1
|
Allard JB, Sharma S, Patel R, Sanderford M, Tamura K, Vucetic S, Gerhard GS, Kumar S. Evolutionary sparse learning reveals the shared genetic basis of convergent traits. Nat Commun 2025; 16:3217. [PMID: 40185716 PMCID: PMC11971283 DOI: 10.1038/s41467-025-58428-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 03/18/2025] [Indexed: 04/07/2025] Open
Abstract
Cases abound in which nearly identical traits have appeared in distant species facing similar environments. These unmistakable examples of adaptive evolution offer opportunities to gain insight into their genetic origins and mechanisms through comparative analyses. Here, we present an approach to build genetic models that underlie the independent origins of convergent traits using evolutionary sparse learning with paired species contrast (ESL-PSC). We tested the hypothesis that common genes and sites are involved in the convergent evolution of two key traits: C4 photosynthesis in grasses and echolocation in mammals. Genetic models were highly predictive of independent cases of convergent evolution of C4 photosynthesis. Genes contributing to genetic models for echolocation were highly enriched for functional categories related to hearing, sound perception, and deafness, a pattern that has eluded previous efforts applying standard molecular evolutionary approaches. These results support the involvement of sequence substitutions at common genetic loci in the evolution of convergent traits. Benchmarking on empirical and simulated datasets showed that ESL-PSC could be more sensitive in proteome-scale analyses to detect genes with convergent molecular evolution associated with the acquisition of convergent traits. We conclude that phylogeny-informed machine learning naturally excludes apparent molecular convergences due to shared species history, enhances the signal-to-noise ratio for detecting molecular convergence, and empowers the discovery of common genetic bases of trait convergences.
Collapse
Affiliation(s)
- John B Allard
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA, USA
- Department of Biology, Temple University, Philadelphia, PA, USA
| | - Sudip Sharma
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA, USA
- Department of Biology, Temple University, Philadelphia, PA, USA
| | - Ravi Patel
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA, USA
- Department of Biology, Temple University, Philadelphia, PA, USA
| | - Maxwell Sanderford
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA, USA
- Department of Biology, Temple University, Philadelphia, PA, USA
| | - Koichiro Tamura
- Department of Biological Sciences, Tokyo Metropolitan University, Tokyo, Japan
- Research Center for Genomics and Bioinformatics, Tokyo Metropolitan University, Tokyo, Japan
| | - Slobodan Vucetic
- Department of Computer and Information Sciences, Temple University, Philadelphia, PA, USA
| | - Glenn S Gerhard
- Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA.
| | - Sudhir Kumar
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA, USA.
- Department of Biology, Temple University, Philadelphia, PA, USA.
| |
Collapse
|
2
|
Alvarenga JP, Stata M, Sage RF, Patel R, das Chagas Mendonca AM, Della Torre F, Liu H, Cheng S, Weake S, Watanabe EJ, Lage Viana P, de Castro Arruda IA, Ludwig M, Delfino Barbosa JPRA, Sage TL. Evolutionary diversification of C2 photosynthesis in the grass genus Homolepis (Arthropogoninae). ANNALS OF BOTANY 2025; 135:769-788. [PMID: 39688921 PMCID: PMC11904902 DOI: 10.1093/aob/mcae214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 12/12/2024] [Indexed: 12/18/2024]
Abstract
BACKGROUND AND AIMS To better understand C4 evolution in monocots, we characterized C3-C4 intermediate phenotypes in the grass genus Homolepis (subtribe Arthropogoninae). METHODS Carbon isotope ratio (δ13C), leaf gas exchange, mesophyll (M) and bundle sheath (BS) tissue characteristics, organelle size and numbers in M and BS tissue, and tissue distribution of the P-subunit of glycine decarboxylase (GLDP) were determined for five Homolepis species and the C4 grass Mesosetum loliiforme from a phylogenetic sister clade. We generated a transcriptome-based phylogeny for Homolepis and Mesosetum species to interpret physiological and anatomical patterns in an evolutionary context, and to test for hybridization. KEY RESULTS Homolepis contains two C3 species (H. glutinosa, H. villaricensis), one species with a weaker form of C2 termed sub-C2 (H. isocalycia), and two C2 species (H. longispicula, H. aturensis). Homolepis longispicula and H. aturensis express over 85 % of leaf glycine in centripetal mitochondria within the BS, and have increased fractions of leaf chloroplasts, mitochondria and peroxisomes within the BS relative to H. glutinosa. Analysis of leaf gas exchange, cell ultrastructure and transcript expression show M. loliiforme is a C4 plant of the NADP-malic enzyme subtype. Homolepis comprises two sister clades, one containing H. glutinosa and H. villaricensis and the second H. longispicula and H. aturensis. Homolepis isocalycia is of hybrid origin, its parents being H. aturensis and a common ancestor of the C3 Homolepis clade and H. longispicula. CONCLUSIONS Photosynthetic activation of BS tissue in the sub-C2 and C2 species of Homolepis is similar to patterns observed in C3-C4 intermediate eudicots, indicating common evolutionary pathways from C3 to C4 photosynthesis in these disparate clades. Hybridization can diversify the C3-C4 intermediate character state and should be considered in reconstructing putative ancestral states using phylogenetic analyses.
Collapse
Affiliation(s)
- Joyce Pereira Alvarenga
- Laboratory of Ecophysiology, Plant Physiology Sector, Department of Biology, Federal University of Lavras, Lavras, Minas Gerais, 37200-900, Brazil
- Department of Ecology and Evolutionary Biology, University of Toronto, Ontario, M5S 3B2, Canada
| | - Matt Stata
- Department of Ecology and Evolutionary Biology, University of Toronto, Ontario, M5S 3B2, Canada
| | - Rowan F Sage
- Department of Ecology and Evolutionary Biology, University of Toronto, Ontario, M5S 3B2, Canada
| | - Ria Patel
- Department of Ecology and Evolutionary Biology, University of Toronto, Ontario, M5S 3B2, Canada
| | - Ane Marcela das Chagas Mendonca
- Laboratory of Ecophysiology, Plant Physiology Sector, Department of Biology, Federal University of Lavras, Lavras, Minas Gerais, 37200-900, Brazil
- Department of Ecology and Evolutionary Biology, University of Toronto, Ontario, M5S 3B2, Canada
| | - Felipe Della Torre
- Department of Ecology and Evolutionary Biology, University of Toronto, Ontario, M5S 3B2, Canada
- Laboratory of Plant Physiology, Department of Botany, Institute of Science Biology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Hongbing Liu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Shifeng Cheng
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Samantha Weake
- Department of Ecology and Evolutionary Biology, University of Toronto, Ontario, M5S 3B2, Canada
| | - Emile J Watanabe
- Department of Ecology and Evolutionary Biology, University of Toronto, Ontario, M5S 3B2, Canada
| | - Pedro Lage Viana
- Instituto Nacional da Mata Atlantica, Santa Teresa, Espirito Santo, 29650-000, Brazil
| | - Iago Augusto de Castro Arruda
- Laboratory of Ecophysiology, Plant Physiology Sector, Department of Biology, Federal University of Lavras, Lavras, Minas Gerais, 37200-900, Brazil
| | - Martha Ludwig
- School of Molecular Sciences, University of Western Australia, Crawley, WA 6009, Australia
| | | | - Tammy L Sage
- Department of Ecology and Evolutionary Biology, University of Toronto, Ontario, M5S 3B2, Canada
| |
Collapse
|
3
|
Ueno O. Cell wall thickness spectrum of photosynthetic cells in herbaceous C 3, C 4, and crassulacean acid metabolism plants. JOURNAL OF PLANT RESEARCH 2025; 138:197-213. [PMID: 39658745 DOI: 10.1007/s10265-024-01603-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 11/27/2024] [Indexed: 12/12/2024]
Abstract
Higher plants are divided into three major photosynthetic groups known as C3, C4, and crassulacean acid metabolism (CAM) plants. It is considered that cell wall thickness (TCW) affects diffusion and leakiness of CO2 within leaves, but it is unclear whether TCW of photosynthetic cells differs among these groups. This study investigated TCW of photosynthetic cells in herbaceous C3, C4, and CAM species under an electron microscope. Among 75 species of monocots and eudicots grown in a growth chamber in the same environment, the TCW of mesophyll cells (MCs) was much higher in CAM species than in C3 and C4 species. However, when TCW was compared between C3 and C4 species of grasses and eudicots, TCW of MCs tended to be lower in C4 species than in C3 species; the opposite trend was observed for TCW of bundle sheath cells (BSCs). TCW of MCs and BSCs almost did not differ among the C4 decarboxylation types (NADP-ME, NAD-ME, and PCK). In plants grown outdoors (51 species), similar trends of TCW were also found among photosynthetic groups, but their TCW was generally higher than that of growth-chamber plants. This study provides the TCW spectrum of photosynthetic cells in herbaceous C3, C4, and CAM species. The results obtained would be valuable for our understanding of the diffusion and leakage of CO2 in the leaves of different photosynthetic groups.
Collapse
Affiliation(s)
- Osamu Ueno
- Faculty of Agriculture, Kyushu University, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan.
| |
Collapse
|
4
|
Verrico B, Preston JC. Historic rewiring of grass flowering time pathways and implications for crop improvement under climate change. THE NEW PHYTOLOGIST 2025; 245:1864-1878. [PMID: 39722593 PMCID: PMC11798905 DOI: 10.1111/nph.20375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 12/09/2024] [Indexed: 12/28/2024]
Abstract
Grasses are fundamental to human survival, providing a large percentage of our calories, fuel, and fodder for livestock, and an enormous global carbon sink. A particularly important part of the grass plant is the grain-producing inflorescence that develops in response to both internal and external signals that converge at the shoot tip to influence meristem behavior. Abiotic signals that trigger reproductive development vary across the grass family, mostly due to the unique ecological and phylogenetic histories of each clade. The time it takes a grass to flower has implications for its ability to escape harsh environments, while also indirectly affecting abiotic stress tolerance, inflorescence architecture, and grain yield. Here, we synthesize recent insights into the evolution of grass flowering time in response to past climate change, particularly focusing on genetic convergence in underlying traits. We then discuss how and why the rewiring of a shared ancestral flowering pathway affects grass yields, and outline ways in which researchers are using this and other information to breed higher yielding, climate-proof cereal crops.
Collapse
Affiliation(s)
- Brittany Verrico
- Department of Plant BiologyUniversity of Vermont63 Carrigan DriveBurlingtonVT05405USA
| | - Jill C. Preston
- Department of Plant BiologyUniversity of Vermont63 Carrigan DriveBurlingtonVT05405USA
| |
Collapse
|
5
|
Baird AS, Taylor SH, Pasquet‐Kok J, Vuong C, Zhang Y, Watcharamongkol T, Cochard H, Scoffoni C, Edwards EJ, Osborne CP, Sack L. Resolving the contrasting leaf hydraulic adaptation of C 3 and C 4 grasses. THE NEW PHYTOLOGIST 2025; 245:1924-1939. [PMID: 39757432 PMCID: PMC11798900 DOI: 10.1111/nph.20341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 11/27/2024] [Indexed: 01/07/2025]
Abstract
Grasses are exceptionally productive, yet their hydraulic adaptation is paradoxical. Among C3 grasses, a high photosynthetic rate (Aarea) may depend on higher vein density (Dv) and hydraulic conductance (Kleaf). However, the higher Dv of C4 grasses suggests a hydraulic surplus, given their reduced need for high Kleaf resulting from lower stomatal conductance (gs). Combining hydraulic and photosynthetic physiological data for diverse common garden C3 and C4 species with data for 332 species from the published literature, and mechanistic modeling, we validated a framework for linkages of photosynthesis with hydraulic transport, anatomy, and adaptation to aridity. C3 and C4 grasses had similar Kleaf in our common garden, but C4 grasses had higher Kleaf than C3 species in our meta-analysis. Variation in Kleaf depended on outside-xylem pathways. C4 grasses have high Kleaf : gs, which modeling shows is essential to achieve their photosynthetic advantage. Across C3 grasses, higher Aarea was associated with higher Kleaf, and adaptation to aridity, whereas for C4 species, adaptation to aridity was associated with higher Kleaf : gs. These associations are consistent with adaptation for stress avoidance. Hydraulic traits are a critical element of evolutionary and ecological success in C3 and C4 grasses and are crucial avenues for crop design and ecological forecasting.
Collapse
Affiliation(s)
- Alec S. Baird
- Department of Ecology and Evolutionary BiologyUniversity of California Los Angeles621 Charles E. Young Dr. SouthLos AngelesCA90095USA
- Institute of Plant SciencesUniversity of BernAltenbergrain 213013BernSwitzerland
- Oeschger Centre for Climate Change ResearchUniversity of BernBern3012Switzerland
| | - Samuel H. Taylor
- Lancaster Environment CentreUniversity of LancasterLancasterLA1 4YWUK
- Plants, Photosynthesis and Soil, School of BiosciencesUniversity of SheffieldSheffieldS10 2TNUK
| | - Jessica Pasquet‐Kok
- Department of Ecology and Evolutionary BiologyUniversity of California Los Angeles621 Charles E. Young Dr. SouthLos AngelesCA90095USA
| | - Christine Vuong
- Department of Ecology and Evolutionary BiologyUniversity of California Los Angeles621 Charles E. Young Dr. SouthLos AngelesCA90095USA
| | - Yu Zhang
- Department of Ecology and Evolutionary BiologyUniversity of California Los Angeles621 Charles E. Young Dr. SouthLos AngelesCA90095USA
| | - Teera Watcharamongkol
- Plants, Photosynthesis and Soil, School of BiosciencesUniversity of SheffieldSheffieldS10 2TNUK
- Faculty of Science and TechnologyKanchanaburi Rajabhat UniversityKanchanaburi71190Thailand
| | - Hervé Cochard
- Université Clermont Auvergne, INRAE, PIAF63000Clermont‐FerrandFrance
| | - Christine Scoffoni
- Department of Biological SciencesCalifornia State University Los Angeles5151 State University Dr.Los AngelesCA90032USA
| | - Erika J. Edwards
- Department of Ecology and Evolutionary BiologyYale UniversityNew HavenCT06520USA
| | - Colin P. Osborne
- Plants, Photosynthesis and Soil, School of BiosciencesUniversity of SheffieldSheffieldS10 2TNUK
| | - Lawren Sack
- Department of Ecology and Evolutionary BiologyUniversity of California Los Angeles621 Charles E. Young Dr. SouthLos AngelesCA90095USA
| |
Collapse
|
6
|
Zhou H, Akçay E, Edwards EJ, Ho CL, Abdullahi A, Zheng Y, Helliker BR. C 4 photosynthesis and hydraulics in grasses. THE NEW PHYTOLOGIST 2025; 245:1481-1495. [PMID: 39746467 DOI: 10.1111/nph.20284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/30/2024] [Indexed: 01/04/2025]
Abstract
The anatomical reorganization required for C4 photosynthesis should also impact plant hydraulics. Most C4 plants possess large bundle sheath cells and high vein density, which should also lead to higher leaf capacitance and hydraulic conductance (Kleaf). Paradoxically, the C4 pathway reduces water demand and increases water use efficiency, creating a potential mismatch between supply capacity and demand in C4 plant water relations. Here, we use phylogenetic analyses, physiological measurements, and models to examine the reorganization of hydraulics in closely related C4 and C3 grasses. The evolution of C4 disrupts the expected positive correlation between maximal assimilation rate (Amax) and Kleaf, decoupling a canonical relationship between hydraulics and photosynthesis generally observed in vascular plants. Evolutionarily young C4 lineages have higher Kleaf, capacitance, turgor loss point, and lower stomatal conductance than their C3 relatives. By contrast, species from older C4 lineages show decreased Kleaf and capacitance. The decline of Kleaf through the evolution of C4 lineages was likely controlled by the reduction in outside-xylem hydraulic conductance, for example the reorganization of leaf intercellular airspace. These results indicate that, over time, C4 plants have evolved to optimize hydraulic investments while maintaining the anatomical requirements for the C4 carbon-concentrating mechanism.
Collapse
Affiliation(s)
- Haoran Zhou
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, 300072, China
| | - Erol Akçay
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Erika J Edwards
- Department of Ecology and Evolutionary Biology, Yale University, PO Box 208106, New Haven, CT, 06520, USA
| | - Che-Ling Ho
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Adam Abdullahi
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yunpu Zheng
- School of Water Conservancy and Hydropower, Hebei University of Engineering, Handan, 056038, Hebei, China
| | - Brent R Helliker
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
7
|
Allard JB, Sharma S, Patel R, Sanderford M, Tamura K, Vucetic S, Gerhard GS, Kumar S. Evolutionary sparse learning with paired species contrast reveals the shared genetic basis of convergent traits. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.08.631987. [PMID: 39829798 PMCID: PMC11741315 DOI: 10.1101/2025.01.08.631987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Cases abound in which nearly identical traits have appeared in distant species facing similar environments. These unmistakable examples of adaptive evolution offer opportunities to gain insight into their genetic origins and mechanisms through comparative analyses. Here, we present a novel comparative genomics approach to build genetic models that underlie the independent origins of convergent traits using evolutionary sparse learning. We test the hypothesis that common genes and sites are involved in the convergent evolution of two key traits: C4 photosynthesis in grasses and echolocation in mammals. Genetic models were highly predictive of independent cases of convergent evolution of C4 photosynthesis. These results support the involvement of sequence substitutions in many common genetic loci in the evolution of convergent traits studied. Genes contributing to genetic models for echolocation were highly enriched for functional categories related to hearing, sound perception, and deafness (P < 10-6); a pattern that has eluded previous efforts applying standard molecular evolutionary approaches. We conclude that phylogeny-informed machine learning naturally excludes apparent molecular convergences due to shared species history, enhances the signal-to-noise ratio for detecting molecular convergence, and empowers the discovery of common genetic bases of trait convergences.
Collapse
Affiliation(s)
- John B. Allard
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA 19122, USA
- Department of Biology, Temple University, Philadelphia, PA 19122, USA
| | - Sudip Sharma
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA 19122, USA
- Department of Biology, Temple University, Philadelphia, PA 19122, USA
| | - Ravi Patel
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA 19122, USA
- Department of Biology, Temple University, Philadelphia, PA 19122, USA
| | - Maxwell Sanderford
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA 19122, USA
- Department of Biology, Temple University, Philadelphia, PA 19122, USA
| | - Koichiro Tamura
- Department of Biological Sciences, Tokyo Metropolitan University, Tokyo, Japan
- Research Center for Genomics and Bioinformatics, Tokyo Metropolitan University, Tokyo, Japan
| | - Slobodan Vucetic
- Department of Computer and Information Sciences, Temple University, Philadelphia PA, United States of America
| | - Glenn S. Gerhard
- Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Sudhir Kumar
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA 19122, USA
- Department of Biology, Temple University, Philadelphia, PA 19122, USA
- Center for Excellence in Genome Medicine and Research, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
8
|
Grass Phylogeny Working Group III. A nuclear phylogenomic tree of grasses (Poaceae) recovers current classification despite gene tree incongruence. THE NEW PHYTOLOGIST 2025; 245:818-834. [PMID: 39568153 DOI: 10.1111/nph.20263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 10/10/2024] [Indexed: 11/22/2024]
Abstract
Grasses (Poaceae) comprise c. 11 800 species and are central to human livelihoods and terrestrial ecosystems. Knowing their relationships and evolutionary history is key to comparative research and crop breeding. Advances in genome-scale sequencing allow for increased breadth and depth of phylogenomic analyses, making it possible to infer a new reference species tree of the family. We inferred a comprehensive species tree of grasses by combining new and published sequences for 331 nuclear genes from genome, transcriptome, target enrichment and shotgun data. Our 1153-tip tree covers 79% of grass genera (including 21 genera sequenced for the first time) and all but two small tribes. We compared it to a newly inferred 910-tip plastome tree. We recovered most of the tribes and subfamilies previously established, despite pervasive incongruence among nuclear gene trees. The early diversification of the PACMAD clade could represent a hard polytomy. Gene tree-species tree reconciliation suggests that reticulation events occurred repeatedly. Nuclear-plastome incongruence is rare, with very few cases of supported conflict. We provide a robust framework for the grass tree of life to support research on grass evolution, including modes of reticulation, and genetic diversity for sustainable agriculture.
Collapse
|
9
|
Simpson KJ, Mian S, Forrestel EJ, Hackel J, Morton JA, Leitch AR, Leitch IJ. Bigger genomes provide environment-dependent growth benefits in grasses. THE NEW PHYTOLOGIST 2024; 244:2049-2061. [PMID: 39351620 DOI: 10.1111/nph.20150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/05/2024] [Indexed: 11/08/2024]
Abstract
Increasing genome size (GS) has been associated with slower rates of DNA replication and greater cellular nitrogen (N) and phosphorus demands. Despite most plant species having small genomes, the existence of larger GS species suggests that such costs may be negligible or represent benefits under certain conditions. Focussing on the widespread and diverse grass family (Poaceae), we used data on species' climatic niches and growth rates under different environmental conditions to test for growth costs or benefits associated with GS. The influence of photosynthetic pathway, life history and evolutionary history on grass GS was also explored. We found that evolutionary history, photosynthetic pathway and life history all influence the distribution of grass species' GS. Genomes were smaller in annual and C4 species, the latter allowing for small cells necessary for C4 leaf anatomy. We found larger GS were associated with high N availability and, for perennial species, low growth-season temperature. Our findings reveal that GS is a globally important predictor of grass performance dependent on environmental conditions. The benefits for species with larger GS are likely due to associated larger cell sizes, allowing rapid biomass production where soil fertility meets N demands and/or when growth occurs via temperature-independent cell expansion.
Collapse
Affiliation(s)
- Kimberley J Simpson
- Plants, Photosynthesis and Soils, School of Biosciences, University of Sheffield, Sheffield, South Yorkshire, S10 2TN, UK
- Botany Department, Rhodes University, Makhanda, Eastern Cape, 6140, South Africa
| | - Sahr Mian
- Department of Trait Diversity and Function, Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
| | - Elisabeth J Forrestel
- Department of Viticultural and Enology, University of California, Davis, CA, 95616-5270, USA
| | - Jan Hackel
- Department of Biology, University of Marburg, Marburg, 35043, Germany
| | - Joseph A Morton
- Department of Trait Diversity and Function, Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, E1 4DQ, UK
| | - Andrew R Leitch
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, E1 4DQ, UK
| | - Ilia J Leitch
- Department of Trait Diversity and Function, Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
| |
Collapse
|
10
|
Swift J, Luginbuehl LH, Hua L, Schreier TB, Donald RM, Stanley S, Wang N, Lee TA, Nery JR, Ecker JR, Hibberd JM. Exaptation of ancestral cell-identity networks enables C 4 photosynthesis. Nature 2024; 636:143-150. [PMID: 39567684 PMCID: PMC11618092 DOI: 10.1038/s41586-024-08204-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 10/11/2024] [Indexed: 11/22/2024]
Abstract
C4 photosynthesis is used by the most productive plants on the planet, and compared with the ancestral C3 pathway, it confers a 50% increase in efficiency1. In more than 60 C4 lineages, CO2 fixation is compartmentalized between tissues, and bundle-sheath cells become photosynthetically activated2. How the bundle sheath acquires this alternate identity that allows efficient photosynthesis is unclear. Here we show that changes to bundle-sheath gene expression in C4 leaves are associated with the gain of a pre-existing cis-code found in the C3 leaf. From single-nucleus gene-expression and chromatin-accessibility atlases, we uncover DNA binding with one finger (DOF) motifs that define bundle-sheath identity in the major crops C3 rice and C4 sorghum. Photosynthesis genes that are rewired to be strongly expressed in the bundle-sheath cells of C4 sorghum acquire cis-elements that are recognized by DOFs. Our findings are consistent with a simple model in which C4 photosynthesis is based on the recruitment of an ancestral cis-code associated with bundle-sheath identity. Gain of such elements harnessed a stable patterning of transcription factors between cell types that are found in both C3 and C4 leaves to activate photosynthesis in the bundle sheath. Our findings provide molecular insights into the evolution of the complex C4 pathway, and might also guide the rational engineering of C4 photosynthesis in C3 crops to improve crop productivity and resilience3,4.
Collapse
Affiliation(s)
- Joseph Swift
- Plant Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | | | - Lei Hua
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Tina B Schreier
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
- Department of Biology, University of Oxford, Oxford, UK
| | - Ruth M Donald
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Susan Stanley
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Na Wang
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Travis A Lee
- Plant Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Joseph R Nery
- Genomic Analysis Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Joseph R Ecker
- Plant Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA.
- Genomic Analysis Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA.
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA, USA.
| | - Julian M Hibberd
- Department of Plant Sciences, University of Cambridge, Cambridge, UK.
| |
Collapse
|
11
|
Guo J, Luo D, Chen Y, Li F, Gong J, Yu F, Zhang W, Qi J, Guo C. Spatiotemporal transcriptome atlas reveals gene regulatory patterns during the organogenesis of the rapid growing bamboo shoots. THE NEW PHYTOLOGIST 2024; 244:1057-1073. [PMID: 39140996 DOI: 10.1111/nph.20059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/30/2024] [Indexed: 08/15/2024]
Abstract
Bamboo with its remarkable growth rate and economic significance, offers an ideal system to investigate the molecular basis of organogenesis in rapidly growing plants, particular in monocots, where gene regulatory networks governing the maintenance and differentiation of shoot apical and intercalary meristems remain a subject of controversy. We employed both spatial and single-nucleus transcriptome sequencing on 10× platform to precisely dissect the gene functions in various tissues and early developmental stages of bamboo shoots. Our comprehensive analysis reveals distinct cell trajectories during shoot development, uncovering critical genes and pathways involved in procambium differentiation, intercalary meristem formation, and vascular tissue development. Spatial and temporal expression patterns of key regulatory genes, particularly those related to hormone signaling and lipid metabolism, strongly support the hypothesis that intercalary meristem origin from surrounded parenchyma cells. Specific gene expressions in intercalary meristem exhibit regular and dispersed distribution pattern, offering clues for understanding the intricate molecular mechanisms that drive the rapid growth of bamboo shoots. The single-nucleus and spatial transcriptome analysis reveal a comprehensive landscape of gene activity, enhancing the understanding of the molecular architecture of organogenesis and providing valuable resources for future genomic and genetic studies relying on identities of specific cell types.
Collapse
Affiliation(s)
- Jing Guo
- Jiangxi Provincial Key Laboratory for Bamboo Germplasm Resources and Utilization, Forestry College, Jiangxi Agricultural University, Nanchang, 330045, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Dan Luo
- Jiangxi Provincial Key Laboratory for Bamboo Germplasm Resources and Utilization, Forestry College, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Yamao Chen
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Fengjiao Li
- Jiangxi Provincial Key Laboratory for Bamboo Germplasm Resources and Utilization, Forestry College, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Jiajia Gong
- Jiangxi Provincial Key Laboratory for Bamboo Germplasm Resources and Utilization, Forestry College, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Fen Yu
- Jiangxi Provincial Key Laboratory for Bamboo Germplasm Resources and Utilization, Forestry College, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Wengen Zhang
- Jiangxi Provincial Key Laboratory for Bamboo Germplasm Resources and Utilization, Forestry College, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Ji Qi
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Chunce Guo
- Jiangxi Provincial Key Laboratory for Bamboo Germplasm Resources and Utilization, Forestry College, Jiangxi Agricultural University, Nanchang, 330045, China
| |
Collapse
|
12
|
Mendieta JP, Tu X, Jiang D, Yan H, Zhang X, Marand AP, Zhong S, Schmitz RJ. Investigating the cis-regulatory basis of C 3 and C 4 photosynthesis in grasses at single-cell resolution. Proc Natl Acad Sci U S A 2024; 121:e2402781121. [PMID: 39312655 PMCID: PMC11459142 DOI: 10.1073/pnas.2402781121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 07/23/2024] [Indexed: 09/25/2024] Open
Abstract
While considerable knowledge exists about the enzymes pivotal for C4 photosynthesis, much less is known about the cis-regulation important for specifying their expression in distinct cell types. Here, we use single-cell-indexed ATAC-seq to identify cell-type-specific accessible chromatin regions (ACRs) associated with C4 enzymes for five different grass species. This study spans four C4 species, covering three distinct photosynthetic subtypes: Zea mays and Sorghum bicolor (NADP-dependent malic enzyme), Panicum miliaceum (NAD-dependent malic enzyme), Urochloa fusca (phosphoenolpyruvate carboxykinase), along with the C3 outgroup Oryza sativa. We studied the cis-regulatory landscape of enzymes essential across all C4 species and those unique to C4 subtypes, measuring cell-type-specific biases for C4 enzymes using chromatin accessibility data. Integrating these data with phylogenetics revealed diverse co-option of gene family members between species, showcasing the various paths of C4 evolution. Besides promoter proximal ACRs, we found that, on average, C4 genes have two to three distal cell-type-specific ACRs, highlighting the complexity and divergent nature of C4 evolution. Examining the evolutionary history of these cell-type-specific ACRs revealed a spectrum of conserved and novel ACRs, even among closely related species, indicating ongoing evolution of cis-regulation at these C4 loci. This study illuminates the dynamic and complex nature of cis-regulatory elements evolution in C4 photosynthesis, particularly highlighting the intricate cis-regulatory evolution of key loci. Our findings offer a valuable resource for future investigations, potentially aiding in the optimization of C3 crop performance under changing climatic conditions.
Collapse
Affiliation(s)
| | - Xiaoyu Tu
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single-Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai200240, China
| | - Daiquan Jiang
- State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, SAR
| | - Haidong Yan
- Department of Genetics, University of Georgia, Athens, GA30605
| | - Xuan Zhang
- Department of Genetics, University of Georgia, Athens, GA30605
| | | | - Silin Zhong
- State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, SAR
| | | |
Collapse
|
13
|
Li H, Hua M, Tariq N, Li X, Zhang Y, Zhang D, Liang W. EPAD1 Orthologs Play a Conserved Role in Pollen Exine Patterning. Int J Mol Sci 2024; 25:8914. [PMID: 39201600 PMCID: PMC11354838 DOI: 10.3390/ijms25168914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 09/02/2024] Open
Abstract
The pollen wall protects pollen during dispersal and is critical for pollination recognition. In the Poaceae family, the pollen exine stereostructure exhibits a high degree of conservation with similar patterns across species. However, there remains controversy regarding the conservation of key factors involved in its formation among various Poaceae species. EPAD1, as a gene specific to the Poaceae family, and its orthologous genes play a conserved role in pollen wall formation in wheat and rice. However, they do not appear to have significant functions in maize. To further confirm the conserved function of EPAD1 in Poaceae, we performed an analysis on four EPAD1 orthologs from two distinct sub-clades within the Poaceae family. The two functional redundant barley EPAD1 genes (HvEPAD1 and HvEPAD2) from the BOP clade, along with the single copy of sorghum (SbEPAD1) and millet (SiEPAD1) from the PACMAD clade were examined. The CRISPR-Cas9-generated mutants all exhibited defects in pollen wall formation, consistent with previous findings on EPAD1 in rice and wheat. Interestingly, in barley, hvepad2 single mutant also showed apical spikelets abortion, aligning with a decreased expression level of HvEPAD1 and HvEPAD2 from the apical to the bottom of the spike. Our finding provides evidence that EPAD1 orthologs contribute to Poaceae specific pollen exine pattern formation via maintaining primexine integrity despite potential variations in copy numbers across different species.
Collapse
Affiliation(s)
- Huanjun Li
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (H.L.); (M.H.); (N.T.); (X.L.); (Y.Z.); (D.Z.)
| | - Miaoyuan Hua
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (H.L.); (M.H.); (N.T.); (X.L.); (Y.Z.); (D.Z.)
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Naveed Tariq
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (H.L.); (M.H.); (N.T.); (X.L.); (Y.Z.); (D.Z.)
| | - Xian Li
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (H.L.); (M.H.); (N.T.); (X.L.); (Y.Z.); (D.Z.)
| | - Yushi Zhang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (H.L.); (M.H.); (N.T.); (X.L.); (Y.Z.); (D.Z.)
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (H.L.); (M.H.); (N.T.); (X.L.); (Y.Z.); (D.Z.)
| | - Wanqi Liang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (H.L.); (M.H.); (N.T.); (X.L.); (Y.Z.); (D.Z.)
| |
Collapse
|
14
|
Lyu H, Yim WC, Yu Q. Genomic and Transcriptomic Insights into the Evolution of C4 Photosynthesis in Grasses. Genome Biol Evol 2024; 16:evae163. [PMID: 39066653 PMCID: PMC11319937 DOI: 10.1093/gbe/evae163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/18/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024] Open
Abstract
C4 photosynthesis has independently evolved over 62 times within 19 angiosperm families. The recurrent evolution of C4 photosynthesis appears to contradict the complex anatomical and biochemical modifications required for the transition from C3 to C4 photosynthesis. In this study, we conducted an integrated analysis of genomics and transcriptomics to elucidate the molecular underpinnings of convergent C4 evolution in the grass family. Our genome-wide exploration of C4-related gene families suggests that the expansion of these gene families may have played an important role in facilitating C4 evolution in the grass family. A phylogenomic synteny network analysis uncovered the emergence of C4 genes in various C4 grass lineages from a common ancestral gene pool. Moreover, through a comparison between non-C4 and C4 PEPCs, we pinpointed 14 amino acid sites exhibiting parallel adaptations. These adaptations, occurring post the BEP-PACMAD divergence, shed light on why all C4 origins in grasses are confined to the PACMAD clade. Furthermore, our study revealed that the ancestor of Chloridoideae grasses possessed a more favorable molecular preadaptation for C4 functions compared to the ancestor of Panicoideae grasses. This molecular preadaptation potentially explains why C4 photosynthesis evolved earlier in Chloridoideae than in Panicoideae and why the C3-to-C4 transition occurred once in Chloridoideae but multiple times in Panicoideae. Additionally, we found that C4 genes share similar cis-elements across independent C4 lineages. Notably, NAD-ME subtype grasses may have retained the ancestral regulatory machinery of the C4 NADP-ME gene, while NADP-ME subtype grasses might have undergone unique cis-element modifications.
Collapse
Affiliation(s)
- Haomin Lyu
- Tropical Plant Genetic Resources and Disease Research Unit, Daniel K Inouye U.S. Pacific Basin Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Hilo, HI 96720, USA
- Hawaii Agriculture Research Center, Kunia, HI 96759, USA
| | - Won Cheol Yim
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557, USA
| | - Qingyi Yu
- Tropical Plant Genetic Resources and Disease Research Unit, Daniel K Inouye U.S. Pacific Basin Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Hilo, HI 96720, USA
| |
Collapse
|
15
|
Mendieta JP, Tu X, Jiang D, Yan H, Zhang X, Marand AP, Zhong S, Schmitz RJ. Investigating the cis-Regulatory Basis of C 3 and C 4 Photosynthesis in Grasses at Single-Cell Resolution. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.05.574340. [PMID: 38405933 PMCID: PMC10888913 DOI: 10.1101/2024.01.05.574340] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
While considerable knowledge exists about the enzymes pivotal for C4 photosynthesis, much less is known about the cis-regulation important for specifying their expression in distinct cell types. Here, we use single-cell-indexed ATAC-seq to identify cell-type-specific accessible chromatin regions (ACRs) associated with C4 enzymes for five different grass species. This study spans four C4 species, covering three distinct photosynthetic subtypes: Zea mays and Sorghum bicolor (NADP-ME), Panicum miliaceum (NAD-ME), Urochloa fusca (PEPCK), along with the C3 outgroup Oryza sativa. We studied the cis-regulatory landscape of enzymes essential across all C4 species and those unique to C4 subtypes, measuring cell-type-specific biases for C4 enzymes using chromatin accessibility data. Integrating these data with phylogenetics revealed diverse co-option of gene family members between species, showcasing the various paths of C4 evolution. Besides promoter proximal ACRs, we found that, on average, C4 genes have two to three distal cell-type-specific ACRs, highlighting the complexity and divergent nature of C4 evolution. Examining the evolutionary history of these cell-type-specific ACRs revealed a spectrum of conserved and novel ACRs, even among closely related species, indicating ongoing evolution of cis-regulation at these C4 loci. This study illuminates the dynamic and complex nature of CRE evolution in C4 photosynthesis, particularly highlighting the intricate cis-regulatory evolution of key loci. Our findings offer a valuable resource for future investigations, potentially aiding in the optimization of C3 crop performance under changing climatic conditions.
Collapse
Affiliation(s)
| | - Xiaoyu Tu
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Daiquan Jiang
- State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong
| | - Haidong Yan
- Department of Genetics, University of Georgia
| | - Xuan Zhang
- Department of Genetics, University of Georgia
| | - Alexandre P Marand
- Department of Genetics, University of Georgia
- Department of Molecular, Cellular, and Development Biology, University of Michigan
| | - Silin Zhong
- State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong
| | | |
Collapse
|
16
|
Ekram MAE, Campbell M, Kose SH, Plet C, Hamilton R, Bijaksana S, Grice K, Russell J, Stevenson J, Vogel H, Coolen MJL. A 1 Ma sedimentary ancient DNA (sedaDNA) record of catchment vegetation changes and the developmental history of tropical Lake Towuti (Sulawesi, Indonesia). GEOBIOLOGY 2024; 22:e12599. [PMID: 38745401 DOI: 10.1111/gbi.12599] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 12/24/2023] [Accepted: 04/18/2024] [Indexed: 05/16/2024]
Abstract
Studying past ecosystems from ancient environmental DNA preserved in lake sediments (sedaDNA) is a rapidly expanding field. This research has mainly involved Holocene sediments from lakes in cool climates, with little known about the suitability of sedaDNA to reconstruct substantially older ecosystems in the warm tropics. Here, we report the successful recovery of chloroplast trnL (UAA) sequences (trnL-P6 loop) from the sedimentary record of Lake Towuti (Sulawesi, Indonesia) to elucidate changes in regional tropical vegetation assemblages during the lake's Late Quaternary paleodepositional history. After the stringent removal of contaminants and sequence artifacts, taxonomic assignment of the remaining genuine trnL-P6 reads showed that native nitrogen-fixing legumes, C3 grasses, and shallow wetland vegetation (Alocasia) were most strongly associated with >1-million-year-old (>1 Ma) peats and silts (114-98.8 m composite depth; mcd), which were deposited in a landscape of active river channels, shallow lakes, and peat-swamps. A statistically significant shift toward partly submerged shoreline vegetation that was likely rooted in anoxic muddy soils (i.e., peatland forest trees and wetland C3 grasses (Oryzaceae) and nutrient-demanding aquatic herbs (presumably Oenanthe javanica)) occurred at 76 mcd (~0.8 Ma), ~0.2 Ma after the transition into a permanent lake. This wetland vegetation was most strongly associated with diatom ooze (46-37 mcd), thought to be deposited during maximum nutrient availability and primary productivity. Herbs (Brassicaceae), trees/shrubs (Fabaceae and Theaceae), and C3 grasses correlated with inorganic parameters, indicating increased drainage of ultramafic sediments and laterite soils from the lakes' catchment, particularly at times of inferred drying. Downcore variability in trnL-P6 from tropical forest trees (Toona), shady ground cover herbs (Zingiberaceae), and tree orchids (Luisia) most strongly correlated with sediments of a predominantly felsic signature considered to be originating from the catchment of the Loeha River draining into Lake Towuti during wetter climate conditions. However, the co-correlation with dry climate-adapted trees (i.e., Castanopsis or Lithocarpus) plus C4 grasses suggests that increased precipitation seasonality also contributed to the increased drainage of felsic Loeha River sediments. This multiproxy approach shows that despite elevated in situ temperatures, tropical lake sediments potentially comprise long-term archives of ancient environmental DNA for reconstructing ecosystems, which warrants further exploration.
Collapse
Affiliation(s)
- Md Akhtar-E Ekram
- The Institute for Geoscience Research (TIGeR), Western Australia Organic and Isotope Geochemistry Centre (WAOIGC), School of Earth and Planetary Sciences (EPS), Curtin University, Bentley, Western Australia, Australia
| | - Matthew Campbell
- The Institute for Geoscience Research (TIGeR), Western Australia Organic and Isotope Geochemistry Centre (WAOIGC), School of Earth and Planetary Sciences (EPS), Curtin University, Bentley, Western Australia, Australia
| | - Sureyya H Kose
- The Institute for Geoscience Research (TIGeR), Western Australia Organic and Isotope Geochemistry Centre (WAOIGC), School of Earth and Planetary Sciences (EPS), Curtin University, Bentley, Western Australia, Australia
| | - Chloe Plet
- The Institute for Geoscience Research (TIGeR), Western Australia Organic and Isotope Geochemistry Centre (WAOIGC), School of Earth and Planetary Sciences (EPS), Curtin University, Bentley, Western Australia, Australia
| | - Rebecca Hamilton
- ARC Centre of Excellence for Australian Biodiversity and Heritage and Archaeology and Natural History, School of Culture, History, and Language, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Satria Bijaksana
- Faculty of Mining and Petroleum Engineering, Institut Teknologi Bandung, Bandung, Indonesia
| | - Kliti Grice
- The Institute for Geoscience Research (TIGeR), Western Australia Organic and Isotope Geochemistry Centre (WAOIGC), School of Earth and Planetary Sciences (EPS), Curtin University, Bentley, Western Australia, Australia
| | - James Russell
- Department of Earth, Environmental, and Planetary Sciences (DEEPS), Brown University, Providence, Rhode Island, USA
| | - Janelle Stevenson
- ARC Centre of Excellence for Australian Biodiversity and Heritage and Archaeology and Natural History, School of Culture, History, and Language, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Hendrik Vogel
- Institute of Geological Sciences & Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
| | - Marco J L Coolen
- The Institute for Geoscience Research (TIGeR), Western Australia Organic and Isotope Geochemistry Centre (WAOIGC), School of Earth and Planetary Sciences (EPS), Curtin University, Bentley, Western Australia, Australia
| |
Collapse
|
17
|
Ben Romdhane W, Al-Doss A, Hassairi A. The newly assembled chloroplast genome of Aeluropus littoralis: molecular feature characterization and phylogenetic analysis with related species. Sci Rep 2024; 14:6472. [PMID: 38499663 PMCID: PMC10948853 DOI: 10.1038/s41598-024-57141-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/14/2024] [Indexed: 03/20/2024] Open
Abstract
Aeluropus littoralis, a halophyte grass, is widely distributed from the Mediterranean to the Indian subcontinent through the Mongolian Gobi. This model halophyte has garnered increasing attention owing to its use as forage and its high tolerance to environmental stressors. The chloroplast genomes of many plants have been extensively examined for molecular, phylogenetic and transplastomic applications. However, no published research on the A. littoralis chloroplast (cp) genome was discovered. Here, the entire chloroplast genome of A. littoralis was assembled implementing accurate long-read sequences. The entire chloroplast genome, with an estimated length of 135,532 bp (GC content: 38.2%), has a quadripartite architecture and includes a pair of inverted repeat (IR) regions, IRa and IRb (21,012 bp each), separated by a large and a small single-copy regions (80,823 and 12,685 bp, respectively). The features of A. littoralis consist of 133 genes that synthesize 87 peptides, 38 transfer RNAs, and 8 ribosomal RNAs. Of these genes, 86 were unique, whereas 19 were duplicated in IR regions. Additionally, a total of forty-six simple sequence repeats, categorized into 32-mono, four-di, two-tri, and eight-tetranucleotides, were discovered. Furthermore, ten sets of repeats greater than 20 bp were located primarily in the LSC region. Evolutionary analysis based on chloroplast sequence data revealed that A. littoralis with A. lagopoides and A. sinensis belong to the Aeluropodinae subtribe, which is a sister to the Eleusininae in the tribe Cynodonteae and the subfamily Chloridoideae. This subfamily belongs to the PACMAD clade, which contains the majority of the C4 photosynthetic plants in the Poaceae. The newly constructed A. littoralis cp genome offers valuable knowledge for DNA barcoding, phylogenetic, transplastomic research, and other biological studies.
Collapse
Affiliation(s)
- Walid Ben Romdhane
- College of Food and Agricultural Sciences, Plant Production Department, King Saud University, P.O. Box 2460, 11451, Riyadh, Saudi Arabia.
| | - Abdullah Al-Doss
- College of Food and Agricultural Sciences, Plant Production Department, King Saud University, P.O. Box 2460, 11451, Riyadh, Saudi Arabia
| | - Afif Hassairi
- College of Food and Agricultural Sciences, Plant Production Department, King Saud University, P.O. Box 2460, 11451, Riyadh, Saudi Arabia.
| |
Collapse
|
18
|
Anggarani M, Lin YY, Fang SA, Wu HP, Wu CC, Jane WN, Roscoe TJ, Domergue F, Hsing YIC. Morphology and chemical composition of Taiwan oil millet (Eccoilopus formosanus) epicuticular wax. PLANTA 2024; 259:89. [PMID: 38467941 DOI: 10.1007/s00425-024-04352-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 01/25/2024] [Indexed: 03/13/2024]
Abstract
MAIN CONCLUSION Taiwan oil millet has two types of epicuticular wax: platelet wax composed primarily of octacosanol and filament wax constituted essentially by the singular compound of octacosanoic acid. Taiwan oil millet (TOM-Eccoilopus formosanus) is an orphan crop cultivated by the Taiwan indigenous people. It has conspicuous white powder covering its leaf sheath indicating abundant epicuticular waxes, that may contribute to its resilience. Here, we characterized the epicuticular wax secretion in TOM leaf blade and leaf sheath using various microscopy techniques, as well as gas chromatography to determine its composition. Two kinds of waxes, platelet and filaments, were secreted in both the leaf blades and sheaths. The platelet wax is secreted ubiquitously by epidermal cells, whereas the filament wax is secreted by a specific cell called epidermal cork cells. The newly developed filament waxes were markedly re-synthesized by the epidermal cork cells through papillae protrusions on the external periclinal cell wall. Ultrastructural images of cork cell revealed the presence of cortical endoplasmic reticulum (ER) tubules along the periphery of plasma membrane (PM) and ER-PM contact sites (EPCS). The predominant wax component was a C28 primary alcohol in leaf blade, and a C28 free fatty acid in the leaf sheath, pseudopetiole and midrib. The wax morphology present in distinct plant organs corresponds to the specific chemical composition: platelet wax composed of alcohols exists mainly in the leaf blade, whereas filament wax constituted mainly by the singular compound C28 free fatty acids is present abundantly in leaf sheath. Our study clarifies the filament wax composition in relation to a previous study in sorghum. Both platelet and filament waxes comprise a protection barrier for TOM.
Collapse
Affiliation(s)
- Marita Anggarani
- Institute of Plant and Microbial Biology, Academia Sinica, 128 Sec. 2 Academia Rd., Nankang, Taipei, 115201, Taiwan
| | - Yu-Ying Lin
- Institute of Plant and Microbial Biology, Academia Sinica, 128 Sec. 2 Academia Rd., Nankang, Taipei, 115201, Taiwan
| | - Shao-An Fang
- Institute of Plant and Microbial Biology, Academia Sinica, 128 Sec. 2 Academia Rd., Nankang, Taipei, 115201, Taiwan
| | - Hshin-Ping Wu
- Institute of Plant and Microbial Biology, Academia Sinica, 128 Sec. 2 Academia Rd., Nankang, Taipei, 115201, Taiwan
| | - Chi-Chih Wu
- Institute of Plant and Microbial Biology, Academia Sinica, 128 Sec. 2 Academia Rd., Nankang, Taipei, 115201, Taiwan
| | - Wann-Neng Jane
- Institute of Plant and Microbial Biology, Academia Sinica, 128 Sec. 2 Academia Rd., Nankang, Taipei, 115201, Taiwan
| | - Thomas James Roscoe
- Regulations Epigenetiques et Developpement de la Graine, ERL 5300 CNRS-IRD UMR DIADE, IRD Centre de Montpellier, 911 Avenue Agropolis, 34394, Montpellier, France
| | - Frederic Domergue
- Univ. Bordeaux, CNRS, LBM, UMR 5200, 33140, Villenave d'Ornon, France
| | - Yue-Ie Caroline Hsing
- Institute of Plant and Microbial Biology, Academia Sinica, 128 Sec. 2 Academia Rd., Nankang, Taipei, 115201, Taiwan.
| |
Collapse
|
19
|
Carvalho P, Gomes C, Gonçalves I, Lourenço TF, Vlad D, Langdale JA, Saibo NJM. The bHLH transcription factor OsPRI1 activates the Setaria viridis PEPC1 promoter in rice. THE NEW PHYTOLOGIST 2024; 241:2495-2505. [PMID: 38323734 DOI: 10.1111/nph.19556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/29/2023] [Indexed: 02/08/2024]
Abstract
Photosynthetic efficiency is reduced by the dual role of Rubisco, which acts either as a carboxylase or as an oxygenase, the latter leading to photorespiration. C4 photosynthesis evolved as a carbon-concentrating mechanism to reduce photorespiration. To engineer C4 into a C3 plant, it is essential to understand how C4 genes, such as phosphoenolpyruvate carboxylase (PEPC1), are regulated to be expressed at high levels and in a cell-specific manner. Yeast one-hybrid screening was used to show that OsPRI1, a rice bHLH transcription factor involved in iron homeostasis, binds to the Setaria viridis PEPC1 promoter. This promoter drives mesophyll-specific gene expression in rice. The role of OsPRI1 in planta was characterized using a rice line harbouring SvPEPC1pro ::GUS. We show that OsPRI1 activates the S. viridis PEPC1 promoter by binding to an N-box in the proximal promoter, and that GUS activity is highly reduced in SvPEPC1pro ::GUS lines when OsPRI1 is mutated. Cross-species comparisons showed that the SvPRI1 homolog binds to the SvPEPC1 promoter but the maize ZmPRI1 does not bind to the ZmPEPC1 promoter. Our results suggest that elements of the iron homeostasis pathway were co-opted to regulate PEPC1 gene expression during the evolution of some but not all C4 species.
Collapse
Affiliation(s)
- Pedro Carvalho
- Instituto de Tecnologia Química e Biológica António Xavier da Universidade Nova de Lisboa (ITQB NOVA), 2780-157, Oeiras, Portugal
| | - Célia Gomes
- Instituto de Tecnologia Química e Biológica António Xavier da Universidade Nova de Lisboa (ITQB NOVA), 2780-157, Oeiras, Portugal
| | - Ivan Gonçalves
- Instituto de Tecnologia Química e Biológica António Xavier da Universidade Nova de Lisboa (ITQB NOVA), 2780-157, Oeiras, Portugal
| | - Tiago F Lourenço
- Instituto de Tecnologia Química e Biológica António Xavier da Universidade Nova de Lisboa (ITQB NOVA), 2780-157, Oeiras, Portugal
| | - Daniela Vlad
- Department of Biology, University of Oxford, South Parks Rd, OX1 3RB, Oxford, UK
| | - Jane A Langdale
- Department of Biology, University of Oxford, South Parks Rd, OX1 3RB, Oxford, UK
| | - Nelson J M Saibo
- Instituto de Tecnologia Química e Biológica António Xavier da Universidade Nova de Lisboa (ITQB NOVA), 2780-157, Oeiras, Portugal
- Instituto de Biologia Experimental e Tecnológica (iBET), 2780-157, Oeiras, Portugal
| |
Collapse
|
20
|
Koteyeva NK, Voznesenskaya EV, Pathare VS, Borisenko TA, Zhurbenko PM, Morozov GA, Edwards GE. Biochemical and Structural Diversification of C 4 Photosynthesis in Tribe Zoysieae (Poaceae). PLANTS (BASEL, SWITZERLAND) 2023; 12:4049. [PMID: 38068683 PMCID: PMC10798372 DOI: 10.3390/plants12234049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 01/22/2024]
Abstract
C4 photosynthesis has evolved independently multiple times in grass lineages with nine anatomical and three biochemical subtypes. Chloridoideae represents one of the separate events and contains species of two biochemical subtypes, NAD-ME and PEP-CK. Assessment of C4 photosynthesis diversification is limited by species sampling. In this study, the biochemical subtypes together with anatomical leaf traits were analyzed in 19 species to reveal the evolutionary scenario for diversification of C4 photosynthesis in tribe Zoysieae (Chloridoideae). The effect of habitat on anatomical and biochemical diversification was also evaluated. The results for the 19 species studied indicate that 11 species have only NAD-ME as a decarboxylating enzyme, while eight species belong to the PEP-CK subtype. Leaf anatomy corresponds to the biochemical subtype. Analysis of Zoysieae phylogeny indicates multiple switches between PEP-CK and NAD-ME photosynthetic subtypes, with PEP-CK most likely as the ancestral subtype, and with multiple independent PEP-CK decarboxylase losses and its secondary acquisition. A strong correlation was detected between C4 biochemical subtypes studied and habitat annual precipitation wherein NAD-ME species are confined to drier habitats, while PEP-CK species prefer humid areas. Structural adaptations to arid climate include increases in leaf thickness and interveinal distance. Our analysis suggests that multiple loss of PEP-CK decarboxylase could have been driven by climate aridization followed by continued adaptive changes in leaf anatomy.
Collapse
Affiliation(s)
- Nuria K. Koteyeva
- Laboratory of Anatomy and Morphology, Komarov Botanical Institute of Russian Academy of Sciences, 197376 St. Petersburg, Russia;
| | - Elena V. Voznesenskaya
- Laboratory of Anatomy and Morphology, Komarov Botanical Institute of Russian Academy of Sciences, 197376 St. Petersburg, Russia;
| | - Varsha S. Pathare
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Champaign, IL 61801, USA;
| | - Tatyana A. Borisenko
- Laboratory of Anatomy and Morphology, Komarov Botanical Institute of Russian Academy of Sciences, 197376 St. Petersburg, Russia;
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Peter M. Zhurbenko
- Laboratory of Biosystematics and Cytology, Komarov Botanical Institute of Russian Academy of Sciences, 197376 St. Petersburg, Russia;
| | - Grigory A. Morozov
- Chair of Medical Biology, North-Western State Medical University named after I.I. Mechnikov, 191015 St. Petersburg, Russia;
| | - Gerald E. Edwards
- School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA;
| |
Collapse
|
21
|
Pereira L, Bianconi ME, Osborne CP, Christin PA, Dunning LT. Alloteropsis semialata as a study system for C4 evolution in grasses. ANNALS OF BOTANY 2023; 132:365-382. [PMID: 37422712 PMCID: PMC10667010 DOI: 10.1093/aob/mcad078] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 07/07/2023] [Indexed: 07/10/2023]
Abstract
BACKGROUND Numerous groups of plants have adapted to CO2 limitations by independently evolving C4 photosynthesis. This trait relies on concerted changes in anatomy and biochemistry to concentrate CO2 within the leaf and thereby boost productivity in tropical conditions. The ecological and economic importance of C4 photosynthesis has motivated intense research, often relying on comparisons between distantly related C4 and non-C4 plants. The photosynthetic type is fixed in most species, with the notable exception of the grass Alloteropsis semialata. This species includes populations exhibiting the ancestral C3 state in southern Africa, intermediate populations in the Zambezian region and C4 populations spread around the palaeotropics. SCOPE We compile here the knowledge on the distribution and evolutionary history of the Alloteropsis genus as a whole and discuss how this has furthered our understanding of C4 evolution. We then present a chromosome-level reference genome for a C3 individual and compare the genomic architecture with that of a C4 accession of A. semialata. CONCLUSIONS Alloteropsis semialata is one of the best systems in which to investigate the evolution of C4 photosynthesis because the genetic and phenotypic variation provides a fertile ground for comparative and population-level studies. Preliminary comparative genomic investigations show that the C3 and C4 genomes are highly syntenic and have undergone a modest amount of gene duplication and translocation since the different photosynthetic groups diverged. The background knowledge and publicly available genomic resources make A. semialata a great model for further comparative analyses of photosynthetic diversification.
Collapse
Affiliation(s)
- Lara Pereira
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Western Bank, Sheffield S10 2TN,UK
| | - Matheus E Bianconi
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Western Bank, Sheffield S10 2TN,UK
| | - Colin P Osborne
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Pascal-Antoine Christin
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Western Bank, Sheffield S10 2TN,UK
| | - Luke T Dunning
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Western Bank, Sheffield S10 2TN,UK
| |
Collapse
|
22
|
Maybery-Reupert K, Isenegger D, Hayden M, Cogan N. Development of genomic resources for Rhodes grass ( Chloris gayana), draft genome and annotated variant discovery. FRONTIERS IN PLANT SCIENCE 2023; 14:1239290. [PMID: 37731974 PMCID: PMC10507473 DOI: 10.3389/fpls.2023.1239290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/18/2023] [Indexed: 09/22/2023]
Abstract
Genomic resources for grasses, especially warm-season grasses are limited despite their commercial and environmental importance. Here, we report the first annotated draft whole genome sequence for diploid Rhodes grass (Chloris gayana), a tropical C4 species. Generated using long read nanopore sequencing and assembled using the Flye software package, the assembled genome is 603 Mbp in size and comprises 5,233 fragments that were annotated using the GenSas pipeline. The annotated genome has 46,087 predicted genes corresponding to 92.0% of the expected genomic content present via BUSCO analysis. Gene ontology terms and repetitive elements are identified and discussed. An additional 94 individual plant genotypes originating from three diploid and two tetraploid Rhodes grass cultivars were short-read whole genome resequenced (WGR) to generate a single nucleotide polymorphism (SNP) resource for the species that can be used to elucidate inter- and intra-cultivar relationships across both ploidy levels. A total of 75,777 high quality SNPs were used to generate a phylogenetic tree, highlighting the diversity present within the cultivars which agreed with the known breeding history. Differentiation was observed between diploid and tetraploid cultivars. The WGR data were also used to provide insights into the nature and evolution of the tetraploid status of the species, with results largely agreeing with the published literature that the tetraploids are autotetraploid.
Collapse
Affiliation(s)
- Kellie Maybery-Reupert
- Agriculture Victoria Research, AgriBio, The Centre for AgriBioscience, Bundoora, VIC, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, Australia
| | - Daniel Isenegger
- Agriculture Victoria Research, AgriBio, The Centre for AgriBioscience, Bundoora, VIC, Australia
| | - Matthew Hayden
- Agriculture Victoria Research, AgriBio, The Centre for AgriBioscience, Bundoora, VIC, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, Australia
| | - Noel Cogan
- Agriculture Victoria Research, AgriBio, The Centre for AgriBioscience, Bundoora, VIC, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, Australia
| |
Collapse
|
23
|
Yogadasan N, Doxey AC, Chuong SDX. A Machine Learning Framework Identifies Plastid-Encoded Proteins Harboring C3 and C4 Distinguishing Sequence Information. Genome Biol Evol 2023; 15:evad129. [PMID: 37462292 PMCID: PMC10368328 DOI: 10.1093/gbe/evad129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2023] [Indexed: 07/27/2023] Open
Abstract
C4 photosynthesis is known to have at least 61 independent origins across plant lineages making it one of the most notable examples of convergent evolution. Of the >60 independent origins, a predicted 22-24 origins, encompassing greater than 50% of all known C4 species, exist within the Panicoideae, Arundinoideae, Chloridoideae, Micrairoideae, Aristidoideae, and Danthonioideae (PACMAD) clade of the Poaceae family. This clade is therefore primed with species ideal for the study of genomic changes associated with the acquisition of the C4 photosynthetic trait. In this study, we take advantage of the growing availability of sequenced plastid genomes and employ a machine learning (ML) approach to screen for plastid genes harboring C3 and C4 distinguishing information in PACMAD species. We demonstrate that certain plastid-encoded protein sequences possess distinguishing and informative sequence information that allows them to train accurate ML C3/C4 classification models. Our RbcL-trained model, for example, informs a C3/C4 classifier with greater than 99% accuracy. Accurate prediction of photosynthetic type from individual sequences suggests biologically relevant, and potentially differing roles of these sequence products in C3 versus C4 metabolism. With this ML framework, we have identified several key sequences and sites that are most predictive of C3/C4 status, including RbcL, subunits of the NAD(P)H dehydrogenase complex, and specific residues within, further highlighting their potential significance in the evolution and/or maintenance of C4 photosynthetic machinery. This general approach can be applied to uncover intricate associations between other similar genotype-phenotype relationships.
Collapse
Affiliation(s)
| | - Andrew C Doxey
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Simon D X Chuong
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|
24
|
Zhao YJ, Liu J, Yin GS, Gong X. Characteristics of plastid genomes in the genus Ceratostigma inhabiting arid habitats in China and their phylogenomic implications. BMC PLANT BIOLOGY 2023; 23:303. [PMID: 37280518 DOI: 10.1186/s12870-023-04323-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 05/29/2023] [Indexed: 06/08/2023]
Abstract
BACKGROUND Ceratostigma, a genus in the Plumbaginaceae, is an ecologically dominant group of shrubs, subshrub and herb mainly distributed in Qinghai-Tibet Plateau and North China. Ceratostigma has been the focal group in several studies, owing to their importance in economic and ecological value and unique breeding styles. Despite this, the genome information is limited and interspecific relationships within the genus Cerotastigma remains unexplored. Here we sequenced, assembled and characterized the 14 plastomes of five species, and conducted phylogenetic analyses of Cerotastigma using plastomes and nuclear ribosomal DNA (nrDNA) data. RESULTS Fourteen Cerotastigma plastomes possess typical quadripartite structures with lengths from 164,076 to 168,355 bp that consist of a large single copy, a small single copy and a pair of inverted repeats, and contain 127-128 genes, including 82-83 protein coding genes, 37 transfer RNAs and eight ribosomal RNAs. All plastomes are highly conservative and similar in gene order, simple sequence repeats (SSRs), long repeat repeats and codon usage patterns, but some structural variations in the border of single copy and inverted repeats. Mutation hotspots in coding (Pi values > 0.01: matK, ycf3, rps11, rps3, rpl22 and ndhF) and non-coding regions (Pi values > 0.02: trnH-psbA, rps16-trnQ, ndhF-rpl32 and rpl32-trnL) were identified among plastid genomes that could be served as potential molecular markers for species delimitation and genetic variation studies in Cerotastigma. Gene selective pressure analysis showed that most protein-coding genes have been under purifying selection except two genes. Phylogenetic analyses based on whole plastomes and nrDNA strongly support that the five species formed a monophyletic clade. Moreover, interspecific delimitation was well resolved except C. minus, individuals of which clustered into two main clades corresponding to their geographic distributions. The topology inferred from the nrDNA dataset was not congruent with the tree derived from the analyses of the plastid dataset. CONCLUSION These findings represent the first important step in elucidating plastome evolution in this widespread distribution genus Cerotastigma in the Qinghai-Tibet Plateau. The detailed information could provide a valuable resource for understanding the molecular dynamics and phylogenetic relationship in the family Plumbaginaceae. Lineage genetic divergence within C. minus was perhaps promoted by geographic barriers in the Himalaya and Hengduan Mountains region, but introgression or hybridization could not be completely excluded.
Collapse
Affiliation(s)
- Yu-Juan Zhao
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- Yunnan Key Laboratory for Wild Plant Resources, Kunming, Yunnan, 650201, China
| | - Jian Liu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- Yunnan Key Laboratory for Wild Plant Resources, Kunming, Yunnan, 650201, China
| | - Gen-Shen Yin
- Institute of Agriculture and Life Sciences, Kunming University, Kunming, 650214, China
| | - Xun Gong
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China.
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
- Yunnan Key Laboratory for Wild Plant Resources, Kunming, Yunnan, 650201, China.
| |
Collapse
|
25
|
Wingler A, Sandel B. Relationships of the competitor, stress tolerator, ruderal functional strategies of grass species with lifespan, photosynthetic type, naturalization and climate. AOB PLANTS 2023; 15:plad021. [PMID: 37197712 PMCID: PMC10184452 DOI: 10.1093/aobpla/plad021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 04/27/2023] [Indexed: 05/19/2023]
Abstract
Grass species (family Poaceae) are globally distributed, adapted to a wide range of climates and express a diversity of functional strategies. We explored the functional strategies of grass species using the competitor, stress tolerator, ruderal (CSR) system and asked how a species' strategy relates to its functional traits, climatic distribution and propensity to become naturalized outside its native range. We used a global set of trait data for grass species to classify functional strategies according to the CSR system based on leaf traits. Differences in strategies in relation to lifespan (annual or perennial), photosynthetic type (C3 or C4), or naturalisation (native or introduced) were investigated. In addition, correlations with traits not included in the CSR classification were analyzed, and a model was fitted to predict a species' average mean annual temperature and annual precipitation across its range as a function of CSR scores. Values for competitiveness were higher in C4 species than in C3 species, values for stress tolerance were higher in perennials than in annuals, and introduced species had more pronounced competitive-ruderal strategies than native species. Relationships between the CSR classification, based on leaf traits, and other functional traits were analyzed. Competitiveness was positively correlated with height, while ruderality was correlated with specific root length, indicating that both above- and belowground traits underlying leaf and root economics contribute to realized CSR strategies. Further, relationships between climate and CSR classification showed that species with competitive strategies were more common in warm climates and at high precipitation, whereas species with stress tolerance strategies were more common in cold climates and at low precipitation. The findings presented here demonstrate that CSR classification of functional strategies based on leaf traits matches expectations for the adaptations of grass species that underlie lifespan, photosynthetic type, naturalization and climate.
Collapse
Affiliation(s)
| | - Brody Sandel
- Department of Biology, Santa Clara University, Santa Clara, CA, USA
| |
Collapse
|
26
|
Hughes TE, Sedelnikova O, Thomas M, Langdale JA. Mutations in NAKED-ENDOSPERM IDD genes reveal functional interactions with SCARECROW during leaf patterning in C4 grasses. PLoS Genet 2023; 19:e1010715. [PMID: 37068119 PMCID: PMC10138192 DOI: 10.1371/journal.pgen.1010715] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/27/2023] [Accepted: 03/22/2023] [Indexed: 04/18/2023] Open
Abstract
Leaves comprise a number of different cell-types that are patterned in the context of either the epidermal or inner cell layers. In grass leaves, two distinct anatomies develop in the inner leaf tissues depending on whether the leaf carries out C3 or C4 photosynthesis. In both cases a series of parallel veins develops that extends from the leaf base to the tip but in ancestral C3 species veins are separated by a greater number of intervening mesophyll cells than in derived C4 species. We have previously demonstrated that the GRAS transcription factor SCARECROW (SCR) regulates the number of photosynthetic mesophyll cells that form between veins in the leaves of the C4 species maize, whereas it regulates the formation of stomata in the epidermal leaf layer in the C3 species rice. Here we show that SCR is required for inner leaf patterning in the C4 species Setaria viridis but in this species the presumed ancestral stomatal patterning role is also retained. Through a comparative mutant analysis between maize, setaria and rice we further demonstrate that loss of NAKED-ENDOSPERM (NKD) INDETERMINATE DOMAIN (IDD) protein function exacerbates loss of function scr phenotypes in the inner leaf tissues of maize and setaria but not rice. Specifically, in both setaria and maize, scr;nkd mutants exhibit an increased proportion of fused veins with no intervening mesophyll cells. Thus, combined action of SCR and NKD may control how many mesophyll cells are specified between veins in the leaves of C4 but not C3 grasses. Together our results provide insight into the evolution of cell patterning in grass leaves and demonstrate a novel patterning role for IDD genes in C4 leaves.
Collapse
Affiliation(s)
- Thomas E Hughes
- Department of Biology, University of Oxford, Oxford, England
| | | | - Mimi Thomas
- Department of Biology, University of Oxford, Oxford, England
| | - Jane A Langdale
- Department of Biology, University of Oxford, Oxford, England
| |
Collapse
|
27
|
Peppe DJ, Cote SM, Deino AL, Fox DL, Kingston JD, Kinyanjui RN, Lukens WE, MacLatchy LM, Novello A, Strömberg CAE, Driese SG, Garrett ND, Hillis KR, Jacobs BF, Jenkins KEH, Kityo RM, Lehmann T, Manthi FK, Mbua EN, Michel LA, Miller ER, Mugume AAT, Muteti SN, Nengo IO, Oginga KO, Phelps SR, Polissar P, Rossie JB, Stevens NJ, Uno KT, McNulty KP. Oldest evidence of abundant C 4 grasses and habitat heterogeneity in eastern Africa. Science 2023; 380:173-177. [PMID: 37053309 DOI: 10.1126/science.abq2834] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Abstract
The assembly of Africa's iconic C4 grassland ecosystems is central to evolutionary interpretations of many mammal lineages, including hominins. C4 grasses are thought to have become ecologically dominant in Africa only after 10 million years ago (Ma). However, paleobotanical records older than 10 Ma are sparse, limiting assessment of the timing and nature of C4 biomass expansion. This study uses a multiproxy design to document vegetation structure from nine Early Miocene mammal site complexes across eastern Africa. Results demonstrate that between ~21 and 16 Ma, C4 grasses were locally abundant, contributing to heterogeneous habitats ranging from forests to wooded grasslands. These data push back the oldest evidence of C4 grass-dominated habitats in Africa-and globally-by more than 10 million years, calling for revised paleoecological interpretations of mammalian evolution.
Collapse
Affiliation(s)
- Daniel J Peppe
- Department of Geosciences, Baylor University, Waco, TX 76798, USA
| | - Susanne M Cote
- Department of Anthropology and Archaeology, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Alan L Deino
- Berkeley Geochronology Center, Berkeley, CA 94709, USA
| | - David L Fox
- Department of Earth and Environmental Sciences, University of Minnesota, Minneapolis, MN 55455, USA
| | - John D Kingston
- Department of Anthropology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Rahab N Kinyanjui
- Department of Earth Sciences, National Museums of Kenya, Nairobi 00100, Kenya
- Max Planck Institute for Geoanthropology, D-07743 Jena, Germany
- Human Origins Program, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013, USA
| | - William E Lukens
- Department of Geology & Environmental Science, James Madison University, Harrisonburg, VA 22807, USA
| | - Laura M MacLatchy
- Department of Anthropology, University of Michigan, Ann Arbor, MI 48109, USA
- Museum of Paleontology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Alice Novello
- CEREGE, Aix-Marseille Université, CNRS, IRD, Collège de France, INRAE, 13545 Aix en Provence, France
- Department of Biology, Burke Museum of Natural History and Culture, University of Washington, Seattle, WA 98195, USA
| | - Caroline A E Strömberg
- Department of Biology, Burke Museum of Natural History and Culture, University of Washington, Seattle, WA 98195, USA
| | - Steven G Driese
- Department of Geosciences, Baylor University, Waco, TX 76798, USA
| | - Nicole D Garrett
- Department of Anthropology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kayla R Hillis
- Department of Earth Sciences, Tennessee Tech University, Cookeville, TN 38505, USA
| | - Bonnie F Jacobs
- Roy M. Huffington Department of Earth Sciences, Southern Methodist University, Dallas, TX 75275, USA
| | - Kirsten E H Jenkins
- Department of Social Sciences, Tacoma Community College, Tacoma, WA 98466, USA
| | - Robert M Kityo
- Department of Zoology Entomology and Fisheries Sciences, Makerere University, Kampala, Uganda
| | - Thomas Lehmann
- Department Messel Research and Mammalogy, Senckenberg Research Institute and Natural History Museum, 60325 Frankfurt, Germany
| | - Fredrick K Manthi
- Department of Earth Sciences, National Museums of Kenya, Nairobi 00100, Kenya
| | - Emma N Mbua
- Department of Earth Sciences, National Museums of Kenya, Nairobi 00100, Kenya
| | - Lauren A Michel
- Department of Earth Sciences, Tennessee Tech University, Cookeville, TN 38505, USA
| | - Ellen R Miller
- Department of Anthropology, Wake Forest University, Winston-Salem, NC 27109, USA
| | - Amon A T Mugume
- Department of Zoology Entomology and Fisheries Sciences, Makerere University, Kampala, Uganda
- Uganda National Museum, Department of Museums and Monuments, Ministry of Tourism, Wildlife and Antiquities, Kampala, Uganda
| | - Samuel N Muteti
- Department of Earth Sciences, National Museums of Kenya, Nairobi 00100, Kenya
- Department of Anthropology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Isaiah O Nengo
- Turkana Basin Institute, Stony Brook University, Stony Brook, NY 11794, USA
- Department of Anthropology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Kennedy O Oginga
- Department of Geosciences, Baylor University, Waco, TX 76798, USA
| | - Samuel R Phelps
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Pratigya Polissar
- Ocean Sciences Department, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - James B Rossie
- Department of Anthropology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Nancy J Stevens
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, and Ohio Center for Ecological and Evolutionary Studies, Ohio University, Athens, OH 45701, USA
| | - Kevin T Uno
- Division of Biology and Paleo Environment, Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY 10964, USA
| | - Kieran P McNulty
- Department of Anthropology, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
28
|
Zhou H, Akçay E, Helliker B. Optimal coordination and reorganization of photosynthetic properties in C 4 grasses. PLANT, CELL & ENVIRONMENT 2023; 46:796-811. [PMID: 36478594 DOI: 10.1111/pce.14506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/29/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Each of >20 independent evolutions of C4 photosynthesis in grasses required reorganization of the Calvin-Benson-cycle (CB-cycle) within the leaf, along with coordination of C4 -cycle enzymes with the CB-cycle to maximize CO2 assimilation. Considering the vast amount of time over which C4 evolved, we hypothesized (i) trait divergences exist within and across lineages with both C4 and closely related C3 grasses, (ii) trends in traits after C4 evolution yield the optimization of C4 through time, and (iii) the presence/absence of trends in coordination between the CB-cycle and C4 -cycle provides information on the strength of selection. To address these hypotheses, we used a combination of optimality modelling, physiological measurements and phylogenetic-comparative-analysis. Photosynthesis was optimized after the evolution of C4 causing diversification in maximal assimilation, electron transport, Rubisco carboxylation, phosphoenolpyruvate carboxylase and chlorophyll within C4 lineages. Both theory and measurements indicated a higher light-reaction to CB-cycle ratio (Jatpmax /Vcmax ) in C4 than C3 . There were no evolutionary trends with photosynthetic coordination between the CB-cycle, light reactions and the C4 -cycle, suggesting strong initial selection for coordination. The coordination of CB-C4 -cycles (Vpmax /Vcmax ) was optimal for CO2 of 200 ppm, not to current conditions. Our model indicated that a higher than optimal Vpmax /Vcmax affects assimilation minimally, thus lessening recent selection to decrease Vpmax /Vcmax .
Collapse
Affiliation(s)
- Haoran Zhou
- School of Earth System Science, Institute of Surface-Earth System Science, Tianjin University, Tianjin, China
- School of the Environment, Yale University, New Haven, Connecticut, USA
| | - Erol Akçay
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Brent Helliker
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
29
|
Rakotonasolo RA, Dransfield S, Haevermans T, Ralimanana H, Vorontsova MS, Zhou MY, Li DZ. New insights into intergeneric relationships of Hickeliinae (Poaceae: Bambusoideae) revealed by complete plastid genomes. PLANT DIVERSITY 2023; 45:125-132. [PMID: 37069926 PMCID: PMC10105074 DOI: 10.1016/j.pld.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 06/19/2023]
Abstract
The Hickeliinae (Poaceae: Bambusoideae) is an ecologically and economically significant subtribe of tropical bamboos restricted to Madagascar, Comoros, Reunion Island, and a small part of continental Africa (Tanzania). Because these bamboos rarely flower, field identification is challenging, and inferring the evolutionary history of Hickeliinae from herbarium specimens is even more so. Molecular phylogenetic work is critical to understanding this group of bamboos. Here, comparative analysis of 22 newly sequenced plastid genomes showed that members of all genera of Hickeliinae share evolutionarily conserved plastome structures. We also determined that Hickeliinae plastome sequences are informative for phylogenetic reconstructions. Phylogenetic analysis showed that all genera of Hickeliinae are monophyletic, except for Nastus, which is paraphyletic and forms two distant clades. The type species of Nastus (Clade II) is endemic to Reunion Island and is not closely related to other sampled species of Nastus endemic to Madagascar (Clade VI). Clade VI (Malagasy Nastus) is sister to the Sokinochloa + Hitchcockella clade (Clade V), and both clades have a clumping habit with short-necked pachymorph rhizomes. The monotypic Decaryochloa is remarkable in having the longest floret in Bambuseae and forms a distinct Clade IV. Clade III, which has the highest generic diversity, consists of Cathariostachys, Perrierbambus, Sirochloa, and Valiha, which are also morphologically diverse. This work provides significant resources for further genetic and phylogenomic studies of Hickeliinae, an understudied subtribe of bamboo.
Collapse
Affiliation(s)
- Rivontsoa A. Rakotonasolo
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
- Department Flore, Parc Botanique et Zoologique de Tsimbazaza, Antananarivo, 101, Madagascar
- Kew Madagascar Conservation Center, Antananarivo, 101, Madagascar
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Soejatmi Dransfield
- Comparative Plant and Fungal Biology, Royal Botanic Gardens Kew, Richmond, Surrey, UK
| | - Thomas Haevermans
- Institut de Systématique Évolution Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, Centre National de La Recherche Scientifique, École Pratique des Hautes Études, Université des Antilles, Sorbonne Université, 45 Rue Buffon, CP 50, 75005, Paris, France
| | | | - Maria S. Vorontsova
- Comparative Plant and Fungal Biology, Royal Botanic Gardens Kew, Richmond, Surrey, UK
| | - Meng-Yuan Zhou
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - De-Zhu Li
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
30
|
Delfini C, Aliscioni SS, Acosta JM, Pensiero JF, Zuloaga FO. An Update of the Cenchrinae (Poaceae, Panicoideae, Paniceae) and a New Genus for the Subtribe to Clarify the Dubious Position of a Species of Panicum L. PLANTS (BASEL, SWITZERLAND) 2023; 12:749. [PMID: 36840098 PMCID: PMC9966601 DOI: 10.3390/plants12040749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/21/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
Subtribe Cenchrinae, so-called as the "bristle clade", is a monophyletic group of panicoid grasses characterized by having sterile branches or bristles on the inflorescences in most of its species. Within this subtribe is also placed Panicum antidotale Retz., an "incertae sedis" species of Panicum L. which lacks bristles along the inflorescence. In this study, we present an update of the subtribe Cenchrinae based on molecular, morphological, and anatomical evidence to clarify the systematic position of P. antidotale in the Cenchrinae, excluding it from Panicum and establishing it in a new genus (i.e., Janochloa Zuloaga & Delfini); the morphological features distinguishing the new genus from other closely related taxa are properly discussed and an identification key to the 24 genera recognized within Cenchrinae is presented. We also add American Setaria species, not tested before, of subgenera Paurochaetium and Reverchoniae, discussing the position of these taxa in actual phylogeny of the genus as well as defining placements in the tree of Setaria species that were imprecisely located in previous analyses. A comparison with the results from other studies, comments on Stenotaphrum Trin. and a brief discussion on conflicting placements in Cenchrus and related taxa, and of Acritochaete Pilg. are also included.
Collapse
Affiliation(s)
- Carolina Delfini
- Instituto de Botánica Darwinion (ANCEFN–CONICET), Labardén 200, Casilla de Correo 22, San Isidro B1642HYD, Buenos Aires, Argentina
| | - Sandra S. Aliscioni
- Instituto de Botánica Darwinion (ANCEFN–CONICET), Labardén 200, Casilla de Correo 22, San Isidro B1642HYD, Buenos Aires, Argentina
- Cátedra de Botánica General, Facultad de Agronomía, Universidad de Buenos Aires, Av. San Martín 4453, Buenos Aires C1417DSE, Argentina
| | - Juan M. Acosta
- Instituto de Botánica Darwinion (ANCEFN–CONICET), Labardén 200, Casilla de Correo 22, San Isidro B1642HYD, Buenos Aires, Argentina
| | - José F. Pensiero
- Instituto de Ciencias Agropecuarias del Litoral, UNL–CONICET–FCA, Kreder 2805, Esperanza 3080HOF, Santa Fe, Argentina
| | - Fernando O. Zuloaga
- Instituto de Botánica Darwinion (ANCEFN–CONICET), Labardén 200, Casilla de Correo 22, San Isidro B1642HYD, Buenos Aires, Argentina
| |
Collapse
|
31
|
Prochetto S, Studer AJ, Reinheimer R. De novo transcriptome assemblies of C 3 and C 4 non-model grass species reveal key differences in leaf development. BMC Genomics 2023; 24:64. [PMID: 36747121 PMCID: PMC9901097 DOI: 10.1186/s12864-022-08995-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 11/06/2022] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND C4 photosynthesis is a mechanism that plants have evolved to reduce the rate of photorespiration during the carbon fixation process. The C4 pathway allows plants to adapt to high temperatures and light while more efficiently using resources, such as water and nitrogen. Despite decades of studies, the evolution of the C4 pathway from a C3 ancestor remains a biological enigma. Interestingly, species with C3-C4 intermediates photosynthesis are usually found closely related to the C4 lineages. Indeed, current models indicate that the assembly of C4 photosynthesis was a gradual process that included the relocalization of photorespiratory enzymes, and the establishment of intermediate photosynthesis subtypes. More than a third of the C4 origins occurred within the grass family (Poaceae). In particular, the Otachyriinae subtribe (Paspaleae tribe) includes 35 American species from C3, C4, and intermediates taxa making it an interesting lineage to answer questions about the evolution of photosynthesis. RESULTS To explore the molecular mechanisms that underpin the evolution of C4 photosynthesis, the transcriptomic dynamics along four different leaf segments, that capture different stages of development, were compared among Otachyriinae non-model species. For this, leaf transcriptomes were sequenced, de novo assembled, and annotated. Gene expression patterns of key pathways along the leaf segments showed distinct differences between photosynthetic subtypes. In addition, genes associated with photorespiration and the C4 cycle were differentially expressed between C4 and C3 species, but their expression patterns were well preserved throughout leaf development. CONCLUSIONS New, high-confidence, protein-coding leaf transcriptomes were generated using high-throughput short-read sequencing. These transcriptomes expand what is currently known about gene expression in leaves of non-model grass species. We found conserved expression patterns of C4 cycle and photorespiratory genes among C3, intermediate, and C4 species, suggesting a prerequisite for the evolution of C4 photosynthesis. This dataset represents a valuable contribution to the existing genomic resources and provides new tools for future investigation of photosynthesis evolution.
Collapse
Affiliation(s)
- Santiago Prochetto
- grid.10798.370000 0001 2172 9456Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral, CONICET, CCT-Santa Fe, Ruta Nacional N° 168 Km 0, s/n, Paraje el Pozo, Santa Fe, Argentina
| | - Anthony J. Studer
- grid.35403.310000 0004 1936 9991Department of Crop Sciences, University of Illinois, 1201 West Gregory Drive, Edward R. Madigan Laboratory #289, Urbana, IL 61801 USA
| | - Renata Reinheimer
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral, FCA, CONICET, CCT-Santa Fe, Ruta Nacional N° 168 Km 0, s/n, Paraje el Pozo, Santa Fe, Argentina.
| |
Collapse
|
32
|
Paliocha M, Schubert M, Preston JC, Fjellheim S. Independent recruitment of FRUITFULL-like transcription factors in the convergent origins of vernalization-responsive grass flowering. Mol Phylogenet Evol 2023; 179:107678. [PMID: 36535518 DOI: 10.1016/j.ympev.2022.107678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 12/08/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Flowering in response to low temperatures (vernalization) has evolved multiple times independently across angiosperms as an adaptation to match reproductive development with the short growing season of temperate habitats. Despite the context of a generally conserved flowering time network, evidence suggests that the genes underlying vernalization responsiveness are distinct across major plant clades. Whether different or similar mechanisms underlie vernalization-induced flowering at narrower (e.g., family-level) phylogenetic scales is not well understood. To test the hypothesis that vernalization responsiveness has evolved convergently in temperate species of the grass family (Poaceae), we carried out flowering time experiments with and without vernalization in several representative species from different subfamilies. We then determined the likelihood that vernalization responsiveness evolved through parallel mechanisms by quantifying the response of Pooideae vernalization pathway FRUITFULL (FUL)-like genes to extended periods of cold. Our results demonstrate that vernalization-induced flowering has evolved multiple times independently in at least five grass subfamilies, and that different combinations of FUL-like genes have been recruited to this pathway on several occasions.
Collapse
Affiliation(s)
- Martin Paliocha
- Department of Plant Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, N-1432 Ås, Norway.
| | - Marian Schubert
- Department of Plant Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, N-1432 Ås, Norway.
| | - Jill Christine Preston
- Department of Plant Biology, College of Agriculture and Life Sciences, The University of Vermont, Burlington, VT 05405, USA.
| | - Siri Fjellheim
- Department of Plant Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, N-1432 Ås, Norway.
| |
Collapse
|
33
|
Delfini C, Salariato DL, Aliscioni SS, Zuloaga FO. Systematics and Phylogenetic Placement of Panicum L. Species within the Melinidinae Based on Morphological, Anatomical, and Molecular Data (Poaceae, Panicoideae, Paniceae). PLANTS (BASEL, SWITZERLAND) 2023; 12:399. [PMID: 36679111 PMCID: PMC10375907 DOI: 10.3390/plants12020399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
Generic boundaries of the African species Panicum deustum Thunb., Panicum trichocladum Hack. ex K. Schum., and Panicum vollesenii Renvoize are analyzed and compared with related genera of the tribe Paniceae and the subtribe Melinidinae. Based on morphological (vegetative and reproductive characters including habit, ligules, inflorescence, spikelets, and ornamentation of the upper anthecium), anatomical (transverse section of leaves), and molecular data (three chloroplast markers), a new genus is proposed for P. deustum, while P. trichocladum and P. vollesenii are transferred to the genus Megathyrsus (Pilg.) B.K. Simon & S.W.L. Jacobs. The phylogenetic position of both taxa within the Melinidinae and their morphological affinities with other genera of the subtribe are also discussed. Additional studies on the Melinidinae will clarify the systematic position of the genera that are still in a doubtful position within the subtribe, such as Eriochloa and Urochloa.
Collapse
Affiliation(s)
- Carolina Delfini
- Instituto de Botánica Darwinion (ANCEFN-CONICET), Labardén 200, Casilla de Correo 22, San Isidro B1642HYD, Argentina
| | - Diego L Salariato
- Instituto de Botánica Darwinion (ANCEFN-CONICET), Labardén 200, Casilla de Correo 22, San Isidro B1642HYD, Argentina
| | - Sandra S Aliscioni
- Instituto de Botánica Darwinion (ANCEFN-CONICET), Labardén 200, Casilla de Correo 22, San Isidro B1642HYD, Argentina
- Cátedra de Botánica General, Facultad de Agronomía, Universidad de Buenos Aires, Av. San Martín 4453, Buenos Aires C1417DSE, Argentina
| | - Fernando O Zuloaga
- Instituto de Botánica Darwinion (ANCEFN-CONICET), Labardén 200, Casilla de Correo 22, San Isidro B1642HYD, Argentina
| |
Collapse
|
34
|
Dreni L. The ABC of Flower Development in Monocots: The Model of Rice Spikelet. Methods Mol Biol 2023; 2686:59-82. [PMID: 37540354 DOI: 10.1007/978-1-0716-3299-4_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
The initial seminal studies of flower developmental genetics were made from observations in several eudicot model species, particularly Arabidopsis and Antirrhinum. However, an increasing amount of research in monocot model and crop species is finally giving the credit that monocots deserve for their position in the evolutionary history of Angiosperms, their astonishing diversification and adaptation, their diversified floral structures, their pivotal function in most ecosystems on Earth and, finally, their importance in agriculture and farming, economy, landscaping and feeding mankind. Rice is a staple crop and the major monocot model to study the reproductive phase and flower evolution. Inspired by this, this chapter reviews a story of highly conserved functions related to the ABC model of flower development. Nevertheless, this model is complicated in rice by cases of gene neofunctionalization, like the recruitment of MADS-box genes for the development of the unique organs known as lemma and palea, subfunctionalization, and rewiring of conserved molecular pathways.
Collapse
Affiliation(s)
- Ludovico Dreni
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia, Spain
| |
Collapse
|
35
|
Sun G, Wase N, Shu S, Jenkins J, Zhou B, Torres-Rodríguez JV, Chen C, Sandor L, Plott C, Yoshinga Y, Daum C, Qi P, Barry K, Lipzen A, Berry L, Pedersen C, Gottilla T, Foltz A, Yu H, O'Malley R, Zhang C, Devos KM, Sigmon B, Yu B, Obata T, Schmutz J, Schnable JC. Genome of Paspalum vaginatum and the role of trehalose mediated autophagy in increasing maize biomass. Nat Commun 2022; 13:7731. [PMID: 36513676 PMCID: PMC9747981 DOI: 10.1038/s41467-022-35507-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 12/07/2022] [Indexed: 12/15/2022] Open
Abstract
A number of crop wild relatives can tolerate extreme stress to a degree outside the range observed in their domesticated relatives. However, it is unclear whether or how the molecular mechanisms employed by these species can be translated to domesticated crops. Paspalum (Paspalum vaginatum) is a self-incompatible and multiply stress-tolerant wild relative of maize and sorghum. Here, we describe the sequencing and pseudomolecule level assembly of a vegetatively propagated accession of P. vaginatum. Phylogenetic analysis based on 6,151 single-copy syntenic orthologues conserved in 6 related grass species places paspalum as an outgroup of the maize-sorghum clade. In parallel metabolic experiments, paspalum, but neither maize nor sorghum, exhibits a significant increase in trehalose when grown under nutrient-deficit conditions. Inducing trehalose accumulation in maize, imitating the metabolic phenotype of paspalum, results in autophagy dependent increases in biomass accumulation.
Collapse
Affiliation(s)
- Guangchao Sun
- Quantitative Life Sciences Initiative, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Nishikant Wase
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- Biomolecular Analysis Facility. School of Medicine, University of Virginia, Charlottesville, VA, 22903, USA
| | - Shengqiang Shu
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Lawrence, CA, 94720, USA
| | - Jerry Jenkins
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
| | - Bangjun Zhou
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - J Vladimir Torres-Rodríguez
- Quantitative Life Sciences Initiative, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Cindy Chen
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Lawrence, CA, 94720, USA
| | - Laura Sandor
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Lawrence, CA, 94720, USA
| | - Chris Plott
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
| | - Yuko Yoshinga
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Lawrence, CA, 94720, USA
| | - Christopher Daum
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Lawrence, CA, 94720, USA
| | - Peng Qi
- Institute of Plant Breeding, Genetics and Genomics, Department of Crop and Soil Sciences, University of Georgia, Athens, GA, 30602, USA
- Department of Crop and Soil Sciences, University of Georgia, Athens, GA, 30602, USA
- Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA
| | - Kerrie Barry
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Lawrence, CA, 94720, USA
| | - Anna Lipzen
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Lawrence, CA, 94720, USA
| | - Luke Berry
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Connor Pedersen
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Thomas Gottilla
- Institute of Plant Breeding, Genetics and Genomics, Department of Crop and Soil Sciences, University of Georgia, Athens, GA, 30602, USA
| | - Ashley Foltz
- Quantitative Life Sciences Initiative, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Huihui Yu
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Ronan O'Malley
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Lawrence, CA, 94720, USA
| | - Chi Zhang
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Katrien M Devos
- Institute of Plant Breeding, Genetics and Genomics, Department of Crop and Soil Sciences, University of Georgia, Athens, GA, 30602, USA
- Department of Crop and Soil Sciences, University of Georgia, Athens, GA, 30602, USA
- Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA
| | - Brandi Sigmon
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Bin Yu
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Toshihiro Obata
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Jeremy Schmutz
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Lawrence, CA, 94720, USA.
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA.
| | - James C Schnable
- Quantitative Life Sciences Initiative, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA.
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA.
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA.
| |
Collapse
|
36
|
Wang R, Zhang XJ, Guo XX, Xing Y, Qu XJ, Fan SJ. Plastid phylogenomics and morphological character evolution of Chloridoideae (Poaceae). FRONTIERS IN PLANT SCIENCE 2022; 13:1002724. [PMID: 36407581 PMCID: PMC9666777 DOI: 10.3389/fpls.2022.1002724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Chloridoideae is one of the largest subfamilies of Poaceae, containing many species of great economic and ecological value; however, phylogenetic relationships among the subtribes and genera of Cynodonteae are controversial. In the present study, we combined 111 plastomes representing all five tribes, including 25 newly sequenced plastomes that are mostly from Cynodonteae. Phylogenetic analyses supported the five monophyletic tribes of Chloridoideae, including Centropodieae, Triraphideae, Eragrostideae, Zoysieae and Cynodonteae. Simultaneously, nine monophyletic lineages were revealed in Cynodonteae: supersubtribe Boutelouodinae, subtribes Tripogoninae, Aeluropodinae, Eleusininae, Dactylocteniinae, supersubtribe Gouiniodinae, Cleistogenes and Orinus, and subtribe Triodiinae. Within the tribe of Cynodonteae, the basal lineage is supersubtribe Boutelouodinae and Tripogoninae is sister to the remaining lineages. The clade formed of Aeluropodinae and Eleusininae is sister to the clade composed of Dactylocteniinae, supersubtribe Gouiniodinae, Cleistogenes and Orinus, and subtribe Triodiinae. The clade comprising Dactylocteniinae and supersubtribe Gouiniodinae is sister to the clade comprising Cleistogenes, Orinus, and Triodiinae. Acrachne is a genus within Eleusininae but not within Dactylocteniinae. Molecular evidence determined that Diplachne is not clustered with Leptochloa, which indicated that Diplachne should not be combined into Leptochloa. Cleistogenes is sister to a clade composed of Orinus and Triodia, whereas the recently proposed subtribe Orininae was not supported. Cynodonteae was estimated to have experienced rapid divergence within a short period, which could be a major obstacle in resolving its phylogenetic relationships. Ancestral state reconstructions of morphological characters showed that the most recent common ancestor (MRCA) of Chloridoideae has a panicle, multiple florets in each spikelet, the peaked type of stomatal subsidiary cells, and a saddle-shaped phytoliths, while the ancestral morphological characters of Cynodonteae are the panicle, peaked type of stomatal subsidiary cells, sharp-cap cell typed and equal-base-cell microhair, and square-shaped phytoliths. Overall, plastome phylogenomics provides new insights into the phylogenetic relationships and morphological character evolution of Chloridoideae.
Collapse
Affiliation(s)
- Rong Wang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan, China
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xue-Jie Zhang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Xiu-Xiu Guo
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Yan Xing
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Xiao-Jian Qu
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Shou-Jin Fan
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
37
|
Nasiri A, Kazempour-Osaloo S, Hamzehee B, Bull RD, Saarela JM. A phylogenetic analysis of Bromus (Poaceae: Pooideae: Bromeae) based on nuclear ribosomal and plastid data, with a focus on Bromus sect. Bromus. PeerJ 2022; 10:e13884. [PMID: 36193423 PMCID: PMC9526414 DOI: 10.7717/peerj.13884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 07/21/2022] [Indexed: 01/18/2023] Open
Abstract
To investigate phylogenetic relationships among and within major lineages of Bromus, with focus on Bromus sect. Bromus, we analyzed DNA sequences from two nuclear ribosomal (ITS, ETS) and two plastid (rpl32-trnLUAG , matK) regions. We sampled 103 ingroup accessions representing 26 taxa of B. section Bromus and 15 species of other Bromus sections. Our analyses confirm the monophyly of Bromus s.l. and identify incongruence between nuclear ribosomal and plastid data partitions for relationships within and among major Bromus lineages. Results support classification of B. pumilio and B. gracillimus within B. sect. Boissiera and B. sect. Nevskiella, respectively. These species are sister groups and are closely related to B. densus (B. sect. Mexibromus) in nrDNA trees and Bromus sect. Ceratochloa in plastid trees. Bromus sect. Bromopsis is paraphyletic. In nrDNA trees, species of Bromus sects. Bromopsis, Ceratochloa, Neobromus, and Genea plus B. rechingeri of B. sect. Bromus form a clade, in which B. tomentellus is sister to a B. sect. Genea-B. rechingeri clade. In the plastid trees, by contrast, B. sect. Bromopsis species except B. tomentosus form a clade, and B. tomentosus is sister to a clade comprising B. sect. Bromus and B. sect. Genea species. Affinities of B. gedrosianus, B. pulchellus, and B. rechingeri (members of the B. pectinatus complex), as well as B. oxyodon and B. sewerzowii, are discordant between nrDNA and plastid trees. We infer these species may have obtained their plastomes via chloroplast capture from species of B. sect. Bromus and B. sect. Genea. Within B. sect. Bromus, B. alopecuros subsp. caroli-henrici, a clade comprising B. hordeaceus and B. interruptus, and B. scoparius are successive sister groups to the rest of the section in the nrDNA phylogeny. Most relationships among the remaining species of B. sect. Bromus are unresolved in the nrDNA and plastid trees. Given these results, we infer that most B. sect. Bromus species likely diversified relatively recently. None of the subdivisional taxa proposed for Bromus sect. Bromus over the last century correspond to natural groups identified in our phylogenetic analyses except for a group including B. hordeaceus and B. interruptus.
Collapse
Affiliation(s)
- Akram Nasiri
- Department of Plant Biology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran,Beaty Centre for Species Discovery and Botany Section, Canadian Museum of Nature, Ottawa, Ontario, Canada
| | - Shahrokh Kazempour-Osaloo
- Department of Plant Biology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Behnam Hamzehee
- Botany Research Division, Research Institute of Forests and Rangelands, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
| | - Roger D. Bull
- Beaty Centre for Species Discovery and Botany Section, Canadian Museum of Nature, Ottawa, Ontario, Canada
| | - Jeffery M. Saarela
- Beaty Centre for Species Discovery and Botany Section, Canadian Museum of Nature, Ottawa, Ontario, Canada
| |
Collapse
|
38
|
Richards SM, Li L, Breen J, Hovhannisyan N, Estrada O, Gasparyan B, Gilliham M, Smith A, Cooper A, Zhang H. Recovery of chloroplast genomes from medieval millet grains excavated from the Areni-1 cave in southern Armenia. Sci Rep 2022; 12:15164. [PMID: 36071150 PMCID: PMC9452526 DOI: 10.1038/s41598-022-17931-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 08/02/2022] [Indexed: 11/13/2022] Open
Abstract
Panicum miliaceum L. was domesticated in northern China at least 7000 years ago and was subsequentially adopted in many areas throughout Eurasia. One such locale is Areni-1 an archaeological cave site in Southern Armenia, where vast quantities archaeobotanical material were well preserved via desiccation. The rich botanical material found at Areni-1 includes P. miliaceum grains that were identified morphologically and14C dated to the medieval period (873 ± 36 CE and 1118 ± 35 CE). To investigate the demographic and evolutionary history of the Areni-1 millet, we used ancient DNA extraction, hybridization capture enrichment, and high throughput sequencing to assemble three chloroplast genomes from the medieval grains and then compared these sequences to 50 modern P. miliaceum chloroplast genomes. Overall, the chloroplast genomes contained a low amount of diversity with domesticated accessions separated by a maximum of 5 SNPs and little inference on demography could be made. However, in phylogenies the chloroplast genomes separated into two clades, similar to what has been reported for nuclear DNA from P. miliaceum. The chloroplast genomes of two wild (undomesticated) accessions of P. miliaceum contained a relatively large number of variants, 11 SNPs, not found in the domesticated accessions. These results demonstrate that P. miliaceum grains from archaeological sites can preserve DNA for at least 1000 years and serve as a genetic resource to study the domestication of this cereal crop.
Collapse
Affiliation(s)
- Stephen M Richards
- School of Biological Science, The University of Adelaide, Adelaide, Australia.
| | - Leiting Li
- National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - James Breen
- School of Biological Science, The University of Adelaide, Adelaide, Australia.,Telethon Kids Institute, Australian National University, Canberra, Australia
| | | | - Oscar Estrada
- School of Biological Science, The University of Adelaide, Adelaide, Australia.,Grupo de Agrobiotecnología, Instituto de Biología, Universidad de Antioquia, Medellín, Colombia
| | - Boris Gasparyan
- Institute of Archaeology and Ethnography, National Academy of Sciences of the Republic of Armenia, Yerevan, Armenia
| | - Matthew Gilliham
- Waite Research Institute and School of Agriculture, Food, and Wine, ARC Centre of Excellence in Plant Energy Biology, The University of Adelaide, Waite Campus, Glen Osmond, Australia
| | - Alexia Smith
- Department of Anthropology, University of Connecticut, Connecticut, USA
| | - Alan Cooper
- BlueSky Genetics, Ashton, SA, Australia.,South Australian Museum, Adelaide, SA, Australia
| | - Heng Zhang
- National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
39
|
Rangan P, Wankhede DP, Subramani R, Chinnusamy V, Malik SK, Baig MJ, Singh K, Henry R. Evolution of an intermediate C 4 photosynthesis in the non-foliar tissues of the Poaceae. PHOTOSYNTHESIS RESEARCH 2022; 153:125-134. [PMID: 35648247 DOI: 10.1007/s11120-022-00926-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
Carbon concentrating mechanisms (CCMs) in plants are abaptive features that have evolved to sustain plant growth in unfavorable environments, especially at low atmospheric carbon levels and high temperatures. Uptake of CO2 and its storage in the aerenchyma tissues of Lycopsids and diurnal acidity fluctuation in aquatic plants during the Palaeozoic era (ca. 300 Ma.) would represent the earliest evolution of a CCM. The CCM parts of the dark reactions of photosynthesis have evolved many times, while the light reactions are conserved across plant lineages. A C4 type CCM, leaf C4 photosynthesis is evolved in the PACMAD clade of the Poaceae family. The evolution of C4 photosynthesis from C3 photosynthesis was an abaptation. Photosynthesis in reproductive tissues of sorghum and maize (PACMAD clade) has been shown to be of a weaker C4 type (high CO2 compensation point, low carbon isotope discrimination, and lack of Rubisco compartmentalization, when compared to the normal C4 types) than that in the leaves (normal C4 type). However, this does not fit well with the character polarity concept from an evolutionary perspective. In a recent model proposed for CCM evolution, the development of a rudimentary CCM prior to the evolution of a more efficient CCM (features contrasting to a weaker C4 type, leading to greater biomass production rate) has been suggested. An intermediate crassulacean acid metabolism (CAM) type of CCM (rudimentary) was reported in the genera, Brassia, Coryanthes, Eriopsis, Peristeria, of the orchids (well-known group of plants that display the CAM pathway). Similarly, we propose here the evolution of a rudimentary CCM (C4-like type pathway) in the non-foliar tissues of the Poaceae, prior to the evolution of the C4 pathway as identified in the leaves of the C4 species of the PACMAD clade.
Collapse
Affiliation(s)
- Parimalan Rangan
- ICAR-National Bureau of Plant Genetic Resources, PUSA Campus, New Delhi, 110012, India.
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, QLD, 4072, Australia.
| | | | - Rajkumar Subramani
- ICAR-National Bureau of Plant Genetic Resources, PUSA Campus, New Delhi, 110012, India
| | | | - Surendra K Malik
- ICAR-National Bureau of Plant Genetic Resources, PUSA Campus, New Delhi, 110012, India
| | | | - Kuldeep Singh
- ICAR-National Bureau of Plant Genetic Resources, PUSA Campus, New Delhi, 110012, India
| | - Robert Henry
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, QLD, 4072, Australia
| |
Collapse
|
40
|
Wang Y, Bi X, Zhong J. Revisiting the origin and identity specification of the spikelet: A structural innovation in grasses (Poaceae). PLANT PHYSIOLOGY 2022; 190:60-71. [PMID: 35640983 PMCID: PMC9434286 DOI: 10.1093/plphys/kiac257] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 05/03/2022] [Indexed: 05/06/2023]
Abstract
Spikelets are highly specialized and short-lived branches and function as a constitutional unit of the complex grass inflorescences. A series of genetic, genomic, and developmental studies across different clades of the family have called for and permitted a synthesis on the regulation and evolution of spikelets, and hence inflorescence diversity. Here, we have revisited the identity specification of a spikelet, focusing on the diagnostic features of a spikelet from morphological, developmental, and molecular perspectives. Particularly, recent studies on a collection of barley (Hordeum vulgare L.), wheat (Triticum spp.), and rice (Oryza sativa L.) mutants have highlighted a set of transcription factors that are important in the control of spikelet identity and the patterning of floral parts of a spikelet. In addition, we have endeavored to clarify some puzzling issues on the (in)determinacy and modifications of spikelets over the course of evolution. Meanwhile, genomes of two sister taxa of the remaining grass species have again demonstrated the importance of genome duplication and subsequent gene losses on the evolution of spikelets. Accordingly, we argue that changes in the orthologs of spikelet-related genes could be critical for the development and evolution of the spikelet, an evolutionary innovation in the grass family. Likewise, the conceptual discussions on the regulation of a fundamental unit of compound inflorescences could be translated into other organismal groups where compound structures are similarly formed, permitting a comparative perspective on the control of biological complexity.
Collapse
Affiliation(s)
- Yanli Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Xiaojing Bi
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jinshun Zhong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| |
Collapse
|
41
|
Sokoloff DD, Fomichev CI, Rudall PJ, Macfarlane TD, Remizowa MV. Evolutionary history of the grass gynoecium. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4637-4661. [PMID: 35512454 DOI: 10.1093/jxb/erac182] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 05/03/2022] [Indexed: 06/14/2023]
Abstract
The grass family (Poaceae) includes cereal crops that provide a key food source for the human population. The food industry uses the starch deposited in the cereal grain, which develops directly from the gynoecium. Morphological interpretation of the grass gynoecium remains controversial. We re-examine earlier hypotheses and studies of morphology and development in the context of more recent analyses of grass phylogenetics and developmental genetics. Taken in isolation, data on gynoecium development in bistigmatic grasses do not contradict its interpretation as a solitary ascidiate carpel. Nevertheless, in the context of other data, this interpretation is untenable. Broad comparative analysis in a modern phylogenetic context clearly demonstrates that the grass gynoecium is pseudomonomerous. A bistigmatic grass gynoecium has two sterile carpels, each producing a stigma, and a fertile carpel that lacks a stigma. To date, studies of grass developmental genetics and developmental morphology have failed to fully demonstrate the composite nature of the grass gynoecium be-cause its complex evolutionary history is hidden by extreme organ integration. It is problematic to interpret the gynoecium of grasses in terms of normal angiosperm gynoecium typology. Even the concept of a carpel becomes misleading in grasses; instead, we recommend the term pistil for descriptive purposes.
Collapse
Affiliation(s)
- Dmitry D Sokoloff
- Faculty of Biology, M.V. Lomonosov Moscow State University, 1, 12, Leninskie Gory, 119234 Moscow, Russia
| | - Constantin I Fomichev
- Faculty of Biology, M.V. Lomonosov Moscow State University, 1, 12, Leninskie Gory, 119234 Moscow, Russia
| | - Paula J Rudall
- Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AB, UK
| | - Terry D Macfarlane
- Western Australian Herbarium, Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Locked Bag 104, Bentley Delivery Centre WA 6983, Australia
| | - Margarita V Remizowa
- Faculty of Biology, M.V. Lomonosov Moscow State University, 1, 12, Leninskie Gory, 119234 Moscow, Russia
| |
Collapse
|
42
|
McSteen P, Kellogg EA. Molecular, cellular, and developmental foundations of grass diversity. Science 2022; 377:599-602. [PMID: 35926032 DOI: 10.1126/science.abo5035] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Humans have cultivated grasses for food, feed, beverages, and construction materials for millennia. Grasses also dominate the landscape in vast parts of the world, where they have adapted morphologically and physiologically, diversifying to form ~12,000 species. Sequences of hundreds of grass genomes show that they are essentially collinear; nonetheless, not all species have the same complement of genes. Here, we focus on the molecular, cellular, and developmental bases of grain yield and dispersal-traits that are essential for domestication. Distinct genes, networks, and pathways were selected in different crop species, reflecting underlying genomic diversity. With increasing genomic resources becoming available in nondomesticated species, we anticipate advances in coming years that illuminate the ecological and economic success of the grasses.
Collapse
Affiliation(s)
- Paula McSteen
- Division of Biological Sciences, Bond Life Sciences Center, Interdisciplinary Plant Group, University of Missouri, 1201 Rollins Street, Columbia, MO 65211, USA
| | | |
Collapse
|
43
|
Kellogg EA. Genetic control of branching patterns in grass inflorescences. THE PLANT CELL 2022; 34:2518-2533. [PMID: 35258600 PMCID: PMC9252490 DOI: 10.1093/plcell/koac080] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/02/2022] [Indexed: 05/13/2023]
Abstract
Inflorescence branching in the grasses controls the number of florets and hence the number of seeds. Recent data on the underlying genetics come primarily from rice and maize, although new data are accumulating in other systems as well. This review focuses on a window in developmental time from the production of primary branches by the inflorescence meristem through to the production of glumes, which indicate the transition to producing a spikelet. Several major developmental regulatory modules appear to be conserved among most or all grasses. Placement and development of primary branches are controlled by conserved auxin regulatory genes. Subtending bracts are repressed by a network including TASSELSHEATH4, and axillary branch meristems are regulated largely by signaling centers that are adjacent to but not within the meristems themselves. Gradients of SQUAMOSA-PROMOTER BINDING-like and APETALA2-like proteins and their microRNA regulators extend along the inflorescence axis and the branches, governing the transition from production of branches to production of spikelets. The relative speed of this transition determines the extent of secondary and higher order branching. This inflorescence regulatory network is modified within individual species, particularly as regards formation of secondary branches. Differences between species are caused both by modifications of gene expression and regulators and by presence or absence of critical genes. The unified networks described here may provide tools for investigating orphan crops and grasses other than the well-studied maize and rice.
Collapse
|
44
|
Simpson KJ, Archibald S, Osborne CP. Savanna fire regimes depend on grass trait diversity. Trends Ecol Evol 2022; 37:749-758. [PMID: 35577616 DOI: 10.1016/j.tree.2022.04.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/14/2022] [Accepted: 04/20/2022] [Indexed: 11/17/2022]
Abstract
Grasses fuel most fires on Earth and strongly influence local fire behaviour through traits that determine how flammable they are. Therefore, grass communities that differ in their species and trait compositions give rise to significant spatial variation in savanna fire regimes across the world, which cannot be otherwise explained. Likewise, fire regimes are continuously modified by alterations to savanna grass community traits, through species introductions and climatic changes. However, current representation of grassy fuels in global fire models misses important variation and therefore limits predictive power. The inclusion of grass trait diversity in models, using remotely sensed trait proxies, for example, will greatly improve our ability to understand and project savanna fires and their roles in the Earth system.
Collapse
Affiliation(s)
- Kimberley J Simpson
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield, UK; Department of Botany, Rhodes University, Makhanda, South Africa.
| | - Sally Archibald
- Centre for African Ecology, School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Colin P Osborne
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield, UK.
| |
Collapse
|
45
|
Bianconi ME, Sotelo G, Curran EV, Milenkovic V, Samaritani E, Dunning LT, Bertolino LT, Osborne CP, Christin PA. Upregulation of C 4 characteristics does not consistently improve photosynthetic performance in intraspecific hybrids of a grass. PLANT, CELL & ENVIRONMENT 2022. [PMID: 35201618 DOI: 10.1101/2021.08.10.455822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
C4 photosynthesis is thought to have evolved via intermediate stages, with changes towards the C4 phenotype gradually enhancing photosynthetic performance. This hypothesis is widely supported by modelling studies, but experimental tests are missing. Mixing of C4 components to generate artificial intermediates can be achieved via crossing, and the grass Alloteropsis semialata represents an outstanding study system since it includes C4 and non-C4 populations. Here, we analyse F1 hybrids between C3 and C4 , and C3 +C4 and C4 genotypes to determine whether the acquisition of C4 characteristics increases photosynthetic performance. The hybrids have leaf anatomical characters and C4 gene expression profiles that are largely intermediate between those of their parents. Carbon isotope ratios are similarly intermediate, which suggests that a partial C4 cycle coexists with C3 carbon fixation in the hybrids. This partial C4 phenotype is associated with C4 -like photosynthetic efficiency in C3 +C4 × C4 , but not in C3 × C4 hybrids, which are overall less efficient than both parents. Our results support the hypothesis that the photosynthetic gains from the upregulation of C4 characteristics depend on coordinated changes in anatomy and biochemistry. The order of acquisition of C4 components is thus constrained, with C3 +C4 species providing an essential step for C4 evolution.
Collapse
Affiliation(s)
- Matheus E Bianconi
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Western Bank, Sheffield, UK
| | - Graciela Sotelo
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Western Bank, Sheffield, UK
| | - Emma V Curran
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Western Bank, Sheffield, UK
| | - Vanja Milenkovic
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Western Bank, Sheffield, UK
| | - Emanuela Samaritani
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Western Bank, Sheffield, UK
| | - Luke T Dunning
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Western Bank, Sheffield, UK
| | - Lígia T Bertolino
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Western Bank, Sheffield, UK
| | - Colin P Osborne
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Western Bank, Sheffield, UK
| | - Pascal-Antoine Christin
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Western Bank, Sheffield, UK
| |
Collapse
|
46
|
Bianconi ME, Sotelo G, Curran EV, Milenkovic V, Samaritani E, Dunning LT, Bertolino LT, Osborne CP, Christin P. Upregulation of C 4 characteristics does not consistently improve photosynthetic performance in intraspecific hybrids of a grass. PLANT, CELL & ENVIRONMENT 2022; 45:1398-1411. [PMID: 35201618 PMCID: PMC9314825 DOI: 10.1111/pce.14301] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/20/2021] [Accepted: 11/21/2021] [Indexed: 06/14/2023]
Abstract
C4 photosynthesis is thought to have evolved via intermediate stages, with changes towards the C4 phenotype gradually enhancing photosynthetic performance. This hypothesis is widely supported by modelling studies, but experimental tests are missing. Mixing of C4 components to generate artificial intermediates can be achieved via crossing, and the grass Alloteropsis semialata represents an outstanding study system since it includes C4 and non-C4 populations. Here, we analyse F1 hybrids between C3 and C4 , and C3 +C4 and C4 genotypes to determine whether the acquisition of C4 characteristics increases photosynthetic performance. The hybrids have leaf anatomical characters and C4 gene expression profiles that are largely intermediate between those of their parents. Carbon isotope ratios are similarly intermediate, which suggests that a partial C4 cycle coexists with C3 carbon fixation in the hybrids. This partial C4 phenotype is associated with C4 -like photosynthetic efficiency in C3 +C4 × C4 , but not in C3 × C4 hybrids, which are overall less efficient than both parents. Our results support the hypothesis that the photosynthetic gains from the upregulation of C4 characteristics depend on coordinated changes in anatomy and biochemistry. The order of acquisition of C4 components is thus constrained, with C3 +C4 species providing an essential step for C4 evolution.
Collapse
Affiliation(s)
- Matheus E. Bianconi
- Ecology and Evolutionary Biology, School of BiosciencesUniversity of SheffieldWestern BankSheffieldUK
| | - Graciela Sotelo
- Ecology and Evolutionary Biology, School of BiosciencesUniversity of SheffieldWestern BankSheffieldUK
| | - Emma V. Curran
- Ecology and Evolutionary Biology, School of BiosciencesUniversity of SheffieldWestern BankSheffieldUK
| | - Vanja Milenkovic
- Ecology and Evolutionary Biology, School of BiosciencesUniversity of SheffieldWestern BankSheffieldUK
| | - Emanuela Samaritani
- Ecology and Evolutionary Biology, School of BiosciencesUniversity of SheffieldWestern BankSheffieldUK
| | - Luke T. Dunning
- Ecology and Evolutionary Biology, School of BiosciencesUniversity of SheffieldWestern BankSheffieldUK
| | - Lígia T. Bertolino
- Plants, Photosynthesis and Soil, School of BiosciencesUniversity of SheffieldWestern BankSheffieldUK
| | - Colin P. Osborne
- Plants, Photosynthesis and Soil, School of BiosciencesUniversity of SheffieldWestern BankSheffieldUK
| | - Pascal‐Antoine Christin
- Ecology and Evolutionary Biology, School of BiosciencesUniversity of SheffieldWestern BankSheffieldUK
| |
Collapse
|
47
|
Petrova A, Sibgatullina G, Gorshkova T, Kozlova L. Dynamics of cell wall polysaccharides during the elongation growth of rye primary roots. PLANTA 2022; 255:108. [PMID: 35449484 DOI: 10.1007/s00425-022-03887-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
In cells of growing rye roots, xyloglucans and homogalacturonans demonstrate developmental stage specificity, while different xylans have tissue specificity. Mannans, arabinans and galactans are also detected within the protoplast. Mannans form films on sections of fresh material. The primary cell walls of plants represent supramolecular exocellular structures that are mainly composed of polysaccharides. Cell wall properties and architecture differ between species and across tissues within a species. We revised the distribution of cell wall polysaccharides and their dynamics during elongation growth and histogenesis in rye roots using nonfixed material and the spectrum of antibodies. Rye is a member of the Poaceae family and thus has so-called type II primary cell walls, which are supposed to be low in pectins and xyloglucans and instead have arabinoxylans and mixed-linkage glucans. However, rye cell walls at the earliest stages of cell development were enriched with the epitopes of xyloglucans and homogalacturonans. Mixed-linkage glucan, which is often considered an elongation growth-specific polysaccharide in plants with type II cell walls, did not display such dynamics in rye roots. The cessation of elongation growth and even the emergence of root hairs were not accompanied by the disappearance of mixed-linkage glucans from cell walls. The diversity of xylan motifs recognized by different antibodies was minimal in the meristem zone of rye roots, but this diversity increased and showed tissue specificity during root growth. Antibodies specific for xyloglucans, galactans, arabinans and mannans bound the cell content. When rye root cells were cut, the epitopes of xyloglucans, galactans and arabinans remained within the cell content, while mannans developed net-like or film-like structures on the surface of sections.
Collapse
Affiliation(s)
- Anna Petrova
- Laboratory of Plant Cell Growth Mechanisms, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevsky str., 2/31, 420111, Kazan, Russia
| | - Gusel Sibgatullina
- The Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevsky str., 2/31, 420111, Kazan, Russia
| | - Tatyana Gorshkova
- Laboratory of Plant Cell Growth Mechanisms, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevsky str., 2/31, 420111, Kazan, Russia
| | - Liudmila Kozlova
- Laboratory of Plant Cell Growth Mechanisms, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevsky str., 2/31, 420111, Kazan, Russia.
| |
Collapse
|
48
|
High-quality chromosome-scale de novo assembly of the Paspalum notatum 'Flugge' genome. BMC Genomics 2022; 23:293. [PMID: 35410159 PMCID: PMC9004155 DOI: 10.1186/s12864-022-08489-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 03/16/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Paspalum notatum 'Flugge' is a diploid with 20 chromosomes (2n = 20) multi-purpose subtropical herb native to South America and has a high ecological significance. It is currently widely planted in tropical and subtropical regions. Despite the gene pool of P. notatum 'Flugge' being unearthed to a large extent in the past decade, no details about the genomic information of relevant species in Paspalum have been reported. In this study, the complete genome information of P. notatum was established and annotated through sequencing and de novo assembly of its genome. RESULTS The latest PacBio third-generation HiFi assembly and sequencing revealed that the genome size of P. notatum 'Flugge' is 541 M. The assembly result is the higher index among the genomes of the gramineous family published so far, with a contig N50 = 52Mbp, scaffold N50 = 49Mbp, and BUSCOs = 98.1%, accounting for 98.5% of the estimated genome. Genome annotation revealed 36,511 high-confidence gene models, thus providing an important resource for future molecular breeding and evolutionary research. A comparison of the genome annotation results of P. notatum 'Flugge' with other closely related species revealed that it had a close relationship with Zea mays but not close compared to Brachypodium distachyon, Setaria viridis, Oryza sativa, Puccinellia tenuiflora, Echinochloa crusgalli. An analysis of the expansion and contraction of gene families suggested that P. notatum 'Flugge' contains gene families associated with environmental resistance, increased reproductive ability, and molecular evolution, which explained its excellent agronomic traits. CONCLUSION This study is the first to report the high-quality chromosome-scale-based genome of P. notatum 'Flugge' assembled using the latest PacBio third-generation HiFi sequencing reads. The study provides an excellent genetic resource bank for gramineous crops and invaluable perspectives regarding the evolution of gramineous plants.
Collapse
|
49
|
Huang W, Zhang L, Columbus JT, Hu Y, Zhao Y, Tang L, Guo Z, Chen W, McKain M, Bartlett M, Huang CH, Li DZ, Ge S, Ma H. A well-supported nuclear phylogeny of Poaceae and implications for the evolution of C 4 photosynthesis. MOLECULAR PLANT 2022; 15:755-777. [PMID: 35093593 DOI: 10.1016/j.molp.2022.01.015] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 06/09/2021] [Accepted: 01/24/2022] [Indexed: 05/11/2023]
Abstract
Poaceae (the grasses) includes rice, maize, wheat, and other crops, and is the most economically important angiosperm family. Poaceae is also one of the largest plant families, consisting of over 11 000 species with a global distribution that contributes to diverse ecosystems. Poaceae species are classified into 12 subfamilies, with generally strong phylogenetic support for their monophyly. However, many relationships within subfamilies, among tribes and/or subtribes, remain uncertain. To better resolve the Poaceae phylogeny, we generated 342 transcriptomic and seven genomic datasets; these were combined with other genomic and transcriptomic datasets to provide sequences for 357 Poaceae species in 231 genera, representing 45 tribes and all 12 subfamilies. Over 1200 low-copy nuclear genes were retrieved from these datasets, with several subsets obtained using additional criteria, and used for coalescent analyses to reconstruct a Poaceae phylogeny. Our results strongly support the monophyly of 11 subfamilies; however, the subfamily Puelioideae was separated into two non-sister clades, one for each of the two previously defined tribes, supporting a hypothesis that places each tribe in a separate subfamily. Molecular clock analyses estimated the crown age of Poaceae to be ∼101 million years old. Ancestral character reconstruction of C3/C4 photosynthesis supports the hypothesis of multiple independent origins of C4 photosynthesis. These origins are further supported by phylogenetic analysis of the ppc gene family that encodes the phosphoenolpyruvate carboxylase, which suggests that members of three paralogous subclades (ppc-aL1a, ppc-aL1b, and ppc-B2) were recruited as functional C4ppc genes. This study provides valuable resources and a robust phylogenetic framework for evolutionary analyses of the grass family.
Collapse
Affiliation(s)
- Weichen Huang
- Department of Biology, 510 Mueller Laboratory, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, State College, PA 16802, USA
| | - Lin Zhang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering and State Key Laboratory of Genetic Engineering, Institute of Biodiversity Sciences and Institute of Plant Biology, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - J Travis Columbus
- Rancho Santa Ana Botanic Garden and Claremont Graduate University, 1500 North College Avenue, Claremont, CA 91711, USA
| | - Yi Hu
- Department of Biology, 510 Mueller Laboratory, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, State College, PA 16802, USA
| | - Yiyong Zhao
- Department of Biology, 510 Mueller Laboratory, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, State College, PA 16802, USA; Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering and State Key Laboratory of Genetic Engineering, Institute of Biodiversity Sciences and Institute of Plant Biology, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Lin Tang
- Department of Biology, 510 Mueller Laboratory, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, State College, PA 16802, USA; College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Zhenhua Guo
- Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201 China
| | - Wenli Chen
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Michael McKain
- Department of Biological Sciences, University of Alabama, 411 Mary Harmon Bryant Hall, Tuscaloosa, AL 35487, USA
| | - Madelaine Bartlett
- Biology Department, University of Massachusetts Amherst, 611 North Pleasant Street, 221 Morrill 3, Amherst, MA 01003 USA
| | - Chien-Hsun Huang
- Department of Biology, 510 Mueller Laboratory, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, State College, PA 16802, USA; Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering and State Key Laboratory of Genetic Engineering, Institute of Biodiversity Sciences and Institute of Plant Biology, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - De-Zhu Li
- Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201 China
| | - Song Ge
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Hong Ma
- Department of Biology, 510 Mueller Laboratory, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, State College, PA 16802, USA.
| |
Collapse
|
50
|
Bianconi ME, Christin PA, Dunning LT. Inferring the genome-wide history of grasses. MOLECULAR PLANT 2022; 15:591-592. [PMID: 35307592 DOI: 10.1016/j.molp.2022.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/14/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Affiliation(s)
- Matheus E Bianconi
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Pascal-Antoine Christin
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK; Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
| | - Luke T Dunning
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK.
| |
Collapse
|