1
|
Šantrůček J, Kubásek J, Janová J, ŠantrůčKOvá H, Altman J, Tumajer J, Hrádková M, Cienciala E. Response of leaf internal CO 2 concentration and intrinsic water-use efficiency in Norway spruce to century-long gradual CO 2 elevation. PHOTOSYNTHETICA 2025; 63:51-63. [PMID: 40270907 PMCID: PMC12012425 DOI: 10.32615/ps.2025.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 02/10/2025] [Indexed: 04/25/2025]
Abstract
The strategies of Norway spruce [Picea abies (L.) Karst.] to increasing atmospheric CO2 concentration (C a) are not entirely clear. Here, we reconstructed centennial trajectories of leaf internal CO2 concentration (C i) and intrinsic water-use efficiency (WUEi) from the amount of 13C in tree-ring cellulose. We collected 57 cores across elevations, soil, and atmospheric conditions in central Europe. Generally, WUEi and C i increased over the last 100 years and the C i/C a ratio remained almost constant. However, two groups were distinguished. The first group showed a quasi-linear response to C a and the sensitivity of C i to C a (s = dC i/dC a) ranged from 0 to 1. Trees in the second group showed nonmonotonic responses with extremes during the peak of industrial air pollution in the 1980s and s increase from -1 to +1.6. Our study shows a marked attenuation of the rise in WUEi during the 20th century leading to invariant WUEi in recent decades.
Collapse
Affiliation(s)
- J. Šantrůček
- Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - J. Kubásek
- Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - J. Janová
- Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - H. ŠantrůčKOvá
- Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - J. Altman
- Institute of Botany, AS CR, Zámek 1, 252 43 Průhonice, Czech Republic
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 21 Prague 6 – Suchdol, Czech Republic
| | - J. Tumajer
- IFER – Institute of Forest Ecosystem Research, Čs. armády 655, 254 01 Jílové u Prahy, Czech Republic
- Department of Physical Geography and Geoecology, Faculty of Science, Charles University, Albertov 6, 12843 Prague, Czech Republic
| | - M. Hrádková
- Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic
- Institute of Botany, AS CR, Zámek 1, 252 43 Průhonice, Czech Republic
| | - E. Cienciala
- IFER – Institute of Forest Ecosystem Research, Čs. armády 655, 254 01 Jílové u Prahy, Czech Republic
| |
Collapse
|
2
|
Rohula-Okunev G, Kupper P, Tullus A, Kukumägi M, Sell M, Ostonen I. Effect of increased air temperature and vapour pressure deficit on water relations, gas exchange, and stem increment in saplings of Norway spruce ( Picea abies). FUNCTIONAL PLANT BIOLOGY : FPB 2025; 52:FP24241. [PMID: 39998929 DOI: 10.1071/fp24241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 02/13/2025] [Indexed: 02/27/2025]
Abstract
Whilst temperature (T ) increase on tree function has been well studied, the associated effect of vapour pressure deficit (VPD) is less clear. We investigated the impact of increasing T and VPD on canopy transpiration rate (E ), shoot gas exchange, and stem growth in Norway spruce (Picea abies ) saplings grown in organic and mineral soils in climate chambers with three treatment conditions for 12weeks: (1) 'ambient' (VPD≈0.5kPa); (2) 'highT' treatment (+3°C relative to ambient; VPD≈0.6kPa); and (3) 'highT/lowRH' treatment (+3°C and -7% RH relative to ambient; VPD≈0.8kPa). The stem diameter increment, assimilation rate (A ), and E were highest, and the needle-to-fine root biomass ratio was smallest in 'highT/lowRH' treatment (P A of trees grown in organic soil was higher (P <0.05) in 'highT/lowRH' treatment compared to ambient conditions, but no significant difference was found in mineral soil. Our findings indicate that the effect of a 3-°C temperature increase on spruce was marginal under well-watered conditions, and moderate VPD increase instead improved the tree's functioning. Thus, aside from temperature, the impact of the RH as a primary driver of the VPD should be considered when predicting spruce response to global warming.
Collapse
Affiliation(s)
| | - Priit Kupper
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu 50409, Estonia
| | - Arvo Tullus
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu 50409, Estonia
| | - Mai Kukumägi
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu 50409, Estonia; and Institute of Forestry and Engineering, Estonian University of Life Sciences, F. R. Kreutzwaldi 1, Tartu 51006, Estonia
| | - Marili Sell
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu 50409, Estonia
| | - Ivika Ostonen
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu 50409, Estonia
| |
Collapse
|
3
|
Huang C, Huang J, Xiao J, Li X, He HS, Liang Y, Chen F, Tian H. Global convergence in terrestrial gross primary production response to atmospheric vapor pressure deficit. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2016-2025. [PMID: 38733513 DOI: 10.1007/s11427-023-2475-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/23/2023] [Indexed: 05/13/2024]
Abstract
Atmospheric vapor pressure deficit (VPD) increases with climate warming and may limit plant growth. However, gross primary production (GPP) responses to VPD remain a mystery, offering a significant source of uncertainty in the estimation of global terrestrial ecosystems carbon dynamics. In this study, in-situ measurements, satellite-derived data, and Earth System Models (ESMs) simulations were analysed to show that the GPP of most ecosystems has a similar threshold in response to VPD: first increasing and then declining. When VPD exceeds these thresholds, atmospheric drought stress reduces soil moisture and stomatal conductance, thereby decreasing the productivity of terrestrial ecosystems. Current ESMs underscore CO2 fertilization effects but predict significant GPP decline in low-latitude ecosystems when VPD exceeds the thresholds. These results emphasize the impacts of climate warming on VPD and propose limitations to future ecosystems productivity caused by increased atmospheric water demand. Incorporating VPD, soil moisture, and canopy conductance interactions into ESMs enhances the prediction of terrestrial ecosystem responses to climate change.
Collapse
Affiliation(s)
- Chao Huang
- Key Laboratory of National Forestry and Grassland Administration on Forest Ecosystem Protection and Restoration of Poyang Lake Watershed, College of Forestry, Jiangxi Agricultural University, Nanchang, 330045, China
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Jingfeng Huang
- Institute of Applied Remote Sensing & Information Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
- Key Laboratory of Agricultural Remote Sensing and Information Systems, Zhejiang Province, Zhejiang University, Hangzhou, 310058, China.
| | - Jingfeng Xiao
- Earth Systems Research Center, Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, NH, 03824, USA
| | - Xing Li
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Hong S He
- School of Natural Resources, University of Missouri, 203 ABNR Building, Columbia, MO, 65211, USA
| | - Yu Liang
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Fusheng Chen
- Key Laboratory of National Forestry and Grassland Administration on Forest Ecosystem Protection and Restoration of Poyang Lake Watershed, College of Forestry, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Hanqin Tian
- Schiller Institute for Integrated Science and Society, Department of Earth and Environmental Sciences, Boston College, Chestnut Hill, MA, 02467, USA
| |
Collapse
|
4
|
Ofori-Amanfo KK, Klem K, Veselá B, Holub P, Agyei T, Juráň S, Grace J, Marek MV, Urban O. The effect of elevated CO2 on photosynthesis is modulated by nitrogen supply and reduced water availability in Picea abies. TREE PHYSIOLOGY 2023; 43:925-937. [PMID: 36864576 DOI: 10.1093/treephys/tpad024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 02/22/2023] [Indexed: 06/11/2023]
Abstract
It is assumed that the stimulatory effects of elevated CO2 concentration ([CO2]) on photosynthesis and growth may be substantially reduced by co-occurring environmental factors and the length of CO2 treatment. Here, we present the study exploring the interactive effects of three manipulated factors ([CO2], nitrogen supply and water availability) on physiological (gas-exchange and chlorophyll fluorescence), morphological and stoichiometric traits of Norway spruce (Picea abies) saplings after 2 and 3 years of the treatment under natural field conditions. Such multifactorial studies, going beyond two-way interactions, have received only limited attention until now. Our findings imply a significant reduction of [CO2]-enhanced rate of CO2 assimilation under reduced water availability which deepens with the severity of water depletion. Similarly, insufficient nitrogen availability leads to a down-regulation of photosynthesis under elevated [CO2] being particularly associated with reduced carboxylation efficiency of the Rubisco enzyme. Such adjustments in the photosynthesis machinery result in the stimulation of water-use efficiency under elevated [CO2] only when it is combined with a high nitrogen supply and reduced water availability. These findings indicate limited effects of elevated [CO2] on carbon uptake in temperate coniferous forests when combined with naturally low nitrogen availability and intensifying droughts during the summer periods. Such interactions have to be incorporated into the mechanistic models predicting changes in terrestrial carbon sequestration and forest growth in the future.
Collapse
Affiliation(s)
- Kojo Kwakye Ofori-Amanfo
- Global Change Research Institute, Czech Academy of Sciences, Bělidla 986/4a, 603 00 Brno, Czech Republic
- Department of Agrosystems and Bioclimatology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1665/1, 613 00 Brno, Czech Republic
| | - Karel Klem
- Global Change Research Institute, Czech Academy of Sciences, Bělidla 986/4a, 603 00 Brno, Czech Republic
- Department of Agrosystems and Bioclimatology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1665/1, 613 00 Brno, Czech Republic
| | - Barbora Veselá
- Global Change Research Institute, Czech Academy of Sciences, Bělidla 986/4a, 603 00 Brno, Czech Republic
| | - Petr Holub
- Global Change Research Institute, Czech Academy of Sciences, Bělidla 986/4a, 603 00 Brno, Czech Republic
| | - Thomas Agyei
- Global Change Research Institute, Czech Academy of Sciences, Bělidla 986/4a, 603 00 Brno, Czech Republic
- Department of Agrosystems and Bioclimatology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1665/1, 613 00 Brno, Czech Republic
- Department of Biological Science, School of Sciences, University of Energy and Natural Resources, Post Office Box 214, Sunyani, Ghana
| | - Stanislav Juráň
- Global Change Research Institute, Czech Academy of Sciences, Bělidla 986/4a, 603 00 Brno, Czech Republic
| | - John Grace
- Global Change Research Institute, Czech Academy of Sciences, Bělidla 986/4a, 603 00 Brno, Czech Republic
- School of GeoSciences, University of Edinburgh, Crew Bldg, Kings Bldgs, Alexander Crum Brown Rd, Edinburgh EH9 3FF, UK
| | - Michal V Marek
- Global Change Research Institute, Czech Academy of Sciences, Bělidla 986/4a, 603 00 Brno, Czech Republic
- Institute of Management, Slovak Technical University Bratislava, Vazovova 5, 812 43 Bratislava, Slovakia
| | - Otmar Urban
- Global Change Research Institute, Czech Academy of Sciences, Bělidla 986/4a, 603 00 Brno, Czech Republic
| |
Collapse
|
5
|
Hydrologic Impact of Climate Change in the Jaguari River in the Cantareira Reservoir System. WATER 2022. [DOI: 10.3390/w14081286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
A recent drought in Southeast Brazil affected the Cantareira reservoirs system (CRS), which supplies water to São Paulo megacity, and raised concerns on the impacts that climate change may have on the water budget at the watershed scale. We propose to identify the particular and summed contributions of key climatic variables on the variability of the water budget in Jaguari basin, the main CRS tributary, using forcing–response relationships derived from climate projections and individual elasticities of variables to temperature. Besides, we investigated whether hydrological effects of the anomalous drought were comparable to patterns simulated in the future climate. A thoroughly calibrated hydrological model for evapotranspiration (ET) and discharge (Q) was used to address our questions. We found opposite impacts in the future mostly driven by rainfall changes: under increasing (decreasing) rainfall, the mean ET increased (decreased) up to +25% (−10%) and Q increased (decreased) by +90% (−50%). Higher carbon dioxide concentrations strongly depleted the stomatal conductance, and thus the mean ET, which in turn increased the mean Q in near proportions. Major critical impacts for water management are suggested by the results. Even with a small reduction of precipitation, the discharge patterns in the drought event were replicated at similar intensities.
Collapse
|
6
|
Jahan E, Thomson PC, Tissue DT. Mesophyll conductance in two cultivars of wheat grown in glacial to super-elevated CO2 concentrations. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:7191-7202. [PMID: 34232298 DOI: 10.1093/jxb/erab320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/04/2021] [Indexed: 05/26/2023]
Abstract
Mesophyll conductance (gm) is an important factor limiting photosynthesis. However, gm response to long-term growth in variable [CO2] is not well understood, particularly in crop plants. Here, we grew two cultivars of wheat (Halberd and Cranbrook), known to differ in gm under current environmental conditions, in four [CO2] treatments: glacial (206 μmol mol-1), pre-industrial (344 μmol mol-1), current ambient (489 μmol mol-1), and super-elevated (1085 μmol mol-1), and two water treatments (well-watered and moderate water limitation), to develop an evolutionary and future climate perspective on gm control of photosynthesis and water-use efficiency (WUE). In the two wheat genotypes, gm increased with rising [CO2] from glacial to ambient [CO2], but declined at super-elevated [CO2]. The responses of gm to different growth [CO2] also depend on water stress; however, the specific mechanism of gm response to [CO2] remains unclear. Although gm and gm/gsc (mesophyll conductance/stomatal conductance) were strongly associated with the variability of photosynthetic rates (A) and WUE, we found that plants with higher gm may increase A without increasing gsc, which increased WUE. These results may be useful to inform plant breeding programmes and cultivar selection for Australian wheat under future environmental conditions.
Collapse
Affiliation(s)
- Eisrat Jahan
- The University of Sydney, School of Life and Environmental Sciences, Camden NSW, Australia
| | - Peter C Thomson
- The University of Sydney, School of Life and Environmental Sciences, Camden NSW, Australia
| | - David T Tissue
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith NSW, Australia
| |
Collapse
|
7
|
Castañeda‐Gómez L, Powell JR, Ellsworth DS, Pendall E, Carrillo Y. The influence of roots on mycorrhizal fungi, saprotrophic microbes and carbon dynamics in a low‐phosphorus
Eucalyptus
forest under elevated CO
2. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13832] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Laura Castañeda‐Gómez
- Hawkesbury Institute for the EnvironmentWestern Sydney University Penrith NSW Canada
| | - Jeff R. Powell
- Hawkesbury Institute for the EnvironmentWestern Sydney University Penrith NSW Canada
| | - David S. Ellsworth
- Hawkesbury Institute for the EnvironmentWestern Sydney University Penrith NSW Canada
| | | | - Yolima Carrillo
- Hawkesbury Institute for the EnvironmentWestern Sydney University Penrith NSW Canada
| |
Collapse
|
8
|
Lauriks F, Salomón RL, Steppe K. Temporal variability in tree responses to elevated atmospheric CO 2. PLANT, CELL & ENVIRONMENT 2021; 44:1292-1310. [PMID: 33368341 DOI: 10.1111/pce.13986] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 12/18/2020] [Accepted: 12/18/2020] [Indexed: 06/12/2023]
Abstract
At leaf level, elevated atmospheric CO2 concentration (eCO2 ) results in stimulation of carbon net assimilation and reduction of stomatal conductance. However, a comprehensive understanding of the impact of eCO2 at larger temporal (seasonal and annual) and spatial (from leaf to whole-tree) scales is still lacking. Here, we review overall trends, magnitude and drivers of dynamic tree responses to eCO2 , including carbon and water relations at the leaf and the whole-tree level. Spring and early season leaf responses are most susceptible to eCO2 and are followed by a down-regulation towards the onset of autumn. At the whole-tree level, CO2 fertilization causes consistent biomass increments in young seedlings only, whereas mature trees show a variable response. Elevated CO2 -induced reductions in leaf stomatal conductance do not systematically translate into limitation of whole-tree transpiration due to the unpredictable response of canopy area. Reduction in the end-of-season carbon sink demand and water-limiting strategies are considered the main drivers of seasonal tree responses to eCO2 . These large temporal and spatial variabilities in tree responses to eCO2 highlight the risk of predicting tree behavior to eCO2 based on single leaf-level point measurements as they only reveal snapshots of the dynamic responses to eCO2 .
Collapse
Affiliation(s)
- Fran Lauriks
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Roberto Luis Salomón
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- Department of Natural Resources and Systems, Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - Kathy Steppe
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
9
|
Jiang M, Kelly JWG, Atwell BJ, Tissue DT, Medlyn BE. Drought by CO 2 interactions in trees: a test of the water savings mechanism. THE NEW PHYTOLOGIST 2021; 230:1421-1434. [PMID: 33496969 DOI: 10.1111/nph.17233] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/21/2021] [Indexed: 06/12/2023]
Abstract
Elevated atmospheric CO2 (eCa ) may benefit plants during drought by reducing stomatal conductance (gs ) but any 'water savings effect' could be neutralized by concurrent stimulation of leaf area. We investigated whether eCa enhanced water savings, thereby ameliorating the impact of drought on carbon and water relations in trees. We report leaf-level gas exchange and whole-plant and soil water relations during a short-term dry-down in two Eucalyptus species with contrasting drought tolerance. Plants had previously been established for 9 to 11 months in steady-state conditions of ambient atmospheric CO2 (aCa ) and eCa , with half of each treatment group exposed to sustained drought for 5 to 7 months. The lower stomatal conductance under eCa did not lead to soil moisture savings during the dry-down due to the counteractive effect of increased whole-plant leaf area. Nonetheless, eCa -grown plants maintained higher photosynthetic rates and leaf water potentials, making them less stressed during the dry-down, despite being larger. These effects were more pronounced in the xeric species than the mesic species, and in previously water-stressed plants. Our findings indicate that eCa may enhance plant performance during drought despite a lack of soil water savings, especially in species with more conservative growth and water-use strategies.
Collapse
Affiliation(s)
- Mingkai Jiang
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Jeff W G Kelly
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Brian J Atwell
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - David T Tissue
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Belinda E Medlyn
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| |
Collapse
|
10
|
Roy J, Rineau F, De Boeck HJ, Nijs I, Pütz T, Abiven S, Arnone JA, Barton CVM, Beenaerts N, Brüggemann N, Dainese M, Domisch T, Eisenhauer N, Garré S, Gebler A, Ghirardo A, Jasoni RL, Kowalchuk G, Landais D, Larsen SH, Leemans V, Le Galliard J, Longdoz B, Massol F, Mikkelsen TN, Niedrist G, Piel C, Ravel O, Sauze J, Schmidt A, Schnitzler J, Teixeira LH, Tjoelker MG, Weisser WW, Winkler B, Milcu A. Ecotrons: Powerful and versatile ecosystem analysers for ecology, agronomy and environmental science. GLOBAL CHANGE BIOLOGY 2021; 27:1387-1407. [PMID: 33274502 PMCID: PMC7986626 DOI: 10.1111/gcb.15471] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/24/2020] [Accepted: 11/24/2020] [Indexed: 05/08/2023]
Abstract
Ecosystems integrity and services are threatened by anthropogenic global changes. Mitigating and adapting to these changes require knowledge of ecosystem functioning in the expected novel environments, informed in large part through experimentation and modelling. This paper describes 13 advanced controlled environment facilities for experimental ecosystem studies, herein termed ecotrons, open to the international community. Ecotrons enable simulation of a wide range of natural environmental conditions in replicated and independent experimental units while measuring various ecosystem processes. This capacity to realistically control ecosystem environments is used to emulate a variety of climatic scenarios and soil conditions, in natural sunlight or through broad-spectrum lighting. The use of large ecosystem samples, intact or reconstructed, minimizes border effects and increases biological and physical complexity. Measurements of concentrations of greenhouse trace gases as well as their net exchange between the ecosystem and the atmosphere are performed in most ecotrons, often quasi continuously. The flow of matter is often tracked with the use of stable isotope tracers of carbon and other elements. Equipment is available for measurements of soil water status as well as root and canopy growth. The experiments ran so far emphasize the diversity of the hosted research. Half of them concern global changes, often with a manipulation of more than one driver. About a quarter deal with the impact of biodiversity loss on ecosystem functioning and one quarter with ecosystem or plant physiology. We discuss how the methodology for environmental simulation and process measurements, especially in soil, can be improved and stress the need to establish stronger links with modelling in future projects. These developments will enable further improvements in mechanistic understanding and predictive capacity of ecotron research which will play, in complementarity with field experimentation and monitoring, a crucial role in exploring the ecosystem consequences of environmental changes.
Collapse
|
11
|
Interactive Effect of Elevated CO2 and Reduced Summer Precipitation on Photosynthesis is Species-Specific: The Case Study with Soil-Planted Norway Spruce and Sessile Oak in a Mountainous Forest Plot. FORESTS 2020. [DOI: 10.3390/f12010042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We investigated how reduced summer precipitation modifies photosynthetic responses of two model tree species—coniferous Norway spruce and broadleaved sessile oak—to changes in atmospheric CO2 concentration. Saplings were grown under mountainous conditions for two growing seasons at ambient (400 μmol CO2 mol–1) and elevated (700 μmol CO2 mol–1) CO2 concentration. Half were not exposed to precipitation during the summer (June–August). After two seasons of cultivation under modified conditions, basic photosynthetic characteristics including light-saturated rate of CO2 assimilation (Amax), stomatal conductance (GSmax), and water use efficiency (WUE) were measured under their growth CO2 concentrations together with in vivo carboxylation rate (VC) and electron transport rate (J) derived from CO2-response curves at saturating light. An increase in Amax under elevated CO2 was observed in oak saplings, whereas it remained unchanged or slightly declined in Norway spruce, indicating a down-regulation of photosynthesis. Such acclimation was associated with an acclimation of both J and VC. Both species had increased WUE under elevated CO2 although, in well-watered oaks, WUE remained unchanged. Significant interactive effects of tree species, CO2 concentration, and water availability on gas-exchange parameters (Amax, GSmax, WUE) were observed, while there was no effect on biochemical (VC, J) and chlorophyll fluorescence parameters. The assimilation capacity (Asat; CO2 assimilation rate at saturating light intensity and CO2 concentration) was substantially reduced in spruce under the combined conditions of water deficiency and elevated CO2, but not in oak. In addition, the stimulatory effect of elevated CO2 on Amax persisted in oak, but completely diminished in water-limited spruce saplings. Our results suggest a strong species-specific response of trees to reduced summer precipitation under future conditions of elevated CO2 and a limited compensatory effect of elevated CO2 on CO2 uptake under water-limited conditions in coniferous spruce.
Collapse
|
12
|
Gains or Losses in Forest Productivity under Climate Change? The Uncertainty of CO2 Fertilization and Climate Effects. CLIMATE 2020. [DOI: 10.3390/cli8120141] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Global warming poses great challenges for forest managers regarding adaptation strategies and species choices. More frequent drought events and heat spells are expected to reduce growth and increase mortality. Extended growing seasons, warming and elevated CO2 (eCO2) can also positively affect forest productivity. We studied the growth, productivity and mortality of beech (Fagus sylvatica L.) and fir (Abies alba Mill.) in the Black Forest (Germany) under three climate change scenarios (representative concentration pathways (RCP): RCP2.6, RCP4.5, RCP8.5) using the detailed biogeochemical forest growth model GOTILWA+. Averaged over the entire simulation period, both species showed productivity losses in RCP2.6 (16–20%) and in RCP4.5 (6%), but productivity gains in RCP8.5 (11–17%). However, all three scenarios had a tipping point (between 2035–2060) when initial gains in net primary productivity (NPP) (6–29%) eventually turned into losses (1–26%). With eCO2 switched off, the losses in NPP were 26–51% in RCP2.6, 36–45% in RCP4.5 and 33–71% in RCP8.5. Improved water-use efficiency dampened drought effects on NPP between 4 and 5%. Tree mortality increased, but without notably affecting forest productivity. Concluding, cultivation of beech and fir may still be possible in the study region, although severe productivity losses can be expected in the coming decades, which will strongly depend on the dampening CO2 fertilization effect.
Collapse
|
13
|
De Roo L, Lauriks F, Salomón RL, Oleksyn J, Steppe K. Woody tissue photosynthesis increases radial stem growth of young poplar trees under ambient atmospheric CO2 but its contribution ceases under elevated CO2. TREE PHYSIOLOGY 2020; 40:1572-1582. [PMID: 32597984 DOI: 10.1093/treephys/tpaa085] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 06/11/2023]
Abstract
Woody tissue photosynthesis (Pwt) contributes to the tree carbon (C) budget and generally stimulates radial stem growth under ambient atmospheric CO2 concentration (aCO2). Moreover, Pwt has potential to enhance tree survival under changing climates by delaying negative effects of drought stress on tree hydraulic functioning. However, the relevance of Pwt on tree performance under elevated atmospheric CO2 concentration (eCO2) remains unexplored. To fill this knowledge gap, 1-year-old Populus tremula L. seedlings were grown in two treatment chambers at aCO2 and eCO2 (400 and 660 ppm, respectively), and woody tissues of half of the seedlings in each treatment chamber were light-excluded to prevent Pwt. Radial stem growth, sap flow, leaf photosynthesis and stomatal and canopy conductance were measured throughout the growing season, and the concentration of non-structural carbohydrates (NSC) in stem tissues was determined at the end of the experiment. Fuelled by eCO2, an increase in stem growth of 18 and 50% was observed in control and light-excluded trees, respectively. Woody tissue photosynthesis increased radial stem growth by 39% under aCO2, while, surprisingly, no impact of Pwt on stem growth was observed under eCO2. By the end of the growing season, eCO2 and Pwt had little effect on stem growth, leaf photosynthesis acclimated to eCO2, but stomatal conductance did not, and homeostatic stem NSC pools were observed among combined treatments. Our results highlight that eCO2 potentially fulfils plant C requirements, limiting the contribution of Pwt to stem growth as atmospheric [CO2] rises, and that radial stem growth in young developing trees was C (source) limited during early phenological stages but transitioned towards sink-driven control at the end of the growing season.
Collapse
Affiliation(s)
- Linus De Roo
- Laboratory of Plant Ecology, Department of Plant and Crops Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Ghent, Belgium
| | - Fran Lauriks
- Laboratory of Plant Ecology, Department of Plant and Crops Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Ghent, Belgium
| | - Roberto Luis Salomón
- Laboratory of Plant Ecology, Department of Plant and Crops Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Ghent, Belgium
| | - Jacek Oleksyn
- Polish Academy of Sciences, Institute of Dendrology, Parkowa 5, 62-035 Kórnik, Poland
| | - Kathy Steppe
- Laboratory of Plant Ecology, Department of Plant and Crops Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Ghent, Belgium
| |
Collapse
|
14
|
Klein T, Ramon U. Stomatal sensitivity to CO
2
diverges between angiosperm and gymnosperm tree species. Funct Ecol 2019. [DOI: 10.1111/1365-2435.13379] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Tamir Klein
- Department of Plant & Environmental Sciences Weizmann Institute of Science Rehovot Israel
| | - Uria Ramon
- Department of Plant & Environmental Sciences Weizmann Institute of Science Rehovot Israel
| |
Collapse
|
15
|
Murray M, Soh WK, Yiotis C, Batke S, Parnell AC, Spicer RA, Lawson T, Caballero R, Wright IJ, Purcell C, McElwain JC. Convergence in Maximum Stomatal Conductance of C 3 Woody Angiosperms in Natural Ecosystems Across Bioclimatic Zones. FRONTIERS IN PLANT SCIENCE 2019; 10:558. [PMID: 31134112 PMCID: PMC6514322 DOI: 10.3389/fpls.2019.00558] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 04/12/2019] [Indexed: 05/26/2023]
Abstract
Stomatal conductance (g s) in terrestrial vegetation regulates the uptake of atmospheric carbon dioxide for photosynthesis and water loss through transpiration, closely linking the biosphere and atmosphere and influencing climate. Yet, the range and pattern of g s in plants from natural ecosystems across broad geographic, climatic, and taxonomic ranges remains poorly quantified. Furthermore, attempts to characterize g s on such scales have predominantly relied upon meta-analyses compiling data from many different studies. This approach may be inherently problematic as it combines data collected using unstandardized protocols, sometimes over decadal time spans, and from different habitat groups. Using a standardized protocol, we measured leaf-level g s using porometry in 218 C3 woody angiosperm species in natural ecosystems representing seven bioclimatic zones. The resulting dataset of 4273 g s measurements, which we call STraits (Stomatal Traits), was used to determine patterns in maximum g s (g smax) across bioclimatic zones and whether there was similarity in the mean g smax of C3 woody angiosperms across ecosystem types. We also tested for differential g smax in two broadly defined habitat groups - open-canopy and understory-subcanopy - within and across bioclimatic zones. We found strong convergence in mean g smax of C3 woody angiosperms in the understory-subcanopy habitats across six bioclimatic zones, but not in open-canopy habitats. Mean g smax in open-canopy habitats (266 ± 100 mmol m-2 s-1) was significantly higher than in understory-subcanopy habitats (233 ± 86 mmol m-2 s-1). There was also a central tendency in the overall dataset to operate toward a g smax of ∼250 mmol m-2 s-1. We suggest that the observed convergence in mean g smax of C3 woody angiosperms in the understory-subcanopy is due to a buffering of g smax against macroclimate effects which will lead to differential response of C3 woody angiosperm vegetation in these two habitats to future global change. Therefore, it will be important for future studies of g smax to categorize vegetation according to habitat group.
Collapse
Affiliation(s)
- Michelle Murray
- Department of Botany, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | - Wuu Kuang Soh
- Department of Botany, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | - Charilaos Yiotis
- Department of Botany, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | - Sven Batke
- Department of Biology, Edge Hill University, Ormskirk, United Kingdom
| | | | - Robert A. Spicer
- Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, China
- School of Environment, Earth and Ecosystem Sciences, The Open University, Milton Keynes, United Kingdom
| | - Tracy Lawson
- School of Biological Sciences, University of Essex, Colchester, United Kingdom
| | | | - Ian J. Wright
- Department of Biological Sciences, Faculty of Science, Macquarie University, Sydney, NSW, Australia
| | - Conor Purcell
- Department of Botany, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | - Jennifer C. McElwain
- Department of Botany, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
16
|
Bachofen C, Wohlgemuth T, Moser B. Biomass partitioning in a future dry and
CO
2
enriched climate: Shading aggravates drought effects in Scots pine but not European black pine seedlings. J Appl Ecol 2019. [DOI: 10.1111/1365-2664.13325] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Christoph Bachofen
- Forest DynamicsSwiss Federal Institute for Forest, Snow and Landscape Research WSL Birmensdorf Switzerland
- Department of Environmental Systems ScienceETH Zurich Zürich Switzerland
| | - Thomas Wohlgemuth
- Forest DynamicsSwiss Federal Institute for Forest, Snow and Landscape Research WSL Birmensdorf Switzerland
| | - Barbara Moser
- Forest DynamicsSwiss Federal Institute for Forest, Snow and Landscape Research WSL Birmensdorf Switzerland
| |
Collapse
|
17
|
Anadon-Rosell A, Dawes MA, Fonti P, Hagedorn F, Rixen C, von Arx G. Xylem anatomical and growth responses of the dwarf shrub Vaccinium myrtillus to experimental CO 2 enrichment and soil warming at treeline. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 642:1172-1183. [PMID: 30045499 DOI: 10.1016/j.scitotenv.2018.06.117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 06/08/2018] [Accepted: 06/10/2018] [Indexed: 06/08/2023]
Abstract
Plant growth responses to environmental changes may be linked to xylem anatomical adjustments. The study of such links is essential for improving our understanding of plant functioning under global change. We investigated the xylem anatomy and above-ground growth of the dwarf shrub Vaccinium myrtillus in the understorey of Larix decidua and Pinus uncinata at the Swiss treeline after 9 years of free-air CO2 enrichment (+200 ppm) and 6 years of soil warming (+4 °C). We aimed to determine the responses of xylem anatomical traits and growth to these treatments, and to analyse xylem anatomy-growth relationships. We quantified anatomical characteristics of vessels and ray parenchyma and measured xylem ring width (RW), above-ground biomass and shoot elongation as growth parameters. Our results showed strong positive correlations between theoretical hydraulic conductivity (Kh) and shoot increment length or total biomass across all treatments. However, while soil warming stimulated shoot elongation and RW, it reduced vessel size (Dh) by 14%. Elevated CO2 had smaller effects than soil warming: it increased Dh (5%) in the last experimental years and only influenced growth by increasing basal stem size. The abundance of ray parenchyma, representing storage capacity, did not change under any treatment. Our results demonstrate a link between growth and stem Kh in V. myrtillus, but its growth responses to warming were not explained by the observed xylem anatomical changes. Smaller Dh under warming may increase resistance to freezing events frequently occurring at treeline and suggests that hydraulic efficiency is not limiting for V. myrtillus growing on moist soils at treeline. Our findings suggest that future higher atmospheric CO2 concentrations will have smaller effects on V. myrtillus growth and functioning than rising temperatures at high elevations; further, growth stimulation of this species under future warmer conditions may not be synchronized with xylem adjustments favouring hydraulic efficiency.
Collapse
Affiliation(s)
- Alba Anadon-Rosell
- Institute of Botany and Landscape Ecology, University of Greifswald, Soldmannstrasse 15, D-17487 Greifswald, Germany; Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Av. Diagonal 643, E-08028 Barcelona, Catalonia, Spain; Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, CH-8093 Birmensdorf, Switzerland.
| | - Melissa A Dawes
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, CH-8093 Birmensdorf, Switzerland; WSL Institute for Snow and Avalanche Research - SLF, Flüelastrasse 11, CH-7260 Davos, Switzerland
| | - Patrick Fonti
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, CH-8093 Birmensdorf, Switzerland
| | - Frank Hagedorn
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, CH-8093 Birmensdorf, Switzerland
| | - Christian Rixen
- WSL Institute for Snow and Avalanche Research - SLF, Flüelastrasse 11, CH-7260 Davos, Switzerland
| | - Georg von Arx
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, CH-8093 Birmensdorf, Switzerland; Climatic Change and Climate Impacts, Institute for Environmental Sciences, 66 Blvd Carl Vogt, CH-1205 Geneva, Switzerland
| |
Collapse
|
18
|
Gimeno TE, McVicar TR, O'Grady AP, Tissue DT, Ellsworth DS. Elevated CO 2 did not affect the hydrological balance of a mature native Eucalyptus woodland. GLOBAL CHANGE BIOLOGY 2018; 24:3010-3024. [PMID: 29569803 DOI: 10.1111/gcb.14139] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 02/12/2018] [Indexed: 05/26/2023]
Abstract
Elevated atmospheric CO2 concentration (eCa ) might reduce forest water-use, due to decreased transpiration, following partial stomatal closure, thus enhancing water-use efficiency and productivity at low water availability. If evapotranspiration (Et ) is reduced, it may subsequently increase soil water storage (ΔS) or surface runoff (R) and drainage (Dg ), although these could be offset or even reversed by changes in vegetation structure, mainly increased leaf area index (L). To understand the effect of eCa in a water-limited ecosystem, we tested whether 2 years of eCa (~40% increase) affected the hydrological partitioning in a mature water-limited Eucalyptus woodland exposed to Free-Air CO2 Enrichment (FACE). This timeframe allowed us to evaluate whether physiological effects of eCa reduced stand water-use irrespective of L, which was unaffected by eCa in this timeframe. We hypothesized that eCa would reduce tree-canopy transpiration (Etree ), but excess water from reduced Etree would be lost via increased soil evaporation and understory transpiration (Efloor ) with no increase in ΔS, R or Dg . We computed Et , ΔS, R and Dg from measurements of sapflow velocity, L, soil water content (θ), understory micrometeorology, throughfall and stemflow. We found that eCa did not affect Etree , Efloor , ΔS or θ at any depth (to 4.5 m) over the experimental period. We closed the water balance for dry seasons with no differences in the partitioning to R and Dg between Ca levels. Soil temperature and θ were the main drivers of Efloor while vapour pressure deficit-controlled Etree , though eCa did not significantly affect any of these relationships. Our results suggest that in the short-term, eCa does not significantly affect ecosystem water-use at this site. We conclude that water-savings under eCa mediated by either direct effects on plant transpiration or by indirect effects via changes in L or soil moisture availability are unlikely in water-limited mature eucalypt woodlands.
Collapse
Affiliation(s)
- Teresa E Gimeno
- INRA, UMR ISPA, Villenave d'Ornon, France
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Tim R McVicar
- CSIRO Land and Water, Canberra, ACT, Australia
- Australian Research Council Centre of Excellence for Climate System Science, Sydney, NSW, Australia
| | | | - David T Tissue
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - David S Ellsworth
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| |
Collapse
|
19
|
Purcell C, Batke SP, Yiotis C, Caballero R, Soh WK, Murray M, McElwain JC. Increasing stomatal conductance in response to rising atmospheric CO2. ANNALS OF BOTANY 2018; 121:1137-1149. [PMID: 29394303 PMCID: PMC5946907 DOI: 10.1093/aob/mcx208] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 12/16/2017] [Indexed: 05/19/2023]
Abstract
Background and Aims Studies have indicated that plant stomatal conductance (gs) decreases in response to elevated atmospheric CO2, a phenomenon of significance for the global hydrological cycle. However, gs increases across certain CO2 ranges have been predicted by optimization models. The aim of this work was to demonstrate that under certain environmental conditions, gs can increase in response to elevated CO2. Methods Using (1) an extensive, up-to-date synthesis of gs responses in free air CO2 enrichment (FACE)experiments, (2) in situ measurements across four biomes showing dynamic gs responses to a CO2 rise of ~50 ppm (characterizing the change in this greenhouse gas over the past three decades) and (3) a photosynthesis-stomatal conductance model, it is demonstrated that gs can in some cases increase in response to increasing atmospheric CO2. Key Results Field observations are corroborated by an extensive synthesis of gs responses in FACE experiments showing that 11.8 % of gs responses under experimentally elevated CO2 are positive. They are further supported by a strong data-model fit (r2 = 0.607) using a stomatal optimization model applied to the field gs dataset. A parameter space identified in the Farquhar-Ball-Berry photosynthesis-stomatal conductance model confirms field observations of increasing gs under elevated CO2 in hot dry conditions. Contrary to the general assumption, positive gs responses to elevated CO2, although relatively rare, are a feature of woody taxa adapted to warm, low-humidity conditions, and this response is also demonstrated in global simulations using the Community Land Model (CLM4). Conclusions The results contradict the over-simplistic notion that global vegetation always responds with decreasing gs to elevated CO2, a finding that has important implications for predicting future vegetation feedbacks on the hydrological cycle at the regional level.
Collapse
Affiliation(s)
- C Purcell
- School of Biology and Environmental Science, Earth Institute, University College Dublin, Belfield, Dublin, Ireland
| | - S P Batke
- School of Biology and Environmental Science, Earth Institute, University College Dublin, Belfield, Dublin, Ireland
- Department of Biology, Edge Hill University, St. Helens Road, Ormskirk, UK
| | - C Yiotis
- School of Biology and Environmental Science, Earth Institute, University College Dublin, Belfield, Dublin, Ireland
| | - R Caballero
- Department of Meteorology and Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
| | - W K Soh
- School of Biology and Environmental Science, Earth Institute, University College Dublin, Belfield, Dublin, Ireland
| | - M Murray
- School of Biology and Environmental Science, Earth Institute, University College Dublin, Belfield, Dublin, Ireland
| | - J C McElwain
- Botany Department, Trinity College Dublin, College Green, Dublin, Ireland
| |
Collapse
|
20
|
Lemordant L, Gentine P, Swann AS, Cook BI, Scheff J. Critical impact of vegetation physiology on the continental hydrologic cycle in response to increasing CO 2. Proc Natl Acad Sci U S A 2018; 115:4093-4098. [PMID: 29610293 PMCID: PMC5910855 DOI: 10.1073/pnas.1720712115] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Predicting how increasing atmospheric CO2 will affect the hydrologic cycle is of utmost importance for a range of applications ranging from ecological services to human life and activities. A typical perspective is that hydrologic change is driven by precipitation and radiation changes due to climate change, and that the land surface will adjust. Using Earth system models with decoupled surface (vegetation physiology) and atmospheric (radiative) CO2 responses, we here show that the CO2 physiological response has a dominant role in evapotranspiration and evaporative fraction changes and has a major effect on long-term runoff compared with radiative or precipitation changes due to increased atmospheric CO2 This major effect is true for most hydrological stress variables over the largest fraction of the globe, except for soil moisture, which exhibits a more nonlinear response. This highlights the key role of vegetation in controlling future terrestrial hydrologic response and emphasizes that the carbon and water cycles are intimately coupled over land.
Collapse
Affiliation(s)
- Léo Lemordant
- Earth and Environmental Engineering Department, Columbia University, New York, NY 10027;
| | - Pierre Gentine
- Earth and Environmental Engineering Department, Columbia University, New York, NY 10027;
- Earth Institute, Columbia University, New York, NY 10025
| | - Abigail S Swann
- Department of Atmospheric Sciences, University of Washington, Seattle, WA 98105
- Department of Biology, University of Washington, Seattle, WA 98195
| | - Benjamin I Cook
- NASA Goddard Institute for Space Studies, New York, NY 10025
- Ocean and Climate Physics, Lamont-Doherty Earth Observatory, Palisades, NY 10964
| | - Jacob Scheff
- Department of Geography & Earth Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223
| |
Collapse
|
21
|
Sánchez-Gómez D, Mancha JA, Cervera MT, Aranda I. Inter-genotypic differences in drought tolerance of maritime pine are modified by elevated [CO2]. ANNALS OF BOTANY 2017; 120:591-602. [PMID: 29059316 PMCID: PMC5737726 DOI: 10.1093/aob/mcx080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 06/02/2017] [Indexed: 05/12/2023]
Abstract
Background and Aims Despite the importance of growth [CO 2 ] and water availability for tree growth and survival, little information is available on how the interplay of these two factors can shape intraspecific patterns of functional variation in tree species, particularly for conifers. The main objective of the study was to test whether the range of realized drought tolerance within the species can be affected by elevated [CO 2 ]. Methods Intraspecific variability in leaf gas exchange, growth rate and other leaf functional traits were studied in clones of maritime pine. A factorial experiment including water availability, growth [CO 2 ] and four different genotypes was conducted in growth rooms. A 'water deficit' treatment was imposed by applying a cycle of progressive soil water depletion and recovery at two levels of growth [CO 2 ]: 'ambient [CO 2 ]' (aCO 2 400 μmol mol -1 ) and 'elevated [CO 2 ]' (eCO 2 800 μmol mol -1 ). Key Results eCO2 had a neutral effect on the impact of drought on growth and leaf gas exchange of the most drought-sensitive genotypes while it aggravated the impact of drought on the most drought-tolerant genotypes at aCO2. Thus, eCO2 attenuated genotypic differences in drought tolerance as compared with those observed at aCO2. Genotypic variation at both levels of growth [CO2] was found in specific leaf area and leaf nitrogen content but not in other physiological leaf traits such as intrinsic water use efficiency and leaf osmotic potential. eCO2 increased Δ 13 C but had no significant effect on δ 18 O. This effect did not interact with the impact of drought, which increased δ 18 O and decreased Δ 13 C. Nevertheless, correlations between Δ 13 C and δ 18 O indicated the non-stomatal component of water use efficiency in this species can be particularly sensitive to drought. Conclusions Evidence from this study suggests elevated [CO 2 ] can modify current ranges of drought tolerance within tree species.
Collapse
Affiliation(s)
- David Sánchez-Gómez
- Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal de Castilla-La Mancha (IRIAF), Centro de Investigación Agroforestal de Albaladejito (CIAF), Carretera Toledo-Cuenca, km 174, 16194, Cuenca, Spain
- Centro de Investigaciones Forestales (CIFOR), Instituto Nacional de Investigaciones Agrarias (INIA), Carretera de la Coruña km 7,5, 28040 Madrid, Spain
| | - José A Mancha
- Centro de Investigaciones Forestales (CIFOR), Instituto Nacional de Investigaciones Agrarias (INIA), Carretera de la Coruña km 7,5, 28040 Madrid, Spain
| | - M Teresa Cervera
- Centro de Investigaciones Forestales (CIFOR), Instituto Nacional de Investigaciones Agrarias (INIA), Carretera de la Coruña km 7,5, 28040 Madrid, Spain
| | - Ismael Aranda
- Centro de Investigaciones Forestales (CIFOR), Instituto Nacional de Investigaciones Agrarias (INIA), Carretera de la Coruña km 7,5, 28040 Madrid, Spain
| |
Collapse
|
22
|
Knauer J, Zaehle S, Reichstein M, Medlyn BE, Forkel M, Hagemann S, Werner C. The response of ecosystem water-use efficiency to rising atmospheric CO 2 concentrations: sensitivity and large-scale biogeochemical implications. THE NEW PHYTOLOGIST 2017; 213:1654-1666. [PMID: 28164338 DOI: 10.1111/nph.14288] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Accepted: 09/17/2016] [Indexed: 06/06/2023]
Abstract
Ecosystem water-use efficiency (WUE) is an important metric linking the global land carbon and water cycles. Eddy covariance-based estimates of WUE in temperate/boreal forests have recently been found to show a strong and unexpected increase over the 1992-2010 period, which has been attributed to the effects of rising atmospheric CO2 concentrations on plant physiology. To test this hypothesis, we forced the observed trend in the process-based land surface model JSBACH by increasing the sensitivity of stomatal conductance (gs ) to atmospheric CO2 concentration. We compared the simulated continental discharge, evapotranspiration (ET), and the seasonal CO2 exchange with observations across the extratropical northern hemisphere. The increased simulated WUE led to substantial changes in surface hydrology at the continental scale, including a significant decrease in ET and a significant increase in continental runoff, both of which are inconsistent with large-scale observations. The simulated seasonal amplitude of atmospheric CO2 decreased over time, in contrast to the observed upward trend across ground-based measurement sites. Our results provide strong indications that the recent, large-scale WUE trend is considerably smaller than that estimated for these forest ecosystems. They emphasize the decreasing CO2 sensitivity of WUE with increasing scale, which affects the physiological interpretation of changes in ecosystem WUE.
Collapse
Affiliation(s)
- Jürgen Knauer
- Department of Biogeochemical Integration, Max Planck Institute for Biogeochemistry, 07745, Jena, Germany
- International Max Planck Research School for Global Biogeochemical Cycles (IMPRS-gBGC), 07745, Jena, Germany
| | - Sönke Zaehle
- Department of Biogeochemical Integration, Max Planck Institute for Biogeochemistry, 07745, Jena, Germany
- Michael-Stifel-Center Jena for Data-Driven and Simulation Science, 07745, Jena, Germany
| | - Markus Reichstein
- Department of Biogeochemical Integration, Max Planck Institute for Biogeochemistry, 07745, Jena, Germany
- Michael-Stifel-Center Jena for Data-Driven and Simulation Science, 07745, Jena, Germany
| | - Belinda E Medlyn
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia
| | - Matthias Forkel
- Department of Biogeochemical Integration, Max Planck Institute for Biogeochemistry, 07745, Jena, Germany
- Remote Sensing Research Group, Department of Geodesy and Geoinformation, Technische Universität Wien, 1040, Vienna, Austria
| | - Stefan Hagemann
- Max Planck Institute for Meteorology, 20146, Hamburg, Germany
| | - Christiane Werner
- Department of Ecosystem Physiology, University of Freiburg, 79085, Freiburg, Germany
| |
Collapse
|
23
|
Fatichi S, Leuzinger S, Paschalis A, Langley JA, Donnellan Barraclough A, Hovenden MJ. Partitioning direct and indirect effects reveals the response of water-limited ecosystems to elevated CO 2. Proc Natl Acad Sci U S A 2016; 113:12757-12762. [PMID: 27791074 PMCID: PMC5111654 DOI: 10.1073/pnas.1605036113] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Increasing concentrations of atmospheric carbon dioxide are expected to affect carbon assimilation and evapotranspiration (ET), ultimately driving changes in plant growth, hydrology, and the global carbon balance. Direct leaf biochemical effects have been widely investigated, whereas indirect effects, although documented, elude explicit quantification in experiments. Here, we used a mechanistic model to investigate the relative contributions of direct (through carbon assimilation) and indirect (via soil moisture savings due to stomatal closure, and changes in leaf area index) effects of elevated CO2 across a variety of ecosystems. We specifically determined which ecosystems and climatic conditions maximize the indirect effects of elevated CO2 The simulations suggest that the indirect effects of elevated CO2 on net primary productivity are large and variable, ranging from less than 10% to more than 100% of the size of direct effects. For ET, indirect effects were, on average, 65% of the size of direct effects. Indirect effects tended to be considerably larger in water-limited ecosystems. As a consequence, the total CO2 effect had a significant, inverse relationship with the wetness index and was directly related to vapor pressure deficit. These results have major implications for our understanding of the CO2 response of ecosystems and for global projections of CO2 fertilization, because, although direct effects are typically understood and easily reproducible in models, simulations of indirect effects are far more challenging and difficult to constrain. Our findings also provide an explanation for the discrepancies between experiments in the total CO2 effect on net primary productivity.
Collapse
Affiliation(s)
- Simone Fatichi
- Institute of Environmental Engineering, ETH Zurich, 8093 Zurich, Switzerland;
| | - Sebastian Leuzinger
- Institute for Applied Ecology New Zealand, School of Science, Auckland University of Technology, Auckland 1010, New Zealand
| | - Athanasios Paschalis
- Faculty of Engineering and the Environment, University of Southampton, Southampton SO17 1BJ, United Kingdom
- Nicholas School of the Environment, Duke University, Durham, NC 27708
| | - J Adam Langley
- Department of Biology, Villanova University, Villanova, PA 19085
| | - Alicia Donnellan Barraclough
- Institute for Applied Ecology New Zealand, School of Science, Auckland University of Technology, Auckland 1010, New Zealand
| | - Mark J Hovenden
- School of Biological Sciences, University of Tasmania, Hobart, 7005 TAS, Australia
| |
Collapse
|
24
|
Effects of Drought and Rewetting on Growth and Gas Exchange of Minor European Broadleaved Tree Species. FORESTS 2016. [DOI: 10.3390/f7100239] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
25
|
Charney ND, Babst F, Poulter B, Record S, Trouet VM, Frank D, Enquist BJ, Evans MEK. Observed forest sensitivity to climate implies large changes in 21st century North American forest growth. Ecol Lett 2016; 19:1119-28. [DOI: 10.1111/ele.12650] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 03/02/2016] [Accepted: 06/10/2016] [Indexed: 12/26/2022]
Affiliation(s)
- Noah D. Charney
- Department of Ecology and Evolutionary Biology University of Arizona Bioscience West Tucson AZ USA
| | - Flurin Babst
- Laboratory of Tree‐Ring Research University of Arizona Tucson AZ USA
- Dendroclimatology Swiss Federal Research Institute WSL Birmensdorf Switzerland
- W. Szafer Institute of Botany Polish Academy of Sciences Krakow Poland
| | | | - Sydne Record
- Department of Biology Bryn Mawr College Bryn Mawr PA USA
| | - Valerie M. Trouet
- Laboratory of Tree‐Ring Research University of Arizona Tucson AZ USA
| | - David Frank
- Dendroclimatology Swiss Federal Research Institute WSL Birmensdorf Switzerland
| | - Brian J. Enquist
- Department of Ecology and Evolutionary Biology University of Arizona Bioscience West Tucson AZ USA
- Santa Fe Institute Santa Fe NM USA
- Center for Environmental Studies Aspen CO USA
| | | |
Collapse
|
26
|
Klein T, Vitasse Y, Hoch G. Coordination between growth, phenology and carbon storage in three coexisting deciduous tree species in a temperate forest. TREE PHYSIOLOGY 2016; 36:847-55. [PMID: 27126226 DOI: 10.1093/treephys/tpw030] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 03/12/2016] [Indexed: 05/09/2023]
Abstract
In deciduous trees growing in temperate forests, bud break and growth in spring must rely on intrinsic carbon (C) reserves. Yet it is unclear whether growth and C storage occur simultaneously, and whether starch C in branches is sufficient for refoliation. To test in situ the relationships between growth, phenology and C utilization, we monitored stem growth, leaf phenology and stem and branch nonstructural carbohydrate (NSC) dynamics in three deciduous species: Carpinus betulus L., Fagus sylvatica L. and Quercus petraea (Matt.) Liebl. To quantify the role of NSC in C investment into growth, a C balance approach was applied. Across the three species, >95% of branchlet starch was consumed during bud break, confirming the importance of C reserves for refoliation in spring. The C balance calculation showed that 90% of the C investment in foliage (7.0-10.5 kg tree(-1) and 5-17 times the C needed for annual stem growth) was explained by simultaneous branchlet starch degradation. Carbon reserves were recovered sooner than expected, after leaf expansion, in parallel with stem growth. Carpinus had earlier leaf phenology (by ∼25 days) but delayed cambial growth (by ∼15 days) than Fagus and Quercus, the result of a competitive strategy to flush early, while having lower NSC levels.
Collapse
Affiliation(s)
- Tamir Klein
- Institute of Botany, University of Basel, Schönbeinstrasse 6, 4056 Basel, Switzerland; Present address: Institute of Soil, Water and Environmental Sciences, ARO Volcani Center, Beit Dagan 50250, Israel
| | - Yann Vitasse
- Institute of Geography, University of Neuchatel, 2000 Neuchatel, Switzerland; Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), 2000 Neuchatel, Switzerland; Group Mountain Ecosystems, Institute for Snow and Avalanche Research (SLF), 7620 Davos, Switzerland
| | - Günter Hoch
- Institute of Botany, University of Basel, Schönbeinstrasse 6, 4056 Basel, Switzerland
| |
Collapse
|
27
|
De Boeck HJ, Vicca S, Roy J, Nijs I, Milcu A, Kreyling J, Jentsch A, Chabbi A, Campioli M, Callaghan T, Beierkuhnlein C, Beier C. Global Change Experiments: Challenges and Opportunities. Bioscience 2015. [DOI: 10.1093/biosci/biv099] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
28
|
Leuzinger S, Fatichi S, Cusens J, Körner C, Niklaus PA. The 'island effect' in terrestrial global change experiments: a problem with no solution? AOB PLANTS 2015; 7:plv092. [PMID: 26216468 PMCID: PMC4584962 DOI: 10.1093/aobpla/plv092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Accepted: 07/16/2015] [Indexed: 05/05/2023]
Abstract
Most of the currently experienced global environmental changes (rising atmospheric CO2 concentrations, warming, altered amount and pattern of precipitation, and increased nutrient load) directly or indirectly affect ecosystem surface energy balance and plant transpiration. As a consequence, the relative humidity of the air surrounding the vegetation changes, thus creating a feedback loop whose net effect on transpiration and finally productivity is not trivial to quantify. Forcedly, in any global change experiment with the above drivers, we can only treat small plots, or 'islands', of vegetation. This means that the treated plots will likely experience the ambient humidity conditions influenced by the surrounding, non-treated vegetation. Experimental assessments of global change effects will thus systematically lack modifications originating from these potentially important feedback mechanisms, introducing a bias of unknown magnitude in all measurements of processes directly or indirectly depending on plant transpiration. We call this potential bias the 'island effect'. Here, we discuss its implications in various global change experiments with plants. We also suggest ways to complement experiments using modelling approaches and observational studies. Ultimately, there is no obvious solution to deal with the island effect in field experiments and only models can provide an estimate of modification of responses by these feedbacks. However, we suggest that increasing the awareness of the island effect among both experimental researchers and modellers will greatly improve the interpretation of vegetation responses to global change.
Collapse
Affiliation(s)
- Sebastian Leuzinger
- Institute for Applied Ecology New Zealand, School of Applied Sciences, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand
| | - Simone Fatichi
- Institute of Environmental Engineering, ETH Zurich, Stefano Franscini Platz 5, 8093 Zurich, Switzerland
| | - Jarrod Cusens
- Institute for Applied Ecology New Zealand, School of Applied Sciences, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand
| | - Christian Körner
- Institute of Botany, University of Basel, Schönbeinstrasse 6, CH-4056 Basel, Switzerland
| | - Pascal A Niklaus
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
29
|
Long-term Wood Production in Water-Limited Forests: Evaluating Potential CO2 Fertilization Along with Historical Confounding Factors. Ecosystems 2015. [DOI: 10.1007/s10021-015-9882-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
30
|
Saurer M, Spahni R, Frank DC, Joos F, Leuenberger M, Loader NJ, McCarroll D, Gagen M, Poulter B, Siegwolf RTW, Andreu-Hayles L, Boettger T, Dorado Liñán I, Fairchild IJ, Friedrich M, Gutierrez E, Haupt M, Hilasvuori E, Heinrich I, Helle G, Grudd H, Jalkanen R, Levanič T, Linderholm HW, Robertson I, Sonninen E, Treydte K, Waterhouse JS, Woodley EJ, Wynn PM, Young GHF. Spatial variability and temporal trends in water-use efficiency of European forests. GLOBAL CHANGE BIOLOGY 2014; 20:3700-12. [PMID: 25156251 DOI: 10.1111/gcb.12717] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 06/11/2014] [Accepted: 06/28/2014] [Indexed: 05/12/2023]
Abstract
The increasing carbon dioxide (CO2 ) concentration in the atmosphere in combination with climatic changes throughout the last century are likely to have had a profound effect on the physiology of trees: altering the carbon and water fluxes passing through the stomatal pores. However, the magnitude and spatial patterns of such changes in natural forests remain highly uncertain. Here, stable carbon isotope ratios from a network of 35 tree-ring sites located across Europe are investigated to determine the intrinsic water-use efficiency (iWUE), the ratio of photosynthesis to stomatal conductance from 1901 to 2000. The results were compared with simulations of a dynamic vegetation model (LPX-Bern 1.0) that integrates numerous ecosystem and land-atmosphere exchange processes in a theoretical framework. The spatial pattern of tree-ring derived iWUE of the investigated coniferous and deciduous species and the model results agreed significantly with a clear south-to-north gradient, as well as a general increase in iWUE over the 20th century. The magnitude of the iWUE increase was not spatially uniform, with the strongest increase observed and modelled for temperate forests in Central Europe, a region where summer soil-water availability decreased over the last century. We were able to demonstrate that the combined effects of increasing CO2 and climate change leading to soil drying have resulted in an accelerated increase in iWUE. These findings will help to reduce uncertainties in the land surface schemes of global climate models, where vegetation-climate feedbacks are currently still poorly constrained by observational data.
Collapse
|
31
|
Dawes MA, Zweifel R, Dawes N, Rixen C, Hagedorn F. CO2 enrichment alters diurnal stem radius fluctuations of 36-yr-old Larix decidua growing at the alpine tree line. THE NEW PHYTOLOGIST 2014; 202:1237-1248. [PMID: 24571288 DOI: 10.1111/nph.12742] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 01/15/2014] [Indexed: 06/03/2023]
Abstract
To understand how trees at high elevations might use water differently in the future, we investigated the effects of CO2 enrichment and soil warming (separately and combined) on the water relations of Larix decidua growing at the tree line in the Swiss Alps. We assessed diurnal stem radius fluctuations using point dendrometers and applied a hydraulic plant model using microclimate and soil water potential data as inputs. Trees exposed to CO2 enrichment for 9 yr showed smaller diurnal stem radius contractions (by 46 ± 16%) and expansions (42 ± 16%) compared with trees exposed to ambient CO2 . Additionally, there was a delay in the timing of daily maximum (40 ± 12 min) and minimum (63 ± 14 min) radius values for trees growing under elevated CO2 . Parameters optimized with the hydraulic model suggested that CO2 -enriched trees had an increased flow resistance between the xylem and bark, representing a more buffered water supply system. Soil warming did not alter diurnal fluctuation dynamics or the CO2 response. Elevated CO2 altered the hydraulic water flow and storage system within L. decidua trees, which might have contributed to enhanced growth during 9 yr of CO2 enrichment and could ultimately influence the future competitive ability of this key tree-line species.
Collapse
Affiliation(s)
- Melissa A Dawes
- Mountain Ecosystems, WSL Institute for Snow and Avalanche Research - SLF, Flüelastrasse 11, CH-7260, Davos Dorf, Switzerland
| | - Roman Zweifel
- Ecophysiology, Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Zürcherstrasse 111, CH-8903, Birmensdorf, Switzerland
| | - Nicholas Dawes
- Snow Cover and Micrometeorology, WSL Institute for Snow and Avalanche Research - SLF, Flüelastrasse 11, CH-7260, Davos Dorf, Switzerland
| | - Christian Rixen
- Mountain Ecosystems, WSL Institute for Snow and Avalanche Research - SLF, Flüelastrasse 11, CH-7260, Davos Dorf, Switzerland
| | - Frank Hagedorn
- Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Zürcherstrasse 111, CH-8903, Birmensdorf, Switzerland
| |
Collapse
|
32
|
Kuster TM, Dobbertin M, Günthardt-Goerg MS, Schaub M, Arend M. A phenological timetable of oak growth under experimental drought and air warming. PLoS One 2014; 9:e89724. [PMID: 24586988 PMCID: PMC3933646 DOI: 10.1371/journal.pone.0089724] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 01/23/2014] [Indexed: 11/25/2022] Open
Abstract
Climate change is expected to increase temperature and decrease summer precipitation in Central Europe. Little is known about how warming and drought will affect phenological patterns of oaks, which are considered to possess excellent adaptability to these climatic changes. Here, we investigated bud burst and intra-annual shoot growth of Quercus robur, Q. petraea and Q. pubescens grown on two different forest soils and exposed to air warming and drought. Phenological development was assessed over the course of three growing seasons. Warming advanced bud burst by 1-3 days °C⁻¹ and led to an earlier start of intra-annual shoot growth. Despite this phenological shift, total time span of annual growth and shoot biomass were not affected. Drought changed the frequency and intensity of intra-annual shoot growth and advanced bud burst in the subsequent spring of a severe summer drought by 1-2 days. After re-wetting, shoot growth recovered within a few days, demonstrating the superior drought tolerance of this tree genus. Our findings show that phenological patterns of oaks are modified by warming and drought but also suggest that ontogenetic factors and/or limitations of water and nutrients counteract warming effects on the biomass and the entire span of annual shoot growth.
Collapse
Affiliation(s)
- Thomas M. Kuster
- Forest Dynamics, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
- Institute of Terrestrial Ecosystems ITES, ETH Zürich, Zürich, Switzerland
- Soil and Ecosystem Ecology Group, University of Manchester, Manchester, United Kingdom
| | - Matthias Dobbertin
- Forest Dynamics, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| | | | - Marcus Schaub
- Forest Dynamics, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| | - Matthias Arend
- Forest Dynamics, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| |
Collapse
|
33
|
Streit K, Siegwolf RTW, Hagedorn F, Schaub M, Buchmann N. Lack of photosynthetic or stomatal regulation after 9 years of elevated [CO2] and 4 years of soil warming in two conifer species at the alpine treeline. PLANT, CELL & ENVIRONMENT 2014; 37:315-326. [PMID: 24003840 DOI: 10.1111/pce.12197] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Alpine treelines are temperature-limited vegetation boundaries. Understanding the effects of elevated [CO2 ] and warming on CO2 and H2 O gas exchange may help predict responses of treelines to global change. We measured needle gas exchange of Larix decidua Mill. and Pinus mugo ssp. uncinata DC trees after 9 years of free air CO2 enrichment (575 µmol mol(-1) ) and 4 years of soil warming (+4 °C) and analysed δ(13) C and δ(18) O values of needles and tree rings. Tree needles under elevated [CO2 ] showed neither nitrogen limitation nor end-product inhibition, and no down-regulation of maximal photosynthetic rate (Amax ) was found. Both tree species showed increased net photosynthetic rates (An ) under elevated [CO2 ] (L. decidua: +39%; P. mugo: +35%). Stomatal conductance (gH2O ) was insensitive to changes in [CO2 ], thus transpiration rates remained unchanged and intrinsic water-use efficiency (iWUE) increased due to higher An . Soil warming affected neither An nor gH2O . Unresponsiveness of gH2O to [CO2 ] and warming was confirmed by δ(18) O needle and tree ring values. Consequently, under sufficient water supply, elevated [CO2 ] induced sustained enhancement in An and lead to increased C inputs into this ecosystem, while soil warming hardly affected gas exchange of L. decidua and P. mugo at the alpine treeline.
Collapse
Affiliation(s)
- Kathrin Streit
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute (PSI), 5232, Villigen, Switzerland
| | | | | | | | | |
Collapse
|
34
|
|
35
|
Rico C, Pittermann J, Polley HW, Aspinwall MJ, Fay PA. The effect of subambient to elevated atmospheric CO₂ concentration on vascular function in Helianthus annuus: implications for plant response to climate change. THE NEW PHYTOLOGIST 2013; 199:956-965. [PMID: 23731256 DOI: 10.1111/nph.12339] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Accepted: 04/16/2013] [Indexed: 06/02/2023]
Abstract
Plant gas exchange is regulated by stomata, which coordinate leaf-level water loss with xylem transport. Stomatal opening responds to internal concentrations of CO₂ in the leaf, but changing CO₂ can also lead to changes in stomatal density that influence transpiration. Given that stomatal conductance increases under subambient concentrations of CO₂ and, conversely, that plants lose less water at elevated concentrations, can downstream effects of atmospheric CO₂ be observed in xylem tissue? We approached this problem by evaluating leaf stomatal density, xylem transport, xylem anatomy and resistance to cavitation in Helianthus annuus plants grown under three CO₂ regimes ranging from pre-industrial to elevated concentrations. Xylem transport, conduit size and stomatal density all increased at 290 ppm relative to ambient and elevated CO₂ concentrations. The shoots of the 290-ppm-grown plants were most vulnerable to cavitation, whereas xylem cavitation resistance did not differ in 390- and 480-ppm-grown plants. Our data indicate that, even as an indirect driver of water loss, CO₂ can affect xylem structure and water transport by coupling stomatal and xylem hydraulic functions during plant development. This plastic response has implications for plant water use under variable concentrations of CO₂, as well as the evolution of efficient xylem transport.
Collapse
Affiliation(s)
- Christopher Rico
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, 95064, USA
| | - Jarmila Pittermann
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, 95064, USA
| | - H Wayne Polley
- United States Department of Agriculture, Grassland Soil and Water Research Laboratory, 808 E. Blackland Rd, Temple, TX, 76502, USA
| | - Michael J Aspinwall
- Hawkesbury Institute for the Environment, University of Western Sydney, Richmond, NSW, 2753, Australia
| | - Phillip A Fay
- United States Department of Agriculture, Grassland Soil and Water Research Laboratory, 808 E. Blackland Rd, Temple, TX, 76502, USA
| |
Collapse
|
36
|
Cernusak LA, Winter K, Dalling JW, Holtum JAM, Jaramillo C, K Rner C, Leakey ADB, Norby RJ, Poulter B, Turner BL, Wright SJ. Tropical forest responses to increasing atmospheric CO 2: current knowledge and opportunities for future research. FUNCTIONAL PLANT BIOLOGY : FPB 2013; 40:531-551. [PMID: 32481129 DOI: 10.1071/fp12309] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2012] [Accepted: 03/21/2013] [Indexed: 05/06/2023]
Abstract
Elevated atmospheric CO2 concentrations (ca) will undoubtedly affect the metabolism of tropical forests worldwide; however, critical aspects of how tropical forests will respond remain largely unknown. Here, we review the current state of knowledge about physiological and ecological responses, with the aim of providing a framework that can help to guide future experimental research. Modelling studies have indicated that elevated ca can potentially stimulate photosynthesis more in the tropics than at higher latitudes, because suppression of photorespiration by elevated ca increases with temperature. However, canopy leaves in tropical forests could also potentially reach a high temperature threshold under elevated ca that will moderate the rise in photosynthesis. Belowground responses, including fine root production, nutrient foraging and soil organic matter processing, will be especially important to the integrated ecosystem response to elevated ca. Water use efficiency will increase as ca rises, potentially impacting upon soil moisture status and nutrient availability. Recruitment may be differentially altered for some functional groups, potentially decreasing ecosystem carbon storage. Whole-forest CO2 enrichment experiments are urgently needed to test predictions of tropical forest functioning under elevated ca. Smaller scale experiments in the understorey and in gaps would also be informative, and could provide stepping stones towards stand-scale manipulations.
Collapse
Affiliation(s)
- Lucas A Cernusak
- School of Marine and Tropical Biology, James Cook University, Cairns, Qld 4878, Australia
| | - Klaus Winter
- Smithsonian Tropical Research Institute, PO Box 0843-03092, Balboa, Ancon, Republic of Panama
| | - James W Dalling
- Department of Plant Biology, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
| | - Joseph A M Holtum
- Smithsonian Tropical Research Institute, PO Box 0843-03092, Balboa, Ancon, Republic of Panama
| | - Carlos Jaramillo
- Smithsonian Tropical Research Institute, PO Box 0843-03092, Balboa, Ancon, Republic of Panama
| | - Christian K Rner
- Institute of Botany, University of Basel, Basel, CH-4056, Switzerland
| | - Andrew D B Leakey
- Department of Plant Biology, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
| | - Richard J Norby
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Benjamin Poulter
- Laboratoire des Sciences du Climat et de l'Environnement, Gif sur Yvette French Centre National de la Recherche Scientifique, the Atomic Energy Commission and the University of Versailles Saint-Quentin, 91191, France
| | - Benjamin L Turner
- Smithsonian Tropical Research Institute, PO Box 0843-03092, Balboa, Ancon, Republic of Panama
| | - S Joseph Wright
- Smithsonian Tropical Research Institute, PO Box 0843-03092, Balboa, Ancon, Republic of Panama
| |
Collapse
|
37
|
Franks PJ, Adams MA, Amthor JS, Barbour MM, Berry JA, Ellsworth DS, Farquhar GD, Ghannoum O, Lloyd J, McDowell N, Norby RJ, Tissue DT, von Caemmerer S. Sensitivity of plants to changing atmospheric CO2 concentration: from the geological past to the next century. THE NEW PHYTOLOGIST 2013; 197:1077-1094. [PMID: 23346950 DOI: 10.1111/nph.12104] [Citation(s) in RCA: 156] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2012] [Accepted: 11/15/2012] [Indexed: 05/05/2023]
Abstract
The rate of CO(2) assimilation by plants is directly influenced by the concentration of CO(2) in the atmosphere, c(a). As an environmental variable, c(a) also has a unique global and historic significance. Although relatively stable and uniform in the short term, global c(a) has varied substantially on the timescale of thousands to millions of years, and currently is increasing at seemingly an unprecedented rate. This may exert profound impacts on both climate and plant function. Here we utilise extensive datasets and models to develop an integrated, multi-scale assessment of the impact of changing c(a) on plant carbon dioxide uptake and water use. We find that, overall, the sensitivity of plants to rising or falling c(a) is qualitatively similar across all scales considered. It is characterised by an adaptive feedback response that tends to maintain 1 - c(i)/c(a), the relative gradient for CO(2) diffusion into the leaf, relatively constant. This is achieved through predictable adjustments to stomatal anatomy and chloroplast biochemistry. Importantly, the long-term response to changing c(a) can be described by simple equations rooted in the formulation of more commonly studied short-term responses.
Collapse
Affiliation(s)
- Peter J Franks
- Faculty of Agriculture and Environment, University of Sydney, Sydney, NSW, 2006, Australia
| | - Mark A Adams
- Faculty of Agriculture and Environment, University of Sydney, Sydney, NSW, 2006, Australia
| | - Jeffrey S Amthor
- Faculty of Agriculture and Environment, University of Sydney, Sydney, NSW, 2006, Australia
| | - Margaret M Barbour
- Faculty of Agriculture and Environment, University of Sydney, Sydney, NSW, 2006, Australia
| | - Joseph A Berry
- Department of Global Ecology, Carnegie Institution of Washington, 260 Panama Street, Stanford, CA, 94305, USA
| | - David S Ellsworth
- Hawkesbury Institute for the Environment, University of Western Sydney, Hawkesbury Campus, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Graham D Farquhar
- Research School of Biology, The Australian National University, Acton, ACT, 0200, Australia
| | - Oula Ghannoum
- Hawkesbury Institute for the Environment, University of Western Sydney, Hawkesbury Campus, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Jon Lloyd
- Centre for Tropical Environmental and Sustainability Science (TESS), School of Earth and Environmental Sciences, James Cook University, Cairns, Qld, 4878, Australia
- Earth and Biosphere Institute, School of Geography, University of Leeds, Leeds, UK
| | - Nate McDowell
- Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Richard J Norby
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| | - David T Tissue
- Hawkesbury Institute for the Environment, University of Western Sydney, Hawkesbury Campus, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Susanne von Caemmerer
- Research School of Biology, The Australian National University, Acton, ACT, 0200, Australia
| |
Collapse
|
38
|
Kuster TM, Arend M, Bleuler P, Günthardt-Goerg MS, Schulin R. Water regime and growth of young oak stands subjected to air-warming and drought on two different forest soils in a model ecosystem experiment. PLANT BIOLOGY (STUTTGART, GERMANY) 2013; 15 Suppl 1:138-47. [PMID: 22288508 DOI: 10.1111/j.1438-8677.2011.00552.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Global climate change is expected to increase annual temperatures and decrease summer precipitation in Central Europe. Little is known of how forests respond to the interaction of these climate factors and if their responses depend on soil conditions. In a 3-year lysimeter experiment, we investigated the growth response of young mixed oak stands, on either acidic or calcareous soil, to soil water regime, air-warming and drought treatments corresponding to an intermediate climate change scenario. The air-warming and drought treatments were applied separately as well as in combination. The air-warming treatment had no effect on soil water availability, evapotranspiration or stand biomass. Decreased evapotranspiration from the drought-exposed stands led to significantly higher air and soil temperatures, which were attributed to impaired transpirational cooling. Water limitation significantly reduced the stand foliage, shoot and root biomass as droughts were severe, as shown in low leaf water potentials. Additional air warming did not enhance the drought effects on evapotranspiration and biomass, although more negative leaf water potentials were observed. After re-watering, evapotranspiration increased within a few days to pre-drought levels. Stands not subjected to the drought treatment produced significantly less biomass on the calcareous soil than on the acidic soil, probably due to P or Mn limitation. There was no difference in biomass and water regime between the two soils under drought conditions, indicating that nutrient availability was governed by water availability under these conditions. The results demonstrate that young oak stands can cope with severe drought and therefore can be considered for future forestry.
Collapse
Affiliation(s)
- T M Kuster
- Swiss Federal Research Institute WSL, Zürcherstrasse 111, Birmensdorf, Switzerland.
| | | | | | | | | |
Collapse
|
39
|
Wertin TM, McGuire MA, Teskey RO. Effects of predicted future and current atmospheric temperature and [CO2] and high and low soil moisture on gas exchange and growth of Pinus taeda seedlings at cool and warm sites in the species range. TREE PHYSIOLOGY 2012; 32:847-858. [PMID: 22696270 DOI: 10.1093/treephys/tps051] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Predicted future changes in air temperature and atmospheric CO(2) concentration ([CO(2)]), coupled with altered precipitation, are expected to substantially affect tree growth. Effects on growth may vary considerably across a species range, as temperatures vary from sub-optimal to supra-optimal for growth. We performed an experiment simultaneously at two locations in the current range of loblolly pine, a cool site and a warm site, to examine the effect of future climate conditions on growth of loblolly pine seedlings in contrasting regions of the species range. At both sites 1-year-old loblolly pine seedlings were grown in current (local ambient temperature and [CO(2)]) and predicted future atmospheric conditions (ambient +2 °C temperature and 700 μmol mol(-1) [CO(2)]). Additionally, high and low soil moisture treatments were applied within each atmospheric treatment at each site by altering the amount of water provided to the seedlings. Averaged across water treatments, photosynthesis (A(net)) was 31% greater at the cool site and 34% greater at the warm site in elevated temperature and [CO(2)] compared with ambient temperature. Biomass accumulation was also stimulated by 38% at the cool site and by 24% at the warm site in that treatment. These results suggest that a temperature increase of 2 °C coupled with an increase in [CO(2)] (predicted future climate) will create conditions favorable for growth of this species. Reduced soil moisture decreased growth in both current and predicted atmospheric conditions. Biomass accumulation and A(net) were reduced by ∼39 and 17%, respectively, in the low water treatment. These results suggest that any benefit of future atmospheric conditions may be negated if soil moisture is reduced by altered precipitation patterns.
Collapse
Affiliation(s)
- Timothy M Wertin
- Daniel B. Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA.
| | | | | |
Collapse
|
40
|
Reinert S, Bögelein R, Thomas FM. Use of thermal imaging to determine leaf conductance along a canopy gradient in European beech (Fagus sylvatica). TREE PHYSIOLOGY 2012; 32:294-302. [PMID: 22427372 DOI: 10.1093/treephys/tps017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Using an infrared camera, we measured the leaf temperature across different canopy positions of a 23-m-tall deciduous forest tree (Fagus sylvatica L.) including typical sun and shade leaves as well as intermediate leaf forms, which differed significantly in specific leaf area (SLA). We calculated a temperature index (I(G)) and a crop water stress index (CWSI) using the surface temperatures of wet and dry reference leaves. Additional indices were computed using air temperature plus 5 °C (I(G) + 5, CWSI + 5) as dry references. The minimum temperature of the wet leaf and the maximum temperature of the dry leaf proved to be most suitable as reference values. We correlated the temperature indices with leaf area-related conductance to water vapor (g(L)) using porometry at the leaf level and using xylem sap flow at the branch level. At the leaf and at the branch level, I(G) and CWSI were equally well suited as proxies of g(L), whereas the relationships of I(G) + 5 and CWSI + 5 with g(L) were only weak or even insignificant. At the leaf level, the correlations of I(G) and CWSI with g(L) were significant in all parts of the crown. The slopes of g(L) vs. I(G) and CWSI did not differ significantly among the crown parts; this indicates that they were not influenced by SLA or irradiance. At the branch level, close correlations (r > 0.8) were found between temperature indices and g(L) across the crown. These results demonstrate that satisfactory relationships between temperature indices and g(L) can be established in tall trees even in those canopy parts that are exposed to relatively low levels of irradiance and exhibit relatively low values of g(L).
Collapse
Affiliation(s)
- Stefan Reinert
- University of Trier, Geobotany, Behringstraße 21, 54296 Trier, Germany
| | | | | |
Collapse
|
41
|
Loader NJ, Walsh RPD, Robertson I, Bidin K, Ong RC, Reynolds G, McCarroll D, Gagen M, Young GHF. Recent trends in the intrinsic water-use efficiency of ringless rainforest trees in Borneo. Philos Trans R Soc Lond B Biol Sci 2012; 366:3330-9. [PMID: 22006972 DOI: 10.1098/rstb.2011.0037] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Stable carbon isotope (δ(13)C) series were developed from analysis of sequential radial wood increments from AD 1850 to AD 2009 for four mature primary rainforest trees from the Danum and Imbak areas of Sabah, Malaysia. The aseasonal equatorial climate meant that conventional dendrochronology was not possible as the tree species investigated do not exhibit clear annual rings or dateable growth bands. Chronology was established using radiocarbon dating to model age-growth relationships and date the carbon isotopic series from which the intrinsic water-use efficiency (IWUE) was calculated. The two Eusideroxylon zwageri trees from Imbak yielded ages of their pith/central wood (±1 sigma) of 670 ± 40 and 759 ± 40 years old; the less dense Shorea johorensis and Shorea superba trees at Danum yielded ages of 240 ± 40 and 330 ± 40 years, respectively. All trees studied exhibit an increase in the IWUE since AD 1960. This reflects, in part, a response of the forest to increasing atmospheric carbon dioxide concentration. Unlike studies of some northern European trees, no clear plateau in this response was observed. A change in the IWUE implies an associated modification of the local carbon and/or hydrological cycles. To resolve these uncertainties, a shift in emphasis away from high-resolution studies towards long, well-replicated time series is proposed to develop the environmental data essential for model evaluation. Identification of old (greater than 700 years) ringless trees demonstrates their potential in assessing the impacts of climatic and atmospheric change. It also shows the scientific and applied value of a conservation policy that ensures the survival of primary forest containing particularly old trees (as in Imbak Canyon and Danum).
Collapse
Affiliation(s)
- N J Loader
- Department of Geography, Swansea University, Swansea SA2 8PP, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Loehle C. Criteria for assessing climate change impacts on ecosystems. Ecol Evol 2011; 1:63-72. [PMID: 22393483 PMCID: PMC3287372 DOI: 10.1002/ece3.7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 06/09/2011] [Accepted: 06/11/2011] [Indexed: 11/15/2022] Open
Abstract
There is concern about the potential impacts of climate change on species and ecosystems. To address this concern, a large body of literature has developed in which these impacts are assessed. In this study, criteria for conducting reliable and useful assessments of impacts of future climate are suggested. The major decisions involve: clearly defining an emissions scenario; selecting a climate model; evaluating climate model skill and bias; quantifying General Circulation Model (GCM) between-model variability; selecting an ecosystem model and assessing uncertainty; properly considering transient versus equilibrium responses; including effects of CO(2) on plant response; evaluating implications of simplifying assumptions; and considering animal linkage with vegetation. A sample of the literature was surveyed in light of these criteria. Many of the studies used climate simulations that were >10 years old and not representative of best current models. Future effects of elevated CO(2) on plant drought resistance and productivity were generally included in growth model studies but not in niche (habitat suitability) studies, causing the latter to forecast greater future adverse impacts. Overly simplified spatial representation was frequent and caused the existence of refugia to be underestimated. Few studies compared multiple climate simulations and ecosystem models (including parametric uncertainty), leading to a false impression of precision and potentially arbitrary results due to high between-model variance. No study assessed climate model retrodictive skill or bias. Overall, most current studies fail to meet all of the proposed criteria. Suggestions for improving assessments are provided.
Collapse
Affiliation(s)
- Craig Loehle
- National Council for Air and Stream Improvement Inc. Washington Street, Naperville, Illinois, USA
| |
Collapse
|
43
|
Duursma RA, Barton CVM, Eamus D, Medlyn BE, Ellsworth DS, Forster MA, Tissue DT, Linder S, McMurtrie RE. Rooting depth explains [CO2] x drought interaction in Eucalyptus saligna. TREE PHYSIOLOGY 2011; 31:922-31. [PMID: 21571724 DOI: 10.1093/treephys/tpr030] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Elevated atmospheric [CO(2)] (eC(a)) often decreases stomatal conductance, which may delay the start of drought, as well as alleviate the effect of dry soil on plant water use and carbon uptake. We studied the interaction between drought and eC(a) in a whole-tree chamber experiment with Eucalyptus saligna. Trees were grown for 18 months in their C(a) treatments before a 4-month dry-down. Trees grown in eC(a) were smaller than those grown in ambient C(a) (aC(a)) due to an early growth setback that was maintained throughout the duration of the experiment. Pre-dawn leaf water potentials were not different between C(a) treatments, but were lower in the drought treatment than the irrigated control. Counter to expectations, the drought treatment caused a larger reduction in canopy-average transpiration rates for trees in the eC(a) treatment compared with aC(a). Total tree transpiration over the dry-down was positively correlated with the decrease in soil water storage, measured in the top 1.5 m, over the drying cycle; however, we could not close the water budget especially for the larger trees, suggesting soil water uptake below 1.5 m depth. Using neutron probe soil water measurements, we estimated fractional water uptake to a depth of 4.5 m and found that larger trees were able to extract more water from deep soil layers. These results highlight the interaction between rooting depth and response of tree water use to drought. The responses of tree water use to eC(a) involve interactions between tree size, root distribution and soil moisture availability that may override the expected direct effects of eC(a). It is essential that these interactions be considered when interpreting experimental results.
Collapse
Affiliation(s)
- Remko A Duursma
- Hawkesbury Institute for the Environment, University of Western Sydney, Locked Bag 1797, Penrith, NSW 2751, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Wolf A. Estimating the potential impact of vegetation on the water cycle requires accurate soil water parameter estimation. Ecol Modell 2011. [DOI: 10.1016/j.ecolmodel.2011.04.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
45
|
Albert KR, Ro-Poulsen H, Mikkelsen TN, Michelsen A, van der Linden L, Beier C. Interactive effects of elevated CO2, warming, and drought on photosynthesis of Deschampsia flexuosa in a temperate heath ecosystem. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:4253-66. [PMID: 21586430 PMCID: PMC3153679 DOI: 10.1093/jxb/err133] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 03/15/2011] [Accepted: 04/05/2011] [Indexed: 05/05/2023]
Abstract
Global change factors affect plant carbon uptake in concert. In order to investigate the response directions and potential interactive effects, and to understand the underlying mechanisms, multifactor experiments are needed. The focus of this study was on the photosynthetic response to elevated CO(2) [CO2; free air CO(2) enrichment (FACE)], drought (D; water-excluding curtains), and night-time warming (T; infrared-reflective curtains) in a temperate heath. A/C(i) curves were measured, allowing analysis of light-saturated net photosynthesis (P(n)), light- and CO(2)-saturated net photosynthesis (P(max)), stomatal conductance (g(s)), the maximal rate of Rubisco carboxylation (V(cmax)), and the maximal rate of ribulose bisphosphate (RuBP) regeneration (J(max)) along with leaf δ(13)C, and carbon and nitrogen concentration on a monthly basis in the grass Deschampsia flexuosa. Seasonal drought reduced P(n) via g(s), but severe (experimental) drought decreased P(n) via a reduction in photosynthetic capacity (P(max), J(max), and V(cmax)). The effects were completely reversed by rewetting and stimulated P(n) via photosynthetic capacity stimulation. Warming increased early and late season P(n) via higher P(max) and J(max). Elevated CO(2) did not decrease g(s), but stimulated P(n) via increased C(i). The T×CO2 synergistically increased plant carbon uptake via photosynthetic capacity up-regulation in early season and by better access to water after rewetting. The effects of the combination of drought and elevated CO(2) depended on soil water availability, with additive effects when the soil water content was low and D×CO2 synergistic stimulation of P(n) after rewetting. The photosynthetic responses appeared to be highly influenced by growth pattern. The grass has opportunistic water consumption, and a biphasic growth pattern allowing for leaf dieback at low soil water availability followed by rapid re-growth of active leaves when rewetted and possibly a large resource allocation capability mediated by the rhizome. This growth characteristic allowed for the photosynthetic capacity up-regulations that mediated the T×CO2 and D×CO2 synergistic effects on photosynthesis. These are clearly advantageous characteristics when exposed to climate changes. In conclusion, after 1 year of experimentation, the limitations by low soil water availability and stimulation in early and late season by warming clearly structure and interact with the photosynthetic response to elevated CO(2) in this grassland species.
Collapse
Affiliation(s)
- K R Albert
- Biosystems Department; Risø DTU, Roskilde, Denmark.
| | | | | | | | | | | |
Collapse
|
46
|
Albert KR, Ro-Poulsen H, Mikkelsen TN, Michelsen A, Van Der Linden L, Beier C. Effects of elevated CO₂, warming and drought episodes on plant carbon uptake in a temperate heath ecosystem are controlled by soil water status. PLANT, CELL & ENVIRONMENT 2011; 34:1207-1222. [PMID: 21410715 DOI: 10.1111/j.1365-3040.2011.02320.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The impact of elevated CO₂, periodic drought and warming on photosynthesis and leaf characteristics of the evergreen dwarf shrub Calluna vulgaris in a temperate heath ecosystem was investigated. Photosynthesis was reduced by drought in midsummer and increased by elevated CO₂ throughout the growing season, whereas warming only stimulated photosynthesis early in the year. At the beginning and end of the growing season, a T × CO₂ interaction synergistically stimulated plant carbon uptake in the combination of warming and elevated CO₂. At peak drought, the D × CO₂ interaction antagonistically down-regulated photosynthesis, suggesting a limited ability of elevated CO₂ to counteract the negative effect of drought. The response of photosynthesis in the full factorial combination (TDCO₂) could be explained by the main effect of experimental treatments (T, D, CO₂) and the two-factor interactions (D × CO₂, T × CO₂). The interactive responses in the experimental treatments including elevated CO₂ seemed to be linked to the realized range of treatment variability, for example with negative effects following experimental drought or positive effects following the relatively higher impact of night-time warming during cold periods early and late in the year. Longer-term experiments are needed to evaluate whether photosynthetic down-regulation will dampen the stimulation of photosynthesis under prolonged exposure to elevated CO₂.
Collapse
Affiliation(s)
- K R Albert
- Biosystems Division, Risø DTU, Frederiksborgvej, Roskilde, Denmark.
| | | | | | | | | | | |
Collapse
|
47
|
|
48
|
Leuzinger S, Hartmann A, Körner C. Water relations of climbing ivy in a temperate forest. PLANTA 2011; 233:1087-96. [PMID: 21293876 DOI: 10.1007/s00425-011-1363-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Accepted: 01/12/2011] [Indexed: 05/21/2023]
Abstract
Ivy (Hedera helix) is the most important liana in temperate European forests. We studied water relations of adult ivy in a natural, 35 m tall mixed deciduous forest in Switzerland using a construction crane to access the canopy. Predawn leaf water potential at the top of climbing ivy ranged from -0.4 to -0.6 MPa, daily minima ranged from -1.3 to -1.7 MPa. Leaf water potentials as well as relative sap flow were held surprisingly constant throughout different weather conditions, suggesting a tendency to isohydric behaviour. Maximum stomatal conductance was 200 mmol m⁻² s⁻¹. The use of a potometer experiment allowed us to measure absolute transpiration rates integrated over a whole plant of 0.23 mmol m⁻² s⁻¹. Nightly sap flow of ivy during warm, dry nights accounted for up to 20% of the seasonal maximum. Maximum sap flow rates were reached at ca. 0.5 kPa vpd. On the other hand, the host trees showed a less conservative stomatal regulation, maximum sap flow rates were reached at vpd values of ca. 1 kPa. Sap flow rates of ivy decreased by ca. 20% in spring after bud break of trees, suggesting that ivy profits strongly from warm sunny days in early spring before budbreak of the host trees and from mild winter days. This species may benefit from rising winter temperatures in Europe and thus become a stronger competitor against its host trees.
Collapse
Affiliation(s)
- S Leuzinger
- Forest Ecology, Department of Terrestrial Ecosystems, ETH Zürich, Universitätsstr.16, 8092 Zurich, Switzerland.
| | | | | |
Collapse
|
49
|
Leuzinger S, Luo Y, Beier C, Dieleman W, Vicca S, Körner C. Do global change experiments overestimate impacts on terrestrial ecosystems? Trends Ecol Evol 2011; 26:236-41. [DOI: 10.1016/j.tree.2011.02.011] [Citation(s) in RCA: 227] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Revised: 02/25/2011] [Accepted: 02/28/2011] [Indexed: 10/18/2022]
|
50
|
Warren JM, Norby RJ, Wullschleger SD. Elevated CO₂ enhances leaf senescence during extreme drought in a temperate forest. TREE PHYSIOLOGY 2011; 31:117-30. [PMID: 21427157 DOI: 10.1093/treephys/tpr002] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
In 2007, an extreme drought and acute heat wave impacted ecosystems across the southeastern USA, including a 19-year-old Liquidambar styraciflua L. (sweetgum) tree plantation exposed to long-term elevated (E(CO(2))) or ambient (A(CO(2))) CO(2) treatments. Stem sap velocities were analyzed to assess plant response to potential interactions between CO(2) and these weather extremes. Canopy conductance and net carbon assimilation (A(net)) were modeled based on patterns of sap velocity to estimate indirect impacts of observed reductions in transpiration under E(CO(2)) on premature leaf senescence. Elevated CO(2) reduced sap flow by 28% during early summer, and by up to 45% late in the drought during record-setting temperatures. Modeled canopy conductance declined more rapidly in E(CO(2)) plots during this period, thereby directly reducing carbon gain at a greater rate than in A(CO(2)) plots. Indeed, pre-drought canopy A(net) was similar across treatment plots, but declined to ∼40% less than A(net) in A(CO(2)) as the drought progressed, likely leading to negative net carbon balance. Consequently, premature leaf senescence and abscission increased rapidly during this period, and was 30% greater for E(CO(2)). While E(CO(2)) can reduce leaf-level water use under droughty conditions, acute drought may induce excessive stomatal closure that could offset benefits of E(CO(2)) to temperate forest species during extreme weather events.
Collapse
Affiliation(s)
- Jeffrey M Warren
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6301, USA
| | | | | |
Collapse
|