1
|
Lo DY, Ahmadzada B, Stachel MA, Schaefer M, Ashraf U, Wagner JI, Vanderslice EJ, Tornquist M, Mariakis K, Halsten P, Lindsay CD, Beck EC, Nyberg SL, Ross JJ. Transplantation of decellularized porcine kidney grafts repopulated with primary human cells demonstrates filtration function in pigs. COMMUNICATIONS MEDICINE 2024; 4:259. [PMID: 39639166 PMCID: PMC11621697 DOI: 10.1038/s43856-024-00676-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 11/12/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND End-stage renal disease is a growing global health issue, disproportionately impacting low- and middle-income countries. While kidney transplantation remains the best treatment for end-stage renal disease, access to this treatment modality is limited by chronic donor organ shortages. To address this critical need, we are developing transplantable bioengineered kidney grafts. METHODS Podocyte differentiation was achieved in adherent monoculture through Wnt and TGF-β inhibition with IWR-1 and SB431542, respectively. Podocytes along with endothelial cells were then used to recapitulate glomeruli within decellularized porcine kidney scaffolds to generate bioengineered kidneys grafts. These bioengineered kidney grafts were functionally assessed via normothermic perfusion which compared kidney grafts recellularized with only endothelial cells as a control to bi-culture kidney grafts comprised of endothelial cells and podocytes. Heterotopic implantation further tested bi-culture kidney graft function over 3 successive implant sessions with 1-2 grafts per session. RESULTS We demonstrate the ability to source primary human podocytes at scale. Decellularized porcine kidney grafts repopulated with podocytes and endothelial cells exhibit native glomerular structure and display blood filtration capabilities during normothermic perfusion testing. Extending these findings to a clinically relevant model, bioengineered kidneys produce urine with indices of filtration when heterotopically implanted in pigs. CONCLUSIONS Our results showcase a human-scale, transplantable bioengineered kidney capable of performing requisite filtration function. This study reinforces the possibility for the bioengineering of transplantable human kidneys, which could someday provide increased and more equitable access to kidney grafts for the treatment of end-stage renal disease.
Collapse
Affiliation(s)
- David Y Lo
- Miromatrix Medical Inc. a Subsidiary of United Therapeutics Corporation, Eden Prairie, MN, USA.
| | | | - MacKenna A Stachel
- Miromatrix Medical Inc. a Subsidiary of United Therapeutics Corporation, Eden Prairie, MN, USA
| | - Melia Schaefer
- Miromatrix Medical Inc. a Subsidiary of United Therapeutics Corporation, Eden Prairie, MN, USA
| | - Usman Ashraf
- Miromatrix Medical Inc. a Subsidiary of United Therapeutics Corporation, Eden Prairie, MN, USA
| | - John I Wagner
- Miromatrix Medical Inc. a Subsidiary of United Therapeutics Corporation, Eden Prairie, MN, USA
| | - Ethan J Vanderslice
- Miromatrix Medical Inc. a Subsidiary of United Therapeutics Corporation, Eden Prairie, MN, USA
| | - Madie Tornquist
- Miromatrix Medical Inc. a Subsidiary of United Therapeutics Corporation, Eden Prairie, MN, USA
| | - Kendra Mariakis
- Miromatrix Medical Inc. a Subsidiary of United Therapeutics Corporation, Eden Prairie, MN, USA
| | - Peggy Halsten
- Miromatrix Medical Inc. a Subsidiary of United Therapeutics Corporation, Eden Prairie, MN, USA
| | - Christopher D Lindsay
- Miromatrix Medical Inc. a Subsidiary of United Therapeutics Corporation, Eden Prairie, MN, USA
| | - Emily C Beck
- Miromatrix Medical Inc. a Subsidiary of United Therapeutics Corporation, Eden Prairie, MN, USA
| | | | - Jeffrey J Ross
- Miromatrix Medical Inc. a Subsidiary of United Therapeutics Corporation, Eden Prairie, MN, USA.
| |
Collapse
|
2
|
Liu Y, Sun D, Huang Y, Shen Y, Chen T, Chen W, Zhu L, Wang F, Hong G, Luo Y, Long S, Zou H. Bibliometric analysis of research on retinoic acid in the field of kidney disorders. Front Pharmacol 2024; 15:1435889. [PMID: 39211779 PMCID: PMC11357955 DOI: 10.3389/fphar.2024.1435889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Retinoic acid is an active metabolite with significant physiological functions in human development, immunity, vision, and skin health. In recent years, research on retinoic acid in the field of kidney disorders has been increasing gradually. Yet, there is a lack of systematic bibliometric analysis of retinoic acid research in the kidney domain. This study included 1,368 articles published between 1998 and 2023 on treating kidney diseases with retinoic acid. Using the bibliometric analysis software VOSviewer and CiteSpace, we analyzed data on publication trends, contributing countries and institutions, journals and cocited journals, authors and cocited authors, cocited references, research hotspots, and frontiers. On the basis of the results of the bibliometric analysis, we identified the research efforts and their developmental trends, providing the groundwork for future research on retinoic acid.
Collapse
Affiliation(s)
- Yu Liu
- Department of Nephrology, South China Hospital of Shenzhen University, Shenzhen, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, China
| | - Dongxuan Sun
- Department of Nephrology, South China Hospital of Shenzhen University, Shenzhen, China
| | - Youqun Huang
- Department of Nephrology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuli Shen
- Nephrology Depariment of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen, China
| | - Tong Chen
- Department of Nephrology, South China Hospital of Shenzhen University, Shenzhen, China
| | - Wenya Chen
- Department of Nephrology, South China Hospital of Shenzhen University, Shenzhen, China
| | - Liangjun Zhu
- Department of Oncology, The Third Affiliated Hospital of Guizhou Medical University, Duyun, China
| | - Fang Wang
- Department of Nephrology, South China Hospital of Shenzhen University, Shenzhen, China
| | - Guoai Hong
- Department of Nephrology, South China Hospital of Shenzhen University, Shenzhen, China
| | - Yuechan Luo
- Department of Nephrology, South China Hospital of Shenzhen University, Shenzhen, China
| | - Siyu Long
- Department of Nephrology, South China Hospital of Shenzhen University, Shenzhen, China
| | - Hequn Zou
- Medical School, The Chinese University of Hong Kong, Shenzhen, China
| |
Collapse
|
3
|
Yang M, Lopez LN, Brewer M, Delgado R, Menshikh A, Clouthier K, Zhu Y, Vanichapol T, Yang H, Harris RC, Gewin L, Brooks CR, Davidson AJ, de Caestecker M. Inhibition of retinoic acid signaling in proximal tubular epithelial cells protects against acute kidney injury. JCI Insight 2023; 8:e173144. [PMID: 37698919 PMCID: PMC10619506 DOI: 10.1172/jci.insight.173144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/05/2023] [Indexed: 09/14/2023] Open
Abstract
Retinoic acid receptor (RAR) signaling is essential for mammalian kidney development but, in the adult kidney, is restricted to occasional collecting duct epithelial cells. We now show that there is widespread reactivation of RAR signaling in proximal tubular epithelial cells (PTECs) in human sepsis-associated acute kidney injury (AKI) and in mouse models of AKI. Genetic inhibition of RAR signaling in PTECs protected against experimental AKI but was unexpectedly associated with increased expression of the PTEC injury marker Kim1. However, the protective effects of inhibiting PTEC RAR signaling were associated with increased Kim1-dependent apoptotic cell clearance, or efferocytosis, and this was associated with dedifferentiation, proliferation, and metabolic reprogramming of PTECs. These data demonstrate the functional role that reactivation of RAR signaling plays in regulating PTEC differentiation and function in human and experimental AKI.
Collapse
Affiliation(s)
- Min Yang
- Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Lauren N. Lopez
- Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Maya Brewer
- Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Rachel Delgado
- Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Anna Menshikh
- Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Kelly Clouthier
- Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Yuantee Zhu
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Thitinee Vanichapol
- Department of Molecular Medicine & Pathology, The University of Auckland, Auckland, New Zealand
| | - Haichun Yang
- Department of Pathology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Raymond C. Harris
- Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Leslie Gewin
- Washington University in St. Louis School of Medicine and the St. Louis Veterans Affairs Hospital, St. Louis, Missouri, USA
| | - Craig R. Brooks
- Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Alan J. Davidson
- Department of Molecular Medicine & Pathology, The University of Auckland, Auckland, New Zealand
| | - Mark de Caestecker
- Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
4
|
Martínez-Hernández SL, Muñoz-Ortega MH, Ávila-Blanco ME, Medina-Pizaño MY, Ventura-Juárez J. Novel Approaches in Chronic Renal Failure without Renal Replacement Therapy: A Review. Biomedicines 2023; 11:2828. [PMID: 37893201 PMCID: PMC10604533 DOI: 10.3390/biomedicines11102828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/28/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Chronic kidney disease (CKD) is characterized by renal parenchymal damage leading to a reduction in the glomerular filtration rate. The inflammatory response plays a pivotal role in the tissue damage contributing to renal failure. Current therapeutic options encompass dietary control, mineral salt regulation, and management of blood pressure, blood glucose, and fatty acid levels. However, they do not effectively halt the progression of renal damage. This review critically examines novel therapeutic avenues aimed at ameliorating inflammation, mitigating extracellular matrix accumulation, and fostering renal tissue regeneration in the context of CKD. Understanding the mechanisms sustaining a proinflammatory and profibrotic state may offer the potential for targeted pharmacological interventions. This, in turn, could pave the way for combination therapies capable of reversing renal damage in CKD. The non-replacement phase of CKD currently faces a dearth of efficacious therapeutic options. Future directions encompass exploring vaptans as diuretics to inhibit water absorption, investigating antifibrotic agents, antioxidants, and exploring regenerative treatment modalities, such as stem cell therapy and novel probiotics. Moreover, this review identifies pharmaceutical agents capable of mitigating renal parenchymal damage attributed to CKD, targeting molecular-level signaling pathways (TGF-β, Smad, and Nrf2) that predominate in the inflammatory processes of renal fibrogenic cells.
Collapse
Affiliation(s)
- Sandra Luz Martínez-Hernández
- Departamento de Microbiología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes 20100, Ags, Mexico
| | - Martín Humberto Muñoz-Ortega
- Departamento de Química, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes 20100, Ags, Mexico
| | - Manuel Enrique Ávila-Blanco
- Departamento de Morfología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes 20100, Ags, Mexico
| | - Mariana Yazmin Medina-Pizaño
- Departamento de Morfología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes 20100, Ags, Mexico
| | - Javier Ventura-Juárez
- Departamento de Morfología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes 20100, Ags, Mexico
| |
Collapse
|
5
|
DiKun KM, Gudas LJ. Vitamin A and retinoid signaling in the kidneys. Pharmacol Ther 2023; 248:108481. [PMID: 37331524 PMCID: PMC10528136 DOI: 10.1016/j.pharmthera.2023.108481] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/18/2023] [Accepted: 06/14/2023] [Indexed: 06/20/2023]
Abstract
Vitamin A (VA, retinol) and its metabolites (commonly called retinoids) are required for the proper development of the kidney during embryogenesis, but retinoids also play key roles in the function and repair of the kidney in adults. Kidneys filter 180-200 liters of blood per day and each kidney contains approximately 1 million nephrons, which are often referred to as the 'functional units' of the kidney. Each nephron consists of a glomerulus and a series of tubules (proximal tubule, loop of Henle, distal tubule, and collecting duct) surrounded by a network of capillaries. VA is stored in the liver and converted to active metabolites, most notably retinoic acid (RA), which acts as an agonist for the retinoic acid receptors ((RARs α, β, and γ) to regulate gene transcription. In this review we discuss some of the actions of retinoids in the kidney after injury. For example, in an ischemia-reperfusion model in mice, injury-associated loss of proximal tubule (PT) differentiation markers occurs, followed by re-expression of these differentiation markers during PT repair. Notably, healthy proximal tubules express ALDH1a2, the enzyme that metabolizes retinaldehyde to RA, but transiently lose ALDH1a2 expression after injury, while nearby myofibroblasts transiently acquire RA-producing capabilities after injury. These results indicate that RA is important for renal tubular injury repair and that compensatory mechanisms exist for the generation of endogenous RA by other cell types upon proximal tubule injury. ALDH1a2 levels also increase in podocytes, epithelial cells of the glomeruli, after injury, and RA promotes podocyte differentiation. We also review the ability of exogenous, pharmacological doses of RA and receptor selective retinoids to treat numerous kidney diseases, including kidney cancer and diabetic kidney disease, and the emerging genetic evidence for the importance of retinoids and their receptors in maintaining or restoring kidney function after injury. In general, RA has a protective effect on the kidney after various types of injuries (eg. ischemia, cytotoxic actions of chemicals, hyperglycemia related to diabetes). As more research into the actions of each of the three RARs in the kidney is carried out, a greater understanding of the actions of vitamin A is likely to lead to new insights into the pathology of kidney disorders and the development of new therapies for kidney diseases.
Collapse
Affiliation(s)
- Krysta M DiKun
- Department of Pharmacology, Weill Cornell Medical College of Cornell University, New York, NY, USA; New York Presbyterian Hospital, New York, NY, USA; Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Lorraine J Gudas
- Department of Pharmacology, Weill Cornell Medical College of Cornell University, New York, NY, USA; Department of Urology, Weill Cornell Medicine, New York, NY, USA; New York Presbyterian Hospital, New York, NY, USA; Weill Cornell Graduate School of Medical Sciences, New York, NY, USA.
| |
Collapse
|
6
|
Yang M, Lopez LN, Brewer M, Delgado R, Menshikh A, Clouthier K, Zhu Y, Vanichapol T, Yang H, Harris R, Gewin L, Brooks C, Davidson A, de Caestecker MP. Inhibition of Retinoic Acid Signaling in Proximal Tubular Epithelial cells Protects against Acute Kidney Injury by Enhancing Kim-1-dependent Efferocytosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.15.545113. [PMID: 37398101 PMCID: PMC10312711 DOI: 10.1101/2023.06.15.545113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Retinoic acid receptor (RAR) signaling is essential for mammalian kidney development, but in the adult kidney is restricted to occasional collecting duct epithelial cells. We now show there is widespread reactivation of RAR signaling in proximal tubular epithelial cells (PTECs) in human sepsis-associated acute kidney injury (AKI), and in mouse models of AKI. Genetic inhibition of RAR signaling in PTECs protects against experimental AKI but is associated with increased expression of the PTEC injury marker, Kim-1. However, Kim-1 is also expressed by de-differentiated, proliferating PTECs, and protects against injury by increasing apoptotic cell clearance, or efferocytosis. We show that the protective effect of inhibiting PTEC RAR signaling is mediated by increased Kim-1 dependent efferocytosis, and that this is associated with de-differentiation, proliferation, and metabolic reprogramming of PTECs. These data demonstrate a novel functional role that reactivation of RAR signaling plays in regulating PTEC differentiation and function in human and experimental AKI. Graphical abstract
Collapse
|
7
|
Wang F, Fan J, Pei T, He Z, Zhang J, Ju L, Han Z, Wang M, Xiao W. Effects of Shenkang Pills on Early-Stage Diabetic Nephropathy in db/db Mice via Inhibiting AURKB/RacGAP1/RhoA Signaling Pathway. Front Pharmacol 2022; 13:781806. [PMID: 35222021 PMCID: PMC8873791 DOI: 10.3389/fphar.2022.781806] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 01/17/2022] [Indexed: 12/22/2022] Open
Abstract
Diabetic nephropathy (DN) is the leading cause of end-stage renal disease, so there is an urgent need to suppress its development at early stage. Shenkang pills (SKP) are a hospital prescription selected and optimized from effective traditional Chinese medicinal formulas for clinical treatment of DN. In the present study, liquid chromatography-quadrupole-time of flight-mass spectrometry (LC-Q-TOF-MS) and total contents qualification were applied to generate a quality control standard of SKP. For verifying the therapeutic effects of SKP, db/db mice were administered intragastrically with SKP at a human-equivalent dose (1.82 g/kg) for 4 weeks. Moreover, the underlying mechanism of SKP were analyzed by the renal RNA sequencing and network pharmacology. LC-Q-TOF-MS identified 46 compounds in SKP. The total polysaccharide and organic acid content in SKP were 4.60 and 0.11 mg/ml, respectively, while the total flavonoid, saponin, and protein content were 0.25, 0.31, and 0.42 mg/ml, respectively. Treatment of SKP significantly reduced fasting blood glucose, improved renal function, and ameliorated glomerulosclerosis and focal foot processes effacement in db/db mice. In addition, SKP protected podocytes from injury by increasing nephrin and podocin expression. Furthermore, transcriptome analyses revealed that 430 and 288 genes were up and down-regulated in mice treated with SKP, relative to untreated controls. Gene ontology enrichment analysis revealed that the differentially expressed genes mainly involved in modulation of cell division and chromosome segregation. Weighted gene co-expression network analysis and network pharmacology analysis indicated that aurora kinase B (AURKB), Rac GTPase activating protein 1 (RacGAP1) and SHC binding, and spindle associated 1 (shcbp1) might be the core targets of SKP. This protein and Ras homolog family member A (RhoA) were found overexpression in db/db mice, but significantly decreased with SKP treatment. We conclude that SKP can effectively treat early-stage DN and improve renal podocyte dysfunction. The mechanism may involve down-regulation of the AURKB/RacGAP1/RhoA pathway.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Wei Xiao
- *Correspondence: Mingqing Wang, ; Wei Xiao,
| |
Collapse
|
8
|
Bejoy J, Qian ES, Woodard LE. Accelerated protocol for the differentiation of podocytes from human pluripotent stem cells. STAR Protoc 2021; 2:100898. [PMID: 34746862 PMCID: PMC8551929 DOI: 10.1016/j.xpro.2021.100898] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Several kidney diseases including congenital nephrotic syndrome, Alport syndrome, and diabetic nephropathy are linked to podocyte dysfunction. Human podocytopathies may be modeled in either primary or immortalized podocyte cell lines. Human induced pluripotent stem cell (hiPSC)-derived podocytes are a source of human podocytes, but the existing protocols have variable efficiency and expensive media components. We developed an accelerated, feeder-free protocol for deriving functional, mature podocytes from hiPSCs in only 12 days, saving time and money compared with other approaches.
Collapse
Affiliation(s)
- Julie Bejoy
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Eddie Spencer Qian
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Lauren Elizabeth Woodard
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Veterans Affairs, Nashville, TN 37212, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
9
|
Sobreiro-Almeida R, Gómez-Florit M, Quinteira R, Reis RL, Gomes ME, Neves NM. Decellularized kidney extracellular matrix bioinks recapitulate renal 3D microenvironment in vitro. Biofabrication 2021; 13. [PMID: 34186524 DOI: 10.1088/1758-5090/ac0fca] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 06/29/2021] [Indexed: 12/25/2022]
Abstract
Decellularized extracellular matrices (ECMs) are able to provide the necessary and specific cues for remodeling and maturation of tissue-specific cells. Nevertheless, their use for typical biofabrication applications requires chemical modification or mixing with other polymers, mainly due to the limited viscoelastic properties. In this study, we hypothesize that a bioink exclusively based on decellularized kidney ECM (dKECM) could be used to bioprint renal progenitor cells. To address these aims, porcine kidneys were decellularized, lyophilized and digested to yield a viscous solution. Then, the bioprinting process was optimized using an agarose microparticle support bath containing transglutaminase for enzymatic crosslinking of the dKECM. This methodology was highly effective to obtain constructs with good printing resolution and high structural integrity. Moreover, the encapsulation of primary renal progenitor cells resulted in high cell viability, with creation of 3D complex structures over time. More importantly, this tissue-specific matrix was also able to influence cellular growth and differentiation over time. Taken together, these results demonstrate that unmodified dKECM bioinks have great potential for bioengineering renal tissue analogs with promising translational applications and/or forin vitromodel systems. Ultimately, this strategy may have greater implications on the biomedical field for the development of bioengineered substitutes using decellularized matrices from other tissues.
Collapse
Affiliation(s)
- Rita Sobreiro-Almeida
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Manuel Gómez-Florit
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rita Quinteira
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Manuela E Gomes
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Nuno M Neves
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
10
|
Doi K, Kimura H, Wada T, Tanaka T, Hiromura K, Saleem MA, Inagi R, Nangaku M, Fujii T. A novel method for successful induction of interdigitating process formation in conditionally immortalized podocytes from mice, rats, and humans. Biochem Biophys Res Commun 2021; 570:47-52. [PMID: 34271436 DOI: 10.1016/j.bbrc.2021.07.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 07/08/2021] [Indexed: 11/29/2022]
Abstract
Formation of processes in podocytes is regarded as the hallmark of maturity and normal physical condition for the cell. There are many accumulated findings about molecular mechanisms that cause retraction of podocyte processes; however, there is little knowledge of the positive mechanisms that promote process formation in vitro, and most previous reports about this topic have been limited to low-density cultures. Here, we found that process formation can be induced in 100% confluent cultures of conditionally immortalized podocytes in mouse, rat, and human species by combining serum depletion and Y-27632 ROCK inhibitor supplementation on the scaffold of laminin-521(L521). We noted the cytoskeletal reorganization of the radial extension pattern of vimentin filaments and downregulation of actin stress fiber formation under that condition. We also found that additional standard amount of serum, depletion of ROCK inhibitor, or slight mismatch of the scaffold as laminin-511(L511) hinder process formation. These findings suggest that the combination of reduced serum, podocyte-specific scaffold, and intracellular signaling to reduce the overexpression of ROCK are required factors for process formation.
Collapse
Affiliation(s)
- Kotaro Doi
- Institute of Industrial Science, The University of Tokyo, 153-8503, Japan
| | - Hiroshi Kimura
- Department of Mechanical Engineering, School of Engineering, Tokai University, Japan
| | - Takehiko Wada
- Division of Nephrology, Endocrinology and Metabolism, Tokai University School of Medicine, Japan
| | - Tetsuhiro Tanaka
- Department of Nephrology and Endocrinology, Faculty of Medicine, The University of Tokyo, Japan
| | - Keiju Hiromura
- Department of Nephrology and Rheumatology, Gunma University Graduate School of Medicine, Japan
| | - Moin A Saleem
- University of Bristol, And Bristol Royal Hospital for Children, UK
| | - Reiko Inagi
- Division of Chronic Kidney Disease Pathophysiology the University of Tokyo Graduate School of Medicine, Japan
| | - Masaomi Nangaku
- Department of Nephrology and Endocrinology, Faculty of Medicine, The University of Tokyo, Japan
| | - Teruo Fujii
- Institute of Industrial Science, The University of Tokyo, 153-8503, Japan.
| |
Collapse
|
11
|
Barutta F, Kimura S, Hase K, Bellini S, Corbetta B, Corbelli A, Fiordaliso F, Barreca A, Papotti MG, Ghiggeri GM, Salvidio G, Roccatello D, Audrito V, Deaglio S, Gambino R, Bruno S, Camussi G, Martini M, Hirsch E, Durazzo M, Ohno H, Gruden G. Protective Role of the M-Sec-Tunneling Nanotube System in Podocytes. J Am Soc Nephrol 2021; 32:1114-1130. [PMID: 33722931 PMCID: PMC8259684 DOI: 10.1681/asn.2020071076] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 01/21/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Podocyte dysfunction and loss are major determinants in the development of proteinuria. FSGS is one of the most common causes of proteinuria, but the mechanisms leading to podocyte injury or conferring protection against FSGS remain poorly understood. The cytosolic protein M-Sec has been involved in the formation of tunneling nanotubes (TNTs), membrane channels that transiently connect cells and allow intercellular organelle transfer. Whether podocytes express M-Sec is unknown and the potential relevance of the M-Sec-TNT system in FSGS has not been explored. METHODS We studied the role of the M-Sec-TNT system in cultured podocytes exposed to Adriamycin and in BALB/c M-Sec knockout mice. We also assessed M-Sec expression in both kidney biopsies from patients with FSGS and in experimental FSGS (Adriamycin-induced nephropathy). RESULTS Podocytes can form TNTs in a M-Sec-dependent manner. Consistent with the notion that the M-Sec-TNT system is cytoprotective, podocytes overexpressed M-Sec in both human and experimental FSGS. Moreover, M-Sec deletion resulted in podocyte injury, with mitochondrial abnormalities and development of progressive FSGS. In vitro, M-Sec deletion abolished TNT-mediated mitochondria transfer between podocytes and altered mitochondrial bioenergetics. Re-expression of M-Sec reestablishes TNT formation and mitochondria exchange, rescued mitochondrial function, and partially reverted podocyte injury. CONCLUSIONS These findings indicate that the M-Sec-TNT system plays an important protective role in the glomeruli by rescuing podocytes via mitochondrial horizontal transfer. M-Sec may represent a promising therapeutic target in FSGS, and evidence that podocytes can be rescued via TNT-mediated horizontal transfer may open new avenues of research.
Collapse
Affiliation(s)
- Federica Barutta
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Shunsuke Kimura
- Division of Biochemistry, Faculty of Pharmacy, Keio University, Tokyo, Japan
| | - Koji Hase
- Division of Biochemistry, Faculty of Pharmacy, Keio University, Tokyo, Japan
| | - Stefania Bellini
- Department of Medical Sciences, University of Turin, Turin, Italy
| | | | - Alessandro Corbelli
- Department of Cardiovascular Medicine, Institute of Pharmacological Research Mario Negri, Scientific Institute for Hospitalization and Care (IRCCS), Milan, Italy
| | - Fabio Fiordaliso
- Department of Cardiovascular Medicine, Institute of Pharmacological Research Mario Negri, Scientific Institute for Hospitalization and Care (IRCCS), Milan, Italy
| | | | | | - Gian Marco Ghiggeri
- Division of Nephrology, Dialysis, Transplantation, Gaslini Children’s Hospital, Genoa, Italy
| | - Gennaro Salvidio
- Scientific Institute for Hospitalization and Care (IRCCS), San Martino University Hospital Clinic, Genoa, Italy
| | - Dario Roccatello
- Center of Research of Immunopathology and Rare Diseases, Coordinating Center of Piemonte and Valle d’Aosta Network for Rare Diseases, S. Giovanni Bosco Hospital, Department of Clinical and Biological Sciences, University of Turin, Turin, Italy,Nephrology and Dialysis, Department of Clinical and Biological Sciences, S. Giovanni Bosco Hospital, University of Turin, Turin, Italy
| | | | - Silvia Deaglio
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Roberto Gambino
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Stefania Bruno
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Giovanni Camussi
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Miriam Martini
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Emilio Hirsch
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Marilena Durazzo
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Hiroshi Ohno
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Gabriella Gruden
- Department of Medical Sciences, University of Turin, Turin, Italy
| |
Collapse
|
12
|
Chen A, Liu Y, Lu Y, Lee K, He JC. Disparate roles of retinoid acid signaling molecules in kidney disease. Am J Physiol Renal Physiol 2021; 320:F683-F692. [PMID: 33645319 PMCID: PMC8174805 DOI: 10.1152/ajprenal.00045.2021] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Retinoid acid (RA) is synthesized mainly in the liver and has multiple functions in development, cell differentiation and proliferation, and regulation of inflammation. RA has been used to treat multiple diseases, such as cancer and skin disorders. The kidney is a major organ for RA metabolism, which is altered in the diseased condition. RA is known to have renal-protective effects in multiple animal models of kidney disease. RA has been shown to ameliorate podocyte injury through induction of expression of differentiation markers and regeneration of podocytes from its progenitor cells in animal models of kidney disease. The effects of RA in podocytes are mediated mainly by activation of the cAMP/PKA pathway via RA receptor-α (RARα) and activation of its downstream transcription factor, Kruppel-like factor 15. Screening of RA signaling molecules in human kidney disease has revealed RAR responder protein 1 (RARRES1) as a risk gene for glomerular disease progression. RARRES1, a podocyte-specific growth arrest gene, is regulated by high doses of both RA and TNF-α. Mechanistically, RARRES1 is cleaved by matrix metalloproteinases to generate soluble RARRES1, which then induces podocyte apoptosis through interaction with intracellular RIO kinase 1. Therefore, a high dose of RA may induce podocyte toxicity through upregulation of RARRES1. Based on the current findings, to avoid potential side effects, we propose three strategies to develop future therapies of RA for glomerular disease: 1) develop RARα- and Kruppel-like factor 15-specific agonists, 2) use the combination of a low dose of RAR-α agonist with phosphodiesterase 4 inhibitors, and 3) use a combination of RARα agonist with RARRES1 inhibitors.NEW & NOTEWORTHY Retinoic acid (RA) exerts pleotropic cellular effects, including induction of cell differentiation while inhibiting proliferation and inflammation. These effects are mediated by both RA responsive element-dependent or -independent pathways. In kidneys, RA confers renoprotection by signaling through podocyte RA receptor (RAR)α and activation of cAMP/PKA/Kruppel-like factor 15 pathway to promote podocyte differentiation. Nevertheless, in kidney disease settings, RA can also promote podocyte apoptosis and loss through downstream expression of RAR responder protein 1, a recently described risk factor for glomerular disease progression. These disparate roles of RA underscore the complexity of its effects in kidney homeostasis and disease, and a need to target specific RA-mediated pathways for effective therapeutic treatments against kidney disease progression.
Collapse
Affiliation(s)
- Anqun Chen
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, Second Xiangya Hospital at Central South University, Changsha, China
| | - Yu Liu
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, Second Xiangya Hospital at Central South University, Changsha, China
| | - Yu Lu
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, Second Xiangya Hospital at Central South University, Changsha, China
- Department of Health Sciences, Boston University College of Health and Rehabilitation Sciences: Sargent College, Boston University, Boston, Massachusetts
| | - Kyung Lee
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - John Cijiang He
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
- Renal Program, James J. Peters Veterans Affairs Medical Center, Bronx, New York
| |
Collapse
|
13
|
Sidhom EH, Kim C, Kost-Alimova M, Ting MT, Keller K, Avila-Pacheco J, Watts AJ, Vernon KA, Marshall JL, Reyes-Bricio E, Racette M, Wieder N, Kleiner G, Grinkevich EJ, Chen F, Weins A, Clish CB, Shaw JL, Quinzii CM, Greka A. Targeting a Braf/Mapk pathway rescues podocyte lipid peroxidation in CoQ-deficiency kidney disease. J Clin Invest 2021; 131:141380. [PMID: 33444290 DOI: 10.1172/jci141380] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 01/06/2021] [Indexed: 12/19/2022] Open
Abstract
Mutations affecting mitochondrial coenzyme Q (CoQ) biosynthesis lead to kidney failure due to selective loss of podocytes, essential cells of the kidney filter. Curiously, neighboring tubular epithelial cells are spared early in disease despite higher mitochondrial content. We sought to illuminate noncanonical, cell-specific roles for CoQ, independently of the electron transport chain (ETC). Here, we demonstrate that CoQ depletion caused by Pdss2 enzyme deficiency in podocytes results in perturbations in polyunsaturated fatty acid (PUFA) metabolism and the Braf/Mapk pathway rather than ETC dysfunction. Single-nucleus RNA-Seq from kidneys of Pdss2kd/kd mice with nephrotic syndrome and global CoQ deficiency identified a podocyte-specific perturbation of the Braf/Mapk pathway. Treatment with GDC-0879, a Braf/Mapk-targeting compound, ameliorated kidney disease in Pdss2kd/kd mice. Mechanistic studies in Pdss2-depleted podocytes revealed a previously unknown perturbation in PUFA metabolism that was confirmed in vivo. Gpx4, an enzyme that protects against PUFA-mediated lipid peroxidation, was elevated in disease and restored after GDC-0879 treatment. We demonstrate broader human disease relevance by uncovering patterns of GPX4 and Braf/Mapk pathway gene expression in tissue from patients with kidney diseases. Our studies reveal ETC-independent roles for CoQ in podocytes and point to Braf/Mapk as a candidate pathway for the treatment of kidney diseases.
Collapse
Affiliation(s)
- Eriene-Heidi Sidhom
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Choah Kim
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | | | - May Theng Ting
- Department of Neurology, Columbia University Medical Center, New York, New York, USA
| | - Keith Keller
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | | | - Andrew Jb Watts
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Katherine A Vernon
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Jamie L Marshall
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | | | - Matthew Racette
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Nicolas Wieder
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Giulio Kleiner
- Department of Neurology, Columbia University Medical Center, New York, New York, USA
| | | | - Fei Chen
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Astrid Weins
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Clary B Clish
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Jillian L Shaw
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Catarina M Quinzii
- Department of Neurology, Columbia University Medical Center, New York, New York, USA
| | - Anna Greka
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| |
Collapse
|
14
|
Molecular Mechanisms of Renal Progenitor Regulation: How Many Pieces in the Puzzle? Cells 2021; 10:cells10010059. [PMID: 33401654 PMCID: PMC7823786 DOI: 10.3390/cells10010059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/26/2020] [Accepted: 12/29/2020] [Indexed: 12/12/2022] Open
Abstract
Kidneys of mice, rats and humans possess progenitors that maintain daily homeostasis and take part in endogenous regenerative processes following injury, owing to their capacity to proliferate and differentiate. In the glomerular and tubular compartments of the nephron, consistent studies demonstrated that well-characterized, distinct populations of progenitor cells, localized in the parietal epithelium of Bowman capsule and scattered in the proximal and distal tubules, could generate segment-specific cells in physiological conditions and following tissue injury. However, defective or abnormal regenerative responses of these progenitors can contribute to pathologic conditions. The molecular characteristics of renal progenitors have been extensively studied, revealing that numerous classical and evolutionarily conserved pathways, such as Notch or Wnt/β-catenin, play a major role in cell regulation. Others, such as retinoic acid, renin-angiotensin-aldosterone system, TLR2 (Toll-like receptor 2) and leptin, are also important in this process. In this review, we summarize the plethora of molecular mechanisms directing renal progenitor responses during homeostasis and following kidney injury. Finally, we will explore how single-cell RNA sequencing could bring the characterization of renal progenitors to the next level, while knowing their molecular signature is gaining relevance in the clinic.
Collapse
|
15
|
Chen A, Feng Y, Lai H, Ju W, Li Z, Li Y, Wang A, Hong Q, Zhong F, Wei C, Fu J, Guan T, Liu B, Kretzler M, Lee K, He JC. Soluble RARRES1 induces podocyte apoptosis to promote glomerular disease progression. J Clin Invest 2020; 130:5523-5535. [PMID: 32634130 PMCID: PMC7524479 DOI: 10.1172/jci140155] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 07/01/2020] [Indexed: 12/18/2022] Open
Abstract
Using the Nephrotic Syndrome Study Network Consortium data set and other publicly available transcriptomic data sets, we identified retinoic acid receptor responder protein 1 (RARRES1) as a gene whose expression positively correlated with renal function decline in human glomerular disease. The glomerular expression of RARRES1, which is largely restricted to podocytes, increased in focal segmental glomerulosclerosis (FSGS) and diabetic kidney disease (DKD). TNF-α was a potent inducer of RARRES1 expression in cultured podocytes, and transcriptomic analysis showed the enrichment of cell death pathway genes with RARRES1 overexpression. The overexpression of RARRES1 indeed induced podocyte apoptosis in vitro. Notably, this effect was dependent on its cleavage in the extracellular domain, as the mutation of its cleavage site abolished the apoptotic effect. Mechanistically, the soluble RARRES1 was endocytosed and interacted with and inhibited RIO kinase 1 (RIOK1), resulting in p53 activation and podocyte apoptosis. In mice, podocyte-specific overexpression of RARRES1 resulted in marked glomerular injury and albuminuria, while the overexpression of RARRES1 cleavage mutant had no effect. Conversely, podocyte-specific knockdown of Rarres1 in mice ameliorated glomerular injury in the setting of adriamycin-induced nephropathy. Our study demonstrates an important role and the mechanism of RARRES1 in podocyte injury in glomerular disease.
Collapse
Affiliation(s)
- Anqun Chen
- Division of Nephrology, Zhongshan Hospital, Xiamen University, Xiamen, China
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ye Feng
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Nephrology, Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Han Lai
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Wenjun Ju
- Division of Nephrology, Department of Internal Medicine, Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Zhengzhe Li
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Yu Li
- Division of Nephrology, Zhongshan Hospital, Xiamen University, Xiamen, China
| | - Andrew Wang
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Quan Hong
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Fang Zhong
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Chengguo Wei
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Jia Fu
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Tianjun Guan
- Division of Nephrology, Zhongshan Hospital, Xiamen University, Xiamen, China
| | - Bichen Liu
- Department of Nephrology, Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Matthias Kretzler
- Division of Nephrology, Department of Internal Medicine, Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Kyung Lee
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - John Cijiang He
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Renal Section, James J. Peters VA Medical Center, Bronx, New York, USA
| |
Collapse
|
16
|
Abstract
Nuclear receptors have a broad spectrum of biological functions in normal physiology and in the pathology of various diseases, including glomerular disease. The primary therapies for many glomerular diseases are glucocorticoids, which exert their immunosuppressive and direct podocyte protective effects via the glucocorticoid receptor (GR). As glucocorticoids are associated with important adverse effects and a substantial proportion of patients show resistance to these therapies, the beneficial effects of selective GR modulators are now being explored. Peroxisome proliferator-activated receptor-γ (PPARγ) agonism using thiazolidinediones has potent podocyte cytoprotective and nephroprotective effects. Repurposing of thiazolidinediones or identification of novel PPARγ modulators are potential strategies to treat non-diabetic glomerular disease. Retinoic acid receptor-α is the key mediator of the renal protective effects of retinoic acid, and repair of the endogenous retinoic acid pathway offers another potential therapeutic strategy for glomerular disease. Vitamin D receptor, oestrogen receptor and mineralocorticoid receptor modulators regulate podocyte injury in experimental models. Further studies are needed to better understand the mechanisms of these nuclear receptors, evaluate their synergistic pathways and identify their novel modulators. Here, we focus on the role of nuclear receptors in podocyte biology and non-diabetic glomerular disease.
Collapse
|
17
|
Yuan Q, Miao J, Yang Q, Fang L, Fang Y, Ding H, Zhou Y, Jiang L, Dai C, Zen K, Sun Q, Yang J. Role of pyruvate kinase M2-mediated metabolic reprogramming during podocyte differentiation. Cell Death Dis 2020; 11:355. [PMID: 32393782 PMCID: PMC7214446 DOI: 10.1038/s41419-020-2481-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 01/17/2023]
Abstract
Podocytes, a type of highly specialized epithelial cells, require substantial levels of energy to maintain glomerular integrity and function, but little is known on the regulation of podocytes’ energetics. Lack of metabolic analysis during podocyte development led us to explore the distribution of mitochondrial oxidative phosphorylation and glycolysis, the two major pathways of cell metabolism, in cultured podocytes during in vitro differentiation. Unexpectedly, we observed a stronger glycolytic profile, accompanied by an increased mitochondrial complexity in differentiated podocytes, indicating that mature podocytes boost both glycolysis and mitochondrial metabolism to meet their augmented energy demands. In addition, we found a shift of predominant energy source from anaerobic glycolysis in immature podocyte to oxidative phosphorylation during the differentiation process. Furthermore, we identified a crucial metabolic regulator for podocyte development, pyruvate kinase M2. Pkm2-knockdown podocytes showed dramatic reduction of energy metabolism, resulting in defects of cell differentiation. Meanwhile, podocyte-specific Pkm2-knockout (KO) mice developed worse albuminuria and podocyte injury after adriamycin treatment. We identified mammalian target of rapamycin (mTOR) as a critical regulator of PKM2 during podocyte development. Pharmacological inhibition of mTOR potently abrogated PKM2 expression and disrupted cell differentiation, indicating the existence of metabolic checkpoint that need to be satisfied in order to allow podocyte differentiation.
Collapse
Affiliation(s)
- Qi Yuan
- Center for Kidney Disease, 2nd Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, Jiangsu, 210003, China
| | - Jiao Miao
- Center for Kidney Disease, 2nd Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, Jiangsu, 210003, China
| | - Qianqian Yang
- Center for Kidney Disease, 2nd Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, Jiangsu, 210003, China
| | - Li Fang
- Center for Kidney Disease, 2nd Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, Jiangsu, 210003, China
| | - Yi Fang
- Center for Kidney Disease, 2nd Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, Jiangsu, 210003, China
| | - Hao Ding
- Center for Kidney Disease, 2nd Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, Jiangsu, 210003, China
| | - Yang Zhou
- Center for Kidney Disease, 2nd Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, Jiangsu, 210003, China
| | - Lei Jiang
- Center for Kidney Disease, 2nd Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, Jiangsu, 210003, China
| | - Chunsun Dai
- Center for Kidney Disease, 2nd Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, Jiangsu, 210003, China
| | - Ke Zen
- Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, School of Life Science, Nanjing University, 22 Hankou Road, Nanjing, Jiangsu, 210093, China
| | - Qi Sun
- Center for Kidney Disease, 2nd Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, Jiangsu, 210003, China.
| | - Junwei Yang
- Center for Kidney Disease, 2nd Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, Jiangsu, 210003, China.
| |
Collapse
|
18
|
冯 玮, 涂 小. [All-trans retinoic acid and vascular endothelial growth factor induced the directional osteogenic differentiation of mouse embryonic fibroblasts]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2020; 34:246-255. [PMID: 32030959 PMCID: PMC8171969 DOI: 10.7507/1002-1892.201906099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 12/13/2019] [Indexed: 11/03/2022]
Abstract
OBJECTIVE To investigate the effect of all-trans retinoic acid (ATRA) and vascular endothelial growth factor (VEGF) on the osteogenic differentiation of mouse embryonic fibroblasts (MEFs). METHODS The fetal mice in the uterus of NIH pregnant mice (pregnancy 12-15 days) were collected, and the heads and hearts etc. were removed. Then MEFs were separated from the rest tissues of the fetal mice and cultured by trypsin digestion and adherent culture. HEK-293 cells were used to obtain recombinant adenovirus-red fluorescent protein (Ad-RFP) and Ad-VEGF by repeatedly freezing and thawing. Alkaline phosphatase (ALP) staining and quantitative detection were used to detect the changes of ALP activity in MEFs applied with ATRA or VEGF alone or combined use of ATRA and VEGF on the 3rd and 5th days. The cultured 3rd to 4th generation MEFs were divided into groups A, B, C, and D, and were cultured with DMSO plus Ad-RFP, ATRA, Ad-VEGF, ATRA plus Ad-VEGF, respectively. Real-time fluorescence quantitative PCR (qRT-PCR) was used to detect the mRNA expressions of osteogenic markers including ALP, collagen type Ⅰ, osteopontin (OPN), osteocalcin (OCN), and angiogenic markers including VEGF, angiopoietin 1 (ANGPT1), and endomucin (EMCN) on the 3rd and 7th days. Immunohistochemical staining was used to detect the protein expressions of OPN and VEGF on the 3rd, 5th, and 7th days in each group. Alizarin red staining was used to detect calcium salt deposition levels in each group at 14 and 21 days after osteogenic induction. Fifteen athymic female nude mice aged 4 to 6 weeks were randomly divided into 3 groups and 5 mice in each group. Then MEFs treated with ATRA, Ad-VEGF, and ATRA plus Ad-VEGF were injected subcutaneously into the dorsal and ventral sides, respectively. X-ray observation, gross observation, and histological staining (Masson, HE, and Safranin O-fast green stainings) were performed at 5 weeks after implantation to observe the ectopic bone formation in nude mice in each group. RESULTS MEFs were successfully isolated and cultured. The acquired Ad-RFP and Ad-VEGF were successfully transfected into MEFs with approximately 50% and 20% transfection rates. ALP activity tests showed that ATRA or Ad-VEGF could enhance ALP activity in MEFs ( P<0.05), and ATRA had a stronger effect than Ad-VEGF; and the combined use of ATRA and Ad-VEGF significantly enhanced the ALP activity in MEFs ( P<0.05). qRT-PCR test showed that the combined use of ATRA and Ad-VEGF also increased the relative mRNA expressions of early-stage osteogenesis-related markers ALP, OPN, and collagen type I ( P<0.05); the relative mRNA expressions of angiogenesis-related markers VEGF, EMCN, and ANGPT1 increased at 7 days ( P<0.05). Immunohistochemical staining showed that ATRA combined with Ad-VEGF not only enhanced OPN protein expression, but also increased VEGF protein expression on 7th day. Alizarin red staining showed that the application of ATRA or Ad-VEGF induced weak calcium salt deposition, and the combined use of ATRA and Ad-VEGF significantly enhanced the effect of calcium salt deposition in MEFs. The results of implantation experiments in nude mice showed that X-ray films observation revealed obvious bone mass in the ATRA plus Ad-VEGF group, and the bone was larger than that in other groups. Histological staining showed a large amount of collagen and mature bone trabeculae, bone matrix formation, and gray-green collagen bone tissue, indicating that the combined use of ATRA and Ad-VEGF significantly enhanced the osteogenic effect of MEFs in vivo. CONCLUSION The combined use of ATRA and VEGF can induce the osteogenic differentiation of MEFs.
Collapse
Affiliation(s)
- 玮 冯
- 重庆医科大学生命科学研究院(重庆 400016)Life Science Institute, Chongqing Medical University, Chongqing, 400016, P.R.China
| | - 小林 涂
- 重庆医科大学生命科学研究院(重庆 400016)Life Science Institute, Chongqing Medical University, Chongqing, 400016, P.R.China
| |
Collapse
|
19
|
tRNA-derived fragments (tRFs) contribute to podocyte differentiation. Biochem Biophys Res Commun 2019; 521:1-8. [PMID: 31629473 DOI: 10.1016/j.bbrc.2019.09.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/01/2019] [Accepted: 09/04/2019] [Indexed: 11/21/2022]
Abstract
Loss of glomerular podocytes is the crucial event in the progression of chronic kidney disease (CKD). tRNA-derived fragments (tRFs), a newfangled branch of small non-coding RNA (sncRNA), recently reported to play a vital part in several diseases. In present study, we aimed to detect and reveal the role of tRFs in podocyte differentiation. The expression levels of tRFs between undifferentiated and differentiated podocytes were sequenced by illumina nextseq 500, and further verified by quantitative RT-PCR. 69 upregulated and 70 downregulated tRFs in total were singled out (Fold change > 2, P < 0.05). Gene ontology (GO) analysis indicated they are involved in the biological processes of transcription, DNA-templated, positive regulation of transcription from RNA polymerase II promoter, angiogenesis, cell adhesion. Besides, KEGG analysis suggested that these differentially tRFs are associated with PI3K-Akt signaling pathway, Rap1 signaling pathway, Ras signaling pathway, MAPK signaling pathway, and Wnt signaling pathway. Therefore, the differentially tRFs might regulate the differentiation of podocyte and the process of CKD. The functions and mechanisms of tRFs in podocytes are needed to be further explored.
Collapse
|
20
|
Histone demethylase KDM6B regulates human podocyte differentiation in vitro. Biochem J 2019; 476:1741-1751. [PMID: 31138771 DOI: 10.1042/bcj20180968] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 05/18/2019] [Accepted: 05/28/2019] [Indexed: 12/22/2022]
Abstract
Podocytes are terminally differentiated and highly specialized glomerular cells, which have an essential role as a filtration barrier against proteinuria. Histone methylation has been shown to influence cell development, but its role in podocyte differentiation is less understood. In this study, we first examined the expression pattern of histone demethylase KDM6B at different times of cultured human podocytes in vitro We found that the expression of KDM6B and podocyte differentiation markers WT1 and Nephrin are increased in the podocyte differentiation process. In cultured podocytes, KDM6B knockdown with siRNA impaired podocyte differentiation and led to expression down-regulation of WT1 and Nephrin. The treatment of podocytes with GSK-J4, a specific KDM6B inhibitor, can also obtain similar results. Overexpression of WT1 can rescue differentiated phenotype impaired by disruption of KDM6B ChIP (chromatin immunoprecipitation) assay further indicated that KDM6B can bind the promoter region of WT1 and reduce the histone H3K27 methylation. Podocytes in glomeruli from nephrotic patients exhibited increased KDM6B contents and reduced H3K27me3 levels. These data suggest a role for KDM6B as a regulator of podocyte differentiation, which is important for the understanding of podocyte function in kidney development and related diseases.
Collapse
|
21
|
Ge C, Xu M, Qin Y, Gu T, Lou D, Li Q, Hu L, Nie X, Wang M, Tan J. Fisetin supplementation prevents high fat diet-induced diabetic nephropathy by repressing insulin resistance and RIP3-regulated inflammation. Food Funct 2019; 10:2970-2985. [DOI: 10.1039/c8fo01653d] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Obesity-related renal disease is related to caloric excess promoting deleterious cellular responses.
Collapse
|
22
|
Siligato R, Cernaro V, Nardi C, De Gregorio F, Gembillo G, Costantino G, Conti G, Buemi M, Santoro D. Emerging therapeutic strategies for minimal change disease and focal and segmental glomerulosclerosis. Expert Opin Investig Drugs 2018; 27:839-879. [PMID: 30360670 DOI: 10.1080/13543784.2018.1540587] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Minimal change disease (MCD) and Focal and segmental glomerulosclerosis (FSGS) are two of the major causes of nephrotic syndrome (NS) in children and adults. According to KDIGO (Kidney Disease: Improving Global Outcomes) guidelines, the treatment of adult primary MCD and FSGS should be based on immunosuppressants and antiproteinuric drugs. Recently, Rituximab, a humanized monoclonal antibody (mAb) has emerged as a potential treatment for steroid or calcineurin inhibitor-dependent patients; it has however demonstrated lower efficacy in those with nephrotic syndrome that is resistant to the above indicated drugs. AREAS COVERED Analysis of ongoing and already completed clinical trials, retrieved from clinicaltrials.gov, clinicaltrialsregister.eu and PubMed involving new therapies for nephrotic syndrome secondary to MCD and FSGS. EXPERT OPINION The most promising drugs under investigation for MCD and FSGS are mAbs. We are hopeful that new therapeutic options to treat multi-drug resistant MCD and FSGS will emerge from currently ongoing studies. What appears certain is the difficulty in enrolling patients affected by orphan renal diseases and the selection of valid endpoints in clinical trials, such as kidney failure.
Collapse
Affiliation(s)
- Rossella Siligato
- a Unit of Nephrology and Dialysis, Department of Internal Medicine , Messina , Italy
| | - Valeria Cernaro
- a Unit of Nephrology and Dialysis, Department of Internal Medicine , Messina , Italy
| | - Chiara Nardi
- a Unit of Nephrology and Dialysis, Department of Internal Medicine , Messina , Italy
| | - Francesca De Gregorio
- a Unit of Nephrology and Dialysis, Department of Internal Medicine , Messina , Italy
| | - Guido Gembillo
- a Unit of Nephrology and Dialysis, Department of Internal Medicine , Messina , Italy
| | - Giuseppe Costantino
- a Unit of Nephrology and Dialysis, Department of Internal Medicine , Messina , Italy
| | - Giovanni Conti
- b Unit of Pediatric Nephrology and Rheumatology , University of Messina , Messina , Italy
| | - Michele Buemi
- a Unit of Nephrology and Dialysis, Department of Internal Medicine , Messina , Italy
| | - Domenico Santoro
- a Unit of Nephrology and Dialysis, Department of Internal Medicine , Messina , Italy
| |
Collapse
|
23
|
Korolj A, Laschinger C, James C, Hu E, Velikonja C, Smith N, Gu I, Ahadian S, Willette R, Radisic M, Zhang B. Curvature facilitates podocyte culture in a biomimetic platform. LAB ON A CHIP 2018; 18:3112-3128. [PMID: 30264844 DOI: 10.1039/c8lc00495a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Most kidney diseases begin with abnormalities in glomerular podocytes, motivating the need for podocyte models to study pathophysiological mechanisms and new treatment options. However, podocytes cultured in vitro face a limited ability to maintain appreciable extents of differentiation hallmarks, raising concerns over the relevance of study results. Many key properties such as nephrin expression and morphology reach plateaus that are far from the in vivo levels. Here, we demonstrate that a biomimetic topography, consisting of microhemispheres arrayed over the cell culture substrate, promotes podocyte differentiation in vitro. We define new methods for fabricating microscale curvature on various substrates, including a thin porous membrane. By growing podocytes on our topographic substrates, we found that these biophysical cues augmented nephrin gene expression, supported full-size nephrin protein expression, encouraged structural arrangement of F-actin and nephrin within the cell, and promoted process formation and even interdigitation compared to the flat substrates. Furthermore, the topography facilitated nephrin localization on curved structures while nuclei lay in the valleys between them. The improved differentiation was also evidenced by tracking barrier function to albumin over time using our custom topomembranes. Overall, our work presents accessible methods for incorporating microcurvature on various common substrates, and demonstrates the importance of biophysical stimulation in supporting higher-fidelity podocyte cultivation in vitro.
Collapse
Affiliation(s)
- Anastasia Korolj
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Canada.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Trasino SE, Tang XH, Shevchuk MM, Choi ME, Gudas LJ. Amelioration of Diabetic Nephropathy Using a Retinoic Acid Receptor β2 Agonist. J Pharmacol Exp Ther 2018; 367:82-94. [PMID: 30054312 PMCID: PMC6123666 DOI: 10.1124/jpet.118.249375] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 07/20/2018] [Indexed: 12/17/2022] Open
Abstract
Vitamin A (VA) and its derivatives, known as retinoids, play critical roles in renal development through retinoic acid receptor β2 (RARβ2). Disruptions in VA signaling pathways are associated with the onset of diabetic nephropathy (DN). Despite the known role of RARβ2 in renal development, the effects of selective agonists for RARβ2 in a high-fat diet (HFD) model of DN are unknown. Here we examined whether AC261066 (AC261), a highly selective agonist for RARβ2, exhibited therapeutic effects in a HFD model of DN in C57BL/6 mice. Twelve weeks of AC261 administration to HFD-fed mice was well tolerated with no observable side effects. Compared with HFD-fed mice, HFD + AC261-treated mice had improved glycemic control and reductions in proteinuria and urine albumin-to-creatinine ratio. Several cellular hallmarks of DN were mitigated in HFD + AC261-treated mice, including reductions in tubule lipid droplets, podocyte (POD) effacement, endothelial cell collapse, mesangial expansion, and glomerular basement membrane thickening. Mesangial and tubule interstitial expression of the myofibroblast markers α-smooth muscle actin (α-SMA) and type IV collagen (Col-IV) was lower in HFD + AC261-treated mice compared with HFD alone. Ultrastructural and immunohistochemistry analyses showed that, compared with HFD-fed mice, HFD + AC261-treated mice showed preservation of POD foot process and slit-diaphragm morphology, an increase in the levels of slit-diagram protein podocin, and the transcription factor Wilms tumor-suppressor gene 1 in PODs. Given the need for novel DN therapies, our results warrant further studies of the therapeutic properties of AC261 in DN.
Collapse
Affiliation(s)
- Steven E Trasino
- Departments of Pharmacology (S.E.T., X.-H.T., L.J.G.) and Pathology (M.M.S.) and Division of Nephrology and Hypertension, Department of Medicine (M.E.C.), Weill Cornell Medical College of Cornell University, School of Urban Public Health, Nutrition Program, Hunter College, City University of New York (S.E.T.), and NewYork-Presbyterian Hospital-Weill Cornell Medical Center (M.E.C.), New York, New York
| | - Xiao-Han Tang
- Departments of Pharmacology (S.E.T., X.-H.T., L.J.G.) and Pathology (M.M.S.) and Division of Nephrology and Hypertension, Department of Medicine (M.E.C.), Weill Cornell Medical College of Cornell University, School of Urban Public Health, Nutrition Program, Hunter College, City University of New York (S.E.T.), and NewYork-Presbyterian Hospital-Weill Cornell Medical Center (M.E.C.), New York, New York
| | - Maria M Shevchuk
- Departments of Pharmacology (S.E.T., X.-H.T., L.J.G.) and Pathology (M.M.S.) and Division of Nephrology and Hypertension, Department of Medicine (M.E.C.), Weill Cornell Medical College of Cornell University, School of Urban Public Health, Nutrition Program, Hunter College, City University of New York (S.E.T.), and NewYork-Presbyterian Hospital-Weill Cornell Medical Center (M.E.C.), New York, New York
| | - Mary E Choi
- Departments of Pharmacology (S.E.T., X.-H.T., L.J.G.) and Pathology (M.M.S.) and Division of Nephrology and Hypertension, Department of Medicine (M.E.C.), Weill Cornell Medical College of Cornell University, School of Urban Public Health, Nutrition Program, Hunter College, City University of New York (S.E.T.), and NewYork-Presbyterian Hospital-Weill Cornell Medical Center (M.E.C.), New York, New York
| | - Lorraine J Gudas
- Departments of Pharmacology (S.E.T., X.-H.T., L.J.G.) and Pathology (M.M.S.) and Division of Nephrology and Hypertension, Department of Medicine (M.E.C.), Weill Cornell Medical College of Cornell University, School of Urban Public Health, Nutrition Program, Hunter College, City University of New York (S.E.T.), and NewYork-Presbyterian Hospital-Weill Cornell Medical Center (M.E.C.), New York, New York
| |
Collapse
|
25
|
Rauch C, Feifel E, Kern G, Murphy C, Meier F, Parson W, Beilmann M, Jennings P, Gstraunthaler G, Wilmes A. Differentiation of human iPSCs into functional podocytes. PLoS One 2018; 13:e0203869. [PMID: 30222766 PMCID: PMC6141081 DOI: 10.1371/journal.pone.0203869] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 08/29/2018] [Indexed: 12/13/2022] Open
Abstract
Podocytes play a critical role in glomerular barrier function, both in health and disease. However, in vivo terminally differentiated podocytes are difficult to be maintained in in vitro culture. Induced pluripotent stem cells (iPSCs) offer the unique possibility for directed differentiation into mature podocytes. The current differentiation protocol to generate iPSC-derived podocyte-like cells provides a robust and reproducible method to obtain podocyte-like cells after 10 days that can be employed in in vitro research and biomedical engineering. Previous published protocols were improved by testing varying differentiation media, growth factors, seeding densities, and time course conditions. Modifications were made to optimize and simplify the one-step differentiation procedure. In contrast to earlier protocols, adherent cells for differentiation were used, the use of fetal bovine serum (FBS) was reduced to a minimum, and thus ß-mercaptoethanol could be omitted. The plating densities of iPSC stocks as well as the seeding densities for differentiation cultures turned out to be a crucial parameter for differentiation results. Conditionally immortalized human podocytes served as reference controls. iPSC-derived podocyte-like cells showed a typical podocyte-specific morphology and distinct expression of podocyte markers synaptopodin, podocin, nephrin and WT-1 after 10 days of differentiation as assessed by immunofluorescence staining or Western blot analysis. qPCR results showed a downregulation of pluripotency markers Oct4 and Sox-2 and a 9-fold upregulation of the podocyte marker synaptopodin during the time course of differentiation. Cultured podocytes exhibited endocytotic uptake of albumin. In toxicological assays, matured podocytes clearly responded to doxorubicin (Adriamycin™) with morphological alterations and a reduction in cell viability after 48 h of incubation.
Collapse
Affiliation(s)
- Caroline Rauch
- Division of Physiology, Medical University Innsbruck, Innsbruck Austria
| | - Elisabeth Feifel
- Division of Physiology, Medical University Innsbruck, Innsbruck Austria
| | - Georg Kern
- Division of Physiology, Medical University Innsbruck, Innsbruck Austria
| | - Cormac Murphy
- Division of Molecular and Computational Toxicology, Amsterdam Institute for Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Florian Meier
- Boehringer Ingelheim Pharma GmbH & Co. KG, Nonclinical Drug Safety Germany, Biberach an der Riss, Germany
| | - Walther Parson
- Institute of Legal Medicine, Medical University Innsbruck, Innsbruck, Austria
| | - Mario Beilmann
- Boehringer Ingelheim Pharma GmbH & Co. KG, Nonclinical Drug Safety Germany, Biberach an der Riss, Germany
| | - Paul Jennings
- Division of Physiology, Medical University Innsbruck, Innsbruck Austria.,Division of Molecular and Computational Toxicology, Amsterdam Institute for Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | | | - Anja Wilmes
- Division of Physiology, Medical University Innsbruck, Innsbruck Austria.,Division of Molecular and Computational Toxicology, Amsterdam Institute for Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
26
|
All-trans retinoic acid ameliorates inflammatory response mediated by TLR4/NF-κB during initiation of diabetic nephropathy. J Nutr Biochem 2018; 60:47-60. [PMID: 30193155 DOI: 10.1016/j.jnutbio.2018.06.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 05/04/2018] [Accepted: 06/06/2018] [Indexed: 01/05/2023]
Abstract
Diabetic nephropathy (DN) is the leading cause of renal failure worldwide and its complications have become a public health problem. Inflammation, oxidative stress and fibrosis play central roles in the progression of DN that lead to renal failure. Potential deleterious effect of inflammation in early evolution of DN is not fully disclosed. Therefore, it is relevant to explore therapies that might modulate this process in order to reduce DN progression. We explored the beneficial effect of all-trans retinoic acid (ATRA) in early inflammation in glomeruli, proximal and distal tubules in streptozotocin (STZ)-induced diabetes. ATRA was administered (1 mg/kg daily by gavage) on days 3 to 21 after STZ administration. It was found that 21 days after STZ injection, diabetic rats exhibited proteinuria, increased natriuresis and loss of body weight. Besides, diabetes induced an increase in interleukins [IL-1β, IL-1α, IL-16, IL-13, IL-2; tumor necrosis factor alpha (TNF-α)] and transforming growth factor-beta 1 (TGF-β1), chemokines (CCL2, CCL20, CXCL5 and CXCL7), adhesion molecules (ICAM-1 and L-selectin) and growth factors (GM-CSF, VEGF, PDGF) in glomeruli and proximal tubules, whereas ATRA treatment remarkably ameliorated these alterations. To further explore the mechanisms through which ATRA decreased inflammatory response, the NF-κB/p65 signaling mediated by TLR4 was studied. We found that ATRA administration attenuates the TLR4/NF-κB inflammatory signaling and prevents NF-κB nuclear translocation in glomeruli and proximal tubules.
Collapse
|
27
|
Dai Y, Chen A, Liu R, Gu L, Sharma S, Cai W, Salem F, Salant DJ, Pippin JW, Shankland SJ, Moeller MJ, Ghyselinck NB, Ding X, Chuang PY, Lee K, He JC. Retinoic acid improves nephrotoxic serum-induced glomerulonephritis through activation of podocyte retinoic acid receptor α. Kidney Int 2017; 92:1444-1457. [PMID: 28756872 PMCID: PMC5696080 DOI: 10.1016/j.kint.2017.04.026] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 04/06/2017] [Accepted: 04/27/2017] [Indexed: 11/24/2022]
Abstract
Proliferation of glomerular epithelial cells, including podocytes, is a key histologic feature of crescentic glomerulonephritis. We previously found that retinoic acid (RA) inhibits proliferation and induces differentiation of podocytes by activating RA receptor-α (RARα) in a murine model of HIV-associated nephropathy. Here, we examined whether RA would similarly protect podocytes against nephrotoxic serum-induced crescentic glomerulonephritis and whether this effect was mediated by podocyte RARα. RA treatment markedly improved renal function and reduced the number of crescentic lesions in nephritic wild-type mice, while this protection was largely lost in mice with podocyte-specific ablation of Rara (Pod-Rara knockout). At a cellular level, RA significantly restored the expression of podocyte differentiation markers in nephritic wild-type mice, but not in nephritic Pod-Rara knockout mice. Furthermore, RA suppressed the expression of cell injury, proliferation, and parietal epithelial cell markers in nephritic wild-type mice, all of which were significantly dampened in nephritic Pod-Rara knockout mice. Interestingly, RA treatment led to the coexpression of podocyte and parietal epithelial cell markers in a small subset of glomerular cells in nephritic mice, suggesting that RA may induce transdifferentiation of parietal epithelial cells toward a podocyte phenotype. In vitro, RA directly inhibited the proliferation of parietal epithelial cells and enhanced the expression of podocyte markers. In vivo lineage tracing of labeled parietal epithelial cells confirmed that RA increased the number of parietal epithelial cells expressing podocyte markers in nephritic glomeruli. Thus, RA attenuates crescentic glomerulonephritis primarily through RARα-mediated protection of podocytes and in part through the inhibition of parietal epithelial cell proliferation and induction of their transdifferentiation into podocytes.
Collapse
Affiliation(s)
- Yan Dai
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, USA; Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Anqun Chen
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, USA; Division of Nephrology, Zhongshan Hospital, Xiamen University, Xiamen, China
| | - Ruijie Liu
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Leyi Gu
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, USA; Department of Nephrology, Renji Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Shuchita Sharma
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Weijing Cai
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Fadi Salem
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - David J Salant
- Department of Medicine/Nephrology, Boston University Medical Center, Boston, Massachusetts, USA
| | - Jeffrey W Pippin
- Department of Medicine, Division of Nephrology, University of Washington Medical Center, Seattle, Washington, USA
| | - Stuart J Shankland
- Department of Medicine, Division of Nephrology, University of Washington Medical Center, Seattle, Washington, USA
| | - Marcus J Moeller
- Department of Internal Medicine II, Nephrology and Clinical Immunology, RWTH Aachen University Hospital, Aachen, Germany
| | | | - Xiaoqiang Ding
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Peter Y Chuang
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Kyung Lee
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - John Cijiang He
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, USA; Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Renal Section, James J Peters VAMC, Bronx, New York, USA.
| |
Collapse
|
28
|
Mallipattu SK, He JC. The podocyte as a direct target for treatment of glomerular disease? Am J Physiol Renal Physiol 2016; 311:F46-51. [PMID: 27097894 DOI: 10.1152/ajprenal.00184.2016] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 04/18/2016] [Indexed: 11/22/2022] Open
Abstract
The Centers for Disease Control and Prevention estimates more than 10% of adults in the United States, over 20 million Americans, have chronic kidney disease (CKD). A failure to maintain the glomerular filtration barrier directly contributes to the onset of CKD. The visceral epithelial cells, podocytes, are integral to the maintenance of this renal filtration barrier. Direct podocyte injury contributes to the onset and progression of glomerular diseases such as minimal change disease (MCD), focal segmental glomerular sclerosis (FSGS), diabetic nephropathy, and HIV-associated nephropathy (HIVAN). Since podocytes are terminally differentiated with minimal capacity to self-replicate, they are extremely sensitive to cellular injury. In the past two decades, our understanding of the mechanism(s) by which podocyte injury occurs has greatly expanded. With this newfound knowledge, therapeutic strategies have shifted to identifying targets directed specifically at the podocyte. Although the systemic effects of these agents are important, their direct effect on the podocyte proves to be essential in ameliorating glomerular disease. In this review, we highlight the mechanisms by which these agents directly target the podocyte independent of its systemic effects.
Collapse
Affiliation(s)
- Sandeep K Mallipattu
- Division of Nephrology, Department of Medicine, Stony Brook University, Stony Brook, New York
| | - John C He
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York; and Renal Section, James J. Peters VA Medical Center, New York, New York
| |
Collapse
|
29
|
Arcolino FO, Zia S, Held K, Papadimitriou E, Theunis K, Bussolati B, Raaijmakers A, Allegaert K, Voet T, Deprest J, Vriens J, Toelen J, van den Heuvel L, Levtchenko E. Urine of Preterm Neonates as a Novel Source of Kidney Progenitor Cells. J Am Soc Nephrol 2016; 27:2762-70. [PMID: 26940093 DOI: 10.1681/asn.2015060664] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 12/22/2015] [Indexed: 12/14/2022] Open
Abstract
In humans, nephrogenesis is completed prenatally, with nephrons formed until 34 weeks of gestational age. We hypothesized that urine of preterm neonates born before the completion of nephrogenesis is a noninvasive source of highly potent stem/progenitor cells. To test this hypothesis, we collected freshly voided urine at day 1 after birth from neonates born at 31-36 weeks of gestational age and characterized isolated cells using a single-cell RT-PCR strategy for gene expression analysis and flow cytometry and immunofluorescence for protein expression analysis. Neonatal stem/progenitor cells expressed markers of nephron progenitors but also, stromal progenitors, with many single cells coexpressing these markers. Furthermore, these cells presented mesenchymal stem cell features and protected cocultured tubule cells from cisplatin-induced apoptosis. Podocytes differentiated from the neonatal stem/progenitor cells showed upregulation of podocyte-specific genes and proteins, albumin endocytosis, and calcium influx via podocyte-specific transient receptor potential cation channel, subfamily C, member 6. Differentiated proximal tubule cells showed upregulation of specific genes and significantly elevated p-glycoprotein activity. We conclude that urine of preterm neonates is a novel noninvasive source of kidney progenitors that are capable of differentiation into mature kidney cells and have high potential for regenerative kidney repair.
Collapse
Affiliation(s)
- Fanny Oliveira Arcolino
- Department of Development and Regeneration, Organ System Cluster, Group of Biomedical Sciences and
| | - Silvia Zia
- Department of Development and Regeneration, Organ System Cluster, Group of Biomedical Sciences and
| | - Katharina Held
- Department of Development and Regeneration, Organ System Cluster, Group of Biomedical Sciences and
| | - Elli Papadimitriou
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Koen Theunis
- Department of Human Genetics, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Benedetta Bussolati
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Anke Raaijmakers
- Department of Development and Regeneration, Organ System Cluster, Group of Biomedical Sciences and Department of Pediatrics and
| | - Karel Allegaert
- Department of Development and Regeneration, Organ System Cluster, Group of Biomedical Sciences and Neonatal Intensive Care Unit, Universitaire Ziekenhuizen Leuven, Leuven, Belgium; and
| | - Thierry Voet
- Department of Human Genetics, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Jan Deprest
- Department of Development and Regeneration, Organ System Cluster, Group of Biomedical Sciences and Department of Pediatrics and
| | - Joris Vriens
- Department of Development and Regeneration, Organ System Cluster, Group of Biomedical Sciences and
| | - Jaan Toelen
- Department of Development and Regeneration, Organ System Cluster, Group of Biomedical Sciences and Department of Pediatrics and
| | - Lambertus van den Heuvel
- Department of Development and Regeneration, Organ System Cluster, Group of Biomedical Sciences and Department of Pediatric Nephrology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Elena Levtchenko
- Department of Development and Regeneration, Organ System Cluster, Group of Biomedical Sciences and Department of Pediatrics and
| |
Collapse
|
30
|
Abstract
Podocytes are highly specialized cells of the kidney glomerulus that wrap around capillaries and that neighbor cells of the Bowman’s capsule. When it comes to glomerular filtration, podocytes play an active role in preventing plasma proteins from entering the urinary ultrafiltrate by providing a barrier comprising filtration slits between foot processes, which in aggregate represent a dynamic network of cellular extensions. Foot processes interdigitate with foot processes from adjacent podocytes and form a network of narrow and rather uniform gaps. The fenestrated endothelial cells retain blood cells but permit passage of small solutes and an overlying basement membrane less permeable to macromolecules, in particular to albumin. The cytoskeletal dynamics and structural plasticity of podocytes as well as the signaling between each of these distinct layers are essential for an efficient glomerular filtration and thus for proper renal function. The genetic or acquired impairment of podocytes may lead to foot process effacement (podocyte fusion or retraction), a morphological hallmark of proteinuric renal diseases. Here, we briefly discuss aspects of a contemporary view of podocytes in glomerular filtration, the patterns of structural changes in podocytes associated with common glomerular diseases, and the current state of basic and clinical research.
Collapse
Affiliation(s)
- Jochen Reiser
- Department of Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Mehmet M Altintas
- Department of Medicine, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
31
|
Developmental changes in the expression and function of TRPC6 channels related the F-actin organization during differentiation in podocytes. Cell Calcium 2015; 58:541-8. [PMID: 26363733 DOI: 10.1016/j.ceca.2015.09.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 08/02/2015] [Accepted: 09/01/2015] [Indexed: 11/20/2022]
Abstract
The transient receptor potential canonical (TRPC) 6 channel is an important ion channel located in podocytes, which plays an essential role in regulating calcium homeostasis of the cell signaling. Podocytes are specialized, terminally differentiated cells surrounding glomerular capillaries, and are the subject of keen interest because of their key roles in kidney development and disease. Here we wonder whether TRPC6 channels undergo developmental changes in the expression and function during the podocyte differentiation, and whether they contribute to the maturation of podocytes. Using morphological, immunohistochemical and electrophysiological techniques, we investigated the development of distribution and expression of TRPC6 in conditionally immortalized mouse podocyte cell line. Our results showed that the distribution of TRPC6 channels changed with the maturity of podocyte differentiation. The fluorescent intensity of TRPC6 on cell surface increased, which was accompanied by a corresponding increase in the density of current flowing through the channels. TRPC6 inhibition by TRPC6 siRNA or SKF-96365, a blocker or TRP cation channels, resulted in F-actin cytoskeleton disruption only on the developmental stage of podocytes. These results strongly support the conclusion that TPRC6 is an essential component of the slit diaphragm and is required for development of glomerulus.
Collapse
|
32
|
Zhou YS, Ihmoda IA, Phelps RG, Bellamy CO, Turner AN. Following specific podocyte injury captopril protects against progressive long term renal damage. F1000Res 2015; 4:172. [PMID: 26629332 PMCID: PMC4642846 DOI: 10.12688/f1000research.4030.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/05/2015] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Angiotensin converting enzyme inhibitors (ACEi) reduce proteinuria and preserve kidney function in proteinuric renal diseases. Their nephroprotective effect exceeds that attributable to lowering of blood pressure alone. This study examines the potential of ACEi to protect from progression of injury after a highly specific injury to podocytes in a mouse model. METHODS We created transgenic (Podo-DTR) mice in which graded specific podocyte injury could be induced by a single injection of diphtheria toxin. Transgenic and wild-type mice were given the ACEi captopril in drinking water, or water alone, commencing 24h after toxin injection. Kidneys were examined histologically at 8 weeks and injury assessed by observers blinded to experimental group. RESULTS After toxin injection, Podo-DTR mice developed acute proteinuria, and at higher doses transient renal impairment, which subsided within 3 weeks to be followed by a slow glomerular scarring process. Captopril treatment in Podo-DTR line 57 after toxin injection at 5ng/g body weight reduced proteinuria and ameliorated glomerular scarring, matrix accumulation and glomerulosclerosis almost to baseline (toxin: 17%; toxin + ACEi 10%, p<0.04; control 7% glomerular scarring). Podocyte counts were reduced after toxin treatment and showed no recovery irrespective of captopril treatment (7.1 and 7.3 podocytes per glomerular cross section in water and captopril-treated animals compared with 8.2 of wild-type controls, p<0.05). CONCLUSIONS Observations in Podo-DTR mice support the hypothesis that continuing podocyte dysfunction is a key abnormality in proteinuric disease. Our model is ideal for studying strategies to protect the kidney from progressive injury following podocyte depletion. Demonstrable protective effects from captopril occur, despite indiscernible preservation or restoration of podocyte counts, at least after this degree of relatively mild injury.
Collapse
Affiliation(s)
- Yu S Zhou
- Centre for Inflammation Research, Renal Medicine, University of Edinburgh and Royal Infirmary, Edinburgh, EH16 4SB, UK
| | - Ihmoda A Ihmoda
- Centre for Inflammation Research, Renal Medicine, University of Edinburgh and Royal Infirmary, Edinburgh, EH16 4SB, UK
| | - Richard G Phelps
- Centre for Inflammation Research, Renal Medicine, University of Edinburgh and Royal Infirmary, Edinburgh, EH16 4SB, UK
| | - Christopher Os Bellamy
- Centre for Inflammation Research, Renal Medicine, University of Edinburgh and Royal Infirmary, Edinburgh, EH16 4SB, UK
| | - A Neil Turner
- Centre for Inflammation Research, Renal Medicine, University of Edinburgh and Royal Infirmary, Edinburgh, EH16 4SB, UK
| |
Collapse
|
33
|
Mallipattu SK, He JC. The beneficial role of retinoids in glomerular disease. Front Med (Lausanne) 2015; 2:16. [PMID: 25853135 PMCID: PMC4370041 DOI: 10.3389/fmed.2015.00016] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 03/08/2015] [Indexed: 12/12/2022] Open
Abstract
The primary etiology of CKD is a direct consequence of initial dysfunction and injury of the glomerulus, the main filtration system. Podocytes are terminally differentiated epithelial cells in the glomerulus, whose major function is the maintenance of this renal filtration barrier. Podocyte injury is implicated in many glomerular diseases including focal segmental glomerular sclerosis and HIV-associated nephropathy. In many of these diseased conditions, the podocyte can either undergo dedifferentiation and proliferation, apoptosis, or cell detachment. Regardless of the initial type of injury, the podocyte ultimately loses its functional capacity to maintain the glomerular filtration barrier. Significant injury resulting in a loss of the podocytes and failure to maintain the renal filtration barrier contributes to progressive kidney disease. Consequently, therapies that prevent podocyte injury and promote their regeneration will have a major clinical impact on glomerular disease. Retinoic acid (RA), which is a derivative of vitamin A, has many cellular functions including induction of cell differentiation, regulation of apoptosis, and inhibition of inflammation and proliferation. RA is required for kidney development and is essential for cellular differentiation in the setting of podocyte injury. The mechanism by which RA directs its beneficial effects is multifactorial, ranging from its anti-inflammatory and anti-fibrotic effects to a direct effect of upregulating podocyte differentiation markers in the podocyte. The focus of this review is to provide an overview of RA in kidney development and glomerular disease. We also highlight the key mechanism(s) by which RA restores podocyte differentiation markers and ameliorates glomerular disease.
Collapse
Affiliation(s)
- Sandeep K Mallipattu
- Division of Nephrology, Department of Medicine, Stony Brook University , New York, NY , USA
| | - John Cijiang He
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai , New York, NY , USA ; Renal Section, James J. Peters VA Medical Center , New York, NY , USA
| |
Collapse
|
34
|
Chen XP, Lei FY, Qin YH, Zhou TB, Jiang L, Zhao YJ, Huang WF, Peng QL. The role of retinoic acid receptors in the signal pathway of all-trans retinoic acid-induced differentiation in adriamycin-induced podocyte injury. J Recept Signal Transduct Res 2014; 34:484-492. [PMID: 24846581 DOI: 10.3109/10799893.2014.920394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
All-trans retinoic acid (ATRA) plays an essential role in cell survival and differentiation by binding to retinoic acid receptors (RARs), including RAR-α, RAR-β, and RAR-γ. Injury to podocytes is the most frequent cause of glomerulosclerosis (GS). This study was performed to investigate which of the RAR subtypes is involved in the signal pathway of ATRA-induced differentiation of injured podocytes. ATRA (0.1 μM) was administered to Adriamycin (ADR)-induced, injured podocytes, in vitro. Morphological changes were observed. The protein/mRNA expression of podocin, nephrin, transforming growth factor β1(TGF-β1), and the RARs (RAR-α,β,γ) was measured by RT-PCR and Western blotting. ATRA treatment ameliorated cell hypertrophy and reduced the shedding of the cytoplasm which was observed under light microscope and the extension of the foot processes was observed under scan electron microscope. Compared with the injured podocytes, ATRA exposure significantly increased the protein/mRNA expression of nephrin and podocin and it markedly reduced TGF-β1 (all p < 0.05). Compared with the injured podocytes, the protein/mRNA expression of RAR-α and RAR-γ was significantly increased after ATRA exposure; however, the expression level of RAR-β was not significantly different. The RAR-α/γ protein expression level was positively correlated with nephrin and podocin (-α, r = 0.637, 0.663; -γ, r = 0.882, 0.878; all p < 0.05), and negatively correlated with TGF-β1 (-α, r = -0.650; -γ, r = -0.739; all p < 0.05). The RAR-β protein expression level was not correlated with nephrin, podocin and TGF-β1 (r = -0.312, 0.079, -0.279; all p > 0.05). In conclusion, RAR-α/γ (and RAR-β to a lesser degree) may be involved in the signal pathway of ATRA-induced differentiation in injured podocytes.
Collapse
Affiliation(s)
- Xiu-Ping Chen
- Department of Pediatrics, The First Affiliated Hospital of GuangXi Medical University , Nanning , China
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Li Z, Wang L, Xu J, Yang Z. MiRNA expression profile and miRNA-mRNA integrated analysis (MMIA) during podocyte differentiation. Mol Genet Genomics 2014; 290:863-75. [PMID: 25433550 DOI: 10.1007/s00438-014-0960-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 11/14/2014] [Indexed: 12/15/2022]
Abstract
The podocyte is a prominent cell type, which encases the capillaries of glomerulus. Podocyte-selective deletion of Dicer or Drosha was reported to induce proteinuria and glomerulosclerosis, suggesting the essential role of microRNA (miRNA) in podocytes for renal function. However, no comprehensive miRNA expression or miRNA-mRNA integrated analysis (MMIA) can be found during podocyte differentiation. Herein, miRNA and mRNA microarrays are presented, which were carried out in differentiated and undifferentiated mouse podocyte cell lines (MPC5). A total of 50 abnormal miRNAs (26 down-regulated and 24 up-regulated) were identified in differentiated and undifferentiated podocytes. Using MMIA, 80 of the 743 mRNAs (>twofold change) were predicted for potential crosstalk with 30 miRNAs of the 50 abnormal miRNAs. In addition, the gene ontology of mRNAs and the pathway analysis of miRNAs revealed a new potential-regulated network during podocyte differentiation. The expressions of three remarkably changed miRNAs (miR-34c, miR-200a and miR-467e) and four mRNAs (Runx1t1, Atp2a2, Glrp1, and Mmp15), were randomly chosen for further validation by the quantitative real-time polymerase chain reaction, and their expression trends were consistent with the microarray data. Reference searching was also conducted to confirm our data and to find potential new molecules and miRNA-target pairs involved in the podocyte differentiation. The dual luciferase reporter assay for miR-200a/GLRX and let-7b/ARL4D confirmed the prediction of MMIA. The results of this study provide a detailed integration of mRNA and miRNA during podocyte differentiation. The molecular integration mode will open up new perspectives for a better understanding of the mechanism during podocyte differentiation.
Collapse
Affiliation(s)
- Zhigui Li
- College of Medicine, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Nankai University, Tianjin, 300071, China
| | | | | | | |
Collapse
|
36
|
Zhang J, Yanez D, Floege A, Lichtnekert J, Krofft RD, Liu ZH, Pippin JW, Shankland SJ. ACE-inhibition increases podocyte number in experimental glomerular disease independent of proliferation. J Renin Angiotensin Aldosterone Syst 2014; 16:234-48. [PMID: 25143333 PMCID: PMC4412792 DOI: 10.1177/1470320314543910] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Objective The objective of this article is to test the effects of angiotensin-converting enzyme (ACE)-inhibition on glomerular epithelial cell number in an inducible experimental model of focal segmental glomerulosclerosis (FSGS). Background Although ACE-inhibition has been shown to limit podocyte loss by enhancing survival, little is known about its effect on podocyte number following an abrupt decline in disease. Methods Experimental FSGS was induced with cytotoxic antipodocyte antibody. Following induction, groups were randomized to receive the ACE-inhibitor enalapril, the smooth muscle relaxant hydralazine (blood pressure control) or drinking water. Blood pressure, kidney function and histology were measured seven and 14 days following disease induction. Results Both glomerulosclerosis and urinary albumin-to-creatinine ratio were less in the ACE-inhibition arm at day 14. At day 7 of disease, mean podocyte numbers were 26% and 29% lower in the enalapril and hydralazine arms, respectively, compared to normal mice in which no antibody was injected. At day 14, the mean podocyte number was only 18% lower in the enalapril arm, but was 39% lower in the hydralazine arm compared to normal mice. Podocyte proliferation did not occur at any time in any group. Compared to water- or hydralazine-treated mice with FSGS, the enalapril arm had a higher mean number of glomerular parietal epithelial cells that co-expressed the podocyte proteins WT-1 and synaptopodin, as well as phospho-ERK. Conclusion The results show following an abrupt decline in podocyte number, the initiation of ACE-inhibition but not hydralazine, was accompanied by higher podocyte number in the absence of proliferation. This was accompanied by a higher number of parietal epithelial cells that co-express podocyte proteins. Increasing podocyte number appears to be accompanied by reduced glomerulosclerosis.
Collapse
Affiliation(s)
- Jiong Zhang
- Division of Nephrology, Department of Medicine, University of Washington School of Medicine, Washington Current address: Research Institute of Nephrology, Jinling Hospital, Nanjing University School of Medicine, China
| | - David Yanez
- Department of Biostatistics, School of Public Health, University of Washington, Washington
| | - Anna Floege
- Division of Nephrology, Department of Medicine, University of Washington School of Medicine, Washington
| | - Julia Lichtnekert
- Division of Nephrology, Department of Medicine, University of Washington School of Medicine, Washington
| | - Ronald D Krofft
- Division of Nephrology, Department of Medicine, University of Washington School of Medicine, Washington
| | - Zhi-Hong Liu
- Research Institute of Nephrology, Jinling Hospital, Nanjing University School of Medicine, China
| | - Jeffrey W Pippin
- Division of Nephrology, Department of Medicine, University of Washington School of Medicine, Washington
| | - Stuart J Shankland
- Division of Nephrology, Department of Medicine, University of Washington School of Medicine, Washington
| |
Collapse
|
37
|
Abstract
Retinoids are essential in the development and function of several organs, exerting potent effects on stem cell systems. All-trans retinoic acid, through binding to the retinoic acid response elements, alters transcription of numerous genes in stem cells, leading to an exit from the self-renewing state and promoting differentiation. In the kidney, retinoids protect against injury and ameliorate function in multiple experimental models of disease. Recent evidence suggests that retinoids act on renal progenitors by promoting their differentiation into mature podocytes and retinoic acid-induced podocyte differentiation is impaired by proteinuria because of sequestration of retinoic acid by albumin. However, retinoic acid administration can revert renal progenitor differentiation and promote podocyte regeneration. A more complete understanding of retinoid-dependent renal progenitor differentiation into podocytes should reward us with new insights into the mechanisms of progression toward glomerulosclerosis.
Collapse
Affiliation(s)
- Elena Lazzeri
- Excellence Centre for Research, Transfer and High Education for the Development of de novo Therapies, University of Florence, Florence, Italy.
| | - Anna Julie Peired
- Excellence Centre for Research, Transfer and High Education for the Development of de novo Therapies, University of Florence, Florence, Italy; Department of Clinical and Experimental Biomedical Sciences, University of Florence, Florence, Italy
| | - Laura Lasagni
- Excellence Centre for Research, Transfer and High Education for the Development of de novo Therapies, University of Florence, Florence, Italy
| | - Paola Romagnani
- Excellence Centre for Research, Transfer and High Education for the Development of de novo Therapies, University of Florence, Florence, Italy; Department of Clinical and Experimental Biomedical Sciences, University of Florence, Florence, Italy; Pediatric Nephrology Unit, Meyer Children's University Hospital, Florence, Italy
| |
Collapse
|
38
|
Mattinzoli D, Messa P, Corbelli A, Ikehata M, Mondini A, Zennaro C, Armelloni S, Li M, Giardino L, Rastaldi MP. Application of retinoic acid to obtain osteocytes cultures from primary mouse osteoblasts. J Vis Exp 2014. [PMID: 24894124 DOI: 10.3791/51465] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The need for osteocyte cultures is well known to the community of bone researchers; isolation of primary osteocytes is difficult and produces low cell numbers. Therefore, the most widely used cellular system is the osteocyte-like MLO-Y4 cell line. The method here described refers to the use of retinoic acid to generate a homogeneous population of ramified cells with morphological and molecular osteocyte features. After isolation of osteoblasts from mouse calvaria, all-trans retinoic acid (ATRA) is added to cell medium, and cell monitoring is conducted daily under an inverted microscope. First morphological changes are detectable after 2 days of treatment and differentiation is generally complete in 5 days, with progressive development of dendrites, loss of the ability to produce extracellular matrix, down-regulation of osteoblast markers and up-regulation of osteocyte-specific molecules. Daily cell monitoring is needed because of the inherent variability of primary cells, and the protocol can be adapted with minimal variation to cells obtained from different mouse strains and applied to transgenic models. The method is easy to perform and does not require special instrumentation, it is highly reproducible, and rapidly generates a mature osteocyte population in complete absence of extracellular matrix, allowing the use of these cells for unlimited biological applications.
Collapse
Affiliation(s)
- Deborah Mattinzoli
- Renal Research Laboratory, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico
| | - Piergiorgio Messa
- Department of Nephrology, Dialysis and Renal Transplant, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico
| | - Alessandro Corbelli
- Renal Research Laboratory, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico
| | - Masami Ikehata
- Renal Research Laboratory, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico
| | - Anna Mondini
- Renal Research Laboratory, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico
| | - Cristina Zennaro
- Renal Physiopathology Laboratory, Department of Medical, Surgical and Health Sciences, University of Trieste
| | - Silvia Armelloni
- Renal Research Laboratory, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico
| | - Min Li
- Renal Research Laboratory, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico
| | - Laura Giardino
- Renal Research Laboratory, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico
| | - Maria Pia Rastaldi
- Renal Research Laboratory, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico;
| |
Collapse
|
39
|
Becherucci F, Lazzeri E, Lasagni L, Romagnani P. Renal progenitors and childhood: from development to disorders. Pediatr Nephrol 2014; 29:711-9. [PMID: 24389601 DOI: 10.1007/s00467-013-2686-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 10/17/2013] [Accepted: 10/28/2013] [Indexed: 12/11/2022]
Abstract
Nephropathies arise from conditions that alter nephron development or trigger nephron damage during neonatal, juvenile, and adult stages of life. Much evidence suggests that a key role in maintaining kidney integrity, homeostasis, and regenerative capacity is played by a population of progenitor cells resident in the organ. Although the primary goals in the field of renal progenitor cells are understanding their ability to regenerate nephrons and to restore damaged kidney function, the discovery of these cells could also be used to elucidate the molecular and pathophysiological basis of kidney diseases. As a result, once the identification of a subset of progenitor cells capable of kidney regeneration has been obtained, the increasing knowledge about their characteristics and about the mechanisms of renal development had pointed out the possibility of understanding the molecular basis of kidney diseases, so that, nowadays, some renal disorders could also be related to renal progenitor dysfunction. In this review, we summarize the evidence on the existence of renal progenitors in fetal and adult kidneys and discuss their role in physiology as well as in the pathogenesis of renal disorders with a particular focus on childhood age.
Collapse
Affiliation(s)
- Francesca Becherucci
- Pediatric Nephrology and Dialysis Unit, Meyer Children's University Hospital, Florence, Italy
| | | | | | | |
Collapse
|
40
|
Li X, Dai Y, Chuang PY, He JC. Induction of retinol dehydrogenase 9 expression in podocytes attenuates kidney injury. J Am Soc Nephrol 2014; 25:1933-41. [PMID: 24652806 DOI: 10.1681/asn.2013111150] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The intracellular concentration of retinoic acid is determined by two sequential oxidation reactions that convert retinol to retinoic acid. We recently demonstrated that retinoic acid synthesis is significantly impaired in glomeruli of HIV-1 transgenic mice (Tg26), a murine model of HIV-associated nephropathy. This impaired retinoic acid synthesis correlates with reduced renal expression of retinol dehydrogenase 9, which catalyzes the rate-limiting step of retinoic acid synthesis by converting retinol to retinal. Because retinoic acid has renal protective effects and can induce podocyte differentiation, we hypothesized that restoration of retinoic acid synthesis could slow the progression of renal disease. Herein, we demonstrate that overexpression of retinol dehydrogenase 9 in cultured podocytes induces the expression of podocyte differentiation markers. Furthermore, we confirm that podocyte-specific overexpression of retinol dehydrogenase 9 in mice with established kidney disease due to either HIV-associated nephropathy or adriamycin-induced nephropathy decreases proteinuria, attenuates kidney injury, and restores podocyte differentiation markers. Our data suggest that restoration of retinoic acid synthesis could be a new approach to treat kidney disease.
Collapse
Affiliation(s)
- Xuezhu Li
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China; and
| | - Yan Dai
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York; Renal Section, James J. Peters Veterans Affairs Medical Center, Bronx, New York
| | - Peter Y Chuang
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - John Cijiang He
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York; Renal Section, James J. Peters Veterans Affairs Medical Center, Bronx, New York
| |
Collapse
|
41
|
Functions of the podocyte proteins nephrin and Neph3 and the transcriptional regulation of their genes. Clin Sci (Lond) 2013; 126:315-28. [DOI: 10.1042/cs20130258] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Nephrin and Neph-family proteins [Neph1–3 (nephrin-like 1–3)] belong to the immunoglobulin superfamily of cell-adhesion receptors and are expressed in the glomerular podocytes. Both nephrin and Neph-family members function in cell adhesion and signalling, and thus regulate the structure and function of podocytes and maintain normal glomerular ultrafiltration. The expression of nephrin and Neph3 is altered in human proteinuric diseases emphasizing the importance of studying the transcriptional regulation of the nephrin and Neph3 genes NPHS1 (nephrosis 1, congenital, Finnish type) and KIRREL2 (kin of IRRE-like 2) respectively. The nephrin and Neph3 genes form a bidirectional gene pair, and they share transcriptional regulatory mechanisms. In the present review, we summarize the current knowledge of the functions of nephrin and Neph-family proteins and transcription factors and agents that control nephrin and Neph3 gene expression.
Collapse
|
42
|
Mallipattu SK, He JC. A new mechanism for albuminuria-induced podocyte injury. J Am Soc Nephrol 2013; 24:1709-11. [PMID: 23990672 DOI: 10.1681/asn.2013070714] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Affiliation(s)
- Sandeep K Mallipattu
- Division of Nephrology, Department of Medicine, Stony Brook University School of Medicine, New York, New York
| | | |
Collapse
|
43
|
Peired A, Angelotti ML, Ronconi E, la Marca G, Mazzinghi B, Sisti A, Lombardi D, Giocaliere E, Della Bona M, Villanelli F, Parente E, Ballerini L, Sagrinati C, Wanner N, Huber TB, Liapis H, Lazzeri E, Lasagni L, Romagnani P. Proteinuria impairs podocyte regeneration by sequestering retinoic acid. J Am Soc Nephrol 2013; 24:1756-68. [PMID: 23949798 DOI: 10.1681/asn.2012090950] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
In CKD, the risk of kidney failure and death depends on the severity of proteinuria, which correlates with the extent of podocyte loss and glomerular scarring. We investigated whether proteinuria contributes directly to progressive glomerulosclerosis through the suppression of podocyte regeneration and found that individual components of proteinuria exert distinct effects on renal progenitor survival and differentiation toward a podocyte lineage. In particular, albumin prevented podocyte differentiation from human renal progenitors in vitro by sequestering retinoic acid, thus impairing retinoic acid response element (RARE)-mediated transcription of podocyte-specific genes. In mice with Adriamycin nephropathy, a model of human FSGS, blocking endogenous retinoic acid synthesis increased proteinuria and exacerbated glomerulosclerosis. This effect was related to a reduction in podocyte number, as validated through genetic podocyte labeling in NPHS2.Cre;mT/mG transgenic mice. In RARE-lacZ transgenic mice, albuminuria reduced retinoic acid bioavailability and impaired RARE activation in renal progenitors, inhibiting their differentiation into podocytes. Treatment with retinoic acid restored RARE activity and induced the expression of podocyte markers in renal progenitors, decreasing proteinuria and increasing podocyte number, as demonstrated in serial biopsy specimens. These results suggest that albumin loss through the damaged filtration barrier impairs podocyte regeneration by sequestering retinoic acid and promotes the generation of FSGS lesions. Our findings may explain why reducing proteinuria delays CKD progression and provide a biologic rationale for the clinical use of pharmacologic modulators to induce regression of glomerular diseases.
Collapse
Affiliation(s)
- Anna Peired
- Excellence Centre for Research, Transfer and High Education for the Development of DE NOVO Therapies (DENOTHE) and
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Pippin JW, Sparks MA, Glenn ST, Buitrago S, Coffman TM, Duffield JS, Gross KW, Shankland SJ. Cells of renin lineage are progenitors of podocytes and parietal epithelial cells in experimental glomerular disease. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 183:542-57. [PMID: 23769837 DOI: 10.1016/j.ajpath.2013.04.024] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 04/03/2013] [Accepted: 04/09/2013] [Indexed: 12/22/2022]
Abstract
Glomerular injury leads to podocyte loss, a process directly underlying progressive glomerular scarring and decline of kidney function. The inherent repair process is limited by the inability of podocytes to regenerate. Cells of renin lineage residing alongside glomerular capillaries are reported to have progenitor capacity. We investigated whether cells of renin lineage can repopulate the glomerulus after podocyte injury and serve as glomerular epithelial cell progenitors. Kidney cells expressing renin were genetically fate-mapped in adult Ren1cCreER×Rs-tdTomato-R, Ren1cCre×Rs-ZsGreen-R, and Ren1dCre×Z/EG reporter mice. Podocyte depletion was induced in all three cell-specific reporter mice by cytotoxic anti-podocyte antibodies. After a decrease in podocyte number, a significant increase in the number of labeled cells of renin lineage was observed in glomeruli in a focal distribution along Bowman's capsule, within the glomerular tuft, or in both locations. A subset of cells lining Bowman's capsule activated expression of the glomerular parietal epithelial cell markers paired box protein PAX2 and claudin-1. A subset of labeled cells within the glomerular tuft expressed the podocyte markers Wilms tumor protein 1, nephrin, podocin, and synaptopodin. Neither renin mRNA nor renin protein was detected de novo in diseased glomeruli. These findings provide initial evidence that cells of renin lineage may enhance glomerular regeneration by serving as progenitors for glomerular epithelial cells in glomerular disease characterized by podocyte depletion.
Collapse
Affiliation(s)
- Jeffrey W Pippin
- Division of Nephrology, Department of Medicine, University of Washington School of Medicine, Seattle, Washington 98195-6521, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
|
46
|
Zhang J, Pippin JW, Krofft RD, Naito S, Liu ZH, Shankland SJ. Podocyte repopulation by renal progenitor cells following glucocorticoids treatment in experimental FSGS. Am J Physiol Renal Physiol 2013; 304:F1375-89. [PMID: 23486009 DOI: 10.1152/ajprenal.00020.2013] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Prednisone is a mainstay of treatment for patients with focal segmental glomerulosclerosis (FSGS), a disease characterized by reduced podocyte number and glomerulosclerosis. Although the systemic immune-modulatory effects of prednisone are well-known, direct tissue effects on glomerular cells are poorly understood. Experimental FSGS was induced in mice with a cytotoxic anti-podocyte antibody, resulting in an abrupt decrease in podocyte number by day 3, proteinuria, and the development of glomerulosclerosis. Administering daily prednisone to mice with FSGS, beginning at day 3, significantly increased podocyte number at weeks 2 and 4. Podocyte number did not increase in control mice with FSGS given DMSO. The increase in podocyte number in prednisone-treated mice correlated significantly with reduced glomerulosclerosis. Prednisone reduced podocyte apoptosis measured by synaptopodin⁺/caspase-3⁺ double staining. Additionally, the number of podocyte progenitors, defined as cells expressing both a parietal epithelial cell protein and a podocyte protein, was significantly increased in prednisone-treated mice with FSGS at weeks 2 and 4. This was associated with increased phospho-ERK staining in both parietal epithelial cells (PAX2⁺/p-ERK⁺) and in podocyte progenitors (WT-1⁺/p-ERK⁺ lining Bowman's capsule). These data show that in this model of experimental FSGS, prednisone augments glomerular repair by increasing podocyte number through direct effects on both glomerular epithelial cells. Prednisone limits podocyte loss by reducing apoptosis, and it increases regeneration by augmenting the number of podocyte progenitors. The data support a direct glomerular cell action for prednisone in improving outcomes in FSGS.
Collapse
Affiliation(s)
- Jiong Zhang
- Division of Nephrology, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | | | | | | | | | | |
Collapse
|
47
|
Yang J, Xu P, Xie Y, Li Z, Xu J, Zhang T, Yang Z. Developmental changes of BKCa channels depend on differentiation status in cultured podocytes. In Vitro Cell Dev Biol Anim 2013; 49:205-11. [PMID: 23443253 DOI: 10.1007/s11626-013-9590-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 10/10/2012] [Indexed: 10/27/2022]
Abstract
The podocyte is a remarkable cell type, which encases the capillaries of the kidney glomerulus. Podocytes are of keen interests because of their key roles in kidney development and disease. Large-conductance Ca(2+)-activated K(+) channels (BKCa channels) are important ion channels located in podocytes and play the essential role in regulating calcium homeostasis cell signaling. In this research, we studied the undergoing developmental changes of BKCa channels and their contribution to functional maturation of podocytes. Our results showed that the distribution of BKCa channels changed with the maturity of differentiation in a conditionally immortalized mouse podocyte cell line. Additionally, the increase of BKCa channel protein expression was detected by immunofluorescence staining with confocal microscopy in podocytes, which was consistent with the increase in the current density of BKCa channels examined by whole-cell patch-clamp technique. Our results suggested that the developmental changes of BKCa channels may help podocytes adapt to changes in pressure gradients occurring in physiological conditions. Those findings may have implications for understanding the physiology and development of kidney and will also serve as a baseline for future studies designed to investigate developmental changes of ion channel expression in podocytes.
Collapse
Affiliation(s)
- Jiajia Yang
- College of Life Science, Nankai University, Tianjin, 300071, China
| | | | | | | | | | | | | |
Collapse
|
48
|
Zhang J, Pippin JW, Vaughan MR, Krofft RD, Taniguchi Y, Romagnani P, Nelson PJ, Liu ZH, Shankland SJ. Retinoids augment the expression of podocyte proteins by glomerular parietal epithelial cells in experimental glomerular disease. Nephron Clin Pract 2012; 121:e23-37. [PMID: 23107969 DOI: 10.1159/000342808] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 08/14/2012] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND/AIMS A decrease in glomerular podocyte number in membranous nephropathy and focal segmental glomerulosclerosis (FSGS) ultimately underlines glomerulosclerosis and the decrease in kidney function. Recent studies have shown that in these diseases, glomerular parietal epithelial cells begin to express proteins considered unique to podocytes, and that these glomerular epithelial transition cells might serve as podocyte progenitors. Because retinoids improve many forms of experimental glomerular disease characterized by podocyte injury and loss, we asked if all-trans retinoic acid (ATRA) induces parietal epithelial cells to express podocyte proteins. METHODS ATRA or vehicle was administered to rats with experimental membranous nephropathy (passive Heymann nephritis model) and mice with experimental FSGS (anti-glomerular antibody model) following the onset of proteinuria. Immunohistochemistry staining of PAX2 (parietal epithelial cell marker), WT-1 (podocyte cell marker), and Ki-67 (proliferation marker) were performed on kidney tissues. RESULTS Compared to diseased animals receiving vehicle, ATRA statistically significantly increased the number of glomerular transition cells, defined as cells double-staining for PAX2 and WT-1, in membranous nephropathy at weeks 2, 5 and 16, and in FSGS at weeks 1 and 2. This was accompanied by an increase in the number of podocytes compared to diseased controls receiving vehicle. CONCLUSION ATRA increases the number of glomerular epithelial transition cells in experimental proteinuric glomerular diseases. Thus, ATRA may provide a useful pharmacologic approach to decipher the mechanisms underlying the possible progenitor role of parietal epithelial cells.
Collapse
Affiliation(s)
- Jiong Zhang
- Division of Nephrology, Department of Medicine, University of Washington School of Medicine, Seattle, Wash 98195-6521, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Song B, Smink AM, Jones CV, Callaghan JM, Firth SD, Bernard CA, Laslett AL, Kerr PG, Ricardo SD. The directed differentiation of human iPS cells into kidney podocytes. PLoS One 2012; 7:e46453. [PMID: 23029522 PMCID: PMC3460883 DOI: 10.1371/journal.pone.0046453] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2012] [Accepted: 08/30/2012] [Indexed: 12/11/2022] Open
Abstract
The loss of glomerular podocytes is a key event in the progression of chronic kidney disease resulting in proteinuria and declining function. Podocytes are slow cycling cells that are considered terminally differentiated. Here we provide the first report of the directed differentiation of induced pluripotent stem (iPS) cells to generate kidney cells with podocyte features. The iPS-derived podocytes share a morphological phenotype analogous with cultured human podocytes. Following 10 days of directed differentiation, iPS podocytes had an up-regulated expression of mRNA and protein localization for podocyte markers including synaptopodin, nephrin and Wilm’s tumour protein (WT1), combined with a down-regulation of the stem cell marker OCT3/4. In contrast to human podocytes that become quiescent in culture, iPS-derived cells maintain a proliferative capacity suggestive of a more immature phenotype. The transduction of iPS podocytes with fluorescent labeled-talin that were immunostained with podocin showed a cytoplasmic contractile response to angiotensin II (AII). A permeability assay provided functional evidence of albumin uptake in the cytoplasm of iPS podocytes comparable to human podocytes. Moreover, labeled iPS-derived podocytes were found to integrate into reaggregated metanephric kidney explants where they incorporated into developing glomeruli and co-expressed WT1. This study establishes the differentiation of iPS cells to kidney podocytes that will be useful for screening new treatments, understanding podocyte pathogenesis, and offering possibilities for regenerative medicine.
Collapse
Affiliation(s)
- Bi Song
- Monash Immunology and Stem Cell Laboratories (MISCL), Monash University, Clayton, Victoria, Australia
| | - Alexandra M. Smink
- Monash Immunology and Stem Cell Laboratories (MISCL), Monash University, Clayton, Victoria, Australia
| | - Christina V. Jones
- Monash Immunology and Stem Cell Laboratories (MISCL), Monash University, Clayton, Victoria, Australia
| | - Judy M. Callaghan
- Monash Micro Imaging, Monash University, Clayton, Victoria, Australia
| | - Stephen D. Firth
- Monash Micro Imaging, Monash University, Clayton, Victoria, Australia
| | - Claude A. Bernard
- Monash Immunology and Stem Cell Laboratories (MISCL), Monash University, Clayton, Victoria, Australia
| | - Andrew L. Laslett
- CSIRO Materials Science and Engineering, Clayton, Victoria, Australia
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| | - Peter G. Kerr
- Department of Medicine, Monash University, Monash Medical Centre, Clayton, Victoria, Australia
| | - Sharon D. Ricardo
- Monash Immunology and Stem Cell Laboratories (MISCL), Monash University, Clayton, Victoria, Australia
- * E-mail:
| |
Collapse
|
50
|
Khurana S, Bruggeman LA, Kao HY. Nuclear hormone receptors in podocytes. Cell Biosci 2012; 2:33. [PMID: 22995171 PMCID: PMC3543367 DOI: 10.1186/2045-3701-2-33] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 08/10/2012] [Indexed: 11/14/2022] Open
Abstract
Nuclear receptors are a family of ligand-activated, DNA sequence-specific transcription factors that regulate various aspects of animal development, cell proliferation, differentiation, and homeostasis. The physiological roles of nuclear receptors and their ligands have been intensively studied in cancer and metabolic syndrome. However, their role in kidney diseases is still evolving, despite their ligands being used clinically to treat renal diseases for decades. This review will discuss the progress of our understanding of the role of nuclear receptors and their ligands in kidney physiology with emphasis on their roles in treating glomerular disorders and podocyte injury repair responses.
Collapse
Affiliation(s)
- Simran Khurana
- Department of Biochemistry, School of Medicine, Case Western Reserve University (CWRU) and the Comprehensive Cancer Center of CWRU, 10900 Euclid Avenue, Cleveland, Ohio 44106, USA.
| | | | | |
Collapse
|