1
|
Abuslima E, Kanbar A, Ismail A, Raorane ML, Eiche E, El-Sharkawy I, Junker BH, Riemann M, Nick P. Salt stress-induced remodeling of sugar transport: a role for promoter alleles of SWEET13. Sci Rep 2025; 15:7580. [PMID: 40038325 DOI: 10.1038/s41598-025-90432-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 02/13/2025] [Indexed: 03/06/2025] Open
Abstract
Sucrose, the primary carbon form synthesized by photosynthesis, is transported via the phloem for proper plant development and productivity. However, long-distance sucrose transport can become unbalanced under adverse environmental conditions. Therefore, we highlight the influence of salt stress on sugar partitioning in source versus sink tissues in sorghum under generative development including the role of stress induced sucrose transporter expression. The two sorghum genotypes displayed different responses to salinity in terms of resource allocation, in Della sugar was translocated to the stem and roots, whereas in Razinieh sugars were directed towards the grains. In Della, the unloading of sucrose in the roots was associated with increased expression levels of SbSUT6 and SbSWEET6, while in the internodes, sucrose unloading correlated with elevated levels of SbSWEET13 and the ABA-dependent transcription factor SbbZIP-TF-TRAB1. Conversely, in Razinieh, the expression of SbSUT2 in the flag internodes was linked to enhanced panicle development. In addition, a differential activation of SbSWEET13 and SbSUT6 promoters by ABA and MeJA was elucidated using dual-luciferase reporter assay in sorghum protoplasts. Finally, we arrive at a model where dynamic remodeling of sugar transport during generative development is crucial for the response to salt stress, and more manifested in sink tissues.
Collapse
Affiliation(s)
- Eman Abuslima
- Molecular Cell Biology, Joseph Kölreuter Institute for Plant Sciences, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany.
- Department of Botany and Microbiology, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt.
| | - Adnan Kanbar
- Molecular Cell Biology, Joseph Kölreuter Institute for Plant Sciences, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany
- Department of Field Crops, Faculty of Agriculture, University of Damascus, PO Box 30621, Damascus, Syria
| | - Ahmed Ismail
- Department of Horticulture, Faculty of Agriculture, Damanhour University, Damanhour, 22516, Egypt
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA, 92521, USA
| | - Manish L Raorane
- Institute of Pharmacy, Martin-Luther-University, Halle-Wittenberg, Hoher Weg 8, 06120, Halle (Saale), Germany
| | - Elisabeth Eiche
- Institute of Applied Geosciences, Karlsruhe Institute of Technology, 76131, Karlsruhe, Germany
- Laboratory for Environmental and Raw Materials Analysis (LERA), Karlsruhe Institute of Technology, 76131, Karlsruhe, Germany
| | - Islam El-Sharkawy
- Center for Viticulture and Small Fruit Research, College of Agriculture and Food Sciences, Florida A&M University, Tallahassee, FL, 32308, USA
| | - Björn H Junker
- Institute of Pharmacy, Martin-Luther-University, Halle-Wittenberg, Hoher Weg 8, 06120, Halle (Saale), Germany
| | - Michael Riemann
- Molecular Cell Biology, Joseph Kölreuter Institute for Plant Sciences, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany
| | - Peter Nick
- Molecular Cell Biology, Joseph Kölreuter Institute for Plant Sciences, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany
| |
Collapse
|
2
|
Khassanova G, Jatayev S, Gabdola A, Kuzbakova M, Zailasheva A, Kylyshbayeva G, Schramm C, Schleyer K, Philp-Dutton L, Sweetman C, Anderson P, Jenkins CLD, Soole KL, Shavrukov Y. Haplotypes of ATP-Binding Cassette CaABCC6 in Chickpea from Kazakhstan Are Associated with Salinity Tolerance and Leaf Necrosis via Oxidative Stress. Biomolecules 2024; 14:823. [PMID: 39062537 PMCID: PMC11275178 DOI: 10.3390/biom14070823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 06/30/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Salinity tolerance was studied in chickpea accessions from a germplasm collection and in cultivars from Kazakhstan. After NaCl treatment, significant differences were found between genotypes, which could be arranged into three groups. Those that performed poorest were found in group 1, comprising five ICC accessions with the lowest chlorophyll content, the highest leaf necrosis (LN), Na+ accumulation, malondialdehyde (MDA) content, and a low glutathione ratio GSH/GSSG. Two cultivars, Privo-1 and Tassay, representing group 2, were moderate in these traits, while the best performance was for group 3, containing two other cultivars, Krasnokutsky-123 and Looch, which were found to have mostly green plants and an exact opposite pattern of traits. Marker-trait association (MTA) between 6K DArT markers and four traits (LN, Na+, MDA, and GSH/GSSG) revealed the presence of four possible candidate genes in the chickpea genome that may be associated with the three groups. One gene, ATP-binding cassette, CaABCC6, was selected, and three haplotypes, A, D1, and D2, were identified in plants from the three groups. Two of the most salt-tolerant cultivars from group 3 were found to have haplotype D2 with a novel identified SNP. RT-qPCR analysis confirmed that this gene was strongly expressed after NaCl treatment in the parental- and breeding-line plants of haplotype D2. Mass spectrometry of seed proteins showed a higher accumulation of glutathione reductase and S-transferase, but not peroxidase, in the D2 haplotype. In conclusion, the CaABCC6 gene was hypothesized to be associated with a better response to oxidative stress via glutathione metabolism, while other candidate genes are likely involved in the control of chlorophyll content and Na+ accumulation.
Collapse
Affiliation(s)
- Gulmira Khassanova
- Faculty of Agronomy, S.Seifullin Kazakh Agrotechnical Research University, Astana 010000, Kazakhstan; (S.J.); (A.G.); (M.K.); (A.Z.)
- A.I. Barayev Research and Production Centre of Grain Farming, Shortandy 021601, Kazakhstan
| | - Satyvaldy Jatayev
- Faculty of Agronomy, S.Seifullin Kazakh Agrotechnical Research University, Astana 010000, Kazakhstan; (S.J.); (A.G.); (M.K.); (A.Z.)
| | - Ademi Gabdola
- Faculty of Agronomy, S.Seifullin Kazakh Agrotechnical Research University, Astana 010000, Kazakhstan; (S.J.); (A.G.); (M.K.); (A.Z.)
| | - Marzhan Kuzbakova
- Faculty of Agronomy, S.Seifullin Kazakh Agrotechnical Research University, Astana 010000, Kazakhstan; (S.J.); (A.G.); (M.K.); (A.Z.)
| | - Aray Zailasheva
- Faculty of Agronomy, S.Seifullin Kazakh Agrotechnical Research University, Astana 010000, Kazakhstan; (S.J.); (A.G.); (M.K.); (A.Z.)
| | - Gulnar Kylyshbayeva
- Faculty of Natural Sciences, Central Asian Innovation University, Shymkent 160000, Kazakhstan;
| | - Carly Schramm
- College of Science and Engineering, Biological Sciences, Flinders University, Adelaide, SA 5042, Australia; (C.S.); (K.S.); (L.P.-D.); (C.S.); (P.A.); (C.L.D.J.); (K.L.S.)
| | - Kathryn Schleyer
- College of Science and Engineering, Biological Sciences, Flinders University, Adelaide, SA 5042, Australia; (C.S.); (K.S.); (L.P.-D.); (C.S.); (P.A.); (C.L.D.J.); (K.L.S.)
| | - Lauren Philp-Dutton
- College of Science and Engineering, Biological Sciences, Flinders University, Adelaide, SA 5042, Australia; (C.S.); (K.S.); (L.P.-D.); (C.S.); (P.A.); (C.L.D.J.); (K.L.S.)
| | - Crystal Sweetman
- College of Science and Engineering, Biological Sciences, Flinders University, Adelaide, SA 5042, Australia; (C.S.); (K.S.); (L.P.-D.); (C.S.); (P.A.); (C.L.D.J.); (K.L.S.)
| | - Peter Anderson
- College of Science and Engineering, Biological Sciences, Flinders University, Adelaide, SA 5042, Australia; (C.S.); (K.S.); (L.P.-D.); (C.S.); (P.A.); (C.L.D.J.); (K.L.S.)
| | - Colin L. D. Jenkins
- College of Science and Engineering, Biological Sciences, Flinders University, Adelaide, SA 5042, Australia; (C.S.); (K.S.); (L.P.-D.); (C.S.); (P.A.); (C.L.D.J.); (K.L.S.)
| | - Kathleen L. Soole
- College of Science and Engineering, Biological Sciences, Flinders University, Adelaide, SA 5042, Australia; (C.S.); (K.S.); (L.P.-D.); (C.S.); (P.A.); (C.L.D.J.); (K.L.S.)
| | - Yuri Shavrukov
- College of Science and Engineering, Biological Sciences, Flinders University, Adelaide, SA 5042, Australia; (C.S.); (K.S.); (L.P.-D.); (C.S.); (P.A.); (C.L.D.J.); (K.L.S.)
| |
Collapse
|
3
|
de Lima TM, Silva SF, Ribeiro RV, Sánchez-Vilas J, Pinheiro F. Salt tolerance in a neotropical orchid in the absence of local adaptation to salt spray. AMERICAN JOURNAL OF BOTANY 2024; 111:e16373. [PMID: 39010314 DOI: 10.1002/ajb2.16373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 07/17/2024]
Abstract
PREMISE Salt tolerance has rarely been investigated regionally in the neotropics and even more rarely in Orchidaceae, one of the largest families. Therefore, investigating local adaptation to salt spray and its physiological basis in Epidendrum fulgens, a neotropical orchid species, brings important new insights. METHODS We assessed the degree of salt tolerance in E. fulgens by testing whether coastal populations are more tolerant to salt, which could point to local adaptation. To understand the physiological basis of such salt tolerance, we exposed wild-collected individuals to salt spray for 60 days, then measured leaf expansion, osmotic potential, sodium leaf concentration, chlorophyll leaf index, chlorophyll fluorescence, relative growth rate, and pressure-volume curves. RESULTS There is no local adaptation to salt spray since both inland and coastal plants have a high tolerance to salt stress. This tolerance is explained by the ability to tolerate high concentrations of salt in leaf tissues, which is related to the high succulence displayed by this species. CONCLUSIONS We showed an unprecedented salt tolerance level for an orchid species, highlighting our limited knowledge of that trait beyond the traditional studied groups. Another interesting finding is that salt tolerance in E. fulgens is linked to succulence, is widespread, and is not the result of local adaptation. We suggest that E. fulgens and its allied species could be an interesting group to explore the evolution of important traits related to tolerance to salt stress, like succulence.
Collapse
Affiliation(s)
- Thales M de Lima
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Laboratório de Ecologia Evolutiva e Genômica de Plantas, Campinas, 13083-862, SP, Brazil
| | - Simone F Silva
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Laboratory of Crop Physiology (LCroP), Campinas, 13083-862, SP, Brazil
| | - Rafael V Ribeiro
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Laboratory of Crop Physiology (LCroP), Campinas, 13083-862, SP, Brazil
| | - Julia Sánchez-Vilas
- Organisms and Environment Division, Cardiff School of Biosciences, Cardiff University, Sir Martin Evans Building, Cardiff, CF10 3AX, UK
- Departamento de Bioloxía Funcional, Facultade de Bioloxía, Universidade de Santiago de Compostela, Lope Gomez de Marzoa s/n, Santiago de Compostela, 15782, Spain
| | - Fabio Pinheiro
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Laboratório de Ecologia Evolutiva e Genômica de Plantas, Campinas, 13083-862, SP, Brazil
| |
Collapse
|
4
|
Yan Z, Zhang F, Mu C, Ma C, Yao G, Sun Y, Hou J, Leng B, Liu X. The ZmbHLH47-ZmSnRK2.9 Module Promotes Drought Tolerance in Maize. Int J Mol Sci 2024; 25:4957. [PMID: 38732175 PMCID: PMC11084430 DOI: 10.3390/ijms25094957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
Drought stress globally poses a significant threat to maize (Zea mays L.) productivity and the underlying molecular mechanisms of drought tolerance remain elusive. In this study, we characterized ZmbHLH47, a basic helix-loop-helix (bHLH) transcription factor, as a positive regulator of drought tolerance in maize. ZmbHLH47 expression was notably induced by both drought stress and abscisic acid (ABA). Transgenic plants overexpressing ZmbHLH47 displayed elevated drought tolerance and ABA responsiveness, while the zmbhlh47 mutant exhibited increased drought sensitivity and reduced ABA sensitivity. Mechanistically, it was revealed that ZmbHLH47 could directly bind to the promoter of ZmSnRK2.9 gene, a member of the subgroup III SnRK2 kinases, activating its expression. Furthermore, ZmSnRK2.9-overexpressing plants exhibited enhanced ABA sensitivity and drought tolerance, whereas the zmsnrk2.9 mutant displayed a decreased sensitivity to both. Notably, overexpressing ZmbHLH47 in the zmsnrk2.9 mutant closely resembled the zmsnrk2.9 mutant, indicating the importance of the ZmbHLH47-ZmSnRK2.9 module in ABA response and drought tolerance. These findings provided valuable insights and a potential genetic resource for enhancing the environmental adaptability of maize.
Collapse
Affiliation(s)
- Zhenwei Yan
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (Z.Y.); (F.Z.); (C.M.); (G.Y.)
| | - Fajun Zhang
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (Z.Y.); (F.Z.); (C.M.); (G.Y.)
| | - Chunhua Mu
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (Z.Y.); (F.Z.); (C.M.); (G.Y.)
| | - Changle Ma
- College of Life Sciences, Shandong Normal University, Jinan 250300, China;
| | - Guoqi Yao
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (Z.Y.); (F.Z.); (C.M.); (G.Y.)
| | - Yue Sun
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China;
| | - Jing Hou
- School of Agriculture, Ludong University, Yantai 264001, China;
| | - Bingying Leng
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (Z.Y.); (F.Z.); (C.M.); (G.Y.)
| | - Xia Liu
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (Z.Y.); (F.Z.); (C.M.); (G.Y.)
| |
Collapse
|
5
|
Tounsi S, Giorgi D, Kuzmanović L, Jrad O, Farina A, Capoccioni A, Ben Ayed R, Brini F, Ceoloni C. Coping with salinity stress: segmental group 7 chromosome introgressions from halophytic Thinopyrum species greatly enhance tolerance of recipient durum wheat. FRONTIERS IN PLANT SCIENCE 2024; 15:1378186. [PMID: 38766466 PMCID: PMC11099908 DOI: 10.3389/fpls.2024.1378186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/09/2024] [Indexed: 05/22/2024]
Abstract
Increased soil salinization, tightly related to global warming and drought and exacerbated by intensified irrigation supply, implies highly detrimental effects on staple food crops such as wheat. The situation is particularly alarming for durum wheat (DW), better adapted to arid/semi-arid environments yet more sensitive to salt stress than bread wheat (BW). To enhance DW salinity tolerance, we resorted to chromosomally engineered materials with introgressions from allied halophytic Thinopyrum species. "Primary" recombinant lines (RLs), having portions of their 7AL arms distally replaced by 7el1L Th. ponticum segments, and "secondary" RLs, harboring Th. elongatum 7EL insertions "nested" into 7el1L segments, in addition to near-isogenic lines lacking any alien segment (CLs), cv. Om Rabia (OR) as salt tolerant control, and BW introgression lines with either most of 7el1 or the complete 7E chromosome substitution as additional CLs, were subjected to moderate (100 mM) and intense (200 mM) salt (NaCl) stress at early growth stages. The applied stress altered cell cycle progression, determining a general increase of cells in G1 and a reduction in S phase. Assessment of morpho-physiological and biochemical traits overall showed that the presence of Thinopyrum spp. segments was associated with considerably increased salinity tolerance versus its absence. For relative water content, Na+ accumulation and K+ retention in roots and leaves, oxidative stress indicators (malondialdehyde and hydrogen peroxide) and antioxidant enzyme activities, the observed differences between stressed and unstressed RLs versus CLs was of similar magnitude in "primary" and "secondary" types, suggesting that tolerance factors might reside in defined 7el1L shared portion(s). Nonetheless, the incremental contribution of 7EL segments emerged in various instances, greatly mitigating the effects of salt stress on root and leaf growth and on the quantity of photosynthetic pigments, boosting accumulation of compatible solutes and minimizing the decrease of a powerful antioxidant like ascorbate. The seemingly synergistic effect of 7el1L + 7EL segments/genes made "secondary" RLs able to often exceed cv. OR and equal or better perform than BW lines. Thus, transfer of a suite of genes from halophytic germplasm by use of fine chromosome engineering strategies may well be the way forward to enhance salinity tolerance of glycophytes, even the sensitive DW.
Collapse
Affiliation(s)
- Sana Tounsi
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax (CBS), University of Sfax, Sfax, Tunisia
| | - Debora Giorgi
- ENEA Casaccia Research Center, Department for Sustainability, Biotechnology and Agroindustry Division, Rome, Italy
| | - Ljiljana Kuzmanović
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Viterbo, Italy
| | - Olfa Jrad
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax (CBS), University of Sfax, Sfax, Tunisia
| | - Anna Farina
- ENEA Casaccia Research Center, Department for Sustainability, Biotechnology and Agroindustry Division, Rome, Italy
| | - Alessandra Capoccioni
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Viterbo, Italy
| | - Rayda Ben Ayed
- Department of Agronomy and Plant Biotechnology, National Institute of Agronomy of Tunisia (INAT), University of Carthage, Tunis, Tunisia
- Laboratory of Extremophile Plants, Centre of Biotechnology of Borj-Cédria, Hammam-lif, Tunisia
| | - Faiçal Brini
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax (CBS), University of Sfax, Sfax, Tunisia
| | - Carla Ceoloni
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Viterbo, Italy
| |
Collapse
|
6
|
Kizildeniz T. Assessing the growth dynamics of alfalfa varieties ( Medicago sativa cv. Bilensoy 80 and Nimet) response to varied carbon dioxide (CO 2) concentrations. Heliyon 2024; 10:e28975. [PMID: 38601528 PMCID: PMC11004217 DOI: 10.1016/j.heliyon.2024.e28975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/28/2024] [Accepted: 03/27/2024] [Indexed: 04/12/2024] Open
Abstract
Rising atmospheric CO2 levels drive greenhouse effects, elevating temperatures, and diminishing water accessibility in semi-arid regions, affecting agriculture. Alfalfa contributes to climate change mitigation by sequestering carbon, enhancing soil fertility and carbon storage, reducing synthetic nitrogen fertilizer use, preventing soil erosion, supplying high-quality livestock feed, and serving as a bioenergy source. This research examined the effects of elevated CO2 levels in climate change scenarios (600, 800, and 1000 ppm, with control at 400 ppm) on two alfalfa varieties, Medicago sativa cv. Nimet and Bilensoy-80. The experiments were conducted in specialized Climate Change Simulation Greenhouses, allowing control of CO2, water, and temperature variables. Results revealed a positive relationship between higher CO2 concentrations and increased photosynthesis (P ≤ 0.001), promoting the plant growth leaf area (P ≤ 0.001), yields and both leaf (P ≤ 0.05) and stem dry biomass (P ≤ 0.001). At 1000 ppm CO2, a saturation point was reached, halting further photosynthesis. This down-regulation was linked to decreased intercellular CO2 levels, which expedited chlorophyll and breakdown and potentially induced leaf senescence. High CO2 levels led to greater biomass, as anticipated. However, total protein levels, a forage quality indicator, initially decreased with high CO2 concentrations (up to 1000 ppm) due to an inverse relationship with shoot yield. Surprisingly, the 1000 ppm CO2 concentration mitigated this protein reduction in both alfalfa varieties.
Collapse
Affiliation(s)
- Tefide Kizildeniz
- Niğde Ömer Halisdemir University, Faculty of Agricultural Sciences and Technologies, Biosystems Engineering Department, 51240 Niğde, Turkey
| |
Collapse
|
7
|
Tiwari K, Tiwari S, Kumar N, Sinha S, Krishnamurthy SL, Singh R, Kalia S, Singh NK, Rai V. QTLs and Genes for Salt Stress Tolerance: A Journey from Seed to Seed Continued. PLANTS (BASEL, SWITZERLAND) 2024; 13:1099. [PMID: 38674508 PMCID: PMC11054697 DOI: 10.3390/plants13081099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 04/28/2024]
Abstract
Rice (Oryza sativa L.) is a crucial crop contributing to global food security; however, its production is susceptible to salinity, a significant abiotic stressor that negatively impacts plant germination, vigour, and yield, degrading crop production. Due to the presence of exchangeable sodium ions (Na+), the affected plants sustain two-way damage resulting in initial osmotic stress and subsequent ion toxicity in the plants, which alters the cell's ionic homeostasis and physiological status. To adapt to salt stress, plants sense and transfer osmotic and ionic signals into their respective cells, which results in alterations of their cellular properties. No specific Na+ sensor or receptor has been identified in plants for salt stress other than the SOS pathway. Increasing productivity under salt-affected soils necessitates conventional breeding supplemented with biotechnological interventions. However, knowledge of the genetic basis of salinity stress tolerance in the breeding pool is somewhat limited because of the complicated architecture of salinity stress tolerance, which needs to be expanded to create salt-tolerant variants with better adaptability. A comprehensive study that emphasizes the QTLs, genes and governing mechanisms for salt stress tolerance is discussed in the present study for future research in crop improvement.
Collapse
Affiliation(s)
- Keshav Tiwari
- Pusa Campus, ICAR-National Institute for Plant Biotechnology, New Delhi 110012, India
| | - Sushma Tiwari
- Pusa Campus, ICAR-National Institute for Plant Biotechnology, New Delhi 110012, India
| | - Nivesh Kumar
- Pusa Campus, ICAR-National Institute for Plant Biotechnology, New Delhi 110012, India
| | - Shikha Sinha
- Pusa Campus, ICAR-National Institute for Plant Biotechnology, New Delhi 110012, India
| | | | - Renu Singh
- Pusa Campus, ICAR-National Institute for Plant Biotechnology, New Delhi 110012, India
| | - Sanjay Kalia
- Department of Biotechnology, Ministry of Science and Technology, New Delhi 110003, India
| | - Nagendra Kumar Singh
- Pusa Campus, ICAR-National Institute for Plant Biotechnology, New Delhi 110012, India
| | - Vandna Rai
- Pusa Campus, ICAR-National Institute for Plant Biotechnology, New Delhi 110012, India
| |
Collapse
|
8
|
Ge M, Korrensalo A, Laiho R, Kohl L, Lohila A, Pihlatie M, Li X, Laine AM, Anttila J, Putkinen A, Wang W, Koskinen M. Plant-mediated CH 4 exchange in wetlands: A review of mechanisms and measurement methods with implications for modelling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169662. [PMID: 38159777 DOI: 10.1016/j.scitotenv.2023.169662] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/22/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024]
Abstract
Plant-mediated CH4 transport (PMT) is the dominant pathway through which soil-produced CH4 can escape into the atmosphere and thus plays an important role in controlling ecosystem CH4 emission. PMT is affected by abiotic and biotic factors simultaneously, and the effects of biotic factors, such as the dominant plant species and their traits, can override the effects of abiotic factors. Increasing evidence shows that plant-mediated CH4 fluxes include not only PMT, but also within-plant CH4 production and oxidation due to the detection of methanogens and methanotrophs attached to the shoots. Despite the inter-species and seasonal differences, and the probable contribution of within-plant microbes to total plant-mediated CH4 exchange (PME), current process-based ecosystem models only estimate PMT based on the bulk biomass or leaf area index of aerenchymatous plants. We highlight five knowledge gaps to which more research efforts should be devoted. First, large between-species variation, even within the same family, complicates general estimation of PMT, and calls for further work on the key dominant species in different types of wetlands. Second, the interface (rhizosphere-root, root-shoot, or leaf-atmosphere) and plant traits controlling PMT remain poorly documented, but would be required for generalizations from species to relevant functional groups. Third, the main environmental controls of PMT across species remain uncertain. Fourth, the role of within-plant CH4 production and oxidation is poorly quantified. Fifth, the simplistic description of PMT in current process models results in uncertainty and potentially high errors in predictions of the ecosystem CH4 flux. Our review suggest that flux measurements should be conducted over multiple growing seasons and be paired with trait assessment and microbial analysis, and that trait-based models should be developed. Only then we are capable to accurately estimate plant-mediated CH4 emissions, and eventually ecosystem total CH4 emissions at both regional and global scales.
Collapse
Affiliation(s)
- Mengyu Ge
- Department of Agricultural Sciences, University of Helsinki, PO Box 56, Helsinki 00014, Finland; Institute for Atmospheric and Earth System Research (INAR)/Forest Sciences, University of Helsinki, PO Box 56, Helsinki 00014, Finland.
| | - Aino Korrensalo
- Department of Environmental and Biological Sciences, University of Eastern Finland, PO Box 111, Kuopio 80101, Finland; Natural Resources Institute Finland, Latokartanonkaari 9, Helsinki 00790, Finland
| | - Raija Laiho
- Natural Resources Institute Finland, Latokartanonkaari 9, Helsinki 00790, Finland
| | - Lukas Kohl
- Department of Agricultural Sciences, University of Helsinki, PO Box 56, Helsinki 00014, Finland; Institute for Atmospheric and Earth System Research (INAR)/Forest Sciences, University of Helsinki, PO Box 56, Helsinki 00014, Finland; Department of Environmental and Biological Sciences, University of Eastern Finland, PO Box 111, Kuopio 80101, Finland
| | - Annalea Lohila
- Finnish Meteorological Institute, Erik Palménin aukio 1, Helsinki 00560, Finland
| | - Mari Pihlatie
- Department of Agricultural Sciences, University of Helsinki, PO Box 56, Helsinki 00014, Finland; Institute for Atmospheric and Earth System Research (INAR)/Forest Sciences, University of Helsinki, PO Box 56, Helsinki 00014, Finland; Department of Agricultural Sciences, Viikki Plant Science Centre (ViPS), University of Helsinki, PO Box 56, 00014 Helsinki, Finland
| | - Xuefei Li
- Institute for Atmospheric and Earth System Research (INAR)/Forest Sciences, University of Helsinki, PO Box 56, Helsinki 00014, Finland
| | - Anna M Laine
- Geological Survey of Finland, PO Box 1237, 70211 Kuopio, Finland
| | - Jani Anttila
- Natural Resources Institute Finland, Latokartanonkaari 9, Helsinki 00790, Finland
| | - Anuliina Putkinen
- Department of Agricultural Sciences, University of Helsinki, PO Box 56, Helsinki 00014, Finland; Institute for Atmospheric and Earth System Research (INAR)/Forest Sciences, University of Helsinki, PO Box 56, Helsinki 00014, Finland
| | - Weifeng Wang
- College of Biology and the Environment, Nanjing Forestry University, 210037 Nanjing, China
| | - Markku Koskinen
- Department of Agricultural Sciences, University of Helsinki, PO Box 56, Helsinki 00014, Finland; Institute for Atmospheric and Earth System Research (INAR)/Forest Sciences, University of Helsinki, PO Box 56, Helsinki 00014, Finland
| |
Collapse
|
9
|
Ahmed M, Tóth Z, Decsi K. The Impact of Salinity on Crop Yields and the Confrontational Behavior of Transcriptional Regulators, Nanoparticles, and Antioxidant Defensive Mechanisms under Stressful Conditions: A Review. Int J Mol Sci 2024; 25:2654. [PMID: 38473901 DOI: 10.3390/ijms25052654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
One of the most significant environmental challenges to crop growth and yield worldwide is soil salinization. Salinity lowers soil solution water potential, causes ionic disequilibrium and specific ion effects, and increases reactive oxygen species (ROS) buildup, causing several physiological and biochemical issues in plants. Plants have developed biological and molecular methods to combat salt stress. Salt-signaling mechanisms regulated by phytohormones may provide additional defense in salty conditions. That discovery helped identify the molecular pathways that underlie zinc-oxide nanoparticle (ZnO-NP)-based salt tolerance in certain plants. It emphasized the need to study processes like transcriptional regulation that govern plants' many physiological responses to such harsh conditions. ZnO-NPs have shown the capability to reduce salinity stress by working with transcription factors (TFs) like AP2/EREBP, WRKYs, NACs, and bZIPs that are released or triggered to stimulate plant cell osmotic pressure-regulating hormones and chemicals. In addition, ZnO-NPs have been shown to reduce the expression of stress markers such as malondialdehyde (MDA) and hydrogen peroxide (H2O2) while also affecting transcriptional factors. Those systems helped maintain protein integrity, selective permeability, photosynthesis, and other physiological processes in salt-stressed plants. This review examined how salt stress affects crop yield and suggested that ZnO-NPs could reduce plant salinity stress instead of osmolytes and plant hormones.
Collapse
Affiliation(s)
- Mostafa Ahmed
- Festetics Doctoral School, Institute of Agronomy, Georgikon Campus, Hungarian University of Agriculture and Life Sciences, 8360 Keszthely, Hungary
- Department of Agricultural Biochemistry, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - Zoltán Tóth
- Institute of Agronomy, Georgikon Campus, Hungarian University of Agriculture and Life Sciences, 8360 Keszthely, Hungary
| | - Kincső Decsi
- Institute of Agronomy, Georgikon Campus, Hungarian University of Agriculture and Life Sciences, 8360 Keszthely, Hungary
| |
Collapse
|
10
|
Hu Y, Xiao R, Wang Y, Li J, Guo C, Bai J, Zhang L, Zhang K, Jorquera MA, Manquian J, Pan W. Distribution of organophosphorus pesticides and its potential connection with probiotics in sediments of a shallow freshwater lake. JOURNAL OF CONTAMINANT HYDROLOGY 2024; 261:104306. [PMID: 38244424 DOI: 10.1016/j.jconhyd.2024.104306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/09/2024] [Accepted: 01/16/2024] [Indexed: 01/22/2024]
Abstract
Despite the serious health threats due to wide use of organophosphorus pesticides (OPPs) have been experimentally claimed to be remediated by probiotic microorganisms in various food and organism models, the interactions between OPPs and probiotics in the natural wetland ecosystem was rarely investigated. This study delves into the spatial and temporal distribution, contamination levels of OPPs in the Baiyangdian region, the diversity of probiotic communities in varying environmental contexts, and the potential connection with OPPs on these probiotics. In typical shallow lake wetland ecosystem-Baiyangdian lake in north China, eight OPPs were identified in the lake sediments, even though their detection rates were generally low. Malathion exhibited the highest average content among these pesticides (9.51 ng/g), followed by fenitrothion (6.70 ng/g). Conversely, chlorpyrifos had the lowest detection rate at only 2.14%. The region near Nanliu Zhuang (F10), significantly influenced by human activities, displayed the highest concentration of total OPPs (136.82 ng/g). A total of 145 probiotic species spanning 78 genera were identified in Baiyangdian sediments. Our analysis underscores the relations of environmental factors such as phosphatase activity, pH, and electrical conductivity (EC) with probiotic community. Notably, several high-abundance probiotics including Pseudomonas chlororaphis, Clostridium sp., Lactobacillus fermentum, and Pseudomonas putida, etc., which were reported to exhibit significant potential for the degradation of OPPs, showed strongly correlations with OPPs in the Baiyangdian lake sediments. The outcomes of this research offer valuable insights into the spatiotemporal dynamics of OPPs in natural large lake wetland and the probability of their in-situ residue bioremediation through the phosphatase pathway mediated by probiotic such as Lactic acid bacteria in soils/sediments contaminated with OPPs.
Collapse
Affiliation(s)
- Yanping Hu
- College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China
| | - Rong Xiao
- College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China.
| | - Yaping Wang
- College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China
| | - Junming Li
- College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China
| | - Congling Guo
- College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China
| | - Junhong Bai
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Ling Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Kegang Zhang
- Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, China
| | - Milko A Jorquera
- Department of Chemical Sciences and Natural Resources, University of La Frontera, Temuco 01145, Chile
| | - Javiera Manquian
- Department of Chemical Sciences and Natural Resources, University of La Frontera, Temuco 01145, Chile
| | - Wenbin Pan
- College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
11
|
Mahmood MZ, Odeibat HA, Ahmad R, Gatasheh MK, Shahzad M, Abbasi AM. Low apoplastic Na + and intracellular ionic homeostasis confer salinity tolerance upon Ca 2SiO 4 chemigation in Zea mays L. under salt stress. FRONTIERS IN PLANT SCIENCE 2024; 14:1268750. [PMID: 38235192 PMCID: PMC10791904 DOI: 10.3389/fpls.2023.1268750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/07/2023] [Indexed: 01/19/2024]
Abstract
Salinity is known to have a greater impact on shoot growth than root growth. Na+ buildup in plant tissue under salt stress has been proposed as one of the main issues that causes growth inhibition in crops via ionic imbalances, osmotic stress and pH disturbances. However, the evidence for apoplastic Na+ buildup and the role of silicon in Na+ accumulation at the subcellular level is still enigmatic. The current study focuses on the accumulation of Na+ in the apoplast and symplast of younger and older leaves of two maize varieties (Iqbal as salt-tolerant and Jalal as salt-sensitive) using hydroponic culture along with silicon supplementation under short-term salinity stress. Subcellular ion analysis indicated that silicon nutrition decreased Na+ concentration in both apoplastic washing fluid and symplastic fluid of maize under salt stress. The addition of silicon under NaCl treatment resulted in considerable improvement in fresh biomass, relative water content, chlorophyll content, and concentration of important subcellular ions (i.e., Ca2+, Mg2+, and K+). Knowledge of subcellular ion analysis is essential for solving the mechanisms underlying vital cellular functions e.g. in the current study, the soluble Na+ concentration in the apoplast of older leaves was found to be significantly greater (36.1 mM) in the salt-sensitive variety under NaCl treatment, which was 42.4% higher when compared to the Na+ concentration in the salt-tolerant variety under the same treatment which can influence permeability of cell membrane, signal transduction pathways and provides insights into how ion compartmentalization can contributes to salt tolerance. Calcium silicate enrichment can contribute to increased growth and improved ionic homeostasis by minimizing leaf electrolyte leakage, improving mechanical functions of cell wall and reducing water loss, and improved photosynthetic function. In current investigation, increased water content and intracellular ionic homeostasis along with reduced concentration of Na+ in the maize leaf apoplast suggest that calcium silicate can be used to ameliorate the adverse effects of salt stress and obtain yield using marginal saline lands.
Collapse
Affiliation(s)
- Moniba Zahid Mahmood
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad, Pakistan
- Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Hamza Ahmad Odeibat
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Rafiq Ahmad
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad, Pakistan
| | - Mansour K. Gatasheh
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Muhammad Shahzad
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad, Pakistan
| | - Arshad Mehmood Abbasi
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad, Pakistan
| |
Collapse
|
12
|
Yan Z, Li K, Li Y, Wang W, Leng B, Yao G, Zhang F, Mu C, Liu X. The ZmbHLH32-ZmIAA9-ZmARF1 module regulates salt tolerance in maize. Int J Biol Macromol 2023; 253:126978. [PMID: 37741480 DOI: 10.1016/j.ijbiomac.2023.126978] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/02/2023] [Accepted: 09/16/2023] [Indexed: 09/25/2023]
Abstract
The growth and productivity of maize (Zea mays), along with other crop plants, can be significantly hindered by salt stress. Nevertheless, the precise molecular mechanism underlying salt tolerance in maize has yet to be fully elucidated. Hence, it was attempted to identify ZmIAA9, a member of the maize Aux/IAA gene family, as a positive regulator of salt tolerance in maize, which was accompanied by the increased ROS detoxification and elevated transcript abundances of ROS scavenging genes. Molecular and biochemical assays have provided compelling evidence that ZmbHLH32, a transcription factor belonging to the bHLH family, was capable of binding directly to the promoter region of ZmIAA9, thereby activating its expression. This interaction between ZmbHLH32 and ZmIAA9 could be critical for the regulation of salt tolerance in maize. As expected, overexpression of ZmbHLH32 led to the enhanced salt tolerance. In contrast, decreased salt tolerance was attained after application of knockout mutants of ZmbHLH32. Furthermore, ZmARF1, which could act as a downstream of ZmIAA9, was found to physically interact with ZmIAA9 and repress the expression levels of ROS scavenging genes. Thus, our work uncovers a novel mechanism of ZmbHLH32-ZmIAA9-ZmARF1 module-mediated salt tolerance in maize, which can be exploited for breeding salt-tolerant maize varieties.
Collapse
Affiliation(s)
- Zhenwei Yan
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, Shandong, China
| | - Ke Li
- Shandong Academy of Grape, Shandong Academy of Agricultural Sciences, Jinan 250100, Shandong, China
| | - Yanli Li
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan 250100, Shandong, China
| | - Wenli Wang
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, Shandong, China
| | - Bingying Leng
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, Shandong, China
| | - Guoqi Yao
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, Shandong, China
| | - Fajun Zhang
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, Shandong, China.
| | - Chunhua Mu
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, Shandong, China.
| | - Xia Liu
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, Shandong, China.
| |
Collapse
|
13
|
Cavusoglu E, Sari U, Tiryaki I. Genome-wide identification and expression analysis of Na+/ H+antiporter ( NHX) genes in tomato under salt stress. PLANT DIRECT 2023; 7:e543. [PMID: 37965196 PMCID: PMC10641485 DOI: 10.1002/pld3.543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/09/2023] [Accepted: 10/09/2023] [Indexed: 11/16/2023]
Abstract
Plant Na +/H + antiporter (NHX) genes enhance salt tolerance by preventing excessive Na+ accumulation in the cytosol through partitioning of Na+ ions into vacuoles or extracellular transport across the plasma membrane. However, there is limited detailed information regarding the salt stress responsive SlNHXs in the most recent tomato genome. We investigated the role of this gene family's expression patterns in the open flower tissues under salt shock in Solanum lycopersicum using a genome-wide approach. A total of seven putative SlNHX genes located on chromosomes 1, 4, 6, and 10 were identified, but no ortholog of the NHX5 gene was identified in the tomato genome. Phylogenetic analysis revealed that these genes are divided into three different groups. SlNHX proteins with 10-12 transmembrane domains were hypothetically localized in vacuoles or cell membranes. Promoter analysis revealed that SlNHX6 and SlNHX8 are involved with the stress-related MeJA hormone in response to salt stress signaling. The structural motif analysis of SlNHX1, -2, -3, -4, and -6 proteins showed that they have highly conserved amiloride binding sites. The protein-protein network revealed that SlNHX7 and SlNHX8 interact physically with Salt Overly Sensitive (SOS) pathway proteins. Transcriptome analysis demonstrated that the SlNHX2 and SlNHX6 genes were substantially expressed in the open flower tissues. Moreover, quantitative PCR analysis indicated that all SlNHX genes, particularly SlNHX6 and SlNHX8, are significantly upregulated by salt shock in the open flower tissues. Our results provide an updated framework for future genetic research and development of breeding strategies against salt stress in the tomato.
Collapse
Affiliation(s)
- Erman Cavusoglu
- Department of Agricultural Biotechnology, Faculty of AgricultureCanakkale Onsekiz Mart University, Terzioglu CampusCanakkaleTurkey
| | - Ugur Sari
- Department of Agricultural Biotechnology, Faculty of AgricultureCanakkale Onsekiz Mart University, Terzioglu CampusCanakkaleTurkey
| | - Iskender Tiryaki
- Department of Agricultural Biotechnology, Faculty of AgricultureCanakkale Onsekiz Mart University, Terzioglu CampusCanakkaleTurkey
| |
Collapse
|
14
|
Xue L, Liu P, Wu A, Dong L, Wu Q, Zhao M, Liu H, Li Y, Zhang N, Wang Y. Resistance of Mycorrhizal Cinnamomum camphora Seedlings to Salt Spray Depends on K + and P Uptake. J Fungi (Basel) 2023; 9:964. [PMID: 37888220 PMCID: PMC10607215 DOI: 10.3390/jof9100964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/28/2023] Open
Abstract
Salt spray is a major environmental issue in coastal areas. Cinnamomum camphora is an economically important tree species that grows in the coastal areas of southern China. Arbuscular mycorrhizal fungi (AMF) can alleviate the detrimental effects of abiotic stress on host plants. However, the mechanism by which AMF mitigates the adverse effects of salt spray on C. camphora remains unclear. A pot experiment was conducted in a greenhouse, where C. camphora seedlings were exposed to four AMF regimes (inoculation with sterilized fungi, with Glomus tortuosum, Funneliformis mosseae, either alone or in combination) and three salt spray regimes (applied with distilled water, 7, and 14 mg NaCl cm-2) in order to investigate the influence on root functional traits and plant growth. The results showed that higher salt spray significantly decreased the K+ uptake, K+/Na+ ratio, N/P ratio, total dry weight, and salinity tolerance of non-mycorrhizal plants by 37.9%, 71%, 27.4%, 12.7%, and 221.3%, respectively, when compared with control plants grown under non-salinity conditions. Mycorrhizal inoculation, particularly with a combination of G. tortuosum and F. mosseae, greatly improved the P uptake, total dry weight, and salinity tolerance of plants grown under higher salt spray conditions by 51.0%, 36.7%, and 130.9%, respectively, when compared with their counterparts. The results show that AMF can alleviate the detrimental effects of salt spray on C. camphora seedlings. Moreover, an enhanced uptake of K+ and P accounted for the resistance of the plants to salt spray. Therefore, pre-inoculation with a combination of G. tortuosum and F. mosseae to improve nutrient acquisition is a potential method of protecting C. camphora plants against salt spray stress in coastal areas.
Collapse
Affiliation(s)
- Lin Xue
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou 311300, China; (L.X.); (P.L.); (Q.W.); (H.L.); (Y.L.)
| | - Peng Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou 311300, China; (L.X.); (P.L.); (Q.W.); (H.L.); (Y.L.)
| | - Aiping Wu
- Ecology Department, College of Environment and Ecology, Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Hunan Agricultural University, Changsha 410128, China;
| | - Lijia Dong
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing 312000, China;
| | - Qiqian Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou 311300, China; (L.X.); (P.L.); (Q.W.); (H.L.); (Y.L.)
| | - Mingshui Zhao
- Zhejiang Tianmu Mountain National Nature Reserve Administration, Hangzhou 311311, China;
| | - Hua Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou 311300, China; (L.X.); (P.L.); (Q.W.); (H.L.); (Y.L.)
| | - Yan Li
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou 311300, China; (L.X.); (P.L.); (Q.W.); (H.L.); (Y.L.)
| | - Naili Zhang
- State Key Laboratory of Efficient Production of Forest Resources and the Key Laboratory of Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - Yanhong Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou 311300, China; (L.X.); (P.L.); (Q.W.); (H.L.); (Y.L.)
| |
Collapse
|
15
|
Ahmad F, Jabeen K, Iqbal S, Umar A, Ameen F, Gancarz M, Eldin Darwish DB. Influence of silicon nano-particles on Avena sativa L. to alleviate the biotic stress of Rhizoctonia solani. Sci Rep 2023; 13:15191. [PMID: 37709782 PMCID: PMC10502127 DOI: 10.1038/s41598-023-41699-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 08/30/2023] [Indexed: 09/16/2023] Open
Abstract
Avena sativa L. a cereal crop that is badly affected by several abiotic and biotic stresses. In the current study, silicon nanoparticles are used to mitigate the harmful effects of root rot disease caused by Rhizoctonia solani Kuhn on the growth of A. sativa. In vitro (Petri plates) and in vivo (pots experiment) were performed to measure the various physiological and biochemical parameters i.e. osmotic potential, chlorophyll, proline content, growth parameters, sugar, fresh and dry weight, and disease index. Results revealed that physiological and biochemical parameters were reduced under fungal stress with silicon nanoparticles treatment as compared to the control group. Si nanoparticles helped to alleviate the negative effects caused by fungus i.e. germination percentage upto 80%, germination rate 4 n/d, radical and plumule length was 4.02 and 5.46, dry weight 0.08 g, and relative water content was (50.3%) increased. Fungus + Si treatment showed the maximum protein content, i.e. 1.2 µg/g as compared to Fungus (0.3 µg/g) treated group. The DI was maximum (78.82%) when the fungus directly attacked the target plant and DI reduced (44.2%) when the fungus was treated with Si nanoparticles. Thus, silicon nanoparticles were potentially effective against the stress of R. solani and also used to analyze the plant resistance against fungal diseases. These particles can use as silicon fertilizers, but further studies on their efficacy under field conditions and improvement in their synthesis are still needed.
Collapse
Affiliation(s)
- Faiza Ahmad
- Department of Botany, Lahore College for Women University, Lahore, Pakistan
| | - Khajista Jabeen
- Department of Botany, Lahore College for Women University, Lahore, Pakistan.
| | - Sumera Iqbal
- Department of Botany, Lahore College for Women University, Lahore, Pakistan
| | - Aisha Umar
- Institute of Botany, University of the Punjab, Lahore, Pakistan.
| | - Fuad Ameen
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Marek Gancarz
- Faculty of Production and Power Engineering, University of Agriculture in Krakow, Balicka 116B, 30 149, Krakow, Poland
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290, Lublin, Poland
| | | |
Collapse
|
16
|
Boussadia O, Zgallai H, Mzid N, Zaabar R, Braham M, Doupis G, Koubouris G. Physiological Responses of Two Olive Cultivars to Salt Stress. PLANTS (BASEL, SWITZERLAND) 2023; 12:1926. [PMID: 37653843 PMCID: PMC10222188 DOI: 10.3390/plants12101926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 09/02/2023]
Abstract
The olive tree (Olea europaea L.) is the main fruit tree in most of the arid and semi-arid regions of Tunisia, which is where the problem of salinity is more pronounced. Salinity is one of the main factors that affects the productivity of olive trees, so the objective of this experiment was to study the effects of salinity on the photosynthesis, water relations, mineral status, and enzymatic activity of two cultivars of Olea europaea L., 'Chemlali' and 'Koroneiki'. The trial was conducted under controlled conditions in a greenhouse for a period of 49 days and included two treatments: T0 control and T100 (irrigation with 100 mM of NaCl solution). Under salinity stress, the photosynthesis, stomatal conductance, and leaves of both cultivars were negatively affected. 'Chemlali' showed greater tolerance to NaCl salinity, based on a progressive decrease in osmotic potential (Ψπ) followed by a progressive and synchronous decrease in gs, without a comparable decrease in photosynthesis. The water use efficiency (WUE) improved as a result. In addition, the K+/Na+ ratio in 'Chemlali' rose. This appears to be crucial for managing stress. Conversely, enzymatic activity showed an accumulation of glutathione peroxidase (GPX) in stressed plants. The catalase (CAT) and ascorbate peroxidase (APX) content decreased in both stressed varieties. It can be concluded that the cultivar 'Koroneiki' is more susceptible to salt stress than the cultivar 'Chemlali', because the accumulation of GPX and the decreases in CAT and APX were more pronounced in this cultivar.
Collapse
Affiliation(s)
- Olfa Boussadia
- Olive Institute, Ibn Khaldoun BP 14, Sousse 4061, Tunisia
| | - Hatem Zgallai
- National Institute of Agronomic Research of Tunisia, Rue Hedi Karray, Tunis 1004, Tunisia
| | - Nada Mzid
- Department of Agriculture Forestry and Nature (DAFNE), University of Tuscia, 01100 Viterbo, Italy
| | - Rihem Zaabar
- Olive Institute, Ibn Khaldoun BP 14, Sousse 4061, Tunisia
| | - Mohamed Braham
- Olive Institute, Ibn Khaldoun BP 14, Sousse 4061, Tunisia
| | - Georgios Doupis
- Laboratory of Olive Cultivation, Institute of Olive Tree, Subtropical Crops and Viticulture, Hellenic Agricultural Organization DIMITRA, Leoforos Karamanli 167, 73134 Chania, Crete, Greece
| | - Georgios Koubouris
- Laboratory of Olive Cultivation, Institute of Olive Tree, Subtropical Crops and Viticulture, Hellenic Agricultural Organization DIMITRA, Leoforos Karamanli 167, 73134 Chania, Crete, Greece
| |
Collapse
|
17
|
Hu Y, Schmidhalter U. Opportunity and challenges of phenotyping plant salt tolerance. TRENDS IN PLANT SCIENCE 2023; 28:552-566. [PMID: 36628656 DOI: 10.1016/j.tplants.2022.12.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 12/03/2022] [Accepted: 12/15/2022] [Indexed: 05/22/2023]
Abstract
Salinity is a key factor limiting agricultural production worldwide. Recent advances in field phenotyping have enabled the recording of the environmental history and dynamic response of plants by considering both genotype × environment (G×E) interactions and envirotyping. However, only a few studies have focused on plant salt tolerance phenotyping. Therefore, we analyzed the potential opportunities and major challenges in improving plant salt tolerance using advanced field phenotyping technologies. RGB imaging and spectral and thermal sensors are the most useful and important sensing techniques for assessing key morphological and physiological traits of plant salt tolerance. However, field phenotyping faces challenges owing to its practical applications and high costs, limiting its use in early generation breeding and in developing countries.
Collapse
Affiliation(s)
- Yuncai Hu
- Chair of Plant Nutrition, School of Life Sciences, Technical University of Munich, D-85354 Freising, Germany.
| | - Urs Schmidhalter
- Chair of Plant Nutrition, School of Life Sciences, Technical University of Munich, D-85354 Freising, Germany
| |
Collapse
|
18
|
Zhu Y, Ren Y, Liu J, Liang W, Zhang Y, Shen F, Ling J, Zhang C. New Genes Identified as Modulating Salt Tolerance in Maize Seedlings Using the Combination of Transcriptome Analysis and BSA. PLANTS (BASEL, SWITZERLAND) 2023; 12:1331. [PMID: 36987019 PMCID: PMC10053919 DOI: 10.3390/plants12061331] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 06/19/2023]
Abstract
(1) Background: Salt stress is an abiotic factor that limits maize yield and quality. A highly salt-tolerance inbred AS5 and a salt-sensitive inbred NX420 collected from Ningxia Province, China, were used to identify new genes for modulating salt resistance in maize. (2) Methods: To understand the different molecular bases of salt tolerance in AS5 and NX420, we performed BSA-seq using an F2 population for two extreme bulks derived from the cross between AS5 and NX420. Transcriptomic analysis was also conducted for AS5 and NX420 at the seedling stage after treatment with 150 mM of NaCl for 14 days. (3) Results: AS5 had a higher biomass and lower Na+ content than NX420 in the seedling stage after treatment with 150 mM NaCl for 14 days. One hundred and six candidate regions for salt tolerance were mapped on all of the chromosomes through BSA-seq using F2 in an extreme population. Based on the polymorphisms identified between both parents, we detected 77 genes. A large number of differentially expressed genes (DEGs) at the seedling stage under salt stress between these two inbred lines were detected using transcriptome sequencing. GO analysis indicated that 925 and 686 genes were significantly enriched in the integral component of the membrane of AS5 and NX420, respectively. Among these results, two and four DEGs were identified as overlapping in these two inbred lines using BSA-seq and transcriptomic analysis, respectively. Two genes (Zm00001d053925 and Zm00001d037181) were detected in both AS5 and NX420; the transcription level of Zm00001d053925 was induced to be significantly higher in AS5 than in NX420 (41.99 times versus 6.06 times after 150 mM of NaCl treatment for 48 h), while the expression of Zm00001d037181 showed no significant difference upon salt treatment in both lines. The functional annotation of the new candidate genes showed that it was an unknown function protein. (4) Conclusions: Zm00001d053925 is a new functional gene responding to salt stress in the seedling stage, which provides an important genetic resource for salt-tolerant maize breeding.
Collapse
Affiliation(s)
- Yongxing Zhu
- Biotechnology Research Institute, Chinese Academy of Agricultural Science, Beijing 100081, China
- Agricultural Biotechnology Center, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, China
| | - Ying Ren
- Biotechnology Research Institute, Chinese Academy of Agricultural Science, Beijing 100081, China
| | - Ji’an Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Science, Beijing 100081, China
| | - Wenguang Liang
- Biotechnology Research Institute, Chinese Academy of Agricultural Science, Beijing 100081, China
| | - Yuanyuan Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Science, Beijing 100081, China
| | - Fengyuan Shen
- Biotechnology Research Institute, Chinese Academy of Agricultural Science, Beijing 100081, China
| | - Jiang Ling
- Biotechnology Research Institute, Chinese Academy of Agricultural Science, Beijing 100081, China
| | - Chunyi Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Science, Beijing 100081, China
- Sanya Institute, Hainan Academy of Agricultural Sciences, Sanya 572000, China
| |
Collapse
|
19
|
Mukarram M, Khan MMA, Kurjak D, Lux A, Corpas FJ. Silicon nanoparticles (SiNPs) restore photosynthesis and essential oil content by upgrading enzymatic antioxidant metabolism in lemongrass ( Cymbopogon flexuosus) under salt stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1116769. [PMID: 36875580 PMCID: PMC9981966 DOI: 10.3389/fpls.2023.1116769] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/30/2023] [Indexed: 06/01/2023]
Abstract
Lemongrass (Cymbopogon flexuosus) has great relevance considering the substantial commercial potential of its essential oil. Nevertheless, the increasing soil salinity poses an imminent threat to lemongrass cultivation given its moderate salt-sensitivity. For this, we used silicon nanoparticles (SiNPs) to stimulate salt tolerance in lemongrass considering SiNPs special relevance to stress settings. Five foliar sprays of SiNPs 150 mg L-1 were applied weekly to NaCl 160 and 240 mM-stressed plants. The data indicated that SiNPs minimised oxidative stress markers (lipid peroxidation, H2O2 content) while triggering a general activation of growth, photosynthetic performance, enzymatic antioxidant system including superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD), and osmolyte proline (PRO). SiNPs amplified stomatal conductance and photosynthetic CO2 assimilation rate by about 24% and 21% in NaCl 160 mM-stressed plants. Associated benefits contributed to pronounced plant phenotype over their stressed counterparts, as we found. Foliar SiNPs sprays assuaged plant height by 30% and 64%, dry weight by 31% and 59%, and leaf area by 31% and 50% under NaCl 160 and 240 mM concentrations, respectively. SiNPs relieved enzymatic antioxidants (SOD, CAT, POD) and osmolyte (PRO) in lemongrass plants stressed with NaCl 160 mM (9%, 11%, 9%, and 12%, respectively) and NaCl 240 mM (13%, 18%, 15%, and 23%, respectively). The same treatment supported the oil biosynthesis improving essential oil content by 22% and 44% during 160 and 240 mM salt stress, respectively. We found SiNPs can completely overcome NaCl 160 mM stress while significantly palliating NaCl 240 mM stress. Thus, we propose that SiNPs can be a useful biotechnological tool to palliate salinity stress in lemongrass and related crops.
Collapse
Affiliation(s)
- Mohammad Mukarram
- Advance Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, India
- Department of Phytology, Faculty of Forestry, Technical University in Zvolen, Zvolen, Slovakia
| | - M. Masroor A. Khan
- Advance Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, India
| | - Daniel Kurjak
- Department of Integrated Forest and Landscape Protection, Faculty of Forestry, Technical University in Zvolen, Zvolen, Slovakia
| | - Alexander Lux
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, Bratislava, Slovakia
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Francisco J. Corpas
- Department of Stress, Development and Signaling in Plants, Antioxidant, Free Radical and Nitric Oxide in Biotechnology, Food and Agriculture Group, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| |
Collapse
|
20
|
Urbanavičiūtė I, Bonfiglioli L, Pagnotta MA. Phenotypic and Genotypic Diversity of Roots Response to Salt in Durum Wheat Seedlings. PLANTS (BASEL, SWITZERLAND) 2023; 12:412. [PMID: 36679125 PMCID: PMC9865824 DOI: 10.3390/plants12020412] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/03/2023] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
Soil salinity is a serious threat to food production now and in the near future. In this study, the root system of six durum wheat genotypes, including one highly salt-tolerant (J. Khetifa) used as a check genotype, was evaluated, by a high-throughput phenotyping system, under control and salt conditions at the seedling stage. Genotyping was performed using 11 SSR markers closely linked with genome regions associated with root traits. Based on phenotypic cluster analysis, genotypes were grouped differently under control and salt conditions. Under control conditions, genotypes were clustered mainly due to a root angle, while under salt stress, genotypes were grouped according to their capacity to maintain higher roots length, volume, and surface area, as J. Khetifa, Sebatel, and Azeghar. SSR analysis identified a total of 42 alleles, with an average of about three alleles per marker. Moreover, quite a high number of Private alleles in total, 18 were obtained. The UPGMA phenogram of the Nei (1972) genetic distance clusters for 11 SSR markers and all phenotypic data under control conditions discriminate genotypes almost into the same groups. The study revealed as the combination of high-throughput systems for phenotyping with SSR markers for genotyping it's a useful tool to provide important data for the selection of suitable parental lines for salt-tolerance breeding. Nevertheless, the narrow root angle, which is an important trait in drought tolerance, is not a good indicator of salt tolerance. Instated for salt tolerance is more important the amount of roots.
Collapse
Affiliation(s)
| | | | - Mario A. Pagnotta
- Department of Agricultural and Forest Sciences, Tuscia University, Via S. C. de Lellis, 01100 Viterbo, Italy
| |
Collapse
|
21
|
Covașă M, Slabu C, Marta AE, Jităreanu CD. Increasing the Salt Stress Tolerance of Some Tomato Cultivars under the Influence of Growth Regulators. PLANTS (BASEL, SWITZERLAND) 2023; 12:363. [PMID: 36679075 PMCID: PMC9860748 DOI: 10.3390/plants12020363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Areas with saline soils are in continuous expansion, and in this context, it is very important to find solutions that help plants adapt more easily to these stress conditions, and to identify the main physiological and biochemical mechanisms involved in determining a good adaptability of plants. Biostimulants could be a plausible solution. This study was conducted in 2021 at the IULS (Iasi University of Life Sciences) in Romania, under greenhouse conditions and the biological material consisted of four tomato varieties: Buzau, Elisabeta, Bacovia, and Lillagro. For the treatments, we used natrium chloride (NaCl) 120 mM and an Atonik biostimulant. Three treatments were applied at intervals of 14 days. The Atonik biostimulant was applied by foliar spray, and the saline solution was applied to the root system. We have gathered some observations on the growth and fruiting character of the tomato plants studied: the height of the stems, the number of flowers in the inflorescence, the number of fruits, and the weight of fruits. Chlorophyll and carotenoid pigments as well as proline amino acid from leaves were also measured. Observations were made 14 days after the application of each treatment. Quantitative determinations were made 14 days after the application of the third treatment. The findings of this study made it clear that the Atonik biostimulant presented a positive effect on the physiological processes observed in tomato plants grown under salt stress conditions.
Collapse
|
22
|
Wang G, Zhang L, Zhang S, Li B, Li J, Wang X, Zhang J, Guan C, Ji J. The combined use of a plant growth promoting Bacillus sp. strain and GABA promotes the growth of rice under salt stress by regulating antioxidant enzyme system, enhancing photosynthesis and improving soil enzyme activities. Microbiol Res 2023; 266:127225. [DOI: 10.1016/j.micres.2022.127225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/16/2022] [Accepted: 10/06/2022] [Indexed: 11/05/2022]
|
23
|
Shen J, Wu Z, Yin L, Chen S, Cai Z, Geng X, Wang D. Physiological basis and differentially expressed genes in the salt tolerance mechanism of Thalassia hemprichii. FRONTIERS IN PLANT SCIENCE 2022; 13:975251. [PMID: 36518512 PMCID: PMC9742478 DOI: 10.3389/fpls.2022.975251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 11/10/2022] [Indexed: 06/17/2023]
Abstract
Seagrass plays a vital role in the stability of marine ecology. The human development of marine resources has greatly affected the survival of seagrass. Seawater salinity is one of the important factors affecting its survival. Seagrass can survive in high saline environments for a long time and has evolved a variety of effective tolerance mechanisms. However, little is known about the molecular mechanisms underlying salinity tolerance by seagrass. Thalassia hemprichii is a seagrass species with a global distribution. It is also an ecologically important plant species in coastal waters. Nevertheless, the continuous environmental deterioration has gradually reduced the ecological niche of seagrasses. In this study, experiments were conducted to examine the effects of salinity changes on T. hemprichii. The result showed that the optimal salinity for T. hemprichii is 25 to 35 PSU. Although it can survive under high and low salinity, high mortality rates are common in such environments. Further analyses revealed that high salinity induces growth and developmental retardation in T. hemprichii and further causes yellowing. The parenchyma cells in T. hemprichii also collapse, the structure changes, soluble sugar accumulates rapidly, soluble proteins accumulate rapidly, the malondialdehyde (MDA) content reduces, and lipid peroxidation reduces in plant membranes. The molecular mechanisms of salt tolerance differ significantly between marine and terrestrial plants. We found 319 differentially expressed genes (DEGs). These genes regulate transport and metabolism, promoting environmental adaptation. The expression of these genes changed rapidly upon exposure of T. hemprichii to salinity stress for three hours. This is the first report on the physiological and biochemical changes and gene expression regulation of T. hemprichii under different salinity conditions. The findings of this study well deepen our understanding of T. hemprichii adaptations to changes in the shoal living environment.
Collapse
Affiliation(s)
- Jie Shen
- Hainan Academy of Ocean and Fisheries Sciences, Haikou, China
| | - Zhongjie Wu
- Hainan Academy of Ocean and Fisheries Sciences, Haikou, China
| | - Lei Yin
- Key laboratory of Utilization and Conservation for Tropical Marine Bioresources, Hainan Tropical Ocean University, Ministry of Education, Sanya, China
| | - Shiquan Chen
- Hainan Academy of Ocean and Fisheries Sciences, Haikou, China
| | - Zefu Cai
- Hainan Academy of Ocean and Fisheries Sciences, Haikou, China
| | - Xiaoxiao Geng
- Key laboratory of Utilization and Conservation for Tropical Marine Bioresources, Hainan Tropical Ocean University, Ministry of Education, Sanya, China
| | - Daoru Wang
- Hainan Academy of Ocean and Fisheries Sciences, Haikou, China
| |
Collapse
|
24
|
Abdelhaleim MS, Rahimi M, Okasha SA. Assessment of drought tolerance indices in faba bean genotypes under different irrigation regimes. Open Life Sci 2022; 17:1462-1472. [DOI: 10.1515/biol-2022-0520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 09/06/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
Abstract
Drought stress has devastating impacts on faba bean production, particularly with the current abrupt climate changes in arid environments. Hence, it is essential to identify drought-tolerant genotypes. The present study aimed at assessing six faba bean genotypes under three irrigation levels during two winter successive growing seasons (2018/2019 and 2019/2020). The applied irrigation levels were well-watered (every 4 days (D1), moderate drought every 8 days (D2), and severe drought 12 days (D3)) regimes. The analysis of variance exhibited highly significant differences among genotypes, irrigation treatments, and their interactions for all studied traits, except the number of pods plant−1 in the first season. Yield traits of all assessed genotypes decreased significantly with increasing drought stress. Otherwise, proline content (Pro) increased significantly with increasing drought stress. The genotypes Giza.843, Nubaria.2, and Nubaria.3 recorded the highest values of plant height, number of branches/plant, pods/plant, pods weight/plant, 100 seed weight, seed yield/plant, and seed yield/kg under drought stress. Similarly, the highest Pro was displayed by Giza.843 and Nubaria.3 under drought stress in both seasons. Furthermore, Giza.843, Nubaria.2, and Nubaria.3 genotypes had the highest values for most tolerant indices. Accordingly, these genotypes could be exploited in developing drought-tolerant and high-yielding faba bean genotypes in arid environments through breeding programs.
Collapse
Affiliation(s)
- Manal S. Abdelhaleim
- Agronomy Department, Faculty of Agriculture, Suez Canal University , 41522 , Ismailia , Egypt
| | - Mehdi Rahimi
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology , Kerman , Iran
| | - Salah A. Okasha
- Agronomy Department, Faculty of Agriculture, Suez Canal University , 41522 , Ismailia , Egypt
| |
Collapse
|
25
|
Liu Y, Su M, Han Z. Effects of NaCl Stress on the Growth, Physiological Characteristics and Anatomical Structures of Populus talassica × Populus euphratica Seedlings. PLANTS (BASEL, SWITZERLAND) 2022; 11:3025. [PMID: 36432761 PMCID: PMC9698527 DOI: 10.3390/plants11223025] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/28/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
In order to elucidate the salt tolerance mechanism of Populus talassica × Populus euphratica, the growth, physiology and anatomical characteristics of P. talassica × P. euphratica were studied under different concentrations of NaCl-stress treatments. In this study, the annual seedlings of Populus talassica × Populus euphratica were used as the test material in a field potted control experiment. The basic salt content of the culture soil was the control (CK), and two NaCl treatments of 200 mmol/L and 400 mmol/L were established. The pot experiment showed that: (1) Compared with CK, the 200 mmol/L NaCl-stress treatment significantly increased the growth parameters of P. talassica × P. euphratica, such as leaf area, plant height, ground diameter, biomass, root length, root surface area, root fork number and root-shoot ratio. However, compared with CK, the 400 mmol/L NaCl-stress treatment significantly reduced most growth parameters. (2) The 200 and 400 mmol/L NaCl-stress treatments significantly decreased various physiological parameters such as relative water content (RWC), chlorophyll content, water potential, stomatal opening and photosynthetic parameters and increased the accumulation of MDA and Pro compared with CK. The 200 mmol/L NaCl-stress treatment significantly increased the activity of antioxidant enzymes, and the 400 mmol/L NaCl-stress treatment significantly decreased the activity of antioxidant enzymes. (3) Compared with CK, 200 and 400 mmol/L NaCl-stress treatments significantly improved the leaf palisade tissue thickness and palisade-to-sea ratio, as well as the stem xylem and stem phloem thickness and pith diameter, and significantly increased the root xylem thickness, root phloem thickness, and root cross-cutting diameter of P. talassica × P. euphratica. The growth, physiological characteristics and anatomical characteristics of P. talassica × P. euphratica under NaCl-stress treatments showed that it had good salt tolerance and adaptability, and the 200 mmol/L NaCl-stress treatment promoted the growth of P. talassica × P. euphratica to a certain extent. This study provided a theoretical basis for the study of the salt-tolerant mechanism of P. talassica × P. euphratica.
Collapse
Affiliation(s)
- Ying Liu
- College of Life Science and Technology, Tarim University, Alar 843300, China
- Xinjiang Production and Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Alar 843300, China
| | - Mengxu Su
- College of Life Science and Technology, Tarim University, Alar 843300, China
- Xinjiang Production and Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Alar 843300, China
| | - Zhanjiang Han
- College of Life Science and Technology, Tarim University, Alar 843300, China
- Xinjiang Production and Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Alar 843300, China
| |
Collapse
|
26
|
McDowell NG, Ball M, Bond‐Lamberty B, Kirwan ML, Krauss KW, Megonigal JP, Mencuccini M, Ward ND, Weintraub MN, Bailey V. Processes and mechanisms of coastal woody-plant mortality. GLOBAL CHANGE BIOLOGY 2022; 28:5881-5900. [PMID: 35689431 PMCID: PMC9544010 DOI: 10.1111/gcb.16297] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 05/24/2022] [Indexed: 05/26/2023]
Abstract
Observations of woody plant mortality in coastal ecosystems are globally widespread, but the overarching processes and underlying mechanisms are poorly understood. This knowledge deficiency, combined with rapidly changing water levels, storm surges, atmospheric CO2 , and vapor pressure deficit, creates large predictive uncertainty regarding how coastal ecosystems will respond to global change. Here, we synthesize the literature on the mechanisms that underlie coastal woody-plant mortality, with the goal of producing a testable hypothesis framework. The key emergent mechanisms underlying mortality include hypoxic, osmotic, and ionic-driven reductions in whole-plant hydraulic conductance and photosynthesis that ultimately drive the coupled processes of hydraulic failure and carbon starvation. The relative importance of these processes in driving mortality, their order of progression, and their degree of coupling depends on the characteristics of the anomalous water exposure, on topographic effects, and on taxa-specific variation in traits and trait acclimation. Greater inundation exposure could accelerate mortality globally; however, the interaction of changing inundation exposure with elevated CO2 , drought, and rising vapor pressure deficit could influence mortality likelihood. Models of coastal forests that incorporate the frequency and duration of inundation, the role of climatic drivers, and the processes of hydraulic failure and carbon starvation can yield improved estimates of inundation-induced woody-plant mortality.
Collapse
Affiliation(s)
- Nate G. McDowell
- Atmospheric Sciences and Global Change DivisionPacific Northwest National LabRichlandWashingtonUSA
- School of Biological SciencesWashington State UniversityPullmanWashingtonUSA
| | - Marilyn Ball
- Plant Science Division, Research School of BiologyThe Australian National UniversityActonAustralian Capital TerritoryAustralia
| | - Ben Bond‐Lamberty
- Joint Global Change Research Institute, Pacific Northwest National LaboratoryCollege ParkMarylandUSA
| | - Matthew L. Kirwan
- Virginia Institute of Marine Science, William & MaryGloucester PointVirginiaUSA
| | - Ken W. Krauss
- U.S. Geological Survey, Wetland and Aquatic Research CenterLafayetteLouisianaUSA
| | | | - Maurizio Mencuccini
- ICREA, Passeig Lluís Companys 23BarcelonaSpain
- CREAFCampus UAB, BellaterraBarcelonaSpain
| | - Nicholas D. Ward
- Marine and Coastal Research LaboratoryPacific Northwest National LaboratorySequimWashingtonUSA
- School of OceanographyUniversity of WashingtonSeattleWashingtonUSA
| | - Michael N. Weintraub
- Department of Environmental SciencesUniversity of ToledoToledoOhioUSA
- Biological Sciences DivisionPacific Northwest National LaboratoryWashingtonUSA
| | - Vanessa Bailey
- Biological Sciences DivisionPacific Northwest National LaboratoryWashingtonUSA
| |
Collapse
|
27
|
Barnhart MH, Masalia RR, Mosley LJ, Burke JM. Phenotypic and transcriptomic responses of cultivated sunflower seedlings (Helianthus annuus L.) to four abiotic stresses. PLoS One 2022; 17:e0275462. [PMID: 36178944 PMCID: PMC9524668 DOI: 10.1371/journal.pone.0275462] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 09/18/2022] [Indexed: 11/19/2022] Open
Abstract
Plants encounter and respond to numerous abiotic stresses during their lifetimes. These stresses are often related and could therefore elicit related responses. There are, however, relatively few detailed comparisons between multiple different stresses at the molecular level. Here, we investigated the phenotypic and transcriptomic response of cultivated sunflower (Helianthus annuus L.) seedlings to three water-related stresses (i.e., dry-down, an osmotic challenge, and salt stress), as well as a generalized low-nutrient stress. All four stresses negatively impacted seedling growth, with the nutrient stress having a more divergent response from control as compared to the water-related stresses. Phenotypic responses were consistent with expectations for growth in low-resource environments, including increased (i.e., less negative) carbon fractionation values and leaf C:N ratios, as well as increased belowground biomass allocation. The number of differentially expressed genes (DEGs) under stress was greater in leaf tissue, but roots exhibited a higher proportion of DEGs unique to individual stresses. Overall, the three water-related stresses had a more similar transcriptomic response to each other vs. nutrient stress, though this pattern was more pronounced in root vs. leaf tissue. In contrast to our DEG analyses, co-expression network analysis revealed that there was little indication of a shared response between the four stresses in despite the majority of DEGs being shared between multiple stresses. Importantly, osmotic stress, which is often used to simulate drought stress in experimental settings, had little transcriptomic resemblance to true water limitation (i.e., dry-down) in our study, calling into question its utility as a means for simulating drought.
Collapse
Affiliation(s)
- Max H. Barnhart
- Department of Plant Biology, University of Georgia, Athens, GA, United States of America
- * E-mail:
| | - Rishi R. Masalia
- Department of Plant Biology, University of Georgia, Athens, GA, United States of America
| | - Liana J. Mosley
- Department of Plant Biology, University of Georgia, Athens, GA, United States of America
| | - John M. Burke
- Department of Plant Biology, University of Georgia, Athens, GA, United States of America
| |
Collapse
|
28
|
Wang Y, Cui Y, Liu B, Wang Y, Sun S, Wang J, Tan M, Yan H, Zhang Y. Lilium pumilum stress-responsive NAC transcription factor LpNAC17 enhances salt stress tolerance in tobacco. FRONTIERS IN PLANT SCIENCE 2022; 13:993841. [PMID: 36119598 PMCID: PMC9478543 DOI: 10.3389/fpls.2022.993841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Lilium pumilum is a perennial herb with ornamental edible and medicinal value. It is an excellent wild germplasm resource with wide distribution and strong resistance. The NAC family of transcription factors is unique to higher plants. The NAC family plays a regulatory role in plant growth and development and participates in plant responses to biotic and abiotic stresses. The LpNAC17 gene of L. pumilum was cloned and transformed into tobacco to investigate the response of transgenic tobacco to salt stress. The results showed that the net photosynthetic rate and contents of chlorophyll in LpNAC17 over-expressed tobacco were higher than those in the control plants, while the stomatal conductance, transpiration rate and intercellular CO2 concentration were lower than those in the controls. The activity of superoxide dismutase, peroxidase, catalase, and the content of proline in LpNAC17 over-expressed tobacco were higher than those in the controls, while the content of malondialdehyde, superoxide anion, and hydrogen peroxide were lower than that in the control. Nitro-blue tetrazolium staining and 3,3'-diaminobenzidine tissue localization showed that the contents of O 2 - and H2O2 in transgenic tobacco was lower than in the controls. The expression levels of NtSOD, NtPOD, NtCAT, NtHAK1, NtPMA4, and NtSOS1 in the transgenic tobacco were higher than those in the controls. Therefore, this study provides a gene source for molecular breeding of salt-tolerant plants through genetic engineering, and lays a foundation for further research on salt-tolerant Lily.
Collapse
|
29
|
Li W, McDowell NG, Zhang H, Wang W, Mackay DS, Leff R, Zhang P, Ward ND, Norwood M, Yabusaki S, Myers-Pigg AN, Pennington SC, Pivovaroff AL, Waichler S, Xu C, Bond-Lamberty B, Bailey VL. The influence of increasing atmospheric CO 2 , temperature, and vapor pressure deficit on seawater-induced tree mortality. THE NEW PHYTOLOGIST 2022; 235:1767-1779. [PMID: 35644021 DOI: 10.1111/nph.18275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Increasing seawater exposure is killing coastal trees globally, with expectations of accelerating mortality with rising sea levels. However, the impact of concomitant changes in atmospheric CO2 concentration, temperature, and vapor pressure deficit (VPD) on seawater-induced tree mortality is uncertain. We examined the mechanisms of seawater-induced mortality under varying climate scenarios using a photosynthetic gain and hydraulic cost optimization model validated against observations in a mature stand of Sitka spruce (Picea sitchensis) trees in the Pacific Northwest, USA, that were dying from recent seawater exposure. The simulations matched well with observations of photosynthesis, transpiration, nonstructural carbohydrates concentrations, leaf water potential, the percentage loss of xylem conductivity, and stand-level mortality rates. The simulations suggest that seawater-induced mortality could decrease by c. 16.7% with increasing atmospheric CO2 levels due to reduced risk of carbon starvation. Conversely, rising VPD could increase mortality by c. 5.6% because of increasing risk of hydraulic failure. Across all scenarios, seawater-induced mortality was driven by hydraulic failure in the first 2 yr after seawater exposure began, with carbon starvation becoming more important in subsequent years. Changing CO2 and climate appear unlikely to have a significant impact on coastal tree mortality under rising sea levels.
Collapse
Affiliation(s)
- Weibin Li
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
- Atmospheric Sciences & Global Change Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Nate G McDowell
- Atmospheric Sciences & Global Change Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
- School of Biological Sciences, Washington State University, Pullman, WA, 99164-4236, USA
| | - Hongxia Zhang
- Atmospheric Sciences & Global Change Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
- Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Wenzhi Wang
- Atmospheric Sciences & Global Change Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
- The Key Laboratory of Mountain Environment Evolution and Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, China
| | - D Scott Mackay
- Department of Geography and Department of Environment & Sustainability, University at Buffalo, Buffalo, NY, 14261, USA
| | - Riley Leff
- Atmospheric Sciences & Global Change Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Peipei Zhang
- Atmospheric Sciences & Global Change Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
- CAS Key Laboratory of Mountain Ecological Restoration, Bioresource Utilization & Ecological Restoration, Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Nicholas D Ward
- Marine and Coastal Research Laboratory, Pacific Northwest National Laboratory, Sequim, WA, 98382, USA
- School of Oceanography, University of Washington, Seattle, WA, 98105, USA
| | - Matt Norwood
- Marine and Coastal Research Laboratory, Pacific Northwest National Laboratory, Sequim, WA, 98382, USA
| | - Steve Yabusaki
- Earth Systems Science, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Allison N Myers-Pigg
- Marine and Coastal Research Laboratory, Pacific Northwest National Laboratory, Sequim, WA, 98382, USA
- Department of Environmental Sciences, University of Toledo, Toledo, OH, 43606, USA
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Stephanie C Pennington
- Pacific Northwest National Laboratory, Joint Global Change Research Institute, College Park, MD, 20740, USA
| | - Alexandria L Pivovaroff
- Atmospheric Sciences & Global Change Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Scott Waichler
- Earth Systems Science, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Chonggang Xu
- Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Ben Bond-Lamberty
- Pacific Northwest National Laboratory, Joint Global Change Research Institute, College Park, MD, 20740, USA
| | - Vanessa L Bailey
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| |
Collapse
|
30
|
Kiferle C, Gonzali S, Beltrami S, Martinelli M, Hora K, Holwerda HT, Perata P. Improvement in fruit yield and tolerance to salinity of tomato plants fertigated with micronutrient amounts of iodine. Sci Rep 2022; 12:14655. [PMID: 36038704 PMCID: PMC9424290 DOI: 10.1038/s41598-022-18301-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/09/2022] [Indexed: 11/12/2022] Open
Abstract
Iodine is an essential micronutrient for humans, but its role in plant physiology was debated for nearly a century. Recently its functional involvement in plant nutrition and stress-protection collected the first experimental evidence. This study wanted to examine in depth the involvement of iodine in tomato plant nutrition, also evaluating its potential on salt stress tolerance. To this end, iodine was administered at dosages effective for micronutrients to plants grown in different experimental systems (growth chamber and greenhouse), alone or in presence of a mild-moderate NaCl-salinity stress. Plant vegetative fitness, fruit yield and quality, biochemical parameters and transcriptional activity of selected stress-responsive genes were evaluated. In unstressed plants, iodine increased plant growth and fruit yield, as well as some fruit qualitative parameters. In presence of salt stress, iodine mitigated some of the negative effects observed, according to the iodine/NaCl concentrations used. Some fruit parameters and the expressions of the stress marker genes analyzed were affected by the treatments, explaining, at least in part, the increased plant tolerance to the salinity. This study thus reconfirms the functional involvement of iodine in plant nutrition and offers evidence towards the use of minute amounts of it as a beneficial nutrient for crop production.
Collapse
Affiliation(s)
- Claudia Kiferle
- PlantLab, Center of Plant Sciences, Scuola Superiore Sant'Anna, Pisa, Italy.
| | - Silvia Gonzali
- PlantLab, Center of Plant Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Sara Beltrami
- PlantLab, Center of Plant Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Marco Martinelli
- PlantLab, Center of Plant Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Katja Hora
- SQM International N.V., 2030, Antwerpen, Belgium
| | | | | |
Collapse
|
31
|
Cui J, Li J, Dai C, Li L. Transcriptome and Metabolome Analyses Revealed the Response Mechanism of Sugar Beet to Salt Stress of Different Durations. Int J Mol Sci 2022; 23:ijms23179599. [PMID: 36076993 PMCID: PMC9455719 DOI: 10.3390/ijms23179599] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/17/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Salinity is one of the most serious threats to agriculture worldwide. Sugar beet is an important sugar-yielding crop and has a certain tolerance to salt; however, the genome-wide dynamic response to salt stress remains largely unknown in sugar beet. In the present study, physiological and transcriptome analyses of sugar beet leaves and roots were compared under salt stress at five time points. The results showed that different salt stresses influenced phenotypic characteristics, leaf relative water content and root activity in sugar beet. The contents of chlorophyll, malondialdehyde (MDA), the activities of peroxidase (POD), superoxide dismutase (SOD), and catalase (CAT) were also affected by different salt stresses. Compared with control plants, there were 7391 and 8729 differentially expressed genes (DEGs) in leaves and roots under salt stress, respectively. A total of 41 hub genes related to salt stress were identified by weighted gene co-expression network analysis (WGCNA) from DEGs, and a transcriptional regulatory network based on these genes was constructed. The expression pattern of hub genes under salt stress was confirmed by qRT-PCR. In addition, the metabolite of sugar beet was compared under salt stress for 24 h. A total of 157 and 157 differentially accumulated metabolites (DAMs) were identified in leaves and roots, respectively. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis further indicated that DEGs and DAMs act on the starch and sucrose metabolism, alpha-linolenic acid metabolism, phenylpropanoid biosynthesis and plant hormone signal transduction pathway. In this study, RNA-seq, WGCNA analysis and untargeted metabolomics were combined to investigate the transcriptional and metabolic changes of sugar beet during salt stress. The results provided new insights into the molecular mechanism of sugar beet response to salt stress, and also provided candidate genes for sugar beet improvement.
Collapse
Affiliation(s)
- Jie Cui
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150086, China
- Correspondence: ; Tel.: +86-0451-86622017
| | - Junliang Li
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Cuihong Dai
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150086, China
| | - Liping Li
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150086, China
| |
Collapse
|
32
|
Effects of Exogenous Potassium (K+) Application on the Antioxidant Enzymes Activities in Leaves of Tamarix ramosissima under NaCl Stress. Genes (Basel) 2022; 13:genes13091507. [PMID: 36140675 PMCID: PMC9498862 DOI: 10.3390/genes13091507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/12/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
Saline soil is a worldwide distributed resource that seriously harms plants’ growth and development. NaCl is the most widely distributed salt in saline soil. As a typical representative of halophytes, Tamarix ramosissima Lcdcb (T. ramosissima) is commonly grown in salinized soil, and halophytes have different abilities to retain more K+ under salt stress conditions. Halophytes can adapt to different salt environments by improving the scavenging activity of reactive oxygen species (ROS) by absorbing and transporting potassium (K+). In this study, electron microscope observation, hydrogen peroxide (H2O2) and malondialdehyde (MDA) contents determination, primary antioxidant enzyme activity determination and transcriptome sequencing analysis were carried out on the leaves of T. ramosissima under NaCl stress at 0 h, 48 h and 168 h. The results showed that H2O2 and MDA contents increased in the 200 mM NaCl + 10 mM KCl and 200 mM NaCl groups, but the content increased the most in the 200 mM NaCl group at 168 h. In addition, the leaves of T. ramosissima in the 200 mM NaCl + 10 mM KCl group had the most salt secretion, and its superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) activities were all higher than those of the 200 mM NaCl group and significantly higher than those of the control group. According to the results of transcriptome sequencing, it was found that the expression of 39 genes related to antioxidant enzyme activity changed significantly at the transcriptional level. Among them, 15 genes related to antioxidant enzyme activities were upregulated, and 24 genes related to antioxidant enzyme activities were downregulated in the leaves of T. ramosissima when exogenous potassium (K+) was applied under NaCl stress for 48 h; when exogenous potassium (K+) was used for 168 h under NaCl stress, 21 antioxidant enzyme activity-related genes were upregulated, and 18 antioxidant enzyme activity-related genes were downregulated in T. ramosissima leaves. Based on the changes of expression levels at different treatment times, 10 key candidates differentially expressed genes (DEGs) (Unigene0050462, Unigene0014843, Unigene0046159, Unigene0046160, Unigene0008032, Unigene0048033, Unigene0004890, Unigene0015109, Unigene0020552 and Unigene0048538) for antioxidant enzyme activities were further screened. They played an important role in applying exogenous potassium (K+) for 48 h and 168 h to the leaves of T. ramosissima in response to NaCl stress. Their expression levels were dominated by upregulation, which enhanced the activity of antioxidant enzymes, and helped T. ramosissima mitigate NaCl poison and resist NaCl stress. Particularly, Unigene0048538 in glutathione S-transferase (GST) activity had the largest log2 fold-change in the comparison groups of 200 mM NaCl-48 h vs. 200 mM NaCl + 10 mM KCl-48 h and 200 mM NaCl-168 h vs. 200 mM NaCl + 10 mM KCl-168 h. Its expression level was upregulated and played an important role in NaCl toxicity. At the same time, the results of the phylogenetic tree analysis showed that Unigene0048538 had the closest genetic distance to Prunus persica in the evolutionary relationship. In summary, with the increase of exogenous potassium (K+) application time under NaCl stress, T. ramosissima can resist high NaCl stress by enhancing antioxidant enzymes’ activity and maintaining the growth of T. ramosissima. Still, it is not enough to completely eliminate NaCl poison. This study provides a theoretical basis for the molecular mechanism of salt tolerance and K+ mitigation of NaCl poison by the representative halophyte T. ramosissima in response to NaCl stress.
Collapse
|
33
|
Exogenous Proline Optimizes Osmotic Adjustment Substances and Active Oxygen Metabolism of Maize Embryo under Low-Temperature Stress and Metabolomic Analysis. Processes (Basel) 2022. [DOI: 10.3390/pr10071388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Maize (Zea mays L.) is more sensitive to low-temperature stress in the early growth period. The study was to explore the response mechanism of proline to low-temperature stress during maize seed germination. Maize varieties Xinxin 2 (low-temperature insensitive) and Damin 3307 (low-temperature sensitive) were chosen as the test materials, setting the normal temperature for germination (22 °C/10 °C, 9d), low-temperature germination (4 °C/4 °C, 5d) and normal temperature recovery (22 °C/10 °C, 4d), combined with proline (15 mmol·L−1) soaking treatment, to study its effects on the osmotic regulation system and antioxidant protection system of maize embryos. Metabolomics analysis was carried out to initially reveal the basis of the metabolic regulation mechanism. The results showed that the activities of superoxide dismutase (SOD), peroxidase (POD), ascorbic acid peroxidase (APX) and glutathione reductase (GR) were induced to some extent under low-temperature stress. The activities of SOD, POD, APX and GR were further enhanced in the soaking seeds with proline. Proline treatment improved the activities of catalase (CAT), monodehydrated ascorbic acid reductase (MDHAR) and dehydroascorbic acid (DHAR), increased the contents of ascorbic acid (AsA) and glutathione (GSH) and decreased the contents of oxidized ascorbic acid (DHA) and reduced glutathione (GSSG) under low-temperature stress. The ratio of AsA/DHA and GSH/GSSG increased. The increase in antioxidant enzyme activity and the content of antioxidants can help to maintain the stability of the AsA-GSH cycle, and effectively reduce the production rate of superoxide anion (O2•−), hydrogen peroxide (H2O2) and malondialdehyde (MDA). Based on the UPLC-MS/MS detection platform and self-built database, 589 metabolites were detected in each treated maize embryo; 262 differential metabolites were obtained, including 32 organic acids, 28 amino acids, 20 nucleotides and their derivatives, 26 sugars and alcohols, 46 lipids, 51 alkaloids, 44 phenols and 15 other metabolites. Sixty-eight metabolic pathways involving different metabolites were obtained by KEGG enrichment analysis. The results showed that proline increased the accumulation of sorbitol, planteose, erythritose 4-phosphate, arabinose and other saccharides and alcohols in response to low-temperature stress, increased the content of osmoregulation substances under low-temperature stress. Proline also restored the TCA cycle by increasing the content of α-ketoglutarate and fumaric acid. Proline increased the contents of some amino acids (ornithine, proline, glycine, etc.), alkaloids (cocamidopropyl betaine, vanillylamine, 6-hydroxynicotinic acid, etc.), phenols (phenolic ayapin, chlorogenic acid, etc.) and vitamins (ascorbic acid, etc.) in the embryo under low-temperature stress. Combined with pathway enrichment analysis, proline could enhance the low-temperature stress resistance of germinated maize embryos by enhancing starch and sucrose metabolism, arginine and proline metabolism, biosynthesis of secondary metabolites, flavonoid biosynthesis and pentose phosphate pathway.
Collapse
|
34
|
Zaidi PH, Shahid M, Seetharam K, Vinayan MT. Genomic Regions Associated With Salinity Stress Tolerance in Tropical Maize ( Zea Mays L.). FRONTIERS IN PLANT SCIENCE 2022; 13:869270. [PMID: 35712555 PMCID: PMC9194767 DOI: 10.3389/fpls.2022.869270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/26/2022] [Indexed: 06/15/2023]
Abstract
Being a widely cultivated crop globally under diverse climatic conditions and soil types, maize is often exposed to an array of biotic and abiotic stresses. Soil salinity is one of the challenges for maize cultivation in many parts of lowland tropics that significantly affects crop growth and reduces economic yields. Breeding strategies integrated with molecular approach might accelerate the process of identifying and developing salinity-tolerant maize cultivars. In this study, an association mapping panel consisting of 305 diverse maize inbred lines was phenotyped in a managed salinity stress phenotyping facility at International Center for Biosaline Agriculture (ICBA), Dubai, United Arab Emirates (UAE). Wide genotypic variability was observed in the panel under salinity stress for key phenotypic traits viz., grain yield, days to anthesis, anthesis-silking interval, plant height, cob length, cob girth, and kernel number. The panel was genotyped following the genome-based sequencing approach to generate 955,690 SNPs. Total SNPs were filtered to 213,043 at a call rate of 0.85 and minor allele frequency of 0.05 for association analysis. A total of 259 highly significant (P ≤ 1 × 10-5) marker-trait associations (MTAs) were identified for seven phenotypic traits. The phenotypic variance for MTAs ranged between 5.2 and 9%. A total of 64 associations were found in 19 unique putative gene expression regions. Among them, 12 associations were found in gene models with stress-related biological functions.
Collapse
Affiliation(s)
- Pervez H. Zaidi
- Asia Regional Maize Program, International Maize & Wheat Improvement Center (CIMMYT), Hyderabad, India
| | - Mohammed Shahid
- International Centre for Biosaline Agriculture (ICBA), Dubai, United Arab Emirates
| | - Kaliyamoorthy Seetharam
- Asia Regional Maize Program, International Maize & Wheat Improvement Center (CIMMYT), Hyderabad, India
| | - Madhumal Thayil Vinayan
- Asia Regional Maize Program, International Maize & Wheat Improvement Center (CIMMYT), Hyderabad, India
| |
Collapse
|
35
|
He J, Koh DJQ, Qin L. LED spectral quality and NaCl salinity interact to affect growth, photosynthesis and phytochemical production of Mesembryanthemum crystallinum. FUNCTIONAL PLANT BIOLOGY : FPB 2022; 49:483-495. [PMID: 33972013 DOI: 10.1071/fp20375] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 04/16/2021] [Indexed: 05/27/2023]
Abstract
The edible halophyte Mesembryanthemum crystallinum L. was grown at different NaCl salinities under different combined red and blue light-emitting diode (LED) light treatments. High salinity (500 mM NaCl) decreased biomass, leaf growth, and leaf water content. Interactions between LED ratio and salinity were detected for shoot biomass and leaf growth. All plants had F v /F m ratios close to 0.8 in dark-adapted leaves, suggesting that they were all healthy with similar maximal efficiency of PSII photochemistry. However, measured under the actinic light near or above the growth light, the electron transport rate (ETR) and photochemical quenching (qP) of M. crystallinum grown at 100 and 250 mM NaCl were higher than at 500 mM NaCl. Grown under red/blue LED ratios of 0.9, M. crystallinum had higher ETR and qP across all salinities indicating higher light energy utilisation. Crassulacean acid metabolism (CAM) was induced in M. crystallinum grown at 500 mM NaCl. CAM-induced leaves had much higher non-photochemical quenching (NPQ), suggesting that NPQ can be used to estimate CAM induction. M. crystallinum grown at 250 and 500 mM NaCl had higher total chlorophyll and carotenoids contents than at 100 mM NaCl. Proline, total soluble sugar, ascorbic acid, and total phenolic compounds were higher in plants at 250 and 500 mM NaCl compared with those at 100 mM NaCl. An interaction between LED ratio and salinity was detected for proline content. Findings of this study suggest that both salinity and light quality affect productivity, photosynthetic light use efficiency, and proline accumulation of M. crystallinum .
Collapse
Affiliation(s)
- Jie He
- Natural Sciences and Science Education Academic Group, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616; and Corresponding author
| | - Dominic J Q Koh
- Natural Sciences and Science Education Academic Group, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616
| | - Lin Qin
- Natural Sciences and Science Education Academic Group, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616
| |
Collapse
|
36
|
Tsioli S, Koutalianou M, Gkafas GA, Exadactylos A, Papathanasiou V, Katsaros CI, Orfanidis S, Küpper FC. Responses of the Mediterranean seagrass Cymodocea nodosa to combined temperature and salinity stress at the ionomic, transcriptomic, ultrastructural and photosynthetic levels. MARINE ENVIRONMENTAL RESEARCH 2022; 175:105512. [PMID: 35176528 DOI: 10.1016/j.marenvres.2021.105512] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 10/23/2021] [Accepted: 10/27/2021] [Indexed: 06/14/2023]
Abstract
The Little Neptune grass Cymodocea nodosa is a key seagrass species in the Mediterranean Sea, forming extensive and patchy meadows in shallow coastal and transitional ecosystems. In such habitats, high temperatures and salinities, separately and in combination, can be significant stressors in the context of climate change, particularly during heatwave events, and seawater desalination plant effluents. Despite well-documented negative, macroscopic effects, the underlying cellular and molecular processes of the combined effects of increasing temperature and salinities have remained largely elusive in C. nodosa - which are addressed by the present study. High salinity and high temperature, alone and in combination, affected ion equilibrium in the plant cells. Non-synonymous mutations marked the transcriptomic response to salinity and temperature stress at loci related to osmotic stress. Cell structure, especially the nucleus, chloroplasts, mitochondria and organization of the MT cytoskeleton, was also altered. Both temperature and salinity stress negatively affected photosynthetic activity as evidenced by ΔF/Fm', following an antagonistic interaction type. Overall, this study showed that all biological levels investigated were strongly affected by temperature and salinity stress, however, with the latter having more severe effects. The results have implications for the operation of desalination plants and for assessing the impacts of marine heat waves.
Collapse
Affiliation(s)
- Soultana Tsioli
- Department of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, Athens, 157 84, Greece; Benthic Ecology & Technology Laboratory, Fisheries Research Institute (Hellenic Agricultural Organization-DEMETER), 64007, Nea Peramos, Kavala, Greece
| | - Maria Koutalianou
- Department of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, Athens, 157 84, Greece
| | - Georgios A Gkafas
- Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, Fytokou str., 384 46, Volos, Greece
| | - Athanasios Exadactylos
- Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, Fytokou str., 384 46, Volos, Greece
| | - Vasilis Papathanasiou
- Benthic Ecology & Technology Laboratory, Fisheries Research Institute (Hellenic Agricultural Organization-DEMETER), 64007, Nea Peramos, Kavala, Greece
| | - Christos I Katsaros
- Department of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, Athens, 157 84, Greece
| | - Sotiris Orfanidis
- Benthic Ecology & Technology Laboratory, Fisheries Research Institute (Hellenic Agricultural Organization-DEMETER), 64007, Nea Peramos, Kavala, Greece
| | - Frithjof C Küpper
- School of Biological Sciences, Cruickshank Bldg., University of Aberdeen, St. Machar Drive, Aberdeen AB24 3UU, Scotland, UK; Marine Biodiversity Centre, Department of Chemistry, University of Aberdeen, Aberdeen, AB24 3UE, Scotland, UK; Department of Chemistry and Biochemistry, San Diego State University, CA, 92182-1030, USA.
| |
Collapse
|
37
|
Yuan G, Liu J, An G, Li W, Si W, Sun D, Zhu Y. Genome-Wide Identification and Characterization of the Trehalose-6-phosphate Synthetase (TPS) Gene Family in Watermelon ( Citrullus lanatus) and Their Transcriptional Responses to Salt Stress. Int J Mol Sci 2021; 23:276. [PMID: 35008702 PMCID: PMC8745194 DOI: 10.3390/ijms23010276] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/24/2021] [Accepted: 12/25/2021] [Indexed: 12/27/2022] Open
Abstract
With the increase in watermelon cultivation area, there is an urgent need to explore enzymatic and genetic resources for the sustainable development of watermelon, especially under salt stress. Among the various compounds known, trehalose plays an important role in regulating abiotic stress tolerances in diverse organisms, including plants. Therefore, the present study comprehensively analyzed the trehalose-6-phosphate synthase (TPS) gene family in watermelon. The study analyzed the functional classification, evolutionary characteristics, and expression patterns of the watermelon TPS genes family. Seven ClTPSs were identified and classified into two distinct classes according to gene structure and phylogeny. Evolutionary analysis suggested the role of purifying selection in the evolution of the TPS family members. Further, cis-acting elements related to plant hormones and abiotic stress were identified in the promoter region of the TPS genes. The tissue-specific expression analysis showed that ClTPS genes were widely expressed in roots, stems, leaves, flowers, and fruits, while ClTPS3 was significantly induced under salt stress. The overexpression of ClTPS3 in Arabidopsis thaliana significantly improved salt tolerance. Finally, the STRING functional protein association networks suggested that the transcription factor ClMYB and ClbHLH regulate ClTPS3. Thus, the study indicates the critical role of ClTPS3 in watermelon response to salt stress.
Collapse
Affiliation(s)
| | | | | | | | | | - Dexi Sun
- Zhengzhou Fruit Research Institute of the Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China; (G.Y.); (J.L.); (G.A.); (W.L.); (W.S.)
| | - Yingchun Zhu
- Zhengzhou Fruit Research Institute of the Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China; (G.Y.); (J.L.); (G.A.); (W.L.); (W.S.)
| |
Collapse
|
38
|
Ebrahimi F, Salehi A, Movahedi Dehnavi M, Mirshekari A, Hamidian M, Hazrati S. Biochemical response and nutrient uptake of two arbuscular mycorrhiza-inoculated chamomile varieties under different osmotic stresses. BOTANICAL STUDIES 2021; 62:22. [PMID: 34897567 PMCID: PMC8665967 DOI: 10.1186/s40529-021-00328-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/22/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Water-deficit stress is known as one of the most severe environmental stresses affecting the growth of plants through marked reduction of water uptake, which leads to osmotic stress by lowering water potential. Adopting appropriate varieties using soil microorganisms, such as arbuscular mycorrhiza (AM) fungi, can significantly reduce the adverse effects of water deficiency. This study aimed to evaluate the role of Funneliformis mosseae on nutrient uptake and certain physiological traits of two chamomile varieties, namely Bodgold (Bod) and Soroksári (Sor) under osmotic stress. For pot culture, a factorial experiment was performed in a completely randomized design with three factors: osmotic stress (PEG 6000) was applied along with Hoagland solution at three levels (0, -0.4 and -0.8 MPa), two German chamomile varieties (Bodgold (Bod) and Soroksari (Sor)), and AM inoculation (Funneliformis mosseae species (fungal and non-fungal)) at four replications in perlite substrate. RESULTS Osmotic stress significantly reduced the uptake of macro-nutrients (N and P) and micro-nutrients (Fe, Cu, Mn, and Zn) in the shoots and roots. Moreover, the level of osmolytes (total soluble sugars and proline) and the activity of antioxidant enzymes in the shoots of both varieties increased under osmotic stress. Regarding the Sor variety, the level of these compounds was more satisfactory. AM improved plant nutrition uptake and osmolyte contents while enhancing antioxidant enzymes and reducing the adverse effects of osmotic stress. Under osmotic stress, the growth and total dry weight were improved upon AM inoculation. CONCLUSIONS In general, inoculation of chamomile with AM balanced the uptake of nutrients and increased the level of osmolytes and antioxidant enzymes; hence, it improved plant characteristics under osmotic stress in both varieties. However, it was found to be more effective in reducing stress damages in the Sor variety.
Collapse
Affiliation(s)
- Fatemeh Ebrahimi
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, Yasouj University, Yasouj, Iran
| | - Amin Salehi
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, Yasouj University, Yasouj, Iran
| | - Mohsen Movahedi Dehnavi
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, Yasouj University, Yasouj, Iran
| | - Amin Mirshekari
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, Yasouj University, Yasouj, Iran
| | - Mohammad Hamidian
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, Yasouj University, Yasouj, Iran
| | - Saeid Hazrati
- Department of Agronomy, Faculty of Agriculture, Azarbaijan Shahid Madani University, Tabriz, Iran
| |
Collapse
|
39
|
Soltanbeigi A, Yıldız M, Dıraman H, Terzi H, Sakartepe E, Yıldız E. Growth responses and essential oil profile of Salvia officinalis L. Influenced by water deficit and various nutrient sources in the greenhouse. Saudi J Biol Sci 2021; 28:7327-7335. [PMID: 34867035 PMCID: PMC8626272 DOI: 10.1016/j.sjbs.2021.08.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/27/2021] [Accepted: 08/12/2021] [Indexed: 11/16/2022] Open
Abstract
Salvia officinalis L. is a medicinal plant extensively used in foods, traditional medicine, and the pharmacological industry. In the current study, the effects of different irrigation regimes [irrigation after 70 ± 5 (regular), 105 ± 5 (moderate drought stress), and 140 ± 5 (severe drought stress) mm evaporation] and nutrient sources (control, NPK, farmyard manure, foliar fertilizer, and hydrogel) were investigated on the growth parameters and essential oil (EO) components of S. officinalis in the greenhouse. The plants were harvested two times. The regular irrigation treatment had the most significant effect on plant height (51 cm), fresh and dry herb weight (51.5 and 18.1 g plant−1), and fresh and dry leaf weight (40.1 and 13.1 g plant−1). The highest amount of EO was observed after moderate drought stress (1.48%). The NPK treatment had the greatest effect on plant height (40 cm), branch number (19 per plant), fresh and dry herb weight (53.4 and 18.9 g plant−1), fresh and dry leaf weight (41.2 and 13.6 g plant−1), and EO content (1.67%). The 1st cutting was superior in EO amount, while the 2nd cutting had a high agronomic yield. α-Thujone (from 21.6 to 34.2%) was identified as the predominant compound. Additionally, the content of α-thujone in the 2nd cutting was higher after moderate drought stress, NPK, and hydrogel treatments. Moreover, 1,8-cineole, β-thujone, camphene, α-pinene, α-humulene, viridiflorol, borneol, and bornyl acetate were the other main compounds. As a general result, regular irrigation and NPK treatments improved the agronomic yield of S. officinalis. The plants under drought stress produced high amounts of EO. The farmyard manure also improved plant yield by providing a part of the plant's nutritional needs. Therefore, it could be concluded that it is crucial to determine the effects of limited water availability and various nutrient sources on yield and chemical compositions for medicinal and aromatic plant growth.
Collapse
Affiliation(s)
- Amir Soltanbeigi
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey
| | - Mustafa Yıldız
- Department of Molecular Biology and Genetics, Afyon Kocatepe University, Afyonkarahisar, Turkey
| | - Harun Dıraman
- Department of Food Engineering, Afyon Kocatepe University, Afyonkarahisar, Turkey
| | - Hakan Terzi
- Department of Molecular Biology and Genetics, Afyon Kocatepe University, Afyonkarahisar, Turkey
| | - Erhan Sakartepe
- Department of Molecular Biology and Genetics, Afyon Kocatepe University, Afyonkarahisar, Turkey
| | - Emel Yıldız
- Afyonkarahisar Medicinal and Aromatic Plants Center, Afyonkarahisar, Turkey
| |
Collapse
|
40
|
Effective Categorization of Tolerance to Salt Stress through Clustering Prunus Rootstocks According to Their Physiological Performances. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7120542] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The effects of climate change on traditional stone fruit producing areas, together with the generation of new varieties with lower chilling requirements that allow the cultivation of previously unexplored areas, are setting up a challenging scenario for the establishment of productive orchards that must be more efficient in their capacity to adapt to new edaphoclimatic conditions. In this context, the rootstock breeding programs are a key piece in the agronomic strategy to achieve this adaptation through the development of rootstocks compatible with the new varieties and capable of transferring their tolerance to stress. An effective categorization of phenotypes within the germplasm involved in a plant breeding program is of utmost importance. Through the measurement of physiological parameters in both roots and leaves, tolerance to saline stress (120 mM NaCl) was evaluated in seven Prunus rootstocks whose genetic background included representatives of the subgenera Prunus, Cerasus, and Amygdalus. To group the genotypes according to their physiological performance under salt stress, an agglomerative hierarchical clustering was applied. The genotypes were grouped into three clusters containing rootstocks very sensitive (‘Mazzard F12/1’), moderately tolerant (‘Maxma 60’, ‘Cab6P’ and ‘AGAF 0204-09’), and tolerant (‘Mariana 2624’, ‘Garnem’ and ‘Colt’) to salt stress. ‘Mariana 2624’, a plum-based rootstock, was identified as the most tolerant Prunus rootstock. The information reported is valuable both in the productive context, for the selection of the most appropriate rootstocks to establish an orchard, and in the context of plant breeding programs, when choosing parents with outstanding traits to obtain progenies tolerant to salt stress.
Collapse
|
41
|
Huqe MAS, Haque MS, Sagar A, Uddin MN, Hossain MA, Hossain AKMZ, Rahman MM, Wang X, Al-Ashkar I, Ueda A, EL Sabagh A. Characterization of Maize Hybrids ( Zea mays L.) for Detecting Salt Tolerance Based on Morpho-Physiological Characteristics, Ion Accumulation and Genetic Variability at Early Vegetative Stage. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112549. [PMID: 34834912 PMCID: PMC8623748 DOI: 10.3390/plants10112549] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/08/2021] [Accepted: 11/16/2021] [Indexed: 05/22/2023]
Abstract
Increasing soil salinity due to global warming severely restricts crop growth and yield. To select and recommend salt-tolerant cultivars, extensive genotypic screening and examination of plants' morpho-physiological responses to salt stress are required. In this study, 18 prescreened maize hybrid cultivars were examined at the early growth stage under a hydroponic system using multivariate analysis to demonstrate the genotypic and phenotypic variations of the selected cultivars under salt stress. The seedlings of all maize cultivars were evaluated with two salt levels: control (without NaCl) and salt stress (12 dS m-1 simulated with NaCl) for 28 d. A total of 18 morpho-physiological and ion accumulation traits were dissected using multivariate analysis, and salt tolerance index (STI) values of the examined traits were evaluated for grouping of cultivars into salt-tolerant and -sensitive groups. Salt stress significantly declined all measured traits except root-shoot ratio (RSR), while the cultivars responded differently. The cultivars were grouped into three clusters and the cultivars in Cluster-1 such as Prabhat, UniGreen NK41, Bisco 51, UniGreen UB100, Bharati 981 and Star Beej 7Star exhibited salt tolerance to a greater extent, accounting for higher STI in comparison to other cultivars grouped in Cluster-2 and Cluster-3. The high heritability (h2bs, >60%) and genetic advance (GAM, >20%) were recorded in 13 measured traits, indicating considerable genetic variations present in these traits. Therefore, using multivariate analysis based on the measured traits, six hybrid maize cultivars were selected as salt-tolerant and some traits such as Total Fresh Weight (TFW), Total Dry Weight (TDW), Total Na+, Total K+ contents and K+-Na+ Ratio could be effectively used for the selection criteria evaluating salt-tolerant maize genotypes at the early seedling stage.
Collapse
Affiliation(s)
- Md Al Samsul Huqe
- Department of Crop Botany, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (M.A.S.H.); (A.S.); (M.N.U.); (M.A.H.); (A.Z.H.); (M.M.R.)
| | - Md Sabibul Haque
- Department of Crop Botany, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (M.A.S.H.); (A.S.); (M.N.U.); (M.A.H.); (A.Z.H.); (M.M.R.)
- Correspondence: (M.S.H.); (X.W.); (A.E.S.)
| | - Ashaduzzaman Sagar
- Department of Crop Botany, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (M.A.S.H.); (A.S.); (M.N.U.); (M.A.H.); (A.Z.H.); (M.M.R.)
| | - Md Nesar Uddin
- Department of Crop Botany, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (M.A.S.H.); (A.S.); (M.N.U.); (M.A.H.); (A.Z.H.); (M.M.R.)
| | - Md Alamgir Hossain
- Department of Crop Botany, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (M.A.S.H.); (A.S.); (M.N.U.); (M.A.H.); (A.Z.H.); (M.M.R.)
| | - AKM Zakir Hossain
- Department of Crop Botany, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (M.A.S.H.); (A.S.); (M.N.U.); (M.A.H.); (A.Z.H.); (M.M.R.)
| | - Md Mustafizur Rahman
- Department of Crop Botany, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (M.A.S.H.); (A.S.); (M.N.U.); (M.A.H.); (A.Z.H.); (M.M.R.)
| | - Xiukang Wang
- Department of Biology, College of Life Sciences, Yan’an University, Yan’an 716000, China
- Correspondence: (M.S.H.); (X.W.); (A.E.S.)
| | - Ibrahim Al-Ashkar
- Department of Plant Production, College of Food and Agriculture, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Akihiro Ueda
- Graduate School of Integrated Science for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima 739-8528, Japan;
| | - Ayman EL Sabagh
- Agronomy Department, Faculty of Agriculture, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
- Correspondence: (M.S.H.); (X.W.); (A.E.S.)
| |
Collapse
|
42
|
Crop Water Stress Index as a Proxy of Phenotyping Maize Performance under Combined Water and Salt Stress. REMOTE SENSING 2021. [DOI: 10.3390/rs13224710] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The crop water stress index (CWSI), based on canopy temperature (Tc), has been widely used in evaluating plant water status and planning irrigation scheduling, but whether CWSI can diagnose the stress status of crops and predict the physiological traits and growth under combined water and salt stress remains to be further studied. Here, a model of CWSI was established based on the continuous measurements of Tc for two maize genotypes (ZD958 and XY335) under two water and salt conditions, combined with growth stage-specific non-water-stressed baselines (NWSB). The relationships between physiology, growth, and yield of maize with CWSI were analyzed. There were significant differences in NWSB between the two maize genotypes at the same and different growth stages; thus, growth stage-specific NWSBs were used. The difference in NWSB was due to the difference and change in effective leaf width. CWSI was closely related to leaf water potential, stomatal conductance, and net photosynthetic rate under different water and salt stress, and also explained the variations in leaf area index, biomass, water use, and yield. Collectively, CWSI can be used as a proxy indicator of high-throughput phenotyping maize performance under combined water and salt stress, which will be valuable for predicting yield and improving water use efficiency.
Collapse
|
43
|
Zhang H, Li X, Wang W, Pivovaroff AL, Li W, Zhang P, Ward ND, Myers-Pigg A, Adams HD, Leff R, Wang A, Yuan F, Wu J, Yabusaki S, Waichler S, Bailey VL, Guan D, McDowell NG. Seawater exposure causes hydraulic damage in dying Sitka-spruce trees. PLANT PHYSIOLOGY 2021; 187:873-885. [PMID: 34608959 PMCID: PMC8981213 DOI: 10.1093/plphys/kiab295] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/09/2021] [Indexed: 05/29/2023]
Abstract
Sea-level rise is one of the most critical challenges facing coastal ecosystems under climate change. Observations of elevated tree mortality in global coastal forests are increasing, but important knowledge gaps persist concerning the mechanism of salinity stress-induced nonhalophytic tree mortality. We monitored progressive mortality and associated gas exchange and hydraulic shifts in Sitka-spruce (Picea sitchensis) trees located within a salinity gradient under an ecosystem-scale change of seawater exposure in Washington State, USA. Percentage of live foliated crown (PLFC) decreased and tree mortality increased with increasing soil salinity during the study period. A strong reduction in gas exchange and xylem hydraulic conductivity (Ks) occurred during tree death, with an increase in the percentage loss of conductivity (PLC) and turgor loss point (πtlp). Hydraulic and osmotic shifts reflected that hydraulic function declined from seawater exposure, and dying trees were unable to support osmotic adjustment. Constrained gas exchange was strongly related to hydraulic damage at both stem and leaf levels. Significant correlations between foliar sodium (Na+) concentration and gas exchange and key hydraulic parameters (Ks, PLC, and πtlp) suggest that cellular injury related to the toxic effects of ion accumulation impacted the physiology of these dying trees. This study provides evidence of toxic effects on the cellular function that manifests in all aspects of plant functioning, leading to unfavourable osmotic and hydraulic conditions.
Collapse
Affiliation(s)
- Hongxia Zhang
- Shapotou Desert Research and Experiment Station, Northwest Institute of
Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000,
China
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology,
Chinese Academy of Sciences, Shenyang 110016, China
- Atmospheric Sciences and Global Change Division, Pacific Northwest National
Laboratory, Richland, Washington 99354, USA
| | - Xinrong Li
- Shapotou Desert Research and Experiment Station, Northwest Institute of
Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000,
China
| | - Wenzhi Wang
- Atmospheric Sciences and Global Change Division, Pacific Northwest National
Laboratory, Richland, Washington 99354, USA
- The Key Laboratory of Mountain Environment Evolution and Regulation, Institute
of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu
610041, China
| | - Alexandria L. Pivovaroff
- Atmospheric Sciences and Global Change Division, Pacific Northwest National
Laboratory, Richland, Washington 99354, USA
| | - Weibin Li
- Atmospheric Sciences and Global Change Division, Pacific Northwest National
Laboratory, Richland, Washington 99354, USA
- State Key Laboratory of Grassland and Agro-ecosystems, Key Laboratory of
Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs,
College of Pastoral Agriculture Science and Technology, Lanzhou University,
Lanzhou 730020, China
| | - Peipei Zhang
- Atmospheric Sciences and Global Change Division, Pacific Northwest National
Laboratory, Richland, Washington 99354, USA
| | - Nicholas D. Ward
- Marine Sciences Laboratory, Pacific Northwest National
Laboratory, Sequim, Washington 98382, USA
- School of Oceanography, University of Washington, Seattle,
Washington 98195, USA
| | - Allison Myers-Pigg
- State Key Laboratory of Grassland and Agro-ecosystems, Key Laboratory of
Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs,
College of Pastoral Agriculture Science and Technology, Lanzhou University,
Lanzhou 730020, China
| | - Henry D. Adams
- School of the Environment, Washington State University, Pullman,
Washington 99164-2812, USA
| | - Riley Leff
- Atmospheric Sciences and Global Change Division, Pacific Northwest National
Laboratory, Richland, Washington 99354, USA
| | - Anzhi Wang
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology,
Chinese Academy of Sciences, Shenyang 110016, China
| | - Fenghui Yuan
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology,
Chinese Academy of Sciences, Shenyang 110016, China
| | - Jiabing Wu
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology,
Chinese Academy of Sciences, Shenyang 110016, China
| | - Steve Yabusaki
- Earth Systems Science, Pacific Northwest National Laboratory,
Richland, Washington 99354, USA
| | - Scott Waichler
- Earth Systems Science, Pacific Northwest National Laboratory,
Richland, Washington 99354, USA
| | - Vanessa L. Bailey
- Biological Sciences Division, Pacific Northwest National
Laboratory, Richland, Washington 99354, USA
| | - Dexin Guan
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology,
Chinese Academy of Sciences, Shenyang 110016, China
| | - Nate G. McDowell
- Atmospheric Sciences and Global Change Division, Pacific Northwest National
Laboratory, Richland, Washington 99354, USA
- School of Biological Sciences, Washington State University,
Pullman, Washington 99164-4236, USA
| |
Collapse
|
44
|
Singhal RK, Saha D, Skalicky M, Mishra UN, Chauhan J, Behera LP, Lenka D, Chand S, Kumar V, Dey P, Indu, Pandey S, Vachova P, Gupta A, Brestic M, El Sabagh A. Crucial Cell Signaling Compounds Crosstalk and Integrative Multi-Omics Techniques for Salinity Stress Tolerance in Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:670369. [PMID: 34484254 PMCID: PMC8414894 DOI: 10.3389/fpls.2021.670369] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 05/28/2021] [Indexed: 10/29/2023]
Abstract
In the era of rapid climate change, abiotic stresses are the primary cause for yield gap in major agricultural crops. Among them, salinity is considered a calamitous stress due to its global distribution and consequences. Salinity affects plant processes and growth by imposing osmotic stress and destroys ionic and redox signaling. It also affects phytohormone homeostasis, which leads to oxidative stress and eventually imbalances metabolic activity. In this situation, signaling compound crosstalk such as gasotransmitters [nitric oxide (NO), hydrogen sulfide (H2S), hydrogen peroxide (H2O2), calcium (Ca), reactive oxygen species (ROS)] and plant growth regulators (auxin, ethylene, abscisic acid, and salicylic acid) have a decisive role in regulating plant stress signaling and administer unfavorable circumstances including salinity stress. Moreover, recent significant progress in omics techniques (transcriptomics, genomics, proteomics, and metabolomics) have helped to reinforce the deep understanding of molecular insight in multiple stress tolerance. Currently, there is very little information on gasotransmitters and plant growth regulator crosstalk and inadequacy of information regarding the integration of multi-omics technology during salinity stress. Therefore, there is an urgent need to understand the crucial cell signaling crosstalk mechanisms and integrative multi-omics techniques to provide a more direct approach for salinity stress tolerance. To address the above-mentioned words, this review covers the common mechanisms of signaling compounds and role of different signaling crosstalk under salinity stress tolerance. Thereafter, we mention the integration of different omics technology and compile recent information with respect to salinity stress tolerance.
Collapse
Affiliation(s)
| | - Debanjana Saha
- Department of Biotechnology, Centurion University of Technology and Management, Bhubaneswar, India
| | - Milan Skalicky
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Udit N. Mishra
- Faculty of Agriculture, Sri Sri University, Cuttack, India
| | - Jyoti Chauhan
- Narayan Institute of Agricultural Sciences, Gopal Narayan Singh University, Jamuhar, India
| | - Laxmi P. Behera
- Department of Agriculture Biotechnology, Orissa University of Agriculture and Technology, Bhubaneswar, India
| | - Devidutta Lenka
- Department of Plant Breeding and Genetics, Orissa University of Agriculture and Technology, Bhubaneswar, India
| | - Subhash Chand
- ICAR-Indian Grassland and Fodder Research Institute, Jhansi, India
| | - Vivek Kumar
- Institute of Agriculture Sciences, Banaras Hindu University, Varanasi, India
| | - Prajjal Dey
- Faculty of Agriculture, Sri Sri University, Cuttack, India
| | - Indu
- ICAR-Indian Grassland and Fodder Research Institute, Jhansi, India
| | - Saurabh Pandey
- Department of Agriculture, Guru Nanak Dev University, Amritsar, India
| | - Pavla Vachova
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Aayushi Gupta
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Marian Brestic
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
- Department of Plant Physiology, Slovak University of Agriculture in Nitra, Nitra, Slovakia
| | - Ayman El Sabagh
- Department of Agronomy, Faculty of Agriculture, University of Kafrelsheikh, Kafr El Sheikh, Egypt
- Department of Field Crops, Faculty of Agriculture, Siirt University, Siirt, Turkey
| |
Collapse
|
45
|
Zhang Q, Li M, Xia CY, Zhang WJ, Yin ZG, Zhang YL, Fang QX, Liu YC, Zhang MY, Zhang WH, Du JD, Du YL. Transcriptome-based analysis of salt-related genes during the sprout stage of common bean (Phaseolus vulgaris) under salt stress conditions. BIOTECHNOL BIOTEC EQ 2021. [DOI: 10.1080/13102818.2021.1954091] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Affiliation(s)
- Qi Zhang
- Cereals Germplasm Resources Innovation Laboratory, College of Agriculture, National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, PR China
| | - Ming Li
- Cereals Germplasm Resources Innovation Laboratory, College of Agriculture, National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, PR China
| | - Chun Yang Xia
- Cereals Germplasm Resources Innovation Laboratory, College of Agriculture, National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, PR China
| | - Wen Jing Zhang
- Cereals Germplasm Resources Innovation Laboratory, College of Agriculture, National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, PR China
| | - Zhen Gong Yin
- Bean Crops Laboratory, Crop Resources Institute of Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, PR China
| | - You Li Zhang
- Cereals Germplasm Resources Innovation Laboratory, College of Agriculture, National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, PR China
| | - Qing Xi Fang
- Cereals Germplasm Resources Innovation Laboratory, College of Agriculture, National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, PR China
| | - Yang Cheng Liu
- Cereals Germplasm Resources Innovation Laboratory, College of Agriculture, National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, PR China
| | - Ming Yu Zhang
- Cereals Germplasm Resources Innovation Laboratory, College of Agriculture, National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, PR China
| | - Wen Hui Zhang
- Cereals Germplasm Resources Innovation Laboratory, College of Agriculture, National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, PR China
| | - Ji Dao Du
- Cereals Germplasm Resources Innovation Laboratory, College of Agriculture, National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, PR China
- Cereals Germplasm Resources Innovation Laboratory, College of Agriculture, National Coarse Cereals Engineering Research Center, Daqing, Heilongjiang, PR China
| | - Yan Li Du
- Cereals Germplasm Resources Innovation Laboratory, College of Agriculture, National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, PR China
- Cereals Germplasm Resources Innovation Laboratory, College of Agriculture, National Coarse Cereals Engineering Research Center, Daqing, Heilongjiang, PR China
| |
Collapse
|
46
|
Stefanov MA, Rashkov GD, Yotsova EK, Borisova PB, Dobrikova AG, Apostolova EL. Different Sensitivity Levels of the Photosynthetic Apparatus in Zea mays L. and Sorghum bicolor L. under Salt Stress. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10071469. [PMID: 34371672 PMCID: PMC8309219 DOI: 10.3390/plants10071469] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/09/2021] [Accepted: 07/13/2021] [Indexed: 05/17/2023]
Abstract
The impacts of different NaCl concentrations (0-250 mM) on the photosynthesis of new hybrid lines of maize (Zea mays L. Kerala) and sorghum (Sorghum bicolor L. Shamal) were investigated. Salt-induced changes in the functions of photosynthetic apparatus were assessed using chlorophyll a fluorescence (PAM and OJIP test) and P700 photooxidation. Greater differences between the studied species in response to salinization were observed at 150 mM and 200 mM NaCl. The data revealed the stronger influence of maize in comparison to sorghum on the amount of closed PSII centers (1-qp) and their efficiency (Φexc), as well as on the effective quantum yield of the photochemical energy conversion of PSII (ΦPSII). Changes in the effective antenna size of PSII (ABS/RC), the electron flux per active reaction center (REo/RC) and the electron transport flux further QA (ETo/RC) were also registered. These changes in primary PSII photochemistry influenced the electron transport rate (ETR) and photosynthetic rate (parameter RFd), with the impacts being stronger in maize than sorghum. Moreover, the lowering of the electron transport rate from QA to the PSI end electron acceptors (REo/RC) and the probability of their reduction (φRo) altered the PSI photochemical activity, which influenced photooxidation of P700 and its decay kinetics. The pigment content and stress markers of oxidative damage were also determined. The data revealed a better salt tolerance of sorghum than maize, associated with the structural alterations in the photosynthetic membranes and the stimulation of the cyclic electron flow around PSI at higher NaCl concentrations. The relationships between the decreased pigment content, increased levels of stress markers and different inhibition levels of the function of both photosystems are discussed.
Collapse
|
47
|
Zunzunegui M, Morales Sánchez JÁ, Díaz Barradas MC, Gallego-Fernández JB. Different tolerance to salinity of two populations of Oenothera drummondii with contrasted biogeographical origin. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 162:336-348. [PMID: 33725569 DOI: 10.1016/j.plaphy.2021.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/02/2021] [Indexed: 06/12/2023]
Abstract
Oenothera drummondii is a native species from the coastal dunes of the Gulf of Mexico that has nowadays extended to coastal areas in temperate zones all over the world, its invasion becoming a significant problem locally. The species grows on back beach and incipient dunes, where it can suffer flooding by seawater, and sea spray. We were interested in knowing how salinity affects this species and if invasive populations present morphological or functional traits that would provide greater tolerance to salinity than native ones. To this end, we conducted a greenhouse experiment where plants from one native and from one invading population were irrigated with five salinity treatments. We measured functional traits on photosynthetic, photochemical efficiency, water content, flowering, Na+ content, pigment content, and biomass. Although O. drummondii showed high resistance to salinity, the highest levels recorded high mortality, especially in the invasive population. Plants exhibited differences not only in response to time under salinity conditions, but also according to their biogeographic origin, the native population being more resistant to long exposure and high salt concentration than the invasive one. Native and invasive populations showed different response to salt stress in photosynthesis and transpiration rates, stomatal conductance, water use efficiency, carboxylation efficiency, electron transport rate, electron transport efficiency, energy used in photochemistry, among others. The increasing salinity levels resulted in a progressive reduction of photosynthesis rate due to both stomatal and biochemical limitations, and also in a reduction of biomass and number and size of flowers, compromising the reproductive capacity.
Collapse
Affiliation(s)
- María Zunzunegui
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Apartado 1095, 41080, Sevilla, Spain.
| | - José Ángel Morales Sánchez
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Apartado 1095, 41080, Sevilla, Spain
| | - Mari Cruz Díaz Barradas
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Apartado 1095, 41080, Sevilla, Spain
| | - Juan B Gallego-Fernández
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Apartado 1095, 41080, Sevilla, Spain
| |
Collapse
|
48
|
Dhiman P, Rajora N, Bhardwaj S, Sudhakaran SS, Kumar A, Raturi G, Chakraborty K, Gupta OP, Devanna BN, Tripathi DK, Deshmukh R. Fascinating role of silicon to combat salinity stress in plants: An updated overview. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 162:110-123. [PMID: 33667964 DOI: 10.1016/j.plaphy.2021.02.023] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 02/07/2021] [Indexed: 05/04/2023]
Abstract
Salt stress limits plant growth and productivity by severely impacting the fundamental physiological processes. Silicon (Si) supplementation is considered one of the promising methods to improve plant resilience under salt stress. Here, the role of Si in modulating physiological and biochemical processes that get adversely affected by high salinity, is discussed. Although numerous reports show the beneficial effects of Si under stress, the precise molecular mechanism underlying this is not well understood. Questions like whether all plants are equally benefitted with Si supplementation despite having varying Si uptake capability and salinity tolerance are still elusive. This review illustrates the Si uptake and accumulation mechanism to understand the direct or indirect participation of Si in different physiological processes. Evaluation of plant responses at transcriptomics and proteomics levels are promising in understanding the role of Si. Integration of physiological understanding with omics scale information highlighted Si supplementation affecting the phytohormonal and antioxidant responses under salinity as a key factor defining improved resilience. Similarly, the crosstalk of Si with lignin and phenolic content under salt stress also seems to be an important phenomenon helping plants to reduce the stress. The present review also addressed various crucial mechanisms by which Si application alleviates salt stress, such as a decrease in oxidative damage, decreased lipid peroxidation, improved photosynthetic ability, and ion homeostasis. Besides, the application and challenges of using Si-nanoparticles have also been addressed. Comprehensive information and discussion provided here will be helpful to better understand the role of Si under salt stress.
Collapse
Affiliation(s)
- Pallavi Dhiman
- National Agri-Food Biotechnology Institute (NABI) Mohali, Punjab, India; Department of Biotechnology Panjab University, Chandigarh, India
| | - Nitika Rajora
- National Agri-Food Biotechnology Institute (NABI) Mohali, Punjab, India
| | - Shubham Bhardwaj
- National Institute of Plant Genome Research (NIPGR), New Delhi, India
| | - Sreeja S Sudhakaran
- National Agri-Food Biotechnology Institute (NABI) Mohali, Punjab, India; Department of Biotechnology Panjab University, Chandigarh, India
| | - Amit Kumar
- National Agri-Food Biotechnology Institute (NABI) Mohali, Punjab, India
| | - Gaurav Raturi
- National Agri-Food Biotechnology Institute (NABI) Mohali, Punjab, India; Department of Biotechnology Panjab University, Chandigarh, India
| | | | - Om Prakash Gupta
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, Haryana, India
| | - B N Devanna
- ICAR-National Rice Research Institute, Cuttack, Odisha, India
| | - Durgesh Kumar Tripathi
- Amity Institute of Organic Agriculture (AIOA), Amity University Uttar Pradesh, Noida, India
| | - Rupesh Deshmukh
- National Agri-Food Biotechnology Institute (NABI) Mohali, Punjab, India.
| |
Collapse
|
49
|
Chen P, Liu P, Zhang Q, Bu C, Lu C, Srivastava S, Zhang D, Song Y. Gene Coexpression Network Analysis Indicates that Hub Genes Related to Photosynthesis and Starch Synthesis Modulate Salt Stress Tolerance in Ulmus pumila. Int J Mol Sci 2021; 22:4410. [PMID: 33922506 PMCID: PMC8122946 DOI: 10.3390/ijms22094410] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 01/20/2023] Open
Abstract
Ulmus pumila L. is an excellent afforestation and biofuel tree that produces high-quality wood, rich in starch. In addition, U. pumila is highly adaptable to adverse environmental conditions, which is conducive to its utilization for vegetating saline soils. However, little is known about the physiological responses and transcriptional regulatory network of U. pumila under salt stress. In this study, we exposed five main cultivars in saline-alkali land (Upu2, 5, 8, 11, and 12) to NaCl stress. Of the five cultivars assessed, Upu11 exhibited the highest salt resistance. Growth and biomass accumulation in Upu11 were promoted under low salt concentrations (<150 mM). However, after 3 months of continuous treatment with 150 mM NaCl, growth was inhibited, and photosynthesis declined. A transcriptome analysis conducted after 3 months of treatment detected 7009 differentially expressed unigenes (DEGs). The gene annotation indicated that these DEGs were mainly related to photosynthesis and carbon metabolism. Furthermore, PHOTOSYNTHETIC ELECTRON TRANSFERH (UpPETH), an important electron transporter in the photosynthetic electron transport chain, and UpWAXY, a key gene controlling amylose synthesis in the starch synthesis pathway, were identified as hub genes in the gene coexpression network. We identified 25 and 62 unigenes that may interact with PETH and WAXY, respectively. Overexpression of UpPETH and UpWAXY significantly increased the survival rates, net photosynthetic rates, biomass, and starch content of transgenic Arabidopsis plants under salt stress. Our findings clarify the physiological and transcriptional regulators that promote or inhibit growth under environmental stress. The identification of salt-responsive hub genes directly responsible for photosynthesis and starch synthesis or metabolism will provide targets for future genetic improvements.
Collapse
Affiliation(s)
- Panfei Chen
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; (P.C.); (P.L.); (C.B.); (C.L.); (S.S.); (D.Z.)
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China
| | - Peng Liu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; (P.C.); (P.L.); (C.B.); (C.L.); (S.S.); (D.Z.)
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China
| | - Quanfeng Zhang
- Hebei Academy of Forestry and Grassland Sicences, No. 75, Xuefu Road, Shijiazhuang 050061, China;
| | - Chenhao Bu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; (P.C.); (P.L.); (C.B.); (C.L.); (S.S.); (D.Z.)
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China
| | - Chunhao Lu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; (P.C.); (P.L.); (C.B.); (C.L.); (S.S.); (D.Z.)
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China
| | - Sudhakar Srivastava
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; (P.C.); (P.L.); (C.B.); (C.L.); (S.S.); (D.Z.)
| | - Deqiang Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; (P.C.); (P.L.); (C.B.); (C.L.); (S.S.); (D.Z.)
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China
| | - Yuepeng Song
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; (P.C.); (P.L.); (C.B.); (C.L.); (S.S.); (D.Z.)
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China
| |
Collapse
|
50
|
Wu Y, Liu N, Hu L, Liao W, Tang Z, Xiao X, Lyu J, Xie J, Calderón-Urrea A, Yu J. 5-Aminolevulinic Acid Improves Morphogenesis and Na + Subcellular Distribution in the Apical Cells of Cucumis sativus L. Under Salinity Stress. FRONTIERS IN PLANT SCIENCE 2021; 12:636121. [PMID: 33815443 PMCID: PMC8012848 DOI: 10.3389/fpls.2021.636121] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/22/2021] [Indexed: 05/31/2023]
Abstract
Soil salinity causes damage to plants and a reduction in output. A natural plant growth regulator, 5-aminolevulinic acid (ALA), has been shown to promote plant growth under abiotic stress conditions. In the present study, we assessed the effects of exogenously applied ALA (25 mg L-1) on the root architecture and Na+ distribution of cucumber (Cucumis sativus L.) seedlings under moderate NaCl stress (50 mmol L-1). The results showed that exogenous ALA improved root length, root volume, root surface area, and cell activity in the root tips, which were inhibited under salt stress. In addition, although salinity stress increased the subcellular Na+ contents, such as those of the cell wall, nucleus, plastid, and mitochondria, ALA treatment reduced these Na+ contents, except the soluble fraction. Molecular biological analysis revealed that ALA application upregulated both the SOS1 and HA3 transcriptional and translational levels, which suggested that the excretion of Na+ into the cytoplasm cloud was promoted by exogenous ALA. Meanwhile, exogenously applied ALA also upregulated the gene and protein expression of NHX1 and VHA-A under salinity stress, which suggested that the compartmentalization of Na+ to the vacuole was enhanced. Overall, exogenous ALA mitigated the damage caused by NaCl in cucumber by enhancing Na+ redistribution and increasing the cytoactivity of root cells.
Collapse
Affiliation(s)
- Yue Wu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Na Liu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Linli Hu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Weibiao Liao
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Zhongqi Tang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Xuemei Xiao
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jian Lyu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jianming Xie
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Alejandro Calderón-Urrea
- Department of Biology, College of Science and Mathematics, California State University, Fresno, Fresno, CA, United States
- College of Plant Protection, Gansu Agricultural University, Lanzhou, China
| | - Jihua Yu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
- Gansu Provincial Key Laboratory of Arid Land Crop Science, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|