1
|
Lee M, Boyce JA, Barrett NA. Cysteinyl Leukotrienes in Allergic Inflammation. ANNUAL REVIEW OF PATHOLOGY 2025; 20:115-141. [PMID: 39374430 PMCID: PMC11759657 DOI: 10.1146/annurev-pathmechdis-111523-023509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
The cysteinyl leukotrienes (CysLTs), LTC4, LTD4, and LTE4, are potent lipid mediators derived from arachidonic acid through the 5-lipoxygenase pathway. These mediators produce both inflammation and bronchoconstriction through three distinct G protein-coupled receptors (GPCRs)-CysLT1, CysLT2, and OXGR1 (also known as CysLT3 or GPR99). While CysLT-mediated functions in the effector phase of allergic inflammation and asthma have been established for some time, recent work has demonstrated novel roles for these mediators and their receptors in the induction and amplification of type 2 inflammation. Additionally, in vitro studies and murine models have uncovered diverse regulatory mechanisms that restrain or amplify CysLT receptor activation and CysLT receptor function. This review provides an overview of CysLT biosynthesis and its regulation, the molecular and functional pharmacology of CysLT receptors, and an overview of the established and emerging roles of CysLTs in asthma, aspirin-exacerbated respiratory disease, and type 2 inflammation.
Collapse
Affiliation(s)
- Minkyu Lee
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Jeff and Penny Vinik Center for Translational Immunology Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Massachusetts, USA; , ,
| | - Joshua A Boyce
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Jeff and Penny Vinik Center for Translational Immunology Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Massachusetts, USA; , ,
| | - Nora A Barrett
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Jeff and Penny Vinik Center for Translational Immunology Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Massachusetts, USA; , ,
| |
Collapse
|
2
|
Conley JM, Jochim A, Evans-Molina C, Watts VJ, Ren H. G Protein-Coupled Receptor 17 Inhibits Glucagon-like Peptide-1 Secretion via a Gi/o-Dependent Mechanism in Enteroendocrine Cells. Biomolecules 2024; 15:9. [PMID: 39858405 PMCID: PMC11762167 DOI: 10.3390/biom15010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/22/2024] [Accepted: 12/23/2024] [Indexed: 01/27/2025] Open
Abstract
Gut peptides, including glucagon-like peptide-1 (GLP-1), regulate metabolic homeostasis and have emerged as the basis for multiple state-of-the-art diabetes and obesity therapies. We previously showed that G protein-coupled receptor 17 (GPR17) is expressed in intestinal enteroendocrine cells (EECs) and modulates nutrient-induced GLP-1 secretion. However, the GPR17-mediated molecular signaling pathways in EECs have yet to be fully deciphered. Here, we expressed the human GPR17 long isoform (hGPR17L) in GLUTag cells, a murine EEC line, and we used the GPR17 synthetic agonist MDL29,951 together with pharmacological probes and genetic approaches to quantitatively assess the contribution of GPR17 signaling to GLP-1 secretion. Constitutive hGPR17L activity inhibited GLP-1 secretion, and MDL29,951 treatment further inhibited this secretion, which was attenuated by treatment with the GPR17 antagonist HAMI3379. MDL29,951 promoted both Gi/o and Gq protein coupling to mediate cyclic AMP (cAMP) and calcium signaling. hGPR17L regulation of GLP-1 secretion appeared to be Gq-independent and dependent upon Gi/o signaling, but was not correlated with MDL29,951-induced whole-cell cAMP signaling. Our studies revealed key signaling mechanisms underlying the role of GPR17 in regulating GLP-1 secretion and suggest future opportunities for pharmacologically targeting GPR17 with inverse agonists to maximize GLP-1 secretion.
Collapse
Affiliation(s)
- Jason M. Conley
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (J.M.C.); (A.J.); (C.E.-M.)
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Alexander Jochim
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (J.M.C.); (A.J.); (C.E.-M.)
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Carmella Evans-Molina
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (J.M.C.); (A.J.); (C.E.-M.)
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Roudebush VA Medical Center, Indianapolis, IN 46202, USA
| | - Val J. Watts
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA;
| | - Hongxia Ren
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (J.M.C.); (A.J.); (C.E.-M.)
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
3
|
Boshta NM, Lewash M, Köse M, Namasivayam V, Sarkar S, Voss JH, Liedtke AJ, Junker A, Tian M, Stößel A, Rashed M, Mahal A, Merten N, Pegurier C, Hockemeyer J, Kostenis E, Müller CE. Discovery of Anthranilic Acid Derivatives as Antagonists of the Pro-Inflammatory Orphan G Protein-Coupled Receptor GPR17. J Med Chem 2024; 67:19365-19394. [PMID: 39484825 DOI: 10.1021/acs.jmedchem.4c01755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
The G protein-coupled receptor 17 (GPR17) is an orphan receptor involved in inflammatory diseases. GPR17 antagonists have been proposed for the treatment of multiple sclerosis due to their potential to induce remyelination. Potent, selective antagonists are required to enable target validation. In the present study, we describe the discovery of a novel class of GPR17 antagonists based on an anthranilic acid scaffold. The compounds' potencies were evaluated in calcium mobilization and radioligand binding assays, and structure-activity relationships were analyzed. Selected antagonists were additionally studied in cAMP and G protein activation assays. The most potent antagonists were 5-methoxy-2-(5-(3'-methoxy-[1,1'-biphenyl]-2-yl)furan-2-carboxamido)benzoic acid (52, PSB-22269, Ki 8.91 nM) and its 3'-trifluoromethyl analog (54, PSB-24040, Ki 83.2 nM). Receptor-ligand docking studies revealed that the compounds' binding site is characterized by positively charged arginine residues and a lipophilic pocket. These findings yield valuable insights into this poorly characterized receptor providing a basis for future drug development.
Collapse
Affiliation(s)
- Nader M Boshta
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, Bonn D-53121, Germany
| | - Michael Lewash
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, Bonn D-53121, Germany
| | - Meryem Köse
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, Bonn D-53121, Germany
| | - Vigneshwaran Namasivayam
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, Bonn D-53121, Germany
| | - Soumya Sarkar
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, Bonn D-53121, Germany
| | - Jan H Voss
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, Bonn D-53121, Germany
| | - Andy J Liedtke
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, Bonn D-53121, Germany
| | - Anna Junker
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, Bonn D-53121, Germany
| | - Maoqun Tian
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, Bonn D-53121, Germany
| | - Anne Stößel
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, Bonn D-53121, Germany
| | - Mahmoud Rashed
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, Bonn D-53121, Germany
| | - Ahmed Mahal
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, Bonn D-53121, Germany
| | - Nicole Merten
- Pharmaceutical Biology, University of Bonn, Nußallee 6, Bonn D-53115, Germany
| | | | - Jörg Hockemeyer
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, Bonn D-53121, Germany
| | - Evi Kostenis
- Pharmaceutical Biology, University of Bonn, Nußallee 6, Bonn D-53115, Germany
| | - Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, Bonn D-53121, Germany
| |
Collapse
|
4
|
Conley JM, Jochim A, Evans-Molina C, Watts VJ, Ren H. G protein-coupled receptor 17 inhibits glucagon-like peptide-1 secretion via a Gi/o-dependent mechanism in enteroendocrine cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.13.623413. [PMID: 39605686 PMCID: PMC11601441 DOI: 10.1101/2024.11.13.623413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Gut peptides, including glucagon-like peptide-1 (GLP-1), regulate metabolic homeostasis and have emerged as the basis for multiple state-of-the-art diabetes and obesity therapies. We previously showed that G protein-coupled receptor 17 (GPR17) is expressed in intestinal enteroendocrine cells (EECs) and modulates nutrient-induced GLP-1 secretion. However, the GPR17-mediated molecular signaling pathways in EECs have yet to be fully deciphered. Here, we expressed the human GPR17 long isoform (hGPR17L) in GLUTag cells, a murine EEC line, and we used the GPR17 synthetic agonist MDL29,951 together with pharmacological probes and genetic approaches to quantitatively assess the contribution of GPR17 signaling to GLP-1 secretion. Constitutive hGPR17L activity inhibited GLP-1 secretion, and MDL29,951 treatment further inhibited this secretion, which was attenuated by treatment with the GPR17 antagonist HAMI3379. MDL29,951 promoted both Gi/o and Gq protein coupling to mediate cyclic AMP (cAMP) and calcium signaling. hGPR17L regulation of GLP-1 secretion was Gq-independent and dependent upon Gi/o signaling, but was not correlated with MDL29,951-induced whole-cell cAMP signaling. Our studies revealed key signaling mechanisms underlying the role of GPR17 in regulating GLP-1 secretion and suggest future opportunities for pharmacologically targeting GPR17 with inverse agonists to maximize GLP-1 secretion.
Collapse
Affiliation(s)
- Jason M. Conley
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Alexander Jochim
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Carmella Evans-Molina
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN 46202
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202
- Roudebush VA Medical Center, Indianapolis, IN 46202
| | - Val J. Watts
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907
| | - Hongxia Ren
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN 46202
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202
| |
Collapse
|
5
|
Nie R, Zhou X, Fu J, Hu S, Zhang Q, Jiang W, Yan Y, Cao X, Yuan D, Long Y, Hong H, Tang S. GPR17 modulates anxiety-like behaviors via basolateral amygdala to ventral hippocampal CA1 glutamatergic projection. Acta Pharm Sin B 2024; 14:4789-4805. [PMID: 39664418 PMCID: PMC11628806 DOI: 10.1016/j.apsb.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/17/2024] [Accepted: 07/26/2024] [Indexed: 12/13/2024] Open
Abstract
Anxiety disorders are one of the most epidemic and chronic psychiatric disorders. An incomplete understanding of anxiety pathophysiology has limited the development of highly effective drugs against these disorders. GPR17 has been shown to be involved in multiple sclerosis and some acute brain injury disorders. However, no study has investigated the role of GPR17 in psychiatric disorders. In a well-established chronic restraint stress (CRS) mouse model, using a combination of pharmacological and molecular biology techniques, viral tracing, in vitro electrophysiology recordings, in vivo fiber photometry, chemogenetic manipulations and behavioral tests, we demonstrated that CRS induced anxiety-like behaviors and increased the expression of GPR17 in basolateral amygdala (BLA) glutamatergic neurons. Inhibition of GPR17 by cangrelor or knockdown of GPR17 by adeno-associated virus in BLA glutamatergic neurons effectively improved anxiety-like behaviors. Overexpression of GPR17 in BLA glutamatergic neurons increased the susceptibility to anxiety-like behaviors. What's more, BLA glutamatergic neuronal activity was required for anxiolytic-like effects of GPR17 antagonist and GPR17 modulated anxiety-like behaviors via BLA to ventral hippocampal CA1 glutamatergic projection. Our study finds for the first and highlights the new role of GPR17 in regulating anxiety-like behaviors and it might be a novel potential target for therapy of anxiety disorders.
Collapse
Affiliation(s)
- Ruizhe Nie
- Department of Pharmacology, College of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Xinting Zhou
- Department of Pharmacology, College of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Jiaru Fu
- Department of Pharmacology, College of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Shanshan Hu
- Department of Pharmacology, College of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Qilu Zhang
- Department of Pharmacology, College of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Weikai Jiang
- Department of Pharmacology, College of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yizi Yan
- Department of Pharmacology, College of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Xian Cao
- Department of Pharmacology, College of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Danhua Yuan
- Department of Pharmacology, College of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yan Long
- Department of Pharmacology, College of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Hao Hong
- Department of Pharmacology, College of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Susu Tang
- Department of Pharmacology, College of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
6
|
Öz-Arslan D, Yavuz M, Kan B. Exploring orphan GPCRs in neurodegenerative diseases. Front Pharmacol 2024; 15:1394516. [PMID: 38895631 PMCID: PMC11183337 DOI: 10.3389/fphar.2024.1394516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/15/2024] [Indexed: 06/21/2024] Open
Abstract
Neurodegenerative disorders represent a significant and growing health burden worldwide. Unfortunately, limited therapeutic options are currently available despite ongoing efforts. Over the past decades, research efforts have increasingly focused on understanding the molecular mechanisms underlying these devastating conditions. Orphan receptors, a class of receptors with no known endogenous ligands, emerge as promising druggable targets for diverse diseases. This review aims to direct attention to a subgroup of orphan GPCRs, in particular class A orphans that have roles in neurodegenerative disorders, including Alzheimer's disease, Parkinson's disease, Huntington's disease, and Multiple sclerosis. We highlight the diverse roles orphan receptors play in regulating critical cellular processes such as synaptic transmission, neuronal survival and neuro-inflammation. Moreover, we discuss the therapeutic potential of targeting orphan receptors for the treatment of neurodegenerative disorders, emphasizing recent advances in drug discovery and preclinical studies. Finally, we outline future directions and challenges in orphan receptor research.
Collapse
Affiliation(s)
- Devrim Öz-Arslan
- Department of Biophysics, Acibadem MAA University, School of Medicine, Istanbul, Türkiye
- Department of Neurosciences, Acibadem MAA University, Institute of Health Sciences, İstanbul, Türkiye
| | - Melis Yavuz
- Department of Neurosciences, Acibadem MAA University, Institute of Health Sciences, İstanbul, Türkiye
- Department of Pharmacology, Acibadem MAA University, School of Pharmacy, Istanbul, Türkiye
| | - Beki Kan
- Department of Biophysics, Acibadem MAA University, School of Medicine, Istanbul, Türkiye
- Department of Neurosciences, Acibadem MAA University, Institute of Health Sciences, İstanbul, Türkiye
| |
Collapse
|
7
|
Birgül Iyison N, Abboud C, Abboud D, Abdulrahman AO, Bondar AN, Dam J, Georgoussi Z, Giraldo J, Horvat A, Karoussiotis C, Paz-Castro A, Scarpa M, Schihada H, Scholz N, Güvenc Tuna B, Vardjan N. ERNEST COST action overview on the (patho)physiology of GPCRs and orphan GPCRs in the nervous system. Br J Pharmacol 2024. [PMID: 38825750 DOI: 10.1111/bph.16389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/09/2024] [Accepted: 02/24/2024] [Indexed: 06/04/2024] Open
Abstract
G protein-coupled receptors (GPCRs) are a large family of cell surface receptors that play a critical role in nervous system function by transmitting signals between cells and their environment. They are involved in many, if not all, nervous system processes, and their dysfunction has been linked to various neurological disorders representing important drug targets. This overview emphasises the GPCRs of the nervous system, which are the research focus of the members of ERNEST COST action (CA18133) working group 'Biological roles of signal transduction'. First, the (patho)physiological role of the nervous system GPCRs in the modulation of synapse function is discussed. We then debate the (patho)physiology and pharmacology of opioid, acetylcholine, chemokine, melatonin and adhesion GPCRs in the nervous system. Finally, we address the orphan GPCRs, their implication in the nervous system function and disease, and the challenges that need to be addressed to deorphanize them.
Collapse
Affiliation(s)
- Necla Birgül Iyison
- Department of Molecular Biology and Genetics, University of Bogazici, Istanbul, Turkey
| | - Clauda Abboud
- Laboratory of Molecular Pharmacology, GIGA-Molecular Biology of Diseases, University of Liege, Liege, Belgium
| | - Dayana Abboud
- Laboratory of Molecular Pharmacology, GIGA-Molecular Biology of Diseases, University of Liege, Liege, Belgium
| | | | - Ana-Nicoleta Bondar
- Faculty of Physics, University of Bucharest, Magurele, Romania
- Forschungszentrum Jülich, Institute for Computational Biomedicine (IAS-5/INM-9), Jülich, Germany
| | - Julie Dam
- Institut Cochin, CNRS, INSERM, Université Paris Cité, Paris, France
| | - Zafiroula Georgoussi
- Laboratory of Cellular Signalling and Molecular Pharmacology, Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos", Athens, Greece
| | - Jesús Giraldo
- Laboratory of Molecular Neuropharmacology and Bioinformatics, Unitat de Bioestadística and Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Madrid, Spain
- Unitat de Neurociència Traslacional, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT), Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Anemari Horvat
- Laboratory of Neuroendocrinology - Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Laboratory of Cell Engineering, Celica Biomedical, Ljubljana, Slovenia
| | - Christos Karoussiotis
- Laboratory of Cellular Signalling and Molecular Pharmacology, Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos", Athens, Greece
| | - Alba Paz-Castro
- Molecular Pharmacology of GPCRs research group, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Santiago, Spain
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Santiago, Spain
| | - Miriam Scarpa
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Hannes Schihada
- Department of Pharmaceutical Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Nicole Scholz
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Bilge Güvenc Tuna
- Department of Biophysics, School of Medicine, Yeditepe University, Istanbul, Turkey
| | - Nina Vardjan
- Laboratory of Neuroendocrinology - Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Laboratory of Cell Engineering, Celica Biomedical, Ljubljana, Slovenia
| |
Collapse
|
8
|
Kanamaru H, Zhu S, Dong S, Takemoto Y, Huang L, Sherchan P, Suzuki H, Tang J, Zhang JH. UDP-Glucose/P2Y14 Receptor Signaling Exacerbates Neuronal Apoptosis After Subarachnoid Hemorrhage in Rats. Stroke 2024; 55:1381-1392. [PMID: 38525592 PMCID: PMC11039370 DOI: 10.1161/strokeaha.123.044422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 02/13/2024] [Indexed: 03/26/2024]
Abstract
BACKGROUND Subarachnoid hemorrhage (SAH) is a severe subtype of stroke with poor outcomes. Abnormal glucose metabolism often occurs after SAH, but the strict control of blood glucose levels is not always beneficial. This study aimed to investigate the contribution of uridine diphosphate glucose (UDP-G), an intermediate of glucose/glycogen metabolism, and its receptor P2Y14 (P2Y purinoceptor 14) to SAH pathology and explored the potential targeted treatments in rats. METHODS A total of 218 Sprague-Dawley male rats were used. SAH was induced by endovascular perforation. Brain expressions of P2Y14, uridine diphosphate glucose (UDP-G), and its converting enzyme UGP2 (UDP-G pyrophosphorylase-2) were evaluated. Exogenous UDP-G or selective P2Y14 inhibitor was administered intranasally at 1 hour after SAH to explore their potential effects. Intranasal Ugp2 or P2ry14 siRNA was delivered 24 hours before SAH for mechanistic evaluation. Primary neuron culture and hemoglobin stimulation were used as in vitro model of SAH. Post-SAH evaluation included liquid chromatography-mass spectrometry measurement of brain endogenous UDP-G level, neurobehavioral assessments, Western blotting, immunohistochemistry, TUNEL staining, and Nissl staining. RESULTS There was an acute elevation of endogenous brain UDP-G and UGP2 after SAH, and P2Y14 was expressed in neurons. Although P2Y14 inhibitor decreased neurological dysfunction, neuronal apoptosis, and proapoptotic molecules, exogenous UDP-G exacerbated these outcomes at 24 hours after SAH. Early inhibition of P2Y14 preserved long-term neuronal survival in the hippocampus, amygdala, and cortex with improved neurocognition and depressive-like behavior. In addition, in vivo knockdown of Ugp2- and P2ry14-reduced neurological deficits and proapoptotic molecules at 24 hours after SAH, and furthermore in vitro knockdown of P2ry14-reduced apoptosis in hemoglobin stimulated primary neuron. CONCLUSIONS These findings suggest a detrimental role of brain UDP-G/P2Y14 signaling in SAH, as a part of glucose metabolic pathology at the tissue level. P2Y14 inhibitor 4-[4-(4-piperidinyl)phenyl]-7-[4-(trifluoromethyl)phenyl]-2-naphthalenecarboxylic acid hydrochloride may serve as a potential therapeutic target in treating patients with SAH.
Collapse
Affiliation(s)
- Hideki Kanamaru
- Departments of Physiology and Pharmacology (H.K., S.Z., S.D., Y.T., L.H., P.S., J.T., J.H.Z.,), Loma Linda University, CA
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan (H.K., H.S.)
| | - Shiyi Zhu
- Departments of Physiology and Pharmacology (H.K., S.Z., S.D., Y.T., L.H., P.S., J.T., J.H.Z.,), Loma Linda University, CA
| | - Siyuan Dong
- Departments of Physiology and Pharmacology (H.K., S.Z., S.D., Y.T., L.H., P.S., J.T., J.H.Z.,), Loma Linda University, CA
| | - Yushin Takemoto
- Departments of Physiology and Pharmacology (H.K., S.Z., S.D., Y.T., L.H., P.S., J.T., J.H.Z.,), Loma Linda University, CA
- Department of Neurosurgery, Kumamoto University School of Medicine, Japan (Y.T.)
| | - Lei Huang
- Departments of Physiology and Pharmacology (H.K., S.Z., S.D., Y.T., L.H., P.S., J.T., J.H.Z.,), Loma Linda University, CA
- Neurosurgery, (L.H., J.H.Z.), Loma Linda University, CA
| | - Prativa Sherchan
- Departments of Physiology and Pharmacology (H.K., S.Z., S.D., Y.T., L.H., P.S., J.T., J.H.Z.,), Loma Linda University, CA
| | - Hidenori Suzuki
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan (H.K., H.S.)
| | - Jiping Tang
- Departments of Physiology and Pharmacology (H.K., S.Z., S.D., Y.T., L.H., P.S., J.T., J.H.Z.,), Loma Linda University, CA
| | - John H Zhang
- Departments of Physiology and Pharmacology (H.K., S.Z., S.D., Y.T., L.H., P.S., J.T., J.H.Z.,), Loma Linda University, CA
- Neurosurgery, (L.H., J.H.Z.), Loma Linda University, CA
- Anesthesiology (J.H.Z.), Loma Linda University, CA
| |
Collapse
|
9
|
Harrington AW, Liu C, Phillips N, Nepomuceno D, Kuei C, Chang J, Chen W, Sutton SW, O'Malley D, Pham L, Yao X, Sun S, Bonaventure P. Identification and characterization of select oxysterols as ligands for GPR17. Br J Pharmacol 2023; 180:401-421. [PMID: 36214386 DOI: 10.1111/bph.15969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/28/2022] [Accepted: 09/30/2022] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND AND PURPOSE G-protein coupled receptor 17 (GPR17) is an orphan receptor involved in the process of myelination, due to its ability to inhibit the maturation of oligodendrocyte progenitor cells (OPCs) into myelinating oligodendrocytes. Despite multiple claims that the biological ligand has been identified, it remains an orphan receptor. EXPERIMENTAL APPROACH Seventy-seven oxysterols were screened in a cell-free [35 S]GTPγS binding assay using membranes from cells expressing GPR17. The positive hits were characterized using adenosine 3',5' cyclic monophosphate (cAMP), inositol monophosphate (IP1) and calcium mobilization assays, with results confirmed in rat primary oligodendrocytes. Rat and pig brain extracts were separated by high-performance liquid chromatography (HPLC) and endogenous activator(s) were identified in receptor activation assays. Gene expression studies of GPR17, and CYP46A1 (cytochrome P450 family 46 subfamily A member 1) enzymes responsible for the conversion of cholesterol into specific oxysterols, were performed using quantitative real-time PCR. KEY RESULTS Five oxysterols were able to stimulate GPR17 activity, including the brain cholesterol, 24(S)-hydroxycholesterol (24S-HC). A specific brain fraction from rat and pig extracts containing 24S-HC activates GPR17 in vitro. Expression of Gpr17 during mouse brain development correlates with the expression of Cyp46a1 and the levels of 24S-HC itself. Other active oxysterols have low brain concentrations below effective ranges. CONCLUSIONS AND IMPLICATIONS Oxysterols, including but not limited to 24S-HC, could be physiological activators for GPR17 and thus potentially regulate OPC differentiation and myelination through activation of the receptor.
Collapse
Affiliation(s)
| | - Changlu Liu
- Janssen Research & Development, LLC, San Diego, California, USA
| | - Naomi Phillips
- Janssen Research & Development, LLC, San Diego, California, USA
| | | | - Chester Kuei
- Janssen Research & Development, LLC, San Diego, California, USA
| | - Joseph Chang
- Janssen Research & Development, LLC, San Diego, California, USA
| | - Weixuan Chen
- Janssen Research & Development, LLC, San Diego, California, USA
| | - Steven W Sutton
- Janssen Research & Development, LLC, San Diego, California, USA
| | - Daniel O'Malley
- Janssen Research & Development, LLC, San Diego, California, USA
| | - Ly Pham
- Janssen Research & Development, LLC, San Diego, California, USA
| | - Xiang Yao
- Janssen Research & Development, LLC, San Diego, California, USA
| | - Siquan Sun
- Janssen Research & Development, LLC, San Diego, California, USA
| | | |
Collapse
|
10
|
Daniele S, Saporiti S, Capaldi S, Pietrobono D, Russo L, Guerrini U, Laurenzi T, Ataie Kachoie E, Palazzolo L, Russo V, Abbracchio MP, Eberini I, Trincavelli ML. Functional Heterodimerization between the G Protein-Coupled Receptor GPR17 and the Chemokine Receptors 2 and 4: New Evidence. Int J Mol Sci 2022; 24:261. [PMID: 36613703 PMCID: PMC9820414 DOI: 10.3390/ijms24010261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 12/28/2022] Open
Abstract
GPR17, a G protein-coupled receptor, is a pivotal regulator of myelination. Its endogenous ligands trigger receptor desensitization and downregulation allowing oligodendrocyte terminal maturation. In addition to its endogenous agonists, GPR17 could be promiscuously activated by pro-inflammatory oxysterols and chemokines released at demyelinating lesions. Herein, the chemokine receptors CXCR2 and CXCR4 were selected to perform both in silico modelling and in vitro experiments to establish their structural and functional interactions with GPR17. The relative propensity of GPR17 and CXCR2 or CXCR4 to form homo- and hetero-dimers was assessed by homology modelling and molecular dynamics (MD) simulations, and co-immunoprecipitation and immunoenzymatic assay. The interaction between chemokine receptors and GPR17 was investigated by determining receptor-mediated modulation of intracellular cyclic adenosine monophosphate (cAMP). Our data show the GPR17 association with CXCR2 or CXCR4 and the negative regulation of these interactions by CXCR agonists or antagonists. Moreover, GPR17 and CXCR2 heterodimers can functionally influence each other. In contrast, CXCR4 can influence GPR17 functionality, but not vice versa. According to MD simulations, all the dimers reached conformational stability and negative formation energy, confirming the experimental observations. The cross-talk between these receptors could play a role in the development of the neuroinflammatory milieu associated with demyelinating events.
Collapse
Affiliation(s)
- Simona Daniele
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Simona Saporiti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy
| | - Stefano Capaldi
- Dipartimento di Biotecnologie, Università degli Studi di Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Deborah Pietrobono
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Lara Russo
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Uliano Guerrini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy
| | - Tommaso Laurenzi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy
| | - Elham Ataie Kachoie
- Dipartimento di Biotecnologie, Università degli Studi di Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Luca Palazzolo
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy
| | - Vincenzo Russo
- Cancer Gene Therapy Unit, Program of Immunology and Bio Immuno Gene Therapy of Cancer, Division of Molecular Oncology Scientific, Institute San Raffaele, 20132 Milan, Italy
| | - Maria Pia Abbracchio
- Laboratorio di Farmacologia Molecolare e Cellulare Della Trasmissione Purinergica, Dipartimento di Scienze Farmaceutiche, Università Degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy
| | - Ivano Eberini
- Dipartimento di Scienze Farmacologiche e Biomolecolari & Data Science Research Center (DSRC), Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy
| | | |
Collapse
|
11
|
Ye F, Wong T, Chen G, Zhang Z, Zhang B, Gan S, Gao W, Li J, Wu Z, Pan X, Du Y. Cryo-EM structure of G-protein-coupled receptor GPR17 in complex with inhibitory G protein. MedComm (Beijing) 2022; 3:e159. [PMID: 36105372 PMCID: PMC9464062 DOI: 10.1002/mco2.159] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/29/2022] [Accepted: 07/01/2022] [Indexed: 11/11/2022] Open
Abstract
GPR17 is a class A orphan G protein-coupled receptor (GPCR) expressed in neurons and oligodendrocyte progenitors of the central nervous system (CNS). The signalling of GPR17 occurs through the heterotrimeric Gi, but its activation mechanism is unclear. Here, we employed cryo-electron microscopy (cryo-EM) technology to elucidate the structure of activated GPR17-Gi complex. The 3.02 Å resolution structure, together with mutagenesis studies, revealed that the extracellular loop2 of GPR17 occupied the orthosteric binding pocket to promote its self-activation. The active GPR17 carried several typical microswitches like other class A GPCRs. Moreover, the Gi interacted with the key residues of transmembrane helix 3 (TM3), the amphipathic helix 8 (Helix8), and intracellular loops 3 (ICL3) in GPR17 to engage in the receptor core. In summary, our results highlight the activation mechanism of GPR17 from the structural basis. Elucidating the structural and activation mechanism of GPR17 may facilitate the pharmacological intervention for acute/chronic CNS injury.
Collapse
Affiliation(s)
- Fang Ye
- Kobilka Institute of Innovative Drug DiscoveryShenzhen Key Laboratory of Steroid Drug Discovery and DevelopmentSchool of MedicineThe Chinese University of Hong KongShenzhenGuangdongChina
- The Chinese University of Hong KongShenzhen Futian Biomedical Innovation R&D CenterShenzhenGuangdongChina
| | - Thian‐Sze Wong
- Kobilka Institute of Innovative Drug DiscoveryShenzhen Key Laboratory of Steroid Drug Discovery and DevelopmentSchool of MedicineThe Chinese University of Hong KongShenzhenGuangdongChina
| | - Geng Chen
- Kobilka Institute of Innovative Drug DiscoveryShenzhen Key Laboratory of Steroid Drug Discovery and DevelopmentSchool of MedicineThe Chinese University of Hong KongShenzhenGuangdongChina
| | - Zhiyi Zhang
- Kobilka Institute of Innovative Drug DiscoveryShenzhen Key Laboratory of Steroid Drug Discovery and DevelopmentSchool of MedicineThe Chinese University of Hong KongShenzhenGuangdongChina
| | - Binghao Zhang
- Kobilka Institute of Innovative Drug DiscoveryShenzhen Key Laboratory of Steroid Drug Discovery and DevelopmentSchool of MedicineThe Chinese University of Hong KongShenzhenGuangdongChina
| | - Shiyi Gan
- Kobilka Institute of Innovative Drug DiscoveryShenzhen Key Laboratory of Steroid Drug Discovery and DevelopmentSchool of MedicineThe Chinese University of Hong KongShenzhenGuangdongChina
| | - Wei Gao
- Kobilka Institute of Innovative Drug DiscoveryShenzhen Key Laboratory of Steroid Drug Discovery and DevelopmentSchool of MedicineThe Chinese University of Hong KongShenzhenGuangdongChina
| | - Jiancheng Li
- Instrumental Analysis CenterShenzhen UniversityShenzhenGuangdongChina
| | - Zhangsong Wu
- Kobilka Institute of Innovative Drug DiscoveryShenzhen Key Laboratory of Steroid Drug Discovery and DevelopmentSchool of MedicineThe Chinese University of Hong KongShenzhenGuangdongChina
| | - Xin Pan
- Kobilka Institute of Innovative Drug DiscoveryShenzhen Key Laboratory of Steroid Drug Discovery and DevelopmentSchool of MedicineThe Chinese University of Hong KongShenzhenGuangdongChina
| | - Yang Du
- Kobilka Institute of Innovative Drug DiscoveryShenzhen Key Laboratory of Steroid Drug Discovery and DevelopmentSchool of MedicineThe Chinese University of Hong KongShenzhenGuangdongChina
- The Chinese University of Hong KongShenzhen Futian Biomedical Innovation R&D CenterShenzhenGuangdongChina
| |
Collapse
|
12
|
Wang S, Wang Y, Zou S. A Glance at the Molecules That Regulate Oligodendrocyte Myelination. Curr Issues Mol Biol 2022; 44:2194-2216. [PMID: 35678678 PMCID: PMC9164040 DOI: 10.3390/cimb44050149] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 11/16/2022] Open
Abstract
Oligodendrocyte (OL) myelination is a critical process for the neuronal axon function in the central nervous system. After demyelination occurs because of pathophysiology, remyelination makes repairs similar to myelination. Proliferation and differentiation are the two main stages in OL myelination, and most factors commonly play converse roles in these two stages, except for a few factors and signaling pathways, such as OLIG2 (Oligodendrocyte transcription factor 2). Moreover, some OL maturation gene mutations induce hypomyelination or hypermyelination without an obvious function in proliferation and differentiation. Herein, three types of factors regulating myelination are reviewed in sequence.
Collapse
Affiliation(s)
- Shunqi Wang
- Institute of Life Science & School of Life Sciences, Nanchang University, Nanchang 330031, China; (S.W.); (Y.W.)
- School of Basic Medical Sciences, Nanchang University, Nanchang 330031, China
| | - Yingxing Wang
- Institute of Life Science & School of Life Sciences, Nanchang University, Nanchang 330031, China; (S.W.); (Y.W.)
| | - Suqi Zou
- Institute of Life Science & School of Life Sciences, Nanchang University, Nanchang 330031, China; (S.W.); (Y.W.)
- School of Basic Medical Sciences, Nanchang University, Nanchang 330031, China
- Correspondence:
| |
Collapse
|
13
|
Braune M, Scherf N, Heine C, Sygnecka K, Pillaiyar T, Parravicini C, Heimrich B, Abbracchio MP, Müller CE, Franke H. Involvement of GPR17 in Neuronal Fibre Outgrowth. Int J Mol Sci 2021; 22:ijms222111683. [PMID: 34769111 PMCID: PMC8584086 DOI: 10.3390/ijms222111683] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/24/2021] [Accepted: 10/24/2021] [Indexed: 11/16/2022] Open
Abstract
Characterization of new pharmacological targets is a promising approach in research of neurorepair mechanisms. The G protein-coupled receptor 17 (GPR17) has recently been proposed as an interesting pharmacological target, e.g., in neuroregenerative processes. Using the well-established ex vivo model of organotypic slice co-cultures of the mesocortical dopaminergic system (prefrontal cortex (PFC) and substantia nigra/ventral tegmental area (SN/VTA) complex), the influence of GPR17 ligands on neurite outgrowth from SN/VTA to the PFC was investigated. The growth-promoting effects of Montelukast (MTK; GPR17- and cysteinyl-leukotriene receptor antagonist), the glial cell line-derived neurotrophic factor (GDNF) and of two potent, selective GPR17 agonists (PSB-16484 and PSB-16282) were characterized. Treatment with MTK resulted in a significant increase in mean neurite density, comparable with the effects of GDNF. The combination of MTK and GPR17 agonist PSB-16484 significantly inhibited neuronal growth. qPCR studies revealed an MTK-induced elevated mRNA-expression of genes relevant for neuronal growth. Immunofluorescence labelling showed a marked expression of GPR17 on NG2-positive glia. Western blot and RT-qPCR analysis of untreated cultures suggest a time-dependent, injury-induced stimulation of GPR17. In conclusion, MTK was identified as a stimulator of neurite fibre outgrowth, mediating its effects through GPR17, highlighting GPR17 as an interesting therapeutic target in neuronal regeneration.
Collapse
Affiliation(s)
- Max Braune
- Rudolf Boehm Institute of Pharmacology and Toxicology, Medical Faculty, University of Leipzig, Härtelstr. 16-18, 04107 Leipzig, Germany; (M.B.); (C.H.); (K.S.)
| | - Nico Scherf
- Methods and Development Group Neural Data Analysis and Statistical Computing, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1A, 04103 Leipzig, Germany;
| | - Claudia Heine
- Rudolf Boehm Institute of Pharmacology and Toxicology, Medical Faculty, University of Leipzig, Härtelstr. 16-18, 04107 Leipzig, Germany; (M.B.); (C.H.); (K.S.)
| | - Katja Sygnecka
- Rudolf Boehm Institute of Pharmacology and Toxicology, Medical Faculty, University of Leipzig, Härtelstr. 16-18, 04107 Leipzig, Germany; (M.B.); (C.H.); (K.S.)
| | - Thanigaimalai Pillaiyar
- Department of Pharmaceutical & Medicinal Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany; (T.P.); (C.E.M.)
| | - Chiara Parravicini
- Department of Pharmaceutical Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy; (C.P.); (M.P.A.)
| | - Bernd Heimrich
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Center for Basics in NeuroModulation, Faculty of Medicine, University of Freiburg, Albertstr. 23, 79104 Freiburg, Germany;
| | - Maria P. Abbracchio
- Department of Pharmaceutical Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy; (C.P.); (M.P.A.)
| | - Christa E. Müller
- Department of Pharmaceutical & Medicinal Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany; (T.P.); (C.E.M.)
| | - Heike Franke
- Rudolf Boehm Institute of Pharmacology and Toxicology, Medical Faculty, University of Leipzig, Härtelstr. 16-18, 04107 Leipzig, Germany; (M.B.); (C.H.); (K.S.)
- Correspondence: ; Tel.: +49-(0)341-9724602; Fax: +49-(0)341-9724609
| |
Collapse
|
14
|
Reinmuth L, Hsiao CC, Hamann J, Rosenkilde M, Mackrill J. Multiple Targets for Oxysterols in Their Regulation of the Immune System. Cells 2021; 10:cells10082078. [PMID: 34440846 PMCID: PMC8391951 DOI: 10.3390/cells10082078] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/05/2021] [Accepted: 08/11/2021] [Indexed: 02/07/2023] Open
Abstract
Oxysterols, or cholesterol oxidation products, are naturally occurring lipids which regulate the physiology of cells, including those of the immune system. In contrast to effects that are mediated through nuclear receptors or by epigenetic mechanism, which take tens of minutes to occur, changes in the activities of cell-surface receptors caused by oxysterols can be extremely rapid, often taking place within subsecond timescales. Such cell-surface receptor effects of oxysterols allow for the regulation of fast cellular processes, such as motility, secretion and endocytosis. These cellular processes play critical roles in both the innate and adaptive immune systems. This review will survey the two broad classes of cell-surface receptors for oxysterols (G-protein coupled receptors (GPCRs) and ion channels), the mechanisms by which cholesterol oxidation products act on them, and their presence and functions in the different cell types of the immune system. Overall, this review will highlight the potential of oxysterols, synthetic derivatives and their receptors for physiological and therapeutic modulation of the immune system.
Collapse
Affiliation(s)
- Lisa Reinmuth
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark;
| | - Cheng-Chih Hsiao
- Department of Experimental Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Centers, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands; (C.-C.H.); (J.H.)
- Neuroimmunology Research Group, The Netherlands Institute for Neuroscience, 1105BA Amsterdam, The Netherlands
| | - Jörg Hamann
- Department of Experimental Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Centers, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands; (C.-C.H.); (J.H.)
- Neuroimmunology Research Group, The Netherlands Institute for Neuroscience, 1105BA Amsterdam, The Netherlands
| | - Mette Rosenkilde
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark;
- Correspondence: (M.R.); (J.M.); Tel.: +353-(0)21-490-1400 (J.M.)
| | - John Mackrill
- Department of Physiology, School of Medicine, BioSciences Institute, University College Cork, College Road, Cork T12 YT20, Ireland
- Correspondence: (M.R.); (J.M.); Tel.: +353-(0)21-490-1400 (J.M.)
| |
Collapse
|
15
|
Conley JM, Sun H, Ayers KL, Zhu H, Chen R, Shen M, Hall MD, Ren H. Human GPR17 missense variants identified in metabolic disease patients have distinct downstream signaling profiles. J Biol Chem 2021; 297:100881. [PMID: 34144038 PMCID: PMC8267566 DOI: 10.1016/j.jbc.2021.100881] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 06/08/2021] [Accepted: 06/14/2021] [Indexed: 12/17/2022] Open
Abstract
GPR17 is a G-protein-coupled receptor (GPCR) implicated in the regulation of glucose metabolism and energy homeostasis. Such evidence is primarily drawn from mouse knockout studies and suggests GPR17 as a potential novel therapeutic target for the treatment of metabolic diseases. However, links between human GPR17 genetic variants, downstream cellular signaling, and metabolic diseases have yet to be reported. Here, we analyzed GPR17 coding sequences from control and disease cohorts consisting of individuals with adverse clinical metabolic deficits including severe insulin resistance, hypercholesterolemia, and obesity. We identified 18 nonsynonymous GPR17 variants, including eight variants that were exclusive to the disease cohort. We characterized the protein expression levels, membrane localization, and downstream signaling profiles of nine GPR17 variants (F43L, V96M, V103M, D105N, A131T, G136S, R248Q, R301H, and G354V). These nine GPR17 variants had similar protein expression and subcellular localization as wild-type GPR17; however, they showed diverse downstream signaling profiles. GPR17-G136S lost the capacity for agonist-mediated cAMP, Ca2+, and β-arrestin signaling. GPR17-V96M retained cAMP inhibition similar to GPR17-WT, but showed impaired Ca2+ and β-arrestin signaling. GPR17-D105N displayed impaired cAMP and Ca2+ signaling, but unaffected agonist-stimulated β-arrestin recruitment. The identification and functional profiling of naturally occurring human GPR17 variants from individuals with metabolic diseases revealed receptor variants with diverse signaling profiles, including differential signaling perturbations that resulted in GPCR signaling bias. Our findings provide a framework for structure–function relationship studies of GPR17 signaling and metabolic disease.
Collapse
Affiliation(s)
- Jason M Conley
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA; Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Hongmao Sun
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - Kristin L Ayers
- Department of Genetics and Genomic Sciences, The Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Sema4, a Mount Sinai venture, Stamford, Connecticut, USA
| | - Hu Zhu
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - Rong Chen
- Department of Genetics and Genomic Sciences, The Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Sema4, a Mount Sinai venture, Stamford, Connecticut, USA
| | - Min Shen
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - Matthew D Hall
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - Hongxia Ren
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA; Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, Indiana, USA; Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, USA; Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA; Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA.
| |
Collapse
|
16
|
Sokolowska M, Rovati GE, Diamant Z, Untersmayr E, Schwarze J, Lukasik Z, Sava F, Angelina A, Palomares O, Akdis CA, O’Mahony L, Sanak M, Dahlen S, Woszczek G. Current perspective on eicosanoids in asthma and allergic diseases: EAACI Task Force consensus report, part I. Allergy 2021; 76:114-130. [PMID: 32279330 DOI: 10.1111/all.14295] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/13/2020] [Accepted: 03/25/2020] [Indexed: 12/25/2022]
Abstract
Eicosanoids are biologically active lipid mediators, comprising prostaglandins, leukotrienes, thromboxanes, and lipoxins, involved in several pathophysiological processes relevant to asthma, allergies, and allied diseases. Prostaglandins and leukotrienes are the most studied eicosanoids and established inducers of airway pathophysiology including bronchoconstriction and airway inflammation. Drugs inhibiting the synthesis of lipid mediators or their effects, such as leukotriene synthesis inhibitors, leukotriene receptors antagonists, and more recently prostaglandin D2 receptor antagonists, have been shown to modulate features of asthma and allergic diseases. This review, produced by an European Academy of Allergy and Clinical Immunology (EAACI) task force, highlights our current understanding of eicosanoid biology and its role in mediating human pathology, with a focus on new findings relevant for clinical practice, development of novel therapeutics, and future research opportunities.
Collapse
Affiliation(s)
- Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research University of Zurich Davos Switzerland
- Christine Kühne ‐ Center for Allergy Research and Education (CK‐CARE) Davos Switzerland
| | - G. Enrico Rovati
- Department of Pharmaceutical Sciences University of Milan Milan Italy
| | - Zuzana Diamant
- Department of Respiratory Medicine & Allergology Skane University Hospital Lund Sweden
- Department of Respiratory Medicine First Faculty of Medicine Charles University and Thomayer Hospital Prague Czech Republic
| | - Eva Untersmayr
- Institute of Pathophysiology and Allergy Research Center for Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
| | - Jargen Schwarze
- Child Life and Health and Centre for Inflammation Research The University of Edinburgh Edinburgh UK
| | - Zuzanna Lukasik
- Swiss Institute of Allergy and Asthma Research University of Zurich Davos Switzerland
| | - Florentina Sava
- London North Genomic Laboratory Hub Great Ormond Street Hospital for Children NHS Foundation Trust London UK
| | - Alba Angelina
- Department of Biochemistry and Molecular Biology School of Chemistry Complutense University Madrid Spain
| | - Oscar Palomares
- Department of Biochemistry and Molecular Biology School of Chemistry Complutense University Madrid Spain
| | - Cezmi A. Akdis
- Swiss Institute of Allergy and Asthma Research University of Zurich Davos Switzerland
- Christine Kühne ‐ Center for Allergy Research and Education (CK‐CARE) Davos Switzerland
| | - Liam O’Mahony
- Departments of Medicine and Microbiology APC Microbiome Ireland University College Cork Cork Ireland
| | - Marek Sanak
- Department of Medicine Jagiellonian University Medical College Krakow Poland
| | - Sven‐Erik Dahlen
- Institute of Environmental Medicine Karolinska Institute Stockholm Sweden
- Centre for Allergy Research Karolinska Institute Stockholm Sweden
| | - Grzegorz Woszczek
- MRC/Asthma UK Centre in Allergic Mechanisms of Asthma School of Immunology & Microbial Sciences King's College London London UK
| |
Collapse
|
17
|
Mutharasu G, Murugesan A, Konda Mani S, Yli-Harja O, Kandhavelu M. Transcriptomic analysis of glioblastoma multiforme providing new insights into GPR17 signaling communication. J Biomol Struct Dyn 2020; 40:2586-2599. [PMID: 33140689 DOI: 10.1080/07391102.2020.1841029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Glioblastoma Multiforme (GBM) is one of the most aggressive malignant tumors in the central nervous system, which arises due to the failure or crosstalk in the signaling networks. GPR17, an orphan G protein-coupled receptor is anticipated to be associated with the biology of the GBM disease progression. In the present study, we have identified the differential expressions of around 170 genes along with GPR17 through the RNA-Seq analysis of 169 GBM samples. Coordinated expression patterns of all other gene products with this receptor were analysed using gene ontology and protein-protein interaction data. Several crucial signaling components and genes that play a significant role in tumor progression have been identified among which GPR17 was found to be significantly interacting with about 30 different pathways. High-throughput molecular docking of GPR17 by homology-based model against differentially expressed proteins, showed effective recognition and binding of PX, SH3, and Ig-like domains besides Gi protein. Pathways of PI3, Src, Ptdn, Ras, cytoplasmic tyrosine kinases, phospholipases, nexins and other proteins possessing these structural domains are identified as critical signaling components of the complex GBM signaling network. Our findings also provide a mechanistic insight of GPR17-T0510-3657 interaction, which potentially regulates the interaction of PX domain and helical mPTS recognition domain-containing proteins. Overall, our results demonstrate that GPR17 mediated signaling networks could be used as a therapeutic target for GBM.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Gnanavel Mutharasu
- BioMediTech Institute and Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Akshaya Murugesan
- BioMediTech Institute and Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Molecular Signalling Lab, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Department of Biotechnology, Lady Doak College, Thallakulam, Madurai, India
| | - Saravanan Konda Mani
- Center for High Performance Computing, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Olli Yli-Harja
- BioMediTech Institute and Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Computaional Systems Biology Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Institute for Systems Biology, Seattle, WA, USA
| | - Meenakshisundaram Kandhavelu
- BioMediTech Institute and Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Molecular Signalling Lab, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Science Center, Tampere University Hospital, Tampere, Finland
| |
Collapse
|
18
|
Abnormal Upregulation of GPR17 Receptor Contributes to Oligodendrocyte Dysfunction in SOD1 G93A Mice. Int J Mol Sci 2020; 21:ijms21072395. [PMID: 32244295 PMCID: PMC7177925 DOI: 10.3390/ijms21072395] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/19/2020] [Accepted: 03/29/2020] [Indexed: 12/31/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by progressive loss of motor neurons (MN). Importantly, MN degeneration is intimately linked to oligodendrocyte dysfunction and impaired capacity of oligodendrocyte precursor cells (OPCs) to regenerate the myelin sheath enwrapping and protecting neuronal axons. Thus, improving OPC reparative abilities represents an innovative approach to counteract MN loss. A pivotal regulator of OPC maturation is the P2Y-like G protein-coupled receptor 17 (GPR17), whose role in ALS has never been investigated. In other models of neurodegeneration, an abnormal increase of GPR17 has been invariably associated to myelin defects and its pharmacological manipulation succeeded in restoring endogenous remyelination. Here, we analyzed GPR17 alterations in the SOD1G93A ALS mouse model and assessed in vitro whether this receptor could be targeted to correct oligodendrocyte alterations. Western-blot and immunohistochemical analyses showed that GPR17 protein levels are significantly increased in spinal cord of ALS mice at pre-symptomatic stage; this alteration is exacerbated at late symptomatic phases. Concomitantly, mature oligodendrocytes degenerate and are not successfully replaced. Moreover, OPCs isolated from spinal cord of SOD1G93A mice display defective differentiation compared to control cells, which is rescued by treatment with the GPR17 antagonist montelukast. These data open novel therapeutic perspectives for ALS management.
Collapse
|
19
|
Dziedzic A, Miller E, Saluk-Bijak J, Bijak M. The GPR17 Receptor-A Promising Goal for Therapy and a Potential Marker of the Neurodegenerative Process in Multiple Sclerosis. Int J Mol Sci 2020; 21:ijms21051852. [PMID: 32182666 PMCID: PMC7084627 DOI: 10.3390/ijms21051852] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 02/29/2020] [Accepted: 03/06/2020] [Indexed: 12/28/2022] Open
Abstract
One of the most important goals in the treatment of demyelinating diseases such as multiple sclerosis (MS) is, in addition to immunomodulation, reconstruction of the lost myelin sheath. The modulator of the central nervous system myelination is the metabotropic receptor coupled to the G-protein: GPR17. GPR17 receptors are considered to be sensors of local damage to the myelin sheath, and play a role in the reconstruction and repair of demyelinating plaques caused by ongoing inflammatory processes. GPR17 receptors are present on nerve cells and precursor oligodendrocyte cells. Under physiological conditions, they are responsible for the differentiation and subsequent maturation of oligodendrocytes, while under pathological conditions (during damage to nerve cells), their expression increases to become mediators in the demyelinating processes. Moreover, they are essential not only in both the processes of inducing damage and the death of neurons, but also in the local repair of the damaged myelin sheath. Therefore, GPR17 receptors may be recognized as the potential goal in creating innovative therapies for the treatment of the neurodegenerative process in MS, based on the acceleration of the remyelination processes. This review examines the role of GRP17 in pathomechanisms of MS development.
Collapse
Affiliation(s)
- Angela Dziedzic
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (A.D.); (J.S.-B.)
| | - Elzbieta Miller
- Department of Neurological Rehabilitation, Medical University of Lodz, Milionowa 14, 93-113 Lodz, Poland;
| | - Joanna Saluk-Bijak
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (A.D.); (J.S.-B.)
| | - Michal Bijak
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
- Correspondence: ; Tel.: +48-42-635-4336
| |
Collapse
|
20
|
Lecca D, Raffaele S, Abbracchio MP, Fumagalli M. Regulation and signaling of the GPR17 receptor in oligodendroglial cells. Glia 2020; 68:1957-1967. [PMID: 32086854 DOI: 10.1002/glia.23807] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/10/2020] [Accepted: 02/12/2020] [Indexed: 12/14/2022]
Abstract
Remyelination, namely, the formation of new myelin sheaths around denuded axons, counteracts axonal degeneration and restores neuronal function. Considerable advances have been made in understanding this regenerative process that often fails in diseases like multiple sclerosis, leaving axons demyelinated and vulnerable to damage, thus contributing to disease progression. The identification of the membrane receptor GPR17 on a subset of oligodendrocyte precursor cells (OPCs), which mediate remyelination in the adult central nervous system (CNS), has led to a huge amount of evidence that validated this receptor as a new attractive target for remyelinating therapies. Here, we summarize the role of GPR17 in OPC function, myelination and remyelination, describing its atypical pharmacology, its downstream signaling, and the genetic and epigenetic factors modulating its activity. We also highlight crucial insights into GPR17 pathophysiology coming from the demonstration that oligodendrocyte injury, associated with inflammation in chronic neurodegenerative conditions, is invariably characterized by abnormal and persistent GPR17 upregulation, which, in turn, is accompanied by a block of OPCs at immature premyelinating stages. Finally, we discuss the current literature in light of the potential exploitment of GPR17 as a therapeutic target to promote remyelination.
Collapse
Affiliation(s)
- Davide Lecca
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Stefano Raffaele
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Maria P Abbracchio
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Marta Fumagalli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
21
|
Baqi Y, Pillaiyar T, Abdelrahman A, Kaufmann O, Alshaibani S, Rafehi M, Ghasimi S, Akkari R, Ritter K, Simon K, Spinrath A, Kostenis E, Zhao Q, Köse M, Namasivayam V, Müller CE. 3-(2-Carboxyethyl)indole-2-carboxylic Acid Derivatives: Structural Requirements and Properties of Potent Agonists of the Orphan G Protein-Coupled Receptor GPR17. J Med Chem 2018; 61:8136-8154. [PMID: 30048589 DOI: 10.1021/acs.jmedchem.7b01768] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The orphan receptor GPR17 may be a novel drug target for inflammatory diseases. 3-(2-Carboxyethyl)-4,6-dichloro-1 H-indole-2-carboxylic acid (MDL29,951, 1) was previously identified as a moderately potent GPR17 agonist. In the present study, we investigated the structure-activity relationships (SARs) of 1. Substitution of the indole 1-, 5-, or 7-position was detrimental. Only small substituents were tolerated in the 4-position while the 6-position accommodated large lipophilic residues. Among the most potent compounds were 3-(2-carboxyethyl)-1 H-indole-2-carboxylic acid derivatives containing the following substituents: 6-phenoxy (26, PSB-1737, EC50 270 nM), 4-fluoro-6-bromo (33, PSB-18422, EC50 27.9 nM), 4-fluoro-6-iodo (35, PSB-18484, EC50 32.1 nM), and 4-chloro-6-hexyloxy (43, PSB-1767, EC50 67.0 nM). (3-(2-Carboxyethyl)-6-hexyloxy-1 H-indole-2-carboxylic acid (39, PSB-17183, EC50 115 nM) behaved as a partial agonist. Selected potent compounds tested at human P2Y receptor subtypes showed high selectivity for GPR17. Docking into a homology model of the human GPR17 and molecular dynamic simulation studies rationalized the observed SARs.
Collapse
Affiliation(s)
- Younis Baqi
- Department of Chemistry, Faculty of Science , Sultan Qaboos University , P.O. Box 36, 123 Muscat , Oman
| | - Thanigaimalai Pillaiyar
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical Chemistry I , University of Bonn , An der Immenburg 4 , 53121 Bonn , Germany
| | - Aliaa Abdelrahman
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical Chemistry I , University of Bonn , An der Immenburg 4 , 53121 Bonn , Germany
| | - Olesja Kaufmann
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical Chemistry I , University of Bonn , An der Immenburg 4 , 53121 Bonn , Germany
| | - Samer Alshaibani
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical Chemistry I , University of Bonn , An der Immenburg 4 , 53121 Bonn , Germany
| | - Muhammad Rafehi
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical Chemistry I , University of Bonn , An der Immenburg 4 , 53121 Bonn , Germany
| | - Saman Ghasimi
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical Chemistry I , University of Bonn , An der Immenburg 4 , 53121 Bonn , Germany
| | - Rhalid Akkari
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical Chemistry I , University of Bonn , An der Immenburg 4 , 53121 Bonn , Germany
| | - Kirsten Ritter
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical Chemistry I , University of Bonn , An der Immenburg 4 , 53121 Bonn , Germany
| | - Katharina Simon
- Institute of Pharmaceutical Biology, Section Molecular-, Cellular-, and Pharmacobiology, University of Bonn , Nußallee 6 , 53115 Bonn , Germany
| | - Andreas Spinrath
- Institute of Pharmaceutical Biology, Section Molecular-, Cellular-, and Pharmacobiology, University of Bonn , Nußallee 6 , 53115 Bonn , Germany
| | - Evi Kostenis
- Institute of Pharmaceutical Biology, Section Molecular-, Cellular-, and Pharmacobiology, University of Bonn , Nußallee 6 , 53115 Bonn , Germany
| | - Qiang Zhao
- CAS Key Laboratory of Receptor Research , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zuchongzhi Road, Pudong , Shanghai 201203 , China
| | - Meryem Köse
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical Chemistry I , University of Bonn , An der Immenburg 4 , 53121 Bonn , Germany
| | - Vigneshwaran Namasivayam
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical Chemistry I , University of Bonn , An der Immenburg 4 , 53121 Bonn , Germany
| | - Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical Chemistry I , University of Bonn , An der Immenburg 4 , 53121 Bonn , Germany
| |
Collapse
|
22
|
Zhao B, Wang H, Li CX, Song SW, Fang SH, Wei EQ, Shi QJ. GPR17 mediates ischemia-like neuronal injury via microglial activation. Int J Mol Med 2018; 42:2750-2762. [PMID: 30226562 PMCID: PMC6192776 DOI: 10.3892/ijmm.2018.3848] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 08/23/2018] [Indexed: 01/18/2023] Open
Abstract
GPR17 is a G (i)-coupled dual receptor, linked to P2Y and CysLT receptors stimulated by uracil nucleotides and cysteinyl leukotrienes, respectively. Recent evidence has demonstrated that GPR17 inhibition ameliorates the progression of cerebral ischemic injury by regulating neuronal death and microglial activation. The present study aimed to assess the detailed regulatory roles of this receptor in oxygen-glucose deprivation/recovery (OGD/R)-induced ischemia-like injury in vitro and explore the underlying mechanism. The results demonstrated that OGD/R induced ischemic neuronal injury and microglial activation, including enhanced phagocytosis and increased inflammatory cytokine release in neuron‑glial mixed cultures of cortical cells. GPR17 upregulation during OGD/R was spatially and temporally correlated with neuronal injury and microglial activation. In addition, GPR17 knockdown inhibited OGD/R-induced responses in neuron-glial mixed cultures. GPR17 knockdown also attenuated cell injury induced by the agonist leukotriene D4 (LTD4) or uridine 5′-diphosphate (UDP) in neuron-glial mixed cultures. However, GPR17 knockdown did not affect OGD/R-induced ischemic neuronal injury in primary cultures of neurons. In primary astrocyte cultures, neither GPR17 nor OGD/R induced injury. By contrast, GPR17 knockdown ameliorated OGD/R-induced microglial activation, boosting phagocytosis and inflammatory cytokine release in primary microglia cultures. Finally, the results demonstrated that the conditioned medium of microglia pretreated with OGD/R induced neuronal death, and the neuronal injury was significantly inhibited by GPR17 knockdown. These findings suggested that GPR17 may mediate ischemia-like neuronal injury and microglial activation in vitro; however, the protective effects on ischemic neuronal injury might depend upon microglial activation. Whether GPR17 regulates neuronal injury mediated by oligodendrocyte linkage remains to be investigated.
Collapse
Affiliation(s)
- Bing Zhao
- Department of Anesthesiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Hao Wang
- Department of Neurology, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, P.R. China
| | - Cai-Xia Li
- Department of Anesthesiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Sheng-Wen Song
- Department of Anesthesiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - San-Hua Fang
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
| | - Er-Qing Wei
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
| | - Qiao-Juan Shi
- Experimental Animal Center, Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang 310013, P.R. China
| |
Collapse
|
23
|
Fumagalli M, Lecca D, Coppolino GT, Parravicini C, Abbracchio MP. Pharmacological Properties and Biological Functions of the GPR17 Receptor, a Potential Target for Neuro-Regenerative Medicine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1051:169-192. [PMID: 28828731 DOI: 10.1007/5584_2017_92] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In 2006, cells heterologously expressing the "orphan" receptor GPR17 were shown to acquire responses to both uracil nucleotides and cysteinyl-leukotrienes, two families of signaling molecules accumulating in brain or heart as a result of hypoxic/traumatic injuries. In subsequent years, evidence of GPR17 key role in oligodendrogenesis and myelination has highlighted it as a "model receptor" for new therapies in demyelinating and neurodegenerative diseases. The apparently contrasting evidence in the literature about the role of GPR17 in promoting or inhibiting myelination can be due to its transient expression in the intermediate stages of differentiation, exerting a pro-differentiating function in early oligodendrocyte precursor cells (OPCs), and an inhibitory role in late stage maturing cells. Meanwhile, several papers extended the initial data on GPR17 pharmacology, highlighting a "promiscuous" behavior of this receptor; indeed, GPR17 is able to respond to other emergency signals like oxysterols or the pro-inflammatory cytokine SDF-1, underlying GPR17 ability to adapt its responses to changes of the surrounding extracellular milieu, including damage conditions. Here, we analyze the available literature on GPR17, in an attempt to summarize its emerging biological roles and pharmacological properties.
Collapse
Affiliation(s)
- Marta Fumagalli
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - Davide Lecca
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - Giusy T Coppolino
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - Chiara Parravicini
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - Maria P Abbracchio
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy.
| |
Collapse
|
24
|
Merten N, Fischer J, Simon K, Zhang L, Schröder R, Peters L, Letombe AG, Hennen S, Schrage R, Bödefeld T, Vermeiren C, Gillard M, Mohr K, Lu QR, Brüstle O, Gomeza J, Kostenis E. Repurposing HAMI3379 to Block GPR17 and Promote Rodent and Human Oligodendrocyte Differentiation. Cell Chem Biol 2018; 25:775-786.e5. [PMID: 29706593 DOI: 10.1016/j.chembiol.2018.03.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 02/11/2018] [Accepted: 03/23/2018] [Indexed: 12/22/2022]
Abstract
Identification of additional uses for existing drugs is a hot topic in drug discovery and a viable alternative to de novo drug development. HAMI3379 is known as an antagonist of the cysteinyl-leukotriene CysLT2 receptor, and was initially developed to treat cardiovascular and inflammatory disorders. In our study we identified HAMI3379 as an antagonist of the orphan G protein-coupled receptor GPR17. HAMI3379 inhibits signaling of recombinant human, rat, and mouse GPR17 across various cellular backgrounds, and of endogenous GPR17 in primary rodent oligodendrocytes. GPR17 blockade by HAMI3379 enhanced maturation of primary rat and mouse oligodendrocytes, but was without effect in oligodendrocytes from GPR17 knockout mice. In human oligodendrocytes prepared from inducible pluripotent stem cells, GPR17 is expressed and its activation impaired oligodendrocyte differentiation. HAMI3379, conversely, efficiently favored human oligodendrocyte differentiation. We propose that HAMI3379 holds promise for pharmacological exploitation of orphan GPR17 to enhance regenerative strategies for the promotion of remyelination in patients.
Collapse
Affiliation(s)
- Nicole Merten
- Molecular, Cellular and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, 53115 Bonn, Germany
| | - Julia Fischer
- Institute of Reconstructive Neurobiology, LIFE&BRAIN Center, University of Bonn, 53105 Bonn, Germany
| | - Katharina Simon
- Molecular, Cellular and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, 53115 Bonn, Germany
| | - Liguo Zhang
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Ralf Schröder
- Molecular, Cellular and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, 53115 Bonn, Germany
| | - Lucas Peters
- Molecular, Cellular and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, 53115 Bonn, Germany
| | | | - Stephanie Hennen
- Molecular, Cellular and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, 53115 Bonn, Germany
| | - Ramona Schrage
- UCB Biopharma, CNS Research, 1420 Braine-l'Alleud, Belgium
| | - Theresa Bödefeld
- Pharmacology and Toxicology Section, Institute of Pharmacy, University of Bonn, 53115 Bonn, Germany
| | | | - Michel Gillard
- UCB Biopharma, CNS Research, 1420 Braine-l'Alleud, Belgium
| | - Klaus Mohr
- Pharmacology and Toxicology Section, Institute of Pharmacy, University of Bonn, 53115 Bonn, Germany
| | - Qing Richard Lu
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Oliver Brüstle
- Institute of Reconstructive Neurobiology, LIFE&BRAIN Center, University of Bonn, 53105 Bonn, Germany
| | - Jesus Gomeza
- Molecular, Cellular and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, 53115 Bonn, Germany.
| | - Evi Kostenis
- Molecular, Cellular and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, 53115 Bonn, Germany.
| |
Collapse
|
25
|
The G protein-coupled receptors deorphanization landscape. Biochem Pharmacol 2018; 153:62-74. [PMID: 29454621 DOI: 10.1016/j.bcp.2018.02.016] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 02/13/2018] [Indexed: 12/14/2022]
Abstract
G protein-coupled receptors (GPCRs) are usually highlighted as being both the largest family of membrane proteins and the most productive source of drug targets. However, most of the GPCRs are understudied and hence cannot be used immediately for innovative therapeutic strategies. Besides, there are still around 100 orphan receptors, with no described endogenous ligand and no clearly defined function. The race to discover new ligands for these elusive receptors seems to be less intense than before. Here, we present an update of the various strategies employed to assign a function to these receptors and to discover new ligands. We focus on the recent advances in the identification of endogenous ligands with a detailed description of newly deorphanized receptors. Replication being a key parameter in these endeavors, we also discuss the latest controversies about problematic ligand-receptor pairings. In this context, we propose several recommendations in order to strengthen the reporting of new ligand-receptor pairs.
Collapse
|
26
|
Role of the Cysteinyl Leukotrienes in the Pathogenesis and Progression of Cardiovascular Diseases. Mediators Inflamm 2017; 2017:2432958. [PMID: 28932020 PMCID: PMC5592403 DOI: 10.1155/2017/2432958] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 08/17/2017] [Indexed: 12/18/2022] Open
Abstract
Cysteinyl leukotrienes (CysLTs) are potent lipid inflammatory mediators synthesized from arachidonic acid, through the 5-lipoxygenase (5-LO) pathway. Owing to their properties, CysLTs play a crucial role in the pathogenesis of inflammation; therefore, CysLT modifiers as synthesis inhibitors or receptor antagonists, central in asthma management, may become a potential target for the treatment of other inflammatory diseases such as the cardiovascular disorders. 5-LO pathway activation and increased expression of its mediators and receptors are found in cardiovascular diseases. Moreover, the cardioprotective effects observed by using CysLT modifiers are promising and contribute to elucidate the link between CysLTs and cardiovascular disease. The aim of this review is to summarize the state of present research about the role of the CysLTs in the pathogenesis and progression of atherosclerosis and myocardial infarction.
Collapse
|
27
|
Le Duc D, Schulz A, Lede V, Schulze A, Thor D, Brüser A, Schöneberg T. P2Y Receptors in Immune Response and Inflammation. Adv Immunol 2017; 136:85-121. [PMID: 28950952 DOI: 10.1016/bs.ai.2017.05.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Metabotropic pyrimidine and purine nucleotide receptors (P2Y receptors) are expressed in virtually all cells with implications in very diverse biological functions, including the well-established platelet aggregation (P2Y12), but also immune regulation and inflammation. The classical P2Y receptors bind nucleotides and are encoded by eight genes with limited sequence homology, while phylogenetically related receptors (e.g., P2Y12-like) recognize lipids and peptides, but also nucleotide derivatives. Growing lines of evidence suggest an important function of P2Y receptors in immune cell differentiation and maturation, migration, and cell apoptosis. Here, we give a perspective on the P2Y receptors' molecular structure and physiological importance in immune cells, as well as the related diseases and P2Y-targeting therapies. Extensive research is being undertaken to find modulators of P2Y receptors and uncover their physiological roles. We anticipate the medical applications of P2Y modulators and their immune relevance.
Collapse
Affiliation(s)
- Diana Le Duc
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, University of Leipzig, Leipzig, Germany
| | - Angela Schulz
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, University of Leipzig, Leipzig, Germany
| | - Vera Lede
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, University of Leipzig, Leipzig, Germany
| | - Annelie Schulze
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, University of Leipzig, Leipzig, Germany
| | - Doreen Thor
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, University of Leipzig, Leipzig, Germany
| | - Antje Brüser
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, University of Leipzig, Leipzig, Germany
| | | |
Collapse
|
28
|
Daugvilaite V, Madsen CM, Lückmann M, Echeverria CC, Sailer AW, Frimurer TM, Rosenkilde MM, Benned-Jensen T. Biased agonism and allosteric modulation of G protein-coupled receptor 183 - a 7TM receptor also known as Epstein-Barr virus-induced gene 2. Br J Pharmacol 2017; 174:2031-2042. [PMID: 28369721 DOI: 10.1111/bph.13801] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 03/07/2017] [Accepted: 03/09/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND PURPOSE The GPCR Epstein-Barr virus-induced gene 2 (EBI2, also known as GPR183) is activated by oxysterols and plays a pivotal role in the regulation of B cell migration during immune responses. While the molecular basis of agonist binding has been addressed in several studies, the concept of biased agonism of the EBI2 receptor has not been explored. EXPERIMENTAL APPROACH We investigated the effects of the EBI2 endogenous agonist 7α,25-dihydroxycholesterol (7α,25-OHC) on G protein-dependent and -independent pathways as well as sodium ion allosterism using site-directed mutagenesis and functional studies. Moreover, we generated a homology model of the EBI2 receptor to investigate the structural basis of the allosteric modulation by sodium. KEY RESULTS Residue N114, located in the middle of transmembrane-III at position III:11/3.35, was found to function as an efficacy switch. Thus, substituting N114 with an alanine (N114A) completely abolished heterotrimeric G protein subunit Gi α activation by 7α,25-OHC even though the specific binding of [3 H]-7α,25-OHC increased. In contrast, the N114A mutant was still able to recruit β-arrestin and even had an enhanced potency (18.7-fold) compared with EBI2 wild type. Sodium had a negative allosteric effect on oxysterol binding that was mediated via N114, verifying the key role of N114. This was further supported by molecular modelling of the ion binding site based on a EBI2 receptor homology model. CONCLUSIONS AND IMPLICATIONS Collectively, our data point to N114 as a key residue for EBI2 signalling controlling the balance between G protein-dependent and -independent pathways and facilitating sodium binding.
Collapse
Affiliation(s)
- Viktorija Daugvilaite
- Department of Biomedical Sciences, Laboratory for Molecular Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Christian Medom Madsen
- Department of Biomedical Sciences, Laboratory for Molecular Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Michael Lückmann
- Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Clara Castello Echeverria
- Department of Biomedical Sciences, Laboratory for Molecular Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Andreas Walter Sailer
- Forum 1, Novartis Campus, CH-4056, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | - Mette Marie Rosenkilde
- Department of Biomedical Sciences, Laboratory for Molecular Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Tau Benned-Jensen
- Department of Biomedical Sciences, Laboratory for Molecular Pharmacology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
29
|
Simon K, Merten N, Schröder R, Hennen S, Preis P, Schmitt NK, Peters L, Schrage R, Vermeiren C, Gillard M, Mohr K, Gomeza J, Kostenis E. The Orphan Receptor GPR17 Is Unresponsive to Uracil Nucleotides and Cysteinyl Leukotrienes. Mol Pharmacol 2017; 91:518-532. [PMID: 28254957 DOI: 10.1124/mol.116.107904] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 03/01/2017] [Indexed: 12/27/2022] Open
Abstract
Pairing orphan G protein–coupled receptors (GPCRs) with their cognate endogenous ligands is expected to have a major impact on our understanding of GPCR biology. It follows that the reproducibility of orphan receptor ligand pairs should be of fundamental importance to guide meaningful investigations into the pharmacology and function of individual receptors. GPR17 is an orphan receptor characterized by some as a dualistic uracil nucleotide/cysteinyl leukotriene receptor and by others as inactive toward these stimuli altogether. Whereas regulation of central nervous system myelination by GPR17 is well established, verification of activity of its putative endogenous ligands has proven elusive so far. Herein we report that uracil nucleotides and cysteinyl leukotrienes do not activate human, mouse, or rat GPR17 in various cellular backgrounds, including primary cells, using eight distinct functional assay platforms based on labelfree pathway-unbiased biosensor technologies, as well as canonical second-messenger or biochemical assays. Appraisal of GPR17 activity can neither be accomplished with co-application of both ligand classes, nor with exogenous transfection of partner receptors (nucleotide P2Y12, cysteinyl-leukotriene CysLT1) to reconstitute the elusive pharmacology. Moreover, our study does not support the inhibition of GPR17 by the marketed antiplatelet drugs cangrelor and ticagrelor, previously suggested to antagonize GPR17. Whereas our data do not disagree with a role of GPR17 per se as an orchestrator of central nervous system functions, they challenge the utility of the proposed (ant)agonists as tools to imply direct contribution of GPR17 in complex biologic settings.
Collapse
Affiliation(s)
- Katharina Simon
- Molecular, Cellular and Pharmacobiology Section, Institute of Pharmaceutical Biology (K.S., N.M., Ral.S., S.H., P.P., N.-K.S, L.P., J.G., E.K.), Research Training Group 1873 (K.S., E.K.), Pharmacology and Toxicology Section, Institute of Pharmacy (Ram.S., K.M.), University of Bonn, Bonn, Germany; UCB Pharma, CNS Research, Braine l'Alleud, Belgium (C.V., M.G.)
| | - Nicole Merten
- Molecular, Cellular and Pharmacobiology Section, Institute of Pharmaceutical Biology (K.S., N.M., Ral.S., S.H., P.P., N.-K.S, L.P., J.G., E.K.), Research Training Group 1873 (K.S., E.K.), Pharmacology and Toxicology Section, Institute of Pharmacy (Ram.S., K.M.), University of Bonn, Bonn, Germany; UCB Pharma, CNS Research, Braine l'Alleud, Belgium (C.V., M.G.)
| | - Ralf Schröder
- Molecular, Cellular and Pharmacobiology Section, Institute of Pharmaceutical Biology (K.S., N.M., Ral.S., S.H., P.P., N.-K.S, L.P., J.G., E.K.), Research Training Group 1873 (K.S., E.K.), Pharmacology and Toxicology Section, Institute of Pharmacy (Ram.S., K.M.), University of Bonn, Bonn, Germany; UCB Pharma, CNS Research, Braine l'Alleud, Belgium (C.V., M.G.)
| | - Stephanie Hennen
- Molecular, Cellular and Pharmacobiology Section, Institute of Pharmaceutical Biology (K.S., N.M., Ral.S., S.H., P.P., N.-K.S, L.P., J.G., E.K.), Research Training Group 1873 (K.S., E.K.), Pharmacology and Toxicology Section, Institute of Pharmacy (Ram.S., K.M.), University of Bonn, Bonn, Germany; UCB Pharma, CNS Research, Braine l'Alleud, Belgium (C.V., M.G.)
| | - Philip Preis
- Molecular, Cellular and Pharmacobiology Section, Institute of Pharmaceutical Biology (K.S., N.M., Ral.S., S.H., P.P., N.-K.S, L.P., J.G., E.K.), Research Training Group 1873 (K.S., E.K.), Pharmacology and Toxicology Section, Institute of Pharmacy (Ram.S., K.M.), University of Bonn, Bonn, Germany; UCB Pharma, CNS Research, Braine l'Alleud, Belgium (C.V., M.G.)
| | - Nina-Katharina Schmitt
- Molecular, Cellular and Pharmacobiology Section, Institute of Pharmaceutical Biology (K.S., N.M., Ral.S., S.H., P.P., N.-K.S, L.P., J.G., E.K.), Research Training Group 1873 (K.S., E.K.), Pharmacology and Toxicology Section, Institute of Pharmacy (Ram.S., K.M.), University of Bonn, Bonn, Germany; UCB Pharma, CNS Research, Braine l'Alleud, Belgium (C.V., M.G.)
| | - Lucas Peters
- Molecular, Cellular and Pharmacobiology Section, Institute of Pharmaceutical Biology (K.S., N.M., Ral.S., S.H., P.P., N.-K.S, L.P., J.G., E.K.), Research Training Group 1873 (K.S., E.K.), Pharmacology and Toxicology Section, Institute of Pharmacy (Ram.S., K.M.), University of Bonn, Bonn, Germany; UCB Pharma, CNS Research, Braine l'Alleud, Belgium (C.V., M.G.)
| | - Ramona Schrage
- Molecular, Cellular and Pharmacobiology Section, Institute of Pharmaceutical Biology (K.S., N.M., Ral.S., S.H., P.P., N.-K.S, L.P., J.G., E.K.), Research Training Group 1873 (K.S., E.K.), Pharmacology and Toxicology Section, Institute of Pharmacy (Ram.S., K.M.), University of Bonn, Bonn, Germany; UCB Pharma, CNS Research, Braine l'Alleud, Belgium (C.V., M.G.)
| | - Celine Vermeiren
- Molecular, Cellular and Pharmacobiology Section, Institute of Pharmaceutical Biology (K.S., N.M., Ral.S., S.H., P.P., N.-K.S, L.P., J.G., E.K.), Research Training Group 1873 (K.S., E.K.), Pharmacology and Toxicology Section, Institute of Pharmacy (Ram.S., K.M.), University of Bonn, Bonn, Germany; UCB Pharma, CNS Research, Braine l'Alleud, Belgium (C.V., M.G.)
| | - Michel Gillard
- Molecular, Cellular and Pharmacobiology Section, Institute of Pharmaceutical Biology (K.S., N.M., Ral.S., S.H., P.P., N.-K.S, L.P., J.G., E.K.), Research Training Group 1873 (K.S., E.K.), Pharmacology and Toxicology Section, Institute of Pharmacy (Ram.S., K.M.), University of Bonn, Bonn, Germany; UCB Pharma, CNS Research, Braine l'Alleud, Belgium (C.V., M.G.)
| | - Klaus Mohr
- Molecular, Cellular and Pharmacobiology Section, Institute of Pharmaceutical Biology (K.S., N.M., Ral.S., S.H., P.P., N.-K.S, L.P., J.G., E.K.), Research Training Group 1873 (K.S., E.K.), Pharmacology and Toxicology Section, Institute of Pharmacy (Ram.S., K.M.), University of Bonn, Bonn, Germany; UCB Pharma, CNS Research, Braine l'Alleud, Belgium (C.V., M.G.)
| | - Jesus Gomeza
- Molecular, Cellular and Pharmacobiology Section, Institute of Pharmaceutical Biology (K.S., N.M., Ral.S., S.H., P.P., N.-K.S, L.P., J.G., E.K.), Research Training Group 1873 (K.S., E.K.), Pharmacology and Toxicology Section, Institute of Pharmacy (Ram.S., K.M.), University of Bonn, Bonn, Germany; UCB Pharma, CNS Research, Braine l'Alleud, Belgium (C.V., M.G.)
| | - Evi Kostenis
- Molecular, Cellular and Pharmacobiology Section, Institute of Pharmaceutical Biology (K.S., N.M., Ral.S., S.H., P.P., N.-K.S, L.P., J.G., E.K.), Research Training Group 1873 (K.S., E.K.), Pharmacology and Toxicology Section, Institute of Pharmacy (Ram.S., K.M.), University of Bonn, Bonn, Germany; UCB Pharma, CNS Research, Braine l'Alleud, Belgium (C.V., M.G.).
| |
Collapse
|
30
|
Berg C, Spiess K, Lüttichau HR, Rosenkilde MM. Biased small-molecule ligands for selective inhibition of HIV-1 cell entry via CCR5. Pharmacol Res Perspect 2016; 4:e00262. [PMID: 28097000 PMCID: PMC5226280 DOI: 10.1002/prp2.262] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 08/16/2016] [Indexed: 12/31/2022] Open
Abstract
Since the discovery of HIV's use of CCR5 as the primary coreceptor in fusion, the focus on developing small-molecule receptor antagonists for inhibition hereof has only resulted in one single drug, Maraviroc. We therefore investigated the possibility of using small-molecule CCR5 agonists as HIV-1 fusion inhibitors. A virus-free cell-based fusion reporter assay, based on mixing "effector cells" (expressing HIV Env and luciferase activator) with "target cells" (expressing CD4, CCR5 wild type or a selection of well-described mutations, and luciferase reporter), was used as fusion readout. Receptor expression was evaluated by ELISA and fluorescence microscopy. On CCR5 WT, Maraviroc and Aplaviroc inhibited fusion with high potencies (EC 50 values of 91 and 501 nM, respectively), whereas removal of key residues for both antagonists (Glu283Ala) or Maraviroc alone (Tyr251Ala) prevented fusion inhibition, establishing this assay as suitable for screening of HIV entry inhibitors. Both ligands inhibited HIV fusion on signaling-deficient CCR5 mutations (Tyr244Ala and Trp248Ala). Moreover, the steric hindrance CCR5 mutation (Gly286Phe) impaired fusion, presumably by a direct hindrance of gp120 interaction. Finally, the efficacy switch mutation (Leu203Phe) - converting small-molecule antagonists/inverse agonists to full agonists biased toward G-protein activation - uncovered that also small-molecule agonists can function as direct HIV-1 cell entry inhibitors. Importantly, no agonist-induced receptor internalization was observed for this mutation. Our studies of the pharmacodynamic requirements for HIV-1 fusion inhibitors highlight the possibility of future development of biased ligands with selective targeting of the HIV-CCR5 interaction without interfering with the normal functionality of CCR5.
Collapse
Affiliation(s)
- Christian Berg
- Department of Neuroscience and PharmacologyFaculty of Health and Medical SciencesThe Panum InstituteUniversity of CopenhagenCopenhagenDenmark
| | - Katja Spiess
- Department of Neuroscience and PharmacologyFaculty of Health and Medical SciencesThe Panum InstituteUniversity of CopenhagenCopenhagenDenmark
| | - Hans R. Lüttichau
- Department of Neuroscience and PharmacologyFaculty of Health and Medical SciencesThe Panum InstituteUniversity of CopenhagenCopenhagenDenmark
- Department of MedicineInfectious Disease UnitHerlev HospitalCopenhagenDenmark
| | - Mette M. Rosenkilde
- Department of Neuroscience and PharmacologyFaculty of Health and Medical SciencesThe Panum InstituteUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
31
|
Niss Arfelt K, Fares S, Sparre-Ulrich AH, Hjortø GM, Gasbjerg LS, Mølleskov-Jensen AS, Benned-Jensen T, Rosenkilde MM. Signaling via G proteins mediates tumorigenic effects of GPR87. Cell Signal 2016; 30:9-18. [PMID: 27865873 DOI: 10.1016/j.cellsig.2016.11.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 11/12/2016] [Accepted: 11/12/2016] [Indexed: 12/16/2022]
Abstract
G protein-coupled receptors (GPCRs) constitute a large protein family of seven transmembrane (7TM) spanning proteins that regulate multiple physiological functions. GPR87 is overexpressed in several cancers and plays a role in tumor cell survival. Here, the basal activity of GPR87 was investigated in transiently transfected HEK293 cells, revealing ligand-independent coupling to Gαi, Gαq and Gα12/13. Furthermore, GPR87 showed a ligand-independent G protein-dependent activation of the downstream transcription factors CREB, NFκB, NFAT and SRE. In tetracycline-induced Flp-In T-Rex-293 cells, GPR87 induced cell clustering presumably through Gα12/13 coupling. In a foci formation assay using retrovirally transduced NIH3T3 cells, GPR87 showed a strong in vitro transforming potential, which correlated to the in vivo tumor induction in nude mice. Importantly, we demonstrate that the transforming potential of GPR87 was correlated to the receptor signaling, as the signaling-impaired mutant R139A (Arg in the conserved "DRY"-motif at the bottom of transmembrane helix 3 of GPR87 substituted to Ala) showed a lower in vitro cell transformation potential. Furthermore, R139A lost the ability to induce cell clustering. In summary, we show that GPR87 is active through several signaling pathways and that the signaling activity is linked to the receptor-induced cell transformation and clustering. The robust surface expression of GPR87 and general high druggability of GPCRs make GPR87 an attractive future anticancer target for drugs that - through inhibition of the receptor signaling - will inhibit its transforming properties.
Collapse
Affiliation(s)
- Kristine Niss Arfelt
- Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Suzan Fares
- Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Alexander H Sparre-Ulrich
- Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gertrud M Hjortø
- Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lærke S Gasbjerg
- Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ann-Sofie Mølleskov-Jensen
- Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tau Benned-Jensen
- Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mette M Rosenkilde
- Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
32
|
Marucci G, Dal Ben D, Lambertucci C, Santinelli C, Spinaci A, Thomas A, Volpini R, Buccioni M. The G Protein-Coupled Receptor GPR17: Overview and Update. ChemMedChem 2016; 11:2567-2574. [PMID: 27863043 DOI: 10.1002/cmdc.201600453] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 10/17/2016] [Indexed: 11/08/2022]
Abstract
The GPR17 receptor is a G protein-coupled receptor (GPCR) that seems to respond to two unrelated families of endogenous ligands: nucleotide sugars (UDP, UDP-galactose, and UDP-glucose) and cysteinyl leukotrienes (LTD4 , LTC4 , and LTE4 ), with significant affinity at micromolar and nanomolar concentrations, respectively. This receptor has a broad distribution at the level of the central nervous system (CNS) and is found in neurons and in a subset of oligodendrocyte precursor cells (OPCs). Unfortunately, disparate results emerging from different laboratories have resulted in a lack of clarity with regard to the role of GPR17-targeting ligands in OPC differentiation and in myelination. GPR17 is also highly expressed in organs typically undergoing ischemic damage and has various roles in specific phases of adaptations that follow a stroke. Under such conditions, GPR17 plays a crucial role; in fact, its inhibition decreases the progression of ischemic damage. This review summarizes some important features of this receptor that could be a novel therapeutic target for the treatment of demyelinating diseases and for repairing traumatic injury.
Collapse
Affiliation(s)
- Gabriella Marucci
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Via S. Agostino, 1, 62032, Camerino, MC, Italy
| | - Diego Dal Ben
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Via S. Agostino, 1, 62032, Camerino, MC, Italy
| | - Catia Lambertucci
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Via S. Agostino, 1, 62032, Camerino, MC, Italy
| | - Claudia Santinelli
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Via S. Agostino, 1, 62032, Camerino, MC, Italy
| | - Andrea Spinaci
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Via S. Agostino, 1, 62032, Camerino, MC, Italy
| | - Ajiroghene Thomas
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Via S. Agostino, 1, 62032, Camerino, MC, Italy
| | - Rosaria Volpini
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Via S. Agostino, 1, 62032, Camerino, MC, Italy
| | - Michela Buccioni
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Via S. Agostino, 1, 62032, Camerino, MC, Italy
| |
Collapse
|
33
|
Wheeler NA, Fuss B. Extracellular cues influencing oligodendrocyte differentiation and (re)myelination. Exp Neurol 2016; 283:512-30. [PMID: 27016069 PMCID: PMC5010977 DOI: 10.1016/j.expneurol.2016.03.019] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 03/03/2016] [Accepted: 03/18/2016] [Indexed: 02/07/2023]
Abstract
There is an increasing number of neurologic disorders found to be associated with loss and/or dysfunction of the CNS myelin sheath, ranging from the classic demyelinating disease, multiple sclerosis, through CNS injury, to neuropsychiatric diseases. The disabling burden of these diseases has sparked a growing interest in gaining a better understanding of the molecular mechanisms regulating the differentiation of the myelinating cells of the CNS, oligodendrocytes (OLGs), and the process of (re)myelination. In this context, the importance of the extracellular milieu is becoming increasingly recognized. Under pathological conditions, changes in inhibitory as well as permissive/promotional cues are thought to lead to an overall extracellular environment that is obstructive for the regeneration of the myelin sheath. Given the general view that remyelination is, even though limited in human, a natural response to demyelination, targeting pathologically 'dysregulated' extracellular cues and their downstream pathways is regarded as a promising approach toward the enhancement of remyelination by endogenous (or if necessary transplanted) OLG progenitor cells. In this review, we will introduce the extracellular cues that have been implicated in the modulation of (re)myelination. These cues can be soluble, part of the extracellular matrix (ECM) or mediators of cell-cell interactions. Their inhibitory and permissive/promotional roles with regard to remyelination as well as their potential for therapeutic intervention will be discussed.
Collapse
Affiliation(s)
- Natalie A Wheeler
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, United States
| | - Babette Fuss
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, United States.
| |
Collapse
|
34
|
A new role for the P2Y-like GPR17 receptor in the modulation of multipotency of oligodendrocyte precursor cells in vitro. Purinergic Signal 2016; 12:661-672. [PMID: 27544384 DOI: 10.1007/s11302-016-9530-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 08/05/2016] [Indexed: 12/25/2022] Open
Abstract
Oligodendrocyte precursor cells (OPCs, also called NG2 cells) are scattered throughout brain parenchyma, where they function as a reservoir to replace lost or damaged oligodendrocytes, the myelin-forming cells. The hypothesis that, under some circumstances, OPCs can actually behave as multipotent cells, thus generating astrocytes and neurons as well, has arisen from some in vitro and in vivo evidence, but the molecular pathways controlling this alternative fate of OPCs are not fully understood. Their identification would open new opportunities for neuronal replace strategies, by fostering the intrinsic ability of the brain to regenerate. Here, we show that the anti-epileptic epigenetic modulator valproic acid (VPA) can promote the generation of new neurons from NG2+ OPCs under neurogenic protocols in vitro, through their initial de-differentiation to a stem cell-like phenotype that then evolves to "hybrid" cell population, showing OPC morphology but expressing the neuronal marker βIII-tubulin and the GPR17 receptor, a key determinant in driving OPC transition towards myelinating oligodendrocytes. Under these conditions, the pharmacological blockade of the P2Y-like receptor GPR17 by cangrelor, a drug recently approved for human use, partially mimics the effects mediated by VPA thus accelerating cells' neurogenic conversion. These data show a co-localization between neuronal markers and GPR17 in vitro, and suggest that, besides its involvement in oligodendrogenesis, GPR17 can drive the fate of neural precursor cells by instructing precursors towards the neuronal lineage. Being a membrane receptor, GPR17 represents an ideal "druggable" target to be exploited for innovative regenerative approaches to acute and chronic brain diseases.
Collapse
|
35
|
Parravicini C, Daniele S, Palazzolo L, Trincavelli ML, Martini C, Zaratin P, Primi R, Coppolino G, Gianazza E, Abbracchio MP, Eberini I. A promiscuous recognition mechanism between GPR17 and SDF-1: Molecular insights. Cell Signal 2016; 28:631-42. [PMID: 26971834 DOI: 10.1016/j.cellsig.2016.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 02/29/2016] [Accepted: 03/06/2016] [Indexed: 01/19/2023]
Abstract
Recent data and publications suggest a promiscuous behaviour for GPR17, a class-A GPCR operated by different classes of ligands, such as uracil nucleotides, cysteinyl-leukotrienes and oxysterols. This observation, together with the ability of several class-A GPCRs to form homo- and hetero-dimers, is likely to unveil new pathophysiological roles and novel emerging pharmacological properties for some of these GPCRs, including GPR17. This receptor shares structural, phylogenetic and functional properties with some chemokine receptors, CXCRs. Both GPR17 and CXCR2 are operated by oxysterols, and both GPR17 and CXCR ligands have been demonstrated to have a role in orchestrating inflammatory responses and oligodendrocyte precursor cell differentiation to myelinating cells in acute and chronic diseases of the central nervous system. Here, by combining in silico modelling data with in vitro validation in (i) a classical reference pharmacological assay for GPCR activity and (ii) a model of maturation of primary oligodendrocyte precursor cells, we demonstrate that GPR17 can be activated by SDF-1, a ligand of chemokine receptors CXCR4 and CXCR7, and investigate the underlying molecular recognition mechanism. We also demonstrate that cangrelor, a GPR17 orthosteric antagonist, can block the SDF-1-mediated activation of GPR17 in a concentration-dependent manner. The ability of GPR17 to respond to different classes of GPCR ligands suggests that this receptor modifies its function depending on the extracellular mileu changes occurring under specific pathophysiological conditions and advocates it as a strategic target for neurodegenerative diseases with an inflammatory/immune component.
Collapse
Affiliation(s)
- Chiara Parravicini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy.
| | - Simona Daniele
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy; Dipartimento di Farmacia, Università degli Studi di Pisa, Via Bonanno Pisano 6, 56126 Pisa, Italy.
| | - Luca Palazzolo
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy.
| | | | - Claudia Martini
- Dipartimento di Farmacia, Università degli Studi di Pisa, Via Bonanno Pisano 6, 56126 Pisa, Italy.
| | - Paola Zaratin
- Fondazione Italiana Sclerosi Multipla, Via Operai 40, 16149 Genova, Italy.
| | - Roberto Primi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy.
| | - Giusy Coppolino
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy.
| | - Elisabetta Gianazza
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy.
| | - Maria P Abbracchio
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy.
| | - Ivano Eberini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy; Dipartimento di Scienze Biomediche e Cliniche "L. Sacco", Università degli Studi di Milano, Via Gian Battista Grassi 74, 20157 Milano, Italy.
| |
Collapse
|
36
|
Molecular mechanisms of target recognition by lipid GPCRs: relevance for cancer. Oncogene 2015; 35:4021-35. [PMID: 26640151 DOI: 10.1038/onc.2015.467] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 11/02/2015] [Accepted: 11/02/2015] [Indexed: 12/18/2022]
|
37
|
Amarandi RM, Hjortø GM, Rosenkilde MM, Karlshøj S. Probing Biased Signaling in Chemokine Receptors. Methods Enzymol 2015; 570:155-86. [PMID: 26921946 DOI: 10.1016/bs.mie.2015.09.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The chemokine system mediates leukocyte migration during homeostatic and inflammatory processes. Traditionally, it is described as redundant and promiscuous, with a single chemokine ligand binding to different receptors and a single receptor having several ligands. Signaling of chemokine receptors occurs via two major routes, G protein- and β-arrestin-dependent, which can be preferentially modulated depending on the ligands or receptors involved, as well as the cell types or tissues in which the signaling event occurs. The preferential activation of a certain signaling pathway to the detriment of others has been termed signaling bias and can accordingly be grouped into ligand bias, receptor bias, and tissue bias. Bias has so far been broadly overlooked in the process of drug development. The low number of currently approved drugs targeting the chemokine system, as well as the broad range of failed clinical trials, reflects the need for a better understanding of the chemokine system. Thus, understanding the character, direction, and consequence of biased signaling in the chemokine system may aid the development of new therapeutics. This review describes experiments to assess G protein-dependent and -independent signaling in order to quantify chemokine system bias.
Collapse
Affiliation(s)
- Roxana-Maria Amarandi
- Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, The Panum Institute, University of Copenhagen, Copenhagen, Denmark; Faculty of Chemistry, Alexandru Ioan Cuza University of Iaşi, Iaşi, Romania
| | - Gertrud Malene Hjortø
- Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Mette Marie Rosenkilde
- Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Stefanie Karlshøj
- Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, The Panum Institute, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
38
|
CNS remyelination as a novel reparative approach to neurodegenerative diseases: The roles of purinergic signaling and the P2Y-like receptor GPR17. Neuropharmacology 2015; 104:82-93. [PMID: 26453964 DOI: 10.1016/j.neuropharm.2015.10.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 10/02/2015] [Accepted: 10/03/2015] [Indexed: 02/07/2023]
Abstract
Oligodendrocytes are the myelin-forming cells in the CNS. They enwrap axons, thus permitting fast impulse transmission and exerting trophic actions on neurons. Demyelination accompanied by neurological deficit is a rather frequent condition that is not only associated with multiple sclerosis but has been also recognized in several other neurodegenerative diseases, including brain trauma and stroke, Alzheimer's disease and amyotrophic lateral sclerosis. Recently, alterations of myelin function have been also reported in neuropsychiatric diseases, like depression and autism. Highly relevant for therapeutic purposes, oligodendrocyte precursor cells (OPCs) still persist in the adult brain and spinal cord. These cells are normally rather quiescent, but under specific circumstances, they can be stimulated to undergo differentiation and generate mature myelinating oligodendrocytes. Thus, approaches aimed at restoring myelin integrity and at fostering a correct oligodendrocyte function are now viewed as novel therapeutic opportunities for both neurodegenerative and neuropsychiatric diseases. Both OPCs and mature oligodendrocytes express purinergic receptors. For some of these receptors, expression is restricted at specific differentiation stages, suggesting key roles in OPCs maturation and myelination. Some of these receptors are altered under demyelinating conditions, suggesting that their dysregulation may contribute to disease development and could represent adequate new targets for remyelinating therapies. Here, we shall describe the current literature available on all these receptors, with special emphasis on the P2Y-like GPR17 receptor, that represents one of the most studied receptor subtypes in these cells. This article is part of the Special Issue entitled 'Purines in Neurodegeneration and Neuroregeneration'.
Collapse
Key Words
- 2′-Deoxy-N(6)-methyladenosine 3′,5'-bisphosphate ammonium salt (MRS2179)
- 3-(2-carboxy-4,6-dichloro-indol-3-yl)propionic acid (MDL29,951)
- 3-[4-[2-[ [6-amino-9-[(2R,3R,4S,5S)-5-(ethylcarbamoyl)-3,4-dihydroxy-oxolan-2-yl]purin-2-yl]amino]ethyl]phenyl]propanoic acid (CGS21680)
- 7-(2-phenylethyl)-5-amino-2-(2-furyl)-pyrazolo-[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidine (SCH58261)
- ADP
- ATP
- Adenosine
- Brilliant blue G (BBG)
- Leukotriene D4 (LTD(4))
- Montelukast
- N6-cyclohexyladenosine (CHA)
- Oligodendrocytes
- Oxidized ATP (oxATP)
- Purinergic receptors
- Rapamycin
- Remyelination
- UDP
- UDP-Glucose
Collapse
|
39
|
Ahmad R, Wojciech S, Jockers R. Hunting for the function of orphan GPCRs - beyond the search for the endogenous ligand. Br J Pharmacol 2014; 172:3212-28. [PMID: 25231237 DOI: 10.1111/bph.12942] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 09/04/2014] [Accepted: 09/09/2014] [Indexed: 12/13/2022] Open
Abstract
Seven transmembrane-spanning proteins (7TM), also called GPCRs, are among the most versatile and evolutionary successful protein families. Out of the 400 non-odourant members identified in the human genome, approximately 100 remain orphans that have not been matched with an endogenous ligand. Apart from the classical deorphanization strategies, several alternative strategies provided recent new insights into the function of these proteins, which hold promise for high therapeutic potential. These alternative strategies consist of the phenotypical characterization of organisms silenced or overexpressing orphan 7TM proteins, the search for constitutive receptor activity and formation of protein complexes including 7TM proteins as well as the development of synthetic, surrogate ligands. Taken together, a variety of ligand-independent functions can be attributed to orphan 7TM proteins that range from constitutive activity to complex formation with other proteins and include 'true' orphans for which no ligand exist and 'conditional' orphans that behave like orphans in the absence of ligand and as non-orphans in the presence of ligand.
Collapse
Affiliation(s)
- Raise Ahmad
- Institut Cochin, INSERM, Paris, France.,CNRS UMR 8104, Paris, France.,Paris Descartes University, Paris, France
| | - Stefanie Wojciech
- Institut Cochin, INSERM, Paris, France.,CNRS UMR 8104, Paris, France.,Paris Descartes University, Paris, France
| | - Ralf Jockers
- Institut Cochin, INSERM, Paris, France.,CNRS UMR 8104, Paris, France.,Paris Descartes University, Paris, France
| |
Collapse
|
40
|
Bäck M, Powell WS, Dahlén SE, Drazen JM, Evans JF, Serhan CN, Shimizu T, Yokomizo T, Rovati GE. Update on leukotriene, lipoxin and oxoeicosanoid receptors: IUPHAR Review 7. Br J Pharmacol 2014; 171:3551-74. [PMID: 24588652 DOI: 10.1111/bph.12665] [Citation(s) in RCA: 155] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 02/06/2014] [Accepted: 02/18/2014] [Indexed: 12/14/2022] Open
Abstract
The endogenous ligands for the LT, lipoxin (LX) and oxoeicosanoid receptors are bioactive products produced by the action of the lipoxygenase family of enzymes. The LT receptors BLT1 and BLT2 , are activated by LTB4 and the CysLT1 and CysLT2 receptors are activated by the cysteinyl-LTs, whereas oxoeicosanoids exert their action through the OXE receptor. In contrast to these pro-inflammatory mediators, LXA4 transduces responses associated with the resolution of inflammation through the receptor FPR2/ALX (ALX/FPR2). The aim of the present review is to give a state of the field on these receptors, with focus on recent important findings. For example, BLT1 receptor signalling in cancer and the dual role of the BLT2 receptor in pro- and anti-inflammatory actions have added more complexity to lipid mediator signalling. Furthermore, a cross-talk between the CysLT and P2Y receptor systems has been described, and also the presence of novel receptors for cysteinyl-LTs, such as GPR17 and GPR99. Finally, lipoxygenase metabolites derived from ω-3 essential polyunsaturated acids, the resolvins, activate the receptors GPR32 and ChemR23. In conclusion, the receptors for the lipoxygenase products make up a sophisticated and tightly controlled system of endogenous pro- and anti-inflammatory signalling in physiology and pathology.
Collapse
Affiliation(s)
- Magnus Bäck
- Nomenclature Subcommittee for Leukotriene Receptors, International Union of Basic and Clinical Pharmacology, Stockholm, Sweden; Department of Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Cardiology, Karolinska University Hospital, Stockholm, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Cosentino S, Castiglioni L, Colazzo F, Nobili E, Tremoli E, Rosa P, Abbracchio MP, Sironi L, Pesce M. Expression of dual nucleotides/cysteinyl-leukotrienes receptor GPR17 in early trafficking of cardiac stromal cells after myocardial infarction. J Cell Mol Med 2014; 18:1785-96. [PMID: 24909956 PMCID: PMC4196654 DOI: 10.1111/jcmm.12305] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 03/25/2014] [Indexed: 12/23/2022] Open
Abstract
GPR17 is a Gi-coupled dual receptor activated by uracil-nucleotides and cysteinyl-leukotrienes. These mediators are massively released into hypoxic tissues. In the normal heart, GPR17 expression has been reported. By contrast, its role in myocardial ischaemia has not yet been assessed. In the present report, the expression of GPR17 was investigated in mice before and at early stages after myocardial infarction by using immunofluorescence, flow cytometry and RT-PCR. Before induction of ischaemia, results indicated the presence of the receptor in a population of stromal cells expressing the stem-cell antigen-1 (Sca-1). At early stages after ligation of the coronary artery, the receptor was expressed in Sca-1+ cells, and cells stained with Isolectin-B4 and anti-CD45 antibody. GPR17+ cells also expressed mesenchymal marker CD44. GPR17 function was investigated in vitro in a Sca-1+/CD31− cell line derived from normal hearts. These experiments showed a migratory function of the receptor by treatment with UDP-glucose and leukotriene LTD4, two GPR17 pharmacological agonists. The GPR17 function was finally assessed in vivo by treating infarcted mice with Cangrelor, a pharmacological receptor antagonist, which, at least in part, inhibited early recruitment of GPR17+ and CD45+ cells. These findings suggest a regulation of heart-resident mesenchymal cells and blood-borne cellular species recruitment following myocardial infarction, orchestrated by GPR17.
Collapse
Affiliation(s)
- Simona Cosentino
- Laboratorio di Biologia e Biochimica dell'Aterotrombosi, Centro Cardiologico Monzino, IRCCS, Milan, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Zappelli E, Daniele S, Abbracchio MP, Martini C, Trincavelli ML. A rapid and efficient immunoenzymatic assay to detect receptor protein interactions: G protein-coupled receptors. Int J Mol Sci 2014; 15:6252-64. [PMID: 24733071 PMCID: PMC4013626 DOI: 10.3390/ijms15046252] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 03/10/2014] [Accepted: 04/01/2014] [Indexed: 12/26/2022] Open
Abstract
G protein-coupled receptors (GPCRs) represent one of the largest families of cell surface receptors, and are the target of at least one-third of the current therapeutic drugs on the market. Along their life cycle, GPCRs are accompanied by a range of specialized GPCR-interacting proteins (GIPs), which take part in receptor proper folding, targeting to the appropriate subcellular compartments and in receptor signaling tasks, and also in receptor regulation processes, such as desensitization and internalization. The direction of protein-protein interactions and multi-protein complexes formation is crucial in understanding protein function and their implication in pathological events. Although several methods have been already developed to assay protein complexes, some of them are quite laborious, expensive, and, more important, they do not generate fully quantitative results. Herein, we show a rapid immunoenzymatic assay to quantify GPCR interactionswith its signaling proteins. The recently de-orphanized GPCR, GPR17, was chosen as a GPCR prototype to optimize the assay. In a GPR17 transfected cell line and primary oligodendrocyte precursor cells, GPR17 interaction with proteins involved in the typical GPCR regulation, such as desensitization and internalization machinery, was investigated. The obtained results were validated by co-immunoprecipitation experiments, confirming this new method as a rapid and quantitative assay to study protein-protein interactions.
Collapse
Affiliation(s)
- Elisa Zappelli
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy.
| | - Simona Daniele
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy.
| | - Maria P Abbracchio
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy.
| | - Claudia Martini
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy.
| | | |
Collapse
|
43
|
Köse M, Ritter K, Thiemke K, Gillard M, Kostenis E, Müller CE. Development of [(3)H]2-Carboxy-4,6-dichloro-1H-indole-3-propionic Acid ([(3)H]PSB-12150): A Useful Tool for Studying GPR17. ACS Med Chem Lett 2014; 5:326-30. [PMID: 24900835 DOI: 10.1021/ml400399f] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 01/16/2014] [Indexed: 11/29/2022] Open
Abstract
The recently described synthetic GPR17 agonist 2-carboxy-4,6-dichloro-1H-indole-3-propionic acid (1) was prepared in tritium-labeled form by catalytic hydrogenation of the corresponding propenoic acid derivative 8 with tritium gas. The radioligand [(3)H]PSB-12150 (9) was obtained with a specific activity of 17 Ci/mmol (629 GBq/mmol). It showed specific and saturable binding to a single binding site in membrane preparations from Chinese hamster ovary cells recombinantly expressing the human GPR17. A competition assay procedure was established, which allows the determination of ligand binding affinities.
Collapse
Affiliation(s)
- Meryem Köse
- PharmaCenter
Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, Bonn, Germany
| | - Kirsten Ritter
- PharmaCenter
Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, Bonn, Germany
| | - Katharina Thiemke
- PharmaCenter
Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, Bonn, Germany
| | - Michel Gillard
- UCB Pharma S.A., CNS Research, Chemin du Foriest, B-1420 Braine-l’Alleud, Belgium
| | - Evi Kostenis
- PharmaCenter
Bonn, Institute of Pharmaceutical Biology, Section of Molecular-,
Cellular-, and Pharmacobiology, University of Bonn, Bonn, Germany
| | - Christa E. Müller
- PharmaCenter
Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, Bonn, Germany
| |
Collapse
|
44
|
Im DS. Intercellular Lipid Mediators and GPCR Drug Discovery. Biomol Ther (Seoul) 2014; 21:411-22. [PMID: 24404331 PMCID: PMC3879912 DOI: 10.4062/biomolther.2013.080] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 10/30/2013] [Accepted: 11/04/2013] [Indexed: 01/08/2023] Open
Abstract
G-protein-coupled receptors (GPCR) are the largest superfamily of receptors responsible for signaling between cells and tissues, and because they play important physiological roles in homeostasis, they are major drug targets. New technologies have been developed for the identification of new ligands, new GPCR functions, and for drug discovery purposes. In particular, intercellular lipid mediators, such as, lysophosphatidic acid and sphingosine 1-phosphate have attracted much attention for drug discovery and this has resulted in the development of fingolimod (FTY-720) and AM095. The discovery of new intercellular lipid mediators and their GPCRs are discussed from the perspective of drug development. Lipid GPCRs for lysophospholipids, including lysophosphatidylserine, lysophosphatidylinositol, lysophosphatidylcholine, free fatty acids, fatty acid derivatives, and other lipid mediators are reviewed.
Collapse
Affiliation(s)
- Dong-Soon Im
- Molecular Inflammation Research Center for Aging Intervention (MRCA) and College of Pharmacy, Pusan National University, Busan 609-735, Republic of Korea
| |
Collapse
|
45
|
Alexander SPH, Benson HE, Faccenda E, Pawson AJ, Sharman JL, Spedding M, Peters JA, Harmar AJ. The Concise Guide to PHARMACOLOGY 2013/14: G protein-coupled receptors. Br J Pharmacol 2013; 170:1459-581. [PMID: 24517644 PMCID: PMC3892287 DOI: 10.1111/bph.12445] [Citation(s) in RCA: 509] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The Concise Guide to PHARMACOLOGY 2013/14 provides concise overviews of the key properties of over 2000 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.12444/full. G protein-coupled receptors are one of the seven major pharmacological targets into which the Guide is divided, with the others being G protein-coupled receptors, ligand-gated ion channels, ion channels, catalytic receptors, nuclear hormone receptors, transporters and enzymes. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. A new landscape format has easy to use tables comparing related targets. It is a condensed version of material contemporary to late 2013, which is presented in greater detail and constantly updated on the website www.guidetopharmacology.org, superseding data presented in previous Guides to Receptors and Channels. It is produced in conjunction with NC-IUPHAR and provides the official IUPHAR classification and nomenclature for human drug targets, where appropriate. It consolidates information previously curated and displayed separately in IUPHAR-DB and the Guide to Receptors and Channels, providing a permanent, citable, point-in-time record that will survive database updates.
Collapse
Affiliation(s)
- Stephen PH Alexander
- School of Life Sciences, University of Nottingham Medical SchoolNottingham, NG7 2UH, UK
| | - Helen E Benson
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | - Elena Faccenda
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | - Adam J Pawson
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | - Joanna L Sharman
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | | | - John A Peters
- Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of DundeeDundee, DD1 9SY, UK
| | - Anthony J Harmar
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| |
Collapse
|
46
|
Hennen S, Wang H, Peters L, Merten N, Simon K, Spinrath A, Blättermann S, Akkari R, Schrage R, Schröder R, Schulz D, Vermeiren C, Zimmermann K, Kehraus S, Drewke C, Pfeifer A, König GM, Mohr K, Gillard M, Müller CE, Lu QR, Gomeza J, Kostenis E. Decoding signaling and function of the orphan G protein-coupled receptor GPR17 with a small-molecule agonist. Sci Signal 2013; 6:ra93. [PMID: 24150254 DOI: 10.1126/scisignal.2004350] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Replacement of the lost myelin sheath is a therapeutic goal for treating demyelinating diseases of the central nervous system (CNS), such as multiple sclerosis (MS). The G protein (heterotrimeric guanine nucleotide-binding protein)-coupled receptor (GPCR) GPR17, which is phylogenetically closely related to receptors of the "purinergic cluster," has emerged as a modulator of CNS myelination. However, whether GPR17-mediated signaling positively or negatively regulates this critical process is unresolved. We identified a small-molecule agonist, MDL29,951, that selectively activated GPR17 even in a complex environment of endogenous purinergic receptors in primary oligodendrocytes. MDL29,951-stimulated GPR17 engaged the entire set of intracellular adaptor proteins for GPCRs: G proteins of the Gα(i), Gα(s), and Gα(q) subfamily, as well as β-arrestins. This was visualized as alterations in the concentrations of cyclic adenosine monophosphate and inositol phosphate, increased Ca²⁺ flux, phosphorylation of extracellular signal-regulated kinases 1 and 2 (ERK1/2), as well as multifeatured cell activation recorded with label-free dynamic mass redistribution and impedance biosensors. MDL29,951 inhibited the maturation of primary oligodendrocytes from heterozygous but not GPR17 knockout mice in culture, as well as in cerebellar slices from 4-day-old wild-type mice. Because GPCRs are attractive targets for therapeutic intervention, inhibiting GPR17 emerges as therapeutic strategy to relieve the oligodendrocyte maturation block and promote myelin repair in MS.
Collapse
Affiliation(s)
- Stephanie Hennen
- 1Molecular, Cellular, and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, 53115 Bonn, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Qi AD, Harden TK, Nicholas RA. Is GPR17 a P2Y/leukotriene receptor? examination of uracil nucleotides, nucleotide sugars, and cysteinyl leukotrienes as agonists of GPR17. J Pharmacol Exp Ther 2013; 347:38-46. [PMID: 23908386 PMCID: PMC3781415 DOI: 10.1124/jpet.113.207647] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 07/26/2013] [Indexed: 01/01/2023] Open
Abstract
The orphan receptor GPR17 has been reported to be activated by UDP, UDP-sugars, and cysteinyl leukotrienes, and coupled to intracellular Ca(2+) mobilization and inhibition of cAMP accumulation, but other studies have reported either a different agonist profile or lack of agonist activity altogether. To determine if GPR17 is activated by uracil nucleotides and leukotrienes, the hemagglutinin-tagged receptor was expressed in five different cell lines and the signaling properties of the receptor were investigated. In C6, 1321N1, or Chinese hamster ovary (CHO) cells stably expressing GPR17, UDP, UDP-glucose, UDP-galactose, and cysteinyl leukotriene C4 (LTC4) all failed to promote inhibition of forskolin-stimulated cAMP accumulation, whereas both UDP and UDP-glucose promoted marked inhibition (>80%) of forskolin-stimulated cAMP accumulation in C6 and CHO cells expressing the P2Y14 receptor. Likewise, none of these compounds promoted accumulation of inositol phosphates in COS-7 or human embryonic kidney 293 cells transiently transfected with GPR17 alone or cotransfected with Gαq/i5, which links Gi-coupled receptors to the Gq-regulated phospholipase C (PLC) signaling pathway, or PLCε, which is activated by the Gα12/13 signaling pathway. Moreover, none of these compounds promoted internalization of GPR17 in 1321N1-GPR17 cells. Consistent with previous reports, coexpression experiments of GPR17 with cysteinyl leukotriene receptor 1 (CysLTR1) suggested that GPR17 acts as a negative regulator of CysLTR1. Taken together, these data suggest that UDP, UDP-glucose, UDP-galactose, and LTC4 are not the cognate ligands of GPR17.
Collapse
Affiliation(s)
- Ai-Dong Qi
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | | | | |
Collapse
|
48
|
Gilliland CT, Salanga CL, Kawamura T, Trejo J, Handel TM. The chemokine receptor CCR1 is constitutively active, which leads to G protein-independent, β-arrestin-mediated internalization. J Biol Chem 2013; 288:32194-32210. [PMID: 24056371 DOI: 10.1074/jbc.m113.503797] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Activation of G protein-coupled receptors by their associated ligands has been extensively studied, and increasing structural information about the molecular mechanisms underlying ligand-dependent receptor activation is beginning to emerge with the recent expansion in GPCR crystal structures. However, some GPCRs are also able to adopt active conformations in the absence of agonist binding that result in the initiation of signal transduction and receptor down-modulation. In this report, we show that the CC-type chemokine receptor 1 (CCR1) exhibits significant constitutive activity leading to a variety of cellular responses. CCR1 expression is sufficient to induce inhibition of cAMP formation, increased F-actin content, and basal migration of human and murine leukocytes. The constitutive activity leads to basal phosphorylation of the receptor, recruitment of β-arrestin-2, and subsequent receptor internalization. CCR1 concurrently engages Gαi and β-arrestin-2 in a multiprotein complex, which may be accommodated by homo-oligomerization or receptor clustering. The data suggest the presence of two functional states for CCR1; whereas receptor coupled to Gαi functions as a canonical GPCR, albeit with high constitutive activity, the CCR1·β-arrestin-2 complex is required for G protein-independent constitutive receptor internalization. The pertussis toxin-insensitive uptake of chemokine by the receptor suggests that the CCR1·β-arrestin-2 complex may be related to a potential scavenging function of the receptor, which may be important for maintenance of chemokine gradients and receptor responsiveness in complex fields of chemokines during inflammation.
Collapse
Affiliation(s)
| | | | | | - JoAnn Trejo
- the Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California 92093
| | - Tracy M Handel
- From the Skaggs School of Pharmacy and Pharmaceutical Sciences.
| |
Collapse
|
49
|
Franke H, Parravicini C, Lecca D, Zanier ER, Heine C, Bremicker K, Fumagalli M, Rosa P, Longhi L, Stocchetti N, De Simoni MG, Weber M, Abbracchio MP. Changes of the GPR17 receptor, a new target for neurorepair, in neurons and glial cells in patients with traumatic brain injury. Purinergic Signal 2013; 9:451-62. [PMID: 23801362 PMCID: PMC3757149 DOI: 10.1007/s11302-013-9366-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 05/09/2013] [Indexed: 11/29/2022] Open
Abstract
Unveiling the mechanisms participating in the damage and repair of traumatic brain injury (TBI) is fundamental to develop new therapies. The P2Y-like GPR17 receptor has recently emerged as a sensor of damage and a key actor in lesion remodeling/repair in the rodent brain, but its role in humans is totally unknown. Here, we characterized GPR17 expression in brain specimens from seven intensive care unit TBI patients undergoing neurosurgery for contusion removal and from 28 autoptic TBI cases (and 10 control subjects of matched age and gender) of two university hospitals. In both neurosurgery and autoptic samples, GPR17 expression was strong inside the contused core and progressively declined distally according to a spatio-temporal gradient. Inside and around the core, GPR17 labeled dying neurons, reactive astrocytes, and activated microglia/macrophages. In peri-contused parenchyma, GPR17 decorated oligodendrocyte precursor cells (OPCs) some of which had proliferated, indicating re-myelination attempts. In autoptic cases, GPR17 expression positively correlated with death for intracranial complications and negatively correlated with patients' post-traumatic survival. Data indicate lesion-specific sequential involvement of GPR17 in the (a) death of irreversibly damaged neurons, (b) activation of microglia/macrophages remodeling the lesion, and (c) activation/proliferation of multipotent parenchymal progenitors (both reactive astrocytes and OPCs) starting repair processes. Data validate GPR17 as a target for neurorepair and are particularly relevant to setting up new therapies for TBI patients.
Collapse
Affiliation(s)
- Heike Franke
- />Rudolf Boehm Institute of Pharmacology and Toxicology, University of Leipzig, Leipzig, Germany
| | - Chiara Parravicini
- />Department of Pharmacological and Biomolecular Sciences, Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, University of Milan, via Balzaretti 9, 20133 Milan, Italy
| | - Davide Lecca
- />Department of Pharmacological and Biomolecular Sciences, Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, University of Milan, via Balzaretti 9, 20133 Milan, Italy
| | - Elisa R. Zanier
- />IRCCS-Istituto di Ricerche Farmacologiche “Mario Negri”, Milan, Italy
| | - Claudia Heine
- />Rudolf Boehm Institute of Pharmacology and Toxicology, University of Leipzig, Leipzig, Germany
- />Translational Centre for Regenerative Medicine (TRM), University of Leipzig, Leipzig, Germany
| | - Kristina Bremicker
- />Rudolf Boehm Institute of Pharmacology and Toxicology, University of Leipzig, Leipzig, Germany
| | - Marta Fumagalli
- />Department of Pharmacological and Biomolecular Sciences, Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, University of Milan, via Balzaretti 9, 20133 Milan, Italy
| | - Patrizia Rosa
- />Department of Medical Pharmacology, Institute of Neuroscience, Consiglio Nazionale delle Ricerche, Milan, Italy
| | - Luca Longhi
- />Department of Pathophysiology and Transplantation, University of Milan, and Neurosurgical Care Unit, IRCCS Ca’ Granda - Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122 Milan, Italy
| | - Nino Stocchetti
- />Department of Pathophysiology and Transplantation, University of Milan, and Neurosurgical Care Unit, IRCCS Ca’ Granda - Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122 Milan, Italy
| | | | - Marco Weber
- />Institute of Legal Medicine, University of Halle, Halle (Saale), Germany
| | - Maria P. Abbracchio
- />Department of Pharmacological and Biomolecular Sciences, Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, University of Milan, via Balzaretti 9, 20133 Milan, Italy
| |
Collapse
|
50
|
Davenport AP, Alexander SPH, Sharman JL, Pawson AJ, Benson HE, Monaghan AE, Liew WC, Mpamhanga CP, Bonner TI, Neubig RR, Pin JP, Spedding M, Harmar AJ. International Union of Basic and Clinical Pharmacology. LXXXVIII. G protein-coupled receptor list: recommendations for new pairings with cognate ligands. Pharmacol Rev 2013; 65:967-86. [PMID: 23686350 PMCID: PMC3698937 DOI: 10.1124/pr.112.007179] [Citation(s) in RCA: 231] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In 2005, the International Union of Basic and Clinical Pharmacology Committee on Receptor Nomenclature and Drug Classification (NC-IUPHAR) published a catalog of all of the human gene sequences known or predicted to encode G protein-coupled receptors (GPCRs), excluding sensory receptors. This review updates the list of orphan GPCRs and describes the criteria used by NC-IUPHAR to recommend the pairing of an orphan receptor with its cognate ligand(s). The following recommendations are made for new receptor names based on 11 pairings for class A GPCRs: hydroxycarboxylic acid receptors [HCA₁ (GPR81) with lactate, HCA₂ (GPR109A) with 3-hydroxybutyric acid, HCA₃ (GPR109B) with 3-hydroxyoctanoic acid]; lysophosphatidic acid receptors [LPA₄ (GPR23), LPA₅ (GPR92), LPA₆ (P2Y5)]; free fatty acid receptors [FFA4 (GPR120) with omega-3 fatty acids]; chemerin receptor (CMKLR1; ChemR23) with chemerin; CXCR7 (CMKOR1) with chemokines CXCL12 (SDF-1) and CXCL11 (ITAC); succinate receptor (SUCNR1) with succinate; and oxoglutarate receptor [OXGR1 with 2-oxoglutarate]. Pairings are highlighted for an additional 30 receptors in class A where further input is needed from the scientific community to validate these findings. Fifty-seven human class A receptors (excluding pseudogenes) are still considered orphans; information has been provided where there is a significant phenotype in genetically modified animals. In class B, six pairings have been reported by a single publication, with 28 (excluding pseudogenes) still classified as orphans. Seven orphan receptors remain in class C, with one pairing described by a single paper. The objective is to stimulate research into confirming pairings of orphan receptors where there is currently limited information and to identify cognate ligands for the remaining GPCRs. Further information can be found on the IUPHAR Database website (http://www.iuphar-db.org).
Collapse
Affiliation(s)
- Anthony P Davenport
- Clinical Pharmacology Unit, University of Cambridge, Level 6, Centre for Clinical Investigation, Box 110, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|