1
|
Yu J, Khomenko I, Biasioli F, Li M, Varotto C. A Novel Isoprene Synthase from the Monocot Tree Copernicia prunifera (Arecaceae) Confers Enhanced Drought Tolerance in Transgenic Arabidopsis. Int J Mol Sci 2023; 24:15329. [PMID: 37895009 PMCID: PMC10607627 DOI: 10.3390/ijms242015329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/18/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
The capacity to emit isoprene, among other stresses, protects plants from drought, but the molecular mechanisms underlying this trait are only partly understood. The Arecaceae (palms) constitute a very interesting model system to test the involvement of isoprene in enhancing drought tolerance, as their high isoprene emissions may have contributed to make them hyperdominant in neotropical dry forests, characterized by recurrent and extended periods of drought stress. In this study we isolated and functionally characterized a novel isoprene synthase, the gene responsible for isoprene biosynthesis, from Copernicia prunifera, a palm from seasonally dry tropical forests. When overexpressed in the non-emitter Arabidopsis thaliana, CprISPS conferred significant levels of isoprene emission, together with enhanced tolerance to water limitation throughout plant growth and development, from germination to maturity. CprISPS overexpressors displayed higher germination, cotyledon/leaf greening, water usage efficiency, and survival than WT Arabidopsis under various types of water limitation. This increased drought tolerance was accompanied by a marked transcriptional up-regulation of both ABA-dependent and ABA-independent key drought response genes. Taken together, these results demonstrate the capacity of CprISPS to enhance drought tolerance in Arabidopsis and suggest that isoprene emission could have evolved in Arecaceae as an adaptive mechanism against drought.
Collapse
Affiliation(s)
- Jiamei Yu
- Biodiversity, Ecology and Environment Area, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, 38098 Trento, Italy;
- Department of Biology, University of Padova, 35121 Padova, Italy
| | - Iuliia Khomenko
- Food and Nutrition Area, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, 38098 Trento, Italy; (I.K.); (F.B.)
| | - Franco Biasioli
- Food and Nutrition Area, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, 38098 Trento, Italy; (I.K.); (F.B.)
| | - Mingai Li
- Biodiversity, Ecology and Environment Area, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, 38098 Trento, Italy;
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Claudio Varotto
- Biodiversity, Ecology and Environment Area, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, 38098 Trento, Italy;
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| |
Collapse
|
2
|
Iqbal MA, Miyamoto K, Yumoto E, Oogai S, Mutanda I, Inafuku M, Oku H. Relationship between seasonal variation in isoprene emission and plant hormone profiles in the tropical plant Ficus septica. PLANT BIOLOGY (STUTTGART, GERMANY) 2023; 25:981-993. [PMID: 37565537 DOI: 10.1111/plb.13565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/19/2023] [Indexed: 08/12/2023]
Abstract
In Ficus septica, the short-term control of isoprene production and, therefore, isoprene emission has been linked to the hormone balance between auxin (IAA) and jasmonic acid (JA). However, the relationship between long-term changes in isoprene emission and that of plant hormones remains unknown. This study tracked isoprene emissions from F. septica leaves, plant hormone concentrations and signalling gene expression, MEP pathway metabolite concentrations, and related enzyme gene expression for 1 year in the field to better understand the role of plant hormones and their long-term control. Seasonality of isoprenes was mainly driven by temperature- and light-dependent variations in substrate availability through the MEP route, as well as transcriptional and post-transcriptional control of isoprene synthase (IspS). Isoprene emissions are seasonally correlated with plant hormone levels. This was especially evident in the cytokinin profiles, which decreased in summer and increased in winter. Only 4-hydroxy-3-methylbut-2-butenyl-4-diphosphate (HMBDP) exhibited a positive connection with cytokinins among the MEP metabolites examined, suggesting that HMBDP and its biosynthetic enzyme, HMBDP synthase (HDS), play a role in channelling of MEP pathway metabolites to cytokinin production. Thus, it is probable that cytokinins have potential feed-forward regulation of isoprene production. Under long-term natural conditions, the hormonal balance of IAA/JA-Ile was not associated with IspS transcripts or isoprene emissions. This study builds on prior work by revealing differences between short- and long-term hormonal modulation of isoprene emissions in the tropical tree F. septica.
Collapse
Affiliation(s)
- M A Iqbal
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
| | - K Miyamoto
- Department of Biosciences, Teikyo University, Utsunomiya, Tochigi, Japan
| | - E Yumoto
- Advanced Instrumental Analysis Center, Teikyo University, Tochigi, Japan
| | - S Oogai
- Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan
| | - I Mutanda
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - M Inafuku
- Faculty of Agriculture, University of the Ryukyus, Okinawa, Japan
| | - H Oku
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
- Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan
| |
Collapse
|
3
|
Zhou H, Ashworth K, Dodd IC. Exogenous monoterpenes mitigate H2O2-induced lipid damage but do not attenuate photosynthetic decline during water deficit in tomato. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5327-5340. [PMID: 37279582 PMCID: PMC10498030 DOI: 10.1093/jxb/erad219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 06/02/2023] [Indexed: 06/08/2023]
Abstract
Although monoterpenes are suggested to mediate oxidative status, their role in abiotic stress responses is currently unclear. Here, a foliar spray of monoterpenes increased antioxidant capacity and decreased oxidative stress of Solanum lycopersicum under water deficit stress. The foliar content of monoterpenes increased with spray concentration indicating foliar uptake of exogenous monoterpenes. Exogenous monoterpene application substantially decreased foliar accumulation of hydrogen peroxide (H2O2) and lipid peroxidation (malondialdehyde). However, it appears that monoterpenes prevent the accumulation of reactive oxygen species rather than mitigating subsequent reactive oxygen species-induced damage. Low spray concentration (1.25 mM) proved most effective in decreasing oxidative stress but did not up-regulate the activity of key antioxidant enzymes (superoxide dismutase and ascorbate peroxidase) even though higher (2.5 and 5 mM) spray concentrations did, suggesting a complex role for monoterpenes in mediating antioxidant processes. Furthermore, soil drying caused similar photosynthetic limitations in all plants irrespective of monoterpene treatments, apparently driven by strong reductions in stomatal conductance as photosystem II efficiency only decreased in very dry soil. We suggest that exogenous monoterpenes may mitigate drought-induced oxidative stress by direct quenching and/or up-regulating endogenous antioxidative processes. The protective properties of specific monoterpenes and endogenous antioxidants require further investigation.
Collapse
Affiliation(s)
- Hao Zhou
- Lancaster Environment Centre, Lancaster University, Library Avenue, Lancaster LA1 4YQ, UK
| | - Kirsti Ashworth
- Lancaster Environment Centre, Lancaster University, Library Avenue, Lancaster LA1 4YQ, UK
| | - Ian C Dodd
- Lancaster Environment Centre, Lancaster University, Library Avenue, Lancaster LA1 4YQ, UK
| |
Collapse
|
4
|
Isoprene: An Antioxidant Itself or a Molecule with Multiple Regulatory Functions in Plants? Antioxidants (Basel) 2021; 10:antiox10050684. [PMID: 33925614 PMCID: PMC8146742 DOI: 10.3390/antiox10050684] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/16/2021] [Accepted: 04/26/2021] [Indexed: 12/25/2022] Open
Abstract
Isoprene (C5H8) is a small lipophilic, volatile organic compound (VOC), synthesized in chloroplasts of plants through the photosynthesis-dependent 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway. Isoprene-emitting plants are better protected against thermal and oxidative stresses but only about 20% of the terrestrial plants are able to synthesize isoprene. Many studies have been performed to understand the still elusive isoprene protective mechanism. Isoprene reacts with, and quenches, many harmful reactive oxygen species (ROS) like singlet oxygen (1O2). A role for isoprene as antioxidant, made possible by its reduced state and conjugated double bonds, has been often suggested, and sometimes demonstrated. However, as isoprene is present at very low concentrations compared to other molecules, its antioxidant role is still controversial. Here we review updated evidences on the function(s) of isoprene, and outline contrasting indications on whether isoprene is an antioxidant directly scavenging ROS, or a membrane strengthener, or a modulator of genomic, proteomic and metabolomic profiles (perhaps as a secondary effect of ROS removal) eventually leading to priming of antioxidant plant defenses, or a signal of stress for neighbor plants alike other VOCs, or a hormone-like molecule, controlling the metabolic flux of other hormones made by the MEP pathway, or acting itself as a growth and development hormone.
Collapse
|
5
|
Leaf isoprene emission as a trait that mediates the growth-defense tradeoff in the face of climate stress. Oecologia 2021; 197:885-902. [PMID: 33420520 DOI: 10.1007/s00442-020-04813-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 12/01/2020] [Indexed: 12/27/2022]
Abstract
Plant isoprene emissions are known to contribute to abiotic stress tolerance, especially during episodes of high temperature and drought, and during cellular oxidative stress. Recent studies have shown that genetic transformations to add or remove isoprene emissions cause a cascade of cellular modifications that include known signaling pathways, and interact to remodel adaptive growth-defense tradeoffs. The most compelling evidence for isoprene signaling is found in the shikimate and phenylpropanoid pathways, which produce salicylic acid, alkaloids, tannins, anthocyanins, flavonols and other flavonoids; all of which have roles in stress tolerance and plant defense. Isoprene also influences key gene expression patterns in the terpenoid biosynthetic pathways, and the jasmonic acid, gibberellic acid and cytokinin signaling networks that have important roles in controlling inducible defense responses and influencing plant growth and development, particularly following defoliation. In this synthesis paper, using past studies of transgenic poplar, tobacco and Arabidopsis, we present the evidence for isoprene acting as a metabolite that coordinates aspects of cellular signaling, resulting in enhanced chemical defense during periods of climate stress, while minimizing costs to growth. This perspective represents a major shift in our thinking away from direct effects of isoprene, for example, by changing membrane properties or quenching ROS, to indirect effects, through changes in gene expression and protein abundances. Recognition of isoprene's role in the growth-defense tradeoff provides new perspectives on evolution of the trait, its contribution to plant adaptation and resilience, and the ecological niches in which it is most effective.
Collapse
|
6
|
Rodrigues TB, Baker CR, Walker AP, McDowell N, Rogers A, Higuchi N, Chambers JQ, Jardine KJ. Stimulation of isoprene emissions and electron transport rates as key mechanisms of thermal tolerance in the tropical species Vismia guianensis. GLOBAL CHANGE BIOLOGY 2020; 26:5928-5941. [PMID: 32525272 DOI: 10.1111/gcb.15213] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 04/14/2020] [Accepted: 05/28/2020] [Indexed: 06/11/2023]
Abstract
Tropical forests absorb large amounts of atmospheric CO2 through photosynthesis, but high surface temperatures suppress this absorption while promoting isoprene emissions. While mechanistic isoprene emission models predict a tight coupling to photosynthetic electron transport (ETR) as a function of temperature, direct field observations of this phenomenon are lacking in the tropics and are necessary to assess the impact of a warming climate on global isoprene emissions. Here we demonstrate that in the early successional species Vismia guianensis in the central Amazon, ETR rates increased with temperature in concert with isoprene emissions, even as stomatal conductance (gs ) and net photosynthetic carbon fixation (Pn ) declined. We observed the highest temperatures of continually increasing isoprene emissions yet reported (50°C). While Pn showed an optimum value of 32.6 ± 0.4°C, isoprene emissions, ETR, and the oxidation state of PSII reaction centers (qL ) increased with leaf temperature with strong linear correlations for ETR (ƿ = 0.98) and qL (ƿ = 0.99) with leaf isoprene emissions. In contrast, other photoprotective mechanisms, such as non-photochemical quenching, were not activated at elevated temperatures. Inhibition of isoprenoid biosynthesis repressed Pn at high temperatures through a mechanism that was independent of stomatal closure. While extreme warming will decrease gs and Pn in tropical species, our observations support a thermal tolerance mechanism where the maintenance of high photosynthetic capacity under extreme warming is assisted by the simultaneous stimulation of ETR and metabolic pathways that consume the direct products of ETR including photorespiration and the biosynthesis of thermoprotective isoprenoids. Our results confirm that models which link isoprene emissions to the rate of ETR hold true in tropical species and provide necessary "ground-truthing" for simulations of the large predicted increases in tropical isoprene emissions with climate warming.
Collapse
Affiliation(s)
- Tayana B Rodrigues
- Forest Management Laboratory, National Institute of Amazonian Research, Manaus, Brazil
| | - Christopher R Baker
- Howard Hughes Medical Institute, Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Anthony P Walker
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Nate McDowell
- Earth System Analysis and Modeling, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Alistair Rogers
- Environmental and Climate Sciences Department, Brookhaven National Laboratory, Upton, NY, USA
| | - Niro Higuchi
- Forest Management Laboratory, National Institute of Amazonian Research, Manaus, Brazil
| | - Jeffrey Q Chambers
- Forest Management Laboratory, National Institute of Amazonian Research, Manaus, Brazil
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Kolby J Jardine
- Forest Management Laboratory, National Institute of Amazonian Research, Manaus, Brazil
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
7
|
Ormeño E, Viros J, Mévy JP, Tonetto A, Saunier A, Bousquet-Mélou A, Fernandez C. Exogenous Isoprene Confers Physiological Benefits in a Negligible Isoprene Emitter ( Acer monspessulanum L. ) Under Water Deficit. PLANTS 2020; 9:plants9020159. [PMID: 32012939 PMCID: PMC7076702 DOI: 10.3390/plants9020159] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/22/2020] [Accepted: 01/24/2020] [Indexed: 01/27/2023]
Abstract
Isoprene, the main volatile released by plants, is known to protect the photosynthetic apparatus in isoprene emitters submitted to oxidative pressures caused by environmental constraints. Whether ambient isoprene contributes to protect negligible plant emitters under abiotic stress conditions is less clear, and no study has tested if ambient isoprene is beneficial during drought periods in plant species that naturally release negligible isoprene emissions. This study examines the effect of exogenous isoprene (20 ppbv) on net photosynthesis, stomatal conductance and production of H2O2 (a reactive oxygen species: ROS) in leaves of Acer monspessulanum (a negligible isoprene emitter) submitted to three watering treatments (optimal, moderate water stress and severe water stress). Results showed that A. monspessulanum exhibited a net photosynthesis increase (+30%) and a relative leaf H2O2 decrease when saplings were exposed to an enriched isoprene atmosphere compared to isoprene-free conditions under moderate water deficit. Such physiological improvement under isoprene exposure was not observed under optimal watering or severe water stress. These findings suggest that when negligible isoprene emitters are surrounded by a very high concentration of isoprene in the ambient air, some plant protection mechanism occurs under moderate water deficit probably related to protection against ROS damage eventually impeding photosynthesis drop.
Collapse
Affiliation(s)
- Elena Ormeño
- CNRS, Aix Marseille Univ, Avignon Univ, IRD, IMBE, 13331 Marseille, France; (J.V.); (J.-P.M.); (A.B.-M.); (C.F.)
- Correspondence: ; Tel.: +33-413-55-12-26
| | - Justine Viros
- CNRS, Aix Marseille Univ, Avignon Univ, IRD, IMBE, 13331 Marseille, France; (J.V.); (J.-P.M.); (A.B.-M.); (C.F.)
| | - Jean-Philippe Mévy
- CNRS, Aix Marseille Univ, Avignon Univ, IRD, IMBE, 13331 Marseille, France; (J.V.); (J.-P.M.); (A.B.-M.); (C.F.)
| | - Alain Tonetto
- Platform of analytical and technological research and imaging, FR1739, CNRS, Aix-Marseille Univ, Centrale Marseille, 13003 Marseille, France;
| | - Amélie Saunier
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland;
| | - Anne Bousquet-Mélou
- CNRS, Aix Marseille Univ, Avignon Univ, IRD, IMBE, 13331 Marseille, France; (J.V.); (J.-P.M.); (A.B.-M.); (C.F.)
| | - Catherine Fernandez
- CNRS, Aix Marseille Univ, Avignon Univ, IRD, IMBE, 13331 Marseille, France; (J.V.); (J.-P.M.); (A.B.-M.); (C.F.)
| |
Collapse
|
8
|
Lantz AT, Allman J, Weraduwage SM, Sharkey TD. Isoprene: New insights into the control of emission and mediation of stress tolerance by gene expression. PLANT, CELL & ENVIRONMENT 2019; 42:2808-2826. [PMID: 31350912 PMCID: PMC6788959 DOI: 10.1111/pce.13629] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/19/2019] [Accepted: 07/21/2019] [Indexed: 05/10/2023]
Abstract
Isoprene is a volatile compound produced in large amounts by some, but not all, plants by the enzyme isoprene synthase. Plants emit vast quantities of isoprene, with a net global output of 600 Tg per year, and typical emission rates from individual plants around 2% of net carbon assimilation. There is significant debate about whether global climate change resulting from increasing CO2 in the atmosphere will increase or decrease global isoprene emission in the future. We show evidence supporting predictions of increased isoprene emission in the future, but the effects could vary depending on the environment under consideration. For many years, isoprene was believed to have immediate, physical effects on plants such as changing membrane properties or quenching reactive oxygen species. Although observations sometimes supported these hypotheses, the effects were not always observed, and the reasons for the variability were not apparent. Although there may be some physical effects, recent studies show that isoprene has significant effects on gene expression, the proteome, and the metabolome of both emitting and nonemitting species. Consistent results are seen across species and specific treatment protocols. This review summarizes recent findings on the role and control of isoprene emission from plants.
Collapse
Affiliation(s)
- Alexandra T. Lantz
- MSU-DOE Plant Research Laboratory, Department of Biochemistry and Molecular Biology, East Lansing, MI, United States
| | - Joshua Allman
- MSU-DOE Plant Research Laboratory, Department of Biochemistry and Molecular Biology, East Lansing, MI, United States
| | - Sarathi M. Weraduwage
- MSU-DOE Plant Research Laboratory, Department of Biochemistry and Molecular Biology, East Lansing, MI, United States
| | - Thomas D. Sharkey
- MSU-DOE Plant Research Laboratory, Department of Biochemistry and Molecular Biology, East Lansing, MI, United States
- Great Lakes Bioenergy Research Center, Madison, MI, United States
- Plant Resilience Institute, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
9
|
Feng Z, Yuan X, Fares S, Loreto F, Li P, Hoshika Y, Paoletti E. Isoprene is more affected by climate drivers than monoterpenes: A meta-analytic review on plant isoprenoid emissions. PLANT, CELL & ENVIRONMENT 2019; 42:1939-1949. [PMID: 30767225 DOI: 10.1111/pce.13535] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 02/11/2019] [Accepted: 02/11/2019] [Indexed: 05/03/2023]
Abstract
Isoprene and monoterpenes (MTs) are among the most abundant and reactive volatile organic compounds produced by plants (biogenic volatile organic compounds). We conducted a meta-analysis to quantify the mean effect of environmental factors associated to climate change (warming, drought, elevated CO2 , and O3 ) on the emission of isoprene and MTs. Results indicated that all single factors except warming inhibited isoprene emission. When subsets of data collected in experiments run under similar change of a given environmental factor were compared, isoprene and photosynthesis responded negatively to elevated O3 (-8% and -10%, respectively) and drought (-15% and -42%), and in opposite ways to elevated CO2 (-23% and +55%) and warming (+53% and -23%, respectively). Effects on MTs emission were usually not significant, with the exceptions of a significant stimulation caused by warming (+39%) and by elevated O3 (limited to O3 -insensitive plants, and evergreen species with storage organs). Our results clearly highlight individual effects of environmental factors on isoprene and MT emissions, and an overall uncoupling between these secondary metabolites produced by the same methylerythritol 4-phosphate pathway. Future results from manipulative experiments and long-term observations may help untangling the interactive effects of these factors and filling gaps featured in the current meta-analysis.
Collapse
Affiliation(s)
- Zhaozhong Feng
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Xiangyang Yuan
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Silvano Fares
- Council for Agricultural Research and Economics (CREA), Research Centre for Forestry and Wood, Arezzo, 52100, Italy
| | - Francesco Loreto
- Department of Biology, Agriculture and Food Sciences (DISBA), National Research Council of Italy (CNR), Rome, 00185, Italy
- Department of Biology, University Federico II, Naples, 80138, Italy
| | - Pin Li
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Yasutomo Hoshika
- National Research Council of Italy (CNR), Institute for Sustainable Plant Protection, Sesto Fiorentino (Florence), 50019, Italy
| | - Elena Paoletti
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- National Research Council of Italy (CNR), Institute for Sustainable Plant Protection, Sesto Fiorentino (Florence), 50019, Italy
| |
Collapse
|
10
|
Parveen S, Iqbal MA, Mutanda I, Rashid MHU, Inafuku M, Oku H. Plant hormone effects on isoprene emission from tropical tree in Ficus septica. PLANT, CELL & ENVIRONMENT 2019; 42:1715-1728. [PMID: 30610754 DOI: 10.1111/pce.13513] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/23/2018] [Accepted: 12/26/2018] [Indexed: 06/09/2023]
Abstract
Plant hormones and the circadian rhythm have been implicated in coordinated control of isoprene emission in plants. To gain insights into the signalling networks, foliar application of plant hormones was conducted in a native emitter, Ficus septica. Spraying of 50 μM jasmonic acid (JA) gradually decreased isoprene emission by 88% compared with initial levels within 5 days, and emission increased after relief from JA application. We further explored the molecular regulatory mechanism of isoprene emission by analysing photosynthetic rate, gene expression of 2-C-methyl-D-erythrytol 4-phosphate (MEP) pathway, hormone signalling and circadian rhythm processes, and metabolite pool sizes of MEP pathway. Results show that isoprene emission strongly correlated with isoprene synthase (IspS) gene expression and IspS protein levels over the period of JA treatment, indicating transcriptional and possible translational modulation of IspS by JA. Application of JA coordinately modulated genes in the auxin, cytokinin (CK), and circadian rhythm signal transduction pathways. Among the transcriptional factors analysed, MYC2 (JA) and LHY (circadian clock) negatively correlated with isoprene emission. Putative cis-elements predicted on IspS promoter (G-box for MYC2 and circadian for LHY) supports our proposal that isoprene emission is regulated by coordinated transcriptional modulation of IspS gene by phytohormone and circadian rhythm signalling.
Collapse
Affiliation(s)
- Shahanaz Parveen
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
- Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan
- Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - Md Asif Iqbal
- Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan
- Graduate School of Agriculture, University of the Ryukyus, Okinawa, Japan
| | - Ishmael Mutanda
- Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan
| | - Md Harun-Ur- Rashid
- Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - Masashi Inafuku
- Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan
| | - Hirosuke Oku
- Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan
| |
Collapse
|
11
|
Bison JV, Cardoso-Gustavson P, de Moraes RM, da Silva Pedrosa G, Cruz LS, Freschi L, de Souza SR. Volatile organic compounds and nitric oxide as responses of a Brazilian tropical species to ozone: the emission profile of young and mature leaves. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:3840-3848. [PMID: 29178001 DOI: 10.1007/s11356-017-0744-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 11/14/2017] [Indexed: 05/03/2023]
Abstract
The emission profile of volatile organic compounds (VOCs) and nitric oxide (NO) in young and mature leaves of Croton floribundus was assessed in plants exposed to filtered air (FA) and ozone-enriched filtered air (FA+O3). After the period of exposure, leaves were enclosed in polyethylene terephthalate bags and VOCs were collected in young and mature leaves. Both young and mature leaves constitutively emitted the same VOC, but the concentrations were higher in young leaves. O3 exposure induced the emission of sesquiterpenes (mainly β-caryophyllene) known as antioxidant compounds that may scavenge O3. Young leaves were the highest emitters of sesquiterpenes. O3 induced a rapid accumulation of NO in different tissues and leaf developmental stages; this accumulation was marked in palisade and spongy parenchyma cells in young and mature leaves, respectively. O3 altered the levels of the signaling compound methyl salicylate (MeSA). Moreover, our data showed that NO together with VOC emissions, such as geranyl acetate, α-cadiene, trans-farnesol, cis-β-farnesene, and MeSA, participate of plant defense mechanisms against the oxidative damage caused by O3.
Collapse
Affiliation(s)
- Josiane Valéria Bison
- Núcleo de Pesquisa em Ecologia, Instituto de Botânica, Av. Miguel Stefano 3687, Água Funda, São Paulo, SP, 04301-902, Brazil
- Programa de Pós-Graduação em Biodiversidade Vegetal e Meio Ambiente, Instituto de Botânica, Av. Miguel Stefano 3687, Água Funda, São Paulo, SP, 04301-902, Brazil
| | - Poliana Cardoso-Gustavson
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Av. dos Estados 5001, Santo André, SP, 09210-580, Brazil
| | - Regina Maria de Moraes
- Núcleo de Pesquisa em Ecologia, Instituto de Botânica, Av. Miguel Stefano 3687, Água Funda, São Paulo, SP, 04301-902, Brazil
| | - Giselle da Silva Pedrosa
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Av. dos Estados 5001, Santo André, SP, 09210-580, Brazil
- Programa de Pós-Graduação em Biotecnociências, Universidade Federal do ABC, Av. dos Estados 5001, Santo André, SP, 09210-580, Brazil
| | - Luciano Soares Cruz
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Av. dos Estados 5001, Santo André, SP, 09210-580, Brazil
| | - Luciano Freschi
- Departamento de Botânica, Instituto de Biociência, Universidade de São Paulo, Rua do Matão 277, Butantã, SP, 05508-090, Brazil
| | - Silvia Ribeiro de Souza
- Núcleo de Pesquisa em Ecologia, Instituto de Botânica, Av. Miguel Stefano 3687, Água Funda, São Paulo, SP, 04301-902, Brazil.
| |
Collapse
|
12
|
Fusaro L, Palma A, Salvatori E, Basile A, Maresca V, Asadi Karam E, Manes F. Functional indicators of response mechanisms to nitrogen deposition, ozone, and their interaction in two Mediterranean tree species. PLoS One 2017; 12:e0185836. [PMID: 28973038 PMCID: PMC5626521 DOI: 10.1371/journal.pone.0185836] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 09/20/2017] [Indexed: 11/18/2022] Open
Abstract
The effects of nitrogen (N) deposition, tropospheric ozone (O3) and their interaction were investigated in two Mediterranean tree species, Fraxinus ornus L. (deciduous) and Quercus ilex L. (evergreen), having different leaf habits and resource use strategies. An experiment was conducted under controlled condition to analyse how nitrogen deposition affects the ecophysiological and biochemical traits, and to explore how the nitrogen-induced changes influence the response to O3. For both factors we selected realistic exposures (20 kg N ha-1 yr-1 and 80 ppb h for nitrogen and O3, respectively), in order to elucidate the mechanisms implemented by the plants. Nitrogen addition resulted in higher nitrogen concentration at the leaf level in F. ornus, whereas a slight increase was detected in Q. ilex. Nitrogen enhanced the maximum rate of assimilation and ribulose 1,5-bisphosphate regeneration in both species, whereas it influenced the light harvesting complex only in the deciduous F. ornus that was also affected by O3 (reduced assimilation rate and accelerated senescence-related processes). Conversely, Q. ilex developed an avoidance mechanism to cope with O3, confirming a substantial O3 tolerance of this species. Nitrogen seemed to ameliorate the harmful effects of O3 in F. ornus: the hypothesized mechanism of action involved the production of nitrogen oxide as the first antioxidant barrier, followed by enzymatic antioxidant response. In Q. ilex, the interaction was not detected on gas exchange and photosystem functionality; however, in this species, nitrogen might stimulate an alternative antioxidant response such as the emission of volatile organic compounds. Antioxidant enzyme activity was lower in plants treated with both O3 and nitrogen even though reactive oxygen species production did not differ between the treatments.
Collapse
Affiliation(s)
- Lina Fusaro
- Sapienza University of Rome, Department of Environmental Biology, Rome, Italy
| | - Adriano Palma
- Sapienza University of Rome, Department of Environmental Biology, Rome, Italy
| | | | - Adriana Basile
- University of Naples “Federico II”, Biology Department, Naples, Italy
| | - Viviana Maresca
- University of Naples “Federico II”, Biology Department, Naples, Italy
| | - Elham Asadi Karam
- Shahid Bahonar University of Kerman, Biology Department, Kerman, Iran
| | - Fausto Manes
- Sapienza University of Rome, Department of Environmental Biology, Rome, Italy
| |
Collapse
|
13
|
Jday A, Ben Rejeb K, Slama I, Saadallah K, Bordenave M, Planchais S, Savouré A, Abdelly C. Effects of exogenous nitric oxide on growth, proline accumulation and antioxidant capacity in Cakile maritima seedlings subjected to water deficit stress. FUNCTIONAL PLANT BIOLOGY : FPB 2016; 43:939-948. [PMID: 32480517 DOI: 10.1071/fp15363] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 05/26/2016] [Indexed: 06/11/2023]
Abstract
Nitric oxide (NO) - an endogenous signalling molecule in plants and animals - mediates responses to biotic and abiotic stresses. In the present study, we examined the role of exogenous application of NO in mediating stress responses in Cakile maritima Scop. seedlings under water deficit stress using sodium nitroprusside (SNP) as NO donor and as a pre-treatment before the application of stress. Water deficit stress was applied by withholding water for 14 days. Growth, leaf water content (LWC), osmotic potential (ψs), chlorophyll, malondialdehyde (MDA), electrolyte leakage (EL), proline and Δ1-pyrroline-5-carboxylate synthetase (P5CS) and proline dehydrogenase (ProDH) protein levels were determined. Enzyme activities involved in antioxidant activities (superoxide dismutase (SOD) and catalase (CAT)) were measured upon withholding water. The results showed that shoot biomass production was significantly decreased in plants subjected to water deficit stress alone. However, in water deficit stressed plants pre-treated with SNP, growth activity was improved and proline accumulation was significantly increased. Proline accumulation was concomitant with the stimulation of its biosynthesis as shown by the accumulation of P5CS proteins. Nevertheless, no significant change in ProDH protein levels was observed. Besides plants showed lower water deficit-induced lipid membrane degradation and oxidative stress after the pretreatment with 100µM SNP. This behaviour was related to the increased activity of SOD and CAT. Thus, we concluded that NO increased C. maritima drought tolerance and mitigated damage associated with water deficit stress by the regulation of proline metabolism and the reduction of oxidative damage.
Collapse
Affiliation(s)
- Asma Jday
- Laboratoire des Plantes Extrêmophiles, Centre de Biotechnologie de Borj-Cedria (CBBC), BP 901, Hammam-Lif, 2050, Tunisia
| | - Kilani Ben Rejeb
- Laboratoire des Plantes Extrêmophiles, Centre de Biotechnologie de Borj-Cedria (CBBC), BP 901, Hammam-Lif, 2050, Tunisia
| | - Ines Slama
- Laboratoire des Plantes Extrêmophiles, Centre de Biotechnologie de Borj-Cedria (CBBC), BP 901, Hammam-Lif, 2050, Tunisia
| | - Kaouthar Saadallah
- Laboratoire des Plantes Extrêmophiles, Centre de Biotechnologie de Borj-Cedria (CBBC), BP 901, Hammam-Lif, 2050, Tunisia
| | - Marianne Bordenave
- Laboratoire d'Adaptation des Plantes aux Contraintes Environnementales, UR5, Université Pierre et Marie Curie (UPMC), Case 156, 4 Place Jussieu, 75252 Paris cedex 05, France
| | - Séverine Planchais
- Laboratoire d'Adaptation des Plantes aux Contraintes Environnementales, UR5, Université Pierre et Marie Curie (UPMC), Case 156, 4 Place Jussieu, 75252 Paris cedex 05, France
| | - Arnould Savouré
- Laboratoire d'Adaptation des Plantes aux Contraintes Environnementales, UR5, Université Pierre et Marie Curie (UPMC), Case 156, 4 Place Jussieu, 75252 Paris cedex 05, France
| | - Chedly Abdelly
- Laboratoire des Plantes Extrêmophiles, Centre de Biotechnologie de Borj-Cedria (CBBC), BP 901, Hammam-Lif, 2050, Tunisia
| |
Collapse
|
14
|
Fatma M, Masood A, Per TS, Rasheed F, Khan NA. Interplay between nitric oxide and sulfur assimilation in salt tolerance in plants. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.cj.2016.01.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Khaling E, Li T, Holopainen JK, Blande JD. Elevated Ozone Modulates Herbivore-Induced Volatile Emissions of Brassica nigra and Alters a Tritrophic Interaction. J Chem Ecol 2016; 42:368-81. [PMID: 27167383 DOI: 10.1007/s10886-016-0697-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 03/30/2016] [Accepted: 04/18/2016] [Indexed: 01/24/2023]
Abstract
Plants damaged by herbivores emit volatile organic compounds (VOCs) that are used by parasitoids for host location. In nature, however, plants are exposed to multiple abiotic and biotic stresses of varying intensities, which may affect tritrophic interactions. Here, we studied the effects of ozone exposure and feeding by Pieris brassicae larvae on the VOCs emitted by Brassica nigra and the effects on oriented flight of the parasitoid Cotesia glomerata. We also investigated the oriented flight of C. glomerata in a wind-tunnel with elevated ozone levels. Herbivore-feeding induced the emission of several VOCs, while ozone alone had no significant effect. However, exposure to 120 ppb ozone, followed by 24 hr of herbivore-feeding, induced higher emissions of all VOCs as compared to herbivore-feeding alone. In accordance, herbivore-damaged plants elicited more oriented flights than undamaged plants, whereas plants exposed to 120 ppb ozone and 24 hr of herbivore-feeding elicited more oriented flights than plants subjected to herbivore-feeding alone. Ozone enrichment of the wind-tunnel air appeared to negatively affect orientation of parasitoids at 70 ppb, but not at 120 ppb. These results suggest that the combination of ozone and P. brassicae-feeding modulates VOC emissions, which significantly influence foraging efficiency of C. glomerata.
Collapse
Affiliation(s)
- Eliezer Khaling
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 1627, FIN-70211, Kuopio, Finland.
| | - Tao Li
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 1627, FIN-70211, Kuopio, Finland
| | - Jarmo K Holopainen
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 1627, FIN-70211, Kuopio, Finland
| | - James D Blande
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 1627, FIN-70211, Kuopio, Finland
| |
Collapse
|
16
|
Becker C, Desneux N, Monticelli L, Fernandez X, Michel T, Lavoir AV. Effects of Abiotic Factors on HIPV-Mediated Interactions between Plants and Parasitoids. BIOMED RESEARCH INTERNATIONAL 2015; 2015:342982. [PMID: 26788501 PMCID: PMC4692980 DOI: 10.1155/2015/342982] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 11/05/2015] [Indexed: 12/30/2022]
Abstract
In contrast to constitutively emitted plant volatiles (PV), herbivore-induced plant volatiles (HIPV) are specifically emitted by plants when afflicted with herbivores. HIPV can be perceived by parasitoids and predators which parasitize or prey on the respective herbivores, including parasitic hymenoptera. HIPV act as signals and facilitate host/prey detection. They comprise a blend of compounds: main constituents are terpenoids and "green leaf volatiles." Constitutive emission of PV is well known to be influenced by abiotic factors like temperature, light intensity, water, and nutrient availability. HIPV share biosynthetic pathways with constitutively emitted PV and might therefore likewise be affected by abiotic conditions. However, the effects of abiotic factors on HIPV-mediated biotic interactions have received only limited attention to date. HIPV being influenced by the plant's growing conditions could have major implications for pest management. Quantitative and qualitative changes in HIPV blends may improve or impair biocontrol. Enhanced emission of HIPV may attract a larger number of natural enemies. Reduced emission rates or altered compositions, however, may render blends imperceptible to parasitoides and predators. Predicting the outcome of these changes is highly important for food production and for ecosystems affected by global climate change.
Collapse
Affiliation(s)
- Christine Becker
- French National Institute for Agricultural Research (INRA), University of Nice Sophia Antipolis, CNRS, UMR 1355-7254, Institut Sophia Agrobiotech, 06903 Sophia Antipolis, France
- Institut de Chimie de Nice, UMR CNRS 7272, University of Nice Sophia Antipolis, Parc Valrose, 06108 Nice Cedex 2, France
| | - Nicolas Desneux
- French National Institute for Agricultural Research (INRA), University of Nice Sophia Antipolis, CNRS, UMR 1355-7254, Institut Sophia Agrobiotech, 06903 Sophia Antipolis, France
| | - Lucie Monticelli
- French National Institute for Agricultural Research (INRA), University of Nice Sophia Antipolis, CNRS, UMR 1355-7254, Institut Sophia Agrobiotech, 06903 Sophia Antipolis, France
| | - Xavier Fernandez
- Institut de Chimie de Nice, UMR CNRS 7272, University of Nice Sophia Antipolis, Parc Valrose, 06108 Nice Cedex 2, France
| | - Thomas Michel
- Institut de Chimie de Nice, UMR CNRS 7272, University of Nice Sophia Antipolis, Parc Valrose, 06108 Nice Cedex 2, France
| | - Anne-Violette Lavoir
- French National Institute for Agricultural Research (INRA), University of Nice Sophia Antipolis, CNRS, UMR 1355-7254, Institut Sophia Agrobiotech, 06903 Sophia Antipolis, France
| |
Collapse
|
17
|
Lahr EC, Schade GW, Crossett CC, Watson MR. Photosynthesis and isoprene emission from trees along an urban-rural gradient in Texas. GLOBAL CHANGE BIOLOGY 2015; 21:4221-36. [PMID: 26111255 DOI: 10.1111/gcb.13010] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 05/18/2015] [Indexed: 05/26/2023]
Abstract
Isoprene emission is an important mechanism for improving the thermotolerance of plant photosystems as temperatures increase. In this study, we measured photosynthesis and isoprene emission in trees along an urban-rural gradient that serves as a proxy for climate change, to understand daily and seasonal responses to changes in temperature and other environmental variables. Leaf-level gas exchange and basal isoprene emission of post oak (Quercus stellata) and sweet gum (Liquidambar styraciflua) were recorded at regular intervals over an entire growing season at urban, suburban, and rural sites in eastern Texas. In addition, the temperature and atmospheric carbon dioxide concentration experienced by leaves were experimentally manipulated in spring, early summer, and late summer. We found that trees experienced lower stomatal conductance and photosynthesis and higher isoprene emission, at the urban and suburban sites compared to the rural site. Path analysis indicated a daily positive effect of isoprene emission on photosynthesis, but unexpectedly, higher isoprene emission from urban trees was not associated with improved photosynthesis as temperatures increased during the growing season. Furthermore, urban trees experienced relatively higher isoprene emission at high CO2 concentrations, while isoprene emission was suppressed at the other sites. These results suggest that isoprene emission may be less beneficial in urban, and potentially future, environmental conditions, particularly if higher temperatures override the suppressive effects of high CO2 on isoprene emission. These are important considerations for modeling future biosphere-atmosphere interactions and for understanding tree physiological responses to climate change.
Collapse
Affiliation(s)
- Eleanor C Lahr
- Department of Atmospheric Sciences, Texas A&M University, College Station, TX, 77840, USA
| | - Gunnar W Schade
- Department of Atmospheric Sciences, Texas A&M University, College Station, TX, 77840, USA
| | - Caitlin C Crossett
- Department of Geoscience, Hobart and William Smith Colleges, Geneva, NY, 14456, USA
| | - Matthew R Watson
- Department of Atmospheric Sciences, Texas A&M University, College Station, TX, 77840, USA
| |
Collapse
|
18
|
Tattini M, Loreto F, Fini A, Guidi L, Brunetti C, Velikova V, Gori A, Ferrini F. Isoprenoids and phenylpropanoids are part of the antioxidant defense orchestrated daily by drought-stressed Platanus × acerifolia plants during Mediterranean summers. THE NEW PHYTOLOGIST 2015; 207:613-26. [PMID: 25784134 DOI: 10.1111/nph.13380] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 02/19/2015] [Indexed: 05/05/2023]
Abstract
The hypothesis was tested that isoprenoids and phenylpropanoids play a prominent role in countering photooxidative stress, following the depletion of antioxidant enzyme activity in plants exposed to severe drought stress under high solar irradiance and high temperatures. Platanus × acerifolia, a high isoprene-emitting species, was drought-stressed during summer (WS) and compared with unstressed controls (WW). Water relations and photosynthetic parameters were measured under mild, moderate, and severe drought stress conditions. Volatile and nonvolatile isoprenoids, antioxidant enzymes, and phenylpropanoids were measured with the same time course, but in four different periods of the day. Drought severely inhibited photosynthesis, whereas it did not markedly affect the photochemical machinery. Isoprene emission and zeaxanthin concentration were higher in WS than in WW leaves, particularly at mild and moderate stresses, and during the hottest hours of the day. The activities of catalase and ascorbate peroxidase steeply declined during the day, while the activity of guaiacol peroxidase and the concentration of quercetin increased during the day, peaking in the hottest hours in both WW and WS plants. Our experiment reveals a sequence of antioxidants that were used daily by plants to orchestrate defense against oxidative stress induced by drought and associated high light and high temperature. Secondary metabolites seem valuable complements of antioxidant enzymes to counter oxidative stress during the hottest daily hours.
Collapse
Affiliation(s)
- Massimiliano Tattini
- Department of Biology, Agriculture and Food Sciences, The National Research Council of Italy (CNR), Institute for Sustainable Plant Protection, I-50019, Sesto Fiorentino (Florence), Italy
| | - Francesco Loreto
- Department of Biology, Agriculture and Food Sciences, The National Research Council of Italy (CNR), I-00185, Rome, Italy
| | - Alessio Fini
- Department of Plant, Soil and Environmental Sciences, University of Florence, I-50019, Sesto Fiorentino (Florence), Italy
| | - Lucia Guidi
- Department of Agriculture, Food and Environment, University of Pisa, I-56124, Pisa, Italy
| | - Cecilia Brunetti
- Department of Biology, Agriculture and Food Sciences, The National Research Council of Italy (CNR), Institute for Sustainable Plant Protection, I-50019, Sesto Fiorentino (Florence), Italy
- Department of Biology, Agriculture and Food Sciences, The National Research Council of Italy (CNR), Trees and Timber Institute, I-50019, Sesto Fiorentino (Florence), Italy
| | - Violeta Velikova
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, S. Michele all'Adige (Trento), Italy
| | - Antonella Gori
- Department of Biology, Agriculture and Food Sciences, The National Research Council of Italy (CNR), Institute for Sustainable Plant Protection, I-50019, Sesto Fiorentino (Florence), Italy
- Department of Biology, Agriculture and Food Sciences, The National Research Council of Italy (CNR), Trees and Timber Institute, I-50019, Sesto Fiorentino (Florence), Italy
| | - Francesco Ferrini
- Department of Plant, Soil and Environmental Sciences, University of Florence, I-50019, Sesto Fiorentino (Florence), Italy
| |
Collapse
|
19
|
Cardoso-Gustavson P, Bolsoni VP, de Oliveira DP, Guaratini MTG, Aidar MPM, Marabesi MA, Alves ES, de Souza SR. Ozone-induced responses in Croton floribundus Spreng. (Euphorbiaceae): metabolic cross-talk between volatile organic compounds and calcium oxalate crystal formation. PLoS One 2014; 9:e105072. [PMID: 25165889 PMCID: PMC4148241 DOI: 10.1371/journal.pone.0105072] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 07/17/2014] [Indexed: 11/18/2022] Open
Abstract
Here, we proposed that volatile organic compounds (VOC), specifically methyl salicylate (MeSA), mediate the formation of calcium oxalate crystals (COC) in the defence against ozone (O3) oxidative damage. We performed experiments using Croton floribundus, a pioneer tree species that is tolerant to O3 and widely distributed in the Brazilian forest. This species constitutively produces COC. We exposed plants to a controlled fumigation experiment and assessed biochemical, physiological, and morphological parameters. O3 induced a significant increase in the concentrations of constitutive oxygenated compounds, MeSA and terpenoids as well as in COC number. Our analysis supported the hypothesis that ozone-induced VOC (mainly MeSA) regulate ROS formation in a way that promotes the opening of calcium channels and the subsequent formation of COC in a fast and stable manner to stop the consequences of the reactive oxygen species in the tissue, indeed immobilising the excess calcium (caused by acute exposition to O3) that can be dangerous to the plant. To test this hypothesis, we performed an independent experiment spraying MeSA over C. floribundus plants and observed an increase in the number of COC, indicating that this compound has a potential to directly induce their formation. Thus, the tolerance of C. floribundus to O3 oxidative stress could be a consequence of a higher capacity for the production of VOC and COC rather than the modulation of antioxidant balance. We also present some insights into constitutive morphological features that may be related to the tolerance that this species exhibits to O3.
Collapse
Affiliation(s)
- Poliana Cardoso-Gustavson
- Programa de Pós-Graduação em Biodiversidade Vegetal e Meio Ambiente, Instituto de Botânica, São Paulo, São Paulo, Brazil
| | | | | | | | | | - Mauro Alexandre Marabesi
- Núcleo de Pesquisa em Fisiologia e Bioquímica, Instituto de Botânica, São Paulo, São Paulo, Brazil
| | - Edenise Segala Alves
- Núcleo de Pesquisa em Anatomia, Instituto de Botânica, São Paulo, São Paulo, Brazil
| | | |
Collapse
|
20
|
Blande JD, Holopainen JK, Niinemets Ü. Plant volatiles in polluted atmospheres: stress responses and signal degradation. PLANT, CELL & ENVIRONMENT 2014; 37:1892-904. [PMID: 24738697 PMCID: PMC4289706 DOI: 10.1111/pce.12352] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 04/05/2014] [Indexed: 05/18/2023]
Abstract
Plants emit a plethora of volatile organic compounds, which provide detailed information on the physiological condition of emitters. Volatiles induced by herbivore feeding are among the best studied plant responses to stress and may constitute an informative message to the surrounding community and further function in plant defence processes. However, under natural conditions, plants are potentially exposed to multiple concurrent stresses with complex effects on the volatile emissions. Atmospheric pollutants are an important facet of the abiotic environment and can impinge on a plant's volatile-mediated defences in multiple ways at multiple temporal scales. They can exert changes in volatile emissions through oxidative stress, as is the case with ozone pollution. The pollutants, in particular, ozone, nitrogen oxides and hydroxyl radicals, also react with volatiles in the atmosphere. These reactions result in volatile breakdown products, which may themselves be perceived by community members as informative signals. In this review, we demonstrate the complex interplay among stresses, emitted signals, and modification in signal strength and composition by the atmosphere, collectively determining the responses of the biotic community to elicited signals.
Collapse
Affiliation(s)
- James D. Blande
- Department of Environmental Science, University of Eastern Finland, P.O. Box 1627, FIN-70211 Kuopio, Finland
| | - Jarmo K. Holopainen
- Department of Environmental Science, University of Eastern Finland, P.O. Box 1627, FIN-70211 Kuopio, Finland
| | - Ülo Niinemets
- Department of Plant Physiology, Estonian University of Life Sciences, Kreutzwaldi 1, 51014 Tartu, Estonia
| |
Collapse
|
21
|
Niinemets Ü, Fares S, Harley P, Jardine KJ. Bidirectional exchange of biogenic volatiles with vegetation: emission sources, reactions, breakdown and deposition. PLANT, CELL & ENVIRONMENT 2014; 37:1790-809. [PMID: 24635661 PMCID: PMC4289707 DOI: 10.1111/pce.12322] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Revised: 03/09/2014] [Accepted: 03/10/2014] [Indexed: 05/18/2023]
Abstract
Biogenic volatile organic compound (BVOC) emissions are widely modelled as inputs to atmospheric chemistry simulations. However, BVOC may interact with cellular structures and neighbouring leaves in a complex manner during volatile diffusion from the sites of release to leaf boundary layer and during turbulent transport to the atmospheric boundary layer. Furthermore, recent observations demonstrate that the BVOC emissions are bidirectional, and uptake and deposition of BVOC and their oxidation products are the rule rather than the exception. This review summarizes current knowledge of within-leaf reactions of synthesized volatiles with reactive oxygen species (ROS), uptake, deposition and storage of volatiles, and their oxidation products as driven by adsorption on leaf surface and solubilization and enzymatic detoxification inside leaves. The available evidence indicates that because of the reactions with ROS and enzymatic metabolism, the BVOC gross production rates are much larger than previously thought. The degree to which volatiles react within leaves and can be potentially taken up by vegetation depends upon compound reactivity, physicochemical characteristics, as well as upon their participation in leaf metabolism. We argue that future models should be based upon the concept of bidirectional BVOC exchange and consider modification of BVOC sink/source strengths by within-leaf metabolism and storage.
Collapse
Affiliation(s)
- Ülo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51014 Tartu, Estonia
- Estonian Academy of Sciences, Kohtu 6, 10130 Tallinn, Estonia
| | - Silvano Fares
- Consiglio per la Ricerca e la Sperimentazione in Agricoltura, Centro di Ricerca per lo Studio delle Relazioni tra Pianta e Suolo, Via della Navicella 2-4, 00184 Rome, Italy
| | - Peter Harley
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51014 Tartu, Estonia
| | - Kolby J. Jardine
- Climate Science Department, Earth Science Division, Lawrence Berkeley, National Laboratory, One Cyclotron Rd, building 64-241, Berkeley, CA 94720, USA
| |
Collapse
|
22
|
Khan A, Staimer N, Tjoa T, Galassetti P, Blake DR, Delfino RJ. Relations between isoprene and nitric oxide in exhaled breath and the potential influence of outdoor ozone: a pilot study. J Breath Res 2013; 7:036007. [PMID: 23999846 PMCID: PMC3818120 DOI: 10.1088/1752-7155/7/3/036007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The role of endogenous isoprene in the human body, if any, is unclear because previous research is inconsistent and mechanistic evidence for the biologic function of isoprene is lacking. Given previous evidence that exhaled isoprene is elevated in systemic inflammatory states, we hypothesized that exhaled isoprene would be positively associated with a breath biomarker of airway inflammation, the fractional concentration of exhaled nitric oxide (FENO). We examined relationships of exhaled breath isoprene with FENO and with outdoor ozone given that ozone chemically reacts with isoprene and has been positively associated with FENO in past studies. Sixteen elderly subjects were followed with ≤12 weekly exhaled hydrocarbon and FENO collections at the subjects' retirement community. Outdoor ozone concentrations were measured continuously on site. Mixed-effects regression analyses tested relations of FENO with isoprene, and FENO and isoprene with ozone, adjusted for temperature. We found FENO was inversely associated with isoprene, and this was not confounded by ozone. Isoprene was inversely related to ozone. FENO was positively related to ozone and this relation was not confounded by isoprene. In contrast to hypothesized relations, we conclude that exhaled isoprene is inversely associated with FENO as well as outdoor ozone, which suggests possible protective ozone-scavenging functions of endogenous isoprene. Findings may indicate chemical reactions of isoprene oxidation by ozone and by hydroxyl radicals in the presence of O2 that is dependent on NO concentration. These preliminary results need to be confirmed in additional studies of human subjects, particularly as they apply to FENO monitoring in asthma.
Collapse
Affiliation(s)
- Alya Khan
- Division of Occupational and Environmental Medicine, Department of Medicine, University of California, Irvine, CA, USA
| | | | | | | | | | | |
Collapse
|
23
|
Souza SR, Blande JD, Holopainen JK. Pre-exposure to nitric oxide modulates the effect of ozone on oxidative defenses and volatile emissions in lima bean. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2013; 179:111-119. [PMID: 23669460 DOI: 10.1016/j.envpol.2013.03.065] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 03/19/2013] [Accepted: 03/20/2013] [Indexed: 06/02/2023]
Abstract
The roles that ozone and nitric oxide (NO), the chief O₃ precursor, play in the antioxidative balance and inducible volatile emissions of lima bean were assessed. Exposure to O₃ inhibited APX, CAT, and GR, decreased GSH content and induced emissions of (E)-β-ocimene, limonene, 1,8-cineole, linalool, (E)-4,8-dimethyl-1,3,7-nonatriene (E)-DMNT, 2-butanone and nonanal. O₃ did not induce emissions of (E)-β-caryophyllene and appeared to reduce the antioxidative capacity of plants to a greater extent than NO and NO followed by O₃ (NO/O₃) treatments. There were significant differences in emissions of (E)-β-ocimene and linalool between NO/O₃ treated plants and controls, but no differences in antioxidant concentrations. A model to explain the relationships between the ascorbate-glutathione cycle and O₃ and NO inducible volatiles was proposed. Our findings suggest that prior exposure to NO modulates the oxidative effect of ozone by the process of cross-tolerance, which might regulate the antioxidative system and induction of volatile organic compounds.
Collapse
Affiliation(s)
- Silvia R Souza
- Department of Environmental Science, University of Eastern Finland, P.O. Box 1627, FIN-70211 Kuopio, Finland.
| | | | | |
Collapse
|
24
|
Hess BM, Xue J, Markillie LM, Taylor RC, Wiley HS, Ahring BK, Linggi B. Coregulation of Terpenoid Pathway Genes and Prediction of Isoprene Production in Bacillus subtilis Using Transcriptomics. PLoS One 2013; 8:e66104. [PMID: 23840410 PMCID: PMC3686787 DOI: 10.1371/journal.pone.0066104] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 05/02/2013] [Indexed: 11/19/2022] Open
Abstract
The isoprenoid pathway converts pyruvate to isoprene and related isoprenoid compounds in plants and some bacteria. Currently, this pathway is of great interest because of the critical role that isoprenoids play in basic cellular processes, as well as the industrial value of metabolites such as isoprene. Although the regulation of several pathway genes has been described, there is a paucity of information regarding system level regulation and control of the pathway. To address these limitations, we examined Bacillus subtilis grown under multiple conditions and determined the relationship between altered isoprene production and gene expression patterns. We found that with respect to the amount of isoprene produced, terpenoid genes fall into two distinct subsets with opposing correlations. The group whose expression levels positively correlated with isoprene production included dxs, which is responsible for the commitment step in the pathway, ispD, and two genes that participate in the mevalonate pathway, yhfS and pksG. The subset of terpenoid genes that inversely correlated with isoprene production included ispH, ispF, hepS, uppS, ispE, and dxr. A genome-wide partial least squares regression model was created to identify other genes or pathways that contribute to isoprene production. These analyses showed that a subset of 213 regulated genes was sufficient to create a predictive model of isoprene production under different conditions and showed correlations at the transcriptional level. We conclude that gene expression levels alone are sufficiently informative about the metabolic state of a cell that produces increased isoprene and can be used to build a model that accurately predicts production of this secondary metabolite across many simulated environmental conditions.
Collapse
Affiliation(s)
- Becky M. Hess
- Bioproducts, Sciences and Engineering Laboratory, Washington State University Tri-Cities, Richland, Washington, United States of America
- Chemical and Biological Signature Sciences Group, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Junfeng Xue
- Bioproducts, Sciences and Engineering Laboratory, Washington State University Tri-Cities, Richland, Washington, United States of America
| | - Lye Meng Markillie
- Fundamental and Computational Sciences, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Ronald C. Taylor
- Computational Biology and Bioinformatics Group, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - H. Steven Wiley
- Environmental and Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Birgitte K. Ahring
- Bioproducts, Sciences and Engineering Laboratory, Washington State University Tri-Cities, Richland, Washington, United States of America
| | - Bryan Linggi
- Environmental and Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, United States of America
- * E-mail:
| |
Collapse
|
25
|
Giulia E, Alessandro B, Mariano D, Andrea B, Benedetto R, Angelo R. Early induction of apple fruitlet abscission is characterized by an increase of both isoprene emission and abscisic acid content. PLANT PHYSIOLOGY 2013; 161:1952-69. [PMID: 23444344 PMCID: PMC3613467 DOI: 10.1104/pp.112.208470] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 02/25/2013] [Indexed: 05/06/2023]
Abstract
Apple (Malus domestica) fruitlet abscission represents an interesting model system to study the early phases of the shedding process, during which major transcriptomic changes and metabolic rearrangements occur within the fruit. In apple, the drop of fruits at different positions within the cluster can be selectively magnified through chemical thinners, such as benzyladenine and metamitron, acting as abscission enhancers. In this study, different abscission potentials were obtained within the apple fruitlet population by means of the above-cited thinners. A metabolomic study was conducted on the volatile organic compounds emitted by abscising fruitlets, allowing for identification of isoprene as an early marker of abscission induction. A strong correlation was also observed between isoprene production and abscisic acid (ABA) levels in the fruit cortex, which were shown to increase in abscising fruitlets with respect to nonabscising ones. Transcriptomic evidence indicated that abscission-related ABA is biologically active, and its increased biosynthesis is associated with the induction of a specific ABA-responsive 9-cis-epoxycarotenoid dioxygenase gene. According to a hypothetical model, ABA may transiently cooperate with other hormones and secondary messengers in the generation of an intrafruit signal leading to the downstream activation of the abscission zone. The shedding process therefore appears to be triggered by multiple interdependent pathways, whose fine regulation, exerted within a very short temporal window by both endogenous and exogenous factors, determines the final destiny of the fruitlets.
Collapse
Affiliation(s)
| | | | - Dimauro Mariano
- Department of Agronomy, Food, Natural Resources, Animals, and Environment, University of Padova, Agripolis, 35020 Legnaro, Italy (G.E., A.Bot., B.R., A.R.); and
- Nanoscience Research Unit, Bruno Kessler Foundation, National Research Council-Institute of Materials for Electronics and Magnetism, 38123 Trento, Italy (M.D., A.Bos.)
| | - Boschetti Andrea
- Department of Agronomy, Food, Natural Resources, Animals, and Environment, University of Padova, Agripolis, 35020 Legnaro, Italy (G.E., A.Bot., B.R., A.R.); and
- Nanoscience Research Unit, Bruno Kessler Foundation, National Research Council-Institute of Materials for Electronics and Magnetism, 38123 Trento, Italy (M.D., A.Bos.)
| | | | - Ramina Angelo
- Department of Agronomy, Food, Natural Resources, Animals, and Environment, University of Padova, Agripolis, 35020 Legnaro, Italy (G.E., A.Bot., B.R., A.R.); and
- Nanoscience Research Unit, Bruno Kessler Foundation, National Research Council-Institute of Materials for Electronics and Magnetism, 38123 Trento, Italy (M.D., A.Bos.)
| |
Collapse
|
26
|
Beckett M, Loreto F, Velikova V, Brunetti C, Di Ferdinando M, Tattini M, Calfapietra C, Farrant JM. Photosynthetic limitations and volatile and non-volatile isoprenoids in the poikilochlorophyllous resurrection plant Xerophyta humilis during dehydration and rehydration. PLANT, CELL & ENVIRONMENT 2012; 35:2061-74. [PMID: 22582997 DOI: 10.1111/j.1365-3040.2012.02536.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
We investigated the photosynthetic limitations occurring during dehydration and rehydration of Xerophyta humilis, a poikilochlorophyllous resurrection plant, and whether volatile and non-volatile isoprenoids might be involved in desiccation tolerance. Photosynthesis declined rapidly after dehydration below 85% relative water content (RWC). Raising intercellular CO(2) concentrations during desiccation suggest that the main photosynthetic limitation was photochemical, affecting energy-dependent RuBP regeneration. Imaging fluorescence confirmed that both the number of photosystem II (PSII) functional reaction centres and their efficiency were impaired under progressive dehydration, and revealed the occurrence of heterogeneous photosynthesis during desiccation, being the basal leaf area more resistant to the stress. Full recovery in photosynthetic parameters occurred on rehydration, confirming that photosynthetic limitations were fully reversible and that no permanent damage occurred. During desiccation, zeaxanthin and lutein increased only when photosynthesis had ceased, implying that these isoprenoids do not directly scavenge reactive oxygen species, but rather protect photosynthetic membranes from damage and consequent denaturation. X. humilis was found to emit isoprene, a volatile isoprenoid that acts as a membrane strengthener in plants. Isoprene emission was stimulated by drought and peaked at 80% RWC. We surmise that isoprene and non-volatile isoprenoids cooperate in reducing membrane damage in X. humilis, isoprene being effective when desiccation is moderate while non-volatile isoprenoids operate when water deficit is more extreme.
Collapse
Affiliation(s)
- Megan Beckett
- Department of Molecular and Cell Biology, University of Cape Town, Private Bag, Rondebosch 7701, South Africa
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Recently, we demonstrated that leaf wounding results in the synthesis of pectin methylesterase (PME), which causes the plant to release methanol into the air. Methanol emitted by a wounded plant increases the accumulation of methanol-inducible gene mRNA and enhances antibacterial resistance as well as cell-to-cell communication, which facilitates virus spreading in neighboring plants. We concluded that methanol is a signaling molecule involved in within-plant and plant-to-plant communication. Methanol is considered to be a poison in humans because of the alcohol dehydrogenase (ADH)-mediated conversion of methanol into toxic formaldehyde. However, recent data showed that methanol is a natural compound in normal, healthy humans. These data call into question whether human methanol is a metabolic waste product or whether methanol has specific function in humans. Here, to reveal human methanol-responsive genes (MRGs), we used suppression subtractive hybridization cDNA libraries of HeLa cells lacking ADH and exposed to methanol. This design allowed us to exclude genes involved in formaldehyde and formic acid detoxification from our analysis. We identified MRGs and revealed a correlation between increases in methanol content in the plasma and changes in human leukocyte MRG mRNA levels after fresh salad consumption by volunteers. Subsequently, we showed that the methanol generated by the pectin/PME complex in the gastrointestinal tract of mice induces the up- and downregulation of brain MRG mRNA. We used an adapted Y-maze to measure the locomotor behavior of the mice while breathing wounded plant vapors in two-choice assays. We showed that mice prefer the odor of methanol to other plant volatiles and that methanol changed MRG mRNA accumulation in the mouse brain. We hypothesize that the methanol emitted by wounded plants may have a role in plant-animal signaling. The known positive effect of plant food intake on human health suggests a role for physiological methanol in human gene regulation.
Collapse
|
28
|
Dorokhov YL, Komarova TV, Petrunia IV, Frolova OY, Pozdyshev DV, Gleba YY. Airborne signals from a wounded leaf facilitate viral spreading and induce antibacterial resistance in neighboring plants. PLoS Pathog 2012; 8:e1002640. [PMID: 22496658 PMCID: PMC3320592 DOI: 10.1371/journal.ppat.1002640] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Accepted: 02/26/2012] [Indexed: 01/19/2023] Open
Abstract
Many plants release airborne volatile compounds in response to wounding due to pathogenic assault. These compounds serve as plant defenses and are involved in plant signaling. Here, we study the effects of pectin methylesterase (PME)-generated methanol release from wounded plants ("emitters") on the defensive reactions of neighboring "receiver" plants. Plant leaf wounding resulted in the synthesis of PME and a spike in methanol released into the air. Gaseous methanol or vapors from wounded PME-transgenic plants induced resistance to the bacterial pathogen Ralstonia solanacearum in the leaves of non-wounded neighboring "receiver" plants. In experiments with different volatile organic compounds, gaseous methanol was the only airborne factor that could induce antibacterial resistance in neighboring plants. In an effort to understand the mechanisms by which methanol stimulates the antibacterial resistance of "receiver" plants, we constructed forward and reverse suppression subtractive hybridization cDNA libraries from Nicotiana benthamiana plants exposed to methanol. We identified multiple methanol-inducible genes (MIGs), most of which are involved in defense or cell-to-cell trafficking. We then isolated the most affected genes for further analysis: β-1,3-glucanase (BG), a previously unidentified gene (MIG-21), and non-cell-autonomous pathway protein (NCAPP). Experiments with Tobacco mosaic virus (TMV) and a vector encoding two tandem copies of green fluorescent protein as a tracer of cell-to-cell movement showed the increased gating capacity of plasmodesmata in the presence of BG, MIG-21, and NCAPP. The increased gating capacity is accompanied by enhanced TMV reproduction in the "receivers". Overall, our data indicate that methanol emitted by a wounded plant acts as a signal that enhances antibacterial resistance and facilitates viral spread in neighboring plants.
Collapse
Affiliation(s)
- Yuri L Dorokhov
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia.
| | | | | | | | | | | |
Collapse
|
29
|
Velikova V, Sharkey TD, Loreto F. Stabilization of thylakoid membranes in isoprene-emitting plants reduces formation of reactive oxygen species. PLANT SIGNALING & BEHAVIOR 2012; 7:139-41. [PMID: 22301981 PMCID: PMC3357355 DOI: 10.4161/psb.7.1.18521] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Isoprene is emitted by a significant fraction of the world's vegetation. Isoprene makes leaves more thermotolerant, yet we do not fully understand how. We have recently shown that isoprene stabilizes thylakoid membranes under heat stress. Here we show that heat-stressed, isoprene-emitting transgenic Arabidopsis plants also produce a lower pool of reactive oxygen and reactive nitrogen species, and that this was especially due to a lower accumulation of H2O2 in isoprene emitting plants. It remains difficult to disentangle whether in heat stressed plants isoprene also directly reacts with and quenches reactive oxygen species (ROS), or reduces ROS formation by stabilizing thylakoids. We present considerations that make the latter a more likely mechanism, under our experimental circumstances.
Collapse
Affiliation(s)
- Violeta Velikova
- Institute of Plant Physiology and Genetics; Bulgarian Academy of Sciences; Sofia, Bulgaria
| | - Thomas D. Sharkey
- Department of Biochemistry and Molecular Biology; Michigan State University; East Lansing, MI USA
| | - Francesco Loreto
- Institute for Plant Protection; National Research Council; Florence, Italy
| |
Collapse
|
30
|
Holopainen JK. Can forest trees compensate for stress-generated growth losses by induced production of volatile compounds? TREE PHYSIOLOGY 2011; 31:1356-77. [PMID: 22112623 DOI: 10.1093/treephys/tpr111] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Plants produce a variety of volatile organic compounds (VOCs). Under abiotic and biotic stresses, the number and amount of produced compounds can increase. Due to their long life span and large size, trees can produce biogenic VOCs (BVOCs) in much higher amounts than many other plants. It has been suggested that at cellular and tree physiological levels, induced production of VOCs is aimed at improving plant resistance to damage by reactive oxygen species generated by multiple abiotic stresses. In the few reported cases when biosynthesis of plant volatiles is inhibited or enhanced, the observed response to stress can be attributed to plant volatiles. Reported increase, e.g., in photosynthesis has mostly ranged between 5 and 50%. A comprehensive model to explain similar induction of VOCs under multiple biotic stresses is not yet available. As a result of pathogen or herbivore attack on forest trees, the induced production of VOCs is localized to the damage site but systemic induction of emissions has also been detected. These volatiles can affect fungal pathogens and the arrival rate of herbivorous insects on damaged trees, but also act as signalling compounds to maintain the trophic cascades that may improve tree fitness by improved efficiency of herbivore natural enemies. On the forest scale, biotic induction of VOC synthesis and release leads to an amplified flow of BVOCs in atmospheric reactions, which in atmospheres rich in oxides of nitrogen (NOx) results in ozone formation, and in low NOx atmospheres results in oxidation of VOCs, removal in ozone from the troposphere and the resulting formation of biogenic secondary organic aerosol (SOA) particles. I will summarize recent advances in the understanding of stress-induced VOC emissions from trees, with special focus on Populus spp. Particular importance is given to the ecological and atmospheric feedback systems based on BVOCs and biogenic SOA formation.
Collapse
Affiliation(s)
- Jarmo K Holopainen
- Department of Environmental Science, University of Eastern Finland, FI-70211 Kuopio, Finland.
| |
Collapse
|
31
|
Corpas FJ, Leterrier M, Valderrama R, Airaki M, Chaki M, Palma JM, Barroso JB. Nitric oxide imbalance provokes a nitrosative response in plants under abiotic stress. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2011; 181:604-11. [PMID: 21893257 DOI: 10.1016/j.plantsci.2011.04.005] [Citation(s) in RCA: 145] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Revised: 03/11/2011] [Accepted: 04/12/2011] [Indexed: 05/06/2023]
Abstract
Nitric oxide (NO), a free radical generated in plant cells, belongs to a family of related molecules designated as reactive nitrogen species (RNS). When an imbalance of RNS takes place for any adverse environmental circumstances, some of these molecules can cause direct or indirect damage at the cellular or molecular level, promoting a phenomenon of nitrosative stress. Thus, this review will emphasize the recent progress in understanding the function of NO and its production under adverse environmental conditions.
Collapse
Affiliation(s)
- Francisco J Corpas
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental del Zaidín, CSIC, Granada, Spain.
| | | | | | | | | | | | | |
Collapse
|
32
|
Velikova V, Várkonyi Z, Szabó M, Maslenkova L, Nogues I, Kovács L, Peeva V, Busheva M, Garab G, Sharkey TD, Loreto F. Increased thermostability of thylakoid membranes in isoprene-emitting leaves probed with three biophysical techniques. PLANT PHYSIOLOGY 2011; 157:905-16. [PMID: 21807886 PMCID: PMC3192565 DOI: 10.1104/pp.111.182519] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 07/28/2011] [Indexed: 05/19/2023]
Abstract
Three biophysical approaches were used to get insight into increased thermostability of thylakoid membranes in isoprene-emittingplants.Arabidopsis (Arabidopsis thaliana) plants genetically modified to make isoprene and Platanus orientalis leaves, in which isoprene emission was chemically inhibited, were used. First, in the circular dichroism spectrum the transition temperature of the main band at 694 nm was higher in the presence of isoprene, indicating that the heat stability of chiral macrodomains of chloroplast membranes, and specifically the stability of ordered arrays of light-harvesting complex II-photosystem II in the stacked region of the thylakoid grana, was improved in the presence of isoprene. Second, the decay of electrochromic absorbance changes resulting from the electric field component of the proton motive force (ΔA₅₁₅) was evaluated following single-turnover saturating flashes. The decay of ΔA₅₁₅ was faster in the absence of isoprene when leaves of Arabidopsis and Platanus were exposed to high temperature, indicating that isoprene protects the thylakoid membranes against leakiness at elevated temperature. Finally, thermoluminescence measurements revealed that S₂Q(B)⁻ charge recombination was shifted to higher temperature in Arabidopsis and Platanus plants in the presence of isoprene, indicating higher activation energy for S₂Q(B)⁻ redox pair, which enables isoprene-emitting plants to perform efficient primary photochemistry of photosystem II even at higher temperatures. The data provide biophysical evidence that isoprene improves the integrity and functionality of the thylakoid membranes at high temperature. These results contribute to our understanding of isoprene mechanism of action in plant protection against environmental stresses.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Francesco Loreto
- Institute of Plant Physiology and Genetics (V.V., L.M., V.P.) and Institute of Biophysics and Biomedical Engineering (M.B.), Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; Institute of Plant Biology, Biological Research Center, Hungarian Academy of Sciences, 6726 Szeged, Hungary (Z.V., M.S., L.K., G.G.); Institute of Agroenvironmental and Forest Biology, National Research Council, 00015 Monterotondo, Rome, Italy (I.N.); Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824 (T.D.S.); Institute for Plant Protection, National Research Council, 50019 Sesto Fiorentino, Florence, Italy (F.L.)
| |
Collapse
|
33
|
Copolovici L, Niinemets U. Flooding induced emissions of volatile signalling compounds in three tree species with differing waterlogging tolerance. PLANT, CELL & ENVIRONMENT 2010; 33:1582-94. [PMID: 20444211 DOI: 10.1111/j.1365-3040.2010.02166.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
To gain insight into variations in waterlogging responsiveness, net assimilation rate, stomatal conductance, emissions of isoprene and marker compounds of anoxic metabolism ethanol and acetaldehyde, and stress marker compounds nitric oxide (NO), volatile products of lipoxygenase (LOX) pathway and methanol were studied in seedlings of temperate deciduous tree species Alnus glutinosa, Populus tremula and Quercus rubra (from highest to lowest waterlogging tolerance) throughout sustained root zone waterlogging of up to three weeks. In all species, waterlogging initially resulted in reductions in net assimilation and stomatal conductance and enhanced emissions of ethanol, acetaldehyde, NO, LOX products and methanol, followed by full or partial recovery depending on process and species. Strong negative correlations between g(s) and internal NO concentration and NO flux, valid within and across species, were observed throughout the experiment. Isoprene emission capacity was not related to waterlogging tolerance. Less waterlogging tolerant species had greater reduction and smaller acclimation capacity in foliage physiological potentials, and larger emission bursts of volatile stress marker compounds. These data collectively provide encouraging evidence that emissions of volatile organics and NO can be used as quantitative measures of stress tolerance and acclimation kinetics in temperate trees.
Collapse
Affiliation(s)
- Lucian Copolovici
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu 51014, Estonia
| | | |
Collapse
|
34
|
Shao R, Wang K, Shangguan Z. Cytokinin-induced photosynthetic adaptability of Zea mays L. to drought stress associated with nitric oxide signal: probed by ESR spectroscopy and fast OJIP fluorescence rise. JOURNAL OF PLANT PHYSIOLOGY 2010; 167:472-9. [PMID: 20022661 DOI: 10.1016/j.jplph.2009.10.020] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Revised: 10/21/2009] [Accepted: 10/22/2009] [Indexed: 05/05/2023]
Abstract
Nitric oxide (NO), as a diffusible molecule, performs important roles in diverse physiological processes. Interestingly, NO signaling is based on interactions with plant hormones. The aim of this study was, first, to test the effect of cytokinin (CTK) on the primary reaction of photosynthesis under drought stress, and then to examine whether NO is involved in CTK-induced photosynthetic resistance due to its role as a second messenger in stress response. Under drought stress, plants were treated with CTK, or CTK plus the NO scavenger (Hemoglobin [Hb]) for 6h. The effects of CTK and Hb on fast OJIP fluorescence rise were then examined. At the same time, NO and reactive oxygen species (ROS) signals in all the treatments were detected by electron spin resonance (ESR) spectroscopy. The results showed that CTK-regulated fluorescence transient rise under drought stress and increased the electron donation capacity of photosynthesis system (PS) II. The plant photosynthetic performance index (PI) on an absorption basis and corresponding three PI components (RC/ABS, P(TR,) and P(ET)) also increased. High NO signal intensity alleviated drought-induced ROS damage to plants; thus, the signal probably played a direct role in eliciting CTK regulation to energy absorption (RC/ABS) and excitation energy trapped (P(TR)) in response to drought. Although CTK stimulated more excitation energy conversion to electron transfer (P(ET)), because NO was probably bound to the plastoquinone pool (PQ) of the electron transport chain, CTK decreased electron transport to the acceptor side of PSII (see V(I), Sm and N). Furthermore, CTK stimulated more NO signal formation, probably mainly via a nitrate reductase (NR) source under the conditions of the study, and Hb prevented stimulation from CTK. However, these results will require confirmation from future studies.
Collapse
Affiliation(s)
- Ruixin Shao
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences, 712100 Yangling, Shaanxi, PR China.
| | | | | |
Collapse
|
35
|
Fares S, Oksanen E, Lännenpää M, Julkunen-Tiitto R, Loreto F. Volatile emissions and phenolic compound concentrations along a vertical profile of Populus nigra leaves exposed to realistic ozone concentrations. PHOTOSYNTHESIS RESEARCH 2010; 104:61-74. [PMID: 20407831 DOI: 10.1007/s11120-010-9549-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Accepted: 04/01/2010] [Indexed: 05/29/2023]
Abstract
Plants are exposed to increasing levels of tropospheric ozone concentrations. This pollutant penetrates in leaves through stomata and quickly reacts inside leaves, thus making plants valuable ozone sinks, but at the same time triggers oxidation processes which lead to leaf injuries. To counteract these negative effects, plants produce an array of antioxidants which react with ozone and reactive molecules which ozone generates in the leaf tissues. In this study, we measured the effect of an ozone concentration which is likely to be attained in many areas of the world in the near future (80 ppb) on leaves of the vertical profile of the widespread agroforestry species Populus nigra. Changes in (1) physiological parameters (photosynthesis and stomatal conductance), (2) ozone uptake, (3) emission of volatile organic compounds (VOCs, i.e. isoprene, methanol and other oxygenated compounds), (4) concentration of antioxidant surface compounds, and (5) concentration of phenolic compounds were assessed. The aim was to assess whether the defensive pathways leading to isoprenoids and phenolics formation were induced when a moderate and chronic increment of ozone is not able to damage photosynthesis. No visual injuries and minor changes in physiology and ozone uptake were observed. The emission of isoprene and oxygenated six-carbon (C6) volatiles were inhibited by ozone, whereas methanol emission was increased, especially in developing leaves. We interpret these results as suggesting an ontogenetic shift in ozone-treated leaves, leading to a slower development and a faster senescence. Most surface and phenolic compounds showed a declining trend in concentration from the youngest to the fully expanded leaves. Ozone reduced the concentrations of chlorogenic acid derivatives at the leaf surface, whereas in total leaf extracts a metabolic shift towards few phenolics with higher antioxidant capacity was observed.
Collapse
Affiliation(s)
- Silvano Fares
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Biologia Agroambientale e Forestale (IBAF), Rome, Italy.
| | | | | | | | | |
Collapse
|
36
|
Dicke M, Baldwin IT. The evolutionary context for herbivore-induced plant volatiles: beyond the 'cry for help'. TRENDS IN PLANT SCIENCE 2010; 15:167-75. [PMID: 20047849 DOI: 10.1016/j.tplants.2009.12.002] [Citation(s) in RCA: 612] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Revised: 12/06/2009] [Accepted: 12/08/2009] [Indexed: 05/18/2023]
Abstract
Attacks by herbivores elicit changes in the bouquet of volatiles released by plants. These herbivore-induced plant volatiles (HIPVs) have been interpreted as being indirect defenses. However, given that no studies have yet investigated whether HIPVs benefit the fitness of a plant, their defensive function remains to be established. Moreover, herbivores, pathogens, pollinators and competitors also respond to HIPVs and, in addition, neighbouring plants in native populations also emit volatiles that provide a background odour. These considerations enrich the evolutionary context of HIPVs and complicate predictions about their adaptive value. Molecular advances in our understanding of HIPV signaling and biosynthesis is enabling the creation of HIPV-'mute' and possibly HIPV-'deaf' plants. As we discuss here, such plants could be used for unbiased examination of the fitness value of HIPV emissions under natural conditions.
Collapse
Affiliation(s)
- Marcel Dicke
- Laboratory of Entomology, Wageningen University, PO Box 8031, 6700 EH Wageningen, the Netherlands.
| | | |
Collapse
|
37
|
Loreto F, Schnitzler JP. Abiotic stresses and induced BVOCs. TRENDS IN PLANT SCIENCE 2010; 15:154-66. [PMID: 20133178 DOI: 10.1016/j.tplants.2009.12.006] [Citation(s) in RCA: 483] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Revised: 12/18/2009] [Accepted: 12/30/2009] [Indexed: 05/21/2023]
Abstract
Plants produce a wide spectrum of biogenic volatile organic compounds (BVOCs) in various tissues above and below ground to communicate with other plants and organisms. However, BVOCs also have various functions in biotic and abiotic stresses. For example abiotic stresses enhance BVOCs emission rates and patterns, altering the communication with other organisms and the photochemical cycles. Recent new insights on biosynthesis and eco-physiological control of constitutive or induced BVOCs have led to formulation of hypotheses on their functions which are presented in this review. Specifically, oxidative and thermal stresses are relieved in the presence of volatile terpenes. Terpenes, C6 compounds, and methyl salicylate are thought to promote direct and indirect defence by modulating the signalling that biochemically activate defence pathways.
Collapse
Affiliation(s)
- Francesco Loreto
- Consiglio Nazionale delle Ricerche (CNR), Istituto per la Protezione delle Piante (IPP), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Firenze, Italy.
| | | |
Collapse
|
38
|
Fares S, Goldstein A, Loreto F. Determinants of ozone fluxes and metrics for ozone risk assessment in plants. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:629-633. [PMID: 19923198 DOI: 10.1093/jxb/erp336] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Tropospheric ozone concentration is increasing and represents a threat to single plants and whole ecosystems. The deleterious ozone effects mainly occur when (i) ozone concentration in the air builds up; (ii) the pollutant enters the leaf through stomatal uptake, and (iii) ozone-produced reactive oxygen species are not efficiently scavenged by leaf antioxidants and then oxidize leaf tissues. The sensitivity of plants to ozone is species-specific, and a correct risk assessment should be based on a metric that correctly takes into account the ambient concentration of ozone, the physiological control on stomatal apertures, and the efficiency of leaf antioxidant system. Current methodologies have been analysed to evaluate ozone risk assessment, and, by phasing-in and phasing out sources and sinks of ozone, elements of improvements for the current metrics have been suggested.
Collapse
Affiliation(s)
- Silvano Fares
- National Research Council-Istituto di Biologia Agroambientale e Forestale, Via Salaria km. 29,300, I-00016 Monterotondo Scalo, Rome, Italy.
| | | | | |
Collapse
|
39
|
Iriti M, Faoro F. Chemical diversity and defence metabolism: how plants cope with pathogens and ozone pollution. Int J Mol Sci 2009; 10:3371-3399. [PMID: 20111684 PMCID: PMC2812827 DOI: 10.3390/ijms10083371] [Citation(s) in RCA: 135] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2009] [Revised: 07/24/2009] [Accepted: 07/29/2009] [Indexed: 12/27/2022] Open
Abstract
Chemical defences represent a main trait of the plant innate immune system. Besides regulating the relationship between plants and their ecosystems, phytochemicals are involved both in resistance against pathogens and in tolerance towards abiotic stresses, such as atmospheric pollution. Plant defence metabolites arise from the main secondary metabolic routes, the phenylpropanoid, the isoprenoid and the alkaloid pathways. In plants, antibiotic compounds can be both preformed (phytoanticipins) and inducible (phytoalexins), the former including saponins, cyanogenic glycosides and glucosinolates. Chronic exposure to tropospheric ozone (O(3)) stimulates the carbon fluxes from the primary to the secondary metabolic pathways to a great extent, inducing a shift of the available resources in favour of the synthesis of secondary products. In some cases, the plant defence responses against pathogens and environmental pollutants may overlap, leading to the unspecific synthesis of similar molecules, such as phenylpropanoids. Exposure to ozone can also modify the pattern of biogenic volatile organic compounds (BVOC), emitted from plant in response to herbivore feeding, thus altering the tritrophic interaction among plant, phytophagy and their natural enemies. Finally, the synthesis of ethylene and polyamines can be regulated by ozone at level of S-adenosylmethionine (SAM), the biosynthetic precursor of both classes of hormones, which can, therefore, mutually inhibit their own biosynthesis with consequence on plant phenotype.
Collapse
Affiliation(s)
- Marcello Iriti
- Università degli Studi di Milano, Dipartimento di Produzione Vegetale, Sezione di Patologia Vegetale, Via Celoria 2, 20133 Milano, Italy
| | - Franco Faoro
- Università degli Studi di Milano, Dipartimento di Produzione Vegetale, Sezione di Patologia Vegetale, Via Celoria 2, 20133 Milano, Italy
| |
Collapse
|
40
|
Vickers CE, Gershenzon J, Lerdau MT, Loreto F. A unified mechanism of action for volatile isoprenoids in plant abiotic stress. Nat Chem Biol 2009; 5:283-91. [DOI: 10.1038/nchembio.158] [Citation(s) in RCA: 505] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|