1
|
Ahmed TB, Eggesbø M, Criswell R, Demmelmair H, Totzauer M, Koletzko B. The Associations of Maternal Pre-pregnancy Body Mass Index with Human Milk Fatty Acid and Phospholipid Composition in the Observational Norwegian Human Milk Study. J Nutr 2025:S0022-3166(25)00193-2. [PMID: 40228714 DOI: 10.1016/j.tjnut.2025.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/23/2025] [Accepted: 04/08/2025] [Indexed: 04/16/2025] Open
Abstract
BACKGROUND Human milk fat quality depends on its fatty acid (FA) and phospholipid (PL) composition. There is clear evidence that maternal diet influences human milk FA composition. However, the scientific literature concerning associations between pre-pregnancy body mass index (pBMI) and milk FA and PL composition remains inconclusive. OBJECTIVES This observational study aimed to identify the associations between maternal pBMI and the milk FA and choline-containing PL species composition, considering study confounders, including fish intake as a proxy for n3 long-chain polyunsaturated FA (n3-LCPUFA). METHODS We analyzed total FA and choline-containing PL-classes (Lysophosphatidylcholine, Phosphatidylcholine, and Sphingomyelin) in 628 milk samples from the Norwegian Human Milk Study birth-cohort using gas chromatography and flow-injection mass spectrometry, respectively. Multiple regression analysis assessed the relationship between pBMI and milk lipid metabolites (%FA, %PL) (reported as β=standardized regression coefficient with adjusted P-value<0.0005, B(95%CI) = unstandardized coefficient with 95% confidence interval). RESULTS Maternal pBMI showed significant association (p<0.0005) with n3-LCPUFA [β=-0.138, B(95%CI)=-0.010(-0.015,-0.005)],n6/n3LCPUFAratio[β=0.170,B(95%CI)=0.020(0.012, 0.028)], monounsaturated FA [β=0.207, B(95%CI) = 0.128(0.076, 0.180)], and corresponding PL species [%LysoPC16:1, β=0.171, B(95%CI)=0.001(0.001,0.002), %LysoPC18:1, β=0.155, B(95%CI)= 0.005(0.002,0.007)] adjusted with the study covariates. The percentages of variance explained by pBMI were 40% for the n6/n3 LCPUFA ratio, 34% for n3-LCPUFA, and 10% for monounsaturated FA. Conversely, analyses revealed no significant associations between pBMI and choline-containing PL classes. CONCLUSIONS Biological factors likely increased stearoyl-CoA desaturase activity, lower lipoprotein lipase activity, and a compensatory higher contribution of non-esterified FA from adipose tissue in mothers with pBMI ≥30 could potentially lead to the observed outcomes. Metabolic differences regarding BMI variances may influence the FA availability for mammary gland triglyceride and PL synthesis. Therefore, in addition to dietary intake, maintaining a healthy maternal pBMI may improve the nutritional quality of human milk, ultimately supporting infants' development.
Collapse
Affiliation(s)
- Talat B Ahmed
- Division of Metabolic and Nutritional Medicine, Department of Paediatrics, Dr. von Hauner Children's Hospital, LMU University Hospital, and German Center for Child and Adolescent Healthsite, Munich, Germany.
| | - Merete Eggesbø
- Department of Paraclinical Sciences, Norwegian University of Life Sciences, Norway.
| | - Rachel Criswell
- Skowhegan Family Medicine, Redington-Fairview General Hospital, Skowhegan, ME, USA.
| | - Hans Demmelmair
- Division of Metabolic and Nutritional Medicine, Department of Paediatrics, Dr. von Hauner Children's Hospital, LMU University Hospital, and German Center for Child and Adolescent Healthsite, Munich, Germany
| | - Martina Totzauer
- Division of Metabolic and Nutritional Medicine, Department of Paediatrics, Dr. von Hauner Children's Hospital, LMU University Hospital, and German Center for Child and Adolescent Healthsite, Munich, Germany
| | - Berthold Koletzko
- Division of Metabolic and Nutritional Medicine, Department of Paediatrics, Dr. von Hauner Children's Hospital, LMU University Hospital, and German Center for Child and Adolescent Healthsite, Munich, Germany.
| |
Collapse
|
2
|
Dawson BR, Mantzioris E, Connell SD, Nagelkerken I, Hall T, Mellin C. Fish by-products as reliable proxies to evaluate nutritional fatty acid contents in commercial fish fillets. Food Chem 2025; 466:142223. [PMID: 39616699 DOI: 10.1016/j.foodchem.2024.142223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/13/2024] [Accepted: 11/22/2024] [Indexed: 12/14/2024]
Abstract
Despite seafood being the primary source of long-chain omega-3 polyunsaturated fatty acids (PUFAs), the fatty acid (FA) contents of numerous exploited fish species remain unknown, partly due to the prohibitive costs associated with sourcing commercial fish fillets. We assessed whether fish by-products can reliably be used to estimate key nutritional FA contents in fillets by testing for consistent relationships between FA contents in fillet, and those in the breast, cheek, occiput, and tail tissue of three commercial coral reef fish species. Breast tissue was most suitable for estimating concentrations and proportions of FAs in the fillet due to strong and consistent relationships across FA types and species. In contrast, relationships between FA contents in the fillet and in other by-products were inconsistent across species and/or FA types. Through reducing research costs and food waste, utilising by-products will encourage FA research, particularly in tropical regions where omega-3 deficiency rates are highest.
Collapse
Affiliation(s)
- Bethany Rose Dawson
- School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Evangeline Mantzioris
- Clinical and Health Sciences and Alliance for Research in Exercise, Nutrition and Activity (ARENA), University of South Australia, Adelaide, SA 5001, Australia
| | - Sean D Connell
- School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Ivan Nagelkerken
- School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Tony Hall
- Mawson Analytical Spectrometry Services, School of Physics, Chemistry and Earth Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Camille Mellin
- School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia; South Australian Research and Development Institute (Aquatic Sciences), PO Box 120, Henley Beach, SA 5022, Australia.
| |
Collapse
|
3
|
Patra N, Barker GC, Maiti MK. Knockout of fatty acid elongase1 homeoalleles in amphidiploid Brassica juncea leads to undetectable erucic acid in seed oil. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 222:109679. [PMID: 40020602 DOI: 10.1016/j.plaphy.2025.109679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/31/2025] [Accepted: 02/19/2025] [Indexed: 03/03/2025]
Abstract
Indian mustard (Brassica juncea L.) is a major oilseed crop with considerable economic and nutritional importance globally. While its seed oil offers valuable dietary benefits due to a balanced ratio of human essential fatty acids, the traditional high oil-yielding varieties contain an elevated level of erucic acid (EA, C22:1) associated with adverse health effects. Therefore, developing low erucic acid (LEA) mustard cultivars is crucial for broader utilization and consumer safety. In this study, CRISPR/Cas9 genome editing tool was employed to disrupt the fatty acid elongase1 (FAE1) gene that encodes a key enzyme in EA biosynthesis in two high erucic acid (HEA) B. juncea cultivars, PCR7 (∼39% EA) and JD6 (∼45% EA). Targeted knockout (KO) of BjFAE1 homeoalleles (BjFAE1.1 and BjFAE1.2) in this amphidiploid plant species using CRISPR/Cas9 constructs, each carrying two guide RNAs led to generation of single (either fae1.1 or fae1.2) and double (fae1.1fae1.2) mutants. Best performing homozygous fae1.1fae1.2 KO lines showed a near-complete elimination of EA in both the cultivars (<0.5% in PCR7, undetectable in JD6) with a marked increase in nutritionally beneficial oleic acid (from ∼18% to ∼32% in PCR7, from ∼9% to ∼38% in JD6). Moreover, the content of essential fatty acids also increased substantially [linoleic acid (C18:2) 1.9-fold in PCR7 and 2.1-fold in JD6; linolenic acid (C18:3) 2.5-fold in PCR7 and 1.4-fold in JD6], suggesting rerouting of carbon flux from EA biosynthesis. Importantly, these LEA lines retained key agronomic traits like plant seed yield and oil content, matching the productivity of the unedited control elite cultivars. Our findings underscore the effectiveness of CRISPR/Cas9 technology for editing B. juncea genome, developing plant lines producing LEA seed oil with improved nutritional quality and broadening the utility of this important oilseed crop for food and non-food applications.
Collapse
Affiliation(s)
- Neelesh Patra
- Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Guy C Barker
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Mrinal K Maiti
- Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| |
Collapse
|
4
|
Witte Castro A, Couce ML, de Lamas C, López-Giménez MR, Jiménez Varas MÁ, Zozaya C, Saenz de Pipaon M. Long-chain polyunsaturated fatty acids supplementation and sepsis: a systematic review and meta-analysis. Pediatr Res 2024:10.1038/s41390-024-03579-5. [PMID: 39300278 DOI: 10.1038/s41390-024-03579-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 07/30/2024] [Accepted: 08/28/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND Long chain polyunsaturated fatty acids (LCPUFAs) have proven to be essential for development in preterm infants and have been studied for their capacity to reduce inflammation and infection rates, including sepsis in enteral and parenteral nutrition. The aim of this review and meta-analysis is to gather the information available on this subject to determine if n-3 polyunsaturated fatty acids can reduce sepsis incidence in preterm infants. METHODS This systematic review was conducted by searching in the databases MEDLINE (via PubMed), ISI-Web of Science, EMBASE, SCOPUS, SciELO, and Cochrane Library databases. We analyzed the data regarding sepsis using the Grading of Recommendations Assessment, Development and Evaluation approach to assess the quality of the evidence. RESULTS A total of 40 trials were included for review and 35 trials had the data available for quantitative analysis. LCPUFAs supplementation did not reduce incidence of sepsis (relative risk (RR), confidence interval (CI) 0.95 [0.87, 1.03] P = 0.87; I2 = 0%). These results remained consistent after the sensitivity analysis. CONCLUSION The results of this systematic review and meta-analysis indicate that LCPUFA supplementation is not associated with a significant decrease in the incidence of sepsis in premature infants. IMPACT Reviewing the information available about LCPUFA supplementation and sepsis since the results in previous Clinical Trials (CT) are inconclusive. It summarizes the results of 42 CT and we have not found conclusive results regarding sepsis in the literature. It could be of clinical interest for pediatricians and nutritionists.
Collapse
Affiliation(s)
| | - María L Couce
- Department of Forensic Sciences, Pathological Anatomy, Gynecology and Obstetrics and Pediatrics, University of Santiago de Compostela, Santiago de Compostela, Spain
- Division of Neonatology, University Clinical Hospital of Santiago de Compostela, IDIS-Sanitary Research Institute of Santiago de Compostela, RICORS-SAMID, CIBERER, Santiago de Compostela, Spain
| | - Carmela de Lamas
- Department of Forensic Sciences, Pathological Anatomy, Gynecology and Obstetrics and Pediatrics, University of Santiago de Compostela, Santiago de Compostela, Spain
| | | | | | - C Zozaya
- Neonatology, Instituto de Investigación Sanitaria del Hospital Universitario La Paz-IdiPAZ (La Paz University Hospital-Universidad Autónoma de Madrid), Madrid, Spain
| | - Miguel Saenz de Pipaon
- Neonatology, Instituto de Investigación Sanitaria del Hospital Universitario La Paz-IdiPAZ (La Paz University Hospital-Universidad Autónoma de Madrid), Madrid, Spain
| |
Collapse
|
5
|
Wang YH, Lin CW, Huang CW. Polyunsaturated Fatty Acids as Potential Treatments for COVID-19-Induced Anosmia. Biomedicines 2024; 12:2085. [PMID: 39335598 PMCID: PMC11428228 DOI: 10.3390/biomedicines12092085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Some individuals with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) experience anosmia, or loss of smell. Although the prevalence of anosmia has decreased with the emergence of the Omicron variant, it remains a significant concern. This review examines the potential role of polyunsaturated fatty acids (PUFAs), particularly omega-3 PUFAs, in treating COVID-19-induced anosmia by focusing on the underlying mechanisms of the condition. Omega-3 PUFAs are known for their anti-inflammatory, neuroprotective, and neurotransmission-enhancing properties, which could potentially aid in olfactory recovery. However, study findings are inconsistent. For instance, a placebo-controlled randomized clinical trial found no significant effect of omega-3 PUFA supplementation on olfactory recovery in patients with COVID-19-induced anosmia. These mixed results highlight the limitations of existing research, including small sample sizes, lack of placebo controls, short follow-up periods, and combined treatments. Therefore, more rigorous, large-scale studies are urgently needed to definitively assess the therapeutic potential of omega-3 PUFAs for olfactory dysfunction. Further research is also crucial to explore the broader role of PUFAs in managing viral infections and promoting sensory recovery.
Collapse
Affiliation(s)
- Yu-Han Wang
- Department of Education, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Chung-Wei Lin
- Department of Education, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Chiung-Wei Huang
- Department of Physiology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
6
|
Shawl M, Geetha T, Burnett D, Babu JR. Omega-3 Supplementation and Its Effects on Osteoarthritis. Nutrients 2024; 16:1650. [PMID: 38892583 PMCID: PMC11174396 DOI: 10.3390/nu16111650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/16/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease characterized by the destruction of the articular cartilage, resulting in a pro-inflammatory response. The progression of OA is multifactorial and is influenced by the underlying cause of inflammation, which includes but is not limited to trauma, metabolism, biology, comorbidities, and biomechanics. Although articular cartilage is the main tissue affected in osteoarthritis, the chronic inflammatory environment negatively influences the surrounding synovium, ligaments, and subchondral bone, further limiting their functional abilities and enhancing symptoms of OA. Treatment for osteoarthritis remains inconsistent due to the inability to determine the underlying mechanism of disease onset, severity of symptoms, and complicating comorbidities. In recent years, diet and nutritional supplements have gained interest regarding slowing the disease process, prevention, and treatment of OA. This is due to their anti-inflammatory properties, which result in a positive influence on pain, joint mobility, and cartilage formation. More specifically, omega-3 polyunsaturated fatty acids (PUFA) have demonstrated an influential role in the progression of OA, resulting in the reduction of cartilage destruction, inhibition of pro-inflammatory cytokine cascades, and production of oxylipins that promote anti-inflammatory pathways. The present review is focused on the assessment of evidence explaining the inflammatory processes of osteoarthritis and the influence of omega-3 supplementation to modulate the progression of osteoarthritis.
Collapse
Affiliation(s)
- Megan Shawl
- Department of Nutritional Sciences, Auburn University, Auburn, AL 36849, USA
| | - Thangiah Geetha
- Department of Nutritional Sciences, Auburn University, Auburn, AL 36849, USA
- Boshell Metabolic Diseases and Diabetes Program, Auburn University, Auburn, AL 36849, USA
| | - Donna Burnett
- Department of Nutritional Sciences, Auburn University, Auburn, AL 36849, USA
| | - Jeganathan Ramesh Babu
- Department of Nutritional Sciences, Auburn University, Auburn, AL 36849, USA
- Boshell Metabolic Diseases and Diabetes Program, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
7
|
Brozić D, Starčević K, Vranić M, Bošnjak K, Maurić Maljković M, Mašek T. Effect of Dietary Eicosapentaenoic and Docosahexaenoic Fatty Acid Supplementation during the Last Month of Gestation on Fatty Acid Metabolism and Oxidative Status in Charolais Cows and Calves. Animals (Basel) 2024; 14:1273. [PMID: 38731277 PMCID: PMC11083410 DOI: 10.3390/ani14091273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/19/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
Fatty acids (FAs) are of utmost importance in the peripartal period for the development of the central nervous and immune systems of the newborn. The transport of polyunsaturated fatty acids (PUFAs) through the placenta is considered to be minimal in ruminants. Nevertheless, the cow's FAs are the main source of FAs for the calf during gestation. This research aimed to investigate the influence of low-dose eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) supplementation during late gestation on the FA metabolism of cows and their calves. A total of 20 Charolais cows during the last month of their gestation were included in the feeding trial and were divided into a control group (CON) and an experimental group (EPA + DHA). The latter received a supplement in the amount of 100 g/day (9.1 and 7.8 g/cow/day of EPA and DHA, respectively). Supplementation of low-dose EPA and DHA alters colostrum and milk fatty acid composition through the elevation of n-3 long-chain polyunsaturated fatty acids (LC-PUFAs) without affecting milk fat and protein concentrations and oxidative status. Plasma composition in cows was significantly altered, while the same effect was not detected in calf plasma. No significant change in mRNA expression was detected for the genes fatty acid synthase (FASN) and acetyl-CoA carboxylase alpha (ACACA).
Collapse
Affiliation(s)
- Diana Brozić
- Department of Animal Nutrition and Dietetics, Faculty of Veterinary Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Kristina Starčević
- Department of Chemistry and Biochemistry, Faculty of Veterinary Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Marina Vranić
- Department of Field Crops, Forage and Grassland Production, Faculty of Agriculture, University of Zagreb, Svetošimunska Cesta 25, 10000 Zagreb, Croatia; (M.V.); (K.B.)
| | - Krešimir Bošnjak
- Department of Field Crops, Forage and Grassland Production, Faculty of Agriculture, University of Zagreb, Svetošimunska Cesta 25, 10000 Zagreb, Croatia; (M.V.); (K.B.)
| | - Maja Maurić Maljković
- Department of Animal Breeding and Livestock Production, Faculty of Veterinary Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Tomislav Mašek
- Department of Animal Nutrition and Dietetics, Faculty of Veterinary Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| |
Collapse
|
8
|
Hatem O, Kaçar ÖF, Kaçar HK, Szentpéteri JL, Marosvölgyi T, Szabó É. Trans isomeric fatty acids in human milk and their role in infant health and development. Front Nutr 2024; 11:1379772. [PMID: 38515522 PMCID: PMC10954868 DOI: 10.3389/fnut.2024.1379772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 02/27/2024] [Indexed: 03/23/2024] Open
Abstract
It is well known that long chain polyunsaturated fatty acids (LCPUFAs) play an important role in neurodevelopment in the perinatal life. The most important source of these fatty acids is the diet, however, they can also be formed in the human body from their shorter chain precursors, the essential fatty acids. Since the WHO recommends exclusive breastfeeding for the first six months after birth, the exclusive source of these fatty acids for breastfed infants is human milk, which can be influenced by the mother's diet. Unsaturated fatty acids can have either cis or trans configuration double bond in their chain with distinct physiological effects. Cis isomeric unsaturated fatty acids have several beneficial effects, while trans isomers are mostly detrimental, because of their similar structure to saturated fatty acids. Trans fatty acids (TFAs) can be further subdivided into industrial (iTFA) and ruminant-derived trans fatty acids (rTFA). However, the physiological effects of these two TFA subgroups may differ. In adults, dietary intake of iTFA has been linked to atherosclerosis, insulin resistance, obesity, chronic inflammation, and increased development of certain cancers, among other diseases. However, iTFAs can have a negative impact on health not only in adulthood but in childhood too. Results from previous studies have shown that iTFAs have a significant negative effect on LCPUFA levels in the blood of newborns and infants. In addition, iTFAs can affect the growth and development of infants, and animal studies suggest that they might even have lasting negative effects later in life. Since the only source of TFAs in the human body is the diet, the TFA content of breast milk may determine the TFA supply of breastfed infants and thus affect the levels of LCPUFAs important for neurodevelopment and the health of infants. In this review, we aim to provide an overview of the TFA content in human milk available in the literature and their potential effects on infant health and development.
Collapse
Affiliation(s)
- Okba Hatem
- Doctoral School of Health Sciences, Faculty of Health Sciences, University of Pécs, Pécs, Hungary
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pécs, Pécs, Hungary
| | - Ömer Furkan Kaçar
- Doctoral School of Health Sciences, Faculty of Health Sciences, University of Pécs, Pécs, Hungary
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pécs, Pécs, Hungary
| | - Hüsna Kaya Kaçar
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Amasya University, Amasya, Türkiye
| | - József L. Szentpéteri
- Institute of Transdisciplinary Discoveries, Medical School, University of Pécs, Pécs, Hungary
| | - Tamás Marosvölgyi
- Institute of Bioanalysis, Medical School, University of Pécs, Pécs, Hungary
| | - Éva Szabó
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pécs, Pécs, Hungary
| |
Collapse
|
9
|
Mwita FC, PrayGod G, Sanga E, Setebe T, Joseph G, Kunzi H, Webster J, Gladstone M, Searle R, Ahmed M, Hokororo A, Filteau S, Friis H, Briend A, Olsen MF. Developmental and Nutritional Changes in Children with Severe Acute Malnutrition Provided with n-3 Fatty Acids Improved Ready-to-Use Therapeutic Food and Psychosocial Support: A Pilot Study in Tanzania. Nutrients 2024; 16:692. [PMID: 38474820 PMCID: PMC10934689 DOI: 10.3390/nu16050692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/08/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Children with severe acute malnutrition (SAM) are at high risk of impaired development. Contributing causes include the inadequate intake of specific nutrients such as polyunsaturated fatty acids (PUFAs) and a lack of adequate stimulation. We conducted a pilot study assessing developmental and nutritional changes in children with SAM provided with a modified ready-to-use therapeutic food and context-specific psychosocial intervention in Mwanza, Tanzania. We recruited 82 children with SAM (6-36 months) and 88 sex- and age-matched non-malnourished children. We measured child development, using the Malawi Development Assessment Tool (MDAT), measures of family and maternal care for children, and whole-blood PUFA levels. At baseline, the mean total MDAT z-score of children with SAM was lower than non-malnourished children; -2.37 (95% confidence interval: -2.92; -1.82), as were their total n-3 fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) levels. After 8 weeks of intervention, MDAT z-scores improved in all domains, especially fine motor, among children with SAM. Total n-3 and EPA levels increased, total n-6 fatty acids decreased, and DHA remained unchanged. Family and maternal care also improved. The suggested benefits of the combined interventions on the developmental and nutritional status of children with SAM will be tested in a future trial.
Collapse
Affiliation(s)
- Fredrick Cyprian Mwita
- Mwanza Research Centre, National Institute for Medical Research, Mwanza P.O. Box 1462, Tanzania; (F.C.M.); (E.S.); (T.S.); (G.J.); (H.K.)
| | - George PrayGod
- Mwanza Research Centre, National Institute for Medical Research, Mwanza P.O. Box 1462, Tanzania; (F.C.M.); (E.S.); (T.S.); (G.J.); (H.K.)
| | - Erica Sanga
- Mwanza Research Centre, National Institute for Medical Research, Mwanza P.O. Box 1462, Tanzania; (F.C.M.); (E.S.); (T.S.); (G.J.); (H.K.)
| | - Theresia Setebe
- Mwanza Research Centre, National Institute for Medical Research, Mwanza P.O. Box 1462, Tanzania; (F.C.M.); (E.S.); (T.S.); (G.J.); (H.K.)
| | - Gaudensia Joseph
- Mwanza Research Centre, National Institute for Medical Research, Mwanza P.O. Box 1462, Tanzania; (F.C.M.); (E.S.); (T.S.); (G.J.); (H.K.)
| | - Happyness Kunzi
- Mwanza Research Centre, National Institute for Medical Research, Mwanza P.O. Box 1462, Tanzania; (F.C.M.); (E.S.); (T.S.); (G.J.); (H.K.)
| | - Jayne Webster
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK;
| | - Melissa Gladstone
- Department of Women and Children’s Health, University of Liverpool, Alder Hey Children’s Hospital, Liverpool L12 2AP, UK; (M.G.); (R.S.)
| | - Rebecca Searle
- Department of Women and Children’s Health, University of Liverpool, Alder Hey Children’s Hospital, Liverpool L12 2AP, UK; (M.G.); (R.S.)
| | - Maimuna Ahmed
- Department of Paediatrics, Bugando Medical Centre, Mwanza P.O. Box 1370, Tanzania; (M.A.); (A.H.)
| | - Adolfine Hokororo
- Department of Paediatrics, Bugando Medical Centre, Mwanza P.O. Box 1370, Tanzania; (M.A.); (A.H.)
| | - Suzanne Filteau
- Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK;
| | - Henrik Friis
- Department of Nutrition, Exercise and Sports, University of Copenhagen, 2200 Copenhagen, Denmark; (H.F.); (A.B.); (M.F.O.)
| | - André Briend
- Department of Nutrition, Exercise and Sports, University of Copenhagen, 2200 Copenhagen, Denmark; (H.F.); (A.B.); (M.F.O.)
- Tampere Centre for Child, Adolescent and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere University, Arvo Ylpön Katu 34, 33100 Tampere, Finland
| | - Mette Frahm Olsen
- Department of Nutrition, Exercise and Sports, University of Copenhagen, 2200 Copenhagen, Denmark; (H.F.); (A.B.); (M.F.O.)
- Department of Infectious Diseases, Rigshospitalet, 2100 Copenhagen, Denmark
| |
Collapse
|
10
|
Baqueiro MDN, Simino LADP, Costa JP, Panzarin C, Reginato A, Torsoni MA, Ignácio-Souza L, Milanski M, Ross MG, Coca KP, Desai M, Torsoni AS. Sex-Dependent Variations in Hypothalamic Fatty Acid Profile and Neuropeptides in Offspring Exposed to Maternal Obesity and High-Fat Diet. Nutrients 2024; 16:340. [PMID: 38337626 PMCID: PMC10857148 DOI: 10.3390/nu16030340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/03/2024] [Accepted: 01/17/2024] [Indexed: 02/12/2024] Open
Abstract
Maternal obesity and/or high-fat diet (HF) consumption can disrupt appetite regulation in their offspring, contributing to transgenerational obesity and metabolic diseases. As fatty acids (FAs) play a role in appetite regulation, we investigated the maternal and fetal levels of FAs as potential contributors to programmed hyperphagia observed in the offspring of obese dams. Female mice were fed either a control diet (CT) or HF prior to mating, and fetal and maternal blood and tissues were collected at 19 days of gestation. Elevated levels of linoleic acid were observed in the serum of HF dams as well as in the serum of their fetuses. An increased concentration of eicosadienoic acid was also detected in the hypothalamus of female HF-O fetuses. HF-O male fetuses showed increased hypothalamic neuropeptide Y (Npy) gene expression, while HF-O female fetuses showed decreased hypothalamic pro-opiomelanocortin (POMC) protein content. Both male and female fetuses exhibited reduced hypothalamic neurogenin 3 (NGN-3) gene expression. In vitro experiments confirmed that LA contributed to the decreased gene expression of Pomc and Ngn-3 in neuronal cells. During lactation, HF female offspring consumed more milk and had a higher body weight compared to CT. In summary, this study demonstrated that exposure to HF prior to and during gestation alters the FA composition in maternal serum and fetal serum and hypothalamus, particularly increasing n-6, which may play a role in the switch from POMC to NPY neurons, leading to increased weight gain in the offspring during lactation.
Collapse
Affiliation(s)
- Mayara da Nóbrega Baqueiro
- Faculdade de Ciências Aplicadas, Universidade de Campinas, UNICAMP, Limeira 13484-350, São Paulo, Brazil; (M.d.N.B.); (L.A.d.P.S.); (J.P.C.); (C.P.); (A.R.); (M.A.T.); (L.I.-S.); (M.M.)
| | - Laís Angélica de Paula Simino
- Faculdade de Ciências Aplicadas, Universidade de Campinas, UNICAMP, Limeira 13484-350, São Paulo, Brazil; (M.d.N.B.); (L.A.d.P.S.); (J.P.C.); (C.P.); (A.R.); (M.A.T.); (L.I.-S.); (M.M.)
| | - João Paulo Costa
- Faculdade de Ciências Aplicadas, Universidade de Campinas, UNICAMP, Limeira 13484-350, São Paulo, Brazil; (M.d.N.B.); (L.A.d.P.S.); (J.P.C.); (C.P.); (A.R.); (M.A.T.); (L.I.-S.); (M.M.)
| | - Carolina Panzarin
- Faculdade de Ciências Aplicadas, Universidade de Campinas, UNICAMP, Limeira 13484-350, São Paulo, Brazil; (M.d.N.B.); (L.A.d.P.S.); (J.P.C.); (C.P.); (A.R.); (M.A.T.); (L.I.-S.); (M.M.)
| | - Andressa Reginato
- Faculdade de Ciências Aplicadas, Universidade de Campinas, UNICAMP, Limeira 13484-350, São Paulo, Brazil; (M.d.N.B.); (L.A.d.P.S.); (J.P.C.); (C.P.); (A.R.); (M.A.T.); (L.I.-S.); (M.M.)
| | - Marcio Alberto Torsoni
- Faculdade de Ciências Aplicadas, Universidade de Campinas, UNICAMP, Limeira 13484-350, São Paulo, Brazil; (M.d.N.B.); (L.A.d.P.S.); (J.P.C.); (C.P.); (A.R.); (M.A.T.); (L.I.-S.); (M.M.)
| | - Letícia Ignácio-Souza
- Faculdade de Ciências Aplicadas, Universidade de Campinas, UNICAMP, Limeira 13484-350, São Paulo, Brazil; (M.d.N.B.); (L.A.d.P.S.); (J.P.C.); (C.P.); (A.R.); (M.A.T.); (L.I.-S.); (M.M.)
| | - Marciane Milanski
- Faculdade de Ciências Aplicadas, Universidade de Campinas, UNICAMP, Limeira 13484-350, São Paulo, Brazil; (M.d.N.B.); (L.A.d.P.S.); (J.P.C.); (C.P.); (A.R.); (M.A.T.); (L.I.-S.); (M.M.)
| | - Michael G. Ross
- Lundquist Institute at Harbor-UCLA Medical Center, Torrance, CA 90502, USA; (M.G.R.); (M.D.)
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles at Harbor-UCLA, Torrance, CA 90502, USA
| | - Kelly Pereira Coca
- Ana Abrao Breastfeeding Center, Escola Paulista de Enfermagem, Universidade Federal São Paulo, UNIFESP, São Paulo 04037-001, São Paulo, Brazil;
| | - Mina Desai
- Lundquist Institute at Harbor-UCLA Medical Center, Torrance, CA 90502, USA; (M.G.R.); (M.D.)
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles at Harbor-UCLA, Torrance, CA 90502, USA
| | - Adriana Souza Torsoni
- Faculdade de Ciências Aplicadas, Universidade de Campinas, UNICAMP, Limeira 13484-350, São Paulo, Brazil; (M.d.N.B.); (L.A.d.P.S.); (J.P.C.); (C.P.); (A.R.); (M.A.T.); (L.I.-S.); (M.M.)
| |
Collapse
|
11
|
Kim OY, Song J. Important roles of linoleic acid and α-linolenic acid in regulating cognitive impairment and neuropsychiatric issues in metabolic-related dementia. Life Sci 2024; 337:122356. [PMID: 38123015 DOI: 10.1016/j.lfs.2023.122356] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 12/02/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023]
Abstract
Metabolic syndrome (MetS), which is characterized by insulin resistance, high blood glucose, obesity, and dyslipidemia, is known to increase the risk of dementia accompanied by memory loss and depression. The direct pathways and specific mechanisms in the central nervous system (CNS) for addressing fatty acid imbalances in MetS have not yet been fully elucidated. Among polyunsaturated acids, linoleic acid (LA, n6-PUFA) and α-linolenic acid (ALA, n3-PUFA), which are two essential fatty acids that should be provided by food sources (e.g., vegetable oils and seeds), have been reported to regulate various cellular mechanisms including apoptosis, inflammatory responses, mitochondrial biogenesis, and insulin signaling. Furthermore, inadequate intake of LA and ALA is reported to be involved in neuropathology and neuropsychiatric diseases as well as imbalanced metabolic conditions. Herein, we review the roles of LA and ALA on metabolic-related dementia focusing on insulin resistance, dyslipidemia, synaptic plasticity, cognitive function, and neuropsychiatric issues. This review suggests that LA and ALA are important fatty acids for concurrent treatment of both MetS and neurological problems.
Collapse
Affiliation(s)
- Oh Yoen Kim
- Department of Food Science and Nutrition, Dong A University, Busan, Republic of Korea; Department of Health Sciences, Graduate School of Dong-A University, Busan, Republic of Korea.
| | - Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Seoul, Republic of Korea.
| |
Collapse
|
12
|
Zhai W, Zhao A, Wei C, Xu Y, Cui X, Zhang Y, Meng L, Sun L. Undetected Association Between Fatty Acids and Dementia with Lewy Bodies: A Bidirectional Two-Sample Mendelian Randomization Study. J Alzheimers Dis 2024; 100:1083-1097. [PMID: 38995791 DOI: 10.3233/jad-240267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
Background Although observational studies indicated connections between fatty acids (FAs) and Alzheimer's disease and dementia, uncertainty persists regarding how these relationships extend to dementia with Lewy bodies (DLB). Objective To explore the potential causal relationships between FAs and the development of DLB, thus clarifying these associations using genetic instruments to infer causality. Methods We applied a two-sample Mendelian randomization (MR) and multivariable Mendelian randomization (MVMR) approach. Genetic data were obtained from a DLB cohort, comprising 2,591 cases and 4,027 controls of European descent. Eight FAs, including linoleic acid, docosahexaenoic acid, monounsaturated fatty acid, omega-3 fatty acid, omega-6 fatty acid, polyunsaturated fatty acid, saturated fatty acid, and total fatty acid, were procured from a comprehensive GWAS of metabolic biomarkers of UK Biobank, conducted by Nightingale Health in 2020 (met-d), involving 114,999 individuals. Our analysis included inverse-variance weighted, MR-Egger, weighted-median, simple mode, and weighted-mode MR estimates. Cochran's Q-statistics, MR-PRESSO, and MR-Egger intercept test were used to quantify the heterogeneity and horizontal pleiotropy of instrumental variables. Results Only linoleic acid showed a significant genetic association with the risk of developing DLB in the univariate MR. The odds ratio for linoleic acid was 1.337 with a 95% confidence interval of 1.019-1.756 (pIVW = 0.036). Results from the MVMR showed that no FAs were associated with the incidence of DLB. Conclusions The results did not support the hypothesis that FAs could reduce the risk of developing DLB. However, elucidating the relationship between FAs and DLB risk holds potential implications for informing dietary recommendations and therapeutic approaches in DLB.
Collapse
Affiliation(s)
- Weijie Zhai
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Anguo Zhao
- Department of Urology, The Fourth Affiliated Hospital of Soochow University Medical Center of Soochow University, Suzhou Dushu Lake Hospital, Suzhou, China
| | - Chunxiao Wei
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Yanjiao Xu
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Xinran Cui
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Yan Zhang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Lingjie Meng
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Li Sun
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| |
Collapse
|
13
|
Lyu CC, Meng Y, Che HY, Suo JL, He YT, Zheng Y, Jiang H, Zhang JB, Yuan B. MSI2 Modulates Unsaturated Fatty Acid Metabolism by Binding FASN in Bovine Mammary Epithelial Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:20359-20371. [PMID: 38059915 DOI: 10.1021/acs.jafc.3c07280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
The regulation of fatty acid metabolism is crucial for milk flavor and quality. Therefore, it is important to explore the genes that play a role in fatty acid metabolism and their mechanisms of action. The RNA-binding protein Musashi2 (MSI2) is involved in the regulation of numerous biological processes and plays a regulatory role in post-transcriptional translation. However, its role in the mammary glands of dairy cows has not been reported. The present study examined MSI2 expression in mammary glands from lactating and dry milk cows. Experimental results in bovine mammary epithelial cells (BMECs) showed that MSI2 was negatively correlated with the ability to synthesize milk fat and that MSI2 decreased the content of unsaturated fatty acids (UFAs) in BMECs. Silencing of Msi2 increased triglyceride accumulation in BMECs and increased the proportion of UFAs. MSI2 affects TAG synthesis and milk fat synthesis by regulating fatty acid synthase (FASN). In addition, RNA immunoprecipitation experiments in BMECs demonstrated for the first time that MSI2 can bind to the 3'-UTR of FASN mRNA to exert a regulatory effect. In conclusion, MSI2 affects milk fat synthesis and fatty acid metabolism by regulating the triglyceride synthesis and UFA content through binding FASN.
Collapse
Affiliation(s)
- Chen-Chen Lyu
- Department of Laboratory Animals, College of Animal Sciences, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun 130062, Jilin, China
| | - Yu Meng
- Department of Laboratory Animals, College of Animal Sciences, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun 130062, Jilin, China
| | - Hao-Yu Che
- Department of Laboratory Animals, College of Animal Sciences, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun 130062, Jilin, China
| | - Jin-Long Suo
- Institute of Microsurgery on Extremities, and Department of Orthopaedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Yun-Tong He
- Department of Laboratory Animals, College of Animal Sciences, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun 130062, Jilin, China
| | - Yi Zheng
- Department of Laboratory Animals, College of Animal Sciences, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun 130062, Jilin, China
| | - Hao Jiang
- Department of Laboratory Animals, College of Animal Sciences, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun 130062, Jilin, China
| | - Jia-Bao Zhang
- Department of Laboratory Animals, College of Animal Sciences, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun 130062, Jilin, China
| | - Bao Yuan
- Department of Laboratory Animals, College of Animal Sciences, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun 130062, Jilin, China
| |
Collapse
|
14
|
Ocaña-Sánchez MF, Soto-Ojeda GA, Cocotle-Ronzón Y, Soria-Fregozo C, Sánchez-Medina A, García-Rodríguez RV, Rodríguez-Landa JF, Corro-Méndez EJ, Hernández-Lozano M. Flaxseed Oil ( Linum usitatissimum) Prevents Cognitive and Motor Damage in Rats with Hyperammonemia. Nutrients 2023; 15:4550. [PMID: 37960203 PMCID: PMC10647672 DOI: 10.3390/nu15214550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/25/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Hyperammonemia is characterized by the excessive accumulation of ammonia in the body as a result of the loss of liver detoxification, leading to the development of hepatic encephalopathy (HE). These metabolic alterations carry cognitive and motor deficits and cause neuronal damage, with no effective treatment at present. In this study, we aimed to evaluate the effect of two subacute oral administrations of flaxseed oil (0.26 and 0.52 mL/kg) on short- and long-term memory, visuospatial memory, locomotor activity, motor coordination, and the neuronal morphology of the prefrontal cortex (PFC) via tests on Wistar rats with hyperammonemia. The goal was to identify its role in the regulation of cerebral edema, without liver damage causing cerebral failure. In contrast with an ammonium-rich diet, flaxseed oil and normal foods did not cause cognitive impairment or motor alterations, as evidenced in the short-term and visuospatial memory tests. Furthermore, the flaxseed oil treatment maintained a regular neuronal morphology of the prefrontal cortex, which represents a neuroprotective effect. We conclude that the oral administration of flaxseed oil prevents cognitive and motor impairments as well as neuronal alterations in rats with hyperammonemia, which supports the potential use of this oil to ameliorate the changes that occur in hepatic encephalopathy.
Collapse
Affiliation(s)
- Marcos F. Ocaña-Sánchez
- Programa de Doctorado en Ciencias Biomédicas, Centro de Investigaciones Biomédicas, Universidad Veracruzana, Xalapa 91190, Mexico
- Facultad de Química Farmacéutica Biológica, Universidad Veracruzana, Xalapa 91090, Mexico; (G.A.S.-O.); (Y.C.-R.)
| | - Gabriel A. Soto-Ojeda
- Facultad de Química Farmacéutica Biológica, Universidad Veracruzana, Xalapa 91090, Mexico; (G.A.S.-O.); (Y.C.-R.)
| | - Yolanda Cocotle-Ronzón
- Facultad de Química Farmacéutica Biológica, Universidad Veracruzana, Xalapa 91090, Mexico; (G.A.S.-O.); (Y.C.-R.)
| | - Cesar Soria-Fregozo
- Laboratorio Ciencias Biomédicas/área Histología y Psicobiología, Departamento de Ciencias de la Tierra y de la Vida, Centro Universitario de los Lagos, Universidad de Guadalajara, Lagos de Moreno 47460, Mexico;
| | - Alberto Sánchez-Medina
- Instituto de Química Aplicada, Universidad Veracruzana, Xalapa 91190, Mexico; (A.S.-M.); (R.V.G.-R.)
| | - Rosa V. García-Rodríguez
- Instituto de Química Aplicada, Universidad Veracruzana, Xalapa 91190, Mexico; (A.S.-M.); (R.V.G.-R.)
| | | | - Erick J. Corro-Méndez
- Facultad de Ciencias Biológicas y Agropecuarias, Universidad Veracruzana, Amatlán 94945, Mexico;
| | - Minerva Hernández-Lozano
- Facultad de Química Farmacéutica Biológica, Universidad Veracruzana, Xalapa 91090, Mexico; (G.A.S.-O.); (Y.C.-R.)
| |
Collapse
|
15
|
Abedimanesh N, Motlagh B, Hejazi J, Eskandari MR, Asghari-Jafarabadi M, Mazloomzadeh S. Biomarker-based validation of a food frequency questionnaire for the assessment of omega-3 fatty acid status in a healthy Iranian population. Sci Rep 2023; 13:14813. [PMID: 37684272 PMCID: PMC10491660 DOI: 10.1038/s41598-023-41623-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
There is no valid instrument to assess n-3 polyunsaturated fatty acids (n-3 PUFAs) intake in Iran. This study aims to develop a food frequency questionnaire (FFQ) that estimates the intake of n-3 PUFA and validate it in a healthy Iranian population based on the n-3 PUFA content of red blood cells (RBCs) and a 3-day food record (FR). A healthy population (n = 221) was recruited between February and July 2021. Participants completed the new FFQ and 3-day FR to evaluate the average intake of n-3 PUFAs. We used gas chromatography to assess the n-3 PUFA content of RBCs. To validate the FFQ based on FR and biomarker as references, the correlation coefficient was calculated. According to the Bland-Altman plots, a good agreement was found between the new FFQ and FR. Moreover, absolute intake values of ALA, EPA, DPA, DHA, and total n-3 PUFAs based on FFQ were positively correlated to their respective RBC membrane levels (coefficients between 0.205 and 0.508, p < 0.005) and FR (coefficients between 0.771 and 0.827, p < 0.001). This new FFQ is a valid instrument that can be applied to estimate the n-3 PUFA status of healthy Iranian adults.
Collapse
Affiliation(s)
- Nasim Abedimanesh
- Social Determinants of Health Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.
| | - Behrooz Motlagh
- Department of Clinical Biochemistry, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Jalal Hejazi
- Department of Nutrition, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mohammad Reza Eskandari
- Department of Pharmacology and Toxicology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mohammad Asghari-Jafarabadi
- Cabrini Research, Cabrini Health, Malvern, VIC, 3144, Australia
- School of Public Health and Preventative Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, 3800, Australia
- Department of Psychiatry, School of Clinical Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, 3168, Australia
| | | |
Collapse
|
16
|
Liu N, He Y, Zhao F, Li X, Chen Y, Jiang B, Wei M, Li D, Cai L. Association between maternal erythrocyte PUFAs during pregnancy and neurodevelopment in children at 2 years of age: a birth cohort study. Food Funct 2023; 14:7938-7945. [PMID: 37552113 DOI: 10.1039/d3fo01853a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
Background: Previous studies on prenatal polyunsaturated fatty acids (PUFAs) and children's neurodevelopment have shown inconsistent results, and evidence from the Asian population is scarce. Objective: To investigate the association between maternal erythrocyte PUFAs and neurodevelopment in children in the Chinese population. Methods: We included 242 mother-child pairs from the Yuexiu birth cohort. The composition of maternal erythrocyte fatty acids during pregnancy was measured by gas chromatography. Each PUFA was divided into 3 tertiles. Neurodevelopment in children was evaluated with the Ages and Stages Questionnaire at 2 years of age, including 5 domains of development: communication, gross motor, fine motor, problem solving, and personal-social skills. Results: Maternal eicosapentaenoic acid (EPA) [OR (95% CI): 0.34 (0.15, 0.74) for tertile 2, and 0.31 (0.13, 0.70) for tertile 3] was associated with a reduced risk of potential developmental delay in gross motor skills. Conversely, arachidonic acid (AA) [OR (95% CI): 2.54 (1.17, 5.70) for tertile 3] was associated with an increased risk of potential developmental delay in personal-social skills. The ratio of AA/EPA [OR (95% CI): 2.64 (1.18, 6.15) for tertile 3] was associated with an increased risk of potential developmental delay in gross motor skills. No significant association was found between other PUFAs and neurodevelopment. Conclusion: This birth cohort has first shown a beneficial association between maternal EPA and gross motor skills of children. Meanwhile, maternal AA and the ratio of AA/EPA have negative associations with neurodevelopment in children.
Collapse
Affiliation(s)
- Nan Liu
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, China.
- Shenzhen Nanshan Maternity and Child Healthcare Hospital, Shenzhen, China
| | - Yannan He
- Institute of Nutrition & Health, Qingdao University, Qingdao, China
| | - Feng Zhao
- Center of Lipid & Chronic Diseases, Suzhou Industrial Technology Research Institute, Zhejiang University, Hangzhou, China
| | - Xiaoxu Li
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, China.
| | - Yujing Chen
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, China.
| | - Bibo Jiang
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, China.
| | - Min Wei
- Shenzhen Nanshan Maternity and Child Healthcare Hospital, Shenzhen, China
| | - Duo Li
- Institute of Nutrition & Health, Qingdao University, Qingdao, China
| | - Li Cai
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
17
|
Sakr HF, Sirasanagandla SR, Das S, Bima AI, Elsamanoudy AZ. Insulin Resistance and Hypertension: Mechanisms Involved and Modifying Factors for Effective Glucose Control. Biomedicines 2023; 11:2271. [PMID: 37626767 PMCID: PMC10452601 DOI: 10.3390/biomedicines11082271] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/18/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023] Open
Abstract
Factors such as aging, an unhealthy lifestyle with decreased physical activity, snacking, a standard Western diet, and smoking contribute to raising blood pressure to a dangerous level, increasing the risk of coronary artery disease and heart failure. Atherosclerosis, or aging of the blood vessels, is a physiological process that has accelerated in the last decades by the overconsumption of carbohydrates as the primary sources of caloric intake, resulting in increased triglycerides and VLDL-cholesterol and insulin spikes. Classically, medications ranging from beta blockers to angiotensin II blockers and even calcium channel blockers were used alone or in combination with lifestyle modifications as management tools in modern medicine to control arterial blood pressure. However, it is not easy to control blood pressure or the associated complications. A low-carbohydrate, high-fat (LCHF) diet can reduce glucose and insulin spikes, improve insulin sensitivity, and lessen atherosclerosis risk factors. We reviewed articles describing the etiology of insulin resistance (IR) and its impact on arterial blood pressure from databases including PubMed, PubMed Central, and Google Scholar. We discuss how the LCHF diet is beneficial to maintaining arterial blood pressure at normal levels, slowing down the progression of atherosclerosis, and reducing the use of antihypertensive medications. The mechanisms involved in IR associated with hypertension are also highlighted.
Collapse
Affiliation(s)
- Hussein F. Sakr
- Department of Physiology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman
| | - Srinivasa Rao Sirasanagandla
- Department of Human and Clinical Anatomy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman; (S.R.S.); (S.D.)
| | - Srijit Das
- Department of Human and Clinical Anatomy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman; (S.R.S.); (S.D.)
| | - Abdulhadi I. Bima
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah 21465, Saudi Arabia; (A.I.B.); (A.Z.E.)
| | - Ayman Z. Elsamanoudy
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah 21465, Saudi Arabia; (A.I.B.); (A.Z.E.)
| |
Collapse
|
18
|
Wang Q, Wang X. The Effects of a Low Linoleic Acid/α-Linolenic Acid Ratio on Lipid Metabolism and Endogenous Fatty Acid Distribution in Obese Mice. Int J Mol Sci 2023; 24:12117. [PMID: 37569494 PMCID: PMC10419107 DOI: 10.3390/ijms241512117] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/19/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
A reduced risk of obesity and metabolic syndrome has been observed in individuals with a low intake ratio of linoleic acid/α-linolenic acid (LA/ALA). However, the influence of a low ratio of LA/ALA intake on lipid metabolism and endogenous fatty acid distribution in obese patients remains elusive. In this investigation, 8-week-old C57BL/6J mice were randomly assigned to four groups: low-fat diet (LFD) as a control, high-fat diet (HFD), high-fat diet with a low LA/ALA ratio (HFD+H3L6), and high-fat diet with a high LA/ALA ratio (HFD+L3H6) for 16 weeks. Our results show that the HFD+H3L6 diet significantly decreased the liver index of HFD mice by 3.51%, as well as the levels of triacylglycerols (TGs) and low-density lipoprotein cholesterol (LDL-C) by 15.67% and 10.02%, respectively. Moreover, the HFD+H3L6 diet reduced the pro-inflammatory cytokines interleukin-6 (IL-6) level and aspartate aminotransferase/alanine aminotransferase (AST/ALT) ratio and elevated the level of superoxide dismutase (SOD) in the liver. The HFD+H3L6 diet also resulted in the downregulation of fatty acid synthetase (FAS) and sterol regulatory element binding proteins-1c (SREBP-1c) expression and the upregulation of peroxisome proliferator-activated receptor-α (PPAR-α) and acyl-CoA oxidase 1 (ACOX1) gene expression in the liver. The low LA/ALA ratio diet led to a notable increase in the levels of ALA and its downstream derivative docosahexaenoic acid (DHA) in the erythrocyte, liver, perienteric fat, epididymal fat, perirenal fat, spleen, brain, heart, and gastrocnemius, with a strong positive correlation. Conversely, the accumulation of LA in abdominal fat was more prominent, and a high LA/ALA ratio diet exacerbated the deposition effect of LA. In conclusion, the low LA/ALA ratio not only regulated endogenous fatty acid levels but also upregulated PPAR-α and ACOX1 and downregulated SREBP-1c and FAS gene expression levels, thus maintaining lipid homeostasis. Optimizing dietary fat intake is important in studying lipid nutrition. These research findings emphasize the significance of understanding and optimizing dietary fat intake.
Collapse
Affiliation(s)
| | - Xingguo Wang
- State Key Laboratory of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
19
|
Gsoellpointner M, Thanhaeuser M, Eibensteiner F, Ristl R, Jilma B, Fuiko R, Brandstetter S, Berger A, Haiden N. Polyunsaturated Fatty Acid Intake during Complementary Feeding and Neurodevelopmental Outcome in Very Low Birth Weight Infants. Nutrients 2023; 15:3141. [PMID: 37513559 PMCID: PMC10385005 DOI: 10.3390/nu15143141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/09/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Polyunsaturated fatty acids (PUFAs) are vital for brain development, yet limited knowledge exists regarding PUFA intake during complementary feeding (CF) and its impact on neurodevelopmental outcomes in very low birth weight (VLBW) infants. This secondary analysis of a randomized intervention trial, aimed to investigate the association between dietary intake of total PUFAs, arachidonic acid (AA), and docosahexaenoic acid (DHA) during CF and neurodevelopmental outcomes at 12 and 24 months of corrected age (CA). Dietary intakes were assessed using monthly 3 day dietary protocols from 3 to 12 months CA. Neurodevelopmental outcome was evaluated using the Bayley Scales of Infant Development-III. Among the 177 randomized patients, PUFA intake and neurodevelopmental outcomes were evaluated in 140 (79%) infants. Higher total PUFA and DHA intakes significantly correlated with improved cognitive and motor function at 12 months CA, while increased AA intake notably enhanced motor scores at 12 months CA. However, median dietary intakes of AA and DHA (AA: 53.50-84.25 mg/d; DHA: 51.47-76.23 mg/d) fell short of recommended levels (AA: 140 mg/d; DHA: 100 mg/d) at any of the investigated timepoints. These findings emphasize the need to enhance total PUFA, DHA and AA intakes during CF, ensuring adherence to guidelines and unlocking the potential to improve neurodevelopmental outcomes in VLBW infants.
Collapse
Affiliation(s)
| | - Margarita Thanhaeuser
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, 1090 Vienna, Austria
| | - Fabian Eibensteiner
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, 1090 Vienna, Austria
| | - Robin Ristl
- Center for Medical Data Science, Medical University of Vienna, 1090 Vienna, Austria
| | - Bernd Jilma
- Department of Clinical Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Renate Fuiko
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, 1090 Vienna, Austria
| | - Sophia Brandstetter
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, 1090 Vienna, Austria
| | - Angelika Berger
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, 1090 Vienna, Austria
| | - Nadja Haiden
- Department of Neonatology, Kepler University Hospital, Johannes Kepler University, 4020 Linz, Austria
| |
Collapse
|
20
|
Mercola J, D'Adamo CR. Linoleic Acid: A Narrative Review of the Effects of Increased Intake in the Standard American Diet and Associations with Chronic Disease. Nutrients 2023; 15:3129. [PMID: 37513547 PMCID: PMC10386285 DOI: 10.3390/nu15143129] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/20/2023] [Accepted: 06/25/2023] [Indexed: 07/30/2023] Open
Abstract
The intake of linoleic acid (LA) has increased dramatically in the standard American diet. LA is generally promoted as supporting human health, but there exists controversy regarding whether the amount of LA currently consumed in the standard American diet supports human health. The goal of this narrative review is to explore the mechanisms that underlie the hypothesis that excessive LA intake may harm human health. While LA is considered to be an essential fatty acid and support health when consumed in modest amounts, an excessive intake of LA leads to the formation of oxidized linoleic acid metabolites (OXLAMs), impairments in mitochondrial function through suboptimal cardiolipin composition, and likely contributes to many chronic diseases that became an epidemic in the 20th century, and whose prevalence continues to increase. The standard American diet comprises 14 to 25 times more omega-6 fatty acids than omega-3 fatty acids, with the majority of omega-6 intake coming from LA. As LA consumption increases, the potential for OXLAM formation also increases. OXLAMs have been associated with various illnesses, including cardiovascular disease, cancer, and Alzheimer's disease, among others. Lowering dietary LA intake can help reduce the production and accumulation of OXLAMs implicated in chronic diseases. While there are other problematic components in the standard American diet, the half-life of LA is approximately two years, which means the damage can be far more persistent than other dietary factors, and the impact of reducing excessive LA intake takes time. Therefore, additional research-evaluating approaches to reduce OXLAM formation and cardiolipin derangements following LA consumption are warranted.
Collapse
Affiliation(s)
- Joseph Mercola
- Natural Health Partners, LLC, 125 SW 3rd Place, Cape Coral, FL 33991, USA
| | - Christopher R D'Adamo
- Department of Family and Community Medicine, Center for Integrative Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
21
|
Stråvik M, Gustin K, Barman M, Levi M, Sandin A, Wold AE, Sandberg AS, Kippler M, Vahter M. Biomarkers of seafood intake during pregnancy - Pollutants versus fatty acids and micronutrients. ENVIRONMENTAL RESEARCH 2023; 225:115576. [PMID: 36878269 DOI: 10.1016/j.envres.2023.115576] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Intake of fish and seafood during pregnancy may have certain beneficial effects on fetal development, but measurement of intake using questionnaires is unreliable. Here, we assessed several candidate biomarkers of seafood intake, including long-chain omega 3 fatty acids (n-3 LCPUFA), selenium, iodine, methylmercury, and different arsenic compounds, in 549 pregnant women (gestational week 29) in the prospective birth cohort NICE (Nutritional impact on Immunological maturation during Childhood in relation to the Environment). Proportions of the fatty acids eicosapentaenoic acid (EPA), docosapentaenoic acid (DPA), and docosahexaenoic acid (DHA) in erythrocytes were measured using gas chromatography with flame ionization detector. Selenium was measured in blood plasma and erythrocytes, mercury and arsenic in erythrocytes, and iodine and several arsenic compounds in urine, using inductively coupled plasma mass spectrometry, arsenic compounds after first being separated by ion exchange high-performance liquid chromatography (HPLC). Each biomarker was related to intake of total seafood and to intake of fatty and lean fish, and shellfish in third trimester, estimated from a semi-quantitative food frequency questionnaire filled out in gestational week 34. The pregnant women reported a median total seafood intake of 184 g/week (5th-95th percentiles: 34-465 g/week). This intake correlated most strongly with erythrocyte mercury concentrations (rho = 0.49, p < 0.001), consisting essentially of methylmercury, followed by total arsenic in erythrocytes (rho = 0.34, p < 0.001), and arsenobetaine in urine (rho = 0.33, p < 0.001), the main form of urinary arsenic. These biomarkers correlated well with intake of both fatty fish, lean fish, and shellfish. Erythrocyte DHA and plasma selenium correlated, although weakly, mainly with fatty fish (rho = 0.25 and 0.22, respectively, both p < 0.001). In conclusion, elevated concentrations of erythrocyte mercury and urinary arsenobetaine can be useful indicators of seafood intake, more so than the n-3 LCPUFAs. However, the relative importance of the biomarkers may differ depending on the type and amount of seafood consumed.
Collapse
Affiliation(s)
- Mia Stråvik
- Department of Life Sciences, Food and Nutrition Science, Chalmers University of Technology, 412 96, Gothenburg, Sweden.
| | - Klara Gustin
- Institute of Environmental Medicine, Unit of Metals and Health, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Malin Barman
- Department of Life Sciences, Food and Nutrition Science, Chalmers University of Technology, 412 96, Gothenburg, Sweden; Institute of Environmental Medicine, Unit of Metals and Health, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Michael Levi
- Institute of Environmental Medicine, Unit of Metals and Health, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Anna Sandin
- Department of Clinical Science, Pediatrics, Sunderby Research Unit, Umeå University, 901 87, Umeå, Sweden
| | - Agnes E Wold
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 413 90, Gothenburg, Sweden
| | - Ann-Sofie Sandberg
- Department of Life Sciences, Food and Nutrition Science, Chalmers University of Technology, 412 96, Gothenburg, Sweden
| | - Maria Kippler
- Institute of Environmental Medicine, Unit of Metals and Health, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Marie Vahter
- Institute of Environmental Medicine, Unit of Metals and Health, Karolinska Institutet, 171 77, Stockholm, Sweden
| |
Collapse
|
22
|
Gray NL, Stoodley I, Wood LG, Collins CE, Brown LJ, Rae KM, Pringle KG, Schumacher TL. Omega-3 Fatty Acids during Pregnancy in Indigenous Australian Women of the Gomeroi Gaaynggal Cohort. Nutrients 2023; 15:nu15081943. [PMID: 37111163 PMCID: PMC10145055 DOI: 10.3390/nu15081943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/06/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Higher dietary intakes of Omega-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFAs) have been linked to lower rates of preterm birth and preeclampsia. The aim of this analysis was to describe dietary intake and fractions of red blood cell (RBC) membrane LC-PUFAs during pregnancy in a cohort of Indigenous Australian women. Maternal dietary intake was assessed using two validated dietary assessment tools and quantified using the AUSNUT (Australian Food and Nutrient) 2011-2013 database. Analysis from a 3-month food frequency questionnaire indicated that 83% of this cohort met national n-3 LC-PUFA recommendations, with 59% meeting alpha-linolenic acid (ALA) recommendations. No nutritional supplements used by the women contained n-3 LC-PUFAs. Over 90% of women had no detectable level of ALA in their RBC membranes, and the median Omega-3 Index was 5.5%. This analysis appears to illustrate a decline in concentrations of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) across gestation in women who had preterm birth. However, there was no visible trend in LC-PUFA fractions in women who experienced hypertension during pregnancy. Further research is needed to better understand the link between dietary intake of n-3 LC-PUFA-rich foods and the role of fatty acids in preterm birth and preeclampsia.
Collapse
Affiliation(s)
- Natalie L Gray
- School of Health Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Isobel Stoodley
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia
- Immune Health Program, Hunter Medical Research Institute, New Lambton, NSW 2305, Australia
| | - Lisa G Wood
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia
- Immune Health Program, Hunter Medical Research Institute, New Lambton, NSW 2305, Australia
| | - Clare E Collins
- School of Health Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
- Food and Nutrition Research Program, Hunter Medical Research Institute, New Lambton, NSW 2305, Australia
| | - Leanne J Brown
- Food and Nutrition Research Program, Hunter Medical Research Institute, New Lambton, NSW 2305, Australia
- Department of Rural Health, University of Newcastle, Tamworth, NSW 2340, Australia
| | - Kym M Rae
- Mater Medical Research Institute, South Brisbane, QLD 4101, Australia
- Faculty of Medicine, University of Queensland, Herston, Brisbane, QLD 4072, Australia
| | - Kirsty G Pringle
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia
- Mothers and Babies Research Program, Hunter Medical Research Institute, New Lambton, NSW 2308, Australia
| | - Tracy L Schumacher
- Food and Nutrition Research Program, Hunter Medical Research Institute, New Lambton, NSW 2305, Australia
- Department of Rural Health, University of Newcastle, Tamworth, NSW 2340, Australia
| |
Collapse
|
23
|
The Effect of a Vegan Diet on the Cardiovascular System. J Cardiovasc Dev Dis 2023; 10:jcdd10030094. [PMID: 36975858 PMCID: PMC10052889 DOI: 10.3390/jcdd10030094] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/25/2023] Open
Abstract
The vegan diet, often known as a plant-rich diet, consists primarily of plant-based meals. This dietary approach may be beneficial to one’s health and the environment and is valuable to the immune system. Plants provide vitamins, minerals, phytochemicals, and antioxidants, components that promote cell survival and immune function, allowing its defensive mechanisms to work effectively. The term “vegan diet” comprises a range of eating patterns that prioritize nutrient-rich foods such as fruits and vegetables, legumes, whole grains, nuts, and seeds. In comparison to omnivorous diets, which are often lower in such products, the vegan diet has been favorably connected with changes in cardiovascular disease (CVD) risk markers such as reduced body mass index (BMI) values, total serum cholesterol, serum glucose, inflammation, and blood pressure. Reduced intake of low-density lipoprotein (LDL), saturated fat, processed meat, and greater consumption of fiber and phytonutrients may improve cardiovascular health. However, vegans have much smaller amounts of nutrients such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), selenium, zinc, iodine, and vitamin B12, compared to non-vegans, which may lead to detrimental cardiovascular effects. This review aims to present the effect of plant-based diets (PBDs), specifically vegan diets, on the cardiovascular system.
Collapse
|
24
|
Something Smells Fishy: How Lipid Mediators Impact the Maternal-Fetal Interface and Neonatal Development. Biomedicines 2023; 11:biomedicines11010171. [PMID: 36672679 PMCID: PMC9855822 DOI: 10.3390/biomedicines11010171] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/12/2023] Open
Abstract
Normal pregnancy relies on inflammation for implantation, placentation, and parturition, but uncontrolled inflammation can lead to poor maternal and infant outcomes. Maternal diet is one modifiable factor that can impact inflammation. Omega-3 and -6 fatty acids obtained through the diet are metabolized into bioactive compounds that effect inflammation. Recent evidence has shown that the downstream products of omega-3 and -6 fatty acids may influence physiology during pregnancy. In this review, the current knowledge relating to omega-3 and omega-6 metabolites during pregnancy will be summarized.
Collapse
|
25
|
Fatty acid metabolism in liver and muscle is strongly modulated by photoperiod in Fischer 344 rats. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 238:112621. [PMID: 36525774 DOI: 10.1016/j.jphotobiol.2022.112621] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/16/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
Circadian and seasonal variations produce variations in physiological processes throughout the day and the year, respectively. In this sense, both the light and the moment of feeding are strong modulators of the central and peripheral clocks. However, little is known about its influence on certain metabolic parameters and on the composition of liver and muscle fatty acids (FA). In the present study, 24 Fischer 344 rats were exposed for 11 weeks to different photoperiods, L6, L12 and L18, with 6, 12 and 18 h of light/day, respectively. They were fed a standard diet. Serum metabolic parameters, gene expression of liver enzymes and gastrocnemius muscle involved in the synthesis, elongation, desaturation and β-oxidation of FA were analyzed. We have found that exposure to different hours of light has a clear effect on FA composition and gene expression in the liver. Mainly, the biosynthesis of unsaturated FA was altered in the L18 animals with respect to those exposed to L12, while the L6 did not show significant changes. At the muscle level, differences were observed in the concentration of mono and polyunsaturated FA. A multivariate analysis confirmed the differences between L12 and L18 in a significant way. We conclude that exposure to long days produces changes in the composition of liver and muscle FA, as well as changes in the gene expression of oxidative enzymes compared to exposure to L12, which could be a consequence of different seasonal eating patterns.
Collapse
|
26
|
Fu Y, Yang Y, Zhu L, Chen J, Yu N, Sun W, Zhao M. Dietary Intake of n-6:n-3 Polyunsaturated Fatty Acids among Pregnant Chinese Women in Different Trimesters. J Nutr Sci Vitaminol (Tokyo) 2022; 68:496-503. [PMID: 36596547 DOI: 10.3177/jnsv.68.496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This study aimed to investigate the dietary n-6:n-3 PUFA (polyunsaturated fatty acids) intake of pregnant Chinese women in different trimesters. We conducted a cross-sectional study for 300 singleton pregnant women in Hefei city, China. The dietary intake of pregnant women were measured by a 3-d food record. Energy and nutrient intake for the 3 d were calculated according to the Chinese food composition table (Standard Version). The ANOVA and Kruskal-Wallis test were performed to analyze the dietary fatty acids intake of pregnant women. In the first, second and third trimester, the intake of n-6:n-3 PUFA were 5.87±2.37, 6.03±2.89, 6.14±2.26, respectively, without significant difference (p>0.05). But it was all slightly higher than the recommendation for general population (4-6) of Chinese Nutrition Society. An adequate and balanced intake of n-6 and n-3 fatty acids, from a well-balanced diet, should be recommended for pregnant women.
Collapse
Affiliation(s)
- Yueqi Fu
- School of Nursing, Anhui Medical University
| | - Ya Yang
- Anhui No. 2 Provincial People's Hospital
| | - Liyuan Zhu
- School of Nursing, Anhui Medical University
| | - Jing Chen
- School of Nursing, Anhui Medical University
| | | | | | - Mei Zhao
- School of Nursing, Anhui Medical University
| |
Collapse
|
27
|
Ramiro-Cortijo D, Herranz Carrillo G, Gila-Diaz A, Ruvira S, Singh P, Braojos C, Martin CR, Arribas SM. Association between Adherence to the Healthy Food Pyramid and Breast Milk Fatty Acids in the First Month of Lactation. Nutrients 2022; 14:nu14245280. [PMID: 36558439 PMCID: PMC9780987 DOI: 10.3390/nu14245280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/13/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
In lactating women, breast milk (BM) fatty acids may come from the diet or stored adipose tissue. Our objective was to evaluate the influence of the adherence to the healthy food pyramid (HFP), the dietary pattern in the Mediterranean region, and the maternal body composition on the BM fatty acids pattern. Fifty breastfeeding women answered a socioeconomic survey and the adherence to the HFP questionnaire (AP-Q). In addition, they provided a BM sample at 7 ± 1, 14 ± 1, and 28 ± 1 days postpartum. The body's composition was analyzed at days 7 and 28 by bioimpedance. The BM fatty acids were analyzed by gas chromatography-mass spectroscopy. We found a negative association between the consumption of olive oil and the BM palmitic acid levels (β = -3.19 ± 1.40; p = 0.030), and the intake of cereals and legumes was positively associated with the BM saturated fatty acids (β = 11.48 ± 3.87; p = 0.005). The intake of proteins and vegetables was positively associated with the omega-3 fatty acids and negatively with the omega-6:omega-3 ratio in BM. A negative association between the maternal age (β = -0.43 ± 0.11; p = 0.001) and the α-linolenic acid (ALA) levels was observed, being overall AP-Q positively associated with the ALA levels (β = 0.39 ± 0.15; p = 0.016). Physical activity reduced both the omega-3 and omega-6 fatty acids in BM. Diet had a larger influence than the maternal body's composition on BM fatty acids during the first month of lactation, demonstrating a better adherence to the HFP and positively impacting on the omega-3 content in BM, a fact that is modulated by one's maternal age.
Collapse
Affiliation(s)
- David Ramiro-Cortijo
- Department of Physiology, Faculty of Medicine, Universidad Autónoma de Madrid, C/ Arzobispo Morcillo 2, 28029 Madrid, Spain
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA
| | - Gloria Herranz Carrillo
- Division of Neonatology, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), C/ del Profesor Martin Lagos, S/N, 28040 Madrid, Spain
| | - Andrea Gila-Diaz
- Department of Physiology, Faculty of Medicine, Universidad Autónoma de Madrid, C/ Arzobispo Morcillo 2, 28029 Madrid, Spain
| | - Santiago Ruvira
- Department of Physiology, Faculty of Medicine, Universidad Autónoma de Madrid, C/ Arzobispo Morcillo 2, 28029 Madrid, Spain
| | - Pratibha Singh
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA
| | - Cheyenne Braojos
- Department of Agricultural Chemistry and Food Science, Faculty of Science, Institute of Food Science Research (CIAL, UAM-CSIC), Universidad Autónoma de Madrid, C/ Nicolas Cabrera 9, 28049 Madrid, Spain
| | - Camilia R. Martin
- Department of Neonatology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA
| | - Silvia M. Arribas
- Department of Physiology, Faculty of Medicine, Universidad Autónoma de Madrid, C/ Arzobispo Morcillo 2, 28029 Madrid, Spain
- Correspondence:
| |
Collapse
|
28
|
Castillo Salinas F, Montaner Ramón A, Castillo Ferrer FJ, Domingo-Carnice A, Cordobilla B, Domingo JC. Erythrocyte Membrane Docosahexaenoic Acid (DHA) and Lipid Profile in Preterm Infants at Birth and Over the First Month of Life: A Comparative Study with Infants at Term. Nutrients 2022; 14:nu14234956. [PMID: 36500985 PMCID: PMC9740272 DOI: 10.3390/nu14234956] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022] Open
Abstract
An observational comparative study was designed to assess the fatty acids profile in erythrocyte membrane phospholipids of 30 preterm neonates (<32 weeks gestation) at birth and after 1 month of life versus a convenience sample of 10 infants born at term. The panel of fatty acids included the families and components of saturated fatty acids (SFAs), monounsaturated fatty acids (MUFAs), and n-6 and n-3 polyunsaturated fatty acids (PUFAs) as well as enzyme activity indexes and fatty acids ratios. At birth, the comparison of fatty acid families between preterm and term neonates showed a significantly higher content of SFAs and n-6 PUFAs, and a significantly lower content of MUFAs and n-3 PUFAs in the preterm group. After 30 days of life, significantly higher levels of n-6 PUFAs and significantly lower levels of n-3 PUFAs among preterm neonates persisted. At 30 days of birth, n-6 PUFA/n-3 PUFA and arachidonic acid (ARA) ARA/DHA remained significantly elevated, and DHA sufficiency index significantly decreased in the preterm group. The pattern of n-3 PUFA deficiency at birth and sustained for the first month of life would support the need of milk banking fortified with DHA and the use of DHA supplementation in breastfeeding mothers.
Collapse
Affiliation(s)
- Félix Castillo Salinas
- Service of Neonatology, Hospital Universitari Vall d’Hebron, Universitat Autónoma de Barcelona, E-08035 Barcelona, Spain
| | - Alicia Montaner Ramón
- Service of Neonatology, Hospital Universitari Vall d’Hebron, Universitat Autónoma de Barcelona, E-08035 Barcelona, Spain
| | - Félix-Joel Castillo Ferrer
- Service of Neonatology, Hospital Universitari Vall d’Hebron, Universitat Autónoma de Barcelona, E-08035 Barcelona, Spain
| | - Adrià Domingo-Carnice
- Department of Clinical Pharmacology, Hospital Universitari de Bellvitge, L’Hospitalet de Llobregat, E-08907 Barcelona, Spain
| | - Begoña Cordobilla
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, Avinguda Diagonal 643, E-08028 Barcelona, Spain
| | - Joan Carles Domingo
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, Avinguda Diagonal 643, E-08028 Barcelona, Spain
- Correspondence: ; Tel.: +34-934021214
| |
Collapse
|
29
|
Lo Van A, Bernoud-Hubac N, Lagarde M. Esterification of Docosahexaenoic Acid Enhances Its Transport to the Brain and Its Potential Therapeutic Use in Brain Diseases. Nutrients 2022; 14:4550. [PMID: 36364810 PMCID: PMC9656701 DOI: 10.3390/nu14214550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 10/22/2023] Open
Abstract
Docosahexaenoic acid-containing lysophosphatidylcholine (DHA-LysoPC) is presented as the main transporter of DHA from blood plasma to the brain. This is related to the major facilitator superfamily domain-containing protein 2A (Mfsd2a) symporter expression in the blood-brain barrier that recognizes the various lyso-phospholipids that have choline in their polar head. In order to stabilize the DHA moiety at the sn-2 position of LysoPC, the sn-1 position was esterified by the shortest acetyl chain, creating the structural phospholipid 1-acetyl,2-docosahexaenoyl-glycerophosphocholine (AceDoPC). This small structure modification allows the maintaining of the preferential brain uptake of DHA over non-esterified DHA. Additional properties were found for AceDoPC, such as antioxidant properties, especially due to the aspirin-like acetyl moiety, as well as the capacity to generate acetylcholine in response to the phospholipase D cleavage of the polar head. Esterification of DHA within DHA-LysoPC or AceDoPC could elicit more potent neuroprotective effects against neurological diseases.
Collapse
Affiliation(s)
- Amanda Lo Van
- Univ Lyon, INSA Lyon, CNRS, LaMCoS, UMR5259, 69621 Villeurbanne, France
| | | | | |
Collapse
|
30
|
Wu G, Li Z, Zheng Y, Zhang Y, Liu L, Gong D, Geng T. Supplementing cholamine to diet lowers laying rate by promoting liver fat deposition and altering intestinal microflora in laying hens. Poult Sci 2022; 101:102084. [PMID: 36055021 PMCID: PMC9449860 DOI: 10.1016/j.psj.2022.102084] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 06/25/2022] [Accepted: 07/19/2022] [Indexed: 11/16/2022] Open
Abstract
The effects of cholamine, a raw material for synthesis of some active lipids, are unknown in poultry. To address this, 180 52-wk-old Hyline laying hens were randomly divided into 3 groups (20 replicates per group with three hens per replicate). The control group and the treatment groups (treatment 1 and 2) were fed basal diet and the diet supplemented with 500 or 1,000 mg of cholamine per kilogram of the diet for 35 d, respectively. The data showed that supplementary cholamine significantly lowered egg production, daily feed intake, serum high-density lipoprotein cholesterol level, liver index, and the percentages of C15:0 and C20:0 in fatty acid composition of liver, significantly elevated hepatic triglyceride content, the ratio of villus height to crypt depth (P < 0.05), and the percentage of C18:2n-6 and the ratio of n-6 to n-3 polyunsaturated fatty acids in liver fat (P < 0.10). Moreover, supplementary cholamine altered the relative abundance of some intestinal bacteria with a decrease in the alpha biodiversity (P < 0.10). Additionally, transcriptome analysis on the livers of the treatment vs. the control groups identified 1,151 up- and 914 down-regulated differentially expressed genes (DEGs), and pathway analysis revealed that the suppressed Notch signaling pathway and the enhanced Oxidative phosphorylation pathway were enriched with DEGs. Particularly, fat absorption, transport and oxidative phosphorylation-related DEGs (e.g., FABP1, APOA4, and PCK1) were significantly induced, but fatty acid synthesis, and lipid package and secretion-related DEGs (e.g., FASN, SCD, and MTTP) were not. In conclusion, supplementary cholamine may lower egg production by promoting hepatic lipid deposition and reducing abundances of beneficial intestinal bacteria and microfloral biodiversity in laying hens.
Collapse
Affiliation(s)
- Guiping Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Zhenhui Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Yun Zheng
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Yihui Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Long Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Daoqing Gong
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Tuoyu Geng
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu, China.
| |
Collapse
|
31
|
Simon Sarkadi L, Zhang M, Muránszky G, Vass RA, Matsyura O, Benes E, Vari SG. Fatty Acid Composition of Milk from Mothers with Normal Weight, Obesity, or Gestational Diabetes. Life (Basel) 2022; 12:life12071093. [PMID: 35888181 PMCID: PMC9323340 DOI: 10.3390/life12071093] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/15/2022] [Accepted: 07/19/2022] [Indexed: 05/31/2023] Open
Abstract
Gestation and the neonatal period are crucial periods in infant development. Many components of breast milk, including fatty acids, play an important role in strengthening the immune system. The aim of our research was to evaluate the fatty acid profiles of milk from 69 mothers, including subjects having a normal weight, obesity, or gestational diabetes. For the analyses, we used gas chromatography (GC) with flame ionization detection (FID) and GC coupled with mass spectrometry (GC/MS). The main fatty acids found in breast milk were palmitic acid (C16:0; 26-28%), linoleic acid (C18:2; 23-28%), and α-linolenic acid linoleic acid (C18:3; 15-17%), followed by myristic acid (C14:0; 5-8%), lauric acid (C12:0; 4-6%) and stearic acid (C18:0; 4-5%). The average breakdown of fatty acids was 50% saturated, 44% polyunsaturated, and 6% monounsaturated. Breast milk samples were classified using principal component analysis and linear discriminant analysis. Results showed that milk from the two major groups of obese and normal body mass index (BMI) could be distinguished with an accuracy of 89.66%. Breast milk samples of Hungarian and Ukrainian mothers showed significant differences based on the fatty acid composition, which variations are attributable to the mothers' dietary habits.
Collapse
Affiliation(s)
- Livia Simon Sarkadi
- Department of Nutrition, Hungarian University of Agriculture and Life Sciences, 1118 Budapest, Hungary; (M.Z.); (G.M.)
| | - Miaomiao Zhang
- Department of Nutrition, Hungarian University of Agriculture and Life Sciences, 1118 Budapest, Hungary; (M.Z.); (G.M.)
| | - Géza Muránszky
- Department of Nutrition, Hungarian University of Agriculture and Life Sciences, 1118 Budapest, Hungary; (M.Z.); (G.M.)
| | - Réka Anna Vass
- Department of Obstetrics and Gynecology, University of Pécs Medical School, 7624 Pecs, Hungary;
- National Laboratory for Human Reproduction, University of Pécs, 7624 Pecs, Hungary
| | - Oksana Matsyura
- Department of Pediatrics No. 2, Danylo Halytsky Lviv National Medical University, 79010 Lviv, Ukraine;
| | - Eszter Benes
- Department of Food and Analytical Chemistry, Hungarian University of Agriculture and Life Sciences, 1118 Budapest, Hungary;
| | - Sandor G. Vari
- International Research and Innovation in Medicine Program, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA;
| |
Collapse
|
32
|
Calvo-Lerma J, Selma-Royo M, Hervas D, Yang B, Intonen L, González S, Martínez-Costa C, Linderborg KM, Collado MC. Breast Milk Lipidome Is Associated With Maternal Diet and Infants' Growth. Front Nutr 2022; 9:854786. [PMID: 35873422 PMCID: PMC9296781 DOI: 10.3389/fnut.2022.854786] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Objectives The fatty acid (FA) composition of breast milk is a relevant aspect related to the development of the lactating infant. The present study aimed at exploring correlations between dietary intake of macro- and micronutrients with the FA profile in breast milk, and the possible implication for infants' growth. Study Design Breast milk samples from a cohort of lactating women were collected 7–15 days postpartum. The FA profiles in triacylglycerol (TAG) and phospholipid (PL)-rich fractions were analyzed by gas chromatography. Diet was registered during the third trimester of pregnancy by means of a food frequency questionnaire (FFQ). In addition, anthropometric measurements of infants were collected from gestation and up to 12 months postpartum. Results The FA profile in breast milk was characterized by a median of 37.4, 41.3 and 16.8% of saturated, monounsaturated, and polyunsaturated FAs, respectively. From the dietary components, zinc, iron, and B group vitamins were correlated positively with the proportion of total n-3 FAs in TAG and C20:5 n-3 in PL. Lycopene, vitamin E, zinc, and vitamin B2 showed a similar correlation with total polyunsaturated fatty acid (PUFA), total n-6 FAs, C20:4 n-6, and C18:2 n-6 in TAG. Regarding food groups, nuts showed the strongest association with several PUFA both in TAG and PL, while the vegetable group was also positively associated with C18:3 n-3. Furthermore, the concentration of linolenic acid (C18:3 n-3) and palmitic acid (C16:0) were positively associated with increased length for age (LFA) and weight for age (WFA) at 12 months compared with birth [ΔLFA −0.16 (−0.85, 0.37); ΔWFA −0.26 (−0.77, 0.21)]. Conclusions Mothers' intake of nuts, dietary sources of zinc, iron, and B group vitamins were identified as potential predictors of a high-unsaturated FA profile in breast milk. In addition, linolenic and palmitic acids in breast milk were positively associated with infants' growth in the first year of life.
Collapse
Affiliation(s)
- Joaquim Calvo-Lerma
- Institute of Agrochemistry and Food Technology (IATA-CSIC), Valencia, Spain
- *Correspondence: Joaquim Calvo-Lerma
| | - Marta Selma-Royo
- Institute of Agrochemistry and Food Technology (IATA-CSIC), Valencia, Spain
| | - David Hervas
- Department of Applied Statistics and Operations Research, and Quality, Universitat Politècnica de València, Valencia, Spain
| | - Baoru Yang
- Department of Life Technologies, Food Sciences, University of Turku, Turku, Finland
| | - Linda Intonen
- Department of Life Technologies, Food Sciences, University of Turku, Turku, Finland
| | - Sonia González
- Department of Functional Biology, University of Oviedo, Oviedo, Spain
- Diet, Microbiota and Health Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Cecilia Martínez-Costa
- Pediatric Gastroenterology and Nutrition Section, Hospital Clínico Universitario Valencia, INCLIVA Research Center, Valencia, Spain
| | - Kaisa M. Linderborg
- Department of Life Technologies, Food Sciences, University of Turku, Turku, Finland
| | - Maria Carmen Collado
- Institute of Agrochemistry and Food Technology (IATA-CSIC), Valencia, Spain
- Maria Carmen Collado
| |
Collapse
|
33
|
Fu Y, Yang Y, Zhu L, Chen J, Yu N, Zhao M. Effect of dietary n-6: n-3 Poly-Unsaturated fatty acids ratio on gestational diabetes mellitus: a prospective cohort. Gynecol Endocrinol 2022; 38:583-587. [PMID: 35549805 DOI: 10.1080/09513590.2022.2073995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
OBJECTIVE The aim of this study was to investigate the relationship between dietary n-6: n-3 poly-unsaturated fatty acids (PUFA) ratio and the risk of developing gestational diabetes mellitus (GDM). MATERIALS AND METHODS A total of 100 pregnant women were prospectively included for detailed information on dietary intake at 16-18 weeks evaluated using a three-day food record, and subsequent GDM diagnosis at 24-28 weeks. Participants were divided into two groups for analysis: GDM group (n = 22) and control group (n = 78) based on oral glucose tolerance test results performed between 24 and 28 weeks. RESULTS The average dietary n-6: n-3 PUFA ratio in the control group was 5.63 ± 2.12 and that in the GDM group was 8.35 ± 3.45, within a significant difference (p < .05). A significant difference was associated with a higher dietary n-6: n-3 PUFA ratio and GDM (adjusted odds ratio = 4.29, 95%confidence interval:1.303, 14.124). CONCLUSIONS Higher dietary n-6: n-3 PUFA ratio was associated with higher odds of GDM. Given the small sample, further studies are required to confirm this hypothesis.
Collapse
Affiliation(s)
- Yueqi Fu
- School of Nursing, Anhui Medical University, Hefei, Anhui, China
| | - Ya Yang
- Anhui No.2 Provincial People's Hospital, Hefei, Anhui, China
| | - Liyuan Zhu
- School of Nursing, Anhui Medical University, Hefei, Anhui, China
| | - Jing Chen
- School of Nursing, Anhui Medical University, Hefei, Anhui, China
| | - Ningning Yu
- School of Nursing, Anhui Medical University, Hefei, Anhui, China
| | - Mei Zhao
- School of Nursing, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
34
|
Giuffrida F, Fleith M, Goyer A, Samuel TM, Elmelegy-Masserey I, Fontannaz P, Cruz-Hernandez C, Thakkar SK, Monnard C, De Castro CA, Lavalle L, Rakza T, Agosti M, Al-Jashi I, Pereira AB, Costeira MJ, Marchini G, Vanpee M, Stiris T, Stoicescu S, Silva MG, Picaud JC, Martinez-Costa C, Domellöf M, Billeaud C. Human milk fatty acid composition and its association with maternal blood and adipose tissue fatty acid content in a cohort of women from Europe. Eur J Nutr 2022; 61:2167-2182. [PMID: 35072787 PMCID: PMC9106604 DOI: 10.1007/s00394-021-02788-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 12/17/2021] [Indexed: 11/29/2022]
Abstract
PURPOSE Human milk (HM) composition is influenced by factors, like maternal diet and body stores, among other factors. For evaluating the influence of maternal fatty acid (FA) status on milk FA composition, the correlation between FA content in HM and in maternal plasma, erythrocytes, and adipose tissue was investigated. METHODS 223 European women who delivered at term, provided HM samples over first four months of lactation. Venous blood and adipose tissue (only from mothers who consented and underwent a C-section delivery) were sampled at delivery. FAs were assessed in plasma, erythrocytes, adipose tissue, and HM. Evolution of HM FAs over lactation and correlations between FA content in milk and tissues and between mother's blood and cord blood were established. RESULTS During lactation, arachidonic acid (ARA) and docosahexaenoic acid (DHA) significantly decreased, while linoleic acid (LA), alpha-linolenic acid (ALA), and eicosapentaenoic acid (EPA) remained stable. Positive correlations were observed between HM and adipose tissue for palmitic, stearic, oleic, and polyunsaturated fatty acids (PUFAs). Correlations were found between milk and plasma for oleic, LA, ARA, ALA, DHA, monounsaturated fatty acids (MUFAs), and PUFAs. No correlation was observed between erythrocytes and HM FAs. LA and ALA were more concentrated in maternal blood than in infant blood, contrary to ARA and DHA, supporting that biomagnification of LCPUFAs may have occurred during pregnancy. CONCLUSIONS These data show that maternal adipose tissue rather than erythrocytes may serve as reservoir of PUFAs and LCPUFAs for human milk. Plasma also supplies PUFAs and LCPUFAs to maternal milk. If both, adipose tissue and plasma PUFAs, are reflection of dietary intake, it is necessary to provide PUFAs and LCPUFAs during pregnancy or even before conception and lactation to ensure availability for mothers and enough supply for the infant via HM.
Collapse
Affiliation(s)
| | - Mathilde Fleith
- Nestlé Research, Vers-chez les-Blanc, 1000 Lausanne 26, Switzerland
| | - Amélie Goyer
- Nestlé Research, Vers-chez les-Blanc, 1000 Lausanne 26, Switzerland
| | - Tinu Mary Samuel
- Nestlé Product Technology Center-Nutrition, Société des Produits Nestlé S.A., 1800 Vevey, Switzerland
| | | | - Patric Fontannaz
- Nestlé Research, Vers-chez les-Blanc, 1000 Lausanne 26, Switzerland
| | | | | | | | | | - Luca Lavalle
- Nestlé Research, Vers-chez les-Blanc, 1000 Lausanne 26, Switzerland
| | - Thameur Rakza
- Centre d’Investigation Clinique de Lille, Hôpital Jeanne de Flandre, 59777 Lille, France
| | | | | | | | | | | | | | | | | | | | - Jean-Charles Picaud
- Hospices Civils de Lyon, Neonatology, Hôpital de La Croix Rousse, Hospices civils de Lyon, 69004 Lyon, France
- Univ. Lyon, Carmen Laboratory, INSERM, INRA, Université Claude Bernard Lyon 1, 69921 Oullins, France
| | | | - Magnus Domellöf
- Department of Clinical Sciences/Pediatrics, Umeå University, Umeå, Sweden
| | - Claude Billeaud
- Neonatology & Nutrition, CIC Pédiatrique 1401 Inserm, CHU de Bordeaux, Bordeaux, France
| |
Collapse
|
35
|
Nudda A, Bee G, Correddu F, Lunesu MF, Cesarani A, Rassu SPG, Pulina G, Battacone G. Linseed supplementation during uterine and early post-natal life markedly affects fatty acid profiles of brain, liver and muscle of lambs. ITALIAN JOURNAL OF ANIMAL SCIENCE 2022. [DOI: 10.1080/1828051x.2022.2038039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Anna Nudda
- Dipartimento di Agraria, Sezione di Scienze Zootecniche, University of Sassari, Viale Italia 39, 07100, Sassari, Italy
| | - Giuseppe Bee
- Agroscope, Institute for Livestock Sciences ILS, Posieux, 1725, Switzerland
| | - Fabio Correddu
- Dipartimento di Agraria, Sezione di Scienze Zootecniche, University of Sassari, Viale Italia 39, 07100, Sassari, Italy
| | - Mondina Francesca Lunesu
- Dipartimento di Agraria, Sezione di Scienze Zootecniche, University of Sassari, Viale Italia 39, 07100, Sassari, Italy
| | - Alberto Cesarani
- Dipartimento di Agraria, Sezione di Scienze Zootecniche, University of Sassari, Viale Italia 39, 07100, Sassari, Italy
| | - Salvatore Pier Giacomo Rassu
- Dipartimento di Agraria, Sezione di Scienze Zootecniche, University of Sassari, Viale Italia 39, 07100, Sassari, Italy
| | - Giuseppe Pulina
- Dipartimento di Agraria, Sezione di Scienze Zootecniche, University of Sassari, Viale Italia 39, 07100, Sassari, Italy
| | - Gianni Battacone
- Dipartimento di Agraria, Sezione di Scienze Zootecniche, University of Sassari, Viale Italia 39, 07100, Sassari, Italy
| |
Collapse
|
36
|
Bukhari AS, Lutz LJ, Smith TJ, Hatch-McChesney A, O’Connor KL, Carrigan CT, Hawes MR, McGraw SM, Taylor KM, Champagne CM, Montain SJ. A Food-Based Intervention in a Military Dining Facility Improves Blood Fatty Acid Profile. Nutrients 2022; 14:743. [PMID: 35215396 PMCID: PMC8879849 DOI: 10.3390/nu14040743] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 02/04/2022] [Accepted: 02/05/2022] [Indexed: 02/04/2023] Open
Abstract
Enhancing dietary omega-3 highly unsaturated fatty acids (n-3 HUFA) intake may confer neuroprotection, brain resiliency, improve wound healing and promote cardiovascular health. This study determined the efficacy of substituting a few common foods (chicken meat, chicken sausage, eggs, salad dressings, pasta sauces, cooking oil, mayonnaise, and peanut butter) lower in omega-6 polyunsaturated fatty acids (n-6 PUFA) and higher in n-3 HUFA in a dining facility on blood fatty acid profile. An eight-week prospective, between-subjects (n = 77), repeated measures, parallel-arm trial was conducted. Participants self-selected foods consumed from conventionally produced foods (control), or those lower n-6 PUFA and higher n-3 HUFA versions (intervention). Changes in blood omega-3 index, eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), n-6 PUFA, lipid profile, and food satisfaction were main outcomes. Between-group differences over time were assessed using a linear mixed model to measure the effect of diet on blood serum fatty acids and inflammatory markers. The intervention group achieved a higher omega-3 index score (3.66 ± 0.71 vs. 2.95 ± 0.77; p < 0.05), lower total n-6 (10.1 ± 4.6 vs. 15.3 ± 6.7 µg/mL; p < 0.05), and higher serum concentration of EPA (5.0 ± 1.31 vs. 4.05 ± 1.56 µg/mL; p < 0.05) vs. controls. Satisfaction in intervention foods improved or remained consistent. Substitution of commonly eaten dining facility foods with like-items higher in DHA and EPA and lower in n-6 PUFA can favorably impact fatty acid status and the omega-3 index.
Collapse
Affiliation(s)
- Asma S. Bukhari
- Military Nutrition Division of the US Army Research Institute of Environmental Medicine, Natick, MA 01760, USA; (L.J.L.); (T.J.S.); (A.H.-M.); (K.L.O.); (C.T.C.); (S.M.M.); (S.J.M.)
| | - Laura J. Lutz
- Military Nutrition Division of the US Army Research Institute of Environmental Medicine, Natick, MA 01760, USA; (L.J.L.); (T.J.S.); (A.H.-M.); (K.L.O.); (C.T.C.); (S.M.M.); (S.J.M.)
| | - Tracey J. Smith
- Military Nutrition Division of the US Army Research Institute of Environmental Medicine, Natick, MA 01760, USA; (L.J.L.); (T.J.S.); (A.H.-M.); (K.L.O.); (C.T.C.); (S.M.M.); (S.J.M.)
| | - Adrienne Hatch-McChesney
- Military Nutrition Division of the US Army Research Institute of Environmental Medicine, Natick, MA 01760, USA; (L.J.L.); (T.J.S.); (A.H.-M.); (K.L.O.); (C.T.C.); (S.M.M.); (S.J.M.)
| | - Kristie L. O’Connor
- Military Nutrition Division of the US Army Research Institute of Environmental Medicine, Natick, MA 01760, USA; (L.J.L.); (T.J.S.); (A.H.-M.); (K.L.O.); (C.T.C.); (S.M.M.); (S.J.M.)
| | - Christopher T. Carrigan
- Military Nutrition Division of the US Army Research Institute of Environmental Medicine, Natick, MA 01760, USA; (L.J.L.); (T.J.S.); (A.H.-M.); (K.L.O.); (C.T.C.); (S.M.M.); (S.J.M.)
| | | | - Susan M. McGraw
- Military Nutrition Division of the US Army Research Institute of Environmental Medicine, Natick, MA 01760, USA; (L.J.L.); (T.J.S.); (A.H.-M.); (K.L.O.); (C.T.C.); (S.M.M.); (S.J.M.)
| | - Kathryn M. Taylor
- Military Performance Division of the US Army Research Institute of Environmental Medicine, Natick, MA 01760, USA;
| | - Catherine M. Champagne
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA 70808, USA;
| | - Scott J. Montain
- Military Nutrition Division of the US Army Research Institute of Environmental Medicine, Natick, MA 01760, USA; (L.J.L.); (T.J.S.); (A.H.-M.); (K.L.O.); (C.T.C.); (S.M.M.); (S.J.M.)
| |
Collapse
|
37
|
Yau SY, Yip YSL, Formolo DA, He S, Lee THY, Wen C, Hryciw DH. Chronic consumption of a high linoleic acid diet during pregnancy, lactation and post-weaning period increases depression-like behavior in male, but not female offspring. Behav Brain Res 2022; 416:113538. [PMID: 34418475 DOI: 10.1016/j.bbr.2021.113538] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 07/28/2021] [Accepted: 08/13/2021] [Indexed: 12/16/2022]
Abstract
Polyunsaturated fatty acids (PUFAs) play an essential role in brain development. Emerging data have suggested a possible link between an imbalance in PUFAs and cognitive behavioral deficits in offspring. A diet rich in high linoleic acid (HLA), typically from preconception to lactation, leads to an increase in the ratio of omega-6 (n-6) to omega-3 (n-3) fatty acids in the fetus. Arising research has suggested that a deficiency in omega-3 fatty acids is a potential risk factor for inducing autism spectrum disorder (ASD)-like behavioral deficits. However, the impact of a high n- diet during preconception, pregnancy, lactation, and post-weaning on the brain development of adolescent offspring are yet to be determined. This study examined whether consumption of an HLA diet during pregnancy, lactation, and post-weaning induced social and cognitive impairments in female and male offspring rats that resemble autistic phenotypes in humans. Female Wistar Kyoto rats were fed with either HLA or low linoleic acid (LLA) control diet for 10 weeks before mating, then continued with the same diet throughout the pregnancy and lactation period. Female and male offspring at 5 weeks old were subjected to behavioral tests to assess social interaction behavior and depression-/anxiety-like behavior. Our result showed that chronic consumption of an HLA diet did not affect sociability and social recognition memory, but induced depression-like behavior in male but not in female offspring.
Collapse
Affiliation(s)
- Suk-Yu Yau
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong; Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia.
| | - Yvette Siu Ling Yip
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong; Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
| | - Douglas A Formolo
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong; Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
| | - Siyuen He
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong; Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
| | - Thomas Ho Yin Lee
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong; Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
| | - Chunyi Wen
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong; Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
| | - Deanne H Hryciw
- Centre for Planetary Health and Food Security, Griffith University, Nathan, Queensland, Australia; School of Environment and Science, Griffith University, Nathan, QLD, Australia; Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
| |
Collapse
|
38
|
Aparicio E, Martín-Grau C, Hernández-Martinez C, Voltas N, Canals J, Arija V. Changes in fatty acid levels (saturated, monounsaturated and polyunsaturated) during pregnancy. BMC Pregnancy Childbirth 2021; 21:778. [PMID: 34789176 PMCID: PMC8596903 DOI: 10.1186/s12884-021-04251-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 10/26/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND During pregnancy a high amount of fatty acids (FA) is necessary to meet foetus demands, which vary during gestation. The present study describes the changes in maternal fatty acid concentrations during pregnancy in a sample of pregnant women. METHODS This is a longitudinal study of 479 pregnant women who were monitored from the first trimester to third trimester of pregnancy. Data on maternal characteristics were recorded and a serum sample was collected in each trimester. The fatty acid profile (saturated (SFA: total, lauric acid, myristic acid, palmitic acid, stearic acid), monounsaturated (MUFA: total, palmitoleic acid, oleic acid) and polyunsaturated fatty acids (PUFA: total omega-6 (n-6), linoleic acid, dihomo-γ-linolenic acid, arachidonic acid (AA), total omega-3 (n-3), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA)) was analysed with a gas chromatography-mass spectrometry combination. RESULTS From the first trimester to third trimester of pregnancy, a significant increase in total SFA, total MUFA and total n-6 PUFA was found. (p < 0.001). Nevertheless, the serum concentration of arachidonic acid (AA), eicosapentaenoic acid (EPA) and total n-3 PUFA decreased during gestation (p < 0.001). A statistically non-significant result was observed for the docosahexaenoic acid (DHA) serum concentration between the first and third trimesters of pregnancy. Significant correlations were observed between each total fatty acid concentrations of the first and third trimesters. CONCLUSION The circulating serum concentration of SFA, MUFA and n-6 PUFA increases during pregnancy, whereas essential fatty acids such as AA and EPA decrease, and DHA remains unchanged. Further research is necessary to understand the role played by FA throughout gestation.
Collapse
Affiliation(s)
- Estefania Aparicio
- Research Group on Nutrition and Mental Health (NUTRISAM), Universitat Rovira i Virgili, 43201, Reus, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV), 43003, Tarragona, Spain
| | - Carla Martín-Grau
- Research Group on Nutrition and Mental Health (NUTRISAM), Universitat Rovira i Virgili, 43201, Reus, Spain
- Clinical Chemistry Laboratory, Catalan Institute of Health (ICS)-Camp de Tarragona-Terres de l'Ebre, Joan XXIII University Hospital in Tarragona, 43005, Tarragona, Spain
| | - Carmen Hernández-Martinez
- Research Group on Nutrition and Mental Health (NUTRISAM), Universitat Rovira i Virgili, 43201, Reus, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV), 43003, Tarragona, Spain
- Research Center for Behavior Assessment (CRAMC), Universitat Rovira i Virgili, Tarragona, Spain
| | - Nuria Voltas
- Research Group on Nutrition and Mental Health (NUTRISAM), Universitat Rovira i Virgili, 43201, Reus, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV), 43003, Tarragona, Spain
- Research Center for Behavior Assessment (CRAMC), Universitat Rovira i Virgili, Tarragona, Spain
| | - Josefa Canals
- Research Group on Nutrition and Mental Health (NUTRISAM), Universitat Rovira i Virgili, 43201, Reus, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV), 43003, Tarragona, Spain
- Research Center for Behavior Assessment (CRAMC), Universitat Rovira i Virgili, Tarragona, Spain
| | - Victoria Arija
- Research Group on Nutrition and Mental Health (NUTRISAM), Universitat Rovira i Virgili, 43201, Reus, Spain.
- Institut d'Investigació Sanitària Pere Virgili (IISPV), 43003, Tarragona, Spain.
| |
Collapse
|
39
|
Trimester-Specific Reference Ranges for Saturated, Monounsaturated and Polyunsaturated Fatty Acids in Serum of Pregnant Women: A Cohort Study from the ECLIPSES Group. Nutrients 2021; 13:nu13114037. [PMID: 34836292 PMCID: PMC8620362 DOI: 10.3390/nu13114037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 11/17/2022] Open
Abstract
In the course of pregnancy, increasing importance is being placed on maintaining optimal fatty acid (FA) levels and particularly n-3 PUFAs to ensure correct fetal development. However, reference ranges for FA have been reported in only a few studies. Our objective is to provide quantitative reference intervals for SFAs, MUFAs, and PUFAs (n-6 and n-3) in a large population of healthy pregnant women from a developed country. A prospective study of pregnant women (n = 479) was conducted from the first trimester (T1) to the third trimester (T3). A total of 11 fatty acids were analyzed in serum by gas chromatography mass spectrometry and were expressed as absolute (µmol/L) and relative (percentage of total FA) concentration units. Serum concentrations of SFAs, MUFAs, n-6 PUFAs, n-3 PUFAs, various FA ratios, and the EFA index were determined. The reference intervals (2.5/97.5 percentiles) in absolute values from T1 ranged from 1884.32 to 8802.81 µmol/L for SFAs, from 959.91 to 2979.46 µmol/L for MUFAs, from 2325.77 to 7735.74 µmol/L for n-6 PUFAs, and from 129.01 to 495.58 µmol/L for n-3 PUFAs. These intervals mainly include the values of other studies from European populations. However, reference ranges vary according to some maternal factors. The FA levels proposed, obtained from a large sample of pregnant women, will be a useful tool for assessing the degree of adequacy of FAs in pregnant women and will help to carry out dietary interventions based on certain maternal factors.
Collapse
|
40
|
Mwakasege E, Treydte A, Hoeglinger O, Kassim N, Makule E. Fatty Acid Contents and Stability of Oyster Nut Oil ( Telfairia pedata) Compared to Flaxseed and Sunflower Oil. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2021; 2021:9985910. [PMID: 34805397 PMCID: PMC8601856 DOI: 10.1155/2021/9985910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 09/20/2021] [Accepted: 10/15/2021] [Indexed: 12/02/2022]
Abstract
The selection of healthy fats for consumption is important. Linoleic acid (LA) (omega-6) and alpha-linolenic acid (ALA) (omega-3) are essential polyunsaturated fatty acids required for the maintenance of good health; however, LA derivatives such as arachidonic acid (AA) are associated with the onset of inflammatory diseases, and both are prone to oxidation and deterioration. This study compared the fatty acid contents, peroxide value (PV), p-anisidine value (p-AV), and free fatty acids (FFA) of the oyster nut oil with refined sunflower, nonrefined sunflower, and flaxseed oil stored at 27°C for 40 days. Flaxseed oil had significantly high ALA content (59.8%) compared to 0.1-0.5% for oyster nut and sunflower oil brands. The LA content was high in sunflower brands (50.3-52.8%) compared to the oyster nut (48%) and flaxseed oil 14.7%. Oleic acid was lower in oyster nut oil (8.6%) and flaxseed oil 15.8% compared to sunflower brands (35.7-38.2%). As a consequence, oyster nut and flaxseed recorded higher PV of 4.35-2.88 mEq O2/kg and FFA 0.26-0.47% compared to sunflower brands. The p-AV recorded small values which were not significantly different in all samples. Although oyster nut is widely consumed by pregnant and lactating women across Africa, its keeping quality in nonrefined form is low compared to flaxseed and sunflower oil as shown in this study. Hence, the fatty acid contents in oyster nuts should be consumed in other alternative forms such as flour and roasted kernels rather than its oil when in nonrefined form. This study will enable the consumption balance of omega-6/omega-3 fatty acids and the keeping quality of oils which is key to health.
Collapse
Affiliation(s)
- Emmanuel Mwakasege
- Department of Food Biotechnology and Nutritional Sciences. School of Life Science and Bio-Engineering, The Nelson Mandela African Institution of Science and Technology (NM-AIST), P.O. Box 447, Arusha, Tanzania
- Department of Food Science and Technology. Mwalimu Julius K. Nyerere University of Agriculture & Technology, P.O. Box, 976 Musoma, Tanzania
| | - Anna Treydte
- Department of Sustainable Agriculture, Biodiversity Conservation and Ecosystems Management, The Nelson Mandela African Institution of Science and Technology (NM-AIST), P.O. Box 447, Arusha, Tanzania
| | - Otmar Hoeglinger
- University of Applied Sciences Upper Austria, 4600 Wels, Austria
| | - Neema Kassim
- Department of Food Biotechnology and Nutritional Sciences. School of Life Science and Bio-Engineering, The Nelson Mandela African Institution of Science and Technology (NM-AIST), P.O. Box 447, Arusha, Tanzania
| | - Edna Makule
- Department of Food Biotechnology and Nutritional Sciences. School of Life Science and Bio-Engineering, The Nelson Mandela African Institution of Science and Technology (NM-AIST), P.O. Box 447, Arusha, Tanzania
| |
Collapse
|
41
|
Marques MC, Perina NP, Mosquera EMB, Tomé TM, Lazarini T, Mariutti LRB. DHA bioaccessibility in infant formulas and preschool children milks. Food Res Int 2021; 149:110698. [PMID: 34600692 DOI: 10.1016/j.foodres.2021.110698] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 11/17/2022]
Abstract
Docosahexaenoic acid (DHA, 22:6n-3) is an essential long chain polyunsaturated fatty acid associated with the development of the nervous system that has to be consumed by infants through breast milk or complementary food sources and which consumption is also usually inadequate in preschoolers. In this work, the in vitro bioaccessibility of DHA from two commercial infant formulas (8.9 and 9.1%) and two preschool children milks (6.9 and 7.2%), with similar DHA contents but formulated with different ingredients, was not improved by the presence of egg phospholipids in the product formulation. In addition, the importance of the choice of an age-appropriate in vitro digestion method was demonstrated by comparing the DHA bioaccessibility from the infant formulas by the Infogest 2.0 standardized method and a simulated digestion method specific for infants.
Collapse
Affiliation(s)
- M C Marques
- School of Food Engineering, University of Campinas, São Paulo, Brazil
| | - N P Perina
- Medical, Scientific and Regulatory Affairs - Nestlé Nutrition / Nestlé Brazil Ltda, São Paulo, Brazil
| | - E M B Mosquera
- Medical, Scientific and Regulatory Affairs - Nestlé Nutrition / Nestlé Brazil Ltda, São Paulo, Brazil
| | - T M Tomé
- Medical, Scientific and Regulatory Affairs - Nestlé Nutrition / Nestlé Brazil Ltda, São Paulo, Brazil
| | - T Lazarini
- Medical, Scientific and Regulatory Affairs - Nestlé Nutrition / Nestlé Brazil Ltda, São Paulo, Brazil
| | - L R B Mariutti
- School of Food Engineering, University of Campinas, São Paulo, Brazil.
| |
Collapse
|
42
|
Impact of Amerind ancestry and FADS genetic variation on omega-3 deficiency and cardiometabolic traits in Hispanic populations. Commun Biol 2021; 4:918. [PMID: 34321601 PMCID: PMC8319323 DOI: 10.1038/s42003-021-02431-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 06/22/2021] [Indexed: 12/31/2022] Open
Abstract
Long chain polyunsaturated fatty acids (LC-PUFAs) have critical signaling roles that regulate dyslipidemia and inflammation. Genetic variation in the FADS gene cluster accounts for a large portion of interindividual differences in circulating and tissue levels of LC-PUFAs, with the genotypes most strongly predictive of low LC-PUFA levels at strikingly higher frequencies in Amerind ancestry populations. In this study, we examined relationships between genetic ancestry and FADS variation in 1102 Hispanic American participants from the Multi-Ethnic Study of Atherosclerosis. We demonstrate strong negative associations between Amerind genetic ancestry and LC-PUFA levels. The FADS rs174537 single nucleotide polymorphism (SNP) accounted for much of the AI ancestry effect on LC-PUFAs, especially for low levels of n-3 LC-PUFAs. Rs174537 was also strongly associated with several metabolic, inflammatory and anthropomorphic traits including circulating triglycerides (TGs) and E-selectin in MESA Hispanics. Our study demonstrates that Amerind ancestry provides a useful and readily available tool to identify individuals most likely to have FADS-related n-3 LC-PUFA deficiencies and associated cardiovascular risk.
Collapse
|
43
|
Carlson SE, Schipper L, Brenna JT, Agostoni C, Calder PC, Forsyth S, Legrand P, Abrahamse-Berkeveld M, van de Heijning BJM, van der Beek EM, Koletzko BV, Muhlhausler B. Perspective: Moving Toward Desirable Linoleic Acid Content in Infant Formula. Adv Nutr 2021; 12:2085-2098. [PMID: 34265035 PMCID: PMC8634410 DOI: 10.1093/advances/nmab076] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/19/2021] [Accepted: 05/24/2021] [Indexed: 02/07/2023] Open
Abstract
Infant formula should provide the appropriate nutrients and adequate energy to facilitate healthy infant growth and development. If conclusive data on quantitative nutrient requirements are not available, the composition of human milk (HM) can provide some initial guidance on the infant formula composition. This paper provides a narrative review of the current knowledge, unresolved questions, and future research needs in the area of HM fatty acid (FA) composition, with a particular focus on exploring appropriate intake levels of the essential FA linoleic acid (LA) in infant formula. The paper highlights a clear gap in clinical evidence as to the impact of LA levels in HM or formula on infant outcomes, such as growth, development, and long-term health. The available preclinical information suggests potential disadvantages of high LA intake in the early postnatal period. We recommend performing well-designed clinical intervention trials to create clarity on optimal levels of LA to achieve positive impacts on both short-term growth and development and long-term functional health outcomes.
Collapse
Affiliation(s)
| | | | - J Thomas Brenna
- Department of Pediatrics, University of Texas at Austin, Austin, TX, USA,Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Carlo Agostoni
- Pediatric Area, Fondazione IRCCS Ca’Granda- Ospedale Maggiore Policlinico, Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy,Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Philip C Calder
- Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | | | - Philippe Legrand
- Laboratoire de Biochimie-Nutrition Humaine, Agrocampus–French National Institute of Health and Medical Research, Rennes, France
| | | | | | - Eline M van der Beek
- Danone Nutricia Research, Utrecht, The Netherlands,Department of Pediatrics, University Medical Center, Groningen, The Netherlands
| | - Berthold V Koletzko
- Ludwig-Maximilians-Universität Munich, Department of Paediatrics, Dr von Hauner Children's Hospital, University of Munich Medical Center, Munich, Germany
| | - Beverly Muhlhausler
- Nutrition and Health Program, Health and Biosecurity, CSIRO, Adelaide, Australia,School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, Australia
| |
Collapse
|
44
|
Reis LG, Silva TH, Ravagnani GM, Martinez CHG, Salles MSV, Andrade AFC, Cônsolo NRB, Martins SMMK, de Oliveira Bussiman F, Oliveira MXS, Lanna DPD, Saran Netto A. Maternal Supplementation with Cow's Milk Naturally Enriched with PUFA Alters the Metabolism of Sows and the Fatty Acid Profile of the Offspring. Nutrients 2021; 13:1942. [PMID: 34198804 PMCID: PMC8228345 DOI: 10.3390/nu13061942] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/31/2021] [Accepted: 06/03/2021] [Indexed: 01/21/2023] Open
Abstract
The study aimed to evaluate the supplementation of gilts with cow's milk naturally enriched with n-3 and n-6 polyunsaturated fatty acids (PUFA) on reproductive outcomes, and the serum biochemical and FA profile of swine females and their offspring. During 316 days, 30 gilts were distributed into three groups: (1) Control, fed a basal diet + milk from cows without oil; (2) n-3, fed a basal diet + milk from cows fed a diet enriched with linseed oil; (3) n-6, fed a basal diet + milk from cows fed a diet enriched with soybean oil. The gilts receiving the diets containing PUFA had higher serum urea and very-low-density lipoprotein levels and lower serum total protein and low-density lipoprotein levels compared to the Control group. Females supplemented with n-3 presented higher serum palmitic acid and γ-linolenic acid levels than those fed n-6. Piglets from the Control group were heavier at birth than those from females supplemented with enriched milk. The piglets from females receiving enriched milk had 140 g higher body weight from 1 to 21 days old compared to the Control group, and greater average daily weight gain from 7 to 14 days old. The serum eicosapentaenoic acid level of piglets fed n-3 was 69% higher than those fed n-6, which reduced the AA/EPA ratio. Gilts supplemented with PUFA-enriched cow's milk showed changes in their serum palmitic and γ-linolenic acid levels, in addition to improved performance, EPA concentration and consequently reduced AA/EPA ratio in their piglets, demonstrating beneficial results for their progeny.
Collapse
Affiliation(s)
- Leriana Garcia Reis
- Department of Animal Science, School of Animal Science and Food Engineering, University of São Paulo, Avenida Duque de Caxias Norte, 225, Pirassununga 13635-900, Brazil; (L.G.R.); (T.H.S.); (N.R.B.C.); (S.M.M.K.M.)
| | - Thiago Henrique Silva
- Department of Animal Science, School of Animal Science and Food Engineering, University of São Paulo, Avenida Duque de Caxias Norte, 225, Pirassununga 13635-900, Brazil; (L.G.R.); (T.H.S.); (N.R.B.C.); (S.M.M.K.M.)
| | - Gisele Mouro Ravagnani
- Department of Animal Reproduction, School of Veterinary and Animal Science, University of São Paulo, Avenida Duque de Caxias Norte, 225, Pirassununga 13635-900, Brazil; (G.M.R.); (A.F.C.A.)
| | - Cristian Hernando Garcia Martinez
- Department of Animal Nutrition and Production, School of Veterinary and Animal Science, University of São Paulo, Avenida Duque de Caxias Norte, 225, Pirassununga 13635-900, Brazil; (C.H.G.M.); (F.d.O.B.)
| | | | - André Furugen Cesar Andrade
- Department of Animal Reproduction, School of Veterinary and Animal Science, University of São Paulo, Avenida Duque de Caxias Norte, 225, Pirassununga 13635-900, Brazil; (G.M.R.); (A.F.C.A.)
| | - Nara Regina Brandão Cônsolo
- Department of Animal Science, School of Animal Science and Food Engineering, University of São Paulo, Avenida Duque de Caxias Norte, 225, Pirassununga 13635-900, Brazil; (L.G.R.); (T.H.S.); (N.R.B.C.); (S.M.M.K.M.)
| | - Simone Maria Massami Kitamura Martins
- Department of Animal Science, School of Animal Science and Food Engineering, University of São Paulo, Avenida Duque de Caxias Norte, 225, Pirassununga 13635-900, Brazil; (L.G.R.); (T.H.S.); (N.R.B.C.); (S.M.M.K.M.)
| | - Fernando de Oliveira Bussiman
- Department of Animal Nutrition and Production, School of Veterinary and Animal Science, University of São Paulo, Avenida Duque de Caxias Norte, 225, Pirassununga 13635-900, Brazil; (C.H.G.M.); (F.d.O.B.)
| | - Mauricio Xavier Silva Oliveira
- Department of Animal Science, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691, USA;
| | - Dante Pazzanese Duarte Lanna
- Department of Animal Science, Luiz de Queiroz College Agriculture, University of São Paulo, Avenida Pádua Dias, 11, Piracicaba 13418-900, Brazil;
| | - Arlindo Saran Netto
- Department of Animal Science, School of Animal Science and Food Engineering, University of São Paulo, Avenida Duque de Caxias Norte, 225, Pirassununga 13635-900, Brazil; (L.G.R.); (T.H.S.); (N.R.B.C.); (S.M.M.K.M.)
| |
Collapse
|
45
|
Messina M, Shearer G, Petersen K. Soybean oil lowers circulating cholesterol levels and coronary heart disease risk, and has no effect on markers of inflammation and oxidation. Nutrition 2021; 89:111343. [PMID: 34171740 DOI: 10.1016/j.nut.2021.111343] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/16/2021] [Accepted: 05/05/2021] [Indexed: 10/21/2022]
Abstract
To reduce risk of coronary heart disease, replacement of saturated fats (SFAs) with polyunsaturated fats (PUFA) is recommended. Strong and concordant evidence supports this recommendation, but controversy remains. Some observational studies have reported no association between SFAs and coronary heart disease, likely because of failure to account for the macronutrient replacing SFAs, which determines the direction and strength of the observed associations. Controversy also persists about whether ω-6 (nω-6) PUFA or a high dietary ratio of nω-6 to ω-3 (nω-3) fatty acids leads to proinflammatory and pro-oxidative states. These issues are relevant to soybean oil, which is the leading edible oil consumed globally and in the United States. Soybean oil accounts for over 40% of the US intake of both essential fatty acids. We reviewed clinical and epidemiologic literature to determine the effects of soybean oil on cholesterol levels, inflammation, and oxidation. Clinical evidence indicates that soybean oil does not affect inflammatory biomarkers, nor does it increase oxidative stress. On the other hand, it has been demonstrated that when dietary SFAs are replaced with soybean oil, blood cholesterol levels are lowered. Regarding the nω-6:nω-3 dietary ratio, health agencies have consistently rejected the importance of this ratio, instead emphasizing the importance of consuming sufficient amounts of each type of fat. Thus, several lines of evidence indicate that soybean oil can positively contribute to overall health and reduction of risk of coronary heart disease.
Collapse
Affiliation(s)
- Mark Messina
- Nutrition Matters, Inc., Pittsfield, Massachusetts, USA.
| | - Gregory Shearer
- Pennsylvania State University, University Park, Pennsylvania, USA
| | - Kristina Petersen
- Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas, USA
| |
Collapse
|
46
|
Lamarre J, Cheema SK, Robertson GJ, Wilson DR. Omega-3 fatty acids accelerate fledging in an avian marine predator: a potential role of cognition. J Exp Biol 2021; 224:jeb.235929. [PMID: 33462136 PMCID: PMC7929930 DOI: 10.1242/jeb.235929] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 01/12/2021] [Indexed: 12/16/2022]
Abstract
Consuming omega-3 fatty acids (n-3 LCPUFAs) during development improves cognition in mammals, but the effect remains untested in other taxa. In aquatic ecosystems, n-3 LCPUFAs are produced by phytoplankton and bioaccumulate in the food web. Alarmingly, the warming and acidification of aquatic systems caused by climate change impair n-3 LCPUFA production, with an anticipated decrease of 80% by the year 2100. We tested whether n-3 LCPUFA consumption affects the physiology, morphology, behaviour and cognition of the chicks of a top marine predator, the ring-billed gull. Using a colony with little access to n-3 LCPUFAs, we supplemented siblings from 22 fenced nests with contrasting treatments from hatching until fledging; one sibling received n-3 LCPUFA-rich fish oil and the other, a control sucrose solution without n-3 LCPUFAs. Halfway through the nestling period, half the chicks receiving fish oil were switched to the sucrose solution to test whether n-3 LCPUFA intake remains crucial past the main growth phase (chronic versus transient treatments). Upon fledging, n-3 LCPUFAs were elevated in the blood and brains of chicks receiving the chronic treatment, but were comparable to control levels among those receiving the transient treatment. Across the entire sample, chicks with elevated n-3 LCPUFAs in their tissues fledged earlier despite their morphology and activity levels being unrelated to fledging age. Fledging required chicks to escape fences encircling their nest. We therefore interpret fledging age as a possible indicator of cognition, with chicks with improved cognition fledging earlier. These results provide insight into whether declining dietary n-3 LCPUFAs will compromise top predators' problem-solving skills, and thus their ability to survive in a rapidly changing world.
Collapse
Affiliation(s)
- Jessika Lamarre
- Cognitive and Behavioural Ecology Program, Memorial University of Newfoundland, St John's, NL, Canada, A1B 3X9
| | - Sukhinder Kaur Cheema
- Department of Biochemistry, Memorial University of Newfoundland, St John's, NL, Canada, A1B 3X9
| | - Gregory J Robertson
- Wildlife Research Division, Environment and Climate Change Canada, Mount Pearl, NL, Canada, A1N 4T3
| | - David R Wilson
- Department of Psychology, Memorial University of Newfoundland, St John's, NL, Canada, A1B 3X9
| |
Collapse
|
47
|
Abstract
Microencapsulation is a well-known technology for the lipid delivery system. It prevents the oxidation of fatty acids and maintains the quality of lipid after extraction from oil seed and processing. In flaxseed oil, the amount of ω-3 and ω-6 polyunsaturated fatty acids are 39.90–60.42% and 12.25–17.44%, respectively. A comprehensive review article on the microencapsulation of flaxseed oil has not been published yet. Realizing the great advantages of flaxseed oil, information about different technologies related to the microencapsulation of flaxseed oil and their characteristics are discussed in a comprehensive way, in this review article. To prepare the microcapsule of flaxseed oil, an emulsion of oil-water is performed along with a wall material (matrix), followed by drying with a spray-dryer or freeze-dryer. Different matrices, such as plant and animal-based proteins, maltodextrin, gum Arabic, and modified starch are used for the encapsulation of flaxseed oil. In some cases, emulsifiers, such as Tween 80 and soya lecithin are used to prepare flaxseed oil microcapsules. Physico-chemical and bio-chemical characteristics of flaxseed oil microcapsules depend on process parameters, ratio of oil and matrix, and characteristics of the matrix. As an example, the size of the microcapsule, prepared with spray-drying and freeze-drying ranges between 10–400 and 20–5000 μm, respectively. It may be considered that the comprehensive information on the encapsulation of flaxseed oil will boost the development of functional foods and biopharmaceuticals.
Collapse
|
48
|
Dawczynski C. A Study Protocol for a Parallel-Designed Trial Evaluating the Impact of Plant-Based Diets in Comparison to Animal-Based Diets on Health Status and Prevention of Non-communicable Diseases-The Nutritional Evaluation (NuEva) Study. Front Nutr 2021; 7:608854. [PMID: 33604351 PMCID: PMC7884345 DOI: 10.3389/fnut.2020.608854] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/29/2020] [Indexed: 12/16/2022] Open
Abstract
Background and Aims: Currently, there is a continuing upward trend for plant-based lifestyles in Germany and Europe. The implementation of vegetarian and vegan lifestyles is characterized by omitting defined food groups such as fish, meat, sausage (vegetarians), or dairy products and honey (vegans). This carries the risk of an undersupply of valuable nutrients. The NuEva study is designed to examine this hypothesis and to evaluate the impact of plant-based diets on health status and disease risk. Methods: The NuEva study is a parallel-designed trial with at least 55 participants for each diet (vegetarian, vegan, flexitarian [rare meat/sausage consumption, once or twice per week]), and participants who consume a traditional Western diet as the control group. In the screening period critical nutrients are identified for the studied diets by analysis of a broad spectrum of nutrients in the human samples (fatty acids, vitamins, minerals, trace elements, nutrient metabolites). Results: Based on the data from the screening period, defined menu plans, ensuring an adequate nutrient intake in accordance with the nutritional guidelines are prepared for each group. The plans are adapted and personalized to individual energy requirements based on the basal metabolic rate and physical activity level. The compliance with the NuEva concept and their impact on nutrient status and cardiovascular risk factors are validated during the intervention period of the NuEva study over 1 year. To investigate the impact of the studied diets on the microbiome, feces samples are collected at the beginning and after the 12 months intervention period (follow up: 12 months). Conclusion: The NuEva study is designed to investigate the impact of common diets on health and disease status, with focus on prevention of cardiovascular diseases. In addition, the effectiveness of the prepared nutritional coaching strategy, ensuring optimal nutrient intake in accordance with the guidelines, is validated during the intervention period of the NuEva study. Clinical Trial Registration: Registered under ClinicalTrials.gov Identifier no. NCT03582020.
Collapse
Affiliation(s)
- Christine Dawczynski
- Junior Research Group Nutritional Concepts, Institute of Nutritional Science, Friedrich Schiller University Jena, Jena, Germany.,Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD), Halle-Jena-Leipzig, Leipzig, Germany
| |
Collapse
|
49
|
Yahay M, Heidari Z, Allameh Z, Amani R. The effects of canola and olive oils consumption compared to sunflower oil, on lipid profile and hepatic steatosis in women with polycystic ovarian syndrome: a randomized controlled trial. Lipids Health Dis 2021; 20:7. [PMID: 33514384 PMCID: PMC7844999 DOI: 10.1186/s12944-021-01433-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 01/14/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Polycystic Ovarian Syndrome (PCOS) is one of the most common endocrinopathies and metabolic disorders in women during their reproductive years. It is often associated with dyslipidemia and other risk factors of cardiovascular diseases (CVD). This study was aimed to evaluate dietary intervention effects with canola and olive oils compared to sunflower oil on lipid profile and fatty liver severity among women with PCOS. METHOD This study was a 10-week intervention including 72 women with PCOS. Patients were randomly assigned to three groups for receiving 25 g/day canola, olive, or sunflower oils for 10 weeks. The primary and secondary outcomes were to assess changes in lipid profile and in fatty liver severity, respectively. RESULT At the end of the study, 72 patients with a mean age of 29.31 were analysed. Canola oil consumption resulted in a significant reduction in serum levels of TG (P = 0.002) and TC/HDL (P = 0.021), LDL/HDL (P = 0.047), and TG/HDL (P = 0.001) ratios, however, there was no significant reduction in lipid profile following olive oil consumption. Canola (P < 0.001) and olive oils (P = 0.005) could significantly reduce the fatty liver grade. Moreover, HOMA-IR in both canola (P < 0.001) and olive (P = 0.004) groups was significantly decreased. CONCLUSION In total, compared to olive and sunflower oils, significant improvements in lipid profile, liver function, and HOMA-IR were observed following canola oil consumption in women with PCOS. TRIAL REGISTRATION IR.MUI. RESEARCH REC.1397.315. Registered 30 JUNE 2019 - Retrospectively registered, https://www.irct.ir/trial/38684.
Collapse
Affiliation(s)
- Maryam Yahay
- Nutrition and Food Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.,Metabolic Liver Disease Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zahra Heidari
- Department of Biostatistics and Epidemiology, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zahra Allameh
- Department of Obstetrics and Gynecology, Medical School, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Reza Amani
- Nutrition and Food Sciences, Isfahan University of Medical Sciences, Isfahan, Iran. .,Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
50
|
Huang G, Zhang Y, Xu Q, Zheng N, Zhao S, Liu K, Qu X, Yu J, Wang J. DHA content in milk and biohydrogenation pathway in rumen: a review. PeerJ 2020; 8:e10230. [PMID: 33391862 PMCID: PMC7761261 DOI: 10.7717/peerj.10230] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 10/02/2020] [Indexed: 12/19/2022] Open
Abstract
Docosahexaenoic acid (DHA) is an essential human nutrient that may promote neural health and development. DHA occurs naturally in milk in concentrations that are influenced by many factors, including the dietary intake of the cow and the rumen microbiome. We reviewed the literature of milk DHA content and the biohydrogenation pathway in rumen of dairy cows aim to enhance the DHA content. DHA in milk is mainly derived from two sources: α-linolenic acid (ALA) occurring in the liver and consumed as part of the diet, and overall dietary intake. Rumen biohydrogenation, the lymphatic system, and blood circulation influence the movement of dietary intake of DHA into the milk supply. Rumen biohydrogenation reduces DHA in ruminal environmental and limits DHA incorporation into milk. The fat-1 gene may increase DHA uptake into the body but this lacks experimental confirmation. Additional studies are needed to define the mechanisms by which different dietary sources of DHA are associated with variations of DHA in milk, the pathway of DHA biohydrogenation in the rumen, and the function of the fat-1 gene on DHA supply in dairy cows.
Collapse
Affiliation(s)
- Guoxin Huang
- Chinese Academy of Agricultural Sciences, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Beijing, China
- Northeast Agricultural University, College of Animal Sciences and Technology, Harbin, China
| | - Yangdong Zhang
- Chinese Academy of Agricultural Sciences, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Beijing, China
| | - Qingbiao Xu
- Huazhong Agricultural University, College of Animal Sciences and Technology, Wuhan, China
| | - Nan Zheng
- Chinese Academy of Agricultural Sciences, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Beijing, China
| | - Shengguo Zhao
- Chinese Academy of Agricultural Sciences, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Beijing, China
| | - Kaizhen Liu
- Chinese Academy of Agricultural Sciences, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Beijing, China
| | - Xueyin Qu
- Tianjin Mengde Groups Co., Ltd, Tianjin, China
| | - Jing Yu
- Tianjin Mengde Groups Co., Ltd, Tianjin, China
| | - Jiaqi Wang
- Chinese Academy of Agricultural Sciences, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Beijing, China
| |
Collapse
|