1
|
Silveira CB, Luque A, Haas AF, Roach TNF, George EE, Knowles B, Little M, Sullivan CJ, Varona NS, Wegley Kelly L, Brainard R, Rohwer F, Bailey B. Viral predation pressure on coral reefs. BMC Biol 2023; 21:77. [PMID: 37038111 PMCID: PMC10088212 DOI: 10.1186/s12915-023-01571-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 03/17/2023] [Indexed: 04/12/2023] Open
Abstract
BACKGROUND Predation pressure and herbivory exert cascading effects on coral reef health and stability. However, the extent of these cascading effects can vary considerably across space and time. This variability is likely a result of the complex interactions between coral reefs' biotic and abiotic dimensions. A major biological component that has been poorly integrated into the reefs' trophic studies is the microbial community, despite its role in coral death and bleaching susceptibility. Viruses that infect bacteria can control microbial densities and may positively affect coral health by controlling microbialization. We hypothesize that viral predation of bacteria has analogous effects to the top-down pressure of macroorganisms on the trophic structure and reef health. RESULTS Here, we investigated the relationships between live coral cover and viruses, bacteria, benthic algae, fish biomass, and water chemistry in 110 reefs spanning inhabited and uninhabited islands and atolls across the Pacific Ocean. Statistical learning showed that the abundance of turf algae, viruses, and bacteria, in that order, were the variables best predicting the variance in coral cover. While fish biomass was not a strong predictor of coral cover, the relationship between fish and corals became apparent when analyzed in the context of viral predation: high coral cover (> 50%) occurred on reefs with a combination of high predator fish biomass (sum of sharks and piscivores > 200 g m-2) and high virus-to-bacteria ratios (> 10), an indicator of viral predation pressure. However, these relationships were non-linear, with reefs at the higher and lower ends of the coral cover continuum displaying a narrow combination of abiotic and biotic variables, while reefs at intermediate coral cover showed a wider range of parameter combinations. CONCLUSIONS The results presented here support the hypothesis that viral predation of bacteria is associated with high coral cover and, thus, coral health and stability. We propose that combined predation pressures from fishes and viruses control energy fluxes, inhibiting the detrimental accumulation of ecosystem energy in the microbial food web.
Collapse
Affiliation(s)
- Cynthia B Silveira
- Department of Biology, University of Miami, Coral Gables, FL, 33146, USA.
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, 33149, USA.
| | - Antoni Luque
- Viral Information Institute, San Diego State University, San Diego, CA, 92182, USA
- Computational Science Research Center, San Diego State University, San Diego, CA, 92182, USA
- Department of Mathematics and Statistics, San Diego State University, San Diego, CA, 92182, USA
| | - Andreas F Haas
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Ty N F Roach
- Viral Information Institute, San Diego State University, San Diego, CA, 92182, USA
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, HI, 96744, USA
- Department of Biology, San Diego State University, San Diego, CA, 92182, USA
| | - Emma E George
- Botany Department, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Ben Knowles
- Department of Ecology and Evolutionary Biology, UC Los Angeles, Los Angeles, CA, 90095, USA
| | - Mark Little
- Viral Information Institute, San Diego State University, San Diego, CA, 92182, USA
- Department of Biology, San Diego State University, San Diego, CA, 92182, USA
| | | | - Natascha S Varona
- Department of Biology, University of Miami, Coral Gables, FL, 33146, USA
| | - Linda Wegley Kelly
- Scripps Institution of Oceanography, UC San Diego, La Jolla, CA, 92037, USA
| | - Russel Brainard
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
- Pacific Islands Fisheries Science Center, National Oceanic & Atmospheric Administration, Honolulu, HI, 96818, USA
| | - Forest Rohwer
- Viral Information Institute, San Diego State University, San Diego, CA, 92182, USA
- Department of Biology, San Diego State University, San Diego, CA, 92182, USA
| | - Barbara Bailey
- Viral Information Institute, San Diego State University, San Diego, CA, 92182, USA.
- Department of Mathematics and Statistics, San Diego State University, San Diego, CA, 92182, USA.
| |
Collapse
|
2
|
Fish community structure and dynamics are insufficient to mediate coral resilience. Nat Ecol Evol 2022; 6:1700-1709. [PMID: 36192541 DOI: 10.1038/s41559-022-01882-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 08/15/2022] [Indexed: 11/08/2022]
Abstract
Coral reefs are being impacted by myriad stressors leading to drastic changes to their structure and function. Fishes play essential roles in driving ecosystem processes on coral reefs but the extent to which these processes are emergent at temporal or ecosystem scales or otherwise masked by other drivers (for example, climatic events and crown-of-thorns starfish outbreaks) is poorly understood. Using time series data on fish community composition and coral and macroalgae percentage cover between 2006 and 2017 from 57 sites around Mo'orea, Polynesia, we found that fish community diversity predicts temporal stability in fish biomass but did not translate to temporal stability of coral cover. Furthermore, we found limited evidence of directional influence of fish on coral dynamics at temporal and ecosystem scales and no evidence that fish mediate coral recovery rate from disturbance. Our findings suggest that coral reef fisheries management will benefit from maintaining fish diversity but that this level of management is unlikely to strongly mediate coral loss or recovery over time.
Collapse
|
3
|
Edmunds PJ, Lasker HR. Portfolio effects and functional redundancy contribute to the maintenance of octocoral forests on Caribbean reefs. Sci Rep 2022; 12:7106. [PMID: 35501329 PMCID: PMC9061744 DOI: 10.1038/s41598-022-10478-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 03/29/2022] [Indexed: 11/23/2022] Open
Abstract
Declines in abundance of scleractinian corals on shallow Caribbean reefs have left many reefs dominated by forests of arborescent octocorals. The ecological mechanisms favoring their persistence require exploration. We quantified octocoral communities from 2014 to 2019 at two sites in St. John, US Virgin Islands, and evaluated their dynamics to assess whether portfolio effects might contribute to their resilience. Octocorals were identified to species, or species complexes, and their abundances and heights were measured, with height2 serving as a biomass proxy. Annual variation in abundance was asynchronous among species, except when they responded in similar ways to hurricanes in September 2017. Multivariate changes in octocoral communities, viewed in 2-dimensional ordinations, were similar between sites, but analyses based on density differed from those based on the biomass proxy. On the density scale, variation in the community composed of all octocoral species was indistinguishable from that quantified with subsets of 6–10 of the octocoral species at one of the two sites, identifying structural redundancy in the response of the community. Conservation of the relative colony size-frequency structure, combined with temporal changes in the species represented by the tallest colonies, suggests that portfolio effects and functional redundancy stabilize the vertical structure and canopy in these tropical octocoral forests.
Collapse
|
4
|
Emerging insights on effects of sharks and other top predators on coral reefs. Emerg Top Life Sci 2022; 6:57-65. [PMID: 35258079 PMCID: PMC9023017 DOI: 10.1042/etls20210238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 12/23/2021] [Accepted: 01/17/2022] [Indexed: 12/04/2022]
Abstract
Predation is ubiquitous on coral reefs. Among the most charismatic group of reef predators are the top predatory fishes, including sharks and large-bodied bony fishes. Despite the threat presented by top predators, data describing their realized effects on reef community structure and functioning are challenging to produce. Many innovative studies have capitalized on natural experimental conditions to explore predator effects on reefs. Gradients in predator density have been created by spatial patterning of fisheries management. Evidence of prey release has been observed across some reefs, namely that potential prey increase in density when predator density is reduced. While such studies search for evidence of prey release among broad groups or guilds of potential prey, a subset of studies have sought evidence of release at finer population levels. We find that some groups of fishes are particularly vulnerable to the effects of predators and more able to capitalize demographically when predator density is reduced. For example, territorial damselfish appear to realize reliable population expansion with the reduction in predator density, likely because their aggressive, defensive behavior makes them distinctly vulnerable to predation. Relatedly, individual fishes that suffer from debilitating conditions, such as heavy parasite loads, appear to realize relatively stronger levels of prey release with reduced predator density. Studying the effects of predators on coral reefs remains a timely pursuit, and we argue that efforts to focus on the specifics of vulnerability to predation among potential prey and other context-specific dimensions of mortality hold promise to expand our knowledge.
Collapse
|
5
|
Effects of the artificial reef and flow field environment on the habitat selection behavior of Sebastes schlegelii juveniles. Appl Anim Behav Sci 2021. [DOI: 10.1016/j.applanim.2021.105492] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
6
|
A doubling of stony coral cover on shallow forereefs at Carrie Bow Cay, Belize from 2014 to 2019. Sci Rep 2021; 11:19185. [PMID: 34584122 PMCID: PMC8478911 DOI: 10.1038/s41598-021-96799-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 07/28/2021] [Indexed: 11/28/2022] Open
Abstract
To better understand the decline of one of earth’s most biodiverse habitats, coral reefs, many survey programs employ regular photographs of the benthos. An emerging challenge is the time required to annotate the large volume of digital imagery generated by these surveys. Here, we leverage existing machine-learning tools (CoralNet) and develop new fit-to-purpose programs to process and score benthic photoquadrats using five years of data from the Smithsonian MarineGEO Network’s biodiversity monitoring program at Carrie Bow Cay, Belize. Our analysis shows that scleractinian coral cover on forereef sites (at depths of 3–10 m) along our surveyed transects increased significantly from 6 to 13% during this period. More modest changes in macroalgae, turf algae, and sponge cover were also observed. Community-wide analysis confirmed a significant shift in benthic structure, and follow-up in situ surveys of coral demographics in 2019 revealed that the emerging coral communities are dominated by fast-recruiting and growing coral species belonging to the genera Agaricia and Porites. While the positive trajectory reported here is promising, Belizean reefs face persistent challenges related to overfishing and climate change. Open-source computational toolkits offer promise for increasing the efficiency of reef monitoring, and therefore our ability to assess the future of coral reefs in the face of rapid environmental change.
Collapse
|
7
|
Cheung P, Nozawa Y, Miki T. Ecosystem engineering structures facilitate ecological resilience: A coral reef model. Ecol Res 2021. [DOI: 10.1111/1440-1703.12230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Pak‐Yin Cheung
- Institute of Oceanography National Taiwan University Taipei Taiwan
- Biodiversity Research Center Academia Sinica Taipei Taiwan
| | - Yoko Nozawa
- Biodiversity Research Center Academia Sinica Taipei Taiwan
| | - Takeshi Miki
- Institute of Oceanography National Taiwan University Taipei Taiwan
- Research Center for Environmental Changes Academia Sinica Taipei Taiwan
- Ecology and Environmental Engineering Course, Faculty of Advanced Science and Technology Ryukoku University Otsu Shiga Japan
| |
Collapse
|
8
|
Parravicini V, Casey JM, Schiettekatte NMD, Brandl SJ, Pozas-Schacre C, Carlot J, Edgar GJ, Graham NAJ, Harmelin-Vivien M, Kulbicki M, Strona G, Stuart-Smith RD. Delineating reef fish trophic guilds with global gut content data synthesis and phylogeny. PLoS Biol 2020; 18:e3000702. [PMID: 33370276 PMCID: PMC7793298 DOI: 10.1371/journal.pbio.3000702] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 01/08/2021] [Accepted: 12/03/2020] [Indexed: 11/19/2022] Open
Abstract
Understanding species' roles in food webs requires an accurate assessment of their trophic niche. However, it is challenging to delineate potential trophic interactions across an ecosystem, and a paucity of empirical information often leads to inconsistent definitions of trophic guilds based on expert opinion, especially when applied to hyperdiverse ecosystems. Using coral reef fishes as a model group, we show that experts disagree on the assignment of broad trophic guilds for more than 20% of species, which hampers comparability across studies. Here, we propose a quantitative, unbiased, and reproducible approach to define trophic guilds and apply recent advances in machine learning to predict probabilities of pairwise trophic interactions with high accuracy. We synthesize data from community-wide gut content analyses of tropical coral reef fishes worldwide, resulting in diet information from 13,961 individuals belonging to 615 reef fish. We then use network analysis to identify 8 trophic guilds and Bayesian phylogenetic modeling to show that trophic guilds can be predicted based on phylogeny and maximum body size. Finally, we use machine learning to test whether pairwise trophic interactions can be predicted with accuracy. Our models achieved a misclassification error of less than 5%, indicating that our approach results in a quantitative and reproducible trophic categorization scheme, as well as high-resolution probabilities of trophic interactions. By applying our framework to the most diverse vertebrate consumer group, we show that it can be applied to other organismal groups to advance reproducibility in trait-based ecology. Our work thus provides a viable approach to account for the complexity of predator-prey interactions in highly diverse ecosystems.
Collapse
Affiliation(s)
- Valeriano Parravicini
- PSL Université Paris: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, Perpignan, France
- Laboratoire d’Excellence “CORAIL,” Perpignan, France
| | - Jordan M. Casey
- PSL Université Paris: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, Perpignan, France
- Laboratoire d’Excellence “CORAIL,” Perpignan, France
- Department of Marine Science, University of Texas at Austin, Marine Science Institute, Port Aransas, Texas, United States of America
| | - Nina M. D. Schiettekatte
- PSL Université Paris: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, Perpignan, France
- Laboratoire d’Excellence “CORAIL,” Perpignan, France
| | - Simon J. Brandl
- PSL Université Paris: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, Perpignan, France
- Laboratoire d’Excellence “CORAIL,” Perpignan, France
- Department of Marine Science, University of Texas at Austin, Marine Science Institute, Port Aransas, Texas, United States of America
- Centre for the Synthesis and Analysis of Biodiversity (CESAB), Institut Bouisson Bertrand, Montpellier, France
| | - Chloé Pozas-Schacre
- PSL Université Paris: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, Perpignan, France
- Laboratoire d’Excellence “CORAIL,” Perpignan, France
| | - Jérémy Carlot
- PSL Université Paris: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, Perpignan, France
- Laboratoire d’Excellence “CORAIL,” Perpignan, France
| | - Graham J. Edgar
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | | | | | - Michel Kulbicki
- UMR Entropie, LabEx Corail, IRD, Université de Perpignan, Perpignan, France
| | - Giovanni Strona
- University of Helsinki, Department of Bioscience, Helsinki, Finland
| | - Rick D. Stuart-Smith
- Centre for the Synthesis and Analysis of Biodiversity (CESAB), Institut Bouisson Bertrand, Montpellier, France
| |
Collapse
|
9
|
Precht WF, Aronson RB, Gardner TA, Gill JA, Hawkins JP, Hernández-Delgado EA, Jaap WC, McClanahan TR, McField MD, Murdoch TJT, Nugues MM, Roberts CM, Schelten CK, Watkinson AR, Côté IM. The timing and causality of ecological shifts on Caribbean reefs. ADVANCES IN MARINE BIOLOGY 2020; 87:331-360. [PMID: 33293016 DOI: 10.1016/bs.amb.2020.08.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Caribbean reefs have experienced unprecedented changes in the past four decades. Of great concern is the perceived widespread shift from coral to macroalgal dominance and the question of whether it represents a new, stable equilibrium for coral-reef communities. The primary causes of the shift-grazing pressure (top-down), nutrient loading (bottom-up) or direct coral mortality (side-in)-still remain somewhat controversial in the coral-reef literature. We have attempted to tease out the relative importance of each of these causes. Four insights emerge from our analysis of an early regional dataset of information on the benthic composition of Caribbean reefs spanning the years 1977-2001. First, although three-quarters of reef sites have experienced coral declines concomitant with macroalgal increases, fewer than 10% of the more than 200 sites studied were dominated by macroalgae in 2001, by even the most conservative definition of dominance. Using relative dominance as the threshold, a total of 49 coral-to-macroalgae shifts were detected. This total represents ~35% of all sites that were dominated by coral at the start of their monitoring periods. Four shifts (8.2%) occurred because of coral loss with no change in macroalgal cover, 15 (30.6%) occurred because of macroalgal gain without coral loss, and 30 (61.2%) occurred owing to concomitant coral decline and macroalgal increase. Second, the timing of shifts at the regional scale is most consistent with the side-in model of reef degradation, which invokes coral mortality as a precursor to macroalgal takeover, because more shifts occurred after regional coral-mortality events than expected by chance. Third, instantaneous observations taken at the start and end of the time-series for individual sites showed these reefs existed along a continuum of coral and macroalgal cover. The continuous, broadly negative relationship between coral and macroalgal cover suggests that in some cases coral-to-macroalgae phase shifts may be reversed by removing sources of perturbation or restoring critical components such as the herbivorous sea urchin Diadema antillarum to the system. The five instances in which macroalgal dominance was reversed corroborate the conclusion that macroalgal dominance is not a stable, alternative community state as has been commonly assumed. Fourth, the fact that the loss in regional coral cover and concomitant changes to the benthic community are related to punctuated, discrete events with known causes (i.e. coral disease and bleaching), lends credence to the hypothesis that coral reefs of the Caribbean have been under assault from climate-change-related maladies since the 1970s.
Collapse
Affiliation(s)
- William F Precht
- Marine and Coastal Programs, Dial Cordy and Associates, Miami, FL, United States.
| | - Richard B Aronson
- Department of Ocean Engineering and Marine Sciences, Florida Institute of Technology, Melbourne, FL, United States
| | | | - Jennifer A Gill
- Centre for Ecology, Evolution and Conservation, School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Julie P Hawkins
- Environment Department, University of York, York, United Kingdom
| | - Edwin A Hernández-Delgado
- Department of Environmental Sciences and Center for Applied Tropical Ecology and Conservation, Applied Marine Ecology Laboratory, University of Puerto Rico, San Juan, Puerto Rico
| | - Walter C Jaap
- Lithophyte Research LLC, Saint Petersburg, FL, United States
| | - Tim R McClanahan
- Wildlife Conservation Society, Marine Programs, Bronx, NY, United States
| | | | | | - Maggy M Nugues
- EPHE, Laboratoire d'Excellence "CORAIL", PSL Research University, UPVD, CNRS, USR, Perpignan, France
| | - Callum M Roberts
- Environment Department, University of York, York, United Kingdom
| | | | - Andrew R Watkinson
- Living with Environmental Change, School of Environmental Sciences, University of East Anglia, Norwich, United Kingdom
| | - Isabelle M Côté
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
10
|
Bradley P, Jessup B, Pittman SJ, Jeffrey CFG, Ault JS, Carrubba L, Lilyestrom C, Appeldoorn RS, Schärer MT, Walker BK, McField M, Santavy DL, Smith TB, García-Moliner G, Smith SG, Huertas E, Gerritsen J, Oliver LM, Horstmann C, Jackson SK. Development of a reef fish biological condition gradient model with quantitative decision rules for the protection and restoration of coral reef ecosystems. MARINE POLLUTION BULLETIN 2020; 159:111387. [PMID: 32827871 PMCID: PMC8717739 DOI: 10.1016/j.marpolbul.2020.111387] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 06/11/2020] [Accepted: 06/16/2020] [Indexed: 05/09/2023]
Abstract
Coral reef ecosystems are declining due to multiple interacting stressors. A bioassessment framework focused on stressor-response associations was developed to help organize and communicate complex ecological information to support coral reef conservation. This study applied the Biological Condition Gradient (BCG), initially developed for freshwater ecosystems, to fish assemblages of U.S. Caribbean coral reef ecosystems. The reef fish BCG describes how biological conditions changed incrementally along a gradient of increasing anthropogenic stress. Coupled with physical and chemical water quality data, the BGC forms a scientifically defensible basis to prioritize, protect and restore water bodies containing coral reefs. Through an iterative process, scientists from across the U.S. Caribbean used fishery-independent survey data and expert knowledge to develop quantitative decision rules to describe six levels of coral reef ecosystem condition. The resultant reef fish BCG provides an effective tool for identifying healthy and degraded coral reef ecosystems and has potential for global application.
Collapse
Affiliation(s)
| | | | | | - Christopher F G Jeffrey
- CSS-Inc., Fairfax, VA, USA; Under Contract to NOAA, National Centers for Coastal Ocean Science, Marine Spatial Ecology Division, Biogeography Branch, Silver Spring, MD, USA
| | - Jerald S Ault
- University of Miami, Rosenstiel School of Marine and Atmospheric Science, Miami, FL, USA
| | | | - Craig Lilyestrom
- Puerto Rico Department of Natural and Environmental Resources, San Juan, PR, USA
| | | | | | - Brian K Walker
- Nova Southeastern University, Halmos College of Natural Sciences and Oceanography, Fort Lauderdale, FL, USA
| | | | - Deborah L Santavy
- U.S. Environmental Protection Agency (US EPA), Office of Research and Development (ORD), Center for Environmental, Measurement and Modeling (CEMM), Gulf Ecosystem Measurement and Modeling Division (GEMMD), Gulf Breeze, FL, USA.
| | - Tyler B Smith
- University of the Virgin Islands, St. Thomas, VI, USA
| | | | - Steven G Smith
- University of Miami, Rosenstiel School of Marine and Atmospheric Science, Miami, FL, USA
| | - Evelyn Huertas
- U.S. Environmental Protection Agency, Region 2, Guaynabo, PR, USA
| | | | - Leah M Oliver
- U.S. Environmental Protection Agency (US EPA), Office of Research and Development (ORD), Center for Environmental, Measurement and Modeling (CEMM), Gulf Ecosystem Measurement and Modeling Division (GEMMD), Gulf Breeze, FL, USA
| | - Christina Horstmann
- U.S. Environmental Protection Agency (US EPA), Office of Research and Development (ORD), Center for Environmental, Measurement and Modeling (CEMM), Gulf Ecosystem Measurement and Modeling Division (GEMMD), Gulf Breeze, FL, USA; Oak Ridge Institute for Science Education Fellow, US EPA, ORD, CEMM, GEMMD, Gulf Breeze, FL, USA
| | - Susan K Jackson
- U.S. Environmental Protection Agency, Office of Water, Washington, DC, USA
| |
Collapse
|
11
|
Seraphim MJ, Sloman KA, Alexander ME, Janetski N, Jompa J, Ambo-Rappe R, Snellgrove D, Mars F, Harborne AR. Interactions between coral restoration and fish assemblages: implications for reef management. JOURNAL OF FISH BIOLOGY 2020; 97:633-655. [PMID: 32564370 DOI: 10.1111/jfb.14440] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 06/01/2020] [Accepted: 06/18/2020] [Indexed: 06/11/2023]
Abstract
Corals create complex reef structures that provide both habitat and food for many fish species. Because of numerous natural and anthropogenic threats, many coral reefs are currently being degraded, endangering the fish assemblages they support. Coral reef restoration, an active ecological management tool, may help reverse some of the current trends in reef degradation through the transplantation of stony corals. Although restoration techniques have been extensively reviewed in relation to coral survival, our understanding of the effects of adding live coral cover and complexity on fishes is in its infancy with a lack of scientifically validated research. This study reviews the limited data on reef restoration and fish assemblages, and complements this with the more extensive understanding of complex interactions between natural reefs and fishes and how this might inform restoration efforts. It also discusses which key fish species or functional groups may promote, facilitate or inhibit restoration efforts and, in turn, how restoration efforts can be optimised to enhance coral fish assemblages. By highlighting critical knowledge gaps in relation to fishes and restoration interactions, the study aims to stimulate research into the role of reef fishes in restoration projects. A greater understanding of the functional roles of reef fishes would also help inform whether restoration projects can return fish assemblages to their natural compositions or whether alternative species compositions develop, and over what timeframe. Although alleviation of local and global reef stressors remains a priority, reef restoration is an important tool; an increased understanding of the interactions between replanted corals and the fishes they support is critical for ensuring its success for people and nature.
Collapse
Affiliation(s)
- Marie J Seraphim
- School of Health and Life Sciences, University of the West of Scotland, Paisley, UK
| | - Katherine A Sloman
- School of Health and Life Sciences, University of the West of Scotland, Paisley, UK
| | - Mhairi E Alexander
- School of Health and Life Sciences, University of the West of Scotland, Paisley, UK
| | | | - Jamaluddin Jompa
- Faculty of Marine Science and Fisheries, Hasanuddin University, Makassar, Indonesia
| | - Rohani Ambo-Rappe
- Faculty of Marine Science and Fisheries, Hasanuddin University, Makassar, Indonesia
| | - Donna Snellgrove
- Waltham Petcare Science Institute, Melton Mowbray, Leicestershire, UK
| | | | - Alastair R Harborne
- Institute of Environment and Department of Biological Sciences, Florida International University, North Miami, Florida, USA
| |
Collapse
|
12
|
Allgeier JE, Wenger S, Layman CA. Taxonomic identity best explains variation in body nutrient stoichiometry in a diverse marine animal community. Sci Rep 2020; 10:13718. [PMID: 32792497 PMCID: PMC7426267 DOI: 10.1038/s41598-020-67881-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 06/02/2020] [Indexed: 11/24/2022] Open
Abstract
Animal-mediated nutrient dynamics are critical processes in ecosystems. Previous research has found animal-mediated nutrient supply (excretion) to be highly predictable based on allometric scaling, but similar efforts to find universal predictive relationships for an organism’s body nutrient content have been inconclusive. We use a large dataset from a diverse tropical marine community to test three frameworks for predicting body nutrient content. We show that body nutrient content does not follow allometric scaling laws and that it is not well explained by trophic status. Instead, we find strong support for taxonomic identity (particularly at the family level) as a predictor of body nutrient content, indicating that evolutionary history plays a crucial role in determining an organism’s composition. We further find that nutrients are “stoichiometrically linked” (e.g., %C predicts %N), but that the direction of these relationships does not always conform to expectations, especially for invertebrates. Our findings demonstrate that taxonomic identity, not trophic status or body size, is the best baseline from which to predict organismal body nutrient content.
Collapse
Affiliation(s)
- Jacob E Allgeier
- Department of Ecology, and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA.
| | - Seth Wenger
- Odum School of Ecology, University of Georgia, Athens, GA, USA
| | - Craig A Layman
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
13
|
Madin EMP, Madin JS, Harmer AMT, Barrett NS, Booth DJ, Caley MJ, Cheal AJ, Edgar GJ, Emslie MJ, Gaines SD, Sweatman HPA. Latitude and protection affect decadal trends in reef trophic structure over a continental scale. Ecol Evol 2020; 10:6954-6966. [PMID: 32760504 PMCID: PMC7391320 DOI: 10.1002/ece3.6347] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 04/17/2020] [Indexed: 01/02/2023] Open
Abstract
The relative roles of top-down (consumer-driven) and bottom-up (resource-driven) forcing in exploited marine ecosystems have been much debated. Examples from a variety of marine systems of exploitation-induced, top-down trophic forcing have led to a general view that human-induced predator perturbations can disrupt entire marine food webs, yet other studies that have found no such evidence provide a counterpoint. Though evidence continues to emerge, an unresolved debate exists regarding both the relative roles of top-down versus bottom-up forcing and the capacity of human exploitation to instigate top-down, community-level effects. Using time-series data for 104 reef communities spanning tropical to temperate Australia from 1992 to 2013, we aimed to quantify relationships among long-term trophic group population density trends, latitude, and exploitation status over a continental-scale biogeographic range. Specifically, we amalgamated two long-term monitoring databases of marine community dynamics to test for significant positive or negative trends in density of each of three key trophic levels (predators, herbivores, and algae) across the entire time series at each of the 104 locations. We found that trophic control tended toward bottom-up driven in tropical systems and top-down driven in temperate systems. Further, alternating long-term population trends across multiple trophic levels (a method of identifying trophic cascades), presumably due to top-down trophic forcing, occurred in roughly fifteen percent of locations where the prerequisite significant predator trends occurred. Such alternating trophic trends were significantly more likely to occur at locations with increasing predator densities over time. Within these locations, we found a marked latitudinal gradient in the prevalence of long-term, alternating trophic group trends, from rare in the tropics (<5% of cases) to relatively common in temperate areas (~45%). Lastly, the strongest trends in predator and algal density occurred in older no-take marine reserves; however, exploitation status did not affect the likelihood of alternating long-term trophic group trends occurring. Our data suggest that the type and degree of trophic forcing in this system are likely related to one or more covariates of latitude, and that ecosystem resiliency to top-down control does not universally vary in this system based on exploitation level.
Collapse
Affiliation(s)
- Elizabeth M. P. Madin
- Department of Biological SciencesMacquarie UniversitySydneyNSWAustralia
- School of Life SciencesUniversity of Technology SydneySydneyNSWAustralia
- Hawai'i Institute of Marine BiologyUniversity of Hawai'iKane'oheHIUSA
| | - Joshua S. Madin
- Department of Biological SciencesMacquarie UniversitySydneyNSWAustralia
- Hawai'i Institute of Marine BiologyUniversity of Hawai'iKane'oheHIUSA
| | - Aaron M. T. Harmer
- Department of Biological SciencesMacquarie UniversitySydneyNSWAustralia
- School of Natural and Computational SciencesMassey UniversityAucklandNew Zealand
| | - Neville S. Barrett
- Institute for Marine and Antarctic StudiesUniversity of TasmaniaHobartTASAustralia
| | - David J. Booth
- School of Life SciencesUniversity of Technology SydneySydneyNSWAustralia
| | - M. Julian Caley
- School of Mathematical SciencesQueensland University of TechnologyBrisbaneQLDAustralia
- Australian Research Council Centre of Excellence for Mathematical and Statistical FrontiersThe University of MelbourneParkvilleVICAustralia
| | | | - Graham J. Edgar
- Institute for Marine and Antarctic StudiesUniversity of TasmaniaHobartTASAustralia
| | | | - Steven D. Gaines
- Bren School of Environmental Science and ManagementUniversity of CaliforniaSanta BarbaraCAUSA
| | | |
Collapse
|
14
|
Duprey NN, Wang TX, Kim T, Cybulski JD, Vonhof HB, Crutzen PJ, Haug GH, Sigman DM, Martínez-García A, Baker DM. Megacity development and the demise of coastal coral communities: Evidence from coral skeleton δ 15 N records in the Pearl River estuary. GLOBAL CHANGE BIOLOGY 2020; 26:1338-1353. [PMID: 31732999 DOI: 10.1111/gcb.14923] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 10/24/2019] [Accepted: 10/24/2019] [Indexed: 06/10/2023]
Abstract
Historical coral skeleton (CS) δ18 O and δ15 N records were produced from samples recovered from sedimentary deposits, held in natural history museum collections, and cored into modern coral heads. These records were used to assess the influence of global warming and regional eutrophication, respectively, on the decline of coastal coral communities following the development of the Pearl River Delta (PRD) megacity, China. We find that, until 2007, ocean warming was not a major threat to coral communities in the Pearl River estuary; instead, nitrogen (N) inputs dominated impacts. The high but stable CS-δ15 N values (9‰-12‰ vs. air) observed from the mid-Holocene until 1980 indicate that soil and stream denitrification reduced and modulated the hydrologic inputs of N, blunting the rise in coastal N sources during the early phase of the Pearl River estuary urbanization. However, an unprecedented CS-δ15 N peak was observed from 1987 to 1993 (>13‰ vs. air), concomitant to an increase of NH4+ concentration, consistent with the rapid Pearl River estuary urbanization as the main cause for this eutrophication event. We suggest that widespread discharge of domestic sewage entered directly into the estuary, preventing removal by natural denitrification hotspots. We argue that this event caused the dramatic decline of the Pearl River estuary coral communities reported from 1980 to 2000. Subsequently, the coral record shows that the implementation of improved wastewater management policies succeeded in bringing down both CS-δ15 N and NH4+ concentrations in the early 2000s. This study points to the potential importance of eutrophication over ocean warming in coral decline along urbanized coastlines and in particular in the vicinity of megacities.
Collapse
Affiliation(s)
- Nicolas N Duprey
- Max Planck Institute for Chemistry, Otto Hahn Institute, Mainz, Germany
- The Swire Institute of Marine Science, The University of Hong Kong, Shek O, HKSAR
- School of Biological Sciences, The University of Hong Kong, Pok Fu Lam, HKSAR
| | - Tony X Wang
- Department of Geosciences, Princeton University, Princeton, NJ, USA
- Department of Earth and Environmental Sciences, Boston College, Chestnut Hill, MA, USA
| | - Taihun Kim
- The Swire Institute of Marine Science, The University of Hong Kong, Shek O, HKSAR
- School of Biological Sciences, The University of Hong Kong, Pok Fu Lam, HKSAR
| | - Jonathan D Cybulski
- The Swire Institute of Marine Science, The University of Hong Kong, Shek O, HKSAR
- School of Biological Sciences, The University of Hong Kong, Pok Fu Lam, HKSAR
| | - Hubert B Vonhof
- Max Planck Institute for Chemistry, Otto Hahn Institute, Mainz, Germany
| | - Paul J Crutzen
- Max Planck Institute for Chemistry, Otto Hahn Institute, Mainz, Germany
| | - Gerald H Haug
- Max Planck Institute for Chemistry, Otto Hahn Institute, Mainz, Germany
| | - Daniel M Sigman
- Department of Geosciences, Princeton University, Princeton, NJ, USA
| | | | - David M Baker
- The Swire Institute of Marine Science, The University of Hong Kong, Shek O, HKSAR
- School of Biological Sciences, The University of Hong Kong, Pok Fu Lam, HKSAR
| |
Collapse
|
15
|
Davis KJ, Vianna GMS, Meeuwig JJ, Meekan MG, Pannell DJ. Estimating the economic benefits and costs of highly‐protected marine protected areas. Ecosphere 2019. [DOI: 10.1002/ecs2.2879] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Katrina J. Davis
- Centre for Environmental Economics and Policy UWA School of Agriculture and Environment The University of Western Australia 35 Stirling Highway Crawley Western Australia 6009 Australia
| | - Gabriel M. S. Vianna
- Australian Institute of Marine Science UWA Oceans Institute 35 Stirling Highway Crawley Western Australia 6009 Australia
- School of Biological Sciences The University of Western Australia 35 Stirling Highway Crawley Western Australia 6009 Australia
| | - Jessica J. Meeuwig
- School of Biological Sciences The University of Western Australia 35 Stirling Highway Crawley Western Australia 6009 Australia
| | - Mark G. Meekan
- Australian Institute of Marine Science UWA Oceans Institute 35 Stirling Highway Crawley Western Australia 6009 Australia
| | - David J. Pannell
- Centre for Environmental Economics and Policy UWA School of Agriculture and Environment The University of Western Australia 35 Stirling Highway Crawley Western Australia 6009 Australia
| |
Collapse
|
16
|
Schweitzer CC, Stevens BG. The relationship between fish abundance and benthic community structure on artificial reefs in the Mid-Atlantic Bight, and the importance of sea whip corals Leptogorgia virgulata. PeerJ 2019; 7:e7277. [PMID: 31341738 PMCID: PMC6640625 DOI: 10.7717/peerj.7277] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 06/11/2019] [Indexed: 11/23/2022] Open
Abstract
Autogenic engineers (i.e., biogenic structure) add to habitat complexity by altering the environment by their own physical structures. The presence of autogenic engineers is correlated with increases in species abundance and biodiversity. Biogenic structural communities off the coast of Delaware, Maryland, and Virginia (Delmarva) are comprised of multiple species including boring sponge Cliona celata, various hydroids (i.e., Tubularia sp., Obelia sp., Campanular sp.), northern stone coral Astrangia poculata, sea whips Leptogorgia virgulata, and blue mussels Mytilus edulis. Sea whips are soft corals that provide the majority of vertical height to benthic structure off the coast of the Delmarva peninsula. The mid-Atlantic bight is inhabited by several economically valuable fishes; however, data regarding habitat composition, habitat quality, and fish abundance are scarce. We collected quadrat and sea whip images from 12 artificial reef sites (i.e., shipwrecks) ranging from 10 to 24 m depth to determine proportional coverage of biogenic structures and to assess habitat health, respectively. Underwater video surveys were used to estimate fish abundances on the 12 study sites and determine if fish abundance was related to biogenic coverage and habitat health. Our results showed that higher fish abundance was significantly correlated with higher proportional sea whip coral coverage, but showed no significant relationship to other biogenic structure. Assessment of sea whip condition (as a damage index) showed that sea whip corals on artificial reefs off the Delmarva coast exhibited minor signs of degradation that did not differ significantly among study sites.
Collapse
Affiliation(s)
- Cara C Schweitzer
- Department of Natural Sciences, University of Maryland Eastern Shore, Princess Anne, MD, United States of America
| | - Bradley G Stevens
- Department of Natural Sciences, University of Maryland Eastern Shore, Princess Anne, MD, United States of America
| |
Collapse
|
17
|
Bruno JF, Côté IM, Toth LT. Climate Change, Coral Loss, and the Curious Case of the Parrotfish Paradigm: Why Don't Marine Protected Areas Improve Reef Resilience? ANNUAL REVIEW OF MARINE SCIENCE 2019; 11:307-334. [PMID: 30606097 DOI: 10.1146/annurev-marine-010318-095300] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Scientists have advocated for local interventions, such as creating marine protected areas and implementing fishery restrictions, as ways to mitigate local stressors to limit the effects of climate change on reef-building corals. However, in a literature review, we find little empirical support for the notion of managed resilience. We outline some reasons for why marine protected areas and the protection of herbivorous fish (especially parrotfish) have had little effect on coral resilience. One key explanation is that the impacts of local stressors (e.g., pollution and fishing) are often swamped by the much greater effect of ocean warming on corals. Another is the sheer complexity (including numerous context dependencies) of the five cascading links assumed by the managed-resilience hypothesis. If reefs cannot be saved by local actions alone, then it is time to face reef degradation head-on, by directly addressing anthropogenic climate change-the root cause of global coral decline.
Collapse
Affiliation(s)
- John F Bruno
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599-3280, USA;
| | - Isabelle M Côté
- Earth to Ocean Research Group, Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Lauren T Toth
- St. Petersburg Coastal and Marine Science Center, US Geological Survey, St. Petersburg, Florida 33701, USA
| |
Collapse
|
18
|
Francis F, Filbee-Dexter K, Yan H, Côté I. Invertebrate herbivores: Overlooked allies in the recovery of degraded coral reefs? Glob Ecol Conserv 2019. [DOI: 10.1016/j.gecco.2019.e00593] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
19
|
van Heuven SMAC, Webb AE, de Bakker DM, Meesters E, van Duyl FC, Reichart GJ, de Nooijer LJ. In-situ incubation of a coral patch for community-scale assessment of metabolic and chemical processes on a reef slope. PeerJ 2018; 6:e5966. [PMID: 30533295 PMCID: PMC6282943 DOI: 10.7717/peerj.5966] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 10/18/2018] [Indexed: 11/24/2022] Open
Abstract
Anthropogenic pressures threaten the health of coral reefs globally. Some of these pressures directly affect coral functioning, while others are indirect, for example by promoting the capacity of bioeroders to dissolve coral aragonite. To assess the coral reef status, it is necessary to validate community-scale measurements of metabolic and geochemical processes in the field, by determining fluxes from enclosed coral reef patches. Here, we investigate diurnal trends of carbonate chemistry, dissolved organic carbon, oxygen, and nutrients on a 20 m deep coral reef patch offshore from the island of Saba, Dutch Caribbean by means of tent incubations. The obtained trends are related to benthic carbon fluxes by quantifying net community calcification (NCC) and net community production (NCP). The relatively strong currents and swell-induced near-bottom surge at this location caused minor seawater exchange between the incubated reef and ambient water. Employing a compensating interpretive model, the exchange is used to our advantage as it maintains reasonably ventilated conditions, which conceivably prevents metabolic arrest during incubation periods of multiple hours. No diurnal trends in carbonate chemistry were detected and all net diurnal rates of production were strongly skewed towards respiration suggesting net heterotrophy in all incubations. The NCC inferred from our incubations ranges from −0.2 to 1.4 mmol CaCO3 m−2 h−1 (−0.2 to 1.2 kg CaCO3 m−2 year−1) and NCP varies from −9 to −21.7 mmol m−2 h−1 (net respiration). When comparing to the consensus-based ReefBudget approach, the estimated NCC rate for the incubated full planar area (0.36 kg CaCO3 m−2 year−1) was lower, but still within range of the different NCC inferred from our incubations. Field trials indicate that the tent-based incubation as presented here, coupled with an appropriate interpretive model, is an effective tool to investigate, in situ, the state of coral reef patches even when located in a relatively hydrodynamic environment.
Collapse
Affiliation(s)
- Steven M A C van Heuven
- Department of Ocean Sciences, NIOZ Royal Netherlands Institute for Sea Research, and Utrecht University, Den Hoorn, Noord-Holland, The Netherlands
| | - Alice E Webb
- Department of Ocean Sciences, NIOZ Royal Netherlands Institute for Sea Research, and Utrecht University, Den Hoorn, Noord-Holland, The Netherlands
| | - Didier M de Bakker
- Department of Marine Microbiology, NIOZ Royal Netherlands Institute for Sea Research, and Utrecht University, Den Hoorn, Noord-Holland, The Netherlands.,Wageningen Marine Research, Wageningen University and Research, Den Helder, Noord-Holland, The Netherlands
| | - Erik Meesters
- Wageningen Marine Research, Wageningen University and Research, Den Helder, Noord-Holland, The Netherlands
| | - Fleur C van Duyl
- Department of Marine Microbiology, NIOZ Royal Netherlands Institute for Sea Research, and Utrecht University, Den Hoorn, Noord-Holland, The Netherlands
| | - Gert-Jan Reichart
- Department of Ocean Sciences, NIOZ Royal Netherlands Institute for Sea Research, and Utrecht University, Den Hoorn, Noord-Holland, The Netherlands.,Department of Earth Sciences, Utrecht University, Utrecht, Utrecht, The Netherlands
| | - Lennart J de Nooijer
- Department of Ocean Sciences, NIOZ Royal Netherlands Institute for Sea Research, and Utrecht University, Den Hoorn, Noord-Holland, The Netherlands
| |
Collapse
|
20
|
Roff G, Bejarano S, Priest M, Marshell A, Chollett I, Steneck RS, Doropoulos C, Golbuu Y, Mumby PJ. Seascapes as drivers of herbivore assemblages in coral reef ecosystems. ECOL MONOGR 2018. [DOI: 10.1002/ecm.1336] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- George Roff
- Marine Spatial Ecology Lab; School of Biological Sciences; University of Queensland; St Lucia Queensland 4072 Australia
| | - Sonia Bejarano
- Reef Systems Research Group, Ecology Department; Leibniz Centre for Tropical Marine Research (ZMT); Fahrenheitstraße 6 28359 Bremen Germany
| | - Mark Priest
- Marine Spatial Ecology Lab; School of Biological Sciences; University of Queensland; St Lucia Queensland 4072 Australia
| | - Alyssa Marshell
- Department of Marine Science and Fisheries; College of Agricultural and Marine Sciences; Sultan Qaboos University; Muscat Oman
| | - Iliana Chollett
- Smithsonian Marine Station; Smithsonian Institution; Fort Pierce Florida 34949 USA
| | - Robert S. Steneck
- Darling Marine Center; School of Marine Sciences; University of Maine; Walpole Maine 04573 USA
| | | | | | - Peter J. Mumby
- Marine Spatial Ecology Lab; School of Biological Sciences; University of Queensland; St Lucia Queensland 4072 Australia
| |
Collapse
|
21
|
Strain EMA, Edgar GJ, Ceccarelli D, Stuart‐Smith RD, Hosack GR, Thomson RJ. A global assessment of the direct and indirect benefits of marine protected areas for coral reef conservation. DIVERS DISTRIB 2018. [DOI: 10.1111/ddi.12838] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Affiliation(s)
- Elisabeth M. A. Strain
- School of Bioscience University of Melbourne Parkville Victoria Australia
- Institute for Marine and Antarctic Studies University of Tasmania Hobart Tasmania Australia
| | - Graham J. Edgar
- Institute for Marine and Antarctic Studies University of Tasmania Hobart Tasmania Australia
| | - Daniela Ceccarelli
- ARC Centre of Excellence for Coral Reef Studies James Cook University Townsville Queensland Australia
| | - Rick D. Stuart‐Smith
- Institute for Marine and Antarctic Studies University of Tasmania Hobart Tasmania Australia
| | - Geoffrey R. Hosack
- Commonwealth Scientific and Industrial Research Organisation Hobart Tasmania Australia
| | - Russell J. Thomson
- Institute for Marine and Antarctic Studies University of Tasmania Hobart Tasmania Australia
- School of Computing, Engineering and Mathematics Centre for Research in Mathematics Western Sydney University Penrith New South Wales Australia
| |
Collapse
|
22
|
Morais RA, Ferreira CEL, Floeter SR. Spatial patterns of fish standing biomass across Brazilian reefs. JOURNAL OF FISH BIOLOGY 2017; 91:1642-1667. [PMID: 29076535 DOI: 10.1111/jfb.13482] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Accepted: 09/09/2017] [Indexed: 06/07/2023]
Abstract
A large fish-count dataset from the Brazilian province was used to describe spatial patterns in standing biomass and test if total biomass, taxonomic and functional trophic structure vary across nested spatial scales. Taxonomic and functional structure varied more among localities and sites than among regions. Total biomass was generally higher at oceanic islands and remote or protected localities along the coast. Lower level carnivores comprised a large part of the biomass at almost all localities (mean of 44%), zooplanktivores never attained more than 14% and omnivores were more representative of subtropical reefs and oceanic islands (up to 66% of total biomass). Small and large herbivores and detritivores varied greatly in their contribution to total biomass, with no clear geographical patterns. Macrocarnivores comprised less than 12% of the biomass anywhere, except for two remote localities. Top predators, such as sharks and very large groupers, were rare and restricted to a few reefs, suggesting that their ecological function might have already been lost in many Brazilian reefs.
Collapse
Affiliation(s)
- R A Morais
- Programa de Pós-Graduação em Ecologia, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina 88040-900, Brazil
- Marine Macroecology and Biogeography Lab, Departamento de Ecologia e Zoologia, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina 88040-900, Brazil
| | - C E L Ferreira
- Reef Systems Ecology and Conservation Lab, Departamento de Biologia Marinha, Universidade Federal Fluminense, Niterói, Rio de Janeiro 24001-970, Brazil
| | - S R Floeter
- Programa de Pós-Graduação em Ecologia, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina 88040-900, Brazil
- Marine Macroecology and Biogeography Lab, Departamento de Ecologia e Zoologia, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina 88040-900, Brazil
| |
Collapse
|
23
|
Zarco-Perello S, Simões N. Ordinary kriging vs inverse distance weighting: spatial interpolation of the sessile community of Madagascar reef, Gulf of Mexico. PeerJ 2017; 5:e4078. [PMID: 29204321 PMCID: PMC5712470 DOI: 10.7717/peerj.4078] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 11/01/2017] [Indexed: 11/20/2022] Open
Abstract
Information about the distribution and abundance of the habitat-forming sessile organisms in marine ecosystems is of great importance for conservation and natural resource managers. Spatial interpolation methodologies can be useful to generate this information from in situ sampling points, especially in circumstances where remote sensing methodologies cannot be applied due to small-scale spatial variability of the natural communities and low light penetration in the water column. Interpolation methods are widely used in environmental sciences; however, published studies using these methodologies in coral reef science are scarce. We compared the accuracy of the two most commonly used interpolation methods in all disciplines, inverse distance weighting (IDW) and ordinary kriging (OK), to predict the distribution and abundance of hard corals, octocorals, macroalgae, sponges and zoantharians and identify hotspots of these habitat-forming organisms using data sampled at three different spatial scales (5, 10 and 20 m) in Madagascar reef, Gulf of Mexico. The deeper sandy environments of the leeward and windward regions of Madagascar reef were dominated by macroalgae and seconded by octocorals. However, the shallow rocky environments of the reef crest had the highest richness of habitat-forming groups of organisms; here, we registered high abundances of octocorals and macroalgae, with sponges, Millepora alcicornis and zoantharians dominating in some patches, creating high levels of habitat heterogeneity. IDW and OK generated similar maps of distribution for all the taxa; however, cross-validation tests showed that IDW outperformed OK in the prediction of their abundances. When the sampling distance was at 20 m, both interpolation techniques performed poorly, but as the sampling was done at shorter distances prediction accuracies increased, especially for IDW. OK had higher mean prediction errors and failed to correctly interpolate the highest abundance values measured in situ, except for macroalgae, whereas IDW had lower mean prediction errors and high correlations between predicted and measured values in all cases when sampling was every 5 m. The accurate spatial interpolations created using IDW allowed us to see the spatial variability of each taxa at a biological and spatial resolution that remote sensing would not have been able to produce. Our study sets the basis for further research projects and conservation management in Madagascar reef and encourages similar studies in the region and other parts of the world where remote sensing technologies are not suitable for use.
Collapse
Affiliation(s)
- Salvador Zarco-Perello
- Unidad Académica Sisal, Facultad de Ciencias, Universidad Nacional Autónoma de México, Sisal, Yucatán, México
- School of Biological Sciences and UWA Oceans Institute, University of Western Australia, Perth, Western Australia, Australia
| | - Nuno Simões
- Unidad Académica Sisal, Facultad de Ciencias, Universidad Nacional Autónoma de México, Sisal, Yucatán, México
| |
Collapse
|
24
|
Suchley A, Alvarez-Filip L. Herbivory facilitates growth of a key reef-building Caribbean coral. Ecol Evol 2017; 7:11246-11256. [PMID: 29299297 PMCID: PMC5743540 DOI: 10.1002/ece3.3620] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/11/2017] [Accepted: 10/08/2017] [Indexed: 01/13/2023] Open
Abstract
The decline of reef-building corals in conjunction with shifts to short-lived opportunistic species has prompted concerns that Caribbean reef framework-building capacity has substantially diminished. Restoring herbivore populations may be a potential driver of coral recovery; however, the impact of herbivores on coral calcification has been little studied. We performed an exclusion experiment to evaluate the impact of herbivory on Orbicella faveolata coral growth over 14 months. The experiment consisted of three treatments: full exclusion cages; half cage procedural controls; and uncaged control plates, each with small O. faveolata colonies. We found that herbivorous fish exclusion had a substantial impact on both macroalgal cover and coral growth. Fleshy macroalgae reached 50% cover within some exclusion cages, but were almost absent from uncaged control plates. Critically, O. faveolata calcification rates were suppressed by almost half within exclusion cages, with monthly coral growth negatively related to overgrowth by fleshy macroalgae. These findings highlight the importance of herbivorous fishes for coral growth and the detrimental impact of macroalgal proliferation in the Caribbean. Policy makers and local managers should consider measures to protect herbivorous fishes and reduce macroalgal proliferation to enable coral communities to continue to grow and function.
Collapse
Affiliation(s)
- Adam Suchley
- Posgrado en Ciencias del Mar y Limnología Universidad Nacional Autónoma de México Mexico City Mexico
| | - Lorenzo Alvarez-Filip
- Biodiversity and Reef Conservation Laboratory Unidad Académica de Sistemas Arrecifales Instituto de Ciencias del Mar y Limnología Universidad Nacional Autónoma de México Puerto Morelos Mexico
| |
Collapse
|
25
|
Conventional and technical diving surveys reveal elevated biomass and differing fish community composition from shallow and upper mesophotic zones of a remote United States coral reef. PLoS One 2017; 12:e0188598. [PMID: 29161314 PMCID: PMC5697833 DOI: 10.1371/journal.pone.0188598] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 11/09/2017] [Indexed: 11/30/2022] Open
Abstract
The world’s coral reefs appear to be in a global decline, yet most previous research on coral reefs has taken place at depths shallower than 30 m. Mesophotic coral ecosystem (depths deeper than ~30 m) studies have revealed extensive, productive habitats and rich communities. Despite recent advances, mesophotic coral ecosystems remain understudied due to challenges with sampling at deeper depths. The few previous studies of mesophotic coral ecosystems have shown variation across locations in depth-specific species composition and assemblage shifts, potentially a response to differences in habitat or light availability/water clarity. This study utilized scuba to examine fish and benthic communities from shallow and upper mesophotic (to 45 m) zones of Flower Garden Banks National Marine Sanctuary (FGBNMS, 28°0ʹN; 93°50ʹW) from 2010–2012. Dominant planktivores were ubiquitous in shallow and upper mesophotic habitats, and comparisons with previous shallow research suggest this community distribution has persisted for over 30 years. Planktivores were abundant in shallow low-relief habitats on the periphery of the coral reef, and some of these sites that contained habitat transitioning from high to low relief supported high biomass of benthic predators. These peripheral sites at FGBNMS may be important for the trophic transfer of oceanic energy to the benthic coral reef. Distinct differences between upper mesophotic and shallow communities were also observed. These included greater overall fish (as well as apex predator) biomass in the upper mesophotic, differences in apex predator community composition between depth zones, and greater percent cover of algae, rubble, sand, and sponges in the upper mesophotic. Greater fish biomass in the upper mesophotic and similar fish community composition between depth zones provide preliminary support that upper mesophotic habitats at FGBNMS have the capacity to serve as refugia for the shallow-water reefs. Diving surveys of the upper mesophotic and shallow-water coral reef have revealed valuable information concerning the reef fish community in the northern Gulf of Mexico, with implications for the conservation of apex predators, oceanic coral reefs, and the future management of FGBNMS.
Collapse
|
26
|
Allgeier JE, Burkepile DE, Layman CA. Animal pee in the sea: consumer-mediated nutrient dynamics in the world's changing oceans. GLOBAL CHANGE BIOLOGY 2017; 23:2166-2178. [PMID: 28217892 DOI: 10.1111/gcb.13625] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 12/05/2016] [Accepted: 12/19/2016] [Indexed: 05/13/2023]
Abstract
Humans have drastically altered the abundance of animals in marine ecosystems via exploitation. Reduced abundance can destabilize food webs, leading to cascading indirect effects that dramatically reorganize community structure and shift ecosystem function. However, the additional implications of these top-down changes for biogeochemical cycles via consumer-mediated nutrient dynamics (CND) are often overlooked in marine systems, particularly in coastal areas. Here, we review research that underscores the importance of this bottom-up control at local, regional, and global scales in coastal marine ecosystems, and the potential implications of anthropogenic change to fundamentally alter these processes. We focus attention on the two primary ways consumers affect nutrient dynamics, with emphasis on implications for the nutrient capacity of ecosystems: (1) the storage and retention of nutrients in biomass, and (2) the supply of nutrients via excretion and egestion. Nutrient storage in consumer biomass may be especially important in many marine ecosystems because consumers, as opposed to producers, often dominate organismal biomass. As for nutrient supply, we emphasize how consumers enhance primary production through both press and pulse dynamics. Looking forward, we explore the importance of CDN for improving theory (e.g., ecological stoichiometry, metabolic theory, and biodiversity-ecosystem function relationships), all in the context of global environmental change. Increasing research focus on CND will likely transform our perspectives on how consumers affect the functioning of marine ecosystems.
Collapse
Affiliation(s)
- Jacob E Allgeier
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA, USA
| | - Deron E Burkepile
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA, USA
| | - Craig A Layman
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
27
|
McClanahan TR, Muthiga NA. Environmental variability indicates a climate‐adaptive center under threat in northern Mozambique coral reefs. Ecosphere 2017. [DOI: 10.1002/ecs2.1812] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Timothy R. McClanahan
- The Wildlife Conservation Society, Marine Programs Bronx New York 10460 USA
- The Wildlife Conservation Society, Marine Programs P.O. Box 99470 Mombasa Kenya
| | - Nyawira A. Muthiga
- The Wildlife Conservation Society, Marine Programs Bronx New York 10460 USA
- The Wildlife Conservation Society, Marine Programs P.O. Box 99470 Mombasa Kenya
| |
Collapse
|
28
|
Valdivia A, Cox CE, Bruno JF. Predatory fish depletion and recovery potential on Caribbean reefs. SCIENCE ADVANCES 2017; 3:e1601303. [PMID: 28275730 PMCID: PMC5332153 DOI: 10.1126/sciadv.1601303] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 01/16/2017] [Indexed: 05/11/2023]
Abstract
The natural, prehuman abundance of most large predators is unknown because of the lack of historical data and a limited understanding of the natural factors that control their populations. Determining the supportable predator biomass at a given location (that is, the predator carrying capacity) would help managers to optimize protection and would provide site-specific recovery goals. We assess the relationship between predatory reef fish biomass and several anthropogenic and environmental variables at 39 reefs across the Caribbean to (i) estimate their roles determining local predator biomass and (ii) determine site-specific recovery potential if fishing was eliminated. We show that predatory reef fish biomass tends to be higher in marine reserves but is strongly negatively related to human activities, especially coastal development. However, human activities and natural factors, including reef complexity and prey abundance, explain more than 50% of the spatial variation in predator biomass. Comparing site-specific predator carrying capacities to field observations, we infer that current predatory reef fish biomass is 60 to 90% lower than the potential supportable biomass in most sites, even within most marine reserves. We also found that the scope for recovery varies among reefs by at least an order of magnitude. This suggests that we could underestimate unfished biomass at sites that provide ideal conditions for predators or greatly overestimate that of seemingly predator-depleted sites that may have never supported large predator populations because of suboptimal environmental conditions.
Collapse
Affiliation(s)
- Abel Valdivia
- Center for Biological Diversity, 1212 Broadway Suite 800, Oakland, CA 94612, USA
- Corresponding author.
| | - Courtney Ellen Cox
- National Museum of Natural History, 1000 Constitution Avenue Northwest, Washington, DC 20560, USA
| | - John Francis Bruno
- Department of Biology, University of North Carolina at Chapel Hill, Wilson Hall, 120 South Road, Chapel Hill, NC 27599, USA
| |
Collapse
|
29
|
Holbrook SJ, Schmitt RJ, Adam TC, Brooks AJ. Coral Reef Resilience, Tipping Points and the Strength of Herbivory. Sci Rep 2016; 6:35817. [PMID: 27804977 PMCID: PMC5090207 DOI: 10.1038/srep35817] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 10/04/2016] [Indexed: 12/01/2022] Open
Abstract
Coral reefs increasingly are undergoing transitions from coral to macroalgal dominance. Although the functional roles of reef herbivores in controlling algae are becoming better understood, identifying possible tipping points in the herbivory-macroalgae relationships has remained a challenge. Assessment of where any coral reef ecosystem lies in relation to the coral-to-macroalgae tipping point is fundamental to understanding resilience properties, forecasting state shifts, and developing effective management practices. We conducted a multi-year field experiment in Moorea, French Polynesia to estimate these properties. While we found a sharp herbivory threshold where macroalgae escape control, ambient levels of herbivory by reef fishes were well above that needed to prevent proliferation of macroalgae. These findings are consistent with previously observed high resilience of the fore reef in Moorea. Our approach can identify vulnerable coral reef systems in urgent need of management action to both forestall shifts to macroalgae and preserve properties essential for resilience.
Collapse
Affiliation(s)
- Sally J. Holbrook
- Department of Ecology, Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
- Coastal Research Center, Marine Science Institute, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Russell J. Schmitt
- Department of Ecology, Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
- Coastal Research Center, Marine Science Institute, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Thomas C. Adam
- Coastal Research Center, Marine Science Institute, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Andrew J. Brooks
- Coastal Research Center, Marine Science Institute, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| |
Collapse
|
30
|
Sangil C, Guzman HM. Assessing the herbivore role of the sea-urchin Echinometra viridis: Keys to determine the structure of communities in disturbed coral reefs. MARINE ENVIRONMENTAL RESEARCH 2016; 120:202-213. [PMID: 27591516 DOI: 10.1016/j.marenvres.2016.08.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 08/11/2016] [Accepted: 08/23/2016] [Indexed: 06/06/2023]
Abstract
Echinometra viridis previously was considered a cryptic species unable to control the development and growth of macroalgae on coral reefs. Its role as a herbivore was seen as minor compared to other grazers present on the reef. However, the present disturbed state of some reefs has highlighted the role played by this sea-urchin. Combining field data with experiments on the Caribbean coast of Panama, we demonstrate that the current community organization on disturbed coral reefs in the Mesoamerican Caribbean is largely due to the action of E. viridis. It is the most abundant sea-urchin species, together with two others (Diadema antillarum and Echinometra lucunter). Field data also indicate that the relationship between its density and the abundance of macroalgae is stronger and it is more negative in impact than those of the other two. However, the niche this urchin exploits most efficiently is confined to leeward reefs with low levels of sedimentation. Outside these habitats, their populations are not decisive in controlling macroalgal growth. Grazing experiments showed that E. viridis consumes more fresh macroalgae per day and per weight of sea-urchin, and is a more effective grazer than D. antillarum or E. lucunter. E. viridis showed food preferences for early-successional turf macroalgae (Acanthophora spicifera), avoiding the less palatable late-successional and fleshy macroalgae (Lobophora variegata, Halimeda opuntia). However, it becomes a generalist herbivore feeding on all varieties of macroalgae when resources are scarce. H. opuntia is the macroalga that most resists E. viridis activity, which may explain its wide distribution.
Collapse
Affiliation(s)
- Carlos Sangil
- Department of Botany, Ecology and Plant Physiology, University of La Laguna, Canary Islands, Spain; Departament of Animal Biology, Soil Science and Geology, University of La Laguna, Canary Islands, Spain.
| | - Hector M Guzman
- Smithsonian Tropical Research Institute, Smithsonian Institution, Panama City, Panama
| |
Collapse
|
31
|
Abstract
Fishing is widely considered a leading cause of biodiversity loss in marine environments, but the potential effect on ecosystem processes, such as nutrient fluxes, is less explored. Here, we test how fishing on Caribbean coral reefs influences biodiversity and ecosystem functions provided by the fish community, that is, fish-mediated nutrient capacity. Specifically, we modelled five processes of nutrient storage (in biomass) and supply (via excretion) of nutrients, as well as a measure of their multifunctionality, onto 143 species of coral reef fishes across 110 coral reef fish communities. These communities span a gradient from extreme fishing pressure to protected areas with little to no fishing. We find that in fished sites fish-mediated nutrient capacity is reduced almost 50%, despite no substantial changes in the number of species. Instead, changes in community size and trophic structure were the primary cause of shifts in ecosystem function. These findings suggest that a broader perspective that incorporates predictable impacts of fishing pressure on ecosystem function is imperative for effective coral reef conservation and management.
Collapse
|
32
|
Suchley A, McField MD, Alvarez-Filip L. Rapidly increasing macroalgal cover not related to herbivorous fishes on Mesoamerican reefs. PeerJ 2016; 4:e2084. [PMID: 27280075 PMCID: PMC4893329 DOI: 10.7717/peerj.2084] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 05/05/2016] [Indexed: 12/28/2022] Open
Abstract
Long-term phase shifts from coral to macroalgal dominated reef systems are well documented in the Caribbean. Although the impact of coral diseases, climate change and other factors is acknowledged, major herbivore loss through disease and overfishing is often assigned a primary role. However, direct evidence for the link between herbivore abundance, macroalgal and coral cover is sparse, particularly over broad spatial scales. In this study we use a database of coral reef surveys performed at 85 sites along the Mesoamerican Reef of Mexico, Belize, Guatemala and Honduras, to examine potential ecological links by tracking site trajectories over the period 2005–2014. Despite the long-term reduction of herbivory capacity reported across the Caribbean, the Mesoamerican Reef region displayed relatively low macroalgal cover at the onset of the study. Subsequently, increasing fleshy macroalgal cover was pervasive. Herbivorous fish populations were not responsible for this trend as fleshy macroalgal cover change was not correlated with initial herbivorous fish biomass or change, and the majority of sites experienced increases in macroalgae browser biomass. This contrasts the coral reef top-down herbivore control paradigm and suggests the role of external factors in making environmental conditions more favourable for algae. Increasing macroalgal cover typically suppresses ecosystem services and leads to degraded reef systems. Consequently, policy makers and local coral reef managers should reassess the focus on herbivorous fish protection and consider complementary measures such as watershed management in order to arrest this trend.
Collapse
Affiliation(s)
- Adam Suchley
- Posgrado en Ciencias del Mar y Limnología, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Ciudad de México, México; Unidad Académica de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Puerto Morelos, Quintana Roo, México
| | - Melanie D McField
- Healthy Reefs for Healthy People Initiative, Smithsonian Institution , Ft Lauderdale, Florida , USA
| | - Lorenzo Alvarez-Filip
- Unidad Académica de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México , Puerto Morelos, Quintana Roo , México
| |
Collapse
|
33
|
Roff G, Doropoulos C, Rogers A, Bozec YM, Krueck NC, Aurellado E, Priest M, Birrell C, Mumby PJ. The Ecological Role of Sharks on Coral Reefs. Trends Ecol Evol 2016; 31:395-407. [DOI: 10.1016/j.tree.2016.02.014] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Revised: 02/09/2016] [Accepted: 02/11/2016] [Indexed: 10/22/2022]
|
34
|
Roman J, Kraska J. SCIENCE DIPLOMACY. Reboot Gitmo for U.S.-Cuba research diplomacy. Science 2016; 351:1258-60. [PMID: 26989232 DOI: 10.1126/science.aad4247] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Joe Roman
- Gund Institute for Ecological Economics, University of Vermont, Burlington, VT 05405, USA.
| | - James Kraska
- Stockton Center for the Study of International Law, U.S. Naval War College, Newport, RI 02841, USA
| |
Collapse
|
35
|
Wilson M, Pavlowich T, Cox M. Studying common-pool resources over time: A longitudinal case study of the Buen Hombre fishery in the Dominican Republic. AMBIO 2016; 45:215-229. [PMID: 26216142 PMCID: PMC4752556 DOI: 10.1007/s13280-015-0688-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 05/03/2015] [Accepted: 07/10/2015] [Indexed: 06/08/2023]
Abstract
Like many small-scale fishing communities around the world, the community of Buen Hombre in the Dominican Republic is dealing with a set of challenges to reconcile its fishing activities with the ecology on which it depends. Also like many such communities, this case has been examined at a particular period in time by a group of social scientists, but not over substantial lengths of time in order to examine the longitudinal validity of the conclusions made during this period. In this paper we combine data from previous anthropological work with our own primary social and ecological data to conduct a longitudinal case study of the Buen Hombre fishery. Our over-time comparison focuses on a suite of mostly social and institutional variables to explain what we find to be a continued degradation of the fishery, and we conclude the analysis by presenting a causal-loop diagram, summarizing our inferences regarding the complex interactions among these variables. We find that a mix of factors, notably changes in gear and fishing sites used, the number of fishermen and their livelihood diversity, as well as an increased connectivity between Buen Hombre and its external environment, have contributed to the decline of the condition of Buen Hombre coral reef fishery. We conclude with a discussion of what may lie ahead for this particular case and others like it.
Collapse
Affiliation(s)
- Margaret Wilson
- Bren School of Environmental Science & Management, University of Santa Barbara, Bren Hall, Isla Vista, CA, 931171, USA.
- , 44 Greenhaven Road, Rye, NY, 10580, USA.
| | - Tyler Pavlowich
- Department of Biological Sciences, Dartmouth College, 78 College Street, Hanover, NH, 03755, USA.
| | - Michael Cox
- Environmental Studies Program, Dartmouth College, 6182 Steele Hall, Hanover, NH, 03755, USA.
| |
Collapse
|
36
|
Mumby PJ, Steneck RS, Adjeroud M, Arnold SN. High resilience masks underlying sensitivity to algal phase shifts of Pacific coral reefs. OIKOS 2015. [DOI: 10.1111/oik.02673] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Peter J. Mumby
- Marine Spatial Ecology Lab, ARC Centre of Excellence for Coral Reef Studies, School of Biological Sciences, The Univ. of Queensland; St Lucia Qld 4072 Australia
| | - Robert S. Steneck
- Darling Marine Center, Univ. of Maine; 193 Clarks Cove Road Walpole ME 04573 USA
| | - Mehdi Adjeroud
- Inst. de Recherche pour le Développement, UMR 9220 ENTROPIE /Laboratoire d'Excellence “CORAIL”; 5 Université de Perpignan, 52 avenue Paul Alduy FR-66860 Perpignan France
| | - Suzanne N. Arnold
- Darling Marine Center, Univ. of Maine; 193 Clarks Cove Road Walpole ME 04573 USA
| |
Collapse
|
37
|
Wear SL, Thurber RV. Sewage pollution: mitigation is key for coral reef stewardship. Ann N Y Acad Sci 2015; 1355:15-30. [PMID: 25959987 PMCID: PMC4690507 DOI: 10.1111/nyas.12785] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Revised: 03/21/2015] [Accepted: 04/07/2015] [Indexed: 01/04/2023]
Abstract
Coral reefs are in decline worldwide, and land-derived sources of pollution, including sewage, are a major force driving that deterioration. This review presents evidence that sewage discharge occurs in waters surrounding at least 104 of 112 reef geographies. Studies often refer to sewage as a single stressor. However, we show that it is more accurately characterized as a multiple stressor. Many of the individual agents found within sewage, specifically freshwater, inorganic nutrients, pathogens, endocrine disrupters, suspended solids, sediments, and heavy metals, can severely impair coral growth and/or reproduction. These components of sewage may interact with each other to create as-yet poorly understood synergisms (e.g., nutrients facilitate pathogen growth), and escalate impacts of other, non-sewage–based stressors. Surprisingly few published studies have examined impacts of sewage in the field, but those that have suggest negative effects on coral reefs. Because sewage discharge proximal to sensitive coral reefs is widespread across the tropics, it is imperative for coral reef–focused institutions to increase investment in threat-abatement strategies for mitigating sewage pollution.
Collapse
Affiliation(s)
- Stephanie L Wear
- Institute of Marine Sciences, University of North Carolina at Chapel Hill, Morehead City, North Carolina.,The Nature Conservancy, Beaufort, North Carolina
| | | |
Collapse
|
38
|
Loh TL, McMurray SE, Henkel TP, Vicente J, Pawlik JR. Indirect effects of overfishing on Caribbean reefs: sponges overgrow reef-building corals. PeerJ 2015; 3:e901. [PMID: 25945305 PMCID: PMC4419544 DOI: 10.7717/peerj.901] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 03/31/2015] [Indexed: 11/20/2022] Open
Abstract
Consumer-mediated indirect effects at the community level are difficult to demonstrate empirically. Here, we show an explicit indirect effect of overfishing on competition between sponges and reef-building corals from surveys of 69 sites across the Caribbean. Leveraging the large-scale, long-term removal of sponge predators, we selected overfished sites where intensive methods, primarily fish-trapping, have been employed for decades or more, and compared them to sites in remote or marine protected areas (MPAs) with variable levels of enforcement. Sponge-eating fishes (angelfishes and parrotfishes) were counted at each site, and the benthos surveyed, with coral colonies scored for interaction with sponges. Overfished sites had >3 fold more overgrowth of corals by sponges, and mean coral contact with sponges was 25.6%, compared with 12.0% at less-fished sites. Greater contact with corals by sponges at overfished sites was mostly by sponge species palatable to sponge predators. Palatable species have faster rates of growth or reproduction than defended sponge species, which instead make metabolically expensive chemical defenses. These results validate the top-down conceptual model of sponge community ecology for Caribbean reefs, as well as provide an unambiguous justification for MPAs to protect threatened reef-building corals. An unanticipated outcome of the benthic survey component of this study was that overfished sites had lower mean macroalgal cover (23.1% vs. 38.1% for less-fished sites), a result that is contrary to prevailing assumptions about seaweed control by herbivorous fishes. Because we did not quantify herbivores for this study, we interpret this result with caution, but suggest that additional large-scale studies comparing intensively overfished and MPA sites are warranted to examine the relative impacts of herbivorous fishes and urchins on Caribbean reefs.
Collapse
Affiliation(s)
- Tse-Lynn Loh
- Department of Biology and Marine Biology and Center for Marine Science, University of North Carolina Wilmington , Wilmington, NC , USA
| | - Steven E McMurray
- Department of Biology and Marine Biology and Center for Marine Science, University of North Carolina Wilmington , Wilmington, NC , USA
| | - Timothy P Henkel
- Department of Biology, Valdosta State University , Valdosta, GA , USA
| | - Jan Vicente
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science , Baltimore, MD , USA
| | - Joseph R Pawlik
- Department of Biology and Marine Biology and Center for Marine Science, University of North Carolina Wilmington , Wilmington, NC , USA
| |
Collapse
|
39
|
Silveira CB, Silva-Lima AW, Francini-Filho RB, Marques JS, Almeida MG, Thompson CC, Rezende CE, Paranhos R, Moura RL, Salomon PS, Thompson FL. Microbial and sponge loops modify fish production in phase-shifting coral reefs. Environ Microbiol 2015; 17:3832-46. [DOI: 10.1111/1462-2920.12851] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 03/17/2015] [Accepted: 03/17/2015] [Indexed: 12/11/2022]
Affiliation(s)
- Cynthia B. Silveira
- Instituto de Biologia; Universidade Federal do Rio de Janeiro; Rio de Janeiro Brasil
| | - Arthur W. Silva-Lima
- Instituto de Biologia; Universidade Federal do Rio de Janeiro; Rio de Janeiro Brasil
| | | | - Jomar S.M. Marques
- Laboratório de Ciências Ambientais; Universidade Estadual Norte Fluminense; Rio de Janeiro Brasil
| | - Marcelo G. Almeida
- Laboratório de Ciências Ambientais; Universidade Estadual Norte Fluminense; Rio de Janeiro Brasil
| | - Cristiane C. Thompson
- Instituto de Biologia; Universidade Federal do Rio de Janeiro; Rio de Janeiro Brasil
| | - Carlos E. Rezende
- Laboratório de Ciências Ambientais; Universidade Estadual Norte Fluminense; Rio de Janeiro Brasil
| | - Rodolfo Paranhos
- Instituto de Biologia; Universidade Federal do Rio de Janeiro; Rio de Janeiro Brasil
| | - Rodrigo L. Moura
- Instituto de Biologia; Universidade Federal do Rio de Janeiro; Rio de Janeiro Brasil
| | - Paulo S. Salomon
- Instituto de Biologia; Universidade Federal do Rio de Janeiro; Rio de Janeiro Brasil
| | - Fabiano L. Thompson
- Instituto de Biologia; Universidade Federal do Rio de Janeiro; Rio de Janeiro Brasil
| |
Collapse
|
40
|
Boaden AE, Kingsford M.J. Predators drive community structure in coral reef fish assemblages. Ecosphere 2015. [DOI: 10.1890/es14-00292.1] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- A. E. Boaden
- College of Marine and Environmental Sciences and ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland 4811 Australia
| | - M. .J Kingsford
- College of Marine and Environmental Sciences and ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland 4811 Australia
| |
Collapse
|
41
|
Recovery potential of the world's coral reef fishes. Nature 2015; 520:341-4. [PMID: 25855298 DOI: 10.1038/nature14358] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 02/27/2015] [Indexed: 11/09/2022]
Abstract
Continuing degradation of coral reef ecosystems has generated substantial interest in how management can support reef resilience. Fishing is the primary source of diminished reef function globally, leading to widespread calls for additional marine reserves to recover fish biomass and restore key ecosystem functions. Yet there are no established baselines for determining when these conservation objectives have been met or whether alternative management strategies provide similar ecosystem benefits. Here we establish empirical conservation benchmarks and fish biomass recovery timelines against which coral reefs can be assessed and managed by studying the recovery potential of more than 800 coral reefs along an exploitation gradient. We show that resident reef fish biomass in the absence of fishing (B0) averages ∼1,000 kg ha(-1), and that the vast majority (83%) of fished reefs are missing more than half their expected biomass, with severe consequences for key ecosystem functions such as predation. Given protection from fishing, reef fish biomass has the potential to recover within 35 years on average and less than 60 years when heavily depleted. Notably, alternative fisheries restrictions are largely (64%) successful at maintaining biomass above 50% of B0, sustaining key functions such as herbivory. Our results demonstrate that crucial ecosystem functions can be maintained through a range of fisheries restrictions, allowing coral reef managers to develop recovery plans that meet conservation and livelihood objectives in areas where marine reserves are not socially or politically feasible solutions.
Collapse
|
42
|
Rogers A, Harborne AR, Brown CJ, Bozec YM, Castro C, Chollett I, Hock K, Knowland CA, Marshell A, Ortiz JC, Razak T, Roff G, Samper-Villarreal J, Saunders MI, Wolff NH, Mumby PJ. Anticipative management for coral reef ecosystem services in the 21st century. GLOBAL CHANGE BIOLOGY 2015; 21:504-14. [PMID: 25179273 DOI: 10.1111/gcb.12725] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 08/18/2014] [Accepted: 08/18/2014] [Indexed: 05/17/2023]
Abstract
Under projections of global climate change and other stressors, significant changes in the ecology, structure and function of coral reefs are predicted. Current management strategies tend to look to the past to set goals, focusing on halting declines and restoring baseline conditions. Here, we explore a complementary approach to decision making that is based on the anticipation of future changes in ecosystem state, function and services. Reviewing the existing literature and utilizing a scenario planning approach, we explore how the structure of coral reef communities might change in the future in response to global climate change and overfishing. We incorporate uncertainties in our predictions by considering heterogeneity in reef types in relation to structural complexity and primary productivity. We examine 14 ecosystem services provided by reefs, and rate their sensitivity to a range of future scenarios and management options. Our predictions suggest that the efficacy of management is highly dependent on biophysical characteristics and reef state. Reserves are currently widely used and are predicted to remain effective for reefs with high structural complexity. However, when complexity is lost, maximizing service provision requires a broader portfolio of management approaches, including the provision of artificial complexity, coral restoration, fish aggregation devices and herbivore management. Increased use of such management tools will require capacity building and technique refinement and we therefore conclude that diversification of our management toolbox should be considered urgently to prepare for the challenges of managing reefs into the 21st century.
Collapse
Affiliation(s)
- Alice Rogers
- Marine Spatial Ecology Laboratory and Australian Research Council Centre of Excellence for Coral Reef Studies, School of Biological Sciences, The University of Queensland, St. Lucia Campus, Brisbane, QLD, 4072, Australia; Marine Spatial Ecology Laboratory, Biosciences, College of Life and Environmental Sciences, Geoffrey Pope Building, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Karr KA, Fujita R, Halpern BS, Kappel CV, Crowder L, Selkoe KA, Alcolado PM, Rader D. Thresholds in Caribbean coral reefs: implications for ecosystem-based fishery management. J Appl Ecol 2015. [DOI: 10.1111/1365-2664.12388] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kendra A. Karr
- Oceans Program; Environmental Defense Fund; 123 Mission Street 28th Floor San Francisco CA 94105 USA
- Ecology and Evolutionary Biology; 100 Shaffer Road, University of California Santa Cruz; Santa Cruz CA 95064 USA
| | - Rod Fujita
- Oceans Program; Environmental Defense Fund; 123 Mission Street 28th Floor San Francisco CA 94105 USA
- Center for Ocean Solutions; Woods Institute for the Environment; Stanford University; 99 Pacific St. Suite 555E Monterey CA 93940 USA
| | - Benjamin S. Halpern
- National Center for Ecological Analysis and Synthesis; 735 State St. Suite 300 Santa Barbara CA 93101 USA
- Bren School of Environmental Science and Management; University of California; Santa Barbara CA 93016 USA
- Imperial College London; Silwood Park Campus Buckhurst Road Ascot SL5 7PY UK
| | - Carrie V. Kappel
- National Center for Ecological Analysis and Synthesis; 735 State St. Suite 300 Santa Barbara CA 93101 USA
| | - Larry Crowder
- Center for Ocean Solutions; Woods Institute for the Environment; Stanford University; 99 Pacific St. Suite 555E Monterey CA 93940 USA
| | - Kimberly A. Selkoe
- National Center for Ecological Analysis and Synthesis; 735 State St. Suite 300 Santa Barbara CA 93101 USA
- Hawaii Institute of Marine Biology; University of Hawai'i; Kane'ohe HI 97644 USA
| | - Pedro M. Alcolado
- Instituto de Oceanologia; Calle 1ra. E No. 18406 Playa Ciudad Habana Cuba
| | - Doug Rader
- Oceans Program; Environmental Defense Fund; 4000 Westchase Blvd. Suite 510 Raleigh NC 27607 USA
| |
Collapse
|
44
|
Ainsworth CH, Mumby PJ. Coral-algal phase shifts alter fish communities and reduce fisheries production. GLOBAL CHANGE BIOLOGY 2015; 21:165-172. [PMID: 24953835 PMCID: PMC4310290 DOI: 10.1111/gcb.12667] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Revised: 06/12/2014] [Accepted: 06/13/2014] [Indexed: 06/03/2023]
Abstract
Anthropogenic stress has been shown to reduce coral coverage in ecosystems all over the world. A phase shift towards an algae-dominated system may accompany coral loss. In this case, the composition of the reef-associated fish assemblage will change and human communities relying on reef fisheries for income and food security may be negatively impacted. We present a case study based on the Raja Ampat Archipelago in Eastern Indonesia. Using a dynamic food web model, we simulate the loss of coral reefs with accompanied transition towards an algae-dominated state and quantify the likely change in fish populations and fisheries productivity. One set of simulations represents extreme scenarios, including 100% loss of coral. In this experiment, ecosystem changes are driven by coral loss itself and a degree of habitat dependency by reef fish is assumed. An alternative simulation is presented without assumed habitat dependency, where changes to the ecosystem are driven by historical observations of reef fish communities when coral is lost. The coral-algal phase shift results in reduced biodiversity and ecosystem maturity. Relative increases in the biomass of small-bodied fish species mean higher productivity on reefs overall, but much reduced landings of traditionally targeted species.
Collapse
Affiliation(s)
- Cameron H Ainsworth
- College of Marine Science, University of South Florida, 140 7th, St. Petersburg, FL, 33701, USA
| | | |
Collapse
|
45
|
Johnson AE, Jackson JB. Fisher and diver perceptions of coral reef degradation and implications for sustainable management. Glob Ecol Conserv 2015. [DOI: 10.1016/j.gecco.2015.04.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
46
|
Allgeier JE, Layman CA, Mumby PJ, Rosemond AD. Consistent nutrient storage and supply mediated by diverse fish communities in coral reef ecosystems. GLOBAL CHANGE BIOLOGY 2014; 20:2459-2472. [PMID: 24692262 DOI: 10.1111/gcb.12566] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 02/04/2014] [Accepted: 02/05/2014] [Indexed: 06/03/2023]
Abstract
Corals thrive in low nutrient environments and the conservation of these globally imperiled ecosystems is largely dependent on mitigating the effects of anthropogenic nutrient enrichment. However, to better understand the implications of anthropogenic nutrients requires a heightened understanding of baseline nutrient dynamics within these ecosystems. Here, we provide a novel perspective on coral reef nutrient dynamics by examining the role of fish communities in the supply and storage of nitrogen (N) and phosphorus (P). We quantified fish-mediated nutrient storage and supply for 144 species and modeled these data onto 172 fish communities (71 729 individual fish), in four types of coral reefs, as well as seagrass and mangrove ecosystems, throughout the Northern Antilles. Fish communities supplied and stored large quantities of nutrients, with rates varying among ecosystem types. The size structure and diversity of the fish communities best predicted N and P supply and storage and N : P supply, suggesting that alterations to fish communities (e.g., overfishing) will have important implications for nutrient dynamics in these systems. The stoichiometric ratio (N : P) for storage in fish mass (~8 : 1) and supply (~20 : 1) was notably consistent across the four coral reef types (but not seagrass or mangrove ecosystems). Published nutrient enrichment studies on corals show that deviations from this N : P supply ratio may be associated with poor coral fitness, providing qualitative support for the hypothesis that corals and their symbionts may be adapted to specific ratios of nutrient supply. Consumer nutrient stoichiometry provides a baseline from which to better understand nutrient dynamics in coral reef and other coastal ecosystems, information that is greatly needed if we are to implement more effective measures to ensure the future health of the world's oceans.
Collapse
Affiliation(s)
- Jacob E Allgeier
- Odum School of Ecology, University of Georgia, Athens, Georgia, USA
| | | | | | | |
Collapse
|
47
|
Toledo-Guedes K, Sanchez-Jerez P, Benjumea ME, Brito A. Farming-up coastal fish assemblages through a massive aquaculture escape event. MARINE ENVIRONMENTAL RESEARCH 2014; 98:86-95. [PMID: 24725509 DOI: 10.1016/j.marenvres.2014.03.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 03/12/2014] [Accepted: 03/17/2014] [Indexed: 06/03/2023]
Abstract
We investigated the changes on the mean trophic level of fish assemblages across different spatiotemporal scales, before and after a massive escape event occurred off La Palma (Canary Islands), which resulted in the release of 1.5 million fish (mostly Dicentrarchus labrax) into the wild. The presence of escaped fish altered significantly the mean trophic level of fish assemblages in shallow coastal waters. This alteration was exacerbated by the massive escape. A nearby marine protected area buffered the changes in mean trophic level but exhibited the same temporal patterns as highly fished areas. Moreover, escaped fish exploited natural resources according to their total length and possibly, time since escapement. New concerns arise as a "farming up" process is detected in shallow coastal fish assemblages where marine aquaculture is established.
Collapse
Affiliation(s)
- Kilian Toledo-Guedes
- BIOECOMAC, Universidad de La Laguna, Dpto. de Biología Animal. Ciencias Marinas, Facultad de Biología, Av. Astrofísico Francisco Sánchez s/n, CP 38206 San Cristóbal de La Laguna, Santa Cruz de Tenerife, Canary Islands, Spain.
| | - Pablo Sanchez-Jerez
- Department of Marine Sciences and Applied Biology, University of Alicante, Ap.C. 99, CP 03080 Alicante, Spain
| | - María E Benjumea
- BIOECOMAC, Universidad de La Laguna, Dpto. de Biología Animal. Ciencias Marinas, Facultad de Biología, Av. Astrofísico Francisco Sánchez s/n, CP 38206 San Cristóbal de La Laguna, Santa Cruz de Tenerife, Canary Islands, Spain
| | - Alberto Brito
- BIOECOMAC, Universidad de La Laguna, Dpto. de Biología Animal. Ciencias Marinas, Facultad de Biología, Av. Astrofísico Francisco Sánchez s/n, CP 38206 San Cristóbal de La Laguna, Santa Cruz de Tenerife, Canary Islands, Spain
| |
Collapse
|
48
|
Friedlander AM, Caselle JE, Ballesteros E, Brown EK, Turchik A, Sala E. The real bounty: marine biodiversity in the Pitcairn Islands. PLoS One 2014; 9:e100142. [PMID: 24963808 PMCID: PMC4070931 DOI: 10.1371/journal.pone.0100142] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 05/22/2014] [Indexed: 11/19/2022] Open
Abstract
In 2012 we conducted an integrated ecological assessment of the marine environment of the Pitcairn Islands, which are four of the most remote islands in the world. The islands and atolls (Ducie, Henderson, Oeno, and Pitcairn) are situated in the central South Pacific, halfway between New Zealand and South America. We surveyed algae, corals, mobile invertebrates, and fishes at 97 sites between 5 and 30 m depth, and found 51 new records for algae, 23 for corals, and 15 for fishes. The structure of the ecological communities was correlated with age, isolation, and geomorphology of the four islands. Coral and algal assemblages were significantly different among islands with Ducie having the highest coral cover (56%) and Pitcairn dominated by erect macroalgae (42%). Fish biomass was dominated by top predators at Ducie (62% of total fish biomass) and at Henderson (35%). Herbivorous fishes dominated at Pitcairn, while Oeno showed a balanced fish trophic structure. We found high levels of regional endemism in the fish assemblages across the islands (45%), with the highest level observed at Ducie (56% by number). We conducted the first surveys of the deep habitats around the Pitcairn Islands using drop-cameras at 21 sites from depths of 78 to 1,585 m. We observed 57 fish species from the drop-cams, including rare species such as the false catshark (Pseudotriakis microdon) and several new undescribed species. In addition, we made observations of typically shallow reef sharks and other reef fishes at depths down to 300 m. Our findings highlight the uniqueness and high biodiversity value of the Pitcairn Islands as one of the least impacted in the Pacific, and suggest the need for immediate protection.
Collapse
Affiliation(s)
- Alan M. Friedlander
- Pristine Seas, National Geographic Society, Washington DC, United States of America
- Fisheries Ecology Research Laboratory, Department of Biology, University of Hawaii, Honolulu, Hawaii, United States of America
- * E-mail:
| | - Jennifer E. Caselle
- Marine Science Institute, University of California Santa Barbara, Santa Barbara, California, United States of America
| | | | - Eric K. Brown
- Kalaupapa National Historical Park, US National Park Service, Kalaupapa, Hawaii, United States of America
| | - Alan Turchik
- Pristine Seas, National Geographic Society, Washington DC, United States of America
| | - Enric Sala
- Pristine Seas, National Geographic Society, Washington DC, United States of America
- Centre d'Estudis Avançats de Blanes, Blanes, Spain
| |
Collapse
|
49
|
Reddy SMW, Groves T, Nagavarapu S. Consequences of a government-controlled agricultural price increase on fishing and the coral reef ecosystem in the republic of kiribati. PLoS One 2014; 9:e96817. [PMID: 24820734 PMCID: PMC4018407 DOI: 10.1371/journal.pone.0096817] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Accepted: 04/11/2014] [Indexed: 11/19/2022] Open
Abstract
Background Economic development policies may have important economic and ecological consequences beyond the sector they target. Understanding these consequences is important to improving these policies and finding opportunities to align economic development with natural resource conservation. These issues are of particular interest to governments and non-governmental organizations that have new mandates to pursue multiple benefits. In this case study, we examined the direct and indirect economic and ecological effects of an increase in the government-controlled price for the primary agricultural product in the Republic of Kiribati, Central Pacific. Methods/Principal Findings We conducted household surveys and underwater visual surveys of the coral reef to examine how the government increase in the price of copra directly affected copra labor and indirectly affected fishing and the coral reef ecosystem. The islands of Kiribati are coral reef atolls and the majority of households participate in copra agriculture and fishing on the coral reefs. Our household survey data suggest that the 30% increase in the price of copra resulted in a 32% increase in copra labor and a 38% increase in fishing labor. Households with the largest amount of land in coconut production increased copra labor the most and households with the smallest amount of land in coconut production increased fishing the most. Our ecological data suggests that increased fishing labor may result in a 20% decrease in fish stocks and 4% decrease in coral reef-builders. Conclusions/Significance We provide empirical evidence to suggest that the government increase in the copra price in Kiribati had unexpected and indirect economic and ecological consequences. In this case, the economic development policy was not in alignment with conservation. These results emphasize the importance of accounting for differences in household capital and taking a systems approach to policy design and evaluation, as advocated by sustainable livelihood and ecosystem-based management frameworks.
Collapse
Affiliation(s)
- Sheila M. W. Reddy
- Central Science Division, The Nature Conservancy, Arlington, Virginia, United States of America
- Environmental Change Initiative, Brown University, Providence, Rhode Island, United States of America
- * E-mail:
| | - Theodore Groves
- Department of Economics, University of California-San Diego, La Jolla, California, United States of America
| | - Sriniketh Nagavarapu
- Department of Economics and Center for Environmental Studies, Brown University, Providence, Rhode Island, United States of America
| |
Collapse
|
50
|
Burkepile DE, Allgeier JE, Shantz AA, Pritchard CE, Lemoine NP, Bhatti LH, Layman CA. Nutrient supply from fishes facilitates macroalgae and suppresses corals in a Caribbean coral reef ecosystem. Sci Rep 2014; 3:1493. [PMID: 23512216 PMCID: PMC6504825 DOI: 10.1038/srep01493] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 02/25/2013] [Indexed: 11/09/2022] Open
Abstract
On coral reefs, fishes can facilitate coral growth via nutrient excretion; however, as coral abundance declines, these nutrients may help facilitate increases in macroalgae. By combining surveys of reef communities with bioenergetics modeling, we showed that fish excretion supplied 25 times more nitrogen to forereefs in the Florida Keys, USA, than all other biotic and abiotic sources combined. One apparent result was a positive relationship between fish excretion and macroalgal cover on these reefs. Herbivore biomass also showed a negative relationship with macroalgal cover, suggesting strong interactions of top-down and bottom-up forcing. Nutrient supply by fishes also showed a negative correlation with juvenile coral density, likely mediated by competition between macroalgae and corals, suggesting that fish excretion may hinder coral recovery following large-scale coral loss. Thus, the impact of nutrient supply by fishes may be context-dependent and reinforce either coral-dominant or coral-depauperate reef communities depending on initial community states.
Collapse
Affiliation(s)
- Deron E Burkepile
- Marine Science Program, Department of Biological Sciences, Florida International University, 3000 NE 151st Street, North Miami, FL 33181, USA
| | | | | | | | | | | | | |
Collapse
|