1
|
Satao KS, Doshi GM. Anxiety and the brain: Neuropeptides as emerging factors. Pharmacol Biochem Behav 2024; 245:173878. [PMID: 39284499 DOI: 10.1016/j.pbb.2024.173878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/23/2024] [Accepted: 09/09/2024] [Indexed: 09/21/2024]
Abstract
Anxiety disorders are characterized by intense feelings of worry and fear, which can significantly interfere with daily functioning. Current treatment options primarily include selective serotonin reuptake inhibitors, benzodiazepines, non-benzodiazepine anxiolytics, gabapentinoids, and beta-blockers. Neuropeptides have shown an important role in the regulation of complex behaviours, such as psychopathology and anxiety-related reactions. Neuropeptides have a great deal of promise to advance our understanding of and ability to help people with anxiety disorders. This review focuses on the expanding role of neuropeptides in anxiety management, particularly examining the impact of substance P, neuropeptide Y, corticotropin-releasing hormone, arginine-vasopressin, pituitary adenylate cyclase-activating polypeptide, and cholecystokinin. Furthermore, the paper discusses the neuropeptides that are becoming more and more recognized for their impact on anxiety-related reactions and their potential as therapeutic targets.
Collapse
Affiliation(s)
- Kiran S Satao
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V. M. Road, Vile Parle (W), Mumbai 400 056, Maharashtra, India
| | - Gaurav M Doshi
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V. M. Road, Vile Parle (W), Mumbai 400 056, Maharashtra, India.
| |
Collapse
|
2
|
Schüß C, Behr V, Beck-Sickinger AG. Illuminating the neuropeptide Y 4 receptor and its ligand pancreatic polypeptide from a structural, functional, and therapeutic perspective. Neuropeptides 2024; 105:102416. [PMID: 38430725 DOI: 10.1016/j.npep.2024.102416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/12/2024] [Accepted: 02/20/2024] [Indexed: 03/05/2024]
Abstract
The neuropeptide Y4 receptor (Y4R), a rhodopsin-like G protein-coupled receptor (GPCR) and the hormone pancreatic polypeptide (PP) are members of the neuropeptide Y family consisting of four receptors (Y1R, Y2R, Y4R, Y5R) and three highly homologous peptide ligands (neuropeptide Y, peptide YY, PP). In this family, the Y4R is of particular interest as it is the only subtype with high affinity to PP over NPY. The Y4R, as a mediator of PP signaling, has a pivotal role in appetite regulation and energy homeostasis, offering potential avenues for the treatment of metabolic disorders such as obesity. PP as anorexigenic peptide is released postprandial from the pancreas in response to food intake, induces satiety signals and contributes to hamper excessive food intake. Moreover, this system was also described to be associated with different types of cancer: overexpression of Y4R have been found in human adenocarcinoma cells, while elevated levels of PP are related to the development of pancreatic endocrine tumors. The pharmacological relevance of the Y4R advanced the search for potent and selective ligands for this receptor subtype, which will be significantly progressed through the elucidation of the active state PP-Y4R cryo-EM structure. This review summarizes the development of novel PP-derived ligands, like Obinepitide as dual Y2R/Y4R agonist in clinical trials or UR-AK86c as small hexapeptide agonist with picomolar affinity, as well as the first allosteric modulators that selectively target the Y4R, e.g. VU0506013 as potent Y4R positive allosteric modulator or (S)-VU0637120 as allosteric antagonist. Here, we provide valuable insights into the complex physiological functions of the Y4R and PP and the pharmacological relevance of the system in appetite regulation to open up new avenues for the development of tool compounds for targeted therapies with potential applications in metabolic disorders.
Collapse
Affiliation(s)
- Corinna Schüß
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Germany.
| | - Victoria Behr
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Germany
| | | |
Collapse
|
3
|
Zhang L, Herzog H. Important role of NPY-Y4R signalling in the dual control of feeding and physical activity. Neuropeptides 2024; 105:102425. [PMID: 38554699 DOI: 10.1016/j.npep.2024.102425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/14/2024] [Accepted: 03/16/2024] [Indexed: 04/02/2024]
Abstract
The control of feeding and physical activity is tightly linked and coordinated. However the underlying mechanisms are unclear. One of the major regulatory systems of feeding behaviour involves neuropeptide Y (NPY) signalling, with the signalling mediated through NPY Y4 receptor also known to influence activity. Here we show that mice globally lacking the Npy4r (Npy4r-/-) in the absence of access to a running wheel behaved WT-like with regards to food intake, energy expenditure, respiratory exchange ratio and locomotion regardless of being fed on a chow or high fat diet. Interestingly however, when given the access to a running wheel, Npy4r-/- mice while having a comparable locomotor activity, showed significantly higher wheel-running activity than WT, again regardless of dietary conditions. This higher wheel-running activity in Npy4r-/-mice arose from an increased dark-phase running time rather than changes in number of running bouts or the running speed. Consistently, energy expenditure was higher in Npy4r-/- than WT mice. Importantly, food intake was reduced in Npy4r-/-mice under wheel access condition which was due to decreased feeding bouts rather than changes in meal size. Together, these findings demonstrate an important role of Npy4r signalling in the dual control of feeding and physical activity, particularly in the form of wheel-running activity.
Collapse
Affiliation(s)
- Lei Zhang
- St Vincent's Centre for Applied Medical Research, School of Clinical Medicine, UNSW Medicine and Health, UNSW SYDNEY, NSW 2052, Australia.
| | - Herbert Herzog
- St Vincent's Centre for Applied Medical Research, School of Clinical Medicine, UNSW Medicine and Health, UNSW SYDNEY, NSW 2052, Australia
| |
Collapse
|
4
|
Gleixner J, Kopanchuk S, Grätz L, Tahk MJ, Laasfeld T, Veikšina S, Höring C, Gattor AO, Humphrys LJ, Müller C, Archipowa N, Köckenberger J, Heinrich MR, Kutta RJ, Rinken A, Keller M. Illuminating Neuropeptide Y Y 4 Receptor Binding: Fluorescent Cyclic Peptides with Subnanomolar Binding Affinity as Novel Molecular Tools. ACS Pharmacol Transl Sci 2024; 7:1142-1168. [PMID: 38633582 PMCID: PMC11019746 DOI: 10.1021/acsptsci.4c00013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/20/2024] [Accepted: 02/29/2024] [Indexed: 04/19/2024]
Abstract
The neuropeptide Y (NPY) Y4 receptor (Y4R), a member of the family of NPY receptors, is physiologically activated by the linear 36-amino acid peptide pancreatic polypeptide (PP). The Y4R is involved in the regulation of various biological processes, most importantly pancreatic secretion, gastrointestinal motility, and regulation of food intake. So far, Y4R binding affinities have been mostly studied in radiochemical binding assays. Except for a few fluorescently labeled PP derivatives, fluorescence-tagged Y4R ligands with high affinity have not been reported. Here, we introduce differently fluorescence-labeled (Sulfo-Cy5, Cy3B, Py-1, Py-5) Y4R ligands derived from recently reported cyclic hexapeptides showing picomolar Y4R binding affinity. With pKi values of 9.22-9.71 (radioligand competition binding assay), all fluorescent ligands (16-19) showed excellent Y4R affinity. Y4R saturation binding, binding kinetics, and competition binding with reference ligands were studied using different fluorescence-based methods: flow cytometry (Sulfo-Cy5, Cy3B, and Py-1 label), fluorescence anisotropy (Cy3B label), and NanoBRET (Cy3B label) binding assays. These experiments confirmed the high binding affinity to Y4R (equilibrium pKd: 9.02-9.9) and proved the applicability of the probes for fluorescence-based Y4R competition binding studies and imaging techniques such as single-receptor molecule tracking.
Collapse
Affiliation(s)
- Jakob Gleixner
- Institute
of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93040 Regensburg, Germany
| | - Sergei Kopanchuk
- Institute
of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Lukas Grätz
- Institute
of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93040 Regensburg, Germany
| | - Maris-Johanna Tahk
- Institute
of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Tõnis Laasfeld
- Institute
of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Santa Veikšina
- Institute
of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Carina Höring
- Institute
of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93040 Regensburg, Germany
| | - Albert O. Gattor
- Institute
of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93040 Regensburg, Germany
| | - Laura J. Humphrys
- Institute
of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93040 Regensburg, Germany
| | - Christoph Müller
- Institute
of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93040 Regensburg, Germany
| | - Nataliya Archipowa
- Institute
of Biophysics and Physical Biochemistry, Faculty of Biology and Preclinical
Medicine, University of Regensburg, Universitätsstraße 31, D-93040 Regensburg, Germany
| | - Johannes Köckenberger
- Department
of Chemistry and Pharmacy, Molecular and Clinical Pharmacy, Friedrich-Alexander-University Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, D-91058 Erlangen, Germany
| | - Markus R. Heinrich
- Department
of Chemistry and Pharmacy, Molecular and Clinical Pharmacy, Friedrich-Alexander-University Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, D-91058 Erlangen, Germany
| | - Roger Jan Kutta
- Institute
of Physical and Theoretical Chemistry, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Ago Rinken
- Institute
of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Max Keller
- Institute
of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93040 Regensburg, Germany
| |
Collapse
|
5
|
Gleixner J, Gattor AO, Humphrys LJ, Brunner T, Keller M. [ 3H]UR-JG102-A Radiolabeled Cyclic Peptide with High Affinity and Excellent Selectivity for the Neuropeptide Y Y 4 Receptor. J Med Chem 2023; 66:13788-13808. [PMID: 37773891 DOI: 10.1021/acs.jmedchem.3c01224] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
The family of human neuropeptide Y receptors (YRs) comprises four subtypes (Y1R, Y2R, Y4R, and Y5R) that are involved in the regulation of numerous physiological processes. Until now, Y4R binding studies have been predominantly performed in hypotonic sodium-free buffers using 125I-labeled derivatives of the endogenous YR agonists pancreatic polypeptide or peptide YY. A few tritium-labeled Y4R ligands have been reported; however, when used in buffers containing sodium at a physiological concentration, their Y4R affinities are insufficient. Based on the cyclic hexapeptide UR-AK86C, we developed a new tritium-labeled Y4R radioligand ([3H]UR-JG102, [3H]20). In sodium-free buffer, [3H]20 exhibits a very low Y4R dissociation constant (Kd 0.012 nM). In sodium-containing buffer (137 mM Na+), the Y4R affinity is lower (Kd 0.11 nM) but still considerably higher compared to previously reported tritiated Y4R ligands. Therefore, [3H]20 represents a useful tool compound for the determination of Y4R binding affinities under physiological-like conditions.
Collapse
Affiliation(s)
- Jakob Gleixner
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Albert O Gattor
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Laura J Humphrys
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Thomas Brunner
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Max Keller
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| |
Collapse
|
6
|
Ip CK, Rezitis J, Qi Y, Bajaj N, Koller J, Farzi A, Shi YC, Tasan R, Zhang L, Herzog H. Critical role of lateral habenula circuits in the control of stress-induced palatable food consumption. Neuron 2023; 111:2583-2600.e6. [PMID: 37295418 DOI: 10.1016/j.neuron.2023.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 12/15/2022] [Accepted: 05/11/2023] [Indexed: 06/12/2023]
Abstract
Chronic stress fuels the consumption of palatable food and can enhance obesity development. While stress- and feeding-controlling pathways have been identified, how stress-induced feeding is orchestrated remains unknown. Here, we identify lateral habenula (LHb) Npy1r-expressing neurons as the critical node for promoting hedonic feeding under stress, since lack of Npy1r in these neurons alleviates the obesifying effects caused by combined stress and high fat feeding (HFDS) in mice. Mechanistically, this is due to a circuit originating from central amygdala NPY neurons, with the upregulation of NPY induced by HFDS initiating a dual inhibitory effect via Npy1r signaling onto LHb and lateral hypothalamus neurons, thereby reducing the homeostatic satiety effect through action on the downstream ventral tegmental area. Together, these results identify LHb-Npy1r neurons as a critical node to adapt the response to chronic stress by driving palatable food intake in an attempt to overcome the negative valence of stress.
Collapse
Affiliation(s)
- Chi Kin Ip
- Neuroscience Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia; Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Jemma Rezitis
- Neuroscience Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia
| | - Yue Qi
- Neuroscience Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia
| | - Nikita Bajaj
- Neuroscience Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia
| | - Julia Koller
- Neuroscience Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia
| | - Aitak Farzi
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, 8010 Graz, Austria
| | - Yan-Chuan Shi
- Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia; Neuroendocrinology Group, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia
| | - Ramon Tasan
- Department of Pharmacology, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Lei Zhang
- Neuroscience Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia; Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia
| | - Herbert Herzog
- Neuroscience Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia; Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
7
|
Chen B, Xu J, Chen S, Mou T, Wang Y, Wang H, Zhang Z, Ren F, Wang Z, Jin K, Lu J. Dysregulation of striatal dopamine D2/D3 receptor-mediated by hypocretin induces depressive behaviors in rats. J Affect Disord 2023; 325:256-263. [PMID: 36638964 DOI: 10.1016/j.jad.2023.01.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/26/2022] [Accepted: 01/03/2023] [Indexed: 01/12/2023]
Abstract
BACKGROUND The dysregulation of the dopamine system contributes to depressive-like behaviors in rats, and the neurological functions regulated by hypocretin are severely affected in depression. However, whether suvorexant plays a role in alleviating depression by affecting the dopamine system is unclear. METHODS To preliminarily explore the mechanism of suvorexant (10 mg/kg) in the treatment of depression, the mRNA and protein expression of TH, Drd2, Drd3, GluN2A, DAT, and GluN2B in the striatum of rats was quantified by qPCR and western blotting. The plasma hypocretin-1 and dopamine levels and the striatal dopamine levels were determined by ELISA. RESULTS i) Compared to those of the control group, chronic unpredictable mild stress (CUMS) rats showed depressive-like behaviors, which were subsequently reversed by treatment with suvorexant. ii) The mRNA and protein expressions of TH, Drd2, Drd3, GluN2A, and GluN2B in the striatum of CUMS were significantly increased compared with those in the controls, but decreased after suvorexant treatment. iii) Compared with those in the control group, the plasma and striatal dopamine levels of CUMS decreased while plasma hypocretin-1 levels increased, which was reversed after suvorexant treatment. LIMITATIONS i) The suvorexant is a dual hypocretin receptor antagonist; however, the responsible receptor is unclear. ii) We only focused on related factors in the striatum but did not explore other brain regions, nor did we directly explore the relationship among these factors. CONCLUSION Depressive-like behaviors induced by CUMS can be reversed by suvorexant, and the therapeutic effects of suvorexant may be mediated by affecting the dopamine system.
Collapse
Affiliation(s)
- Bing Chen
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China
| | - Jiangang Xu
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 999007, Hong Kong
| | - Simiao Chen
- School of Life Science, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou 310053, China
| | - Tingting Mou
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China
| | - Ying Wang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Haojun Wang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Zhihan Zhang
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China
| | - Feifan Ren
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China
| | - Zheng Wang
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China
| | - Kangyu Jin
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China.
| | - Jing Lu
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China.
| |
Collapse
|
8
|
Neuropeptide Y interaction with dopaminergic and serotonergic pathways: interlinked neurocircuits modulating hedonic eating behaviours. Prog Neuropsychopharmacol Biol Psychiatry 2022; 113:110449. [PMID: 34592387 DOI: 10.1016/j.pnpbp.2021.110449] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/18/2021] [Accepted: 09/22/2021] [Indexed: 11/22/2022]
Abstract
Independent from homeostatic needs, the consumption of foods originating from hyperpalatable diets is defined as hedonic eating. Hedonic eating can be observed in many forms of eating phenotypes, such as compulsive eating and stress-eating, heightening the risk of obesity development. For instance, stress can trigger the consumption of palatable foods as a type of coping strategy, which can become compulsive, particularly when developed as a habit. Although eating for pleasure is observed in multiple maladaptive eating behaviours, the current understanding of the neurobiology underlying hedonic eating remains deficient. Intriguingly, the combined orexigenic, anxiolytic and reward-seeking properties of Neuropeptide Y (NPY) ignited great interest and has positioned NPY as one of the core neuromodulators operating hedonic eating behaviours. While extensive literature exists exploring the homeostatic orexigenic and anxiolytic properties of NPY, the rewarding effects of NPY continue to be investigated. As deduced from a series of behavioural and molecular-based studies, NPY appears to motivate the consumption and enhancement of food-rewards. As a possible mechanism, NPY may modulate reward-associated monoaminergic pathways, such as the dopaminergic and serotoninergic neural networks, to modulate hedonic eating behaviours. Furthermore, potential direct and indirect NPYergic neurocircuitries connecting classical homeostatic and hedonic neuropathways may also exist involving the anti-reward centre the lateral habenula. Therefore, this review investigates the participation of NPY in orchestrating hedonic eating behaviours through the modulation of monoaminergic pathways.
Collapse
|
9
|
Konieczny A, Conrad M, Ertl FJ, Gleixner J, Gattor AO, Grätz L, Schmidt MF, Neu E, Horn AHC, Wifling D, Gmeiner P, Clark T, Sticht H, Keller M. N-Terminus to Arginine Side-Chain Cyclization of Linear Peptidic Neuropeptide Y Y 4 Receptor Ligands Results in Picomolar Binding Constants. J Med Chem 2021; 64:16746-16769. [PMID: 34748345 DOI: 10.1021/acs.jmedchem.1c01574] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The family of neuropeptide Y (NPY) receptors comprises four subtypes (Y1R, Y2R, Y4R, Y5R), which are addressed by at least three endogenous peptides, i.e., NPY, peptide YY, and pancreatic polypeptide (PP), the latter showing a preference for Y4R. A series of cyclic oligopeptidic Y4R ligands were prepared by applying a novel approach, i.e., N-terminus to arginine side-chain cyclization. Most peptides acted as Y4R partial agonists, showing up to 60-fold higher Y4R affinity compared to the linear precursor peptides. Two cyclic hexapeptides (18, 24) showed higher Y4R potency (Ca2+ aequorin assay) and, with pKi values >10, also higher Y4R affinity compared to human pancreatic polypeptide (hPP). Compounds such as 18 and 24, exhibiting considerably lower molecular weight and considerably more pronounced Y4R selectivity than PP and previously described dimeric peptidic ligands with high Y4R affinity, represent promising leads for the preparation of labeled tool compounds and might support the development of drug-like Y4R ligands.
Collapse
Affiliation(s)
- Adam Konieczny
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Marcus Conrad
- Institute of Biochemistry, Emil-Fischer-Center, Friedrich-Alexander-University Erlangen-Nürnberg, Fahrstraße 17, D-91054 Erlangen, Germany
| | - Fabian J Ertl
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Jakob Gleixner
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Albert O Gattor
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Lukas Grätz
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Maximilian F Schmidt
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-University Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, D-91058 Erlangen, Germany
| | - Eduard Neu
- Department of Chemistry and Pharmacy, Computer-Chemistry-Center, Friedrich-Alexander-University Erlangen-Nürnberg, Nägelsbachstraße 25, D-91052 Erlangen, Germany
| | - Anselm H C Horn
- Institute of Biochemistry, Emil-Fischer-Center, Friedrich-Alexander-University Erlangen-Nürnberg, Fahrstraße 17, D-91054 Erlangen, Germany
| | - David Wifling
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Peter Gmeiner
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-University Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, D-91058 Erlangen, Germany
| | - Timothy Clark
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-University Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, D-91058 Erlangen, Germany.,Department of Chemistry and Pharmacy, Computer-Chemistry-Center, Friedrich-Alexander-University Erlangen-Nürnberg, Nägelsbachstraße 25, D-91052 Erlangen, Germany
| | - Heinrich Sticht
- Institute of Biochemistry, Emil-Fischer-Center, Friedrich-Alexander-University Erlangen-Nürnberg, Fahrstraße 17, D-91054 Erlangen, Germany
| | - Max Keller
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| |
Collapse
|
10
|
Nahvi RJ, Tanelian A, Nwokafor C, Hollander CM, Peacock L, Sabban EL. Intranasal Neuropeptide Y as a Potential Therapeutic for Depressive Behavior in the Rodent Single Prolonged Stress Model in Females. Front Behav Neurosci 2021; 15:705579. [PMID: 34566592 PMCID: PMC8456029 DOI: 10.3389/fnbeh.2021.705579] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/19/2021] [Indexed: 01/14/2023] Open
Abstract
The susceptibility to stress-elicited disorders is markedly influenced by sex. Women are twice as likely as men to develop posttraumatic stress disorder (PTSD), depression, anxiety disorders, and social impairments following exposure to traumatic stress. However, most of the studies in animal models examining putative therapeutics for stress-triggered impairments, including single prolonged stress (SPS), were performed predominantly with males. Previous studies in males demonstrated that intranasal neuropeptide Y (NPY) can provide therapeutic relief of many SPS-triggered behaviors, but is ineffective in females at the same dose. Thus, females may need a higher dose of exogenous NPY to attain a therapeutically significant concentration since the overwhelming majority of studies found that NPY levels in females in many brain regions are lower than in male rodents. Here, we examined SPS as an appropriate model to elicit many PTSD-associated symptoms in females and whether intranasal NPY at higher doses than with males is able to alter the development of SPS-triggered behavioral impairments. Sprague-Dawley female rats were exposed to SPS only, or in a separate cohort after SPS stressors were immediately infused intranasally with one of several doses of NPY, starting with 600 μg/rat—four times the dose effective in males. In the third cohort of animals, females were infused intranasally with either 600 μg NPY, omarigliptin [a dipeptidyl peptidase IV (DPP4) inhibitor], or both right after the SPS stressors. After 19 days they were tested on several behavioral tests. SPS elicited significant depressive/despair like behavior on the forced swim test (FST), anxiety behavior on the elevated plus maze (EPM), as well as impaired social interaction. On the FST, there was a dose-response effect of intranasal NPY, with 1,200 μg, but not 600 μg, preventing the development of the SPS-elicited depressive-like behavior. The omarigliptin and 600 μg NPY combined treatment, but neither alone, was also sufficient at preventing depressive-like behavior on the FST. The results demonstrate that: (1) SPS elicits several behavioral manifestations of PTSD in females; (2) early intervention with a high dose of intranasal NPY has therapeutic potential also for females; and (3) NPY cleavage by DPP4 may play a role in the higher dose requirement for females.
Collapse
Affiliation(s)
- Roxanna J Nahvi
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY, United States
| | - Arax Tanelian
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY, United States
| | - Chiso Nwokafor
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY, United States
| | - Callie M Hollander
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY, United States
| | - Lauren Peacock
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY, United States
| | - Esther L Sabban
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY, United States
| |
Collapse
|
11
|
Brown RM, Guerrero-Hreins E, Brown WA, le Roux CW, Sumithran P. Potential gut-brain mechanisms behind adverse mental health outcomes of bariatric surgery. Nat Rev Endocrinol 2021; 17:549-559. [PMID: 34262156 DOI: 10.1038/s41574-021-00520-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/03/2021] [Indexed: 02/06/2023]
Abstract
Bariatric surgery induces sustained weight loss and metabolic benefits via notable effects on the gut-brain axis that lead to alterations in the neuroendocrine regulation of appetite and glycaemia. However, in a subset of patients, bariatric surgery is associated with adverse effects on mental health, including increased risk of suicide or self-harm as well as the emergence of depression and substance use disorders. The contributing factors behind these adverse effects are not well understood. Accumulating evidence indicates that there are important links between gut-derived hormones, microbial and bile acid profiles, and disorders of mood and substance use, which warrant further exploration in the context of changes in gut-brain signalling after bariatric surgery. Understanding the basis of these adverse effects is essential in order to optimize the health and well-being of people undergoing treatment for obesity.
Collapse
Affiliation(s)
- Robyn M Brown
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
- Department of Biochemistry and Pharmacology, School of Biomedical Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Eva Guerrero-Hreins
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
- Department of Biochemistry and Pharmacology, School of Biomedical Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Wendy A Brown
- Department of Surgery, Central Clinical School, Monash University, Alfred Hospital, Melbourne, Victoria, Australia
| | - Carel W le Roux
- Diabetes Complications Research Centre, Conway Institute, School of Medicine and Medical Sciences, University College, Dublin, Ireland
| | - Priya Sumithran
- Department of Medicine (St Vincent's), University of Melbourne, Melbourne, Victoria, Australia.
- Department of Endocrinology, Austin Health, Melbourne, Victoria, Australia.
| |
Collapse
|
12
|
Salgin-Goksen U, Telli G, Erikci A, Dedecengiz E, Tel BC, Kaynak FB, Yelekci K, Ucar G, Gokhan-Kelekci N. New 2-Pyrazoline and Hydrazone Derivatives as Potent and Selective Monoamine Oxidase A Inhibitors. J Med Chem 2021; 64:1989-2009. [PMID: 33533632 DOI: 10.1021/acs.jmedchem.0c01504] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Thirty compounds having 1-[2-(5-substituted-2-benzoxazolinone-3-yl) acetyl]-3,5-disubstitutedphenyl-2-pyrazoline structure and nine compounds having N'-(1,3-disubstitutedphenylallylidene)-2-(5-substituted-2-benzoxazolinone-3-yl)acetohydrazide skeleton were synthesized and evaluated as monoamine oxidase (MAO) inhibitors. All of the compounds exhibited selective MAO-A inhibitor activity in the nanomolar or low micromolar range. The results of the molecular docking for hydrazone derivatives supported the in vitro results. Five compounds, 6 (0.008 μM, Selectivity Index (SI): 9.70 × 10-4), 7 (0.009 μM, SI: 4.55 × 10-5), 14 (0.001 μM, SI: 8.00 × 10-4), 21 (0.009 μM, SI: 1.37 × 10-5), and 42 (0.010 μM, SI: 5.40 × 10-6), exhibiting the highest inhibition and selectivity toward hMAO-A and nontoxic to hepatocytes were assessed for antidepressant activity as acute and subchronic in mice. All of these five compounds showed significant antidepressant activity with subchronic administration consistent with the increase in the brain serotonin levels and the compounds crossed the blood-brain barrier according to parallel artificial membrane permeation assay. Compounds 14, 21, and 42 exhibited an ex vivo MAO-A profile, which is highly consistent with the in vitro data.
Collapse
Affiliation(s)
- Umut Salgin-Goksen
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hacettepe University, 06100 Sıhhiye, Ankara, Turkey.,Turkish Medicines and Medical Devices Agency, Analyses and Control Laboratories, 06100 Ankara, Turkey
| | - Gokcen Telli
- Department of Pharmacology, Faculty of Pharmacy, Hacettepe University, 06100 Sıhhiye, Ankara, Turkey
| | - Acelya Erikci
- Department of Biochemistry, Faculty of Pharmacy, Lokman Hekim University, 06510 Söğütözü, Ankara, Turkey
| | - Ezgi Dedecengiz
- Department of Physics Engineering, Faculty of Engineering, Hacettepe University, 06800 Beytepe, Ankara, Turkey
| | - Banu Cahide Tel
- Department of Pharmacology, Faculty of Pharmacy, Hacettepe University, 06100 Sıhhiye, Ankara, Turkey
| | - F Betul Kaynak
- Department of Physics Engineering, Faculty of Engineering, Hacettepe University, 06800 Beytepe, Ankara, Turkey
| | - Kemal Yelekci
- Department of Bioinformatics and Genetics, Faculty of Engineering and Natural Sciences, Kadir Has University, 34083 Fatih, Istanbul, Turkey
| | - Gulberk Ucar
- Department of Biochemistry, Faculty of Pharmacy, Hacettepe University, 06100 Sıhhiye, Ankara, Turkey
| | - Nesrin Gokhan-Kelekci
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hacettepe University, 06100 Sıhhiye, Ankara, Turkey
| |
Collapse
|
13
|
Abstract
Despite the overwhelming prevalence of anxiety disorders in modern society, medications and psychotherapy often fail to achieve complete symptom resolution. A complementary approach to medicating symptoms is to address the underlying metabolic pathologies associated with mental illnesses and anxiety. This may be achieved through nutritional interventions. In this perspectives piece, we highlight the roles of the microbiome and inflammation as influencers of anxiety. We further discuss the evidence base for six specific nutritional interventions: avoiding artificial sweeteners and gluten, including omega-3 fatty acids and turmeric in the diet, supplementation with vitamin D, and ketogenic diets. We attempt to integrate insights from the nutrition science-literature in order to highlight some practices that practitioners may consider when treating individual patients. Notably, this piece is not meant to serve as a comprehensive review of the literature, but rather argue our perspective that nutritional interventions should be more widely considered among clinical psychiatrists. Nutritional psychiatry is in its infancy and more research is needed in this burgeoning low-risk and potentially high-yield field.
Collapse
Affiliation(s)
- Nicholas G Norwitz
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom.,Harvard Medical School, Boston, MA, United States
| | - Uma Naidoo
- Harvard Medical School, Boston, MA, United States.,Department of Nutrition and Lifestyle Psychiatry, Massachusetts General Hospital, Boston, MA, United States
| |
Collapse
|
14
|
Tel BC, Telli G, Onder S, Nemutlu E, Bozkurt TE. Investigation of the relationship between chronic montelukast treatment, asthma and depression-like behavior in mice. Exp Ther Med 2020; 21:27. [PMID: 33262813 PMCID: PMC7690246 DOI: 10.3892/etm.2020.9459] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 06/26/2020] [Indexed: 12/13/2022] Open
Abstract
In 2008, the Food and Drug Administration of the US issued a warning about the neuropsychiatric side effects of montelukast. Previous clinical studies on montelukast have reported conflicting results and, to the best of our knowledge, no experimental studies concerning these side effects had been conducted. In the current study, the effect of montelukast on depression-like behavior in an ovalbumin (OVA)-induced mouse model was investigated. A total of 3 OVA challenges were applied at 2 week intervals for the persistence of asthma. Depression-like behavior was assessed using forced swim tests following each challenge and locomotor activities were evaluated using open field tests. At the end of the current study, plasma montelukast concentrations were measured and the development of asthma and effect of montelukast treatment were histopathologically examined. Inflammation scores that were increased in the OVA mice following all challenges were indicated to be reduced by montelukast treatment. The immobility time of mice increased beginning with the first challenge and this was also reduced by montelukast treatment. Montelukast administration to the control mice did not alter immobility times. Moreover, motor activity of the OVA and montelukast-treated mice were not altered. The results indicated there was no association between chronic montelukast treatment and depression. Furthermore, the chronic administration of montelukast to non-asthmatic mice did not increase immobility. However, depressive behavior increased at all time points in the OVA mice. These results indicated that chronic montelukast treatment is not associated with depression-like behavior and confirmed the association between asthma and depression. Further studies are required to provide an improved understanding of the neuropsychiatric side effects of montelukast.
Collapse
Affiliation(s)
- Banu Cahide Tel
- Department of Pharmacology, Hacettepe University Faculty of Pharmacy, Ankara, Sihhiye 06100, Turkey
| | - Gokcen Telli
- Department of Pharmacology, Hacettepe University Faculty of Pharmacy, Ankara, Sihhiye 06100, Turkey
| | - Sevgen Onder
- Department of Pathology, Hacettepe University Faculty of Medicine, Ankara, Sihhiye 06100, Turkey
| | - Emirhan Nemutlu
- Department of Analytical Chemistry, Hacettepe University Faculty of Pharmacy, Ankara, Sihhiye 06100, Turkey
| | - Turgut Emrah Bozkurt
- Department of Pharmacology, Hacettepe University Faculty of Pharmacy, Ankara, Sihhiye 06100, Turkey
| |
Collapse
|
15
|
Sex differences in behavioral and metabolic effects of gene inactivation: The neuropeptide Y and Y receptors in the brain. Neurosci Biobehav Rev 2020; 119:333-347. [PMID: 33045245 DOI: 10.1016/j.neubiorev.2020.09.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 02/06/2023]
Abstract
Brain and gonadal hormones interplay controls metabolic and behavioral functions in a sex-related manner. However, most translational neuroscience research related to animal models of endocrine and psychiatric disorders are often carried out in male animals only. The Neuropeptide Y (NPY) system shows sex-dependent differences and is sensitive to gonadal steroids. Based on published data from our and other laboratories, in this review we will discuss the sex related differences of NPY action on energy balance, bone homeostasis and behavior in rodents with the genetic manipulation of genes encoding NPY and its Y1, Y2 and Y5 cognate receptors. Comparative analyses of the phenotype of transgenic and knockout NPY and Y receptor rodents unravels sex dependent differences in the functions of this neurotransmission system, potentially helping to develop therapeutics for a variety of sex-related disorders including metabolic syndrome, osteoporosis and ethanol addiction.
Collapse
|
16
|
Konieczny A, Braun D, Wifling D, Bernhardt G, Keller M. Oligopeptides as Neuropeptide Y Y4 Receptor Ligands: Identification of a High-Affinity Tetrapeptide Agonist and a Hexapeptide Antagonist. J Med Chem 2020; 63:8198-8215. [DOI: 10.1021/acs.jmedchem.0c00426] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Adam Konieczny
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| | - Diana Braun
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| | - David Wifling
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| | - Günther Bernhardt
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| | - Max Keller
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| |
Collapse
|
17
|
Ilie IR. Neurotransmitter, neuropeptide and gut peptide profile in PCOS-pathways contributing to the pathophysiology, food intake and psychiatric manifestations of PCOS. Adv Clin Chem 2019; 96:85-135. [PMID: 32362321 DOI: 10.1016/bs.acc.2019.11.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Polycystic ovary syndrome (PCOS) is a major health problem with a heterogeneous hormone-imbalance and clinical presentation across the lifespan of women. Increased androgen production and abnormal gonadotropin-releasing hormone (GnRH) release and gonadotropin secretion, resulting in chronic anovulation are well-known features of the PCOS. The brain is both at the top of the neuroendocrine axis regulating ovarian function and a sensitive target of peripheral gonadal hormones and peptides. Current literature illustrates that neurotransmitters regulate various functions of the body, including reproduction, mood and body weight. Neurotransmitter alteration could be one of the reasons for disturbed GnRH release, consequently directing the ovarian dysfunction in PCOS, since there is plenty evidence for altered catecholamine metabolism and brain serotonin or opioid activity described in PCOS. Further, the dysregulated neurotransmitter and neuropeptide profile in PCOS could also be the reason for low self-esteem, anxiety, mood swings and depression or obesity, features closely associated with PCOS women. Can these altered central brain circuits, or the disrupted gut-brain axis be the tie that would both explain and link the pathogenesis of this disorder, the occurrence of depression, anxiety and other mood disorders as well as of obesity, insulin resistance and abnormal appetite in PCOS? This review intends to provide the reader with a comprehensive overview of what is known about the relatively understudied, but very complex role that neurotransmitters, neuropeptides and gut peptides play in PCOS. The answer to the above question may help the development of drugs to specifically target these central and peripheral circuits, thereby providing a valuable treatment for PCOS patients that present to the clinic with GnRH/LH hypersecretion, obesity or psychiatric manifestations.
Collapse
Affiliation(s)
- Ioana R Ilie
- Department of Endocrinology, University of Medicine and Pharmacy 'Iuliu-Hatieganu', Cluj-Napoca, Romania.
| |
Collapse
|
18
|
Kang N, Wang XL, Zhao Y. Discovery of small molecule agonists targeting neuropeptide Y4 receptor using homology modeling and virtual screening. Chem Biol Drug Des 2019; 94:2064-2072. [PMID: 31444845 DOI: 10.1111/cbdd.13611] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 08/09/2019] [Accepted: 08/15/2019] [Indexed: 11/27/2022]
Abstract
Neuropeptide Y4 receptor has the most significant effect on body weight and fat mass in its physiological functions, and the activation of Y4 receptor has explicit role on losing weight. The Y4 receptor has been successfully applied in the development of anti-obesity agent, thus representing a potential therapeutic target for obesity treatment. Here, we reported the first discovery of small molecule agonists targeting Y4 receptor: three Y4 receptor models with active and inactive conformations were built, each model was submitted following structure-based virtual screening, and finally six hits were identified as Y4 receptor agonists. These results confirm the reliability of the constructed Y4 receptor models and the proposed computational strategy for investigating novel Y4 receptor agonists. These new small molecule Y4 receptor agonists will contribute to the further development of Y4 agonists as potential therapeutics and functional probes.
Collapse
Affiliation(s)
- Ning Kang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Xiao-Lei Wang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yaxue Zhao
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
19
|
Li C, Wu X, Liu S, Zhao Y, Zhu J, Liu K. Roles of Neuropeptide Y in Neurodegenerative and Neuroimmune Diseases. Front Neurosci 2019; 13:869. [PMID: 31481869 PMCID: PMC6710390 DOI: 10.3389/fnins.2019.00869] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 08/02/2019] [Indexed: 12/29/2022] Open
Abstract
Neuropeptide Y (NPY) is a neurotransmitter or neuromodulator that mainly exists in the nervous system. It plays a neuroprotective role in organisms and widely participates in the regulation of various physiological processes in vivo. Studies in both humans and animal models have been revealed that NPY levels are altered in some neurodegenerative and neuroimmune disorders. NPY plays various roles in these diseases, such as exerting a neuroprotective effect, increasing trophic support, decreasing excitotoxicity, regulating calcium homeostasis, and attenuating neuroinflammation. In this review, we will focus on the roles of NPY in the pathological mechanisms of neurodegenerative and neuroimmune diseases, highlighting NPY as a potential therapeutic target in these diseases.
Collapse
Affiliation(s)
- Chunrong Li
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Xiujuan Wu
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Shan Liu
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Yue Zhao
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Jie Zhu
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, China
- Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Kangding Liu
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, China
| |
Collapse
|
20
|
Joksimovic J, Selakovic D, Jovicic N, Mitrovic S, Mihailovic V, Katanic J, Milovanovic D, Rosic G. Exercise Attenuates Anabolic Steroids-Induced Anxiety via Hippocampal NPY and MC4 Receptor in Rats. Front Neurosci 2019; 13:172. [PMID: 30863280 PMCID: PMC6399386 DOI: 10.3389/fnins.2019.00172] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 02/13/2019] [Indexed: 12/16/2022] Open
Abstract
The aim of our study was to evaluate the effects of chronic administration of nandrolone-decanoate (ND) or testosterone-enanthate (TE) in supraphysiological doses and a prolonged swimming protocol, alone and in combination with ND or TE, on anxiety-like behavior in rats. We investigated the immunohistochemical alterations of the hippocampal neuropeptide Y (NPY) and melanocortin 4 receptor (MC4R) neurons, as a possible underlying mechanism in a modulation of anxiety-like behavior in rats. Both applied anabolic androgenic steroids (AASs) induced anxiogenic effect accompanied with decreased serum and hippocampal NPY. The exercise-induced anxiolytic effect was associated with increased hippocampal NPY expression. ND and TE increased the number of MC4R, while the swimming protocol was followed by the reduction of MC4R in the CA1 region of the hippocampus. However, NPY/MC4R ratio in hippocampus was lowered by AASs and elevated by exercise in all hippocampal regions. An augmentation of this ratio strongly and positively correlated to increased time in open arms of elevated plus maze, in the context that indicates anxiolytic effect. Our findings support the conclusion that alterations in both hippocampal NPY and MC4R expression are involved in anxiety level changes in rats, while their quantitative relationship (NPY/MC4R ratio) is even more valuable in the estimation of anxiety regulation than individual alterations for both NPY and MC4R expression in the hippocampus.
Collapse
Affiliation(s)
- Jovana Joksimovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Dragica Selakovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Nemanja Jovicic
- Department of Histology and Embryology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Slobodanka Mitrovic
- Department of Pathology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Vladimir Mihailovic
- Department of Chemistry, Faculty of Science, University of Kragujevac, Kragujevac, Serbia
| | - Jelena Katanic
- Department of Chemistry, Faculty of Science, University of Kragujevac, Kragujevac, Serbia
| | - Dragan Milovanovic
- Department of Pharmacology and Toxicology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Gvozden Rosic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| |
Collapse
|
21
|
Clark T, Hapiak V, Oakes M, Mills H, Komuniecki R. Monoamines differentially modulate neuropeptide release from distinct sites within a single neuron pair. PLoS One 2018; 13:e0196954. [PMID: 29723289 PMCID: PMC5933757 DOI: 10.1371/journal.pone.0196954] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 04/23/2018] [Indexed: 12/14/2022] Open
Abstract
Monoamines and neuropeptides often modulate the same behavior, but monoaminergic-peptidergic crosstalk remains poorly understood. In Caenorhabditis elegans, the adrenergic-like ligands, tyramine (TA) and octopamine (OA) require distinct subsets of neuropeptides in the two ASI sensory neurons to inhibit nociception. TA selectively increases the release of ASI neuropeptides encoded by nlp-14 or nlp-18 from either synaptic/perisynaptic regions of ASI axons or the ASI soma, respectively, and OA selectively increases the release of ASI neuropeptides encoded by nlp-9 asymmetrically, from only the synaptic/perisynaptic region of the right ASI axon. The predicted amino acid preprosequences of genes encoding either TA- or OA-dependent neuropeptides differed markedly. However, these distinct preprosequences were not sufficient to confer monoamine-specificity and additional N-terminal peptide-encoding sequence was required. Collectively, our results demonstrate that TA and OA specifically and differentially modulate the release of distinct subsets of neuropeptides from different subcellular sites within the ASIs, highlighting the complexity of monoaminergic/peptidergic modulation, even in animals with a relatively simple nervous system.
Collapse
Affiliation(s)
- Tobias Clark
- Department of Biological Sciences, University of Toledo, Toledo, Ohio, United States of America
| | - Vera Hapiak
- Department of Biological Sciences, University of Toledo, Toledo, Ohio, United States of America
| | - Mitchell Oakes
- Department of Biological Sciences, University of Toledo, Toledo, Ohio, United States of America
| | - Holly Mills
- Department of Biological Sciences, University of Toledo, Toledo, Ohio, United States of America
| | - Richard Komuniecki
- Department of Biological Sciences, University of Toledo, Toledo, Ohio, United States of America
- * E-mail:
| |
Collapse
|
22
|
Lach G, Schellekens H, Dinan TG, Cryan JF. Anxiety, Depression, and the Microbiome: A Role for Gut Peptides. Neurotherapeutics 2018; 15:36-59. [PMID: 29134359 PMCID: PMC5794698 DOI: 10.1007/s13311-017-0585-0] [Citation(s) in RCA: 347] [Impact Index Per Article: 49.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The complex bidirectional communication between the gut and the brain is finely orchestrated by different systems, including the endocrine, immune, autonomic, and enteric nervous systems. Moreover, increasing evidence supports the role of the microbiome and microbiota-derived molecules in regulating such interactions; however, the mechanisms underpinning such effects are only beginning to be resolved. Microbiota-gut peptide interactions are poised to be of great significance in the regulation of gut-brain signaling. Given the emerging role of the gut-brain axis in a variety of brain disorders, such as anxiety and depression, it is important to understand the contribution of bidirectional interactions between peptide hormones released from the gut and intestinal bacteria in the context of this axis. Indeed, the gastrointestinal tract is the largest endocrine organ in mammals, secreting dozens of different signaling molecules, including peptides. Gut peptides in the systemic circulation can bind cognate receptors on immune cells and vagus nerve terminals thereby enabling indirect gut-brain communication. Gut peptide concentrations are not only modulated by enteric microbiota signals, but also vary according to the composition of the intestinal microbiota. In this review, we will discuss the gut microbiota as a regulator of anxiety and depression, and explore the role of gut-derived peptides as signaling molecules in microbiome-gut-brain communication. Here, we summarize the potential interactions of the microbiota with gut hormones and endocrine peptides, including neuropeptide Y, peptide YY, pancreatic polypeptide, cholecystokinin, glucagon-like peptide, corticotropin-releasing factor, oxytocin, and ghrelin in microbiome-to-brain signaling. Together, gut peptides are important regulators of microbiota-gut-brain signaling in health and stress-related psychiatric illnesses.
Collapse
Affiliation(s)
- Gilliard Lach
- APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Harriet Schellekens
- APC Microbiome Institute, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- Food for Health Ireland, University College Cork, Cork, Ireland
| | - Timothy G Dinan
- APC Microbiome Institute, University College Cork, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Institute, University College Cork, Cork, Ireland.
- Food for Health Ireland, University College Cork, Cork, Ireland.
| |
Collapse
|
23
|
Domin H, Szewczyk B, Pochwat B, Woźniak M, Śmiałowska M. Antidepressant-like activity of the neuropeptide Y Y5 receptor antagonist Lu AA33810: behavioral, molecular, and immunohistochemical evidence. Psychopharmacology (Berl) 2017; 234:631-645. [PMID: 27975125 PMCID: PMC5263200 DOI: 10.1007/s00213-016-4495-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 11/28/2016] [Indexed: 12/18/2022]
Abstract
RATIONALE It has recently been found that chronic treatment with the highly selective, brain-penetrating Y5 receptor antagonist, Lu AA33810 [N-[[trans-4-[(4,5-dihydro [1] benzothiepino[5,4-d] thiazol-2-yl) amino] cyclohexyl]methyl]-methanesulfonamide], produces antidepressant-like effects in the rat chronic mild stress model. OBJECTIVE In the present study, we investigated the possible antidepressant-like activity of Lu AA33810 in rats subjected to glial ablation in the prefrontal cortex (PFC) by the gliotoxin L-AAA, which is an astroglial degeneration model of depression. RESULTS We observed that Lu AA33810 administered intraperitoneally at a single dose of 10 mg/kg both reversed depressive-like behavioral changes in the forced swim test (FST) and prevented degeneration of astrocytes in the mPFC. The mechanism of antidepressant and glioprotective effects of Lu AA33810 has not been studied, so far. We demonstrated the contribution of the noradrenergic rather than the serotonergic pathway to the antidepressant-like action of Lu AA33810 in the FST. Moreover, we found that antidepressant-like effect of Lu AA33810 was connected with the influence on brain-derived neurotrophic factor (BDNF) protein expression. We also demonstrated the antidepressant-like effect of Lu AA33810 in the FST in rats which did not receive the gliotoxin. We found that intracerebroventricular injection of the selective MAPK/ERK inhibitor U0126 (5 μg/2 μl) and the selective PI3K inhibitor LY294002 (10 nmol/2 μl) significantly inhibited the anti-immobility effect of Lu AA33810 in the FST in rats, suggesting that MAPK/ERK and PI3K signaling pathways could be involved in the antidepressant-like effect of Lu AA33810. CONCLUSION Our results indicate that Lu AA33810 exerts an antidepressant-like effect and suggest the Y5 receptors as a promising target for antidepressant therapy.
Collapse
Affiliation(s)
- Helena Domin
- Institute of Pharmacology, Polish Academy of Sciences, Department of Neurobiology, 31-343 Kraków, Smętna street 12, Poland
| | - Bernadeta Szewczyk
- Institute of Pharmacology, Polish Academy of Sciences, Department of Neurobiology, 31-343 Kraków, Smętna street 12, Poland
| | - Bartłomiej Pochwat
- Institute of Pharmacology, Polish Academy of Sciences, Department of Neurobiology, 31-343 Kraków, Smętna street 12, Poland
| | - Monika Woźniak
- Institute of Pharmacology, Polish Academy of Sciences, Department of Neurobiology, 31-343 Kraków, Smętna street 12, Poland
| | - Maria Śmiałowska
- Institute of Pharmacology, Polish Academy of Sciences, Department of Neurobiology, 31-343 Kraków, Smętna street 12, Poland.
| |
Collapse
|
24
|
Thorsell A, Mathé AA. Neuropeptide Y in Alcohol Addiction and Affective Disorders. Front Endocrinol (Lausanne) 2017; 8:178. [PMID: 28824541 PMCID: PMC5534438 DOI: 10.3389/fendo.2017.00178] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Accepted: 07/07/2017] [Indexed: 12/31/2022] Open
Abstract
Neuropeptide Y (NPY), a neuropeptide highly conserved throughout evolution, is present at high levels in the central nervous system (CNS), as well as in peripheral tissues such as the gut and cardiovascular system. The peptide exerts its effects via multiple receptor subtypes, all belonging to the G-protein-coupled receptor superfamily. Of these subtypes, the Y1 and the Y2 are the most thoroughly characterized, followed by the Y5 subtype. NPY and its receptors have been shown to be of importance in central regulation of events underlying, for example, affective disorders, drug/alcohol use disorders, and energy homeostasis. Furthermore, within the CNS, NPY also affects sleep regulation and circadian rhythm, memory function, tissue growth, and plasticity. The potential roles of NPY in the etiology and pathophysiology of mood and anxiety disorders, as well as alcohol use disorders, have been extensively studied. This focus was prompted by early indications for an involvement of NPY in acute responses to stress, and, later, also data pointing to a role in alterations within the CNS during chronic, or repeated, exposure to adverse events. These functions of NPY, in addition to the peptide's regulation of disease states, suggest that modulation of the activity of the NPY system via receptor agonists/antagonists may be a putative treatment mechanism in affective disorders as well as alcohol use disorders. In this review, we present an overview of findings with regard to the NPY system in relation to anxiety and stress, acute as well as chronic; furthermore we discuss post-traumatic stress disorder and, in part depression. In addition, we summarize findings on alcohol use disorders and related behaviors. Finally, we briefly touch upon genetic as well as epigenetic mechanisms that may be of importance for NPY function and regulation. In conclusion, we suggest that modulation of NPY-ergic activity within the CNS, via ligands aimed at different receptor subtypes, may be attractive targets for treatment development for affective disorders, as well as for alcohol use disorders.
Collapse
Affiliation(s)
- Annika Thorsell
- Center for Social and Affective Neuroscience, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
- *Correspondence: Annika Thorsell,
| | - Aleksander A. Mathé
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
25
|
Neuropeptide Y, resilience, and PTSD therapeutics. Neurosci Lett 2016; 649:164-169. [PMID: 27913193 DOI: 10.1016/j.neulet.2016.11.061] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 11/22/2016] [Accepted: 11/28/2016] [Indexed: 11/20/2022]
Abstract
Resilience to traumatic stress is a complex psychobiological process that protects individuals from developing posttraumatic stress disorder (PTSD) or other untoward consequences of exposure to extreme stress, including depression. Progress in translational research points toward the neuropeptide Y (NPY) system - among others - as a key mediator of stress response and as a potential therapeutic focus for PTSD. Substantial preclinical evidence supports the role of NPY in the modulation of stress response and in the regulation of anxiety in animal models. Clinical studies testing the safety and efficacy of modulating the NPY system in humans, however, have lagged behind. In the current article, we review the evidence base for targeting the NPY system as a therapeutic approach in PTSD, and consider impediments and potential solutions to therapeutic development.
Collapse
|
26
|
Abstract
The gut microbiota and the brain interact with each other through multiple bidirectional signaling pathways in which neuropeptides and neuroactive peptide messengers play potentially important mediator roles. Currently, six particular modes of a neuropeptide link are emerging. (i) Neuropeptides and neurotransmitters contribute to the mutual microbiota-host interaction. (ii) The synthesis of neuroactive peptides is influenced by microbial control of the availability of amino acids. (iii) The activity of neuropeptides is tempered by microbiota-dependent autoantibodies. (iv) Peptide signaling between periphery and brain is modified by a regulatory action of the gut microbiota on the blood-brain barrier. (v) Within the brain, gut hormones released under the influence of the gut microbiota turn into neuropeptides that regulate multiple aspects of brain activity. (vi) Cerebral neuropeptides participate in the molecular, behavioral, and autonomic alterations which the brain undergoes in response to signals from the gut microbiota.
Collapse
Affiliation(s)
- P Holzer
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria.
| |
Collapse
|
27
|
Fröhlich EE, Farzi A, Mayerhofer R, Reichmann F, Jačan A, Wagner B, Zinser E, Bordag N, Magnes C, Fröhlich E, Kashofer K, Gorkiewicz G, Holzer P. Cognitive impairment by antibiotic-induced gut dysbiosis: Analysis of gut microbiota-brain communication. Brain Behav Immun 2016; 56:140-55. [PMID: 26923630 PMCID: PMC5014122 DOI: 10.1016/j.bbi.2016.02.020] [Citation(s) in RCA: 493] [Impact Index Per Article: 54.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 02/22/2016] [Accepted: 02/22/2016] [Indexed: 12/12/2022] Open
Abstract
Emerging evidence indicates that disruption of the gut microbial community (dysbiosis) impairs mental health. Germ-free mice and antibiotic-induced gut dysbiosis are two approaches to establish causality in gut microbiota-brain relationships. However, both models have limitations, as germ-free mice display alterations in blood-brain barrier and brain ultrastructure and antibiotics may act directly on the brain. We hypothesized that the concerns related to antibiotic-induced gut dysbiosis can only adequately be addressed if the effect of intragastric treatment of adult mice with multiple antibiotics on (i) gut microbial community, (ii) metabolite profile in the colon, (iii) circulating metabolites, (iv) expression of neuronal signaling molecules in distinct brain areas and (v) cognitive behavior is systematically investigated. Of the antibiotics used (ampicillin, bacitracin, meropenem, neomycin, vancomycin), ampicillin had some oral bioavailability but did not enter the brain. 16S rDNA sequencing confirmed antibiotic-induced microbial community disruption, and metabolomics revealed that gut dysbiosis was associated with depletion of bacteria-derived metabolites in the colon and alterations of lipid species and converted microbe-derived molecules in the plasma. Importantly, novel object recognition, but not spatial, memory was impaired in antibiotic-treated mice. This cognitive deficit was associated with brain region-specific changes in the expression of cognition-relevant signaling molecules, notably brain-derived neurotrophic factor, N-methyl-d-aspartate receptor subunit 2B, serotonin transporter and neuropeptide Y system. We conclude that circulating metabolites and the cerebral neuropeptide Y system play an important role in the cognitive impairment and dysregulation of cerebral signaling molecules due to antibiotic-induced gut dysbiosis.
Collapse
Affiliation(s)
- Esther E Fröhlich
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Universitätsplatz 4, 8010 Graz, Austria.
| | - Aitak Farzi
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Universitätsplatz 4, 8010 Graz, Austria
| | - Raphaela Mayerhofer
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Universitätsplatz 4, 8010 Graz, Austria
| | - Florian Reichmann
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Universitätsplatz 4, 8010 Graz, Austria
| | - Angela Jačan
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Universitätsplatz 4, 8010 Graz, Austria
| | - Bernhard Wagner
- Institute of Biomedical Science, FH JOANNEUM University of Applied Sciences, Eggenberger Allee 13, 8020 Graz, Austria
| | - Erwin Zinser
- Institute of Biomedical Science, FH JOANNEUM University of Applied Sciences, Eggenberger Allee 13, 8020 Graz, Austria
| | - Natalie Bordag
- Center for Biomarker Research in Medicine, CBmed GmbH, Stiftingtalstrasse 5, 8010 Graz, Austria
| | - Christoph Magnes
- HEALTH Institute for Biomedicine and Health Sciences, JOANNEUM RESEARCH Forschungsgesellschaft mbH, Neue Stiftingtalstraße 2, Graz, Austria
| | - Eleonore Fröhlich
- Core Facility Microscopy, Center for Medical Research, Medical University of Graz, Stiftingtalstrasse 24/1, 8010 Graz, Austria
| | - Karl Kashofer
- Institute of Pathology, Medical University of Graz, Auenbruggerplatz 25, 8036 Graz, Austria
| | - Gregor Gorkiewicz
- Institute of Pathology, Medical University of Graz, Auenbruggerplatz 25, 8036 Graz, Austria; Theodor Escherich Laboratory for Medical Microbiome Research, Medical University of Graz, Auenbruggerplatz 25, 8036 Graz, Austria; BioTechMed-Graz, Krenngasse 37/1, 8010 Graz, Austria
| | - Peter Holzer
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Universitätsplatz 4, 8010 Graz, Austria.
| |
Collapse
|
28
|
Neuropeptide Y (NPY) as a therapeutic target for neurodegenerative diseases. Neurobiol Dis 2016; 95:210-24. [PMID: 27461050 DOI: 10.1016/j.nbd.2016.07.022] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 06/29/2016] [Accepted: 07/20/2016] [Indexed: 12/16/2022] Open
Abstract
Neuropeptide Y (NPY) and NPY receptors are widely expressed in the mammalian central nervous system. Studies in both humans and rodent models revealed that brain NPY levels are altered in some neurodegenerative disorders, such as Alzheimer's disease, Parkinson's disease, Huntington's disease and Machado-Joseph disease. In this review, we will focus on the roles of NPY in the pathological mechanisms of these disorders, highlighting NPY as a neuroprotective agent, as a neural stem cell proliferative agent, as an agent that increases trophic support, as a stimulator of autophagy and as an inhibitor of excitotoxicity and neuroinflammation. Moreover, the effect of NPY in some clinical manifestations commonly observed in Alzheimer's disease, Parkinson's disease, Huntington's disease and Machado-Joseph disease, such as depressive symptoms and body weight loss, are also discussed. In conclusion, this review highlights NPY system as a potential therapeutic target in neurodegenerative diseases.
Collapse
|
29
|
Verma D, Hörmer B, Bellmann-Sickert K, Thieme V, Beck-Sickinger AG, Herzog H, Sperk G, Tasan RO. Pancreatic polypeptide and its central Y4 receptors are essential for cued fear extinction and permanent suppression of fear. Br J Pharmacol 2016; 173:1925-38. [PMID: 26844810 PMCID: PMC4882497 DOI: 10.1111/bph.13456] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 01/26/2016] [Accepted: 01/29/2016] [Indexed: 12/18/2022] Open
Abstract
Background and purpose Avoiding danger and finding food are closely related behaviours that are essential for surviving in a natural environment. Growing evidence supports an important role of gut‐brain peptides in modulating energy homeostasis and emotional‐affective behaviour. For instance, postprandial release of pancreatic polypeptide (PP) reduced food intake and altered stress‐induced motor activity and anxiety by activating central Y4 receptors. Experimental approach We characterized [K30(PEG2)]hPP2‐36 as long‐acting Y4 receptor agonist and injected it peripherally into wildtype and Y4 receptor knockout (Y4KO) C57Bl/6NCrl mice to investigate the role of Y4 receptors in fear conditioning. Extinction and relapse after extinction was measured by spontaneous recovery and renewal. Key results The Y4KO mice showed impaired cued and context fear extinction without affecting acquisition, consolidation or recall of fear. Correspondingly, peripheral injection of [K30(PEG2)]hPP2‐36 facilitated extinction learning upon fasting, an effect that was long‐lasting and generalized. Furthermore, peripherally applied [K30(PEG2)]hPP2‐36 before extinction inhibited the activation of orexin‐expressing neurons in the lateral hypothalamus in WT, but not in Y4KO mice. Conclusions and implications Our findings suggests suppression of excessive arousal as a possible mechanism for the extinction‐promoting effect of central Y4 receptors and provide strong evidence that fear extinction requires integration of vegetative stimuli with cortical and subcortical information, a process crucially depending on Y4 receptors. Importantly, in the lateral hypothalamus two peptide systems, PP and orexin, interact to generate an emotional response adapted to the current homeostatic state. Detailed investigations of feeding‐relevant genes may thus deliver multiple intervention points for treating anxiety‐related disorders.
Collapse
Affiliation(s)
- D Verma
- Department of Pharmacology, Medical University Innsbruck, Innsbruck, Austria
| | - B Hörmer
- Department of Pharmacology, Medical University Innsbruck, Innsbruck, Austria
| | | | - V Thieme
- Institute of Biochemistry, Leipzig University, Leipzig, Germany
| | | | - H Herzog
- Neuroscience Research Program, Garvan Institute of Medical Research, Sydney, Australia
| | - G Sperk
- Department of Pharmacology, Medical University Innsbruck, Innsbruck, Austria
| | - R O Tasan
- Department of Pharmacology, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
30
|
Tasan RO, Verma D, Wood J, Lach G, Hörmer B, de Lima TCM, Herzog H, Sperk G. The role of Neuropeptide Y in fear conditioning and extinction. Neuropeptides 2016; 55:111-26. [PMID: 26444585 DOI: 10.1016/j.npep.2015.09.007] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 09/10/2015] [Accepted: 09/10/2015] [Indexed: 12/23/2022]
Abstract
While anxiety disorders are the brain disorders with the highest prevalence and constitute a major burden for society, a considerable number of affected people are still treated insufficiently. Thus, in an attempt to identify potential new anxiolytic drug targets, neuropeptides have gained considerable attention in recent years. Compared to classical neurotransmitters they often have a regionally restricted distribution and may bind to several distinct receptor subtypes. Neuropeptide Y (NPY) is a highly conserved neuropeptide that is specifically concentrated in limbic brain areas and signals via at least 5 different G-protein-coupled receptors. It is involved in a variety of physiological processes including the modulation of emotional-affective behaviors. An anxiolytic and stress-reducing property of NPY is supported by many preclinical studies. Whether NPY may also interact with processing of learned fear and fear extinction is comparatively unknown. However, this has considerable relevance since pathological, inappropriate and generalized fear expression and impaired fear extinction are hallmarks of human post-traumatic stress disorder and a major reason for its treatment-resistance. Recent evidence from different laboratories emphasizes a fear-reducing role of NPY, predominantly mediated by exogenous NPY acting on Y1 receptors. Since a reduction of fear expression was also observed in Y1 receptor knockout mice, other Y receptors may be equally important. By acting on Y2 receptors, NPY promotes fear extinction and generates a long-term suppression of fear, two important preconditions that could support cognitive behavioral therapies in human patients. A similar effect has been demonstrated for the closely related pancreatic polypeptide (PP) when acting on Y4 receptors. Preliminary evidence suggests that NPY modulates fear in particular by activation of Y1 and Y2 receptors in the basolateral and central amygdala, respectively. In the basolateral amygdala, NPY signaling activates inhibitory G protein-coupled inwardly-rectifying potassium channels or suppresses hyperpolarization-induced I(h) currents in a Y1 receptor-dependent fashion, favoring a general suppression of neuronal activity. A more complex situation has been described for the central extended amygdala, where NPY reduces the frequency of inhibitory and excitatory postsynaptic currents. In particular the inhibition of long-range central amygdala output neurons may result in a Y2 receptor-dependent suppression of fear. The role of NPY in processes of learned fear and fear extinction is, however, only beginning to emerge, and multiple questions regarding the relevance of endogenous NPY and different receptor subtypes remain elusive. Y2 receptors may be of particular interest for future studies, since they are the most prominent Y receptor subtype in the human brain and thus among the most promising therapeutic drug targets when translating preclinical evidence to potential new therapies for human anxiety disorders.
Collapse
Affiliation(s)
- R O Tasan
- Department of Pharmacology, Medical University Innsbruck, 6020 Innsbruck, Austria.
| | - D Verma
- Institute of Physiology I, University of Münster, D-48149 Münster, Germany
| | - J Wood
- Department of Pharmacology, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - G Lach
- Department of Pharmacology, Medical University Innsbruck, 6020 Innsbruck, Austria; Capes Foundation, Ministry of Education of Brazil, 70040-020 Brasília/DF, Brazil
| | - B Hörmer
- Department of Pharmacology, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - T C M de Lima
- Department of Pharmacology, Federal University of Santa Catarina, 88049-970 Florianópolis, Brazil
| | - H Herzog
- Neuroscience Research Program, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia
| | - G Sperk
- Department of Pharmacology, Medical University Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
31
|
Abstract
Stress is defined as an adverse condition that disturbs the homeostasis of the body and activates adaptation responses. Among the many pathways and mediators involved, neuropeptide Y (NPY) stands out due to its unique stress-relieving, anxiolytic and neuroprotective properties. Stress exposure alters the biosynthesis of NPY in distinct brain regions, the magnitude and direction of this effect varying with the duration and type of stress. NPY is expressed in particular neurons of the brainstem, hypothalamus and limbic system, which explains why NPY has an impact on stress-related changes in emotional-affective behaviour and feeding as well as on stress coping. The biological actions of NPY in mammals are mediated by the Y1, Y2, Y4 and Y5 receptors, Y1 receptor stimulation being anxiolytic whereas Y2 receptor activation is anxiogenic. Emerging evidence attributes NPY a role in stress resilience, the ability to cope with stress. Thus there is a negative correlation between stress-induced behavioural disruption and cerebral NPY expression in animal models of post-traumatic stress disorder. Exogenous NPY prevents the negative consequences of stress, and polymorphisms of the NPY gene are predictive of impaired stress processing and increased risk of neuropsychiatric diseases. Stress is also a factor contributing to, and resulting from, neurodegenerative diseases such as Alzheimer's, Parkinson's and Huntington's disease, in which NPY appears to play an important neuroprotective role. This review summarizes the evidence for an implication of NPY in stress-related and neurodegenerative pathologies and addresses the cerebral NPY system as a therapeutic target.
Collapse
Affiliation(s)
- Florian Reichmann
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Universitätsplatz 4, A-8010 Graz, Austria.
| | - Peter Holzer
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Universitätsplatz 4, A-8010 Graz, Austria
| |
Collapse
|
32
|
Grabner GF, Eichmann TO, Wagner B, Gao Y, Farzi A, Taschler U, Radner FPW, Schweiger M, Lass A, Holzer P, Zinser E, Tschöp MH, Yi CX, Zimmermann R. Deletion of Monoglyceride Lipase in Astrocytes Attenuates Lipopolysaccharide-induced Neuroinflammation. J Biol Chem 2016; 291:913-23. [PMID: 26565024 PMCID: PMC4705409 DOI: 10.1074/jbc.m115.683615] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 11/11/2015] [Indexed: 12/18/2022] Open
Abstract
Monoglyceride lipase (MGL) is required for efficient hydrolysis of the endocannabinoid 2-arachidonoylglyerol (2-AG) in the brain generating arachidonic acid (AA) and glycerol. This metabolic function makes MGL an interesting target for the treatment of neuroinflammation, since 2-AG exhibits anti-inflammatory properties and AA is a precursor for pro-inflammatory prostaglandins. Astrocytes are an important source of AA and 2-AG, and highly express MGL. In the present study, we dissected the distinct contribution of MGL in astrocytes on brain 2-AG and AA metabolism by generating a mouse model with genetic deletion of MGL specifically in astrocytes (MKO(GFAP)). MKO(GFAP) mice exhibit moderately increased 2-AG and reduced AA levels in brain. Minor accumulation of 2-AG in the brain of MKO(GFAP) mice does not cause cannabinoid receptor desensitization as previously observed in mice globally lacking MGL. Importantly, MKO(GFAP) mice exhibit reduced brain prostaglandin E2 and pro-inflammatory cytokine levels upon peripheral lipopolysaccharide (LPS) administration. These observations indicate that MGL-mediated degradation of 2-AG in astrocytes provides AA for prostaglandin synthesis promoting LPS-induced neuroinflammation. The beneficial effect of astrocyte-specific MGL-deficiency is not fully abrogated by the inverse cannabinoid receptor 1 agonist SR141716 (Rimonabant) suggesting that the anti-inflammatory effects are rather caused by reduced prostaglandin synthesis than by activation of cannabinoid receptors. In conclusion, our data demonstrate that MGL in astrocytes is an important regulator of 2-AG levels, AA availability, and neuroinflammation.
Collapse
Affiliation(s)
- Gernot F Grabner
- From the Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Thomas O Eichmann
- From the Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Bernhard Wagner
- the Institute of Biomedical Science, FH Joanneum University of Applied Sciences, 8020 Graz, Austria
| | - Yuanqing Gao
- the Institute of Diabetes and Obesity, Helmholtz Center Munich, 85748 Garching, Germany
| | - Aitak Farzi
- the Institute of Experimental and Clinical Pharmacology, Medical University of Graz, 8010 Graz, Austria, and
| | - Ulrike Taschler
- From the Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Franz P W Radner
- From the Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Martina Schweiger
- From the Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Achim Lass
- From the Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Peter Holzer
- the Institute of Experimental and Clinical Pharmacology, Medical University of Graz, 8010 Graz, Austria, and
| | - Erwin Zinser
- the Institute of Biomedical Science, FH Joanneum University of Applied Sciences, 8020 Graz, Austria
| | - Matthias H Tschöp
- the Institute of Diabetes and Obesity, Helmholtz Center Munich, 85748 Garching, Germany
| | - Chun-Xia Yi
- the Institute of Diabetes and Obesity, Helmholtz Center Munich, 85748 Garching, Germany, the Department of Endocrinology and Metabolism, Academic Medical Center Amsterdam, 1105 Amsterdam, The Netherlands
| | - Robert Zimmermann
- From the Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria,
| |
Collapse
|
33
|
Viggiano A, Cacciola G, Widmer DAJ, Viggiano D. Anxiety as a neurodevelopmental disorder in a neuronal subpopulation: Evidence from gene expression data. Psychiatry Res 2015; 228:729-40. [PMID: 26089015 DOI: 10.1016/j.psychres.2015.05.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Revised: 05/14/2015] [Accepted: 05/26/2015] [Indexed: 12/20/2022]
Abstract
The relationship between genes and anxious behavior, is nor linear nor monotonic. To address this problem, we analyzed with a meta-analytic method the literature data of the behavior of knockout mice, retrieving 33 genes whose deletion was accompanied by increased anxious behavior, 34 genes related to decreased anxious behavior and 48 genes not involved in anxiety. We correlated the anxious behavior resulting from the deletion of these genes to their brain expression, using the Allen Brain Atlas and Gene Expression Omnibus (GEO) database. The main finding is that the genes accompanied, after deletion, by a modification of the anxious behavior, have lower expression in the cerebral cortex, the amygdala and the ventral striatum. The lower expression level was putatively due to their selective presence in a neuronal subpopulation. This difference was replicated also using a database of human gene expression, further showing that the differential expression pertained, in humans, a temporal window of young postnatal age (4 months up to 4 years) but was not evident at fetal or adult human stages. Finally, using gene enrichment analysis we also show that presynaptic genes are involved in the emergence of anxiety and postsynaptic genes in the reduction of anxiety after gene deletion.
Collapse
Affiliation(s)
- Adela Viggiano
- Department of Health Sciences, University of Molise, Campobasso 86100, Italy
| | - Giovanna Cacciola
- Department of Health Sciences, University of Molise, Campobasso 86100, Italy
| | | | - Davide Viggiano
- Department of Health Sciences, University of Molise, Campobasso 86100, Italy; Department of Cardio-Thoracic and Respiratory Science, Second University of Naples, Naples, Italy.
| |
Collapse
|
34
|
Méquinion M, Chauveau C, Viltart O. The use of animal models to decipher physiological and neurobiological alterations of anorexia nervosa patients. Front Endocrinol (Lausanne) 2015; 6:68. [PMID: 26042085 PMCID: PMC4436882 DOI: 10.3389/fendo.2015.00068] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 04/15/2015] [Indexed: 12/18/2022] Open
Abstract
Extensive studies were performed to decipher the mechanisms regulating feeding due to the worldwide obesity pandemy and its complications. The data obtained might be adapted to another disorder related to alteration of food intake, the restrictive anorexia nervosa. This multifactorial disease with a complex and unknown etiology is considered as an awful eating disorder since the chronic refusal to eat leads to severe, and sometimes, irreversible complications for the whole organism, until death. There is an urgent need to better understand the different aspects of the disease to develop novel approaches complementary to the usual psychological therapies. For this purpose, the use of pertinent animal models becomes a necessity. We present here the various rodent models described in the literature that might be used to dissect central and peripheral mechanisms involved in the adaptation to deficient energy supplies and/or the maintenance of physiological alterations on the long term. Data obtained from the spontaneous or engineered genetic models permit to better apprehend the implication of one signaling system (hormone, neuropeptide, neurotransmitter) in the development of several symptoms observed in anorexia nervosa. As example, mutations in the ghrelin, serotonin, dopamine pathways lead to alterations that mimic the phenotype, but compensatory mechanisms often occur rendering necessary the use of more selective gene strategies. Until now, environmental animal models based on one or several inducing factors like diet restriction, stress, or physical activity mimicked more extensively central and peripheral alterations decribed in anorexia nervosa. They bring significant data on feeding behavior, energy expenditure, and central circuit alterations. Animal models are described and criticized on the basis of the criteria of validity for anorexia nervosa.
Collapse
Affiliation(s)
- Mathieu Méquinion
- INSERM UMR-S1172, Development and Plasticity of Postnatal Brain, Lille, France
| | - Christophe Chauveau
- Pathophysiology of Inflammatory Bone Diseases, EA 4490, University of the Littoral Opal Coast, Boulogne sur Mer, France
| | - Odile Viltart
- INSERM UMR-S1172, Early stages of Parkinson diseases, University Lille 1, Lille, France
| |
Collapse
|
35
|
Huang Y, Thathiah A. Regulation of neuronal communication by G protein-coupled receptors. FEBS Lett 2015; 589:1607-19. [PMID: 25980603 DOI: 10.1016/j.febslet.2015.05.007] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 05/05/2015] [Accepted: 05/05/2015] [Indexed: 02/06/2023]
Abstract
Neuronal communication plays an essential role in the propagation of information in the brain and requires a precisely orchestrated connectivity between neurons. Synaptic transmission is the mechanism through which neurons communicate with each other. It is a strictly regulated process which involves membrane depolarization, the cellular exocytosis machinery, neurotransmitter release from synaptic vesicles into the synaptic cleft, and the interaction between ion channels, G protein-coupled receptors (GPCRs), and downstream effector molecules. The focus of this review is to explore the role of GPCRs and G protein-signaling in neurotransmission, to highlight the function of GPCRs, which are localized in both presynaptic and postsynaptic membrane terminals, in regulation of intrasynaptic and intersynaptic communication, and to discuss the involvement of astrocytic GPCRs in the regulation of neuronal communication.
Collapse
Affiliation(s)
- Yunhong Huang
- VIB Center for the Biology of Disease, Leuven, Belgium; Center for Human Genetics (CME) and Leuven Institute for Neurodegenerative Diseases (LIND), University of Leuven (KUL), Leuven, Belgium.
| | - Amantha Thathiah
- VIB Center for the Biology of Disease, Leuven, Belgium; Center for Human Genetics (CME) and Leuven Institute for Neurodegenerative Diseases (LIND), University of Leuven (KUL), Leuven, Belgium.
| |
Collapse
|
36
|
Farzi A, Reichmann F, Holzer P. The homeostatic role of neuropeptide Y in immune function and its impact on mood and behaviour. Acta Physiol (Oxf) 2015; 213:603-27. [PMID: 25545642 DOI: 10.1111/apha.12445] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 11/10/2014] [Accepted: 12/21/2014] [Indexed: 12/18/2022]
Abstract
Neuropeptide Y (NPY), one of the most abundant peptides in the nervous system, exerts its effects via five receptor types, termed Y1, Y2, Y4, Y5 and Y6. NPY's pleiotropic functions comprise the regulation of brain activity, mood, stress coping, ingestion, digestion, metabolism, vascular and immune function. Nerve-derived NPY directly affects immune cells while NPY also acts as a paracrine and autocrine immune mediator, because immune cells themselves are capable of producing and releasing NPY. NPY is able to induce immune activation or suppression, depending on a myriad of factors such as the Y receptors activated and cell types involved. There is an intricate relationship between psychological stress, mood disorders and the immune system. While stress represents a risk factor for the development of mood disorders, it exhibits diverse actions on the immune system as well. Conversely, inflammation is regarded as an internal stressor and is increasingly recognized to contribute to the pathogenesis of mood and metabolic disorders. Intriguingly, the cerebral NPY system has been found to protect against distinct disturbances in response to immune challenge, attenuating the sickness response and preventing the development of depression. Thus, NPY plays an important homeostatic role in balancing disturbances of physiological systems caused by peripheral immune challenge. This implication is particularly evident in the brain in which NPY counteracts the negative impact of immune challenge on mood, emotional processing and stress resilience. NPY thus acts as a unique signalling molecule in the interaction of the immune system with the brain in health and disease.
Collapse
Affiliation(s)
- A. Farzi
- Research Unit of Translational Neurogastroenterology; Institute of Experimental and Clinical Pharmacology; Medical University of Graz; Graz Austria
| | - F. Reichmann
- Research Unit of Translational Neurogastroenterology; Institute of Experimental and Clinical Pharmacology; Medical University of Graz; Graz Austria
| | - P. Holzer
- Research Unit of Translational Neurogastroenterology; Institute of Experimental and Clinical Pharmacology; Medical University of Graz; Graz Austria
| |
Collapse
|
37
|
Enman NM, Sabban EL, McGonigle P, Van Bockstaele EJ. Targeting the Neuropeptide Y System in Stress-related Psychiatric Disorders. Neurobiol Stress 2015; 1:33-43. [PMID: 25506604 PMCID: PMC4260418 DOI: 10.1016/j.ynstr.2014.09.007] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Repeated, extreme, or traumatic stressors can elicit pathological effects leading to many negative physical and psychological outcomes. Stressors can precipitate the onset of psychiatric diseases, or exacerbate pre-existing disorders including various anxiety and mood disorders. As stressors can negatively impact human psychiatric health, it is essential to identify neurochemicals that may confer protection from the negative sequelae of repeated or extreme stress exposure. Elucidating the neurobiological underpinnings of stress resilience will enhance our ability to promote resilience to, or recovery from, stress-related psychiatric disease. Herein, we will review the evidence for neuropeptide Y as an endogenous mediator of resilience and its potential relevance for the treatment of stress-related psychiatric diseases. Overview of neuropeptide Y and receptor subtypes in the central nervous system. Alterations of neuropeptide Y in human stress-related psychiatric disorders. Evidence for neuropeptide Y in resilience to stress-related emotionality in rodent behavioral models. Pharmacotherapeutic implications for neuropeptide Y in the treatment of stress-related psychiatric disorders.
Collapse
Affiliation(s)
- Nicole M Enman
- Department of Pharmacology and Physiology, Drexel University, Philadelphia, PA, 19102, USA
| | - Esther L Sabban
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY, 10595, USA
| | - Paul McGonigle
- Department of Pharmacology and Physiology, Drexel University, Philadelphia, PA, 19102, USA
| | | |
Collapse
|
38
|
Christiansen SH, Olesen MV, Gøtzsche CR, Woldbye DPD. Anxiolytic-like effects after vector-mediated overexpression of neuropeptide Y in the amygdala and hippocampus of mice. Neuropeptides 2014; 48:335-44. [PMID: 25267070 DOI: 10.1016/j.npep.2014.09.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 09/04/2014] [Accepted: 09/08/2014] [Indexed: 11/24/2022]
Abstract
Neuropeptide Y (NPY) causes anxiolytic- and antidepressant-like effects after central administration in rodents. These effects could theoretically be utilized in future gene therapy for anxiety and depression using viral vectors for induction of overexpression of NPY in specific brain regions. Using a recombinant adeno-associated viral (rAAV) vector, we addressed this idea by testing effects on anxiolytic- and depression-like behaviours in adult mice after overexpression of NPY transgene in the amygdala and/or hippocampus, two brain regions implicated in emotional behaviours. In the amygdala, injections of rAAV-NPY caused significant anxiolytic-like effect in the open field, elevated plus maze, and light-dark transition tests. In the hippocampus, rAAV-NPY treatment was associated with anxiolytic-like effect only in the elevated plus maze. No additive effect was observed after combined rAAV-NPY injection into both the amygdala and hippocampus where anxiolytic-like effect was found in the elevated plus maze and light-dark transition tests. Antidepressant-like effects were not detected in any of the rAAV-NPY injected groups. Immobility was even increased in the tail suspension and forced swim tests after intra-amygdaloid rAAV-NPY. Taken together, the present data show that rAAV-NPY treatment may confer non-additive anxiolytic-like effect after injection into the amygdala or hippocampus, being most pronounced in the amygdala.
Collapse
Affiliation(s)
- S H Christiansen
- Laboratory for Neural Plasticity, Laboratory of Neuropsychiatry, Psychiatric Centre Copenhagen, Department of Neuroscience and Pharmacology, University of Copenhagen, Denmark
| | - M V Olesen
- Laboratory for Neural Plasticity, Laboratory of Neuropsychiatry, Psychiatric Centre Copenhagen, Department of Neuroscience and Pharmacology, University of Copenhagen, Denmark
| | - C R Gøtzsche
- Laboratory for Neural Plasticity, Laboratory of Neuropsychiatry, Psychiatric Centre Copenhagen, Department of Neuroscience and Pharmacology, University of Copenhagen, Denmark
| | - D P D Woldbye
- Laboratory for Neural Plasticity, Laboratory of Neuropsychiatry, Psychiatric Centre Copenhagen, Department of Neuroscience and Pharmacology, University of Copenhagen, Denmark.
| |
Collapse
|
39
|
Kreiner G, Chmielarz P, Roman A, Nalepa I. Gender differences in genetic mouse models evaluated for depressive-like and antidepressant behavior. Pharmacol Rep 2014; 65:1580-90. [PMID: 24553006 DOI: 10.1016/s1734-1140(13)71519-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 10/15/2013] [Indexed: 12/30/2022]
Abstract
Depression is a mental disease that affects complex cognitive and emotional functions. It is believed that depression is twice as prevalent in women as in men. This phenomenon may influence the response to various antidepressant therapies, and these differences are still underestimated in clinical treatment. Nevertheless, most of the current findings are based on studies on male animal models, and relatively few of these studies take possible gender differences into consideration. Advancements in genetic engineering over the last two decades have introduced many transgenic lines that have been screened to study the pathomechanisms of depression. In this mini-review, we provide a compendious list of genetically altered mice that underwent tests for depressive-like or antidepressant behavior and determine if and how the gender factor was analyzed in their evaluation. Furthermore, we compile the gender differences in response to antidepressant treatment. On the basis of these analyses, we conclude that in many cases, gender variability is neglected or not taken into consideration in the presented results. We note the necessity of discussing this issue in the phenotypic characterization of transgenic mice, which seems to be particularly important while modeling mental diseases.
Collapse
Affiliation(s)
- Grzegorz Kreiner
- Department of Brain Biochemistry, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, PL 31-343 Kraków, Poland.
| | | | | | | |
Collapse
|
40
|
Nishi D, Hashimoto K, Noguchi H, Matsuoka Y. Serum neuropeptide Y in accident survivors with depression or posttraumatic stress disorder. Neurosci Res 2014; 83:8-12. [PMID: 24709369 DOI: 10.1016/j.neures.2014.03.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 03/26/2014] [Accepted: 03/27/2014] [Indexed: 11/27/2022]
Abstract
Although neuropeptide Y (NPY) has received attention for its potential anti-depressive and anti-anxiety effect, evidence in humans has been limited. This study aimed to clarify the relationships between serum NPY and depressive disorders, and posttraumatic stress disorder (PTSD) in accident survivors. Depressive disorders and PTSD were diagnosed by structural interviews at 1-month follow-up, and serum NPY was measured at the first assessment and 1-month follow-up. Analysis of variance was used to investigate significance of the differences identified. Furthermore, resilience was measured by self-report questionnaires. Multiple linear regression analyses were used to examine the relationship between resilience and serum NPY. Three hundred accident survivors participated in the assessment at the first assessment, and 138 completed the assessment at 1-month follow-up. Twenty-six participants had major depressive disorder and 6 had minor depressive disorder. Nine participants had PTSD and 16 had partial PTSD. No relationship existed between serum NPY and depressive disorders, PTSD, and resilience. The results of cannot be compared with those of NPY in the central nervous system (CNS), but these findings might be due to the nature of depression and PTSD in accident survivors. Further studies are needed to examine the relationships between NPY in CNS and depression and PTSD.
Collapse
Affiliation(s)
- Daisuke Nishi
- Department of Psychiatry, National Disaster Medical Center, 3256 Midoricho, Tachikawa 190-0014, Japan; CREST, Japan Science and Technology Agency, 3256 Midoricho, Tachikawa 190-0014, Japan; Department of Mental Health Policy and Evaluation, National Institute of Mental Health, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi-cho, Kodaira 187-8551, Japan
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, 1-8-1 Inohana, Chiba 260-8670, Japan
| | - Hiroko Noguchi
- CREST, Japan Science and Technology Agency, 3256 Midoricho, Tachikawa 190-0014, Japan; Department of Clinical Epidemiology, Translational Medical Center, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi-cho, Kodaira 187-8551, Japan
| | - Yutaka Matsuoka
- Department of Psychiatry, National Disaster Medical Center, 3256 Midoricho, Tachikawa 190-0014, Japan; CREST, Japan Science and Technology Agency, 3256 Midoricho, Tachikawa 190-0014, Japan; Department of Clinical Epidemiology, Translational Medical Center, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi-cho, Kodaira 187-8551, Japan.
| |
Collapse
|
41
|
Kormos V, Gaszner B. Role of neuropeptides in anxiety, stress, and depression: from animals to humans. Neuropeptides 2013; 47:401-19. [PMID: 24210138 DOI: 10.1016/j.npep.2013.10.014] [Citation(s) in RCA: 240] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 10/07/2013] [Accepted: 10/09/2013] [Indexed: 12/11/2022]
Abstract
Major depression, with its strikingly high prevalence, is the most common cause of disability in communities of Western type, according to data of the World Health Organization. Stress-related mood disorders, besides their deleterious effects on the patient itself, also challenge the healthcare systems with their great social and economic impact. Our knowledge on the neurobiology of these conditions is less than sufficient as exemplified by the high proportion of patients who do not respond to currently available medications targeting monoaminergic systems. The search for new therapeutical strategies became therefore a "hot topic" in neuroscience, and there is a large body of evidence suggesting that brain neuropeptides not only participate is stress physiology, but they may also have clinical relevance. Based on data obtained in animal studies, neuropeptides and their receptors might be targeted by new candidate neuropharmacons with the hope that they will become important and effective tools in the management of stress related mood disorders. In this review, we attempt to summarize the latest evidence obtained using animal models for mood disorders, genetically modified rodent models for anxiety and depression, and we will pay some attention to previously published clinical data on corticotropin releasing factor, urocortin 1, urocortin 2, urocortin 3, arginine-vasopressin, neuropeptide Y, pituitary adenylate-cyclase activating polypeptide, neuropeptide S, oxytocin, substance P and galanin fields of stress research.
Collapse
Affiliation(s)
- Viktória Kormos
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Pécs, Szigeti u. 12, H-7624 Pécs, Hungary; Molecular Pharmacology Research Group, János Szentágothai Research Center, University of Pécs, Ifjúság útja 20, H-7624 Pécs, Hungary; Department of Anatomy, Faculty of Medicine, University of Pécs, Szigeti u. 12, H-7624 Pécs, Hungary
| | | |
Collapse
|
42
|
Clemens LE, Jansson EKH, Portal E, Riess O, Nguyen HP. A behavioral comparison of the common laboratory rat strains Lister Hooded, Lewis, Fischer 344 and Wistar in an automated homecage system. GENES BRAIN AND BEHAVIOR 2013; 13:305-21. [DOI: 10.1111/gbb.12093] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 09/18/2013] [Accepted: 10/07/2013] [Indexed: 01/23/2023]
Affiliation(s)
- L. E. Clemens
- Centre for Rare Diseases; University of Tuebingen; Tuebingen Germany
| | - E. K. H. Jansson
- Centre for Rare Diseases; University of Tuebingen; Tuebingen Germany
| | - E. Portal
- Centre for Rare Diseases; University of Tuebingen; Tuebingen Germany
| | - O. Riess
- Centre for Rare Diseases; University of Tuebingen; Tuebingen Germany
| | - H. P. Nguyen
- Centre for Rare Diseases; University of Tuebingen; Tuebingen Germany
| |
Collapse
|
43
|
Berlicki L, Kaske M, Gutiérrez-Abad R, Bernhardt G, Illa O, Ortuño RM, Cabrele C, Buschauer A, Reiser O. Replacement of Thr32 and Gln34 in the C-terminal neuropeptide Y fragment 25-36 by cis-cyclobutane and cis-cyclopentane β-amino acids shifts selectivity toward the Y(4) receptor. J Med Chem 2013; 56:8422-31. [PMID: 24090364 DOI: 10.1021/jm4008505] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Neuropeptide Y (NPY) and pancreatic polypeptide (PP) control central and peripheral processes by activating the G protein coupled receptors YxR (x = 1, 2, 4, 5). We present analogs of the C-terminal fragments 25-36 and 32-36 of NPY and PP containing (1R,2S)-cyclobutane (βCbu) or (1R,2S)-cyclopentane (βCpe) β-amino acids, which display exclusively Y4R affinity. In particular, [βCpe(34)]-NPY-(25-36) is a Y4R selective partial agonist (EC50 41 ± 6 nM, Emax 71%) that binds Y4R with a Ki of 10 ± 2 nM and a selectivity >100-fold relative to Y1R and Y2R and >50-fold relative to Y5R. Comparably, [Y(32), βCpe(34)]-NPY(PP)-(32-36) selectively binds and activates Y4R (EC50 94 ± 21 nM, Emax 73%). The NMR structure of [βCpe(34)]-NPY-(25-36) in dodecylphosphatidylcholine micelles shows a short helix at residues 27-32, while the C-terminal segment R(33)βCpe(34)R(35)Y(36) is extended. The biological properties of the βCbu- or βCpe-containing NPY and PP C-terminal fragments encourage the future application of these β-amino acids in the synthesis of selective Y4R ligands.
Collapse
Affiliation(s)
- Lukasz Berlicki
- Institute of Organic Chemistry, University of Regensburg , Universitätsstrasse 31, 93053 Regensburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Shimizu S, Azuma M, Morimoto N, Kikuyama S, Matsuda K. Effect of neuropeptide Y on food intake in bullfrog larvae. Peptides 2013; 46:102-7. [PMID: 23756158 DOI: 10.1016/j.peptides.2013.05.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 05/30/2013] [Accepted: 05/30/2013] [Indexed: 10/26/2022]
Abstract
Neuropeptide Y (NPY) is a potent orexigenic neuropeptide implicated in appetite regulation in mammals. However, except for teleost fish such as the goldfish and zebrafish, the involvement of NPY in the regulation of feeding in non-mammalian vertebrates has not been well studied. Anuran amphibian larvae feed and grow during the pre- and pro-metamorphic stages, but, thereafter they stop feeding as the metamorphic climax approaches. Therefore, orexigenic factors seem to play important roles in pre- and pro-metamorphic larvae. We investigated the role of NPY in food intake using bullfrog larvae including pre- and pro-metamorphic stages, and examined the effect of feeding status on the expression level of the NPY transcript in the hypothalamus. NPY mRNA levels in hypothalamus specimens obtained from larvae that had been fasted for 3 days were higher than those in larvae that had been fed normally. We then investigated the effect of intracerebroventricular (ICV) administration of NPY on food intake in the larvae. Cumulative food intake was significantly increased by ICV administration of NPY (5 and 10 pmol/g body weight, BW) during a 15-min observation period. The NPY-induced orexigenic action (10 pmol/g BW) was blocked by treatment with a NPY Y1 receptor antagonist, BIBP-3226 (100 pmol/g BW). These results indicate that NPY acts as an orexigenic factor in bullfrog larvae.
Collapse
Affiliation(s)
- Shunsuke Shimizu
- Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of Toyama, 3190-Gofuku, Toyama, Toyama 930-8555, Japan
| | | | | | | | | |
Collapse
|
45
|
Ito M, Dumont Y, Quirion R. Mood and memory-associated behaviors in neuropeptide Y5 knockout mice. Neuropeptides 2013; 47:75-84. [PMID: 23218957 DOI: 10.1016/j.npep.2012.10.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 10/12/2012] [Accepted: 10/25/2012] [Indexed: 12/15/2022]
Abstract
Recent data led to suggest that in addition to Y1 and Y2 subtypes, Y5 receptors may be involved in mood-related behaviors (Morales-Medina et al., 2010). In the present study, using a battery of behavioral tests to assess anxiety and depression-like paradigms, as well as memory function, we evaluated the potential behavioral changes induced in mice devoid of Y5 receptors. Those paradigms were assessed using the open field (OF), elevated plus maze (EPM), forced swim test (FST), social interaction test (SI), object recognition test (ORT) and Morris water maze (MWM) in Y5 knockout (KO) mice and wild type (WT) animals. In the tests associated to anxiety related behaviors (OF, EPM and SI), no difference for locomotion and time spent in the lateral area of open field were observed between Y5 KO and WT mice. Similar results were observed for time and number of entries in open arms in EPM. Additionally, in SI test, Y5 KO mice spent same amount of time and number of entries in the stranger chamber as compared to WT animals. In the FST, as compared to WT mice, Y5 KO mice had similar immobility time on day 1. No memory dysfunction was observed in the MWM and ORT in Y5 KO mice, as compared to WT. Altogether these data suggest that under basal conditions Y5 KO and WT mice display similar mood behaviors and memory functions. However, as compared to WT, Y5 KO mice display increased grooming and rearing in the OF, lower ratio entries in open arms in the EPM and increased immobility time on the second day of the FST.
Collapse
Affiliation(s)
- Masanobu Ito
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, QC, Canada.
| | | | | |
Collapse
|
46
|
Holzer P, Reichmann F, Farzi A. Neuropeptide Y, peptide YY and pancreatic polypeptide in the gut-brain axis. Neuropeptides 2012; 46:261-74. [PMID: 22979996 PMCID: PMC3516703 DOI: 10.1016/j.npep.2012.08.005] [Citation(s) in RCA: 342] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 08/04/2012] [Accepted: 08/09/2012] [Indexed: 02/06/2023]
Abstract
The gut-brain axis refers to the bidirectional communication between the gut and the brain. Four information carriers (vagal and spinal afferent neurons, immune mediators such as cytokines, gut hormones and gut microbiota-derived signalling molecules) transmit information from the gut to the brain, while autonomic neurons and neuroendocrine factors carry outputs from the brain to the gut. The members of the neuropeptide Y (NPY) family of biologically active peptides, NPY, peptide YY (PYY) and pancreatic polypeptide (PP), are expressed by cell systems at distinct levels of the gut-brain axis. PYY and PP are exclusively expressed by endocrine cells of the digestive system, whereas NPY is found at all levels of the gut-brain and brain-gut axis. The major systems expressing NPY comprise enteric neurons, primary afferent neurons, several neuronal pathways throughout the brain and sympathetic neurons. In the digestive tract, NPY and PYY inhibit gastrointestinal motility and electrolyte secretion and in this way modify the input to the brain. PYY is also influenced by the intestinal microbiota, and NPY exerts, via stimulation of Y1 receptors, a proinflammatory action. Furthermore, the NPY system protects against distinct behavioural disturbances caused by peripheral immune challenge, ameliorating the acute sickness response and preventing long-term depression. At the level of the afferent system, NPY inhibits nociceptive input from the periphery to the spinal cord and brainstem. In the brain, NPY and its receptors (Y1, Y2, Y4, Y5) play important roles in regulating food intake, energy homeostasis, anxiety, mood and stress resilience. In addition, PP and PYY signal to the brain to attenuate food intake, anxiety and depression-related behaviour. These findings underscore the important role of the NPY-Y receptor system at several levels of the gut-brain axis in which NPY, PYY and PP operate both as neural and endocrine messengers.
Collapse
Affiliation(s)
- Peter Holzer
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Universitätsplatz 4, A-8010 Graz, Austria.
| | | | | |
Collapse
|
47
|
Yokobori E, Azuma M, Nishiguchi R, Kang KS, Kamijo M, Uchiyama M, Matsuda K. Neuropeptide Y stimulates food intake in the Zebrafish, Danio rerio. J Neuroendocrinol 2012; 24:766-73. [PMID: 22250860 DOI: 10.1111/j.1365-2826.2012.02281.x] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Neuropeptide Y (NPY) is a potent orexigenic neuropeptide implicated in feeding regulation in mammals. However, except for the case of the goldfish, the involvement of NPY in the feeding behaviour of teleost fish has not well been studied. Therefore, we investigated the role of NPY in food intake using a zebrafish (Danio rerio) model because the molecular bases of NPY and its receptor have been well studied in this species. We examined the effect of feeding status on NPY-like immunoreactivity and the expression level of the NPY transcript in the brain. The number of neuronal cells showing NPY-like immunoreactivity in the hypothalamic regions, including the periventricular nucleus of posterior tuberculum and the posterior tuberal nucleus, was significantly increased in fish fasted for 7 days. NPY mRNA levels in the hypothalamus, but not the telencephalon, obtained from fish fasted for 7 days were higher than those in fish that had been fed normally. We then investigated the effect of i.c.v. administration of NPY on food intake. Cumulative food intake was significantly increased by i.c.v. administration of NPY (at 1 and 10 pmol/g body weight; BW) during a 60-min observation period. The NPY-induced orexigenic action (at 10 pmol/g BW) was blocked by treatment with a NPY Y1 receptor antagonist, BIBP-3226, at 100 pmol/g BW. These results indicate that NPY acts as an orexigenic factor in the zebrafish.
Collapse
Affiliation(s)
- E Yokobori
- Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of Toyama, Toyama, Japan
| | | | | | | | | | | | | |
Collapse
|
48
|
Wu G, Feder A, Wegener G, Bailey C, Saxena S, Charney D, Mathé AA. Central functions of neuropeptide Y in mood and anxiety disorders. Expert Opin Ther Targets 2012; 15:1317-31. [PMID: 21995655 DOI: 10.1517/14728222.2011.628314] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Neuropeptide Y (NPY) is a highly conserved neuropeptide belonging to the pancreatic polypeptide family. Its potential role in the etiology and pathophysiology of mood and anxiety disorders has been extensively studied. NPY also has effects on feeding behavior, ethanol intake, sleep regulation, tissue growth and remodeling. Findings from animal studies have delineated the physiological and behavioral effects mediated by specific NPY receptor subtypes, of which Y1 and Y2 are the best understood. AREAS COVERED Physiological roles and alterations of the NPYergic system in anxiety disorders, depression, posttraumatic stress disorder (PTSD), alcohol dependence and epilepsy. For each disorder, studies in animal models and human investigations are outlined and discussed, focusing on behavior, neurophysiology, genetics and potential for novel treatment targets. EXPERT OPINION The wide implications of NPY in psychiatric disorders such as depression and PTSD make the NPYergic system a promising target for the development of novel therapeutic interventions. These include intranasal NPY administration, currently under study, and the development of agonists and antagonists targeting NPY receptors. Therefore, we are proposing that via this mode of administration, NPY might exert CNS therapeutic actions without untoward systemic effects. Future work will show if this is a feasible approach.
Collapse
Affiliation(s)
- Gang Wu
- Karolinska Institutet-Clinical Neuroscience, Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
49
|
Shi HS, Yin X, Song L, Guo QJ, Luo XH. Neuropeptide Trefoil factor 3 improves learning and retention of novel object recognition memory in mice. Behav Brain Res 2012; 227:265-9. [DOI: 10.1016/j.bbr.2011.10.051] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2011] [Accepted: 10/31/2011] [Indexed: 12/17/2022]
|
50
|
Morales-Medina JC, Dumont Y, Benoit CE, Bastianetto S, Flores G, Fournier A, Quirion R. Role of neuropeptide Y Y1 and Y2 receptors on behavioral despair in a rat model of depression with co-morbid anxiety. Neuropharmacology 2012; 62:200-8. [DOI: 10.1016/j.neuropharm.2011.06.030] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2011] [Revised: 06/28/2011] [Accepted: 06/29/2011] [Indexed: 02/08/2023]
|