1
|
Reisch F, Heydeck D, Schäfer M, Rothe M, Yang J, Stehling S, Püschel GP, Kuhn H. Knock-in mice expressing a humanized arachidonic acid 15-lipoxygenase (Alox15) carry a partly dysfunctional erythropoietic system. Cell Mol Biol Lett 2023; 28:97. [PMID: 38030974 PMCID: PMC10685687 DOI: 10.1186/s11658-023-00511-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 11/07/2023] [Indexed: 12/01/2023] Open
Abstract
Arachidonic acid 15-lipoxygenases (ALOX15) play a role in mammalian erythropoiesis but they have also been implicated in inflammatory processes. Seven intact Alox genes have been detected in the mouse reference genome and the mouse Alox15 gene is structurally similar to the orthologous genes of other mammals. However, mouse and human ALOX15 orthologs have different functional characteristics. Human ALOX15 converts C20 polyenoic fatty acids like arachidonic acid mainly to the n-6 hydroperoxide. In contrast, the n-9 hydroperoxide is the major oxygenation product formed by mouse Alox15. Previous experiments indicated that Leu353Phe exchange in recombinant mouse Alox15 humanized the catalytic properties of the enzyme. To investigate whether this functional humanization might also work in vivo and to characterize the functional consequences of mouse Alox15 humanization we generated Alox15 knock-in mice (Alox15-KI), in which the Alox15 gene was modified in such a way that the animals express the arachidonic acid 15-lipoxygenating Leu353Phe mutant instead of the arachidonic acid 12-lipoxygenating wildtype enzyme. These mice develop normally, they are fully fertile but display modified plasma oxylipidomes. In young individuals, the basic hematological parameters were not different when Alox15-KI mice and outbred wildtype controls were compared. However, when growing older male Alox15-KI mice develop signs of dysfunctional erythropoiesis such as reduced hematocrit, lower erythrocyte counts and attenuated hemoglobin concentration. These differences were paralleled by an improved ex vivo osmotic resistance of the peripheral red blood cells. Interestingly, such differences were not observed in female individuals suggesting gender specific effects. In summary, these data indicated that functional humanization of mouse Alox15 induces defective erythropoiesis in aged male individuals.
Collapse
Affiliation(s)
- Florian Reisch
- Department of Biochemistry, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität Zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Institute for Nutritional Sciences, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
- Lipidomix GmbH, Robert-Rössle-Straße 10, 13125, Berlin, Germany
| | - Dagmar Heydeck
- Department of Biochemistry, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität Zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Marjann Schäfer
- Department of Biochemistry, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität Zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Institute for Nutritional Sciences, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
| | - Michael Rothe
- Lipidomix GmbH, Robert-Rössle-Straße 10, 13125, Berlin, Germany
| | - Jiaxing Yang
- Department of Biochemistry, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität Zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Sabine Stehling
- Department of Biochemistry, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität Zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Gerhard P Püschel
- Institute for Nutritional Sciences, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
| | - Hartmut Kuhn
- Department of Biochemistry, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität Zu Berlin, Charitéplatz 1, 10117, Berlin, Germany.
| |
Collapse
|
2
|
Roigas S, Kakularam KR, Rothe M, Heydeck D, Aparoy P, Kuhn H. Bony Fish Arachidonic Acid 15-Lipoxygenases Exhibit Different Catalytic Properties than Their Mammalian Orthologs, Suggesting Functional Enzyme Evolution during Vertebrate Development. Int J Mol Sci 2023; 24:14154. [PMID: 37762455 PMCID: PMC10531496 DOI: 10.3390/ijms241814154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/05/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023] Open
Abstract
The human genome involves six functional arachidonic acid lipoxygenase (ALOX) genes and the corresponding enzymes (ALOX15, ALOX15B, ALOX12, ALOX12B, ALOXE3, ALOX5) have been implicated in cell differentiation and in the pathogenesis of inflammatory, hyperproliferative, metabolic, and neurological disorders. In other vertebrates, ALOX-isoforms have also been identified, but they occur less frequently. Since bony fish represent the most abundant subclass of vertebrates, we recently expressed and characterized putative ALOX15 orthologs of three different bony fish species (Nothobranchius furzeri, Pundamilia nyererei, Scleropages formosus). To explore whether these enzymes represent functional equivalents of mammalian ALOX15 orthologs, we here compared a number of structural and functional characteristics of these ALOX-isoforms with those of mammalian enzymes. We found that in contrast to mammalian ALOX15 orthologs, which exhibit a broad substrate specificity, a membrane oxygenase activity, and a special type of dual reaction specificity, the putative bony fish ALOX15 orthologs strongly prefer C20 fatty acids, lack any membrane oxygenase activity and exhibit a different type of dual reaction specificity with arachidonic acid. Moreover, mutagenesis studies indicated that the Triad Concept, which explains the reaction specificity of all mammalian ALOX15 orthologs, is not applicable for the putative bony fish enzymes. The observed functional differences between putative bony fish ALOX15 orthologs and corresponding mammalian enzymes suggest a targeted optimization of the catalytic properties of ALOX15 orthologs during vertebrate development.
Collapse
Affiliation(s)
- Sophie Roigas
- Department of Biochemistry, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany; (S.R.); (K.R.K.); (D.H.)
| | - Kumar R. Kakularam
- Department of Biochemistry, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany; (S.R.); (K.R.K.); (D.H.)
| | - Michael Rothe
- Lipidomix GmbH, Robert-Rössle-Straße 10, 13125 Berlin, Germany;
| | - Dagmar Heydeck
- Department of Biochemistry, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany; (S.R.); (K.R.K.); (D.H.)
| | - Polamarasetty Aparoy
- Department of Humanities and Sciences, Indian Institute of Petroleum and Energy, Visakhapatnam 530003, India;
| | - Hartmut Kuhn
- Department of Biochemistry, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany; (S.R.); (K.R.K.); (D.H.)
| |
Collapse
|
3
|
Heydeck D, Kakularam KR, Labuz D, Machelska H, Rohwer N, Weylandt K, Kuhn H. Transgenic mice overexpressing human ALOX15 under the control of the aP2 promoter are partly protected in the complete Freund's adjuvant-induced paw inflammation model. Inflamm Res 2023; 72:1649-1664. [PMID: 37498393 PMCID: PMC10499711 DOI: 10.1007/s00011-023-01770-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/28/2023] [Accepted: 07/10/2023] [Indexed: 07/28/2023] Open
Abstract
BACKGROUND, OBJECTIVES AND DESIGN Arachidonic acid 15-lipoxygenase (ALOX15) has been implicated in the pathogenesis of inflammatory diseases but since pro- and anti-inflammatory roles have been suggested, the precise function of this enzyme is still a matter of discussion. To contribute to this discussion, we created transgenic mice, which express human ALOX15 under the control of the activating protein 2 promoter (aP2-ALOX15 mice) and compared the sensitivity of these gain-of-function animals in two independent mouse inflammation models with Alox15-deficient mice (loss-of-function animals) and wildtype control animals. MATERIALS AND METHODS Transgenic aP2-ALOX15 mice were tested in comparison with Alox15 knockout mice (Alox15-/-) and corresponding wildtype control animals (C57BL/6J) in the complete Freund's adjuvant induced hind-paw edema model and in the dextran sulfate sodium induced colitis (DSS-colitis) model. In the paw edema model, the degree of paw swelling and the sensitivity of the inflamed hind-paw for mechanic (von Frey test) and thermal (Hargreaves test) stimulation were quantified as clinical readout parameters. In the dextran sodium sulfate induced colitis model the loss of body weight, the colon lengths and the disease activity index were determined. RESULTS In the hind-paw edema model, systemic inactivation of the endogenous Alox15 gene intensified the inflammatory symptoms, whereas overexpression of human ALOX15 reduced the degree of hind-paw inflammation. These data suggest anti-inflammatory roles for endogenous and transgenic ALOX15 in this particular inflammation model. As mechanistic reason for the protective effect downregulation of the pro-inflammatory ALOX5 pathways was suggested. However, in the dextran sodium sulfate colitis model, in which systemic inactivation of the Alox15 gene protected female mice from DSS-induced colitis, transgenic overexpression of human ALOX15 did hardly impact the intensity of the inflammatory symptoms. CONCLUSION The biological role of ALOX15 in the pathogenesis of inflammation is variable and depends on the kind of the animal inflammation model.
Collapse
Affiliation(s)
- Dagmar Heydeck
- Department of Biochemistry, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Kumar R. Kakularam
- Department of Biochemistry, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Dominika Labuz
- Department of Experimental Anesthesiology, Charité ˗ Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Halina Machelska
- Department of Experimental Anesthesiology, Charité ˗ Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Nadine Rohwer
- Division of Hepatology, Gastroenterology, Oncology, Hematology, Palliative Care, Endocrinology and Diabetes, Medical Department B, Brandenburg Medical School, University Hospital Ruppin-Brandenburg, Fehrbelliner Straße 38, 16816 Neuruppin, Germany
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus-Senftenberg, Brandenburg Medical School and University of Potsdam, Karl-Liebknecht-Straße 24-25, 14476 Potsdam, Germany
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - Karsten Weylandt
- Division of Hepatology, Gastroenterology, Oncology, Hematology, Palliative Care, Endocrinology and Diabetes, Medical Department B, Brandenburg Medical School, University Hospital Ruppin-Brandenburg, Fehrbelliner Straße 38, 16816 Neuruppin, Germany
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus-Senftenberg, Brandenburg Medical School and University of Potsdam, Karl-Liebknecht-Straße 24-25, 14476 Potsdam, Germany
| | - Hartmut Kuhn
- Department of Biochemistry, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
4
|
Zhou Y, Fang C, Xu H, Yuan L, Liu Y, Wang X, Zhang A, Shao A, Zhou D. Ferroptosis in glioma treatment: Current situation, prospects and drug applications. Front Oncol 2022; 12:989896. [PMID: 36249003 PMCID: PMC9557197 DOI: 10.3389/fonc.2022.989896] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 09/14/2022] [Indexed: 11/13/2022] Open
Abstract
Ferroptosis is a regulatory form of iron-dependent cell death caused by the accumulation of lipid-based reactive oxygen species (ROS) and differs from apoptosis, pyroptosis, and necrosis. Especially in neoplastic diseases, the susceptibility of tumor cells to ferroptosis affects prognosis and is associated with complex effects. Gliomas are the most common primary intracranial tumors, accounting for disease in 81% of patients with malignant brain tumors. An increasing number of studies have revealed the particular characteristics of iron metabolism in glioma cells. Therefore, agents that target a wide range of molecules involved in ferroptosis may regulate this process and enhance glioma treatment. Here, we review the underlying mechanisms of ferroptosis and summarize the potential therapeutic options for targeting ferroptosis in glioma.
Collapse
Affiliation(s)
- Yuhang Zhou
- Health Management Center, Tongde Hospital of Zhejiang Province, Hangzhou, China
- The First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Chaoyou Fang
- Department of Neurosurgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Houshi Xu
- Department of Neurosurgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ling Yuan
- Department of Neurosurgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yibo Liu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaoyu Wang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Anke Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- *Correspondence: Anke Zhang, ; Anwen Shao, ; Danyang Zhou,
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- *Correspondence: Anke Zhang, ; Anwen Shao, ; Danyang Zhou,
| | - Danyang Zhou
- Health Management Center, Tongde Hospital of Zhejiang Province, Hangzhou, China
- *Correspondence: Anke Zhang, ; Anwen Shao, ; Danyang Zhou,
| |
Collapse
|
5
|
Liu X, Zhang Y, Wu X, Xu F, Ma H, Wu M, Xia Y. Targeting Ferroptosis Pathway to Combat Therapy Resistance and Metastasis of Cancer. Front Pharmacol 2022; 13:909821. [PMID: 35847022 PMCID: PMC9280276 DOI: 10.3389/fphar.2022.909821] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/20/2022] [Indexed: 01/18/2023] Open
Abstract
Ferroptosis is an iron-dependent regulated form of cell death caused by excessive lipid peroxidation. This form of cell death differed from known forms of cell death in morphological and biochemical features such as apoptosis, necrosis, and autophagy. Cancer cells require higher levels of iron to survive, which makes them highly susceptible to ferroptosis. Therefore, it was found to be closely related to the progression, treatment response, and metastasis of various cancer types. Numerous studies have found that the ferroptosis pathway is closely related to drug resistance and metastasis of cancer. Some cancer cells reduce their susceptibility to ferroptosis by downregulating the ferroptosis pathway, resulting in resistance to anticancer therapy. Induction of ferroptosis restores the sensitivity of drug-resistant cancer cells to standard treatments. Cancer cells that are resistant to conventional therapies or have a high propensity to metastasize might be particularly susceptible to ferroptosis. Some biological processes and cellular components, such as epithelial–mesenchymal transition (EMT) and noncoding RNAs, can influence cancer metastasis by regulating ferroptosis. Therefore, targeting ferroptosis may help suppress cancer metastasis. Those progresses revealed the importance of ferroptosis in cancer, In order to provide the detailed molecular mechanisms of ferroptosis in regulating therapy resistance and metastasis and strategies to overcome these barriers are not fully understood, we described the key molecular mechanisms of ferroptosis and its interaction with signaling pathways related to therapy resistance and metastasis. Furthermore, we summarized strategies for reversing resistance to targeted therapy, chemotherapy, radiotherapy, and immunotherapy and inhibiting cancer metastasis by modulating ferroptosis. Understanding the comprehensive regulatory mechanisms and signaling pathways of ferroptosis in cancer can provide new insights to enhance the efficacy of anticancer drugs, overcome drug resistance, and inhibit cancer metastasis.
Collapse
Affiliation(s)
- Xuan Liu
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
- West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Yiqian Zhang
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
- West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Xuyi Wu
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province/Rehabilitation Medicine Research Institute, Chengdu, China
| | - Fuyan Xu
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Hongbo Ma
- West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Mengling Wu
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yong Xia
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province/Rehabilitation Medicine Research Institute, Chengdu, China
- *Correspondence: Yong Xia,
| |
Collapse
|
6
|
Girotti AW, Korytowski W. Pathophysiological potential of lipid hydroperoxide intermembrane translocation: Cholesterol hydroperoxide translocation as a special case. Redox Biol 2021; 46:102096. [PMID: 34418596 PMCID: PMC8379493 DOI: 10.1016/j.redox.2021.102096] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 10/29/2022] Open
Abstract
Peroxidation of unsaturated phospholipids, glycolipids, and cholesterol in biological membranes under oxidative stress conditions can underlie a variety of pathological conditions, including atherogenesis, neurodegeneration, and carcinogenesis. Lipid hydroperoxides (LOOHs) are key intermediates in the peroxidative process. Nascent LOOHs may either undergo one-electron reduction to exacerbate membrane damage/dysfunction or two-electron reduction to attenuate this. Another possibility is LOOH translocation to an acceptor site, followed by either of these competing reductions. Cholesterol (Ch)-derived hydroperoxides (ChOOHs) have several special features that will be highlighted in this review. In addition to being susceptible to one-electron vs. two-electron reduction, ChOOHs can translocate from a membrane of origin to another membrane, where such turnover may ensue. Intracellular StAR family proteins have been shown to deliver not only Ch to mitochondria, but also ChOOHs. StAR-mediated transfer of free radical-generated 7-hydroperoxycholesterol (7-OOH) results in impairment of (a) Ch utilization in steroidogenic cells, and (b) anti-atherogenic reverse Ch transport in vascular macrophages. This is the first known example of how a peroxide derivative can be recognized by a natural lipid trafficking pathway with deleterious consequences. For each example above, we will discuss the underlying mechanism of oxidative damage/dysfunction, and how this might be mitigated by antioxidant intervention.
Collapse
Affiliation(s)
- Albert W Girotti
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA.
| | | |
Collapse
|
7
|
Reisch F, Kakularam KR, Stehling S, Heydeck D, Kuhn H. Eicosanoid biosynthesis in marine mammals. FEBS J 2020; 288:1387-1406. [PMID: 32627384 DOI: 10.1111/febs.15469] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 05/19/2020] [Accepted: 06/22/2020] [Indexed: 01/09/2023]
Abstract
After 300 million years of evolution, the first land-living mammals reentered the marine environment some 50 million years ago. The driving forces for this dramatic lifestyle change are still a matter of discussion but the struggle for food resources and the opportunity to escape predators probably contributed. Reentering the oceans requires metabolic adaption putting evolutionary pressure on a number of genes. To explore whether eicosanoid signaling has been part of this adaptive response, we first explored whether the genomes of marine mammals involve functional genes encoding for key enzymes of eicosanoid biosynthesis. Cyclooxygenase (COX) and lipoxygenase (ALOX) genes are present in the genome of all marine mammals tested. Interestingly, ALOX12B, which has been implicated in skin development of land-living mammals, is lacking in whales and dolphins and genes encoding for its sister enzyme (ALOXE3) involve premature stop codons and/or frameshifting point mutations, which interrupt the open reading frames. ALOX15 orthologs have been detected in all marine mammals, and the recombinant enzymes exhibit similar catalytic properties as those of land-living species. All marine mammals express arachidonic acid 12-lipoxygenating ALOX15 orthologs, and these data are consistent with the Evolutionary Hypothesis of ALOX15 specificity. These enzymes exhibit membrane oxygenase activity and introduction of big amino acids at the triad positions altered the reaction specificity in favor of arachidonic acid 15-lipoxygenation. Thus, the ALOX15 orthologs of marine mammals follow the Triad concept explaining their catalytic specificity.
Collapse
Affiliation(s)
- Florian Reisch
- Institute of Biochemistry, Charité - University Medicine Berlin, Corporate member of Free University Berlin, Humboldt University Berlin and Berlin Institute of Health, Berlin, Germany
| | - Kumar Reddy Kakularam
- Institute of Biochemistry, Charité - University Medicine Berlin, Corporate member of Free University Berlin, Humboldt University Berlin and Berlin Institute of Health, Berlin, Germany
| | - Sabine Stehling
- Institute of Biochemistry, Charité - University Medicine Berlin, Corporate member of Free University Berlin, Humboldt University Berlin and Berlin Institute of Health, Berlin, Germany
| | - Dagmar Heydeck
- Institute of Biochemistry, Charité - University Medicine Berlin, Corporate member of Free University Berlin, Humboldt University Berlin and Berlin Institute of Health, Berlin, Germany
| | - Hartmut Kuhn
- Institute of Biochemistry, Charité - University Medicine Berlin, Corporate member of Free University Berlin, Humboldt University Berlin and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
8
|
Ivanov I, Golovanov AB, Ferretti C, Canyelles-Niño M, Heydeck D, Stehling S, Lluch JM, González-Lafont À, Kühn H. Mutations of Triad Determinants Changes the Substrate Alignment at the Catalytic Center of Human ALOX5. ACS Chem Biol 2019; 14:2768-2782. [PMID: 31664810 DOI: 10.1021/acschembio.9b00674] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
For the specificity of ALOX15 orthologs of different mammals, the geometry of the amino acids Phe353, Ile418, Met419, and Ile593 ("triad determinants") is important, and mutagenesis of these residues altered the reaction specificity of these enzymes. Here we expressed wild-type human ALOX5 and its F359W/A424I/N425M/A603I mutant in Sf9 insect cells and characterized the catalytic differences of the two enzyme variants. We found that wild-type ALOX5 converted arachidonic acid mainly to 5(S)-hydroperoxyeicosatetraenoic acid (HpETE). In contrast, 15(S)- and 8(S)-H(p)ETE were formed by the mutant enzyme. In addition to arachidonic acid, wild-type ALOX5 accepted eicosapentaenoic acid (EPA) as substrate, but C18 fatty acids were not oxygenated. The quadruple mutant also accepted linoleic acid and α- and γ-linolenic acid as substrate. Structural analysis of the oxygenation products and kinetic studies with stereospecifically labeled 11(S)- and 11(R)-deutero-linoleic acid suggested alternative ways of substrate orientation at the active site. In silico docking studies, molecular dynamics simulations, and quantum mechanics/molecular mechanics (QM/MM) calculations confirmed this hypothesis. These data indicate that "triad determinant" mutagenesis alters the catalytic properties of ALOX5 abolishing its leukotriene synthase activity but improving its biosynthetic capacity for pro-resolving lipoxins.
Collapse
Affiliation(s)
- Igor Ivanov
- Lomonosov Institute of Fine Chemical Technologies, MIREA - Russian Technological University, Vernadskogo pr. 86, 119571 Moscow, Russia
| | - Alexey B. Golovanov
- Lomonosov Institute of Fine Chemical Technologies, MIREA - Russian Technological University, Vernadskogo pr. 86, 119571 Moscow, Russia
| | | | | | - Dagmar Heydeck
- Institute of Biochemistry, Charite - University Medicine Berlin, Corporate member of Free University Berlin, Humboldt University Berlin, and Berlin Institute of Health, Charitéplatz 1, D-10117 Berlin, Germany
| | - Sabine Stehling
- Institute of Biochemistry, Charite - University Medicine Berlin, Corporate member of Free University Berlin, Humboldt University Berlin, and Berlin Institute of Health, Charitéplatz 1, D-10117 Berlin, Germany
| | | | | | - Hartmut Kühn
- Institute of Biochemistry, Charite - University Medicine Berlin, Corporate member of Free University Berlin, Humboldt University Berlin, and Berlin Institute of Health, Charitéplatz 1, D-10117 Berlin, Germany
| |
Collapse
|
9
|
Schäfer M, Fan Y, Gu T, Heydeck D, Stehling S, Ivanov I, Yao YG, Kuhn H. The lipoxygenase pathway of Tupaia belangeri representing Scandentia. Genomic multiplicity and functional characterization of the ALOX15 orthologs in the tree shrew. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1865:158550. [PMID: 31676437 DOI: 10.1016/j.bbalip.2019.158550] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/10/2019] [Accepted: 09/22/2019] [Indexed: 12/31/2022]
Abstract
The tree shrew (Tupaia belangeri) is a rat-sized mammal, which is more closely related to humans than mice and rats. However, the use of tree shrew to explore the patho-mechanisms of human inflammatory disorders has been limited since nothing is known about eicosanoid metabolism in this mammalian species. Eicosanoids are important lipid mediators exhibiting pro- and anti-inflammatory activities, which are biosynthesized via lipoxygenase and cyclooxygenase pathways. When we searched the tree shrew genome for the presence of cyclooxygenase and lipoxygenase isoforms we found copies of functional COX1, COX2 and LOX genes. Interestingly, we identified four copies of ALOX15 genes, which encode for four structurally distinct ALOX15 orthologs (tupALOX15a-d). To explore the catalytic properties of these enzymes we expressed tupALOX15a and tupALOX15c as catalytically active proteins and characterized their enzymatic properties. As predicted by the Evolutionary Hypothesis of ALOX15 specificity we found that the two enzymes converted arachidonic acid predominantly to 12S-HETE and they also exhibited membrane oxygenase activities. However, their reaction kinetic properties (KM for arachidonic acid and oxygen, T- and pH-dependence) and their substrate specificities were remarkably different. In contrast to mice and humans, tree shrew ALOX15 isoforms are highly expressed in the brain suggesting a role of these enzymes in cerebral function. The genomic multiplicity and the tissue expression patterns of tree shrew ALOX15 isoforms need to be considered when the results of in vivo inflammation studies obtained in this animal are translated into the human situation.
Collapse
Affiliation(s)
- Marjann Schäfer
- Institute of Biochemistry, Charité - University Medicine Berlin, Corporate member of Free University Berlin, Humboldt University Berlin and Berlin Institute of Health, Charitéplatz 1, D-10117 Berlin, Germany
| | - Yu Fan
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan 650223, China
| | - Tianle Gu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Dagmar Heydeck
- Institute of Biochemistry, Charité - University Medicine Berlin, Corporate member of Free University Berlin, Humboldt University Berlin and Berlin Institute of Health, Charitéplatz 1, D-10117 Berlin, Germany
| | - Sabine Stehling
- Institute of Biochemistry, Charité - University Medicine Berlin, Corporate member of Free University Berlin, Humboldt University Berlin and Berlin Institute of Health, Charitéplatz 1, D-10117 Berlin, Germany
| | - Igor Ivanov
- Lomonosov Institute of Fine Chemical Technologies, MIREA - Russian Technological University, Vernadskogo pr. 86, 119571 Moscow, Russia
| | - Yong-Gang Yao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Hartmut Kuhn
- Institute of Biochemistry, Charité - University Medicine Berlin, Corporate member of Free University Berlin, Humboldt University Berlin and Berlin Institute of Health, Charitéplatz 1, D-10117 Berlin, Germany.
| |
Collapse
|
10
|
Hassannia B, Vandenabeele P, Vanden Berghe T. Targeting Ferroptosis to Iron Out Cancer. Cancer Cell 2019; 35:830-849. [PMID: 31105042 DOI: 10.1016/j.ccell.2019.04.002] [Citation(s) in RCA: 1587] [Impact Index Per Article: 264.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/18/2019] [Accepted: 04/05/2019] [Indexed: 02/06/2023]
Abstract
One of the key challenges in cancer research is how to effectively kill cancer cells while leaving the healthy cells intact. Cancer cells often have defects in cell death executioner mechanisms, which is one of the main reasons for therapy resistance. To enable growth, cancer cells exhibit an increased iron demand compared with normal, non-cancer cells. This iron dependency can make cancer cells more vulnerable to iron-catalyzed necrosis, referred to as ferroptosis. The identification of FDA-approved drugs as ferroptosis inducers creates high expectations for the potential of ferroptosis to be a new promising way to kill therapy-resistant cancers.
Collapse
Affiliation(s)
- Behrouz Hassannia
- VIB Center for Inflammation Research (IRC), Ghent, Belgium; Department of Biomedical Molecular Biology (DBMB), Ghent University, Ghent, Belgium
| | - Peter Vandenabeele
- VIB Center for Inflammation Research (IRC), Ghent, Belgium; Department of Biomedical Molecular Biology (DBMB), Ghent University, Ghent, Belgium; Methusalem Program, Ghent University, Ghent, Belgium
| | - Tom Vanden Berghe
- VIB Center for Inflammation Research (IRC), Ghent, Belgium; Department of Biomedical Molecular Biology (DBMB), Ghent University, Ghent, Belgium; Laboratory of Pathophysiology, Department of Biomedical Sciences, University of Antwerp, 2000 Antwerp, Belgium; Ferroptosis And Inflammation Research (FAIR), VIB-Ghent University and University of Antwerp, Belgium.
| |
Collapse
|
11
|
O'Donnell VB, Aldrovandi M, Murphy RC, Krönke G. Enzymatically oxidized phospholipids assume center stage as essential regulators of innate immunity and cell death. Sci Signal 2019; 12:12/574/eaau2293. [PMID: 30914483 DOI: 10.1126/scisignal.aau2293] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Enzymatically oxidized phospholipids (eoxPLs) are formed through regulated processes by which eicosanoids or prostaglandins are attached to phospholipids (PLs) in immune cells. These eoxPLs comprise structurally diverse families of biomolecules with potent bioactivities, and they have important immunoregulatory roles in both health and disease. The formation of oxPLs through enzymatic pathways and their signaling capabilities are emerging concepts. This paradigm is changing our understanding of eicosanoid, prostaglandin, and PL biology in health and disease. eoxPLs have roles in cellular events such as ferroptosis, apoptosis, and blood clotting and diseases such as arthritis, diabetes, and cardiovascular disease. They are increasingly recognized as endogenous bioactive mediators and potential targets for drug development. This review will describe recent evidence that places eoxPLs and their biosynthetic pathways center stage in immunoregulation.
Collapse
Affiliation(s)
- Valerie B O'Donnell
- Systems Immunity Research Institute, Cardiff University, Cardiff CF14 4XN, UK.
| | - Maceler Aldrovandi
- Systems Immunity Research Institute, Cardiff University, Cardiff CF14 4XN, UK
| | - Robert C Murphy
- Department of Pharmacology, University of Colorado, 12801 East 17th Avenue, Aurora, CO 80045, USA
| | - Gerhard Krönke
- Department of Internal Medicine 3-Rheumatology and Immunology, University Hospital Erlangen and Friedrich-Alexander University Erlangen-Nuremberg (FAU) 91054, Erlangen, Germany
| |
Collapse
|
12
|
Kozlov N, Humeniuk L, Ufer C, Ivanov I, Golovanov A, Stehling S, Heydeck D, Kuhn H. Functional characterization of novel ALOX15 orthologs representing key steps in mammalian evolution supports the Evolutionary Hypothesis of reaction specificity. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:372-385. [DOI: 10.1016/j.bbalip.2018.12.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 12/10/2018] [Accepted: 12/28/2018] [Indexed: 12/31/2022]
|
13
|
Goloshchapova K, Stehling S, Heydeck D, Blum M, Kuhn H. Functional characterization of a novel arachidonic acid 12S-lipoxygenase in the halotolerant bacterium Myxococcus fulvus exhibiting complex social living patterns. Microbiologyopen 2018; 8:e00775. [PMID: 30560563 PMCID: PMC6612559 DOI: 10.1002/mbo3.775] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 10/24/2018] [Accepted: 11/07/2018] [Indexed: 01/24/2023] Open
Abstract
Lipoxygenases are lipid peroxidizing enzymes, which frequently occur in higher plants and mammals. These enzymes are also expressed in lower multicellular organisms but here they are not widely distributed. In bacteria, lipoxygenases rarely occur and evaluation of the currently available bacterial genomes suggested that <0.5% of all sequenced bacterial species carry putative lipoxygenase genes. We recently rescreened the public bacterial genome databases for lipoxygenase-like sequences and identified two novel lipoxygenase isoforms (MF-LOX1 and MF-LOX2) in the halotolerant Myxococcus fulvus. Both enzymes share a low degree of amino acid conservation with well-characterized eukaryotic lipoxygenase isoforms but they involve the catalytically essential iron cluster. Here, we cloned the MF-LOX1 cDNA, expressed the corresponding enzyme as N-terminal hexa-his-tag fusion protein, purified the recombinant enzyme to electrophoretic homogeneity, and characterized it with respect to its protein-chemical and enzymatic properties. We found that M. fulvus expresses a catalytically active intracellular lipoxygenase that converts arachidonic acid and other polyunsaturated fatty acids enantioselectively to the corresponding n-9 hydroperoxy derivatives. The enzyme prefers C20 - and C22 -polyenoic fatty acids but does not exhibit significant membrane oxygenase activity. The possible biological relevance of MF-LOX1 will be discussed in the context of the suggested concepts of other bacterial lipoxygenases.
Collapse
Affiliation(s)
- Kateryna Goloshchapova
- Institute of BiochemistryCharité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt‐Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
| | - Sabine Stehling
- Institute of BiochemistryCharité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt‐Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
| | - Dagmar Heydeck
- Institute of BiochemistryCharité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt‐Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
| | | | - Hartmut Kuhn
- Institute of BiochemistryCharité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt‐Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
| |
Collapse
|
14
|
Kuhn H, Humeniuk L, Kozlov N, Roigas S, Adel S, Heydeck D. The evolutionary hypothesis of reaction specificity of mammalian ALOX15 orthologs. Prog Lipid Res 2018; 72:55-74. [PMID: 30237084 DOI: 10.1016/j.plipres.2018.09.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 09/04/2018] [Accepted: 09/13/2018] [Indexed: 02/07/2023]
Affiliation(s)
- Hartmut Kuhn
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Biochemistry, Charitéplatz 1, CCO- Building, Virchowweg 6, D-10117 Berlin, Germany.
| | - Lia Humeniuk
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Biochemistry, Charitéplatz 1, CCO- Building, Virchowweg 6, D-10117 Berlin, Germany
| | - Nikita Kozlov
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Biochemistry, Charitéplatz 1, CCO- Building, Virchowweg 6, D-10117 Berlin, Germany
| | - Sophie Roigas
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Biochemistry, Charitéplatz 1, CCO- Building, Virchowweg 6, D-10117 Berlin, Germany
| | - Susan Adel
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Internal Medicine, Division of Hepathology and Gastroenterology, Augustenburger Platz 1, D-13353 Berlin, Germany
| | - Dagmar Heydeck
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Biochemistry, Charitéplatz 1, CCO- Building, Virchowweg 6, D-10117 Berlin, Germany
| |
Collapse
|
15
|
Lo Van A, Fourmaux B, Picq M, Guichardant M, Lagarde M, Bernoud-Hubac N. Synthesis and Identification of AceDoxyPC, a Protectin-Containing Structured Phospholipid, Using Liquid Chromatography/Mass Spectrometry. Lipids 2017; 52:751-761. [PMID: 28776175 DOI: 10.1007/s11745-017-4280-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 07/21/2017] [Indexed: 11/29/2022]
Abstract
Fatty acids have many health benefits in a great variety of diseases ranging from cardiovascular to cerebral diseases. For instance, docosahexaenoic acid (DHA), which is highly enriched in brain phospholipids, plays a major role in anti-inflammatory or neuroprotective pathways. Its effects are thought to be due, in part, to its conversion into derived mediators such as protectins. 1-Lyso,2-docosahexaenoyl-glycerophosphocholine (LysoPtdCho-DHA) is one of the physiological carrier of DHA to the brain. We previously synthesized a structured phosphatidylcholine to mimic 1-lyso,2-docosahexaenoyl-glycerophosphocholine, named AceDoPC® (1-acetyl,2-docosahexaenoyl-glycerophosphocholine), that is considered as a stabilized form of the physiological LysoPtdCho-DHA and that is neuroprotective in experimental ischemic stroke. Considering these, the current study aimed at enzymatically oxygenate DHA contained within AceDoPC® to synthesize a readily structured oxidized phospholipid containing protectin DX (PDX), thereafter named AceDoxyPC (1-acetyl,2-PDX-glycerophosphocholine). Identification of this product was performed using liquid chromatography/tandem mass spectrometry. Such molecule could be used as a bioactive mediator for therapy against neurodegenerative diseases and stroke.
Collapse
Affiliation(s)
- Amanda Lo Van
- Univ Lyon, INSA-Lyon, Inserm UMR 1060, Inra UMR 1397, CarMeN Laboratory, INSA, Bâtiment IMBL, 11 Avenue Jean Capelle, 69621, Villeurbanne Cedex, France
- Department of Developmental Neuroscience, Center for Neuroscience, ART, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Baptiste Fourmaux
- Univ Lyon, INSA-Lyon, Inserm UMR 1060, Inra UMR 1397, CarMeN Laboratory, INSA, Bâtiment IMBL, 11 Avenue Jean Capelle, 69621, Villeurbanne Cedex, France
| | - Madeleine Picq
- Univ Lyon, INSA-Lyon, Inserm UMR 1060, Inra UMR 1397, CarMeN Laboratory, INSA, Bâtiment IMBL, 11 Avenue Jean Capelle, 69621, Villeurbanne Cedex, France
| | - Michel Guichardant
- Univ Lyon, INSA-Lyon, Inserm UMR 1060, Inra UMR 1397, CarMeN Laboratory, INSA, Bâtiment IMBL, 11 Avenue Jean Capelle, 69621, Villeurbanne Cedex, France
| | - Michel Lagarde
- Univ Lyon, INSA-Lyon, Inserm UMR 1060, Inra UMR 1397, CarMeN Laboratory, INSA, Bâtiment IMBL, 11 Avenue Jean Capelle, 69621, Villeurbanne Cedex, France
| | - Nathalie Bernoud-Hubac
- Univ Lyon, INSA-Lyon, Inserm UMR 1060, Inra UMR 1397, CarMeN Laboratory, INSA, Bâtiment IMBL, 11 Avenue Jean Capelle, 69621, Villeurbanne Cedex, France.
| |
Collapse
|
16
|
Targeting of 12/15-Lipoxygenase in retinal endothelial cells, but not in monocytes/macrophages, attenuates high glucose-induced retinal leukostasis. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:636-645. [PMID: 28351645 DOI: 10.1016/j.bbalip.2017.03.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 02/27/2017] [Accepted: 03/24/2017] [Indexed: 11/22/2022]
Abstract
AIMS Our previous studies have established a role for 12/15-lipoxygenase (LO) in mediating the inflammatory response in diabetic retinopathy (DR). However, the extent at which the local or systemic induction of 12/15-LO activity involved is unclear. Thus, the current study aimed to characterize the relative contribution of retinal endothelial versus monocytic/macrophagic 12/15-LO to inflammatory responses in DR. MATERIALS & METHODS We first generated a clustered heat map for circulating bioactive lipid metabolites in the plasma of streptozotocin (STZ)-induced diabetic mice using liquid chromatography coupled with mass-spectrometry (LC-MS) to evaluate changes in circulating 12/15-LO activity. This was followed by comparing the in vitro mouse endothelium-leukocytes interaction between leukocytes isolated from 12/15-LO knockout (KO) versus those isolated from wild type (WT) mice using the myeloperoxidase (MPO) assay. Finally, we examined the effects of knocking down or inhibiting endothelial 12/15-LO on diabetes-induced endothelial cell activation and ICAM-1 expression. RESULTS Analysis of plasma bioactive lipids' heat map revealed that the activity of circulating 12/15-LO was not altered by diabetes as evident by no significant changes in the plasma levels of major metabolites derived from 12/15-lipoxygenation of different PUFAs, including linoleic acid (13-HODE), arachidonic acid (12- and 15- HETEs), eicosapentaenoic acid (12- and 15- HEPEs), or docosahexaenoic acid (17-HDoHE). Moreover, leukocytes from 12/15-LO KO mice displayed a similar increase in adhesion to high glucose (HG)-activated endothelial cells as do leukocytes from WT mice. Furthermore, abundant proteins of 12-LO and 15-LO were detected in human retinal endothelial cells (HRECs), while it was undetected (15-LO) or hardly detectable (12-LO) in human monocyte-like U937 cells. Inhibition or knock down of endothelial 12/15-LO in HRECs blocked HG-induced expression of ICAM-1, a well-known identified important molecule for leukocyte adhesion in DR. CONCLUSION Our data support that endothelial, rather than monocytic/macrophagic, 12/15-LO has a critical role in hyperglycemia-induced ICAM-1 expression, leukocyte adhesion, and subsequent local retinal barrier dysfunction. This may facilitate the development of more precisely targeted treatment strategies for DR.
Collapse
|
17
|
He Y, Akumuo RC, Yang Y, Hewett SJ. Mice deficient in L-12/15 lipoxygenase show increased vulnerability to 3-nitropropionic acid neurotoxicity. Neurosci Lett 2017; 643:65-69. [PMID: 28229935 DOI: 10.1016/j.neulet.2017.02.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 02/08/2017] [Accepted: 02/10/2017] [Indexed: 01/21/2023]
Abstract
Considerable evidence supports a contributory role for leukocyte-type 12/15 Lipoxygenase (L-12/15 LO) in mediating hippocampal and cortical neuronal injury in models of Alzheimer's disease and stroke. Whether L-12/15 LO contributes to neuronal injury in a model of Huntington's disease (HD) has yet to be determined. HD is characterized by marked striatal neuronal loss, which can be mimicked in humans and animals by inhibition of mitochondrial complex II using 3-Nitropropionic acid (3-NP). Herein, we compared histological and behavioral outcomes between mice that were wild-type or null for L-12/15 LO following systemic injection of 3NP. We found that mice deficient in L-12/15 LO had a higher incidence of striatal lesions coincident with an increase in morbidity as compared to their wild-type littermate controls. This could not be explained by differential metabolism of 3-NP as striatal succinate dehydrogenase activity was inhibited to the same extent in both genotypes. The present results show that deleting L-12/15 LO is detrimental to the striatum in the setting of chronic, systemic 3-NP exposure and are consistent with the overall conclusion that region-specific effects may determine the ultimate outcome of L-12/15 LO activation in the setting of brain injury.
Collapse
Affiliation(s)
- Yan He
- Department of Biology, Program in Neuroscience, Syracuse University, Syracuse, NY 13210, United States
| | - Rita C Akumuo
- Department of Biology, Program in Neuroscience, Syracuse University, Syracuse, NY 13210, United States
| | - Yuan Yang
- Department of Biology, Program in Neuroscience, Syracuse University, Syracuse, NY 13210, United States
| | - Sandra J Hewett
- Department of Biology, Program in Neuroscience, Syracuse University, Syracuse, NY 13210, United States.
| |
Collapse
|
18
|
Gaschler MM, Stockwell BR. Lipid peroxidation in cell death. Biochem Biophys Res Commun 2017; 482:419-425. [PMID: 28212725 DOI: 10.1016/j.bbrc.2016.10.086] [Citation(s) in RCA: 1154] [Impact Index Per Article: 144.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Accepted: 10/23/2016] [Indexed: 02/07/2023]
Abstract
Disruption of redox homeostasis is a key phenotype of many pathological conditions. Though multiple oxidizing compounds such as hydrogen peroxide are widely recognized as mediators and inducers of oxidative stress, increasingly, attention is focused on the role of lipid hydroperoxides as critical mediators of death and disease. As the main component of cellular membranes, lipids have an indispensible role in maintaining the structural integrity of cells. Excessive oxidation of lipids alters the physical properties of cellular membranes and can cause covalent modification of proteins and nucleic acids. This review discusses the synthesis, toxicity, degradation, and detection of lipid peroxides in biological systems. Additionally, the role of lipid peroxidation is highlighted in cell death and disease, and strategies to control the accumulation of lipid peroxides are discussed.
Collapse
Affiliation(s)
- Michael M Gaschler
- Department of Chemistry, Columbia University, 550 West 120th Street, Northwest Corner Building, MC 4846, New York, NY 10027, USA
| | - Brent R Stockwell
- Department of Chemistry, Columbia University, 550 West 120th Street, Northwest Corner Building, MC 4846, New York, NY 10027, USA; Department of Biological Sciences, Columbia University, 550 West 120th Street, Northwest Corner Building, MC 4846, New York, NY 10027, USA.
| |
Collapse
|
19
|
Ivanov I, Kuhn H, Heydeck D. Structural and functional biology of arachidonic acid 15-lipoxygenase-1 (ALOX15). Gene 2015; 573:1-32. [PMID: 26216303 PMCID: PMC6728142 DOI: 10.1016/j.gene.2015.07.073] [Citation(s) in RCA: 164] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 06/26/2015] [Accepted: 07/21/2015] [Indexed: 12/14/2022]
Abstract
Lipoxygenases (LOX) form a family of lipid peroxidizing enzymes, which have been implicated in a number of physiological processes and in the pathogenesis of inflammatory, hyperproliferative and neurodegenerative diseases. They occur in two of the three domains of terrestrial life (bacteria, eucarya) and the human genome involves six functional LOX genes, which encode for six different LOX isoforms. One of these isoforms is ALOX15, which has first been described in rabbits in 1974 as enzyme capable of oxidizing membrane phospholipids during the maturational breakdown of mitochondria in immature red blood cells. During the following decades ALOX15 has extensively been characterized and its biological functions have been studied in a number of cellular in vitro systems as well as in various whole animal disease models. This review is aimed at summarizing the current knowledge on the protein-chemical, molecular biological and enzymatic properties of ALOX15 in various species (human, mouse, rabbit, rat) as well as its implication in cellular physiology and in the pathogenesis of various diseases.
Collapse
Affiliation(s)
- Igor Ivanov
- Institute of Biochemistry, Charité - University Medicine Berlin, Charitéplatz 1, CCO-Building, Virchowweg 6, D-10117 Berlin, Germany
| | - Hartmut Kuhn
- Institute of Biochemistry, Charité - University Medicine Berlin, Charitéplatz 1, CCO-Building, Virchowweg 6, D-10117 Berlin, Germany.
| | - Dagmar Heydeck
- Institute of Biochemistry, Charité - University Medicine Berlin, Charitéplatz 1, CCO-Building, Virchowweg 6, D-10117 Berlin, Germany
| |
Collapse
|
20
|
Secreted lipoxygenase from Pseudomonas aeruginosa exhibits biomembrane oxygenase activity and induces hemolysis in human red blood cells. Arch Biochem Biophys 2015; 584:116-24. [PMID: 26361973 DOI: 10.1016/j.abb.2015.09.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 09/02/2015] [Accepted: 09/02/2015] [Indexed: 01/18/2023]
Abstract
Pseudomonas aeruginosa (PA) expresses a secreted lipoxygenase (LOX), which oxygenates free arachidonic acid predominantly to 15S-H(p)ETE. The enzyme is capable of binding phospholipids at its active site and physically interacts with model membranes. However, its membrane oxygenase activity has not been quantified. To address this question, we overexpressed PA-LOX as intracellular his-tag fusion protein in Escherichia coli, purified it to electrophoretic homogeneity and compared its biomembrane oxygenase activity with that of rabbit ALOX15. We found that both enzymes were capable of oxygenating mitochondrial membranes to specific oxygenation products and 13S-H(p)ODE and 15S-H(p)ETE esterified to phosphatidylcholine and phosphatidylethanolamine were identified as major oxygenation products. When normalized to similar linoleic acid oxygenase activity, the rabbit enzyme exhibited a much more effective mitochondrial membrane oxygenase activity. In contrast, during long-term incubations (24 h) with red blood cells PA-LOX induced significant (50%) hemolysis whereas rabbit ALOX15 was more or less ineffective. These data indicate the principle capability of PA-LOX of oxygenating membrane bound phospholipids which is likely to alter the barrier function of the biomembranes. Although the membrane oxygenase activity was lower than the fatty acid oxygenase activity of PA-LOX red blood cell membrane oxygenation might be of biological relevance for P. aeruginosa septicemia.
Collapse
|
21
|
Pekárová M, Kuhn H, Bezáková L, Ufer C, Heydeck D. Mutagenesis of triad determinants of rat Alox15 alters the specificity of fatty acid and phospholipid oxygenation. Arch Biochem Biophys 2015; 571:50-7. [PMID: 25731857 DOI: 10.1016/j.abb.2015.02.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 02/11/2015] [Accepted: 02/21/2015] [Indexed: 12/19/2022]
Abstract
Among lipoxygenases ALOX15 orthologs are somewhat peculiar because of their capability of oxygenating polyenoic fatty acids even if they are incorporated in complex lipid-protein assemblies. ALOX15 orthologs of different species have been characterized before, but little is known about the corresponding rat enzyme. Since rats are frequently employed as models in biomedical research we expressed rat Alox15 as recombinant protein in pro- and eukaryotic expression systems and characterized the enzyme with respect to its enzymatic properties. The enzyme oxygenated free arachidonic acid mainly to 12S-HpETE with 15S-HpETE only contributing 10% to the product mixture. Multiple directed mutagenesis studies indicated applicability of the triad concept with particular importance of Leu353 and Ile593 as specificity determinants. Ala404Gly exchange induced subtle alterations in enantioselectivity suggesting partial applicability of the Coffa/Brash concept. Wildtype rat Alox15 and its 15-lipoxygenating Leu353Phe mutant are capable of oxygenating ester lipids of biomembranes and high-density lipoproteins. For the wildtype enzyme 13S-HODE and 12S-HETE were identified as major oxygenation products but for the Leu353Phe mutant 13S-HODE and 15S-HETE prevailed. These data indicate for the first time that mutagenesis of triad determinants modifies the reaction specificity of ALOX15 orthologs with free fatty acids and complex ester lipids in a similar way.
Collapse
Affiliation(s)
- Mária Pekárová
- Institute of Biochemistry, University Medicine Berlin - Charité, Chariteplatz 1, D-10117 Berlin, Germany; Department of Cell and Molecular Biology of Drugs, Faculty of Pharmacy, Comenius University, Kalinčiakova 8, 832 32 Bratislava, Slovakia
| | - Hartmut Kuhn
- Institute of Biochemistry, University Medicine Berlin - Charité, Chariteplatz 1, D-10117 Berlin, Germany
| | - Lýdia Bezáková
- Department of Cell and Molecular Biology of Drugs, Faculty of Pharmacy, Comenius University, Kalinčiakova 8, 832 32 Bratislava, Slovakia
| | - Christoph Ufer
- Institute of Biochemistry, University Medicine Berlin - Charité, Chariteplatz 1, D-10117 Berlin, Germany
| | - Dagmar Heydeck
- Institute of Biochemistry, University Medicine Berlin - Charité, Chariteplatz 1, D-10117 Berlin, Germany.
| |
Collapse
|
22
|
Powell WS, Rokach J. Biosynthesis, biological effects, and receptors of hydroxyeicosatetraenoic acids (HETEs) and oxoeicosatetraenoic acids (oxo-ETEs) derived from arachidonic acid. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1851:340-55. [PMID: 25449650 DOI: 10.1016/j.bbalip.2014.10.008] [Citation(s) in RCA: 234] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 10/10/2014] [Accepted: 10/21/2014] [Indexed: 12/14/2022]
Abstract
Arachidonic acid can be oxygenated by a variety of different enzymes, including lipoxygenases, cyclooxygenases, and cytochrome P450s, and can be converted to a complex mixture of oxygenated products as a result of lipid peroxidation. The initial products in these reactions are hydroperoxyeicosatetraenoic acids (HpETEs) and hydroxyeicosatetraenoic acids (HETEs). Oxoeicosatetraenoic acids (oxo-ETEs) can be formed by the actions of various dehydrogenases on HETEs or by dehydration of HpETEs. Although a large number of different HETEs and oxo-ETEs have been identified, this review will focus principally on 5-oxo-ETE, 5S-HETE, 12S-HETE, and 15S-HETE. Other related arachidonic acid metabolites will also be discussed in less detail. 5-Oxo-ETE is synthesized by oxidation of the 5-lipoxygenase product 5S-HETE by the selective enzyme, 5-hydroxyeicosanoid dehydrogenase. It actions are mediated by the selective OXE receptor, which is highly expressed on eosinophils, suggesting that it may be important in eosinophilic diseases such as asthma. 5-Oxo-ETE also appears to stimulate tumor cell proliferation and may also be involved in cancer. Highly selective and potent OXE receptor antagonists have recently become available and could help to clarify its pathophysiological role. The 12-lipoxygenase product 12S-HETE acts by the GPR31 receptor and promotes tumor cell proliferation and metastasis and could therefore be a promising target in cancer therapy. It may also be involved as a proinflammatory mediator in diabetes. In contrast, 15S-HETE may have a protective effect in cancer. In addition to GPCRs, higher concentration of HETEs and oxo-ETEs can activate peroxisome proliferator-activated receptors (PPARs) and could potentially regulate a variety of processes by this mechanism. This article is part of a Special Issue entitled "Oxygenated metabolism of PUFA: analysis and biological relevance".
Collapse
Affiliation(s)
- William S Powell
- Meakins-Christie Laboratories, Department of Medicine, McGill University, 3626St. Urbain Street, Montreal, Quebec H2X 2P2, Canada.
| | - Joshua Rokach
- Claude Pepper Institute and Department of Chemistry, Florida Institute of Technology, 150 West University Boulevard, Melbourne, FL 32901, USA
| |
Collapse
|
23
|
Lebold KM, Traber MG. Interactions between α-tocopherol, polyunsaturated fatty acids, and lipoxygenases during embryogenesis. Free Radic Biol Med 2014; 66:13-9. [PMID: 23920314 PMCID: PMC3874081 DOI: 10.1016/j.freeradbiomed.2013.07.039] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 07/24/2013] [Accepted: 07/24/2013] [Indexed: 01/18/2023]
Abstract
α-Tocopherol is a lipid-soluble antioxidant that is specifically required for reproduction and embryogenesis. However, since its discovery, α-tocopherol's specific biologic functions, other than as an antioxidant, and the mechanism(s) mediating its requirement for embryogenesis remain unknown. As an antioxidant, α-tocopherol protects polyunsaturated fatty acids (PUFAs) from lipid peroxidation. α-Tocopherol is probably required during embryonic development to protect PUFAs that are crucial to development, specifically arachidonic (ARA) and docosahexaenoic (DHA) acids. Additionally, ARA and DHA are metabolized to bioactive lipid mediators via lipoxygenase enzymes, and α-tocopherol may directly protect, or it may mediate the production and/or actions of, these lipid mediators. In this review, we discuss how α-tocopherol (1) prevents the nonspecific, radical-mediated peroxidation of PUFAs, (2) functions within a greater antioxidant network to modulate the production and/or function of lipid mediators derived from 12- and 12/15-lipoxygenases, and (3) modulates 5-lipoxygenase activity. The application and implication of such interactions are discussed in the context of α-tocopherol requirements during embryogenesis.
Collapse
Affiliation(s)
- Katie M Lebold
- Linus Pauling Institute, Oregon State University, Corvallis, OR, 97331, USA; School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR, 97331, USA
| | - Maret G Traber
- Linus Pauling Institute, Oregon State University, Corvallis, OR, 97331, USA; School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR, 97331, USA.
| |
Collapse
|
24
|
Rossaint J, Nadler JL, Ley K, Zarbock A. Eliminating or blocking 12/15-lipoxygenase reduces neutrophil recruitment in mouse models of acute lung injury. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2012; 16:R166. [PMID: 22973824 PMCID: PMC3682261 DOI: 10.1186/cc11518] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Accepted: 09/13/2012] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Acute lung injury (ALI) is a common disease in critically ill patients with a high morbidity and mortality. 12/15-lipoxygenase (12/15-LO) is an enzyme generating 12-hydroxy-eicosatetraenoic acid (12-HETE) and 15-HETE from arachidonic acid. It has been shown that 12/15-LO is involved in the regulation of vascular permeability during ALI. METHODS To test whether 12/15-LO participates in leukocyte recruitment into the lung, we investigated the role of 12/15-LO in mouse models of lipopolysaccharide (LPS)-induced pulmonary inflammation and acid-induced ALI, a clinically relevant model of acute lung injury. RESULTS The increase in neutrophil recruitment following LPS inhalation was reduced in 12/15-LO-deficient (Alox15(-/-)) mice and in wild-type (WT) mice after the blocking of 12/15-LO with a pharmacological inhibitor. Bone marrow chimeras revealed that 12/15-LO in hematopoietic cells regulates neutrophil accumulation in the interstitial and alveolar compartments, whereas the accumulation of neutrophils in the intravascular compartment is regulated by 12/15-LO in non-hematopoietic and hematopoietic cells. Mechanistically, the increased plasma levels of the chemokine CXCL1 in Alox15(-/-) mice led to a reduced response of the neutrophil chemokine receptor CXCR2 to stimulation with CXCL1, which in turn abrogated neutrophil recruitment. Alox15(-/-) mice also showed decreased edema formation, reduced neutrophil recruitment and improved gas exchange in an acid-induced ALI model. CONCLUSIONS Our findings suggest that 12/15-LO modulates neutrophil recruitment into the lung by regulating chemokine/chemokine receptor homeostasis.
Collapse
|
25
|
Kenchegowda S, Bazan NG, Bazan HEP. EGF stimulates lipoxin A4 synthesis and modulates repair in corneal epithelial cells through ERK and p38 activation. Invest Ophthalmol Vis Sci 2011; 52:2240-9. [PMID: 21220563 DOI: 10.1167/iovs.10-6199] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To investigate the effect of epidermal growth factor (EGF) on lipoxin A4 (LXA4) synthesis and how it regulates corneal epithelial wound healing through mitogen-activated kinases, extracellular regulated kinase (ERK) 1/2, and p38. METHODS Rabbit corneal epithelial (RCE) cells were stimulated with EGF or LXA4 at different times. In some experiments, cells were pretreated with 12/15-lipoxygenase (12/15-LOX) inhibitor cinnamyl-3,4-dihydroxy-α-cyanocinnamate (CDC), ERK1/2 inhibitor PD98059, or p38 inhibitor SB203580. For wound-healing experiments, corneas from rabbits and 12/15-LOX (ALOX-15)-deficient mice were injured by epithelial removal and maintained in organ culture in the presence of EGF or LXA4 with or without inhibitors. Epithelial cell proliferation was assayed by immunofluorescence with Ki67 and cell counting. Scrape migration assays were performed in 6-well plates. LXA4 synthesis was analyzed by liquid chromatography-tandem mass spectrometry analysis. RESULTS EGF activated ERK1/2 and p38 in RCE cells in a sustained manner. EGF activation was partially inhibited by CDC. EGF and LXA4 increased corneal epithelial wound closure. ERK1/2 inhibition with PD98059 or p38 with SB203580 blocked the effect of LXA4 on wound healing. ALOX-15 corneas displayed inhibition of epithelial wound closure promoted by EGF, whereas LXA4 stimulation induced similar wound closure in wild-type and knockout mice. EGF-stimulated LXA4 synthesis in RCE cells was inhibited by CDC or the EGF receptor antagonist AG1478. CONCLUSIONS These results demonstrate that EGF-stimulated epithelial wound healing is partially mediated through a 12/15-LOX-LXA4 pathway, and activation of ERK1/2 and p38 is required for LXA4 action.
Collapse
Affiliation(s)
- Sachidananda Kenchegowda
- Department of Ophthalmology and Neuroscience Center, Louisiana State University Health Sciences Center, 2020 Gravier Street, New Orleans, LA 70112, USA
| | | | | |
Collapse
|
26
|
Ivanov I, Heydeck D, Hofheinz K, Roffeis J, O'Donnell VB, Kuhn H, Walther M. Molecular enzymology of lipoxygenases. Arch Biochem Biophys 2010; 503:161-74. [PMID: 20801095 DOI: 10.1016/j.abb.2010.08.016] [Citation(s) in RCA: 410] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 08/19/2010] [Accepted: 08/20/2010] [Indexed: 10/19/2022]
Abstract
Lipoxygenases (LOXs) are lipid peroxidizing enzymes, implicated in the pathogenesis of inflammatory and hyperproliferative diseases, which represent potential targets for pharmacological intervention. Although soybean LOX1 was discovered more than 60years ago, the structural biology of these enzymes was not studied until the mid 1990s. In 1993 the first crystal structure for a plant LOX was solved and following this protein biochemistry and molecular enzymology became major fields in LOX research. This review focuses on recent developments in molecular enzymology of LOXs and summarizes our current understanding of the structural basis of LOX catalysis. Various hypotheses explaining the reaction specificity of different isoforms are critically reviewed and their pros and cons briefly discussed. Moreover, we summarize the current knowledge of LOX evolution by profiling the existence of LOX-related genomic sequences in the three kingdoms of life. Such sequences are found in eukaryotes and bacteria but not in archaea. Although the biological role of LOXs in lower organisms is far from clear, sequence data suggests that this enzyme family might have evolved shortly after the appearance of atmospheric oxygen on earth.
Collapse
Affiliation(s)
- Igor Ivanov
- Institute of Biochemistry, University Medicine Berlin - Charité, Germany
| | | | | | | | | | | | | |
Collapse
|
27
|
Thomas CP, Morgan LT, Maskrey BH, Murphy RC, Kühn H, Hazen SL, Goodall AH, Hamali HA, Collins PW, O'Donnell VB. Phospholipid-esterified eicosanoids are generated in agonist-activated human platelets and enhance tissue factor-dependent thrombin generation. J Biol Chem 2010; 285:6891-903. [PMID: 20061396 PMCID: PMC2844139 DOI: 10.1074/jbc.m109.078428] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Here, a group of specific lipids, comprising phosphatidylethanolamine (PE)- or phosphatidylcholine (PC)-esterified 12S-hydroxyeicosatetraenoic acid (12S-HETE), generated by 12-lipoxygenase was identified and characterized. 12S-HETE-PE/PCs were formed within 5 min of activation by thrombin, ionophore, or collagen. Esterified HETE levels generated in response to thrombin were 5.85 ± 1.42 (PE) or 18.35 ± 4.61 (PC), whereas free was 65.5 ± 17.6 ng/4 × 107 cells (n = 5 separate donors, mean ± S.E.). Their generation was stimulated by triggering protease-activated receptors-1 and -4 and signaling via Ca2+ mobilization secretory phospholipase A2, platelet-activating factor-acetylhydrolase, src tyrosine kinases, and protein kinase C. Stable isotope labeling showed that they form predominantly by esterification that occurs on the same time scale as free acid generation. Unlike free 12S-HETE that is secreted, esterified HETEs remain cell-associated, with HETE-PEs migrating to the outside of the plasma membrane. 12-Lipoxygenase inhibition attenuated externalization of native PE and phosphatidylserine and HETE-PEs. Platelets from a patient with the bleeding disorder, Scott syndrome, did not externalize HETE-PEs, and liposomes supplemented with HETE-PC dose-dependently enhanced tissue factor-dependent thrombin generation in vitro. This suggests a role for these novel lipids in promoting coagulation. Thus, oxidized phospholipids form by receptor/agonist mechanisms, not merely as an undesirable consequence of vascular and inflammatory disease.
Collapse
|
28
|
Zarbock A, Distasi MR, Smith E, Sanders JM, Kronke G, Harry BL, von Vietinghoff S, Buscher K, Nadler JL, Ley K. Improved survival and reduced vascular permeability by eliminating or blocking 12/15-lipoxygenase in mouse models of acute lung injury (ALI). JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2009; 183:4715-22. [PMID: 19752233 PMCID: PMC2753988 DOI: 10.4049/jimmunol.0802592] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Acute lung injury (ALI) is a prevalent disease associated with high mortality. 12/15-lipoxygenase (12/15-LO) is an enzyme producing 12-hydroxyeicosatetraenoic acid (HETE) and 15-HETE from arachidonic acid. To test whether 12/15-LO is involved in increasing vascular permeability in the lung, we investigated the role of 12/15-LO in murine models of LPS-induced pulmonary inflammation and clinically relevant acid-induced ALI. The vascular permeability increase upon LPS inhalation was abolished in Alox15(-/-) mice lacking 12/15-LO and in wild-type mice after pharmacological blockade of 12/15-LO. Alox15(-/-) mice also showed improved gas exchange, reduced permeability increase, and prolonged survival in the acid-induced ALI model. Bone marrow chimeras and reconstitution experiments revealed that 12-HETE produced by hematopoietic cells regulates vascular permeability through a CXCR2-dependent mechanism. Our findings suggest that 12/15-LO-derived 12-HETE is a key mediator of vascular permeability in acute lung injury.
Collapse
Affiliation(s)
- Alexander Zarbock
- Robert M. Berne Cardiovascular Research Center, Department of Anesthesiology and Critical Care Medicine, University of Muenster, Albert-Schweitzer Strasse 33, Muenster 48149, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Boeglin WE, Itoh A, Zheng Y, Coffa G, Howe GA, Brash AR. Investigation of substrate binding and product stereochemistry issues in two linoleate 9-lipoxygenases. Lipids 2008; 43:979-87. [PMID: 18795358 PMCID: PMC4710486 DOI: 10.1007/s11745-008-3230-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Accepted: 08/18/2008] [Indexed: 10/21/2022]
Abstract
Herein we characterize the Arabidopsis thaliana AtLOX1 and tomato (Solanum lycopersicum) LOXA proteins as linoleate 9S-lipoxygenases (9-LOX), and use the enzymes to test a model that predicts a relationship between substrate binding orientation and product stereochemistry. The cDNAs were heterologously expressed in E. coli and the proteins partially purified by nickel affinity chromatography using a N-terminal (His)(6)-tag. Both enzymes oxygenated linoleic acid almost exclusively to the 9S-hydroperoxide with turnover numbers of 300-400/s. AtLOX1 showed a broad range of activity over the range pH 5-9 (optimal at pH 6); tomato LOXA also showed optimal activity around pH 5-7 dropping off more sharply at pH 9. Site-directed mutagenesis of a conserved active site Ala (Ala562 in AtLOX1, Ala 564 in tomato LOXA, and typically conserved as Ala in S-LOX and Gly in R-LOX), revealed that substitution with Gly led to the production of a mixture of 9S- and 13R-hydroperoxyoctadecadienoic acids from linoleic acid. To follow up on earlier reports of 9-LOX metabolism of anandamide (van Zadelhoff et al. Biochem. Biophys. Res. Commun. 248:33-38, 1998), we also tested this substrate with the mutants, which produced predictable shifts in product profile, including a shift from the prominent 11S-hydroperoxy derivative of wild-type to include the 15R-hydroperoxide. These results conform to a model that predicts a head-first substrate binding orientation for 9S-LOX. We also found that linoleoyl-phosphatidylcholine is not a 9S-LOX substrate, which is consistent with this conclusion.
Collapse
Affiliation(s)
- William E Boeglin
- Department of Pharmacology, Vanderbilt University Medical Center, RRB Room 510, 23rd Ave at Pierce, Nashville, TN, 37232-6602, USA.
| | | | | | | | | | | |
Collapse
|
30
|
Turman MV, Kingsley PJ, Rouzer CA, Cravatt BF, Marnett LJ. Oxidative metabolism of a fatty acid amide hydrolase-regulated lipid, arachidonoyltaurine. Biochemistry 2008; 47:3917-25. [PMID: 18311922 PMCID: PMC2760074 DOI: 10.1021/bi702530z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A novel class of lipids, N-acyltaurines, was recently discovered in fatty acid amide hydrolase knockout mice. In some peripheral tissues, such as liver and kidney, N-acyltaurines with long, polyunsaturated acyl chains are most prevalent. Polyunsaturated fatty acids are converted to a variety of signaling molecules by cyclooxygenases (COXs) and lipoxygenases (LOXs). The ability of COXs and LOXs to oxygenate arachidonoyltaurine was evaluated to gain insight into the potential metabolic fate of N-acyltaurines. Although arachidonoyltaurine was a poor substrate for COXs, mammalian 12 S- and 15 S-LOXs oxygenated arachidonoyltaurine with similar or better efficiency than arachidonic acid. Products of arachidonoyltaurine oxygenation were characterized by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The positional specificity of single oxygenation was retained for 15 S-LOXs. However, platelet-type 12 S-LOX produced 12- and 15-hydroxyeicosatetraenoyltaurines (HETE-Ts). Furthermore, LOXs generated dihydroxyeicosatetraenoyltaurines (diHETE-Ts). Metabolism of arachidonoyltaurine by murine resident peritoneal macrophages (RPMs) was also profiled. Arachidonoyltaurine was rapidly taken up and converted primarily to 12-HETE-T. Over prolonged incubations, RPMs also generated small amounts of diHETE-T. Oxidative metabolism of polyunsaturated N-acyltaurines may represent a pathway for the generation or termination of novel signaling molecules.
Collapse
Affiliation(s)
- Melissa V. Turman
- A. B. Hancock, Jr. Memorial Laboratory for Cancer Research, Departments of Biochemistry, Chemistry, and Pharmacology, Vanderbilt Institute of Chemical Biology, and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232 USA
| | - Philip J. Kingsley
- A. B. Hancock, Jr. Memorial Laboratory for Cancer Research, Departments of Biochemistry, Chemistry, and Pharmacology, Vanderbilt Institute of Chemical Biology, and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232 USA
| | - Carol A. Rouzer
- A. B. Hancock, Jr. Memorial Laboratory for Cancer Research, Departments of Biochemistry, Chemistry, and Pharmacology, Vanderbilt Institute of Chemical Biology, and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232 USA
| | - Benjamin F. Cravatt
- The Skaggs Institute for Chemical Biology, Departments of Cell Biology and Chemistry, The Scripps Research Institute, La Jolla, California 92037 USA
| | - Lawrence J. Marnett
- A. B. Hancock, Jr. Memorial Laboratory for Cancer Research, Departments of Biochemistry, Chemistry, and Pharmacology, Vanderbilt Institute of Chemical Biology, and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232 USA
| |
Collapse
|
31
|
Huang LS, Kang JS, Kim MR, Sok DE. Oxygenation of arachidonoyl lysophospholipids by lipoxygenases from soybean, porcine leukocyte, or rabbit reticulocyte. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2008; 56:1224-32. [PMID: 18247539 DOI: 10.1021/jf073016i] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Oxygenation of arachidonoyl lysophosphatidylcholine (lysoPC) or arachidonoyl lysophosphatidic acid (lysoPA) by lipoxygenase (LOX) was examined. The oxidized products were identified by HPLC/UV spectrophotometry/mass spectrometry analyses. Straight-phase and chiral-phase HPLC analyses indicated that soybean LOX-1 and rabbit reticulocyte LOX oxygenated arachidonoyl lysophospholipids mainly at C-15 with the S form as major enantiomer, whereas porcine leukocyte LOX oxygenated at C-12 with the S form. Next, the sequential exposure of arachidonoyl-lysoPC to soybean LOX-1 and porcine leukocyte LOX afforded two major isomers of dihydroxy derivatives with conjugated triene structure, suggesting that 15(S)-hydroperoxyeicosatetraenoyl derivatives were converted to 8,15(S)-dihydroxyeicosatetraenoyl derivatives. Separately, arachidonoyl-lysoPA, but not arachidonoyl-lysoPC, was found to be susceptible to double oxygenation by soybean LOX-1 to generate a dihydroperoxyeicosatetraenoyl derivative. Overall, arachidonoyl lysophospholipids were more efficient than arachidonic acid as LOX substrate. Moreover, the catalytic efficiency of arachidonoyl-lysoPC as substrate of three lipoxygenases was much greater than that of arachidonoyl-lysoPA or arachidonic acid. Taken together, it is proposed that arachidonoyl-lysoPC or arachidonoyl-lysoPA is efficiently oxygenated by plant or animal lipoxygenases, C12- or C15-specific, to generate oxidized products with conjugated diene or triene structure.
Collapse
Affiliation(s)
- Long Shuang Huang
- College of Pharmacy and Department of Food and Nutrition, Chungnam National University, Taejon, Korea
| | | | | | | |
Collapse
|
32
|
Huang LS, Kim MR, Sok DE. Oxygenation of 1-docosahexaenoyl lysophosphatidylcholine by lipoxygenases; conjugated hydroperoxydiene and dihydroxytriene derivatives. Lipids 2007; 42:981-90. [PMID: 17879105 DOI: 10.1007/s11745-007-3112-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2007] [Accepted: 08/07/2007] [Indexed: 01/14/2023]
Abstract
Oxygenation of 1-docosahexaenoyl lysophosphatidylcholine (docosahexaenoyl-lysoPC) by soybean lipoxygenase-1 (LOX-1) or porcine leukocyte LOX was examined. The oxidized products were identified to be hydroperoxydocosahexaenoyl-lysoPC by UV and LC/MS spectrometric analyses. In SP-HPLC and chiral phase-HPLC analyses, the products from the oxygenation of docosahexaenoyl-lysoPC by soybean LOX-1 and porcine leukocyte LOX were found to contain hydroperoxide group mainly at C-17 and C-14, respectively with the S form as a major enantiomer. Next, the sequential exposure of docosahexaenoyl-lysoPC to soybean LOX-1 and porcine leukocyte LOX led to the formation of conjugated triene derivatives possessing a maximal absorption at 271 nm with shoulders at 262 and 281 nm. Based on MS-MS analysis, the conjugated triene derivatives were identified to be 10,17- or 16,17-dihydroxydocosahexaenoyl-lysoPC analogues, suggesting that the diols were produced mainly from hydrolysis of 16,17(S)-epoxide intermediate. In kinetic studies, docosahexaenoyl-lysoPC was more favorable than docosahexaenoic acid as substrate for soybean LOX-1 or leukocyte LOX. Taken together, it is proposed that docosahexaenoyl-lysoPC can be oxygenated as substrates for some lipoxygenases to form conjugated diene and/or triene derivatives.
Collapse
Affiliation(s)
- Long Shuang Huang
- College of Pharmacy, Chungnam National University, Yuseong-ku, Taejon, 305-764, Korea
| | | | | |
Collapse
|
33
|
Prusakiewicz JJ, Turman MV, Vila A, Ball HL, Al-Mestarihi AH, Di Marzo V, Marnett LJ. Oxidative metabolism of lipoamino acids and vanilloids by lipoxygenases and cyclooxygenases. Arch Biochem Biophys 2007; 464:260-8. [PMID: 17493578 PMCID: PMC2774498 DOI: 10.1016/j.abb.2007.04.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2007] [Revised: 03/28/2007] [Accepted: 04/02/2007] [Indexed: 11/25/2022]
Abstract
The lipoamino acids and endovanilloids have multiple roles in nociception, pain, and inflammation, yet their biological reactivity has not been fully characterized. Cyclooxygenases (COXs) and lipoxygenases (LOs) oxygenate polyunsaturated fatty acids to generate signaling molecules. The ability of COXs and LOs to oxygenate arachidonyl-derived lipoamino acids and vanilloids was investigated. COX-1 and COX-2 were able to minimally metabolize many of these species. However, the lipoamino acids were efficiently oxygenated by 12S- and 15S-LOs. The kinetics and products of oxygenation by LOs were characterized. Whereas 15S-LOs retained positional specificity of oxygenation with these novel substrates, platelet-type 12S-LO acted as a 12/15-LO. Fatty acid oxygenases may play an important role in the metabolic inactivation of lipoamino acids or vanilloids or may convert them to bioactive derivatives.
Collapse
Affiliation(s)
- Jeffery J. Prusakiewicz
- A. B. Hancock, Jr. Memorial Laboratory for Cancer Research, Departments of Biochemistry and Chemistry, Vanderbilt Institute of Chemical Biology, and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232 USA
| | - Melissa V. Turman
- A. B. Hancock, Jr. Memorial Laboratory for Cancer Research, Departments of Biochemistry and Chemistry, Vanderbilt Institute of Chemical Biology, and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232 USA
| | - Andrew Vila
- A. B. Hancock, Jr. Memorial Laboratory for Cancer Research, Departments of Biochemistry and Chemistry, Vanderbilt Institute of Chemical Biology, and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232 USA
| | - Heather L. Ball
- A. B. Hancock, Jr. Memorial Laboratory for Cancer Research, Departments of Biochemistry and Chemistry, Vanderbilt Institute of Chemical Biology, and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232 USA
| | - Ahmad H. Al-Mestarihi
- A. B. Hancock, Jr. Memorial Laboratory for Cancer Research, Departments of Biochemistry and Chemistry, Vanderbilt Institute of Chemical Biology, and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232 USA
| | - Vincenzo Di Marzo
- Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Pozzuoli (NA) Italy 80078
| | - Lawrence J. Marnett
- A. B. Hancock, Jr. Memorial Laboratory for Cancer Research, Departments of Biochemistry and Chemistry, Vanderbilt Institute of Chemical Biology, and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232 USA
| |
Collapse
|
34
|
Huang LS, Kim MR, Jeong TS, Sok DE. Linoleoyl lysophosphatidic acid and linoleoyl lysophosphatidylcholine are efficient substrates for mammalian lipoxygenases. Biochim Biophys Acta Gen Subj 2007; 1770:1062-70. [PMID: 17442494 DOI: 10.1016/j.bbagen.2007.03.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2006] [Revised: 03/03/2007] [Accepted: 03/12/2007] [Indexed: 11/24/2022]
Abstract
Oxygenation of two lysophospholipids, 1-linoleoyl lysophosphatidylcholine (linoleoyl-lysoPC) and 1-linoleoyl lysophosphatidic acid (linoleoyl-lysoPA), by reticulocyte lipoxygenase (LOX) or porcine leukocyte LOX was measured by monitoring the formation of conjugated dienes. Consistent with the above, the formation of linoleoyl-lysophospholipid hydroperoxide as oxygenation product was confirmed by LC/MS analyses. In further study, the oxygenation products of linoleoyl-lysoPC or linoleoyl-lysoPA were found to contain hydroperoxide group predominantly at C-13 with the S enantiomer as a major one, in a good agreement with the positional-specificity and stereo-selectivity of reticulocyte LOX or leukocyte LOX in oxygenation of linoleic acid. The kinetic study indicates that linoleoyl-lysoPA and linoleoyl-lysoPC are no less efficient than linoleic acid as substrates of reticulocyte LOX as well as leukocyte LOX. In contrast, these lysophospholipids were not oxygenated efficiently by potato LOX. Thus, linoleoyl-lysophospholipids such as linoleoyl-lysoPA or linoleoyl-lysoPC could be utilized as efficient substrates for some mammalian lipoxygenases.
Collapse
Affiliation(s)
- Long Shuang Huang
- College of Pharmacy, Chungnam National University, Yuseong-ku, Taejon, Korea
| | | | | | | |
Collapse
|
35
|
Huang LS, Kim MR, Sok DE. Linoleoyl lysophosphatidylcholine is an efficient substrate for soybean lipoxygenase-1. Arch Biochem Biophys 2006; 455:119-26. [PMID: 17067544 DOI: 10.1016/j.abb.2006.09.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2006] [Revised: 09/15/2006] [Accepted: 09/17/2006] [Indexed: 10/24/2022]
Abstract
Oxygenation of 1-linoleoyl lysophosphatidylcholine (linoleoyl-lysoPC) by soybean lipoxygenase-1 was monitored by measuring the increase of absorbance at 234nm. In support of this, the hydroperoxy derivative of linoleoyl-lysoPC as a major product and its reduction product as a minor one were detected by LC/MS analyses. The greater part of the hydroperoxy derivative was found to contain hydroperoxide group at C-13 rather than C-9, consistent with the position specificity of soybean lipoxygenase-1 in oxygenation of linoleic acid. Such a preferential production of 13-hydroperoxy derivative of linoleoyl-lysoPC was also observed at pH 7.4, suggesting that the positional specificity of lipoxygenase-1 is not affected greatly by pH. In addition, the pH-dependent oxygenation of linoleoyl-lysoPC, showing an optimal activity around pH 9, was similar to that of linoleic acid. In kinetic study, lipoxygenase 1-catalyzed oxygenation of linoleoyl-lysoPC followed Michaelis-Menten kinetics (V(m), 167.5U/mg protein; K(m), 12.9muM). In comparison, linoleoyl-lysoPC was no less efficient than linoleic acid as a substrate of soybean lipoxygenase-1. Moreover, oxygenation of linoleoyl-lysoPC by LOX-1 was not affected by detergent. Thus, linoleoyl-lysoPC could be utilized as a convenient substrate in the assay of soybean lipoxygeanse-1.
Collapse
Affiliation(s)
- Long Shuang Huang
- College of Pharmacy, Chungnam National University, Yuseong-ku, Taejon, Republic of Korea
| | | | | |
Collapse
|
36
|
Abousalham A, Verger R. Continuous measurement of the lipoxygenase-catalyzed oxidation of unsaturated lipids using the monomolecular film technique. Pharm Res 2006; 23:2469-74. [PMID: 16933093 DOI: 10.1007/s11095-006-9081-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2006] [Accepted: 06/05/2006] [Indexed: 10/24/2022]
Abstract
PURPOSE This paper presents the first detailed kinetic investigation involving the continuous measurement of the soybean lipoxygenase 1 (LOX1)-catalyzed oxidation of unsaturated lipids using the monomolecular film technique at an argon/water interface. MATERIALS AND METHODS The presence of oxidation products in the monolayer is qualitatively detected, at a constant area, by an increase in the monolayer surface pressure. Alternatively, the rate of lipid oxidation can be measured, at a constant surface pressure, by a backward movement of the mobile barrier, due to the oxidation-dependent increase in the monolayer area. RESULTS For instance, the LOX1-catalyzed oxidation of 1,2-di[cis-9,12-octadecadienoyl]-sn-glycero-3-phosphocholine (diC18:2PC) monolayer was found to be characterized by a time dependent increase in the monolayer area, at constant surface pressure. However, the increase in the monolayer area was thought to be caused first by the penetration of the enzyme into the interface, and secondly, by the formation of hydroperoxides at the interface, due to the LOX1-catalyzed oxidation of the diC18:2PC film. The rate of the LOX1-catalyzed oxidation of diC18:2PC film was measured by subtracting the increase in the area due to the LOX1-penetration into the non-oxidizable 1,2-di[cis-9-octadecenoyl]-sn-glycero-3-phosphocholine (diC18:1PC) film from the increase in the area due to LOX penetration and oxidation of the diC18:2PC film. At a constant optimum surface pressure of 1 mN m(-1), similar initial rates of LOX1-catalyzed oxidation are observed with both linoleic acid methyl ester (C18:2) and diC18:2PC. It is worth noting that the surface density of C18:2 acyl chains is also similar in both films. We observed that a phosphatidylcholine (PC) film with two potentially oxidizable chains (e.g., diC18:2PC) is oxidized at a rate which is twice that obtained with a PC containing a single oxidizable chain (e.g., 1-hexadecanoyl-2-[cis-9,12-octadecadienoyl]-sn-glycero-3-phosphocholine). CONCLUSIONS The enzymatic lipid oxidation seems to occur when the monolayer is in the expanded state. This expanded state may possibly result in vivo from the lipolysis of a biomembrane and consequently lipolysis and lipid oxidation are coupled at the membrane level.
Collapse
Affiliation(s)
- Abdelkarim Abousalham
- Enzymology at interfaces and physiology of lipolysis, UPR 9025-CNRS, 31, Chemin Joseph Aiguier, 13402 Marseille, Cedex 20, France.
| | | |
Collapse
|
37
|
Abstract
Lipoxygenases (LOXs) form a heterogeneous family of lipid-peroxidizing enzymes, and several LOX-isoforms (12/15-LOX, 5-LOX) have been implicated in atherogenesis. However, the precise role of these enzymes is still a matter of discussion. 12/15-LOXs are capable of oxidizing lipoproteins (low-density lipoprotein (LDL), high-density lipoprotein (HDL)) to atherogenic forms, and functional inactivation of this enzyme in murine atherosclerosis models slows down lesion formation. In contrast, rabbits that overexpress this enzyme were protected from lesion formation when fed a lipid-rich diet. To contribute to this discussion, we recently investigated the impact of 12/15-LOX overexpression on in vitro foam cell formation. When 12/15-LOX-transfected J774 cells were incubated in culture with modified LDL, we found that intracellular lipid deposition was reduced in the transfected cells when compared with the corresponding control transfectants. This paper briefly summarizes the current status of knowledge on the biological activity of different LOX-isoforms in atherogenesis and will also provide novel experimental data characterizing the role of 12/15-LOX in cellular LDL modification and for in vitro foam cell formation.
Collapse
Affiliation(s)
- Hartmut Kühn
- Institute of Biochemistry, University Medicine Berlin, Berlin, Germany.
| | | | | |
Collapse
|
38
|
Coffa G, Schneider C, Brash AR. A comprehensive model of positional and stereo control in lipoxygenases. Biochem Biophys Res Commun 2005; 338:87-92. [PMID: 16111652 DOI: 10.1016/j.bbrc.2005.07.185] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2005] [Accepted: 07/30/2005] [Indexed: 11/19/2022]
Abstract
The lipoxygenase gene family can synthesize an array of chiral hydroperoxy derivatives from polyunsaturated fatty acids. An individual enzyme, however, reacts molecular oxygen on a single position on the carbon chain and in a single stereo configuration. Regiospecificity is regulated by the orientation and depth of substrate entry into the active site. Stereospecificity is a different issue and only recently has experimental support emerged to explain the conceptual basis of stereo control. A key determinant is a single active site residue conserved as an Ala in S lipoxygenases and a Gly in R lipoxygenases; this residue controls R or S stereochemistry by switching the position of oxygenation on the reacting pentadiene of the substrate. In this review, we meld together the factors that control product regio- and stereochemistry into a general model that can account for the specificity of individual lipoxygenase reactions.
Collapse
Affiliation(s)
- Gianguido Coffa
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | | |
Collapse
|
39
|
Coffa G, Brash AR. A single active site residue directs oxygenation stereospecificity in lipoxygenases: stereocontrol is linked to the position of oxygenation. Proc Natl Acad Sci U S A 2004; 101:15579-84. [PMID: 15496467 PMCID: PMC524819 DOI: 10.1073/pnas.0406727101] [Citation(s) in RCA: 152] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Lipoxygenases are a class of dioxygenases that form hydroperoxy fatty acids with distinct positional and stereo configurations. Several amino acid residues influencing regiospecificity have been identified, whereas the basis of stereocontrol is not understood. We have now identified a single residue in the lipoxygenase catalytic domain that is important for stereocontrol; it is conserved as an Ala in S lipoxygenases and a Gly in R lipoxygenases. Our results with mutation of the conserved Ala to Gly in two S lipoxygenases (mouse 8S-LOX and human 15-LOX-2) and the corresponding Gly-Ala substitution in two R lipoxygenases (human 12R-LOX and coral 8R-LOX) reveal that the basis for R or S stereo-control also involves a switch in the position of oxygenation on the substrate. After the initial hydrogen abstraction, antarafacial oxygenation at one end or the other of the activated pair of double bonds (pentadiene) gives, for example, 8S or 12R product. The Ala residue promotes oxygenation on the reactive pentadiene at the end deep in the substrate binding pocket and S stereochemistry of the product hydroperoxide, and a Gly residue promotes oxygenation at the proximal end of the reactive pentadiene resulting in R stereochemistry. A model of lipoxygenase reaction specificity is proposed in which product regiochemistry and stereochemistry are determined by fixed relationships between substrate orientation, hydrogen abstraction, and the Gly or Ala residue we have identified.
Collapse
Affiliation(s)
- Gianguido Coffa
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | |
Collapse
|
40
|
Huo Y, Zhao L, Hyman MC, Shashkin P, Harry BL, Burcin T, Forlow SB, Stark MA, Smith DF, Clarke S, Srinivasan S, Hedrick CC, Praticò D, Witztum JL, Nadler JL, Funk CD, Ley K. Critical role of macrophage 12/15-lipoxygenase for atherosclerosis in apolipoprotein E-deficient mice. Circulation 2004; 110:2024-31. [PMID: 15451785 DOI: 10.1161/01.cir.0000143628.37680.f6] [Citation(s) in RCA: 157] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Mice lacking leukocyte type 12/15-lipoxygenase (12/15-LO) show reduced atherosclerosis in several models. 12/15-LO is expressed in a variety of cells, including vascular cells, adipocytes, macrophages, and cardiomyocytes. The purpose of this study was to determine which cellular source of 12/15-LO is important for atherosclerosis. METHODS AND RESULTS Bone marrow from 12/15-LO-/-/apoE-/- mice was transplanted into apoE-/- mice and vice versa. Deficiency of 12/15-LO in bone marrow cells protected apoE-/- mice fed a Western diet from atherosclerosis to the same extent as complete absence of 12/15-LO, although plasma 8,12-iso-iPF2alpha-IV, a measure of lipid peroxidation, remained elevated. 12/15-LO-/-/apoE-/- mice regained the severity of atherosclerotic lesion typical of apoE-/- mice after replacement of their bone marrow cells with bone marrow from apoE-/- mice. Peritoneal macrophages obtained from wild-type but not 12/15-LO-/- mice caused endothelial activation in the presence of native LDL. Absence of 12/15-LO decreased the ability of macrophages to form foam cells when exposed to LDL. CONCLUSIONS We conclude that macrophage 12/15-LO plays a dominant role in the development of atherosclerosis by promoting endothelial inflammation and foam cell formation.
Collapse
MESH Headings
- Animals
- Apolipoproteins E/deficiency
- Apolipoproteins E/genetics
- Arachidonate 12-Lipoxygenase/deficiency
- Arachidonate 12-Lipoxygenase/genetics
- Arachidonate 12-Lipoxygenase/physiology
- Arachidonate 15-Lipoxygenase/deficiency
- Arachidonate 15-Lipoxygenase/genetics
- Arachidonate 15-Lipoxygenase/physiology
- Arteriosclerosis/enzymology
- Autocrine Communication
- Bone Marrow Transplantation
- Cell Adhesion/drug effects
- Cell Differentiation/drug effects
- Cells, Cultured/cytology
- Cells, Cultured/drug effects
- Cells, Cultured/enzymology
- Dinoprost/analogs & derivatives
- Dinoprost/blood
- Endothelial Cells/drug effects
- Endothelial Cells/enzymology
- Endothelium, Vascular/cytology
- Foam Cells/cytology
- Hyperlipoproteinemia Type II/blood
- Hyperlipoproteinemia Type II/enzymology
- Hyperlipoproteinemia Type II/genetics
- Interleukin-4/pharmacology
- Lipoproteins, LDL/pharmacology
- Macrophages, Peritoneal/cytology
- Macrophages, Peritoneal/drug effects
- Macrophages, Peritoneal/enzymology
- Mice
- Mice, Knockout
- Muscle, Smooth, Vascular/cytology
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/enzymology
- RNA, Messenger/biosynthesis
- Radiation Chimera
- Triglycerides/blood
Collapse
Affiliation(s)
- Yuqing Huo
- University of Virginia, Charlottesville, Va, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Arachidonate 12-lipoxygenase introduces a molecular oxygen at carbon 12 of arachidonic acid to generate a 12-hydroperoxy derivative. The enzymes generate 12-hydroperoxy derivatives with either S- or R-configurations. There are three isoforms of 12S-lipoxygenases named after the cells where they were first identified; platelet, leukocyte and epidermis. The leukocyte-type enzyme is widely distributed among cells, but the tissue distribution varies substantially from species to species. The platelet and epidermal enzymes are present in only a relatively limited number of cell types. Although the structures and enzymatic properties of the three isoforms of 12S-lipoxygenases have been elucidated, the physiological roles of the 12S-lipoxygenases are not yet fully understood. There are important roles for the enzymes and their products in several biological systems including those involved in atherosclerosis and neurotransmission.
Collapse
Affiliation(s)
- Tanihiro Yoshimoto
- Department of Molecular Pharmacology, Kanazawa University Graduate School of Medicine, Japan.
| | | |
Collapse
|
42
|
Limor R, Weisinger G, Gilad S, Knoll E, Sharon O, Jaffe A, Kohen F, Berger E, Lifschizt-Mercer B, Stern N. A novel form of platelet-type 12-lipoxygenase mRNA in human vascular smooth muscle cells. Hypertension 2001; 38:864-71. [PMID: 11641300 DOI: 10.1161/hy1001.092653] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The lipoxygenase pathway has been implicated in the growth, migration, and contraction of vascular smooth muscle cells (VSMCs). However, the precise type of lipoxygenase present in the vascular wall has not been characterized. In this study, we used a specific reverse-transcriptase polymerase chain reaction method with 2 sets of specific primers on total RNA and polyA (+)RNA of normal human VSMCs prepared from umbilical artery. Two forms of platelet-type 12-lipoxygenase mRNA were present in human VSMCs: the already published form cloned from human erythroleukemia cells and a variant form of platelet-type 12-lipoxygenase, which includes 2 additional sequences consistent with the 2 introns (D and E). This novel form of 12-lipoxygenase poly A (+)RNA was downregulated by lipopolysaccharide (10 ug/ml) and upregulated by epidermal growth factor (100 ng/ml) but was not affected by angiotensin II (10(-7) mol/l). We developed a rabbit anti-human platelet-type 12-lipoxygenase polyclonal antibody directed against a 24-amino acid peptide encoded within exon 4. Western immunoblotting of protein extracted from VSMCs and umbilical artery and platelet extract with this antibody showed a coordinate 110-kDa protein and the already-described 70-kDa band detected in platelets and cord homogenate. Another 120-kDa protein was consistently detected in cord extracts but not in platelet or VSMC homogenates. The immunohistochemistry study performed with the same antibody showed extensive cytoplasmic staining of VSMCs. The specific role of these different forms of platelet-type 12-lipoxygenase is subject to further investigation.
Collapse
MESH Headings
- Alternative Splicing
- Arachidonate 12-Lipoxygenase/genetics
- Arachidonate 12-Lipoxygenase/metabolism
- Blood Platelets/enzymology
- Blotting, Western
- Cells, Cultured
- Epidermal Growth Factor/pharmacology
- Gene Expression Regulation, Enzymologic/drug effects
- Humans
- Immunohistochemistry
- Introns/genetics
- Lipopolysaccharides/pharmacology
- Molecular Sequence Data
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Substrate Specificity
Collapse
Affiliation(s)
- R Limor
- Institute of Endocrinology, Department of Pathology, Tel Aviv-Souraski Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Xu W, Takahashi Y, Sakashita T, Iwasaki T, Hattori H, Yoshimoto T. Low density lipoprotein receptor-related protein is required for macrophage-mediated oxidation of low density lipoprotein by 12/15-lipoxygenase. J Biol Chem 2001; 276:36454-9. [PMID: 11479307 DOI: 10.1074/jbc.m105093200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The oxidative modification of low density lipoprotein (LDL) has been implicated in the early stage of atherosclerosis through multiple potential pathways, and 12/15-lipoxygenase is suggested to be involved in this oxidation process. We demonstrated previously that the 12/15-lipoxygenase overexpressed in mouse macrophage-like J774A.1 cells was required for the cell-mediated LDL oxidation. However, the mechanism of the oxidation of extracellular LDL by the intracellular 12/15-lipoxygenase has not yet been elucidated. In the present study, we found that not only the LDL receptor but also LDL receptor-related protein (LRP), both of which are cell surface native LDL-binding receptors, were down-regulated by the preincubation of the cells with cholesterol or LDL and up-regulated by lipoprotein-deficient serum. Moreover, 12/15-lipoxygenase-expressing cell-mediated LDL oxidation was decreased by the preincubation of the cells with LDL or cholesterol and increased by the preincubation with lipoprotein-deficient serum. Heparin-binding protein 44, an antagonist of the LDL receptor family, also suppressed the cell-mediated LDL oxidation in a dose-dependent manner. The cell-mediated LDL oxidation was dose-dependently blocked by an anti-LRP antibody but not by an anti-LDL receptor antibody. Furthermore, antisense oligodeoxyribonucleotides against LRP reduced the cell-mediated LDL oxidation under the conditions in which the expression of LRP was decreased. The results taken together indicate that LRP was involved essentially for the cell-mediated LDL oxidation by 12/15-lipoxygenase expressed in J774A.1 cells, suggesting an important pathophysiological role of this receptor-enzyme system as the initial trigger of the progression of atherosclerosis.
Collapse
Affiliation(s)
- W Xu
- Department of Molecular Pharmacology, Kanazawa University Graduate School of Medicine, Kanazawa 920-8640, Japan
| | | | | | | | | | | |
Collapse
|
44
|
Coffey MJ, Natarajan R, Chumley PH, Coles B, Thimmalapura PR, Nowell M, Kühn H, Lewis MJ, Freeman BA, O'Donnell VB. Catalytic consumption of nitric oxide by 12/15- lipoxygenase: inhibition of monocyte soluble guanylate cyclase activation. Proc Natl Acad Sci U S A 2001; 98:8006-11. [PMID: 11427723 PMCID: PMC35458 DOI: 10.1073/pnas.141136098] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2001] [Indexed: 01/24/2023] Open
Abstract
12/15-Lipoxygenase (LOX) activity is elevated in vascular diseases associated with impaired nitric oxide (( small middle dot)NO) bioactivity, such as hypertension and atherosclerosis. In this study, primary porcine monocytes expressing 12/15-LOX, rat A10 smooth muscle cells transfected with murine 12/15-LOX, and purified porcine 12/15-LOX all consumed *NO in the presence of lipid substrate. Suppression of LOX diene conjugation by *NO was also found, although the lipid product profile was unchanged. *NO consumption by porcine monocytes was inhibited by the LOX inhibitor, eicosatetraynoic acid. Rates of arachidonate (AA)- or linoleate (LA)-dependent *NO depletion by porcine monocytes (2.68 +/- 0.03 nmol x min(-1) x 10(6) cells(-1) and 1.5 +/- 0.25 nmol x min(-1) x 10(6) cells(-1), respectively) were several-fold greater than rates of *NO generation by cytokine-activated macrophages (0.1-0.2 nmol x min(-1) x 10(6) cells(-1)) and LA-dependent *NO consumption by primary porcine monocytes inhibited *NO activation of soluble guanylate cyclase. These data indicate that catalytic *NO consumption by 12/15-LOX modulates monocyte *NO signaling and suggest that LOXs may contribute to vascular dysfunction not only by the bioactivity of their lipid products, but also by serving as catalytic sinks for *NO in the vasculature.
Collapse
Affiliation(s)
- M J Coffey
- Wales Heart Research Institute, University of Wales College of Medicine, Cardiff CF14 4XN, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Moody JS, Kozak KR, Ji C, Marnett LJ. Selective oxygenation of the endocannabinoid 2-arachidonylglycerol by leukocyte-type 12-lipoxygenase. Biochemistry 2001; 40:861-6. [PMID: 11170406 DOI: 10.1021/bi002303b] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The endogenous cannabinoid system appears to serve vascular, neurological, immunological, and reproductive functions. The identification of 2-arachidonylglycerol (2-AG) as an endogenous ligand for the central (CB1) and peripheral (CB2) cannabinoid receptors has prompted interest in enzymes capable of modifying or inactivating this endocannabinoid. Porcine leukocyte 12-liopoxygenase (12-LOX) oxygenated 2-AG to the 2-glyceryl ester of 12(S)-hydroperoxyeicosa-5,8,10,14-tetraenoic acid (12-HPETE-G). The k(cat)/K(M) for oxygenation of 2-AG was 40% of the value for arachidonic acid. In contrast to the results with leukocyte 12-LOX, 2-AG oxygenation was not detected with platelet-type 12-LOX. Among a series of structurally related arachidonyl esters, 2-AG served as the preferential substrate for leukocyte 12-LOX. 12(S)-Hydroxyeicosa-5,8,10,14-tetraenoic acid glyceryl ester (12-HETE-G) was produced following addition of 2-AG to COS-7 cells transiently transfected with leukocyte 12-LOX. These results demonstrate that leukocyte-type 12-LOX efficiently oxidizes 2-AG in vitro and in intact cells, suggesting a role for this oxygenase in the endogenous cannabinoid system.
Collapse
Affiliation(s)
- J S Moody
- Department of Biochemistry, Vanderbilt-Ingram Cancer Center and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | | | |
Collapse
|
46
|
Abstract
Lipid peroxidation of membrane phospholipids can proceed both enzymatically via the mammalian 15-lipoxygenase-1 or the NADPH-cytochrome P-450 reductase system and non-enzymatically. In some cells, such as reticulocytes, this process is biologically programmed, whereas in the majority of biological systems lipid peroxidation is a deleterious process that has to be repaired via a deacylation-reacylation cycle of phospholipid metabolism. Several reports in the literature pinpoint a stimulation by lipid peroxidation of the activity of secretory phospholipase A(2)s (mainly pancreatic and snake venom enzymes) which was originally interpreted as a repair function. However, recent experiments from our laboratory have demonstrated that in mixtures of lipoxygenated and native phospholipids the former are not preferably cleaved by either secretory or cytosolic phospholipase A(2)s. We propose that the platelet activating factor (PAF) acetylhydrolases of type II, which cleave preferentially peroxidised or lipoxygenated phospholipids, are competent for the phospholipid repair, irrespective of their role in PAF metabolism. A corresponding role of Ca(2+)-independent phospholipase A(2), which has been proposed to be involved in phospholipid remodelling in biomembranes, has not been addressed so far. Direct and indirect 15-lipoxygenation of phospholipids in biomembranes modulates cell signalling by several ways. The stimulation of phospholipase A(2)-mediated arachidonic acid release may constitute an alternative route of the arachidonic acid cascade. Thus, 15-lipoxygenase-mediated oxygenation of membrane phospholipids and its interaction with phospholipase A(2)s may play a crucial role in the pathogenesis of diseases, such as bronchial asthma and atherosclerosis.
Collapse
Affiliation(s)
- S Nigam
- Eicosanoid Research Division, Department of Gynaecology, University Medical Centre Benjamin Franklin, Free University Berlin, D-12200, Berlin, Germany.
| | | |
Collapse
|
47
|
Structural identification of phosphatidylcholines having an oxidatively shortened linoleate residue generated through its oxygenation with soybean or rabbit reticulocyte lipoxygenase. J Lipid Res 2000. [DOI: 10.1016/s0022-2275(20)32038-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
48
|
Takahashi Y, Kawajiri H, Yoshimoto T, Hoshi N, Higashida H. 12-Lipoxygenase overexpression in rodent NG108-15 cells enhances membrane excitability by inhibiting M-type K+ channels. J Physiol 1999; 521 Pt 3:567-74. [PMID: 10601489 PMCID: PMC2269696 DOI: 10.1111/j.1469-7793.1999.00567.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
1. 12-Lipoxygenase produces 12-hydroperoxy acid from arachidonic acid released from membrane phospholipids. To elucidate the role of the enzyme in neuronal functions, mouse neuroblastoma x rat glioma hybrid NG108-15 cells were permanently transfected with the cDNA for human 12-lipoxygenase. 2. The number of action potentials evoked by depolarizing current steps in a current-clamp mode was strikingly increased in 12-lipoxygenase-expressing NG108-15 cells as compared with the wild-type cells which hardly had the enzyme activity. 3. In the transformed cells, the M-type voltage-dependent K+ current was significantly reduced with little or no change in other ion channel currents. 4. Treatment of the transformed cells with a 12-lipoxygenase inhibitor recovered the action potential frequency and the M-current amplitude to the control level. 5. These results indicate that 12-lipoxygenase and/or its metabolites target K+ channels and upregulate the membrane excitability, and thereby modulate neuronal signalling.
Collapse
Affiliation(s)
- Y Takahashi
- Department of Pharmacology, Kanazawa University School of Medicine, Japan.
| | | | | | | | | |
Collapse
|
49
|
Christmas P, Fox JW, Ursino SR, Soberman RJ. Differential localization of 5- and 15-lipoxygenases to the nuclear envelope in RAW macrophages. J Biol Chem 1999; 274:25594-8. [PMID: 10464294 DOI: 10.1074/jbc.274.36.25594] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Leukotriene formation is initiated in myeloid cells by an increase in intracellular calcium and translocation of 5-lipoxygenase from the cytoplasm to the nuclear envelope where it can utilize arachidonic acid. Monocyte- macrophages and eosinophils also express 15-lipoxygenase, which converts arachidonic acid to 15(S)-hydroxyeicosatetraenoic acid. Enhanced green fluorescent 5-lipoxygenase (5-LO) and 15-lipoxygenase (15-LO) fusion proteins were expressed in the cytoplasm of RAW 264.7 macrophages. Only 5-lipoxygenase translocated to the nuclear envelope after cell stimulation, suggesting that differential subcellular compartmentalization can regulate the generation of leukotrienes versus 15(S)-hydroxyeicosatetraenoic acid in cells that possess both lipoxygenases. A series of truncation mutants of 5-LO were created to identify putative targeting domains; none of these mutants localized to the nuclear envelope. The lack of targeting of 15-LO was then exploited to search for specific targeting motifs in 5-LO, by creating 5-LO/15-LO chimeric molecules. The only chimera that could sustain nuclear envelope translocation was one which involved replacement of the N-terminal 237 amino acids with the corresponding segment of 15-LO. Significantly, no discrete targeting domain could be identified in 5-LO, suggesting that sequences throughout the molecule are required for nuclear envelope localization.
Collapse
Affiliation(s)
- P Christmas
- Arthritis Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | | | | | | |
Collapse
|
50
|
Cyrus T, Witztum JL, Rader DJ, Tangirala R, Fazio S, Linton MF, Funk CD. Disruption of the 12/15-lipoxygenase gene diminishes atherosclerosis in apo E-deficient mice. J Clin Invest 1999; 103:1597-604. [PMID: 10359569 PMCID: PMC408369 DOI: 10.1172/jci5897] [Citation(s) in RCA: 410] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/1998] [Accepted: 05/03/1999] [Indexed: 12/15/2022] Open
Abstract
Atherosclerosis may be viewed as an inflammatory disease process that includes early oxidative modification of LDLs, leading to foam cell formation. This "oxidation hypothesis" has gained general acceptance in recent years, and evidence for the role of lipoxygenases in initiation of, or participation in, the oxidative process is accumulating. However, the relative contribution of macrophage-expressed lipoxygenases to atherogenesis in vivo remains unknown. Here, we provide in vivo evidence for the role of 12/15-lipoxygenase in atherogenesis and demonstrate diminished plasma IgG autoantibodies to oxidized LDL epitopes in 12/15-lipoxygenase knockout mice crossbred with atherosclerosis-prone apo E-deficient mice (apo E-/-/L-12LO-/-). In chow-fed 15-week-old apo E-/-/L-12LO-/- mice, the extent of lesions in whole-aorta en face preparations (198 +/- 60 microm2) was strongly reduced (P < 0.001, n = 12) when compared with 12/15-lipoxygenase-expressing controls (apo E-/-/L-12LO+/+), which showed areas of lipid deposition (15,700 +/- 2,688 microm2) in the lesser curvature of the aortic arch, branch points, and in the abdominal aorta. These results were observed despite cholesterol, triglyceride, and lipoprotein levels that were similar to those in apo E-deficient mice. Evidence for reduced lesion development was observed even at 1 year of age in apo E-/-/L-12LO-/- mice. The combined data indicate a role for 12/15-lipoxygenase in the pathogenesis of atherosclerosis and suggest that inhibition of this enzyme may decrease disease progression.
Collapse
Affiliation(s)
- T Cyrus
- Center for Experimental Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | |
Collapse
|