1
|
Campos-Bayardo TI, Román-Rojas D, García-Sánchez A, Cardona-Muñoz EG, Sánchez-Lozano DI, Totsuka-Sutto S, Gómez-Hermosillo LF, Casillas-Moreno J, Andrade-Sierra J, Pazarín-Villaseñor L, Campos-Pérez W, Martínez-López E, Miranda-Díaz AG. The Role of TLRs in Obesity and Its Related Metabolic Disorders. Int J Mol Sci 2025; 26:2229. [PMID: 40076851 PMCID: PMC11900219 DOI: 10.3390/ijms26052229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/24/2025] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
Obesity affects the adaptability of adipose tissue (AT), impairing its ability to regulate energy and metabolism. Obesity is associated with many metabolic disorders, including dyslipidemia, hypertension, sleep disorders, non-alcoholic liver disease, and some types of cancer. Toll-like receptors (TLRs) are important in obesity and related metabolic disorders. TLRs are pattern-recognizing receptors (PRRs) involved in the innate immune system and recognize pathogen-associated molecular patterns (PAMPs) and endogenous ligands. TLRs, especially TLR2 and TLR4, are activated by fatty acids, endotoxins, and other ligands. TLR2 and TLR4 activation triggers inflammatory responses. Chronic inflammation driven by TLR activation is a hallmark of obesity and metabolic diseases. The inflammatory response triggered by TLR activation alters insulin signaling, contributing to insulin resistance, a key feature of metabolic syndrome and type 2 diabetes. Modulation of TLR activity through lifestyle changes (diet and exercise), obesity surgery, and pharmacological agents is under study as a possible therapeutic approach to controlling obesity and its complications.
Collapse
Affiliation(s)
- Tannia Isabel Campos-Bayardo
- Department of Physiology, University Center of Health Sciences, University of Guadalajara, Guadalajara 44360, Jalisco, Mexico; (T.I.C.-B.); (D.R.-R.); (A.G.-S.); (E.G.C.-M.); (D.I.S.-L.); (S.T.-S.)
| | - Daniel Román-Rojas
- Department of Physiology, University Center of Health Sciences, University of Guadalajara, Guadalajara 44360, Jalisco, Mexico; (T.I.C.-B.); (D.R.-R.); (A.G.-S.); (E.G.C.-M.); (D.I.S.-L.); (S.T.-S.)
| | - Andrés García-Sánchez
- Department of Physiology, University Center of Health Sciences, University of Guadalajara, Guadalajara 44360, Jalisco, Mexico; (T.I.C.-B.); (D.R.-R.); (A.G.-S.); (E.G.C.-M.); (D.I.S.-L.); (S.T.-S.)
| | - Ernesto Germán Cardona-Muñoz
- Department of Physiology, University Center of Health Sciences, University of Guadalajara, Guadalajara 44360, Jalisco, Mexico; (T.I.C.-B.); (D.R.-R.); (A.G.-S.); (E.G.C.-M.); (D.I.S.-L.); (S.T.-S.)
| | - Daniela Itzel Sánchez-Lozano
- Department of Physiology, University Center of Health Sciences, University of Guadalajara, Guadalajara 44360, Jalisco, Mexico; (T.I.C.-B.); (D.R.-R.); (A.G.-S.); (E.G.C.-M.); (D.I.S.-L.); (S.T.-S.)
| | - Sylvia Totsuka-Sutto
- Department of Physiology, University Center of Health Sciences, University of Guadalajara, Guadalajara 44360, Jalisco, Mexico; (T.I.C.-B.); (D.R.-R.); (A.G.-S.); (E.G.C.-M.); (D.I.S.-L.); (S.T.-S.)
| | - Luis Francisco Gómez-Hermosillo
- Department of Laparoscopic Surgery, Hospital Civil de Guadalajara, “Juan I Menchaca”, Guadalajara 44360, Jalisco, Mexico; (L.F.G.-H.); (J.C.-M.)
| | - Jorge Casillas-Moreno
- Department of Laparoscopic Surgery, Hospital Civil de Guadalajara, “Juan I Menchaca”, Guadalajara 44360, Jalisco, Mexico; (L.F.G.-H.); (J.C.-M.)
| | - Jorge Andrade-Sierra
- Department of Nephrology, National Medical Center of the West, Mexican Social Security Institute, Guadalajara 44340, Jalisco, Mexico; (J.A.-S.); (L.P.-V.)
| | - Leonardo Pazarín-Villaseñor
- Department of Nephrology, National Medical Center of the West, Mexican Social Security Institute, Guadalajara 44340, Jalisco, Mexico; (J.A.-S.); (L.P.-V.)
| | - Wendy Campos-Pérez
- Department of Molecular Biology and Genomics, Institute of Nutrigenetics and Translational Nutrigenomics, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico; (W.C.-P.); (E.M.-L.)
| | - Erika Martínez-López
- Department of Molecular Biology and Genomics, Institute of Nutrigenetics and Translational Nutrigenomics, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico; (W.C.-P.); (E.M.-L.)
| | - Alejandra Guillermina Miranda-Díaz
- Department of Physiology, University Center of Health Sciences, University of Guadalajara, Guadalajara 44360, Jalisco, Mexico; (T.I.C.-B.); (D.R.-R.); (A.G.-S.); (E.G.C.-M.); (D.I.S.-L.); (S.T.-S.)
| |
Collapse
|
2
|
Commins I, Clayton-Chubb D, Melton S, Majeed A, Kemp W, Roberts SK. Initial outcomes of a dedicated multidisciplinary non-alcoholic fatty liver disease clinic: a retrospective cohort study. Intern Med J 2023; 53:2065-2072. [PMID: 36880362 DOI: 10.1111/imj.16055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 02/12/2023] [Indexed: 03/08/2023]
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is a major healthcare burden. Real-world outcomes in dedicated tertiary care settings in Australia remain unknown. AIM To evaluate the initial outcomes of patients referred to a dedicated multidisciplinary tertiary care NAFLD clinic. METHODS Retrospective review of all adult patients with NAFLD who attended a dedicated tertiary care NAFLD clinic between January 2018 and February 2020 and who had two clinic visits and FibroScans at least 12 months apart. Demographic and health-related clinical and laboratory data were extracted from electronic medical records. Key outcome measures were serum liver chemistries, liver stiffness measurement (LSM) and weight control at 12 months. RESULTS A total of 137 patients with NAFLD were included. Median (interquartile range (IQR)) follow-up time was 392 days (343-497 days). One hundred and eleven patients (81%) achieved weight control (i.e. weight loss or stability). Markers of liver disease activity were significantly improved, including median (IQR) serum alanine aminotransferase (48 (33-76) vs 41 (26-60) U/L, P = 0.009) and aspartate aminotransferase (35 (26-54) vs 32 (25-53) U/L, P = 0.020). Median (IQR) LSM across the whole cohort was significantly improved (8.4 (5.3-11.8) vs 7.0 (4.9-10.1) kPa, P = 0.001). No significant reduction was observed in mean body weight or the frequency of metabolic risk factors. CONCLUSIONS This study highlights a new model of care for patients with NAFLD and demonstrates promising initial outcomes in relation to significant reductions in markers of liver disease severity. Although most patients achieved weight control, further refinements are needed to achieve significant weight reduction including more frequent and structured dietetic and/or pharmacotherapeutic interventions.
Collapse
Affiliation(s)
- Isabella Commins
- Department of Gastroenterology, Alfred Health, Melbourne, Australia
| | - Daniel Clayton-Chubb
- Department of Gastroenterology, Alfred Health, Melbourne, Australia
- Department of Medicine, Central Clinical School, Monash University, Melbourne, Australia
| | - Sarah Melton
- Department of Nutrition and Dietetics, Alfred Health, Melbourne, Australia
| | - Ammar Majeed
- Department of Gastroenterology, Alfred Health, Melbourne, Australia
- Department of Medicine, Central Clinical School, Monash University, Melbourne, Australia
| | - William Kemp
- Department of Gastroenterology, Alfred Health, Melbourne, Australia
- Department of Medicine, Central Clinical School, Monash University, Melbourne, Australia
| | - Stuart K Roberts
- Department of Gastroenterology, Alfred Health, Melbourne, Australia
- Department of Medicine, Central Clinical School, Monash University, Melbourne, Australia
| |
Collapse
|
3
|
Li X, Chen R, Kemper S, Brigstock DR. Production, Exacerbating Effect, and EV-Mediated Transcription of Hepatic CCN2 in NASH: Implications for Diagnosis and Therapy of NASH Fibrosis. Int J Mol Sci 2023; 24:12823. [PMID: 37629004 PMCID: PMC10454308 DOI: 10.3390/ijms241612823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/05/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Non-alcoholic steatohepatitis (NASH) is characterized by steatosis, hepatocyte ballooning, and inflammation and may progress to include increasingly severe fibrosis, which portends more serious disease and is predictive of patient mortality. Diagnostic and therapeutic options for NASH fibrosis are limited, and the underlying fibrogenic pathways are under-explored. Cell communication network factor 2 (CCN2) is a well-characterized pro-fibrotic molecule, but its production in and contribution to NASH fibrosis requires further study. Hepatic CCN2 expression was significantly induced in NASH patients with F3-F4 fibrosis and was positively correlated with hepatic Col1A1, Col1A2, Col3A1, or αSMA expression. When wild-type (WT) or transgenic (TG) Swiss mice expressing enhanced green fluorescent protein (EGFP) under the control of the CCN2 promoter were fed up to 7 weeks with control or choline-deficient, amino-acid-defined diet with high (60%) fat (CDAA-HF), the resulting NASH-like hepatic pathology included a profound increase in CCN2 or EGFP immunoreactivity in activated hepatic stellate cells (HSC) and in fibroblasts and smooth muscle cells of the vasculature, with little or no induction of CCN2 in other liver cell types. In the context of CDAA-HF diet-induced NASH, Balb/c TG mice expressing human CCN2 under the control of the albumin promoter exhibited exacerbated deposition of interstitial hepatic collagen and activated HSC compared to WT mice. In vitro, palmitic acid-treated hepatocytes produced extracellular vesicles (EVs) that induced CCN2, Col1A1, and αSMA in HSC. Hepatic CCN2 may aid the assessment of NASH fibrosis severity and, together with pro-fibrogenic EVs, is a therapeutic target for reducing NASH fibrosis.
Collapse
Affiliation(s)
- Xinlei Li
- Center for Clinical and Translational Research, The Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA; (R.C.); (S.K.); (D.R.B.)
| | - Ruju Chen
- Center for Clinical and Translational Research, The Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA; (R.C.); (S.K.); (D.R.B.)
| | - Sherri Kemper
- Center for Clinical and Translational Research, The Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA; (R.C.); (S.K.); (D.R.B.)
| | - David R. Brigstock
- Center for Clinical and Translational Research, The Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA; (R.C.); (S.K.); (D.R.B.)
- Department of Surgery, Wexner Medical Center, The Ohio State University, Columbus, OH 43212, USA
| |
Collapse
|
4
|
Nehmi VA, Murata GM, Moraes RCMD, Lima GCA, De Miranda DA, Radloff K, Costa RGF, Jesus JDCRD, De Freitas JA, Viana NI, Pimenta R, Leite KRM, Otoch JP, Pessoa AFM. A novel supplement with yeast β-glucan, prebiotic, minerals and Silybum marianum synergistically modulates metabolic and inflammatory pathways and improves steatosis in obese mice. JOURNAL OF INTEGRATIVE MEDICINE 2021; 19:439-450. [PMID: 34108131 DOI: 10.1016/j.joim.2021.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 03/06/2021] [Indexed: 01/09/2023]
Abstract
OBJECTIVE To evaluate the synergic effects of a novel oral supplement formulation, containing prebiotics, yeast β-glucans, minerals and silymarin (Silybum marianum), on lipid and glycidic metabolism, inflammatory and mitochondrial proteins of the liver, in control and high-fat diet-induced obese mice. METHODS After an acclimation period, 32 male C57BL/6 mice were divided into the following groups: nonfat diet (NFD) vehicle, NFD supplemented, high-fat diet (HFD) vehicle and HFD supplemented. The vehicle and experimental formulation were administered orally by gavage once a day during the last four weeks of the diet (28 consecutive days). We then evaluated energy homeostasis, inflammation, and mitochondrial protein expression in these groups of mice. RESULTS After four weeks of supplementation, study groups experienced reduced glycemia, dyslipidemia, fat, and hepatic fibrosis levels. Additionally, proliferator-activated receptor-α, AMP-activated protein kinase-1α, peroxisome proliferator-activated receptor γ co-activator-1α, and mitochondrial transcription factor A expression levels were augmented; however, levels of inhibitor of nuclear factor-κB kinase subunit α and p65 nuclear factor-κB expression, and oxidative markers were reduced. Notably, the cortisol/C-reactive protein ratio, a well-characterized marker of the hypothalamic-pituitary-adrenal axis immune interface status, was found to be modulated by the supplement. CONCLUSION We discovered that the novel supplement was able to modify different antioxidant, metabolic and inflammatory pathways, improving the energy homeostasis and inflammatory status, and consequently alleviated hepatic steatosis.
Collapse
Affiliation(s)
- Victor Abou Nehmi
- Laboratory of Medical Investigation (LIM-26), Department of Surgery, University of Sao Paulo Medical School, São Paulo, SP 01246903, Brazil
| | - Gilson Masahiro Murata
- Laboratory of Medical Investigation (LIM-29), Clinic Medical Department, University of Sao Paulo Medical School, São Paulo, SP 01246903, Brazil
| | - Ruan Carlos Macêdo de Moraes
- Laboratory of Medical Investigation (LIM-26), Department of Surgery, University of Sao Paulo Medical School, São Paulo, SP 01246903, Brazil
| | - Gabriely Cristina Alves Lima
- Laboratory of Medical Investigation (LIM-26), Department of Surgery, University of Sao Paulo Medical School, São Paulo, SP 01246903, Brazil
| | - Danielle Araujo De Miranda
- Department of Physiology, Escola Paulista de Medicina/Universidade Federal de São Paulo, São Paulo, SP 04023062, Brazil
| | - Katrin Radloff
- Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Karlsruhe, BW 76131, Germany
| | - Raquel Galvão Figuerêdo Costa
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Joyce de Cassia Rosa de Jesus
- Laboratory of Medical Investigation (LIM-26), Department of Surgery, University of Sao Paulo Medical School, São Paulo, SP 01246903, Brazil
| | - Jéssica Alves De Freitas
- Laboratory of Medical Investigation (LIM-29), Clinic Medical Department, University of Sao Paulo Medical School, São Paulo, SP 01246903, Brazil
| | - Nayara Izabel Viana
- Laboratory of Medical Investigation (LIM-55), Urology Department, University of Sao Paulo Medical School, São Paulo, SP 01246903, Brazil
| | - Ruan Pimenta
- Laboratory of Medical Investigation (LIM-55), Urology Department, University of Sao Paulo Medical School, São Paulo, SP 01246903, Brazil; D'Or Institute for Research and Education, Rio de Janeiro, RJ 22281-100, Brazil
| | - Katia Ramos Moreira Leite
- Laboratory of Medical Investigation (LIM-55), Urology Department, University of Sao Paulo Medical School, São Paulo, SP 01246903, Brazil
| | - José Pinhata Otoch
- Laboratory of Medical Investigation (LIM-26), Department of Surgery, University of Sao Paulo Medical School, São Paulo, SP 01246903, Brazil; Program in Anesthesiology, Surgical Sciences, and Perioperative Medicine, University of São Paulo, São Paulo, SP 01246903, Brazil
| | - Ana Flávia Marçal Pessoa
- Laboratory of Medical Investigation (LIM-26), Department of Surgery, University of Sao Paulo Medical School, São Paulo, SP 01246903, Brazil; Program in Anesthesiology, Surgical Sciences, and Perioperative Medicine, University of São Paulo, São Paulo, SP 01246903, Brazil; Brazilian Academic Consortium for Integrative Health (CABSIN), Natural Products Committee, São Paulo, SP 05449-070, Brazil.
| |
Collapse
|
5
|
Pavlov AI, Ivolgin AF, Katenko SV, Eremin MN, Molodova AI, Levchenko OB, Karakozov AG. Diagnostics and treatment of non-alcoholic fatty liver disease with concomitant asthenic syndrome. TERAPEVT ARKH 2021; 93:890-896. [DOI: 10.26442/00403660.2021.08.200974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 09/01/2021] [Indexed: 11/22/2022]
Abstract
Aim. Analysis of the effectiveness of therapy for non-alcoholic fatty liver disease (NAFLD) with severe asthenic syndrome.
Materials and methods. In the period from 2017 to 2019, on the basis of the gastroenterology center of the Vishnevsky 3-rd Central Military Clinical Hospital, 247 patients with NAFLD, including those at the stage of steatohepatitis, and severe asthenic syndrome were examined and treated. The main group included 124 patients, the control group 123 patients. All patients underwent complex laboratory and instrumental diagnostics and neuropsychological research using the subjective asthenia assessment scale (MFI-20). In both groups, domestic drugs were included in the therapy regimen: from the 1st to the 10th day, Heptrong solution 3 ml intramuscularly in the morning; from the 1st to the 60th day UDCA 250 mg orally, 3 capsules at bedtime, Omega-3 forte 1000 mg, 2 capsules in the morning with meals. In group I patients received additionally from the 1st to the 10th day intravenous drip Cytoflavin 10 ml + 0.9% NaCl solution 200 ml; pentoxifylline solution 5 ml + 0.9% NaCl solution 200 ml. Then, from the 11th to the 60th day, Cytoflavin inside, 2 tablets 2 times a day. Pentoxifylline inside 400 mg 1 tablet 3 times a day. All patients underwent neuropsychological examination using the subjective asthenia rating scale (MFI-20).
Results. The effectiveness of treatment in patients of both groups was assessed by clinical, laboratory data and neuropsychological studies. In the main group, a significant reduction in asthenic syndrome was achieved against the background of diagnosed NAFLD compared with the control group.
Conclusion. The early inclusion of patients with NAFLD and severe asthenic syndrome in the treatment regimen, in addition to the basic therapy of Cytoflavin, achieved a significantly high therapeutic effect in the form of normalization of the main clinical, laboratory and instrumental parameters, as well as a significant reduction in the manifestations of asthenia.
Collapse
|
6
|
Cadegiani FA. Repurposing existing drugs for COVID-19: an endocrinology perspective. BMC Endocr Disord 2020; 20:149. [PMID: 32993622 PMCID: PMC7523486 DOI: 10.1186/s12902-020-00626-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/14/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Coronavirus Disease 2019 (COVID-19) is a multi-systemic infection caused by the novel Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), that has become a pandemic. Although its prevailing symptoms include anosmia, ageusia, dry couch, fever, shortness of brief, arthralgia, myalgia, and fatigue, regional and methodological assessments vary, leading to heterogeneous clinical descriptions of COVID-19. Aging, uncontrolled diabetes, hypertension, obesity, and exposure to androgens have been correlated with worse prognosis in COVID-19. Abnormalities in the renin-angiotensin-aldosterone system (RAAS), angiotensin-converting enzyme-2 (ACE2) and the androgen-driven transmembrane serine protease 2 (TMPRSS2) have been elicited as key modulators of SARS-CoV-2. MAIN TEXT While safe and effective therapies for COVID-19 lack, the current moment of pandemic urges for therapeutic options. Existing drugs should be preferred over novel ones for clinical testing due to four inherent characteristics: 1. Well-established long-term safety profile, known risks and contraindications; 2. More accurate predictions of clinical effects; 3. Familiarity of clinical management; and 4. Affordable costs for public health systems. In the context of the key modulators of SARS-CoV-2 infectivity, endocrine targets have become central as candidates for COVID-19. The only endocrine or endocrine-related drug class with already existing emerging evidence for COVID-19 is the glucocorticoids, particularly for the use of dexamethasone for severely affected patients. Other drugs that are more likely to present clinical effects despite the lack of specific evidence for COVID-19 include anti-androgens (spironolactone, eplerenone, finasteride and dutasteride), statins, N-acetyl cysteine (NAC), ACE inhibitors (ACEi), angiotensin receptor blockers (ARB), and direct TMPRSS-2 inhibitors (nafamostat and camostat). Several other candidates show less consistent plausibility. In common, except for dexamethasone, all candidates have no evidence for COVID-19, and clinical trials are needed. CONCLUSION While dexamethasone may reduce mortality in severely ill patients with COVID-19, in the absence of evidence of any specific drug for mild-to-moderate COVID-19, researchers should consider testing existing drugs due to their favorable safety, familiarity, and cost profile. However, except for dexamethasone in severe COVID-19, drug treatments for COVID-19 patients must be restricted to clinical research studies until efficacy has been extensively proven, with favorable outcomes in terms of reduction in hospitalization, mechanical ventilation, and death.
Collapse
Affiliation(s)
- Flavio A Cadegiani
- Adrenal and Hypertension Unit, Division of Endocrinology and Metabolism, Department of Medicine, Escola Paulista de Medicina, Universidade Federal de São Paulo (EPM/UNIFESP), Rua Pedro de Toledo 781 - 13th floor, São Paulo, SP, 04039-032, Brazil.
| |
Collapse
|
7
|
SGL 121 Attenuates Nonalcoholic Fatty Liver Disease through Adjusting Lipid Metabolism Through AMPK Signaling Pathway. Int J Mol Sci 2020; 21:ijms21124534. [PMID: 32630596 PMCID: PMC7352188 DOI: 10.3390/ijms21124534] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/19/2020] [Accepted: 06/23/2020] [Indexed: 12/11/2022] Open
Abstract
A ginsenoside F2-enhanced mixture (SGL 121) increases the content of ginsenoside F2 by biotransformation. In the present study, we investigated the effect of SGL 121 on nonalcoholic fatty liver disease (NAFLD) in vitro and in vivo. High-fat, high-carbohydrate-diet (HFHC)-fed mice were administered SGL 121 for 12 weeks to assess its effect on improving NAFLD. In HepG2 cells, SGL 121 acted as an antioxidant, a hepatoprotectant, and had an anti-lipogenic effect. In NAFLD mice, SGL 121 significantly improved body fat mass; levels of hepatic triglyceride (TG), hepatic malondialdehyde (MDA), serum total cholesterol (TC), high-density lipoprotein (HDL), and low-density lipoprotein (LDL); and activities of alanine aminotransferase (ALT) and aspartate aminotransferase (AST). In HepG2 cells, induced by oxidative stress, SGL 121 increased cytoprotection, inhibited reactive oxygen species (ROS) production, and increased antioxidant enzyme activity. SGL 121 activated the Nrf2/HO-1 signaling pathway and improved lipid accumulation induced by free fatty acids (FFA). Sterol regulatory element-binding protein-1 (SREBP-1) and fatty acid synthase (FAS) expression was significantly reduced in NAFLD-induced liver and HepG2 cells treated with SGL 121. Moreover, SGL 121 activated adenosine monophosphate-activated protein kinase (AMPK), which plays an important role in the regulation of lipid metabolism. The effect of SGL 121 on the improvement of NAFLD seems to be related to its antioxidant effects and activation of AMPK. In conclusion, SGL 121 can be potentially used for the treatment of NAFLD.
Collapse
|
8
|
George ES, Roberts SK, Nicoll AJ, Reddy A, Paris T, Itsiopoulos C, Tierney AC. Non-alcoholic fatty liver disease patients attending two metropolitan hospitals in Melbourne, Australia: high risk status and low prevalence. Intern Med J 2018; 48:1369-1376. [PMID: 29845719 DOI: 10.1111/imj.13973] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/11/2018] [Accepted: 05/23/2018] [Indexed: 12/18/2022]
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease globally, with increased rates in high-risk populations, including type 2 diabetes and obesity. The condition increases the risk of end-stage liver disease, hepatocellular carcinoma and all-cause mortality. NAFLD is asymptomatic and often remains undiagnosed as routine screening in high-risk groups is not practised. AIMS The aim of this study was to determine the rates and characteristics of NAFLD patients attending liver clinics at two Melbourne metropolitan hospitals. METHODS Liver clinics were prospectively screened for 10 consecutive months and participants with a diagnosis of NAFLD were further evaluated using pathology and imaging results obtained from medical records. RESULTS Of the 2050 patients screened, 148 (7%) had NAFLD predominantly diagnosed using ultrasound (81%). NAFLD patients were obese (mean body mass index 30.7 ± 5.9 kg/m2 ), insulin resistant (median HOMA 4.2 (3.2) mmol/L) and had elevated liver enzymes (ALT median, males 47.0 (34.3), females 36.0 (28.0) U/L), and 18% of patients had liver stiffness measuring >12 kPa, suggesting a moderate probability of cirrhosis. Patients with liver stiffness measuring ≥9.6 kPa had significantly higher: glucose (median 5.5 (1.2) vs 6.2 (5.3) mmol/L, P = 0.007), aspartate aminotransferase levels (median 25.5 (26.0) vs 41.0 (62.0) u/L, P = 0.0005) and HOMA (3.1 (3.0) vs 5.4 (5.5) mmol/L, P = 0.040). CONCLUSIONS NAFLD constituted a minority of liver clinic patients, most of who were obese, insulin resistant and hypertensive, and many had an elevated liver stiffness measurement. NAFLD poses added adverse health outcomes to high-risk patients, and therefore, early detection is warranted.
Collapse
Affiliation(s)
- Elena S George
- Department of Rehabilitation, Nutrition and Sport, La Trobe University, Victoria, Australia.,Department of Nutrition, Alfred Health, Victoria, Australia.,School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - Stuart K Roberts
- Department of Gastroenterology, Alfred Health, Victoria, Australia
| | - Amanda J Nicoll
- Department of Gastroenterology, Eastern Health, Melbourne, Victoria, Australia
| | - Anjana Reddy
- Department of Rehabilitation, Nutrition and Sport, La Trobe University, Victoria, Australia
| | - Tonya Paris
- Department of Rehabilitation, Nutrition and Sport, La Trobe University, Victoria, Australia
| | - Catherine Itsiopoulos
- Department of Rehabilitation, Nutrition and Sport, La Trobe University, Victoria, Australia
| | - Audrey C Tierney
- Department of Rehabilitation, Nutrition and Sport, La Trobe University, Victoria, Australia.,Department of Nutrition, Alfred Health, Victoria, Australia.,Department of Clinical Therapies, University of Limerick, Limerick, Ireland
| |
Collapse
|
9
|
Dibba P, Li A, Cholankeril G, Iqbal U, Gadiparthi C, Khan MA, Kim D, Ahmed A. Mechanistic Potential and Therapeutic Implications of Cannabinoids in Nonalcoholic Fatty Liver Disease. MEDICINES (BASEL, SWITZERLAND) 2018; 5:E47. [PMID: 29843404 PMCID: PMC6023518 DOI: 10.3390/medicines5020047] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 05/23/2018] [Accepted: 05/24/2018] [Indexed: 04/11/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is comprised of nonalcoholic fatty liver (NAFL) and nonalcoholic steatohepatitis (NASH). It is defined by histologic or radiographic evidence of steatosis in the absence of alternative etiologies, including significant alcohol consumption, steatogenic medication use, or hereditary disorders. NAFLD is now the most common liver disease, and when NASH is present it can progress to fibrosis and hepatocellular carcinoma. Different mechanisms have been identified as contributors to the physiology of NAFLD; insulin resistance and related metabolic derangements have been the hallmark of physiology associated with NAFLD. The mainstay of treatment has classically involved lifestyle modifications focused on the reduction of insulin resistance. However, emerging evidence suggests that the endocannabinoid system and its associated cannabinoid receptors and ligands have mechanistic and therapeutic implications in metabolic derangements and specifically in NAFLD. Cannabinoid receptor 1 antagonism has demonstrated promising effects with increased resistance to hepatic steatosis, reversal of hepatic steatosis, and improvements in glycemic control, insulin resistance, and dyslipidemia. Literature regarding the role of cannabinoid receptor 2 in NAFLD is controversial. Exocannabinoids and endocannabinoids have demonstrated some therapeutic impact on metabolic derangements associated with NAFLD, although literature regarding direct therapeutic use in NAFLD is limited. Nonetheless, the properties of the endocannabinoid system, its receptors, substrates, and ligands remain a significant arena warranting further research, with potential for a pharmacologic intervention for a disease with an anticipated increase in economic and clinical burden.
Collapse
Affiliation(s)
- Pratima Dibba
- Division of Gastroenterology, Women & Infants Hospital/Warren Alpert School of Medicine, Brown University, Providence, RI 02905, USA.
| | - Andrew Li
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94304, USA.
| | - George Cholankeril
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA 94304, USA.
| | - Umair Iqbal
- Department of Medicine, Mary Imogene Bassett Hospital, Cooperstown, NY 13326, USA.
| | - Chiranjeevi Gadiparthi
- Division of Gastroenterology and Hepatology, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | - Muhammad Ali Khan
- Division of Gastroenterology and Hepatology, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | - Donghee Kim
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA 94304, USA.
| | - Aijaz Ahmed
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA 94304, USA.
| |
Collapse
|
10
|
Effiong A, Kumari P. Pharmacotherapies for fatigue in chronic liver disease (CLD): a systematic review and meta-analysis (protocol). Syst Rev 2018; 7:28. [PMID: 29444700 PMCID: PMC5813416 DOI: 10.1186/s13643-018-0688-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 01/15/2018] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND This is the protocol for a systematic review (and meta-analysis) of an intervention. The primary objective of this systematic review will be to assess the benefits and harms of pharmacological therapies (pharmacotherapies) for the management of fatigue in adults with CLD of any etiology. The effects of pharmacological therapies on fatigue in CLD will be compared against those of placebo, no intervention, or non-pharmacological interventions. Specifically, this review will examine whether pharmacological therapies improve CLD-associated fatigue, and if they do, what key elements are associated with their effectiveness. The results of this systematic review will assist clinicians, policy-makers, researchers, and people with CLD in decision-making on how best to manage fatigue and its associated symptoms. METHODS MEDLINE, SCOPUS, EMBASE, EU Clinical Trials Register, WHO International Clinical Trials Registry Platform, CENTRAL (The Cochrane Library), ClinicalTrials.gov, reference lists of articles and conference proceedings will be searched for relevant studies. No language or date restrictions will be applied. Eligible studies will include adults with CLD of any etiology. Included studies will be randomized controlled trials. From included studies, data on participant characteristics, study design, setting, research ethics compliance, and intervention outcomes will be extracted. Risk of bias in included studies will be assessed using the Cochrane Risk of Bias Tool. A random-effects meta-analysis will be conducted. If substantial or considerable levels of heterogeneity are detected, analysis will be limited to a narrative synthesis. DISCUSSION This systematic review will examine the effectiveness of pharmacological therapies on fatigue reduction in people with CLD. Such therapies may be more effective than non-pharmacological interventions in treating fatigue symptoms in CLD. Evidence derived from the findings of this study will guide future practice, policy, and research. SYSTEMATIC REVIEW REGISTRATION PROSPERO, CRD42017076957.
Collapse
Affiliation(s)
- Andem Effiong
- Georgetown University, 3700 O St NW, Washington, DC 20057 USA
| | - Prerna Kumari
- Manipal College of Pharmaceutical Sciences, Manipal, Karnataka India
| |
Collapse
|
11
|
Gelli C, Tarocchi M, Abenavoli L, Di Renzo L, Galli A, De Lorenzo A. Effect of a counseling-supported treatment with the Mediterranean diet and physical activity on the severity of the non-alcoholic fatty liver disease. World J Gastroenterol 2017; 23:3150-3162. [PMID: 28533672 PMCID: PMC5423052 DOI: 10.3748/wjg.v23.i17.3150] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 02/13/2017] [Accepted: 04/13/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To determine the clinical effectiveness of nutritional counseling on reduction of non-alcoholic fatty liver disease (NAFLD) severity, weight loss, metabolic and anthropometric indexes and liver enzymes. METHODS Forty-six adults with NAFLD received a 6-mo clinical and a dietary intervention (based on Mediterranean diet) carried out respectively by a gastroenterologist and a nutritionist with counseling license. The counseling process consisted of monthly meeting (about 45 min each). The effect of the treatment was evaluated monitoring liver enzymes, metabolic parameters, cardiovascular risk indexes, NAFLD severity [assessed by ultrasound (US)] and related indexes. All parameters were assessed at baseline. Biochemistry was also assessed at mid- and end-interventions and US was repeated at end-intervention. RESULTS The percentage of patients with steatosis grade equal or higher than 2 was reduced from 93% to 48% and steatosis regressed in 9 patients (20%). At the end of the treatment the end-point concerning the weight (i.e., a 7% weight reduction or achievement/maintenance of normal weight) was accomplished by 25 out of 46 patients (i.e., 54.3%). As far as the liver enzymes is concerned, all three liver enzymes significantly decrease during the treatment the normalization was particularly evident for the ALT enzyme (altered values reduced from 67% down to 11%). Several parameters, i.e., BMI, waist circumference, waist-to-hip ratio, AST, ALT, GGT, HDL, serum glucose, Tot-Chol/HDL, LDL/HDL, TG/HDL, AIP, HOMA, FLI, Kotronen index, VAI, NAFLD liver fat score and LAP, showed a significant improvement (P < 0.01) between baseline and end-treatment. CONCLUSION Outcomes of this study further strengthen the hypothesis that MedDiet and more active lifestyle can be considered a safe therapeutic approach for reducing risk and severity of NAFLD and related disease states. The proposed approach may be proposed as a valid and recommended approach for improving the clinical profile of NAFLD patients.
Collapse
|
12
|
Pathak S, Pandanaboyana S, Daniels I, Smart N, Prasad KR. Obesity and colorectal liver metastases: Mechanisms and management. Surg Oncol 2016; 25:246-51. [PMID: 27566030 DOI: 10.1016/j.suronc.2016.05.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 05/19/2016] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Colorectal cancer (CRC) is the third commonest malignancy after lung and breast cancer. The most common cause of mortality from CRC is from distant metastases. Obesity is a known risk factor for primary CRC development. However, its role in metastatic disease progression is not fully understood. The article aims to provide an overview of the role of obesity in colorectal liver metastases (CRLM). Furthermore, possible strategies to minimise this effect are discussed. An electronic search of MedLine, EMBASE, CINAHL and google scholar was performed. Relevant articles were included in the article. Obesity causes localised inflammation within the liver microenvironment which may predispose to metastases development. Furthermore, obesity causes systemic inflammation leading to release of protumourigenic growth factors. Several studies demonstrated the effects of lifestyle modification, medications, bariatric surgery and omega-3 fatty acids on steatosis within the context of liver surgery. It is currently unclear whether obesity directly leads to metastatic disease via chronic systemic inflammation or whether obesity induced steatosis provides a fertile microenvironment for metastases deposition. With a global increase in obesity useful strategies to minimise the effects of obesity on the liver include life-style modification, pre-operative dietary regimes and omega-3 fatty acids intake. Pre-operative optimisation of the patient is a key concept. Further randomised control trials are needed to guide management strategies.
Collapse
Affiliation(s)
- Samir Pathak
- St James's University Hospital, Beckett Street, Leeds, West Yorkshire, LS9 7TF, United Kingdom; Exeter Surgical Health Services Research Unit (HeSRU), Royal Devon & Exeter Hospital, Barrack Road, Exeter, Devon, EX2 5DW, United Kingdom.
| | - Sanjay Pandanaboyana
- St James's University Hospital, Beckett Street, Leeds, West Yorkshire, LS9 7TF, United Kingdom
| | - Ian Daniels
- Exeter Surgical Health Services Research Unit (HeSRU), Royal Devon & Exeter Hospital, Barrack Road, Exeter, Devon, EX2 5DW, United Kingdom
| | - Neil Smart
- Exeter Surgical Health Services Research Unit (HeSRU), Royal Devon & Exeter Hospital, Barrack Road, Exeter, Devon, EX2 5DW, United Kingdom
| | - K R Prasad
- St James's University Hospital, Beckett Street, Leeds, West Yorkshire, LS9 7TF, United Kingdom
| |
Collapse
|
13
|
Papamiltiadous ES, Roberts SK, Nicoll AJ, Ryan MC, Itsiopoulos C, Salim A, Tierney AC. A randomised controlled trial of a Mediterranean Dietary Intervention for Adults with Non Alcoholic Fatty Liver Disease (MEDINA): study protocol. BMC Gastroenterol 2016; 16:14. [PMID: 26831892 PMCID: PMC4736175 DOI: 10.1186/s12876-016-0426-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 01/25/2016] [Indexed: 12/11/2022] Open
Abstract
Background Non-alcoholic fatty liver disease, the most prevalent liver disease in developed countries, remains difficult to manage with no proven safe and effective pharmacotherapy available. While weight reduction is the most commonly practiced treatment strategy, this is difficult to both achieve and/or maintain in the majority. Furthermore evidence-based dietary recommendations to guide the nutritional management of these patients are lacking. Using a randomised controlled trial design, this study compares the effectiveness of the Mediterranean diet to a standard low fat diet in terms of differences in insulin sensitivity, hepatic steatosis and metabolic outcomes in participants with non-alcoholic fatty liver disease. Methods Ninety four eligible patients who have non-alcoholic fatty liver disease and who are insulin resistant, will be randomised into either a Mediterranean or low fat diet group for a 3 month intervention period. Insulin sensitivity will be measured on peripheral blood using Homeostatic Model Assessment and liver fat content quantified using Magnetic Resonance Spectroscopy. Both arms will consist of three face to face and three telephone call follow up consultations delivered by an Accredited Practicing Dietitian. The intervention arm focuses on recommendations from the traditional Mediterranean diet which have been tailored for use in the Australian population The standard arm uses the Australian Guide to Healthy Eating and the Australian National Heart Foundation dietary guidelines. Study recruitment will take place at four major metropolitan hospitals in Melbourne, Australia. Data collection will occur at all face to face reviews including baseline, 6, and 12 weeks. A follow up assessment to measure sustainability will take place at 6 and 12 months. The primary end point is improved insulin sensitivity scores at the 12 week time point. Discussion This trial aims to demonstrate in a large cohort of participants with NALFD that a Mediterranean diet independent of weight loss can result in significant benefits in liver fat and insulin sensitivity and that these changes are sustained at 12 months. These metabolic changes would potentially lead to reductions in the risk of chronic liver disease, heart disease, type 2 diabetes and liver cancer. Trial registration Australia and New Zealand Clinical Trials Register ACTRN: ACTRN12615001010583.
Collapse
Affiliation(s)
- Elena S Papamiltiadous
- Department of Rehabilitation, La Trobe University, Nutrition and Sports, Kingsbury Drive, Bundoora, Australia.
| | - Stuart K Roberts
- Department of Gastroenterology, The Alfred Hospital, Commercial Rd, Prahran, Australia.
| | - Amanda J Nicoll
- Department of Gastroenterology, 8 Arnold St, Box Hill, Australia.
| | - Marno C Ryan
- Department of Gastroenterology, St Vincent's Hospital, Victoria Parade, Fitzroy, Australia.
| | - Catherine Itsiopoulos
- Department of Rehabilitation, La Trobe University, Nutrition and Sports, Kingsbury Drive, Bundoora, Australia.
| | - Agus Salim
- Department of Mathematics and Statistics, La Trobe University, Kingsbury Drive, Bundoora, Australia.
| | - Audrey C Tierney
- Department of Rehabilitation, La Trobe University, Nutrition and Sports, Kingsbury Drive, Bundoora, Australia. .,Department of Nutrition, The Alfred Hospital, Commercial Rd, Prahran, Australia.
| |
Collapse
|
14
|
Ress C, Kaser S. Mechanisms of intrahepatic triglyceride accumulation. World J Gastroenterol 2016; 22:1664-1673. [PMID: 26819531 PMCID: PMC4721997 DOI: 10.3748/wjg.v22.i4.1664] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 08/20/2015] [Accepted: 09/30/2015] [Indexed: 02/06/2023] Open
Abstract
Hepatic steatosis defined as lipid accumulation in hepatocytes is very frequently found in adults and obese adolescents in the Western World. Etiologically, obesity and associated insulin resistance or excess alcohol intake are the most frequent causes of hepatic steatosis. However, steatosis also often occurs with chronic hepatitis C virus (HCV) infection and is also found in rare but potentially life-threatening liver diseases of pregnancy. Clinical significance and outcome of hepatic triglyceride accumulation are highly dependent on etiology and histological pattern of steatosis. This review summarizes current concepts of pathophysiology of common causes of hepatic steatosis, including non-alcoholic fatty liver disease (NAFLD), alcoholic fatty liver disease, chronic HCV infections, drug-induced forms of hepatic steatosis, and acute fatty liver of pregnancy. Regarding the pathophysiology of NAFLD, this work focuses on the close correlation between insulin resistance and hepatic triglyceride accumulation, highlighting the potential harmful effects of systemic insulin resistance on hepatic metabolism of fatty acids on the one side and the role of lipid intermediates on insulin signalling on the other side. Current studies on lipid droplet morphogenesis have identified novel candidate proteins and enzymes in NAFLD.
Collapse
|
15
|
Olek RA, Ziolkowski W, Flis DJ, Fedeli D, Fiorini D, Wierzba TH, Gabbianelli R. The effect of ethyl pyruvate supplementation on rat fatty liver induced by a high-fat diet. J Nutr Sci Vitaminol (Tokyo) 2014; 59:232-7. [PMID: 23883694 DOI: 10.3177/jnsv.59.232] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Continuous positive energy imbalance leads to obesity, which increases the risk of developing non-alcoholic fatty liver disease. The hepatoprotective effect of ethyl pyruvate has been revealed in several studies. Therefore, we examined the effect of ethyl pyruvate supplementation on liver cell damage, metabolism, membrane fluidity, and oxidative stress markers in rats fed a high-fat diet. After 6-wk feeding of a control or high-fat diet, Wistar rats were divided into 4 groups: control diet, control diet and ethyl pyruvate, high-fat diet, and high-fat diet and ethyl pyruvate. Ethyl pyruvate was administered as a 0.3% solution in drinking water, for the following 6 wk. Ethyl pyruvate intake attenuated the increase in activities of plasma transaminases and liver TNF-α. However, the supplementation was without effect in the lipid profiles, membrane fluidity or oxidative metabolism in liver induced by the high-fat diet. Our data confirm the potency of ethyl pyruvate against cell liver damage. Nevertheless, prolonged intake did not affect the development of a fatty liver.
Collapse
Affiliation(s)
- Robert Antoni Olek
- Biochemistry Department, Gdansk University of Physical Education and Sport, Poland.
| | | | | | | | | | | | | |
Collapse
|
16
|
Gonçalves IO, Oliveira PJ, Ascensão A, Magalhães J. Exercise as a therapeutic tool to prevent mitochondrial degeneration in nonalcoholic steatohepatitis. Eur J Clin Invest 2013; 43:1184-94. [PMID: 24033085 DOI: 10.1111/eci.12146] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 07/27/2013] [Indexed: 12/15/2022]
Abstract
Nonalcoholic fatty liver disease, encompassing hepatic steatosis, nonalcoholic steatohepatitis (NASH), fibrosis and cirrhosis, is a significant health problem associated with modern lifestyle, based on caloric overconsumption and physical inactivity. Although the mechanisms associated with progression from the 'benign' steatosis to NASH are still elusive, mitochondrial dysfunction seems to play an important role in this degenerative process. Degeneration of mitochondrial function during NASH has been associated with impaired β-oxidation, oxidative phosphorylation and increased reactive oxygen species production, contributing to hepatocyte death and inflammatory response. Despite the fact that several therapeutic approaches can be used in the context of NASH, including insulin-sensitizing agents, anti-obesity drugs, lipid-lowering drugs or mitochondrial-targeted drugs, dietary and physical activity are still the most effective strategies. In fact, active lifestyles decrease insulin resistance and body weight and result in decreased histological signs of liver injury. In fatty liver, physical activity prevents the disease progression through mitochondrial adaptations, namely by increasing cytochrome c content, enzyme activities and fatty acid oxidation, which are lost after some days of physical inactivity. However, less is known about the effect of physical activity on NASH-associated mitochondrial dysfunction. After a brief characterization of NASH and its association with liver mitochondrial (dys)function, the present review addresses the impact of physical (in)activity on NASH and, particularly, the possible contribution of active lifestyles to the modulation of liver mitochondrial dysfunction.
Collapse
Affiliation(s)
- Inês O Gonçalves
- Research Center in Physical Activity, Health and Leisure, Faculty of Sport, University of Porto, Porto, Portugal
| | | | | | | |
Collapse
|
17
|
Neto-Ferreira R, Rocha VN, Souza-Mello V, Mandarim-de-Lacerda CA, de Carvalho JJ. Pleiotropic effects of rosuvastatin on the glucose metabolism and the subcutaneous and visceral adipose tissue behavior in C57Bl/6 mice. Diabetol Metab Syndr 2013; 5:32. [PMID: 23816341 PMCID: PMC3716873 DOI: 10.1186/1758-5996-5-32] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 06/18/2013] [Indexed: 12/11/2022] Open
Abstract
The aim of this study was to evaluate whether rosuvastatin (HMG-CoA reductase inhibitor) modulates the carbohydrate and lipid metabolism, the development of non-alcoholic fatty liver disease (NAFLD), and the increase in body mass in a model of diet-induced obesity. Male C57Bl/6 mice (3-months-old) were fed a high-fat diet (HF, 60% lipids) or the standard chow (SC, 10% lipids) for 15 weeks. The animals were then treated with 10 mg/kg/day (HF-R10 group), 20 mg/kg/day (HF-R20), or 40 mg/kg/day (HF-R40) of rosuvastatin for five weeks. The HF diet led to glucose intolerance, insulin resistance, weight gain, increased visceral adiposity with adipocyte hypertrophy, and hepatic steatosis (micro and macrovesicular). The rosuvastatin treatment decreased the adiposity and the adipocyte size in the HF-R10 and HF-R20 groups. In addition, rosuvastatin changed the pattern of fat distribution in the HF-R40 group because more fat was stored subcutaneously than in visceral depots. This redistribution improved the fasting glucose and the glucose intolerance. Rosuvastatin also improved the liver morphology and ultrastructure in a dose-dependent manner. In conclusion, rosuvastatin exerts pleiotropic effects through a dose-dependent improvement of glucose intolerance, insulin sensitivity and NAFLD and changes the fat distribution from visceral to subcutaneous fat depots in a mouse model of diet-induced obesity.
Collapse
Affiliation(s)
- Rodrigo Neto-Ferreira
- Laboratory of Ultrastructure and Tecidual Biology, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, 20551-030, Rio de Janeiro, RJ, Brazil
| | - Vinícius Novaes Rocha
- Laboratory of Ultrastructure and Tecidual Biology, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, 20551-030, Rio de Janeiro, RJ, Brazil
| | - Vanessa Souza-Mello
- Laboratory of Morphometry and Cardiovascular Morphology, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carlos Alberto Mandarim-de-Lacerda
- Laboratory of Morphometry and Cardiovascular Morphology, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jorge José de Carvalho
- Laboratory of Ultrastructure and Tecidual Biology, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, 20551-030, Rio de Janeiro, RJ, Brazil
- Laboratory of Morphometry and Cardiovascular Morphology, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
18
|
Yang J, Kalogerou M, Gallacher J, Sampson JR, Shen MH. Renal tumours in a Tsc1+/- mouse model show epigenetic suppression of organic cation transporters Slc22a1, Slc22a2 and Slc22a3, and do not respond to metformin. Eur J Cancer 2012; 49:1479-90. [PMID: 23228442 DOI: 10.1016/j.ejca.2012.10.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 10/19/2012] [Accepted: 10/30/2012] [Indexed: 11/19/2022]
Abstract
Metformin, a substrate of several poly-specific organic cation transporters, is a widely used biguanide for the treatment of type II diabetes. Recent studies suggest that metformin attenuates mTORC1 signalling by the activation of 5' adenosine monophosphate-activated protein kinase (AMPK) in the presence or absence of a functional hamartin/tuberin (TSC1/TSC2) complex. Metformin has also been reported to inhibit mTORC1 independent of AMPK through p53-dependent regulated in development and DNA damage responses 1 (REDD1) or by inhibiting Rag GTPases. These observations suggest that metformin could have therapeutic potential for tuberous sclerosis, an inherited disorder characterised by the aberrant activation of mTORC1 and the development of tumours in many organs, including the kidneys. In this study, we investigated the effect of metformin on renal lesions in a Tsc1(+/-) mouse model of tuberous sclerosis. Continuous treatment of metformin for 9 months at doses of up to 600 mg/kg/day had no significant effect on renal lesions in nine treated mice compared to 10 controls. Metformin treatment appeared to attenuate mTORC1 signalling in Tsc1(+/-) kidney tissues but not in renal tumours. Surprisingly, the expression of the organic cation transporters Slc22a1, Slc22a2 and Slc22a3 essential for the cellular uptake of metformin was highly suppressed in renal tumours. Treatment of cultured cells derived from a Tsc1-associated renal tumour with 5-aza-2-deoxycytidine or trichostatin A greatly increased the expression of these genes. These data suggest that the epigenetic suppression of the organic cation transporters in Tsc-associated mouse renal tumours may contribute to the lack of response to metformin treatment.
Collapse
Affiliation(s)
- Jian Yang
- Institute of Medical Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| | | | | | | | | |
Collapse
|
19
|
Tzanetakou IP, Doulamis IP, Korou LM, Agrogiannis G, Vlachos IS, Pantopoulou A, Mikhailidis DP, Patsouris E, Vlachos I, Perrea DN. Water Soluble Vitamin E Administration in Wistar Rats with Non-alcoholic Fatty Liver Disease. Open Cardiovasc Med J 2012; 6:88-97. [PMID: 22930662 PMCID: PMC3428633 DOI: 10.2174/1874192401206010088] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 07/15/2012] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE A diet rich in fat is associated with hepatic fat deposition [steatosis; non-alcoholic fatty liver disease (NAFLD)]. The exact cause of NAFLD however, is still unknown. The aim of this study was to assess the effect of a water-soluble formulation of vitamin E on a dietary-induced-NAFLD animal model. METHODS Adult male Wistar rats (n=20) were allocated to 2 groups: Controls (Group A, n=6), which received a standard chow diet for 24 weeks and a High Cholesterol group (HC: n=14), which received a standard chow diet enriched with cholesterol for the first 14 weeks of the experiment (t(1)). At t(1), the HC group was divided into: Group HC(B), which received a high-saturated-fat/high-cholesterol (HSF/HCH) diet and Group HC(C), which followed the same HSF/HCH diet but was also administered water soluble vitamin E (10 IU/kg body weight/day), for 10 more weeks. RESULTS At the end of the study, group HC(C) exhibited significantly lower mean total cholesterol (T-CHOL) than group HC(B) (p<0.001). No significant differences were observed between HC(C) and Control groups in blood glucose and serum lipid concentrations. Liver Function Tests did not vary between all groups at the end of the study. Animals in group HC(B) exhibited higher SGOT at the end of the study compared with the beginning of the study (p<0.05). Group HC(B) exhibited the highest scores in steatosis, and grading (according to the NAFLD scoring system) in the histopathological analysis (p≤0.001 in all cases). CONCLUSIONS Vitamin E seems to exert a hypolipidemic and hepatoprotective role in the presence of a HSF/HCH atherogenic diet in a rat model.
Collapse
Affiliation(s)
- Irene P Tzanetakou
- Laboratory for Experimental Surgery and Surgical Research “N. S. Christeas”, University of Athens Medical School, Athens, Greece
| | - Ilias P Doulamis
- Laboratory for Experimental Surgery and Surgical Research “N. S. Christeas”, University of Athens Medical School, Athens, Greece
| | - Laskarina-Maria Korou
- Laboratory for Experimental Surgery and Surgical Research “N. S. Christeas”, University of Athens Medical School, Athens, Greece
| | - George Agrogiannis
- 1st Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioannis S Vlachos
- Laboratory for Experimental Surgery and Surgical Research “N. S. Christeas”, University of Athens Medical School, Athens, Greece
| | - Alkisti Pantopoulou
- Laboratory for Experimental Surgery and Surgical Research “N. S. Christeas”, University of Athens Medical School, Athens, Greece
| | - Dimitri P Mikhailidis
- Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, UK
| | - Efstratios Patsouris
- 1st Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioannis Vlachos
- Laboratory for Experimental Surgery and Surgical Research “N. S. Christeas”, University of Athens Medical School, Athens, Greece
| | - Despina N Perrea
- Laboratory for Experimental Surgery and Surgical Research “N. S. Christeas”, University of Athens Medical School, Athens, Greece
| |
Collapse
|
20
|
Nonalcoholic fatty liver disease: multimodal treatment options for a pathogenetically multiple-hit disease. J Clin Gastroenterol 2012; 46:272-84. [PMID: 22395062 DOI: 10.1097/mcg.0b013e31824587e0] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) has emerged as a significant public health problem. Besides the liver, NAFLD is also associated with increased cardiovascular and overall morbidity and mortality. NAFLD warrants intensive research, because no treatment has been established as yet. This may be partly attributed to the fact that the majority of the relative clinical trials have a monotherapeutic direction. However, the multifactorial pathogenesis of NAFLD may probably direct clinical trials to a combined therapeutic approach. The aim of this review is to provide a description of the multifactorial pathogenesis of NAFLD and type II diabetes mellitus-NAFLD interplay, and to summarize the therapeutic trials focusing on the combined NAFLD treatment, providing a link between the multiple-hit pathogenesis and the multimodal treatment of NAFLD patients. A diabetes-like therapeutic approach for NAFLD is finally proposed.
Collapse
|
21
|
Walter R, Wanninger J, Bauer S, Eisinger K, Neumeier M, Weiss TS, Amann T, Hellerbrand C, Schäffler A, Schölmerich J, Buechler C. Adiponectin reduces connective tissue growth factor in human hepatocytes which is already induced in non-fibrotic non-alcoholic steatohepatitis. Exp Mol Pathol 2011; 91:740-4. [PMID: 21946149 DOI: 10.1016/j.yexmp.2011.09.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 09/04/2011] [Indexed: 12/16/2022]
Abstract
Connective tissue growth factor (CTGF) is induced in liver fibrosis and enhances the activity of transforming growth factor β (TGFβ). Recently we have shown that the hepatoprotective adipokine adiponectin downregulates CTGF in primary human hepatocytes (PHH). In the current study, the mechanisms mediating suppression of CTGF by adiponectin and the well described downstream effector of adiponectin receptor 2 (AdipoR2), peroxisome proliferator activated receptor α (PPARα), were analyzed in more detail. Adiponectin downregulated CTGF mRNA and protein in primary human hepatocytes (PHH) and suppression was blocked by a PPARα antagonist indicating that AdipoR2 is involved. The PPARα agonists fenofibrate and WY14643 also reduced CTGF protein in these cells. Adiponectin further impaired TGFβ-mediated upregulation of CTGF. Phosphorylation of the TGFβ downstream effectors SMAD2 and -3 was reduced in PHH incubated with adiponectin or PPARα agonists suggesting that early steps in TGFβ signal transduction are impaired. CTGF and TGFβ mRNA levels were increased in human non-fibrotic non-alcoholic steatohepatitis (NASH), and here AdipoR2 expression was significantly reduced. Current data show that CTGF and TGFβ are already induced in non-fibrotic NASH and this may be partly explained by low adiponectin bioactivity which interferes with TGFβ signaling by reducing phosphorylation of SMAD2/3 and by downregulating CTGF.
Collapse
Affiliation(s)
- Roland Walter
- Department of Internal Medicine I, University Hospital of Regensburg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Liu W, Baker SS, Baker RD, Nowak NJ, Zhu L. Upregulation of hemoglobin expression by oxidative stress in hepatocytes and its implication in nonalcoholic steatohepatitis. PLoS One 2011; 6:e24363. [PMID: 21931690 PMCID: PMC3171444 DOI: 10.1371/journal.pone.0024363] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 08/08/2011] [Indexed: 12/11/2022] Open
Abstract
Recent studies revealed that hemoglobin is expressed in some non-erythrocytes and it suppresses oxidative stress when overexpressed. Oxidative stress plays a critical role in the pathogenesis of non-alcoholic steatohepatitis (NASH). This study was designed to investigate whether hemoglobin is expressed in hepatocytes and how it is related to oxidative stress in NASH patients. Analysis of microarray gene expression data revealed a significant increase in the expression of hemoglobin alpha (HBA1) and beta (HBB) in liver biopsies from NASH patients. Increased hemoglobin expression in NASH was validated by quantitative real time PCR. However, the expression of hematopoietic transcriptional factors and erythrocyte specific marker genes were not increased, indicating that increased hemoglobin expression in NASH was not from erythropoiesis, but could result from increased expression in hepatocytes. Immunofluorescence staining demonstrated positive HBA1 and HBB expression in the hepatocytes of NASH livers. Hemoglobin expression was also observed in human hepatocellular carcinoma HepG2 cell line. Furthermore, treatment with hydrogen peroxide, a known oxidative stress inducer, increased HBA1 and HBB expression in HepG2 and HEK293 cells. Importantly, hemoglobin overexpression suppressed oxidative stress in HepG2 cells. We concluded that hemoglobin is expressed by hepatocytes and oxidative stress upregulates its expression. Suppression of oxidative stress by hemoglobin could be a mechanism to protect hepatocytes from oxidative damage in NASH.
Collapse
Affiliation(s)
- Wensheng Liu
- Digestive Diseases and Nutrition Center, Department of Pediatrics, The State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Susan S. Baker
- Digestive Diseases and Nutrition Center, Department of Pediatrics, The State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Robert D. Baker
- Digestive Diseases and Nutrition Center, Department of Pediatrics, The State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Norma J. Nowak
- Department of Biochemistry and the New York State Center of Excellence in Bioinformatics and Life Sciences, The State University of New York at Buffalo, Buffalo, New York, United States of America
- Microarray and Genomics Facility, Roswell Park Cancer Institute, Buffalo, New York, United States of America
| | - Lixin Zhu
- Digestive Diseases and Nutrition Center, Department of Pediatrics, The State University of New York at Buffalo, Buffalo, New York, United States of America
- * E-mail:
| |
Collapse
|
23
|
Polyzos SA, Kountouras J, Zavos C. Adiponectin in non-alcoholic fatty liver disease treatment: therapeutic perspectives and unresolved dilemmas. Int J Clin Pract 2011; 65:373-4. [PMID: 21314876 DOI: 10.1111/j.1742-1241.2010.02594.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
24
|
Paraskevas KI, Pantopoulou A, Vlachos IS, Agrogiannis G, Iliopoulos DG, Karatzas G, Tzivras D, Mikhailidis DP, Perrea DN. Comparison of fibrate, ezetimibe, low- and high-dose statin therapy for the dyslipidemia of the metabolic syndrome in a mouse model. Angiology 2011; 62:144-54. [PMID: 21220373 DOI: 10.1177/0003319710387919] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND AIM The treatment-of-choice for the optimal management of the dyslipidemia of the metabolic syndrome (MetS) is not clearly defined. We compared the efficacy of 4 drug regimes for the management of this dyslipidemia in a mouse model. MATERIALS AND METHODS A total of 60 C57Bl6 mice comprised the study group. The first 10 received standard mouse food for the whole experiment (control group). The remaining 50 mice received atherogenic diet for 14 weeks until the development of the MetS. The mice were then divided into 5 groups: the 1st group continued receiving atherogenic diet, while the other 4 groups received atherogenic diet plus ezetimibe (10 mg/kg per day), fenofibrate (100 mg/kg per day), low-dose atorvastatin (10 mg/kg per day), or high-dose (40 mg/kg per day) atorvastatin, respectively, for another 8 weeks. RESULTS High-dose atorvastatin treatment achieved the best lipid profile compared with low-dose atorvastatin, ezetimibe, and fibrate therapy. The lipid profile of mice receiving atherogenic diet plus high-dose atorvastatin treatment was similar with mice on regular chow. CONCLUSIONS High-dose atorvastatin treatment resulted in optimization of the lipid profile in the presence of a high-fat atherogenic diet in a mouse model. Our results suggest that high-dose atorvastatin treatment may be the optimal treatment option for the dyslipidemia associated with MetS. Nevertheless, verification of these results in humans is required before any definite conclusions can be drawn.
Collapse
Affiliation(s)
- Kosmas I Paraskevas
- Laboratory of Experimental Surgery and Surgical Research, N S Christeas, Athens University Medical School, Athens, Greece.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Abenavoli L. Non-alcoholic fatty liver disease and pharmacological options. Int J Clin Pract 2010; 64:1583. [PMID: 20846208 DOI: 10.1111/j.1742-1241.2010.02492.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- L Abenavoli
- Department of Experimental and Clinical Medicine, University "Magna Graecia", Viale Europa, Catanzaro, Italy
| |
Collapse
|