor immunity for PDAC therapy.
Collapse
|
41
|
Obradovic A, Ager C, Turunen M, Nirschl T, Khosravi-Maharlooei M, Iuga A, Jackson CM, Yegnasubramanian S, Tomassoni L, Fernandez EC, McCann P, Rogava M, DeMarzo AM, Kochel CM, Allaf M, Bivalacqua T, Lim M, Realubit R, Karan C, Drake CG, Califano A. Systematic elucidation and pharmacological targeting of tumor-infiltrating regulatory T cell master regulators. Cancer Cell 2023; 41:933-949.e11. [PMID: 37116491 PMCID: PMC10193511 DOI: 10.1016/j.ccell.2023.04.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 09/13/2022] [Accepted: 04/06/2023] [Indexed: 04/30/2023]
Abstract
Due to their immunosuppressive role, tumor-infiltrating regulatory T cells (TI-Tregs) represent attractive immuno-oncology targets. Analysis of TI vs. peripheral Tregs (P-Tregs) from 36 patients, across four malignancies, identified 17 candidate master regulators (MRs) as mechanistic determinants of TI-Treg transcriptional state. Pooled CRISPR-Cas9 screening in vivo, using a chimeric hematopoietic stem cell transplant model, confirmed the essentiality of eight MRs in TI-Treg recruitment and/or retention without affecting other T cell subtypes, and targeting one of the most significant MRs (Trps1) by CRISPR KO significantly reduced ectopic tumor growth. Analysis of drugs capable of inverting TI-Treg MR activity identified low-dose gemcitabine as the top prediction. Indeed, gemcitabine treatment inhibited tumor growth in immunocompetent but not immunocompromised allografts, increased anti-PD-1 efficacy, and depleted MR-expressing TI-Tregs in vivo. This study provides key insight into Treg signaling, specifically in the context of cancer, and a generalizable strategy to systematically elucidate and target MR proteins in immunosuppressive subpopulations.
Collapse
Affiliation(s)
- Aleksandar Obradovic
- Columbia Center for Translational Immunology, Irving Medical Center, New York, NY, USA; Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Casey Ager
- Columbia Center for Translational Immunology, Irving Medical Center, New York, NY, USA; Department of Hematology Oncology, Columbia University Irving Medical Center, New York, NY, USA
| | - Mikko Turunen
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Thomas Nirschl
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Alina Iuga
- Department of Pathology, UNC School of Medicine, Chapel Hill, NC, USA
| | - Christopher M Jackson
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Lorenzo Tomassoni
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Ester Calvo Fernandez
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Patrick McCann
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Meri Rogava
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Angelo M DeMarzo
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Urology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Christina M Kochel
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mohamad Allaf
- Department of Urology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Trinity Bivalacqua
- Department of Urology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael Lim
- Department of Neurosurgery, Stanford School of Medicine, Palo Alto, CA, USA
| | - Ronald Realubit
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA; J.P. Sulzberger Columbia Genome Center, Columbia University, New York, NY, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Charles Karan
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA; J.P. Sulzberger Columbia Genome Center, Columbia University, New York, NY, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Charles G Drake
- Columbia Center for Translational Immunology, Irving Medical Center, New York, NY, USA; Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Andrea Califano
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA; Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; J.P. Sulzberger Columbia Genome Center, Columbia University, New York, NY, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA; Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA; Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, New York, NY, USA; Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
42
|
Tian J, Cheng C, Gao J, Fu G, Xu Z, Chen X, Wu Y, Jin B. POLD1 as a Prognostic Biomarker Correlated with Cell Proliferation and Immune Infiltration in Clear Cell Renal Cell Carcinoma. Int J Mol Sci 2023; 24:ijms24076849. [PMID: 37047824 PMCID: PMC10095303 DOI: 10.3390/ijms24076849] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/25/2023] [Accepted: 03/31/2023] [Indexed: 04/08/2023] Open
Abstract
DNA polymerase delta 1 catalytic subunit (POLD1) plays a vital role in genomic copy with high fidelity and DNA damage repair processes. However, the prognostic value of POLD1 and its relationship with tumor immunity in clear cell renal cell carcinoma (ccRCC) remains to be further explored. Transcriptional data sets and clinical information were obtained from the TCGA, ICGC, and GEO databases. Differentially expressed genes (DEGs) were derived from the comparison between the low and high POLD1 expression groups in the TCGA–KIRC cohort. KEGG and gene ontology (GO) analyses were performed for those DEGs to explore the potential influence of POLD1 on the biological behaviors of ccRCC. The prognostic clinical value and mutational characteristics of patients were described and analyzed according to the POLD1 expression levels. TIMER and TISIDB databases were utilized to comprehensively investigate the potential relevance between the POLD1 levels and the status of the immune cells, as well as the tumor infiltration of immune cells. In addition, RT-qPCR, Western blot, immunohistochemistry and several functional and animal experiments were performed for clinical, in vitro and in vivo validation. POLD1 was highly expressed in a variety of tumors including ccRCC, and further verified in a validation cohort of 60 ccRCC samples and in vitro cell line experiments. POLD1 expression levels in the ccRCC samples were associated with various clinical characteristics including pathologic tumor stage and histologic grade. ccRCC patients with high POLD1 expression have poor clinical outcomes and exhibit a higher rate of somatic mutations than those with low POLD1 expression. Cox regression analysis also showed that POLD1 could act as a potential independent prognostic biomarker. The DEGs associated with POLD1 were significantly enriched in the immunity-related pathways. Moreover, further immune infiltration analysis indicated that high POLD1 expression was associated with high NK CD56bright cells, Treg cells, and myeloid-derived suppressor cells’ (MDSCs) infiltration scores, as well as their marker gene sets of immune cell status. Meanwhile, POLD1 exhibited resistance to various drugs when highly expressed. Finally, the knockdown of POLD1 inhibited the proliferation and migration, and promoted the apoptosis of ccRCC cells in vitro and in vivo, as well as influenced the activation of oncogenic signaling. Our current study demonstrated that POLD1 is a potential prognostic biomarker for ccRCC patients. It might create a tumor immunosuppressive microenvironment and inhibit the susceptibility to ferroptosis leading to a poor prognosis.
Collapse
Affiliation(s)
- Junjie Tian
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310024, China
- Zhejiang Engineering Research Center for Urinary Bladder Carcinoma Innovation Diagnosis and Treatment, Hangzhou 310024, China
| | - Cheng Cheng
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310024, China
- Zhejiang Engineering Research Center for Urinary Bladder Carcinoma Innovation Diagnosis and Treatment, Hangzhou 310024, China
| | - Jianguo Gao
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310024, China
| | - Guanghou Fu
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310024, China
- Zhejiang Engineering Research Center for Urinary Bladder Carcinoma Innovation Diagnosis and Treatment, Hangzhou 310024, China
| | - Zhijie Xu
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310024, China
- Zhejiang Engineering Research Center for Urinary Bladder Carcinoma Innovation Diagnosis and Treatment, Hangzhou 310024, China
| | - Xiaoyi Chen
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310024, China
- Zhejiang Engineering Research Center for Urinary Bladder Carcinoma Innovation Diagnosis and Treatment, Hangzhou 310024, China
| | - Yunfei Wu
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310024, China
- Zhejiang Engineering Research Center for Urinary Bladder Carcinoma Innovation Diagnosis and Treatment, Hangzhou 310024, China
| | - Baiye Jin
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310024, China
- Zhejiang Engineering Research Center for Urinary Bladder Carcinoma Innovation Diagnosis and Treatment, Hangzhou 310024, China
| |
Collapse
|
43
|
Wayman JA, Thomas A, Bejjani A, Katko A, Almanan M, Godarova A, Korinfskaya S, Cazares TA, Yukawa M, Kottyan LC, Barski A, Chougnet CA, Hildeman DA, Miraldi ER. An atlas of gene regulatory networks for memory CD4 + T cells in youth and old age. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.07.531590. [PMID: 36945549 PMCID: PMC10028906 DOI: 10.1101/2023.03.07.531590] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Aging profoundly affects immune-system function, promoting susceptibility to pathogens, cancers and chronic inflammation. We previously identified a population of IL-10-producing, T follicular helper-like cells (" Tfh10 "), linked to suppressed vaccine responses in aged mice. Here, we integrate single-cell ( sc )RNA-seq, scATAC-seq and genome-scale modeling to characterize Tfh10 - and the full CD4 + memory T cell ( CD4 + TM ) compartment - in young and old mice. We identified 13 CD4 + TM populations, which we validated through cross-comparison to prior scRNA-seq studies. We built gene regulatory networks ( GRNs ) that predict transcription-factor control of gene expression in each T-cell population and how these circuits change with age. Through integration with pan-cell aging atlases, we identified intercellular-signaling networks driving age-dependent changes in CD4 + TM. Our atlas of finely resolved CD4 + TM subsets, GRNs and cell-cell communication networks is a comprehensive resource of predicted regulatory mechanisms operative in memory T cells, presenting new opportunities to improve immune responses in the elderly.
Collapse
|
44
|
Tay C, Tanaka A, Sakaguchi S. Tumor-infiltrating regulatory T cells as targets of cancer immunotherapy. Cancer Cell 2023; 41:450-465. [PMID: 36917950 DOI: 10.1016/j.ccell.2023.02.014] [Citation(s) in RCA: 229] [Impact Index Per Article: 114.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 01/27/2023] [Accepted: 02/14/2023] [Indexed: 03/16/2023]
Abstract
Regulatory T cells (Tregs) are abundant in tumor tissues, raising a question of whether immunosuppressive tumor-infiltrating Tregs (TI-Tregs) can be selectively depleted or functionally attenuated to evoke effective anti-tumor immune responses by conventional T cells (Tconvs), without perturbing Treg-dependent immune homeostasis in healthy organs and causing autoimmunity. Here, we review current cancer immunotherapy strategies, including immune checkpoint blockade (ICB) antibodies against CTLA-4 and PD-1 and discuss their effects on TI-Tregs. We also discuss approaches that exploit differentially regulated molecules on the cell surface (e.g., CTLA-4) and intracellularly (e.g., T cell receptor signaling molecules) between TI-Tregs and Tconvs as well as their dependence on cytokines (e.g., IL-2) and metabolites (e.g., lactate). We envisage that targeting TI-Tregs could be effective as a monotherapy and/or when combined with ICB antibodies.
Collapse
Affiliation(s)
- Christopher Tay
- Experimental Immunology, Immunology Frontier Research Center (IFReC), Osaka University, Osaka 565-0871, Japan
| | - Atsushi Tanaka
- Experimental Immunology, Immunology Frontier Research Center (IFReC), Osaka University, Osaka 565-0871, Japan
| | - Shimon Sakaguchi
- Experimental Immunology, Immunology Frontier Research Center (IFReC), Osaka University, Osaka 565-0871, Japan.
| |
Collapse
|
45
|
Dikiy S, Rudensky AY. Principles of regulatory T cell function. Immunity 2023; 56:240-255. [PMID: 36792571 DOI: 10.1016/j.immuni.2023.01.004] [Citation(s) in RCA: 147] [Impact Index Per Article: 73.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 02/16/2023]
Abstract
Regulatory T (Treg) cells represent a distinct lineage of cells of the adaptive immune system indispensable for forestalling fatal autoimmune and inflammatory pathologies. The role of Treg cells as principal guardians of the immune system can be attributed to their ability to restrain all currently recognized major types of inflammatory responses through modulating the activity of a wide range of cells of the innate and adaptive immune system. This broad purview over immunity and inflammation is afforded by the multiple modes of action Treg cells exert upon their diverse molecular and cellular targets. Beyond the suppression of autoimmunity for which they were originally recognized, Treg cells have been implicated in tissue maintenance, repair, and regeneration under physiologic and pathologic conditions. Herein, we discuss the current and emerging understanding of Treg cell effector mechanisms in the context of the basic properties of Treg cells that endow them with such functional versatility.
Collapse
Affiliation(s)
- Stanislav Dikiy
- Howard Hughes Medical Institute and Immunology Program, Sloan Kettering Institute, Ludwig Center at Memorial Sloan Kettering Cancer Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10021, USA.
| | - Alexander Y Rudensky
- Howard Hughes Medical Institute and Immunology Program, Sloan Kettering Institute, Ludwig Center at Memorial Sloan Kettering Cancer Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
46
|
Li Q, Lu J, Li J, Zhang B, Wu Y, Ying T. Antibody-based cancer immunotherapy by targeting regulatory T cells. Front Oncol 2023; 13:1157345. [PMID: 37182149 PMCID: PMC10174253 DOI: 10.3389/fonc.2023.1157345] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/13/2023] [Indexed: 05/16/2023] Open
Abstract
Regulatory T cells (Tregs) are among the most abundant suppressive cells, which infiltrate and accumulate in the tumor microenvironment, leading to tumor escape by inducing anergy and immunosuppression. Their presence has been correlated with tumor progression, invasiveness and metastasis. Targeting tumor-associated Tregs is an effective addition to current immunotherapy approaches, but it may also trigger autoimmune diseases. The major limitation of current therapies targeting Tregs in the tumor microenvironment is the lack of selective targets. Tumor-infiltrating Tregs express high levels of cell surface molecules associated with T-cell activation, such as CTLA4, PD-1, LAG3, TIGIT, ICOS, and TNF receptor superfamily members including 4-1BB, OX40, and GITR. Targeting these molecules often attribute to concurrent depletion of antitumor effector T-cell populations. Therefore, novel approaches need to improve the specificity of targeting Tregs in the tumor microenvironment without affecting peripheral Tregs and effector T cells. In this review, we discuss the immunosuppressive mechanisms of tumor-infiltrating Tregs and the status of antibody-based immunotherapies targeting Tregs.
Collapse
Affiliation(s)
- Quanxiao Li
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Engineering Research Center for Synthetic Immunology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jun Lu
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, China
| | - Baohong Zhang
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Yanling Wu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Engineering Research Center for Synthetic Immunology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
- *Correspondence: Tianlei Ying, ; Yanling Wu,
| | - Tianlei Ying
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Engineering Research Center for Synthetic Immunology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
- *Correspondence: Tianlei Ying, ; Yanling Wu,
| |
Collapse
|
47
|
Weaver JD, Stack EC, Buggé JA, Hu C, McGrath L, Mueller A, Wong M, Klebanov B, Rahman T, Kaufman R, Fregeau C, Spaulding V, Priess M, Legendre K, Jaffe S, Upadhyay D, Singh A, Xu CA, Krukenberg K, Zhang Y, Ezzyat Y, Saddier Axe D, Kuhne MR, Meehl MA, Shaffer DR, Weist BM, Wiederschain D, Depis F, Gostissa M. Differential expression of CCR8 in tumors versus normal tissue allows specific depletion of tumor-infiltrating T regulatory cells by GS-1811, a novel Fc-optimized anti-CCR8 antibody. Oncoimmunology 2022; 11:2141007. [PMID: 36352891 PMCID: PMC9639568 DOI: 10.1080/2162402x.2022.2141007] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The presence of T regulatory (Treg) cells in the tumor microenvironment is associated with poor prognosis and resistance to therapies aimed at reactivating anti-tumor immune responses. Therefore, depletion of tumor-infiltrating Tregs is a potential approach to overcome resistance to immunotherapy. However, identifying Treg-specific targets to drive such selective depletion is challenging. CCR8 has recently emerged as one of these potential targets. Here, we describe GS-1811, a novel therapeutic monoclonal antibody that specifically binds to human CCR8 and is designed to selectively deplete tumor-infiltrating Tregs. We validate previous findings showing restricted expression of CCR8 on tumor Tregs, and precisely quantify CCR8 receptor densities on tumor and normal tissue T cell subsets, demonstrating a window for selective depletion of Tregs in the tumor. Importantly, we show that GS-1811 depleting activity is limited to cells expressing CCR8 at levels comparable to tumor-infiltrating Tregs. Targeting CCR8 in mouse tumor models results in robust anti-tumor efficacy, which is dependent on Treg depleting activity, and synergizes with PD-1 inhibition to promote anti-tumor responses in PD-1 resistant models. Our data support clinical development of GS-1811 to target CCR8 in cancer and drive tumor Treg depletion in order to promote anti-tumor immunity.
Collapse
Affiliation(s)
- Jessica D. Weaver
- Jounce Therapeutics, Inc., 780 Memorial Drive, Cambridge, MA 02139, USA
| | - Edward C. Stack
- Jounce Therapeutics, Inc., 780 Memorial Drive, Cambridge, MA 02139, USA
| | - Joshua A. Buggé
- Jounce Therapeutics, Inc., 780 Memorial Drive, Cambridge, MA 02139, USA
| | - Changyun Hu
- Jounce Therapeutics, Inc., 780 Memorial Drive, Cambridge, MA 02139, USA
| | - Lara McGrath
- Jounce Therapeutics, Inc., 780 Memorial Drive, Cambridge, MA 02139, USA
| | - Amy Mueller
- Jounce Therapeutics, Inc., 780 Memorial Drive, Cambridge, MA 02139, USA
| | - Masie Wong
- Jounce Therapeutics, Inc., 780 Memorial Drive, Cambridge, MA 02139, USA
| | - Boris Klebanov
- Jounce Therapeutics, Inc., 780 Memorial Drive, Cambridge, MA 02139, USA
| | - Tanzila Rahman
- Jounce Therapeutics, Inc., 780 Memorial Drive, Cambridge, MA 02139, USA
| | - Rosemary Kaufman
- Jounce Therapeutics, Inc., 780 Memorial Drive, Cambridge, MA 02139, USA
| | - Christine Fregeau
- Jounce Therapeutics, Inc., 780 Memorial Drive, Cambridge, MA 02139, USA
| | - Vikki Spaulding
- Jounce Therapeutics, Inc., 780 Memorial Drive, Cambridge, MA 02139, USA
| | - Michelle Priess
- Jounce Therapeutics, Inc., 780 Memorial Drive, Cambridge, MA 02139, USA
| | - Kristen Legendre
- Jounce Therapeutics, Inc., 780 Memorial Drive, Cambridge, MA 02139, USA
| | - Sarah Jaffe
- Jounce Therapeutics, Inc., 780 Memorial Drive, Cambridge, MA 02139, USA
| | | | - Anirudh Singh
- Jounce Therapeutics, Inc., 780 Memorial Drive, Cambridge, MA 02139, USA
| | - Chang-Ai Xu
- Jounce Therapeutics, Inc., 780 Memorial Drive, Cambridge, MA 02139, USA
| | | | - Yan Zhang
- Jounce Therapeutics, Inc., 780 Memorial Drive, Cambridge, MA 02139, USA
| | - Yassine Ezzyat
- Jounce Therapeutics, Inc., 780 Memorial Drive, Cambridge, MA 02139, USA
| | | | - Michelle R. Kuhne
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, CA 94404, USA
| | - Michael A. Meehl
- Jounce Therapeutics, Inc., 780 Memorial Drive, Cambridge, MA 02139, USA
| | - Donald R. Shaffer
- Jounce Therapeutics, Inc., 780 Memorial Drive, Cambridge, MA 02139, USA
| | - Brian M. Weist
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, CA 94404, USA
| | | | - Fabien Depis
- Jounce Therapeutics, Inc., 780 Memorial Drive, Cambridge, MA 02139, USA
| | - Monica Gostissa
- Jounce Therapeutics, Inc., 780 Memorial Drive, Cambridge, MA 02139, USA
| |
Collapse
|
48
|
Shan F, Somasundaram A, Bruno TC, Workman CJ, Vignali DAA. Therapeutic targeting of regulatory T cells in cancer. Trends Cancer 2022; 8:944-961. [PMID: 35853825 PMCID: PMC9588644 DOI: 10.1016/j.trecan.2022.06.008] [Citation(s) in RCA: 120] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 12/24/2022]
Abstract
The success of immunotherapy in oncology underscores the vital role of the immune system in cancer development. Regulatory T cells (Tregs) maintain a fine balance between autoimmunity and immune suppression. They have multiple roles in the tumor microenvironment (TME) but act particularly in suppressing T cell activation. This review focuses on the detrimental and sometimes beneficial roles of Tregs in tumors, our current understanding of recruitment and stabilization of Tregs within the TME, and current Treg-targeted therapeutics. Research identifying subpopulations of Tregs and their respective functions and interactions within the complex networks of the TME will be crucial to develop the next generation of immunotherapies. Through these advances, Treg-targeted immunotherapy could have important implications for the future of oncology.
Collapse
Affiliation(s)
- Feng Shan
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Ashwin Somasundaram
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Tullia C Bruno
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA; Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Creg J Workman
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Dario A A Vignali
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA; Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA.
| |
Collapse
|
49
|
McRitchie BR, Akkaya B. Exhaust the exhausters: Targeting regulatory T cells in the tumor microenvironment. Front Immunol 2022; 13:940052. [PMID: 36248808 PMCID: PMC9562032 DOI: 10.3389/fimmu.2022.940052] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 09/14/2022] [Indexed: 12/14/2022] Open
Abstract
The concept of cancer immunotherapy has gained immense momentum over the recent years. The advancements in checkpoint blockade have led to a notable progress in treating a plethora of cancer types. However, these approaches also appear to have stalled due to factors such as individuals' genetic make-up, resistant tumor sub-types and immune related adverse events (irAE). While the major focus of immunotherapies has largely been alleviating the cell-intrinsic defects of CD8+ T cells in the tumor microenvironment (TME), amending the relationship between tumor specific CD4+ T cells and CD8+ T cells has started driving attention as well. A major roadblock to improve the cross-talk between CD4+ T cells and CD8+ T cells is the immune suppressive action of tumor infiltrating T regulatory (Treg) cells. Despite their indispensable in protecting tissues against autoimmune threats, Tregs have also been under scrutiny for helping tumors thrive. This review addresses how Tregs establish themselves at the TME and suppress anti-tumor immunity. Particularly, we delve into factors that promote Treg migration into tumor tissue and discuss the unique cellular and humoral composition of TME that aids survival, differentiation and function of intratumoral Tregs. Furthermore, we summarize the potential suppression mechanisms used by intratumoral Tregs and discuss ways to target those to ultimately guide new immunotherapies.
Collapse
Affiliation(s)
- Bayley R. McRitchie
- Department of Neurology, The College of Medicine, The Ohio State University, Columbus, OH, United States
- Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Billur Akkaya
- Department of Neurology, The College of Medicine, The Ohio State University, Columbus, OH, United States
- Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
- Department of Microbial Infection and Immunity, The College of Medicine, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
50
|
Yu M, Qian XX, Li G, Cheng Z, Lin Z. Prognostic biomarker IL17A correlated with immune infiltrates in head and neck cancer. World J Surg Oncol 2022; 20:243. [PMID: 35902909 PMCID: PMC9330648 DOI: 10.1186/s12957-022-02703-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 07/16/2022] [Indexed: 12/31/2022] Open
Abstract
Background The underlying functions and mechanisms of the Th17 pathway in Head and neck squamous cell carcinoma (HNSCC) progression and tumor immunology are still unclear. We investigated the correlation between IL17A expression and certain clinical parameters, tumor-infiltrating immune cells (TIICs) in TCGA HNSCC samples. Methods HNSCC files from the TCGA database were analyzed to obtain data on immune system infiltrates, gene expression, and related clinical information. R (Version 3.6.3) software, GEPIA, and TIMER online analysis tools were used to profile the relationship between the expression of IL17A and the prognosis, clinical stages, survival status and immune cell tumor-infiltrating levels of HNSCC patients. GEPIA and TIMER online analysis tools were used to verify the data. Results The expression of IL17A was significantly decreased in tumor tissues from HNSCC. IL17A expression was associated with M, N stage, lymphovascular invasion, and patients OS event. GSEA revealed that IL17A was closely related to humoral immune response, T cells response, and cytokine signal. TCGA database and TIMER online analysis indicated that the B cells and T cells levels were correlated with IL17A. The correlation between IL17A expression and correlated genes was analyzed. Conclusions IL-17A plays a key role in HNSCC. The levels of IL17A are important values for the determination of the occurrence and development of the HNSCC. The IL17A and correlated genes may be potential immunotherapeutic targets for HNSCC. Supplementary Information The online version contains supplementary material available at 10.1186/s12957-022-02703-1.
Collapse
Affiliation(s)
- Meng Yu
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Xing Xing Qian
- Health Management Center, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Guang Li
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Zexing Cheng
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225009, People's Republic of China.
| | - Zhijie Lin
- Department of Immunology, Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China. .,Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou, 225009, People's Republic of China.
| |
Collapse
|