1
|
Tan J, Xuan X, Su S, Jiao Y, Guo H, Zhang Z. Comprehensive analysis of the CPP gene family in Moso bamboo: insights into their role in rapid shoot growth. BMC Genomics 2024; 25:1173. [PMID: 39627725 PMCID: PMC11613906 DOI: 10.1186/s12864-024-11084-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 11/25/2024] [Indexed: 12/08/2024] Open
Abstract
Cysteine-rich polycomb-like proteins (CPPs), pivotal transcription factors crucial for evolution of plants from germination to maturity, and adaptation to environmental stresses, have not yet been characterized within the context of Moso bamboo. The CPP gene family of Moso bamboo was identified through bioinformatics, and the structural and functional attributes of the gene, including its physicochemical properties, evolutionary relationships, and gene-protein structures, were revealed. Additionally, the current study also offers valuable information on the patterns of gene expression in bamboo shoots during the period of accelerated development. The results show that the Moso bamboo genome contains 17 CPP members. Molecular phylogenetic relationships indicated that CPPs could be divided into three subfamilies and that CPP members of the same subfamily shared similar gene structures, motifs and conserved structural domains. The covariance analysis showed that the covariance between CPP and Oryza sativa was higher than that between Arabidopsis. Protein homology modeling showed that CPP proteins contain the DNA-binding domain of typical transcription factors. Transcriptomic data analysis revealed that CPP gene expression differs between tissues and organs. CPP could be regulated in response to exogenous gibberellin (GA) and naphthalene acetic acid (NAA). The qRT-PCR experiments demonstrated that CPP was crucial in the initial and fast expansion of bamboo shoots. Additionally, gene ontology (GO), KEGG enrichment and CPP regulatory network map analyses revealed multiple functional annotations of PeCPP-regulated downstream target genes. The results of this study will not only lay the foundation for further exploration of the detailed biological functions of CPP genes in the growth and development of Moso bamboo, but also establish the groundwork for future genetic enhancement of fast-growing forest trees.
Collapse
Affiliation(s)
- Jiaqi Tan
- Bamboo Industry Institute, Zhejiang A&F University, Lin'an, Hangzhou, Zhejiang, 311300, China
| | - Xueyun Xuan
- Bamboo Industry Institute, Zhejiang A&F University, Lin'an, Hangzhou, Zhejiang, 311300, China
| | - Shiying Su
- Bamboo Industry Institute, Zhejiang A&F University, Lin'an, Hangzhou, Zhejiang, 311300, China
| | - Yang Jiao
- Bamboo Industry Institute, Zhejiang A&F University, Lin'an, Hangzhou, Zhejiang, 311300, China
| | - Hui Guo
- Bamboo Industry Institute, Zhejiang A&F University, Lin'an, Hangzhou, Zhejiang, 311300, China
| | - Zhijun Zhang
- Bamboo Industry Institute, Zhejiang A&F University, Lin'an, Hangzhou, Zhejiang, 311300, China.
| |
Collapse
|
2
|
Li G, Chen Z, Guo X, Tian D, Li C, Lin M, Hu C, Yan J. Genome-Wide Identification and Analysis of Maize DnaJ Family Genes in Response to Salt, Heat, and Cold at the Seedling Stage. PLANTS (BASEL, SWITZERLAND) 2024; 13:2488. [PMID: 39273972 PMCID: PMC11396969 DOI: 10.3390/plants13172488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/23/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024]
Abstract
DnaJ proteins, also known as HSP40s, play a key role in plant growth and development, and response to environmental stress. However, little comprehensive research has been conducted on the DnaJ gene family in maize. Here, we identify 91 ZmDnaJ genes from maize, which are likely distributed in the chloroplast, nucleus, and cytoplasm. Our analysis revealed that ZmDnaJs were classified into three types, with conserved protein motifs and gene structures within the same type, particularly among members of the same subfamily. Gene duplication events have likely contributed to the expansion of the ZmDnaJ family in maize. Analysis of cis-regulatory elements in ZmDnaJ promoters suggested involvement in stress responses, growth and development, and phytohormone sensitivity in maize. Specifically, four cis-acting regulatory elements associated with stress responses and phytohormone regulation indicated a role in adaptation. RNA-seq analysis showed constitutive expression of most ZmDnaJ genes, some specifically in pollen and endosperm. More importantly, certain genes also responded to salt, heat, and cold stresses, indicating potential interaction between stress regulatory networks. Furthermore, early responses to heat stress varied among five inbred lines, with upregulation of almost tested ZmDnaJ genes in B73 and B104 after 6 h, and fewer genes upregulated in QB1314, MD108, and Zheng58. After 72 h, most ZmDnaJ genes in the heat-sensitive inbred lines (B73 and B104) returned to normal levels, while many genes, including ZmDnaJ55, 79, 88, 90, and 91, remained upregulated in the heat-tolerant inbred lines (QB1314, MD108, and Zheng58) suggesting a synergistic function for prolonged protection against heat stress. In conclusion, our study provides a comprehensive analysis of the ZmDnaJ family in maize and demonstrates a correlation between heat stress tolerance and the regulation of gene expression within this family. These offer a theoretical basis for future functional validation of these genes.
Collapse
Affiliation(s)
- Gang Li
- Biotechnology Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
| | - Ziqiang Chen
- Biotechnology Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
| | - Xinrui Guo
- Biotechnology Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
| | - Dagang Tian
- Biotechnology Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
| | - Chenchen Li
- Biotechnology Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
| | - Min Lin
- Biotechnology Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
| | - Changquan Hu
- Biotechnology Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
| | - Jingwan Yan
- Biotechnology Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
| |
Collapse
|
3
|
Wang C, Wang X, Zhou P, Li C. Genome-Wide Identification and Characterization of RdHSP Genes Related to High Temperature in Rhododendron delavayi. PLANTS (BASEL, SWITZERLAND) 2024; 13:1878. [PMID: 38999718 PMCID: PMC11244423 DOI: 10.3390/plants13131878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/28/2024] [Accepted: 07/05/2024] [Indexed: 07/14/2024]
Abstract
Heat shock proteins (HSPs) are molecular chaperones that play essential roles in plant development and in response to various environmental stresses. Understanding R. delavayi HSP genes is of great importance since R. delavayi is severely affected by heat stress. In the present study, a total of 76 RdHSP genes were identified in the R. delavayi genome, which were divided into five subfamilies based on molecular weight and domain composition. Analyses of the chromosome distribution, gene structure, and conserved motif of the RdHSP family genes were conducted using bioinformatics analysis methods. Gene duplication analysis showed that 15 and 8 RdHSP genes were obtained and retained from the WGD/segmental duplication and tandem duplication, respectively. Cis-element analysis revealed the importance of RdHSP genes in plant adaptations to the environment. Moreover, the expression patterns of RdHSP family genes were investigated in R. delavayi treated with high temperature based on our RNA-seq data, which were further verified by qRT-PCR. Further analysis revealed that nine candidate genes, including six RdHSP20 subfamily genes (RdHSP20.4, RdHSP20.8, RdHSP20.6, RdHSP20.3, RdHSP20.10, and RdHSP20.15) and three RdHSP70 subfamily genes (RdHSP70.15, RdHSP70.21, and RdHSP70.16), might be involved in enhancing the heat stress tolerance. The subcellular localization of two candidate RdHSP genes (RdHSP20.8 and RdHSP20.6) showed that two candidate RdHSPs were expressed and function in the chloroplast and nucleus, respectively. These results provide a basis for the functional characterization of HSP genes and investigations on the molecular mechanisms of heat stress response in R. delavayi.
Collapse
Affiliation(s)
- Cheng Wang
- Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, College of Life Science and Technology, Hubei Engineering University, Xiaogan 432000, China
- Hubei Province Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Xiaogan 432000, China
| | - Xiaojing Wang
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in the Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang 550025, China
| | - Ping Zhou
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in the Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang 550025, China
| | - Changchun Li
- Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, College of Life Science and Technology, Hubei Engineering University, Xiaogan 432000, China
- Hubei Province Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Xiaogan 432000, China
| |
Collapse
|
4
|
Fan KT, Xu Y, Hegeman AD. Elevated Temperature Effects on Protein Turnover Dynamics in Arabidopsis thaliana Seedlings Revealed by 15N-Stable Isotope Labeling and ProteinTurnover Algorithm. Int J Mol Sci 2024; 25:5882. [PMID: 38892074 PMCID: PMC11172382 DOI: 10.3390/ijms25115882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 05/24/2024] [Accepted: 05/26/2024] [Indexed: 06/21/2024] Open
Abstract
Global warming poses a threat to plant survival, impacting growth and agricultural yield. Protein turnover, a critical regulatory mechanism balancing protein synthesis and degradation, is crucial for the cellular response to environmental changes. We investigated the effects of elevated temperature on proteome dynamics in Arabidopsis thaliana seedlings using 15N-stable isotope labeling and ultra-performance liquid chromatography-high resolution mass spectrometry, coupled with the ProteinTurnover algorithm. Analyzing different cellular fractions from plants grown under 22 °C and 30 °C growth conditions, we found significant changes in the turnover rates of 571 proteins, with a median 1.4-fold increase, indicating accelerated protein dynamics under thermal stress. Notably, soluble root fraction proteins exhibited smaller turnover changes, suggesting tissue-specific adaptations. Significant turnover alterations occurred with redox signaling, stress response, protein folding, secondary metabolism, and photorespiration, indicating complex responses enhancing plant thermal resilience. Conversely, proteins involved in carbohydrate metabolism and mitochondrial ATP synthesis showed minimal changes, highlighting their stability. This analysis highlights the intricate balance between proteome stability and adaptability, advancing our understanding of plant responses to heat stress and supporting the development of improved thermotolerant crops.
Collapse
Affiliation(s)
- Kai-Ting Fan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan;
| | - Yuan Xu
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| | - Adrian D. Hegeman
- Departments of Horticultural Science and Plant and Microbial Biology, University of Minnesota, Twin Cities, MN 55108, USA
| |
Collapse
|
5
|
Kempa M, Mikołajczak K, Ogrodowicz P, Pniewski T, Krajewski P, Kuczyńska A. The impact of multiple abiotic stresses on ns-LTP2.8 gene transcript and ns-LTP2.8 protein accumulation in germinating barley (Hordeum vulgare L.) embryos. PLoS One 2024; 19:e0299400. [PMID: 38502680 PMCID: PMC10950244 DOI: 10.1371/journal.pone.0299400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 02/09/2024] [Indexed: 03/21/2024] Open
Abstract
Abiotic stresses occur more often in combination than alone under regular field conditions limiting in more severe way crop production. Stress recognition in plants primarily occurs in the plasma membrane, modification of which is necessary to maintain homeostasis in response to it. It is known that lipid transport proteins (ns-LTPs) participate in modification of the lipidome of cell membranes. Representative of this group, ns-LTP2.8, may be involved in the reaction to abiotic stress of germinating barley plants by mediating the intracellular transport of hydrophobic particles, such as lipids, helping to maintain homeostasis. The ns-LTP2.8 protein was selected for analysis due to its ability to transport not only linear hydrophobic molecules but also compounds with a more complex spatial structure. Moreover, ns-LTP2.8 has been qualified as a member of pathogenesis-related proteins, which makes it particularly important in relation to its high allergenic potential. This paper demonstrates for the first time the influence of various abiotic stresses acting separately as well as in their combinations on the change in the ns-LTP2.8 transcript, ns-LTP2.8 protein and total soluble protein content in the embryonal axes of germinating spring barley genotypes with different ns-LTP2.8 allelic forms and stress tolerance. Tissue localization of ns-LTP2.8 transcript as well as ns-LTP2.8 protein were also examined. Although the impact of abiotic stresses on the regulation of gene transcription and translation processes remains not fully recognized, in this work we managed to demonstrate different impact on applied stresses on the fundamental cellular processes in very little studied tissue of the embryonal axis of barley.
Collapse
Affiliation(s)
- Michał Kempa
- Institute of Plant Genetics, Polish Academy of Sciences, Poznan, Poland
| | | | - Piotr Ogrodowicz
- Institute of Plant Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Tomasz Pniewski
- Institute of Plant Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Paweł Krajewski
- Institute of Plant Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Anetta Kuczyńska
- Institute of Plant Genetics, Polish Academy of Sciences, Poznan, Poland
| |
Collapse
|
6
|
Babaei S, Bhalla PL, Singh MB. Identifying long non-coding RNAs involved in heat stress response during wheat pollen development. FRONTIERS IN PLANT SCIENCE 2024; 15:1344928. [PMID: 38379952 PMCID: PMC10876783 DOI: 10.3389/fpls.2024.1344928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/17/2024] [Indexed: 02/22/2024]
Abstract
Introduction Wheat is a staple food crop for over one-third of the global population. However, the stability of wheat productivity is threatened by heat waves associated with climate change. Heat stress at the reproductive stage can result in pollen sterility and failure of grain development. Methods This study used transcriptome data analysis to explore the specific expression of long non-coding RNAs (lncRNAs) in response to heat stress during pollen development in four wheat cultivars. Results and discussion We identified 11,054 lncRNA-producing loci, of which 5,482 lncRNAs showed differential expression in response to heat stress. Heat-responsive lncRNAs could target protein-coding genes in cis and trans and in lncRNA-miRNA-mRNA regulatory networks. Gene ontology analysis predicted that target protein-coding genes of lncRNAs regulate various biological processes such as hormonal responses, protein modification and folding, response to stress, and biosynthetic and metabolic processes. We also noted some paired lncRNA/protein-coding gene modules and some lncRNA-miRNA-mRNA regulatory modules shared in two or more wheat cultivars. These modules were related to regulating plant responses to heat stress, such as heat-shock proteins and transcription factors, and protein domains, such as MADS-box, Myc-type, and Alpha crystallin/Hsp20 domain. Conclusion Our results provide the basic knowledge and molecular resources for future functional studies investigating wheat reproductive development under heat stress.
Collapse
Affiliation(s)
| | | | - Mohan B. Singh
- Plant Molecular Biology and Biotechnology Laboratory, School of Agriculture, Food and Ecosystem Sciences, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
7
|
Wang Q, Wu Y, Wu W, Lyu L, Li W. A review of changes at the phenotypic, physiological, biochemical, and molecular levels of plants due to high temperatures. PLANTA 2024; 259:57. [PMID: 38307982 DOI: 10.1007/s00425-023-04320-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 12/23/2023] [Indexed: 02/04/2024]
Abstract
MAIN CONCLUSION This review summarizes the physiological, biochemical, and molecular regulatory network changes in plants in response to high temperature. With the continuous rise in temperature, high temperature has become an important issue limiting global plant growth and development, affecting the phenotype and physiological and biochemical processes of plants and seriously restricting crop yield and tree growth speed. As sessile organisms, plants inevitably encounter high temperatures and improve their heat tolerance by activating molecular networks related to heat stress, such as signal transduction, synthesis of metabolites, and gene expression. Heat tolerance is a polygenic trait regulated by a variety of genes, transcription factors, proteins, and metabolites. Therefore, this review summarizes the changes in physiological, biochemical and molecular regulatory networks in plants under high-temperature conditions to lay a foundation for an in-depth understanding of the mechanisms involved in plant heat tolerance responses.
Collapse
Affiliation(s)
- Que Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210037, China
| | - Yaqiong Wu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Qian Hu Hou Cun No. 1, Nanjing, 210014, China.
| | - Wenlong Wu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Qian Hu Hou Cun No. 1, Nanjing, 210014, China
| | - Lianfei Lyu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Qian Hu Hou Cun No. 1, Nanjing, 210014, China
| | - Weilin Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210037, China.
| |
Collapse
|
8
|
Mohan N, Jhandai S, Bhadu S, Sharma L, Kaur T, Saharan V, Pal A. Acclimation response and management strategies to combat heat stress in wheat for sustainable agriculture: A state-of-the-art review. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 336:111834. [PMID: 37597666 DOI: 10.1016/j.plantsci.2023.111834] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/06/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023]
Abstract
Unpredicted variability in climate change on the planet is associated with frequent extreme high-temperature events impacting crop yield globally. Wheat is an economically and nutritionally important crop that fulfils global food requirements and each degree rise in temperature results in ∼6% of its yield reduction. Thus, understanding the impact of climate change, especially the terminal heat stress on global wheat production, becomes critically important for policymakers, crop breeders, researchers and scientists to ensure global food security. This review describes how wheat perceives heat stress and induces stress adaptation events by its morpho-physiological, phenological, molecular, and biochemical makeup. Temperature above a threshold level in crop vicinity leads to irreversible injuries, viz. destruction of cellular membranes and enzymes, generation of active oxygen species, redox imbalance, etc. To cope with these changes, wheat activates its heat tolerance mechanisms characterized by hoarding up soluble carbohydrates, signalling molecules, and heat tolerance gene expressions. Being vulnerable to heat stress, increasing wheat production without delay seeks strategies to mitigate the detrimental effects and provoke the methods for its sustainable development. Thus, to ensure the crop's resilience to stress and increasing food demand, this article circumscribes the integrated management approaches to enhance wheat's performance and adaptive capacity besides its alleviating risks of increasing temperature anticipated with climate change. Implementing these integrated strategies in the face of risks from rising temperatures will assist us in producing sustainable wheat with improved yield.
Collapse
Affiliation(s)
- Narender Mohan
- Department of Biochemistry, College of Basic Sciences and Humanities, Chaudhary Charan Singh Haryana Agricultural University, Hisar, Haryana 125004, India.
| | - Sonia Jhandai
- Department of Biochemistry, College of Basic Sciences and Humanities, Chaudhary Charan Singh Haryana Agricultural University, Hisar, Haryana 125004, India
| | - Surina Bhadu
- Department of Biochemistry, College of Basic Sciences and Humanities, Chaudhary Charan Singh Haryana Agricultural University, Hisar, Haryana 125004, India
| | - Lochan Sharma
- Department of Nematology, College of Agriculture, Chaudhary Charan Singh Haryana Agricultural University, Hisar, Haryana 125004, India
| | - Taranjeet Kaur
- Department of Biochemistry, College of Basic Sciences and Humanities, Chaudhary Charan Singh Haryana Agricultural University, Hisar, Haryana 125004, India
| | - Vinod Saharan
- Department of Molecular Biology and Biotechnology, Rajasthan College of Agriculture, Maharana Pratap University of Agriculture and Technology, Udaipur, Rajasthan 313001, India
| | - Ajay Pal
- Department of Biochemistry, College of Basic Sciences and Humanities, Chaudhary Charan Singh Haryana Agricultural University, Hisar, Haryana 125004, India
| |
Collapse
|
9
|
Rodríguez-Vázquez R, Mesa-Marín J. Plant responses to plant growth promoting bacteria: Insights from proteomics. JOURNAL OF PLANT PHYSIOLOGY 2023; 287:154031. [PMID: 37321049 DOI: 10.1016/j.jplph.2023.154031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/17/2023]
Affiliation(s)
| | - Jennifer Mesa-Marín
- Department of Plant Biology and Ecology, Faculty of Biology, University of Seville, Seville, Spain.
| |
Collapse
|
10
|
González-Gordo S, Palma JM, Corpas FJ. Small Heat Shock Protein ( sHSP) Gene Family from Sweet Pepper ( Capsicum annuum L.) Fruits: Involvement in Ripening and Modulation by Nitric Oxide (NO). PLANTS (BASEL, SWITZERLAND) 2023; 12:389. [PMID: 36679102 PMCID: PMC9861568 DOI: 10.3390/plants12020389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/05/2023] [Accepted: 01/12/2023] [Indexed: 06/01/2023]
Abstract
Small heat shock proteins (sHSPs) are usually upregulated in plants under diverse environmental stresses. These proteins have been suggested to function as molecular chaperones to safeguard other proteins from stress-induced damage. The ripening of pepper (Capsicum annuum L.) fruit involves important phenotypic, physiological, and biochemical changes, which have associated endogenous physiological nitro-oxidative stress, but they can also be significantly affected by environmental conditions, such as temperature. Based on the available pepper genome, a total of 41 sHSP genes were identified in this work, and their distributions in the 12 pepper chromosomes were determined. Among these genes, only 19 sHSP genes were found in the transcriptome (RNA-Seq) of sweet pepper fruits reported previously. This study aims to analyze how these 19 sHSP genes present in the transcriptome of sweet pepper fruits are modulated during ripening and after treatment of fruits with nitric oxide (NO) gas. The time-course expression analysis of these genes during fruit ripening showed that 6 genes were upregulated; another 7 genes were downregulated, whereas 6 genes were not significantly affected. Furthermore, NO treatment triggered the upregulation of 7 sHSP genes and the downregulation of 3 sHSP genes, whereas 9 genes were unchanged. These data indicate the diversification of sHSP genes in pepper plants and, considering that sHSPs are important in stress tolerance, the observed changes in sHSP expression support that pepper fruit ripening has an associated process of physiological nitro-oxidative stress, such as it was previously proposed.
Collapse
Affiliation(s)
| | | | - Francisco J. Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Stress, Development and Signaling in Plants, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), C/Profesor Albareda 1, 18008 Granada, Spain
| |
Collapse
|
11
|
Guo Q, Wei R, Xu M, Yao W, Jiang J, Ma X, Qu G, Jiang T. Genome-wide analysis of HSF family and overexpression of PsnHSF21 confers salt tolerance in Populus simonii × P. nigra. FRONTIERS IN PLANT SCIENCE 2023; 14:1160102. [PMID: 37200984 PMCID: PMC10187788 DOI: 10.3389/fpls.2023.1160102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/28/2023] [Indexed: 05/20/2023]
Abstract
Heat shock transcription factor (HSF) is an important TF that performs a dominant role in plant growth, development, and stress response network. In this study, we identified a total of 30 HSF members from poplar, which are unevenly distributed on 17 chromosomes. The poplar HSF family can be divided into three subfamilies, and the members of the same subfamily share relatively conserved domains and motifs. HSF family members are acidic and hydrophilic proteins that are located in the nucleus and mainly carry out gene expansion through segmental replication. In addition, they have rich collinearity across plant species. Based on RNA-Seq analysis, we explored the expression pattern of PtHSFs under salt stress. Subsequently, we cloned the significantly upregulated PtHSF21 gene and transformed it into Populus simonii × P. nigra. Under salt stress, the transgenic poplar overexpressing PtHSF21 had a better growth state and higher reactive oxygen scavenging ability. A yeast one-hybrid experiment indicated PtHSF21 could improve salt tolerance by specifically binding to the anti-stress cis-acting element HSE. This study comprehensively profiled the fundamental information of poplar HSF family members and their responses to salt stress and specifically verified the biological function of PtHSF21, which provides clues for understanding the molecular mechanism of poplar HSF members in response to salt stress.
Collapse
Affiliation(s)
- Qing Guo
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- School of Architecture and Civil Engineer, Heilongjiang University of Science and Technology, Harbin, China
| | - Ran Wei
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Min Xu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Wenjing Yao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- Co-Innovation Center for Sustainable Forestry in Southern China/Bamboo Research Institute, Nanjing Forestry University, Nanjing, China
| | - Jiahui Jiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Xujun Ma
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Guanzheng Qu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- *Correspondence: Guanzheng Qu, ; Tingbo Jiang,
| | - Tingbo Jiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- *Correspondence: Guanzheng Qu, ; Tingbo Jiang,
| |
Collapse
|
12
|
Ma J, Wang J, Wang Q, Shang L, Zhao Y, Zhang G, Ma Q, Hong S, Gu C. Physiological and transcriptional responses to heat stress and functional analyses of PsHSPs in tree peony ( Paeonia suffruticosa). FRONTIERS IN PLANT SCIENCE 2022; 13:926900. [PMID: 36035676 PMCID: PMC9403832 DOI: 10.3389/fpls.2022.926900] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Tree peony (Paeonia suffruticosa) is a traditional Chinese flower that is not resistant to high temperatures, and the frequent sunburn during summer limits its normal growth. The lack of understanding of the molecular mechanisms in tree peony has greatly restricted the improvement of novel heat-tolerant varieties. Therefore, we treated tree peony cultivar "Yuhong" (P. suffruticosa "Yuhong") at normal (25°C) and high temperatures (40°C) and sequenced the transcriptomes, to investigate the molecular responsive mechanisms to heat stress. By comparing the transcriptomes, a total of 7,673 differentially expressed genes (DEGs) were detected comprising 4,220 upregulated and 3,453 downregulated genes. Functional annotation showed that the DEGs were mainly related to the metabolic process, cells and binding, carbon metabolism, and endoplasmic reticulum protein processing. qRT-PCR revealed that three sHSP genes (PsHSP17.8, PsHSP21, and PsHSP27.4) were upregulated in the response of tree peony to heat stress. Tissue quantification of the transgenic lines (Arabidopsis thaliana) showed that all three genes were most highly expressed in the leaves. The survival rates of transgenic lines (PsHSP17.8, PsHSP21, and PsHSP27.4) restored to normal growth after high-temperature treatment were 43, 36, and 31%, respectively. In addition, the activity of superoxide dismutase, accumulation of free proline, and chlorophyll level was higher than those of the wild-type lines, while the malondialdehyde content and conductivity were lower, and the membrane lipid peroxidation reaction of the wild-type plant was more intense. Our research found several processes and pathways related to heat resistance in tree peony including metabolic process, single-organism process, phenylpropane biosynthesis pathway, and endoplasmic reticulum protein synthesis pathway. PsHSP17.8, PsHSP21, and PsHSP27.4 improved heat tolerance by increasing SOD activity and proline content. These findings can provide genetic resources for understanding the heat-resistance response of tree peony and benefit future germplasm innovation.
Collapse
Affiliation(s)
- Jin Ma
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, College of Landscape and Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Jie Wang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Kunpeng Institute of Modern Agriculture at Foshan, Foshan, China
| | - Qun Wang
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, College of Landscape and Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Linxue Shang
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, College of Landscape and Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Yu Zhao
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, College of Landscape and Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Guozhe Zhang
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, College of Landscape and Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Qingqing Ma
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, College of Landscape and Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Sidan Hong
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, College of Landscape and Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Cuihua Gu
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, College of Landscape and Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, China
| |
Collapse
|
13
|
Rosalem PF, Martins AR, Camargos LS. How can the analysis of reserve dynamics after fire support the phenological insight of Bulbostylis paradoxa (Spreng.) Lindm (Cyperaceae)? PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 182:167-173. [PMID: 35504224 DOI: 10.1016/j.plaphy.2022.04.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 06/14/2023]
Abstract
Carbohydrate reserves are an essential key to plant survival from disturbance. Therefore, studying the different storage organs and types of reserves makes it possible to understand the dynamics of singular plants such as Bulbostylis paradoxa (Spreng.) Lindm, which presents flowering triggered by fire in the Cerrado. Physiological response to fire frequency is detailed by measuring the plant's reserves after a fire disturbance and which carbohydrates are more available for its use. It was measured the concentrations of starch, amino acids, total soluble carbohydrates and soluble proteins in leaves (control), flowers (burning) and caudex of B. paradoxa, in unburned individuals (control), and burned individuals (annually and biennially, obtained 48 h and 15 days after fire). Starch concentrations increased at both fire frequencies in all parts of the plant, as did carbohydrate concentrations. In amino acids, an increase in the concentration of flowers from individuals burned biennially 48 h after fire was observed. The protein concentration showed a decrease in burned plants. Furthermore, the two burning frequencies and the days following the fire can influence the storage of such reserves.
Collapse
Affiliation(s)
- Patrícia Fernanda Rosalem
- Lab Study Anatomy and Morphology Vegetation and Lab Physiology of Plant Metabolism, Faculdade de Engenharia, Universidade Estadual Paulista (UNESP), Ilha Solteira, SP, Brazil.
| | - Aline Redondo Martins
- Lab Study Anatomy and Morphology Vegetation and Lab Physiology of Plant Metabolism, Faculdade de Engenharia, Universidade Estadual Paulista (UNESP), Ilha Solteira, SP, Brazil.
| | - Liliane Santos Camargos
- Lab Study Anatomy and Morphology Vegetation and Lab Physiology of Plant Metabolism, Faculdade de Engenharia, Universidade Estadual Paulista (UNESP), Ilha Solteira, SP, Brazil.
| |
Collapse
|
14
|
Rane J, Singh AK, Kumar M, Boraiah KM, Meena KK, Pradhan A, Prasad PVV. The Adaptation and Tolerance of Major Cereals and Legumes to Important Abiotic Stresses. Int J Mol Sci 2021; 22:12970. [PMID: 34884769 PMCID: PMC8657814 DOI: 10.3390/ijms222312970] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/15/2021] [Accepted: 11/23/2021] [Indexed: 01/02/2023] Open
Abstract
Abiotic stresses, including drought, extreme temperatures, salinity, and waterlogging, are the major constraints in crop production. These abiotic stresses are likely to be amplified by climate change with varying temporal and spatial dimensions across the globe. The knowledge about the effects of abiotic stressors on major cereal and legume crops is essential for effective management in unfavorable agro-ecologies. These crops are critical components of cropping systems and the daily diets of millions across the globe. Major cereals like rice, wheat, and maize are highly vulnerable to abiotic stresses, while many grain legumes are grown in abiotic stress-prone areas. Despite extensive investigations, abiotic stress tolerance in crop plants is not fully understood. Current insights into the abiotic stress responses of plants have shown the potential to improve crop tolerance to abiotic stresses. Studies aimed at stress tolerance mechanisms have resulted in the elucidation of traits associated with tolerance in plants, in addition to the molecular control of stress-responsive genes. Some of these studies have paved the way for new opportunities to address the molecular basis of stress responses in plants and identify novel traits and associated genes for the genetic improvement of crop plants. The present review examines the responses of crops under abiotic stresses in terms of changes in morphology, physiology, and biochemistry, focusing on major cereals and legume crops. It also explores emerging opportunities to accelerate our efforts to identify desired traits and genes associated with stress tolerance.
Collapse
Affiliation(s)
- Jagadish Rane
- National Institute of Abiotic Stress Management, Baramati 413115, India; (A.K.S.); (M.K.); (K.M.B.); (K.K.M.); (A.P.)
| | - Ajay Kumar Singh
- National Institute of Abiotic Stress Management, Baramati 413115, India; (A.K.S.); (M.K.); (K.M.B.); (K.K.M.); (A.P.)
| | - Mahesh Kumar
- National Institute of Abiotic Stress Management, Baramati 413115, India; (A.K.S.); (M.K.); (K.M.B.); (K.K.M.); (A.P.)
| | - Karnar M. Boraiah
- National Institute of Abiotic Stress Management, Baramati 413115, India; (A.K.S.); (M.K.); (K.M.B.); (K.K.M.); (A.P.)
| | - Kamlesh K. Meena
- National Institute of Abiotic Stress Management, Baramati 413115, India; (A.K.S.); (M.K.); (K.M.B.); (K.K.M.); (A.P.)
| | - Aliza Pradhan
- National Institute of Abiotic Stress Management, Baramati 413115, India; (A.K.S.); (M.K.); (K.M.B.); (K.K.M.); (A.P.)
| | - P. V. Vara Prasad
- Department of Agronomy, Kansas State University, Manhattan, KS 66506, USA;
| |
Collapse
|
15
|
Jameel S, Hameed A, Shah TM. Investigation of Distinctive Morpho-Physio and Biochemical Alterations in Desi Chickpea at Seedling Stage Under Irrigation, Heat, and Combined Stress. FRONTIERS IN PLANT SCIENCE 2021; 12:692745. [PMID: 34646281 PMCID: PMC8503603 DOI: 10.3389/fpls.2021.692745] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 08/27/2021] [Indexed: 05/11/2023]
Abstract
Global climatic instabilities have become the main reason for drastic yield losses in chickpea. This shift in climate could be a great threat in the future for food security in developing countries. Chickpea production is badly hampered by heat stress coupled with drought stress, and these factors can reduce yields by 40-45%. To mitigate yield losses due these abiotic factors, irrigation supplementation could be the best strategy. The present study aimed to (i) investigate the tolerance response of 9 desi chickpea genotypes against heat stress (H), irrigation (I), and a combination of both (I+H) through morphophysiological and biochemical indices at early growth stage, and (ii) assess yield performance across multiple locations of the country. Results revealed that under irrigation treatment, all genotypes perform well, but the genotypes D-09027 and D-09013 showed best performance because, as compared to control, they retained root length, seedling fresh weight, root fresh weight, root dry weight, esterase activity, Malondialdehyde (MDA) content, total chlorophyll, and total carotenoids. Shoot length and total phenolic contents (TPC) increased in both genotypes. Superoxide dismutase (SOD) and peroxidase (POD) increased in D-09027 and retained in D-09013. Catalase activity increased in D-09013 and retained in D-09027. Protease activity, total water potential and osmotic potential decreased in both genotypes and depicted high yield potential with 27 and 30% increase in yield over Bhakhar-2011 (check), respectively. In case of heat stress, maximum tolerance was found in genotypes CH104/06 and D-09013 with no change in shoot and root length, seedling dry weight, shoot fresh and dry weight, root dry weight, relative water content, turgor water potential, catalase (CAT) activity, esterase activity, increased root fresh weight, peroxidase activity (POD), ascorbate peroxidase activity (APX), and lycopene with low accumulation of protease and Malondialdehyde content (MDA). Both genotypes depicted high yield potential with 30 and 43% increase in yield over check across multiple locations of the country. Under the combined treatment, most genotypes showed good performance, while CH104/06 was selected as best performer genotype because significant of its increased root fresh weight, lycopene content, chlorophyll b, total carotenoids, total chlorophyll, retained shoot length, root length, seedling fresh and dry weight, total water potential, osmotic potential, relative water content, peroxidase activity (POD), catalase, esterase, and its ascorbate peroxidase (APX) activity and total soluble proteins (TSP) showed highest yield potential with 43% increase over check. Identified best performing and tolerant genotypes can further be employed for breeding climate-smart chickpea genotypes for sustainable production under changing climate.
Collapse
Affiliation(s)
| | - Amjad Hameed
- Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad, Pakistan
| | | |
Collapse
|
16
|
Genome-wide identification and analysis of the heat shock transcription factor family in moso bamboo (Phyllostachys edulis). Sci Rep 2021; 11:16492. [PMID: 34389742 PMCID: PMC8363633 DOI: 10.1038/s41598-021-95899-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 07/23/2021] [Indexed: 02/07/2023] Open
Abstract
Heat shock transcription factors (HSFs) are central elements in the regulatory network that controls plant heat stress response. They are involved in multiple transcriptional regulatory pathways and play important roles in heat stress signaling and responses to a variety of other stresses. We identified 41 members of the HSF gene family in moso bamboo, which were distributed non-uniformly across its 19 chromosomes. Phylogenetic analysis showed that the moso bamboo HSF genes could be divided into three major subfamilies; HSFs from the same subfamily shared relatively conserved gene structures and sequences and encoded similar amino acids. All HSF genes contained HSF signature domains. Subcellular localization prediction indicated that about 80% of the HSF proteins were located in the nucleus, consistent with the results of GO enrichment analysis. A large number of stress response-associated cis-regulatory elements were identified in the HSF upstream promoter sequences. Synteny analysis indicated that the HSFs in the moso bamboo genome had greater collinearity with those of rice and maize than with those of Arabidopsis and pepper. Numerous segmental duplicates were found in the moso bamboo HSF gene family. Transcriptome data indicated that the expression of a number of PeHsfs differed in response to exogenous gibberellin (GA) and naphthalene acetic acid (NAA). A number of HSF genes were highly expressed in the panicles and in young shoots, suggesting that they may have functions in reproductive growth and the early development of rapidly-growing shoots. This study provides fundamental information on members of the bamboo HSF gene family and lays a foundation for further study of their biological functions in the regulation of plant responses to adversity.
Collapse
|
17
|
Rhaman MS, Imran S, Karim MM, Chakrobortty J, Mahamud MA, Sarker P, Tahjib-Ul-Arif M, Robin AHK, Ye W, Murata Y, Hasanuzzaman M. 5-aminolevulinic acid-mediated plant adaptive responses to abiotic stress. PLANT CELL REPORTS 2021; 40:1451-1469. [PMID: 33839877 DOI: 10.1007/s00299-021-02690-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 03/23/2021] [Indexed: 05/27/2023]
Abstract
5-aminolevulinic acid (ALA) modulates various defense systems in plants and confers abiotic stress tolerance. Enhancement of crop production is a challenge due to numerous abiotic stresses such as, salinity, drought, temperature, heavy metals, and UV. Plants often face one or more abiotic stresses in their life cycle because of the challenging growing environment which results in reduction of growth and yield. Diverse studies have been conducted to discern suitable mitigation strategies to enhance crop production by minimizing abiotic stress. Exogenous application of different plant growth regulators is a well-renowned approach to ameliorate adverse effects of abiotic stresses on crop plants. Among the numerous plant growth regulators, 5-aminolevulinic acid (ALA) is a novel plant growth regulator, also well-known to alleviate the injurious effects of abiotic stresses in plants. ALA enhances abiotic stress tolerance as well as growth and yield by regulating photosynthetic and antioxidant machineries and nutrient uptake in plants. However, the regulatory roles of ALA in plants under different stresses have not been studied and assembled systematically. Also, ALA-mediated abiotic stress tolerance mechanisms have not been fully elucidated yet. Therefore, this review discusses the role of ALA in crop growth enhancement as well as its ameliorative role in abiotic stress mitigation and also discusses the ALA-mediated abiotic stress tolerance mechanisms and its limitation and future promises for sustainable crop production.
Collapse
Affiliation(s)
- Mohammad Saidur Rhaman
- Department of Seed Science and Technology, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Shahin Imran
- Department of Agronomy, Khulna Agricultural University, Khulna, 9100, Bangladesh
| | - Md Masudul Karim
- Department of Crop Botany, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Jotirmoy Chakrobortty
- Department of Soil Science, Khulna Agricultural University, Khulna, 9100, Bangladesh
| | - Md Asif Mahamud
- Department of Agricultural Chemistry, Khulna Agricultural University, Khulna, 9100, Bangladesh
| | - Prosenjit Sarker
- Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Md Tahjib-Ul-Arif
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
- Department of Bio-Functional Chemistry, Okayama University, Okayama, Japan
| | - Arif Hasan Khan Robin
- Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Wenxiu Ye
- Department of Plant Science, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yoshiyuki Murata
- Department of Bio-Functional Chemistry, Okayama University, Okayama, Japan
| | - Mirza Hasanuzzaman
- Department of Agronomy, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka, 1207, Bangladesh.
| |
Collapse
|
18
|
Soliman WS, Abbas AM, Novak SJ, Fujimori M, Tase K, Sugiyama SI. Inheritance of heat tolerance in perennial ryegrass ( Lolium perenne, Poaceae): evidence from progeny array analysis. PeerJ 2021; 9:e11782. [PMID: 34322326 PMCID: PMC8300491 DOI: 10.7717/peerj.11782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 06/24/2021] [Indexed: 01/27/2023] Open
Abstract
Background Heat stress is considered one of the most important environmental factors influencing plant physiology, growth, development, and reproductive output. The occurrence and damage caused by heat stress will likely increase with global climate change. Thus, there is an urgent need to better understand the genetic basis of heat tolerance, especially in cool season plants. Materials and Methods In this study, we assessed the inheritance of heat tolerance in perennial ryegrass (Lolium perenne L. subspecies perenne) , a cool season grass, through a comparison of two parental cultivars with their offspring. We crossed plants of a heat tolerant cultivar (Kangaroo Valley) with plants of a heat sensitive cultivar (Norlea), to generate 72 F1 hybrid progeny arrays. Both parents and their progeny were then exposed to heat stress for 40 days, and their photosynthetic performance (Fv/Fm values) and leaf H2O2 content were measured. Results As expected, Kangaroo Valley had significantly higher Fv/Fm values and significantly lower H2O2 concentrations than Norlea. For the F1 progeny arrays, values of Fv/Fm decreased gradually with increasing exposure to heat stress, while the content of H2O 2 increased. The progeny had a wide distribution of Fv/Fm and H 2O2 values at 40 days of heat stress. Approximately 95% of the 72 F1 progeny arrays had Fv/Fm values that were equal to or intermediate to the values of the two parental cultivars and 68% of the progeny arrays had H2O2 concentrations equal to or intermediate to their two parents. Conclusion Results of this study indicate considerable additive genetic variation for heat tolerance among the 72 progeny arrays generated from these crosses, and such diversity can be used to improve heat tolerance in perennial ryegrass cultivars. Our findings point to the benefits of combining physiological measurements within a genetic framework to assess the inheritance of heat tolerance, a complex plant response.
Collapse
Affiliation(s)
- Wagdi S Soliman
- Department of Horticulture, Faculty of Agriculture and Natural Resources, Aswan University, Aswan, Egypt
| | - Ahmed M Abbas
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia.,Department of Botany and Microbiology, Faculty of Science, South Valley University, Qena, Egypt
| | - Stephen J Novak
- Department of Biological Sciences, Boise State University, Boise, ID, United States of America
| | | | - Kazuhiro Tase
- National Agricultural Research Center for Hokkaido Region, Sapporo, Japan
| | | |
Collapse
|
19
|
Priming by High Temperature Stress Induces MicroRNA Regulated Heat Shock Modules Indicating Their Involvement in Thermopriming Response in Rice. Life (Basel) 2021; 11:life11040291. [PMID: 33805566 PMCID: PMC8067039 DOI: 10.3390/life11040291] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/08/2021] [Accepted: 03/11/2021] [Indexed: 01/09/2023] Open
Abstract
Rice plants often encounter high temperature stress, but the associated coping strategies are poorly understood. It is known that a prior shorter exposure to high temperature, called thermo-priming, generally results in better adaptation of the plants to subsequent exposure to high temperature stress. High throughput sequencing of transcript and small RNA libraries of rice seedlings primed with short exposure to high temperature followed by high temperature stress and from plants exposed to high temperature without priming was performed. This identified a number of transcripts and microRNAs (miRs) that are induced or down regulated. Among them osa-miR531b, osa-miR5149, osa-miR168a-5p, osa-miR1846d-5p, osa-miR5077, osa-miR156b-3p, osa-miR167e-3p and their respective targets, coding for heat shock activators and repressors, showed differential expression between primed and non-primed plants. These findings were further validated by qRT-PCR. The results indicate that the miR-regulated heat shock proteins (HSPs)/heat shock transcription factors (HSFs) may serve as important regulatory nodes which are induced during thermo-priming for plant survival and development under high temperatures.
Collapse
|
20
|
Korotko U, Chwiałkowska K, Sańko-Sawczenko I, Kwasniewski M. DNA Demethylation in Response to Heat Stress in Arabidopsis thaliana. Int J Mol Sci 2021; 22:ijms22041555. [PMID: 33557095 PMCID: PMC7913789 DOI: 10.3390/ijms22041555] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/28/2021] [Accepted: 02/02/2021] [Indexed: 02/07/2023] Open
Abstract
Environmental stress is one of the most important factors affecting plant growth and development. Recent studies have shown that epigenetic mechanisms, such as DNA methylation, play a key role in adapting plants to stress conditions. Here, we analyzed the dynamics of changes in the level of DNA methylation in Arabidopsis thaliana (L.) Heynh. (Brassicaceae) under the influence of heat stress. For this purpose, whole-genome sequencing of sodium bisulfite-treated DNA was performed. The analysis was performed at seven time points, taking into account the control conditions, heat stress, and recovery to control conditions after the stress treatment was discontinued. In our study we observed decrease in the level of DNA methylation under the influence of heat stress, especially after returning to control conditions. Analysis of the gene ontology enrichment and regulatory pathways showed that genes characterized by differential DNA methylation are mainly associated with stress response, including heat stress. These are the genes encoding heat shock proteins and genes associated with translation regulation. A decrease in the level of DNA methylation in such specific sites suggests that under the influence of heat stress we observe active demethylation phenomenon rather than passive demethylation, which is not locus specific.
Collapse
Affiliation(s)
- Urszula Korotko
- Centre for Bioinformatics and Data Analysis, Medical University of Bialystok, 15-089 Bialystok, Poland; (U.K.); (K.C.)
- Department of Genetics, University of Silesia in Katowice, 40-007 Katowice, Poland
| | - Karolina Chwiałkowska
- Centre for Bioinformatics and Data Analysis, Medical University of Bialystok, 15-089 Bialystok, Poland; (U.K.); (K.C.)
| | - Izabela Sańko-Sawczenko
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences, 02-787 Warszawa, Poland;
| | - Miroslaw Kwasniewski
- Centre for Bioinformatics and Data Analysis, Medical University of Bialystok, 15-089 Bialystok, Poland; (U.K.); (K.C.)
- Correspondence:
| |
Collapse
|
21
|
Formisano L, El-Nakhel C, Corrado G, De Pascale S, Rouphael Y. Biochemical, Physiological, and Productive Response of Greenhouse Vegetables to Suboptimal Growth Environment Induced by Insect Nets. BIOLOGY 2020; 9:biology9120432. [PMID: 33266064 PMCID: PMC7761298 DOI: 10.3390/biology9120432] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/27/2020] [Accepted: 11/28/2020] [Indexed: 12/28/2022]
Abstract
Simple Summary Global warming jeopardizes agriculture, which must satisfy the demands of the world’s expanding population for both staple and high-quality products while ensuring increased sustainability. Environmental and regulatory pressure has prompted farmers to convert their production strategies towards sustainable agriculture systems, by introducing for instance, integrated pest management strategies. Insect nets are a suitable tool for pest control but require careful assessment of their effects on the generated microclimate. The low porosity, mandatory for proper exclusion, results in suboptimal airflow and in temperature rise with detrimental effects on crop production and quality. The biochemical and morpho-physiological changes induced by high-temperature impact vegetable crop performance and product quality in advanced growing systems, and also represent a challenge for the most impoverished developing countries of the world, which rely on local horticultural products as a key source of dietary diversity. Abstract Environmental pressure poses a major challenge to the agricultural sector, which requires the development of cultivation techniques that can effectively reduce the impact of abiotic stress affecting crop yield and quality (e.g., thermal stress, wind, and hail) and of biotic factors, such as insect pests. The increased consumer interest in premium-quality vegetables requires the implementation of sustainable integrated pest management (IPM) strategies towards an ever-increasing insect pressure, also boosted by cultivation under protected structures. In this respect, insect nets represent an excellent, eco-friendly solution. This review aims to provide an integrative investigation of the effects of the insect screens in agriculture. Attention is dedicated to the impact on growth, yield, and quality of vegetables, focusing on the physiological and biochemical mechanisms of response to heat stress induced by insect screens. The performance of insect nets depends on many factors—foremost, on the screen mesh, with finer mesh being more effective as a barrier. However, finer mesh nets impose high-pressure drops and restrict airflow by reducing ventilation, which can result in a detrimental effect on crop growth and yield due to high temperatures. The predicted outcomes are wide ranging, because heat stress can impact (i) plant morpho-physiological attributes; (ii) biochemical and molecular properties through changes in the primary and secondary metabolisms; (iii) enzymatic activity, chloroplast proteins, and photosynthetic and respiratory processes; (iv) flowering and fruit settings; (v) the accumulation of reactive oxygen species (ROSs); and (vi) the biosynthesis of secondary biomolecules endowed with antioxidant capacity.
Collapse
|
22
|
Mathieu AS, Périlleux C, Jacquemin G, Renard ME, Lutts S, Quinet M. Impact of vernalization and heat on flowering induction, development and fertility in root chicory (Cichorium intybus L. var. sativum). JOURNAL OF PLANT PHYSIOLOGY 2020; 254:153272. [PMID: 32980639 DOI: 10.1016/j.jplph.2020.153272] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 08/19/2020] [Accepted: 08/24/2020] [Indexed: 06/11/2023]
Abstract
Root chicory (Cichorium intybus var. sativum) is a biennial plant that requires vernalization for flowering initiation. However, we previously showed that heat can induce root chicory flowering independently of vernalization. To deepen our understanding of the temperature control of flowering in this species, we investigated the impact of heat, vernalization and their interaction on flowering induction and reproductive development. Heat increased the flowering percentage of non-vernalized plants by 25% but decreased that of vernalized plants by 65%. After bolting, heat negatively affected inflorescence development, decreasing the proportion of sessile capitula on the floral stem by 40% and the floral stem dry weight by 42% compared to control conditions, although it did not affect the number of flowers per capitulum. Heat also decreased flower fertility: pollen production, pollen viability and stigma receptivity were respectively 25%, 3% and 82% lower in heat-treated plants than in untreated control plants. To investigate the genetic control of flowering by temperature in root chicory, we studied the expression of the FLC-LIKE1 (CiFL1) gene in response to heat; CiFL1 was previously shown to be repressed by vernalization in chicory and to repress flowering when over-expressed in Arabidopsis. Heat treatment increased CiFL1 expression, as well as the percentage of bolting and flowering shoot apices. Heat thus has a dual impact on flowering initiation in root chicory since it appears to both induce flowering and counteract vernalization. However, after floral transition, heat has a primarily negative impact on root chicory reproduction.
Collapse
Affiliation(s)
- Anne-Sophie Mathieu
- Groupe de Recherche en Physiologie végétale, Earth and Life Institute-Agronomy (ELI-A), Université catholique de Louvain, Croix du Sud 5 (bte 7.07.13), B-1348 Louvain-la-Neuve, Belgium
| | - Claire Périlleux
- InBioS, PhytoSYSTEMS, Laboratory of Plant Physiology, University of Liège, Sart Tilman Campus Quartier Vallée 1, Chemin de la Vallée 4, B-4000 Liège, Belgium
| | - Guillaume Jacquemin
- Crop Production Systems Unit, Production and Sectors Department, Walloon Agricultural Research Centre, 4 Rue du Bordia, B-5030 Gembloux, Belgium
| | - Marie-Eve Renard
- Groupe de Recherche en Physiologie végétale, Earth and Life Institute-Agronomy (ELI-A), Université catholique de Louvain, Croix du Sud 5 (bte 7.07.13), B-1348 Louvain-la-Neuve, Belgium
| | - Stanley Lutts
- Groupe de Recherche en Physiologie végétale, Earth and Life Institute-Agronomy (ELI-A), Université catholique de Louvain, Croix du Sud 5 (bte 7.07.13), B-1348 Louvain-la-Neuve, Belgium
| | - Muriel Quinet
- Groupe de Recherche en Physiologie végétale, Earth and Life Institute-Agronomy (ELI-A), Université catholique de Louvain, Croix du Sud 5 (bte 7.07.13), B-1348 Louvain-la-Neuve, Belgium.
| |
Collapse
|
23
|
Jin J, Yang L, Fan D, Liu X, Hao Q. Comparative transcriptome analysis uncovers different heat stress responses in heat-resistant and heat-sensitive jujube cultivars. PLoS One 2020; 15:e0235763. [PMID: 32956359 PMCID: PMC7505471 DOI: 10.1371/journal.pone.0235763] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 06/20/2020] [Indexed: 12/31/2022] Open
Abstract
Jujube (Ziziphus jujuba Mill.) is an economically and agriculturally significant fruit crop and is widely cultivated throughout the world. Heat stress has recently become a primary abiotic stressor limiting the productivity and growth of jujube, as well as other crops. There are few studies, however, that have performed transcriptome profiling of jujube when it is exposed to heat stress. In this study, we observed the physiochemical changes and analyzed gene expression profiles in resistant jujube cultivar ‘HR’ and sensitive cultivar ‘HS’ subjected to heat stress for 0, 1, 3, and 5d. Twenty-four cDNA libraries from ‘HR’ and ‘HS’ leaves were built with a transcriptome assay. A total of 6887 and 5077 differentially expressed genes were identified in ‘HR’ and ‘HS’ after 1d, 3d, and 5d of heat stress compared with the control treatment, GO and KEGG enrichment analysis revealed that some of the genes were highly enriched in oxidation-reduction process, response to stress, response to water deprivation, response to heat, carbon metabolism, protein processing in endoplasmic reticulum, and plant hormone signal transduction and may play vital roles in the heat stress response in jujube plants. Differentially expressed genes were identified in the two cultivars, including heat shock proteins, transcriptional factors, and ubiquitin-protein ligase genes. And the expression pattern of nine genes was also validated by qRT-PCR. These results will provide useful information for elucidating the molecular mechanism underlying heat stress in different jujube cultivars.
Collapse
Affiliation(s)
- Juan Jin
- Institute of Horticultural crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Lei Yang
- Institute of Horticultural crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Dingyu Fan
- Institute of Horticultural crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Xuxin Liu
- Xinjiang Agricultural Vocational Technical College, Changji, China
| | - Qing Hao
- Institute of Horticultural crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
- * E-mail:
| |
Collapse
|
24
|
Katam R, Shokri S, Murthy N, Singh SK, Suravajhala P, Khan MN, Bahmani M, Sakata K, Reddy KR. Proteomics, physiological, and biochemical analysis of cross tolerance mechanisms in response to heat and water stresses in soybean. PLoS One 2020; 15:e0233905. [PMID: 32502194 PMCID: PMC7274410 DOI: 10.1371/journal.pone.0233905] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 05/14/2020] [Indexed: 01/11/2023] Open
Abstract
Water stress (WS) and heat stress (HS) have a negative effect on soybean plant growth and crop productivity. Changes in the physiological characteristics, proteome, and specific metabolites investigated on molecular and cellular functions were studied in two soybean cultivars exposed to different heat and water stress conditions independently and in combination. Leaf protein composition was studied using 2-DE and complemented with MALDI TOF mass spectrometry. While the two cultivars displayed genetic variation in response to water and heat stress, thirty-nine proteins were significantly altered in their relative abundance in response to WS, HS and combined WS+HS in both cultivars. A majority of these proteins were involved in metabolism, response to heat and photosynthesis showing significant cross-tolerance mechanisms. This study revealed that MED37C, a probable mediator of RNA polymerase transcription II protein, has potential interacting partners in Arabidopsis and signified the marked impact of this on the PI-471938 cultivar. Elevated activities in antioxidant enzymes indicate that the PI-471938 cultivar can restore the oxidation levels and sustain the plant during the stress. The discovery of this plant's development of cross-stress tolerance could be used as a guide to foster ongoing genetic modifications in stress tolerance.
Collapse
Affiliation(s)
- Ramesh Katam
- Department of Biological Sciences, Florida A&M University, Tallahassee, Florida, United States of America
| | - Sedigheh Shokri
- Department of Biological Sciences, Florida A&M University, Tallahassee, Florida, United States of America
- Department of Horticulture Sciences, College of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Nitya Murthy
- Department of Biological Sciences, Florida A&M University, Tallahassee, Florida, United States of America
- Kentucky College of Optometry, University of Pikeville, Pikeville, Kentucky, United States of America
| | - Shardendu K. Singh
- Mississippi State University, Mississippi, Mississippi, United States of America
| | - Prashanth Suravajhala
- Bioclues.org, Hyderabad, India
- Department of Biotechnology and Bioinformatics, Birla Institute of Scientific Research, Jaipur, India
| | - Mudassar Nawaz Khan
- Institute of Biotechnology & Genetic Engineering, University of Agriculture, Peshawar, Pakistan
| | - Mahya Bahmani
- Department of Agronomy and Plant Breeding, College of Agricultural Sciences & Engineering, University of Tehran, Tehran, Iran
| | - Katsumi Sakata
- Department of Life Science and Informatics, Maebashi Institute of Technology, Maebashi City, Gunma, Japan
| | - Kambham Raja Reddy
- Mississippi State University, Mississippi, Mississippi, United States of America
| |
Collapse
|
25
|
Zafar SA, Hameed A, Ashraf M, Khan AS, Qamar ZU, Li X, Siddique KHM. Agronomic, physiological and molecular characterisation of rice mutants revealed the key role of reactive oxygen species and catalase in high-temperature stress tolerance. FUNCTIONAL PLANT BIOLOGY : FPB 2020; 47:440-453. [PMID: 32209204 DOI: 10.1071/fp19246] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 12/09/2019] [Indexed: 05/20/2023]
Abstract
Climatic variations have increased the occurrence of heat stress during critical growth stages, which negatively affects grain yield in rice. Plants adapt to harsh environments, and particularly high-temperature stress, by regulating their physiological and biochemical processes, which are key tolerance mechanisms. The identification of heat-tolerant rice genotypes and reliable selection indices are crucial for rice improvement programs. Here, we evaluated the response of a rice mutant population for high-temperature stress at the seedling and reproductive stages based on agronomic, physiological and molecular indices. Estimates of variance components revealed significant differences (P < 0.001) among genotypes, treatments and their interactions for almost all traits. The principal component analysis showed significant diversity among genotypes and traits under high-temperature stress. The mutant HTT-121 was identified as the most heat-tolerant mutant with higher grain yield, panicle fertility, cell membrane thermo-stability (CMTS) and antioxidant enzyme levels under heat stress. Various seedling-based morpho-physiological traits (leaf fresh weight, relative water contents, malondialdehyde, CMTS) and biochemical traits (superoxide dismutase, catalase and hydrogen peroxide) explained variations in grain yield that could be used as selection indices for heat tolerance in rice during early growth. Notably, heat-sensitive mutants accumulated reactive oxygen species, reduced catalase activity and upregulated OsSRFP1 expression under heat stress, suggesting their key roles in regulating heat tolerance in rice. The heat-tolerant mutants identified in this study could be used in breeding programs and to develop mapping populations to unravel the underlying genetic architecture for heat-stress adaptability.
Collapse
Affiliation(s)
- Syed Adeel Zafar
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, Pakistan; and Nuclear Institute for Agriculture and Biology (NIAB), PO Box 128, Faisalabad, Pakistan; and National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Amjad Hameed
- Nuclear Institute for Agriculture and Biology (NIAB), PO Box 128, Faisalabad, Pakistan; and Corresponding authors. ;
| | - Muhammad Ashraf
- Nuclear Institute for Agriculture and Biology (NIAB), PO Box 128, Faisalabad, Pakistan
| | - Abdus Salam Khan
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, Pakistan
| | - Zia-Ul- Qamar
- Nuclear Institute for Agriculture and Biology (NIAB), PO Box 128, Faisalabad, Pakistan
| | - Xueyong Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia; and Corresponding authors. ;
| |
Collapse
|
26
|
Rani A, Devi P, Jha UC, Sharma KD, Siddique KHM, Nayyar H. Developing Climate-Resilient Chickpea Involving Physiological and Molecular Approaches With a Focus on Temperature and Drought Stresses. FRONTIERS IN PLANT SCIENCE 2020; 10:1759. [PMID: 32161601 PMCID: PMC7052492 DOI: 10.3389/fpls.2019.01759] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 12/16/2019] [Indexed: 05/19/2023]
Abstract
Chickpea is one of the most economically important food legumes, and a significant source of proteins. It is cultivated in more than 50 countries across Asia, Africa, Europe, Australia, North America, and South America. Chickpea production is limited by various abiotic stresses (cold, heat, drought, salt, etc.). Being a winter-season crop in northern south Asia and some parts of the Australia, chickpea faces low-temperature stress (0-15°C) during the reproductive stage that causes substantial loss of flowers, and thus pods, to inhibit its yield potential by 30-40%. The winter-sown chickpea in the Mediterranean, however, faces cold stress at vegetative stage. In late-sown environments, chickpea faces high-temperature stress during reproductive and pod filling stages, causing considerable yield losses. Both the low and the high temperatures reduce pollen viability, pollen germination on the stigma, and pollen tube growth resulting in poor pod set. Chickpea also experiences drought stress at various growth stages; terminal drought, along with heat stress at flowering and seed filling can reduce yields by 40-45%. In southern Australia and northern regions of south Asia, lack of chilling tolerance in cultivars delays flowering and pod set, and the crop is usually exposed to terminal drought. The incidences of temperature extremes (cold and heat) as well as inconsistent rainfall patterns are expected to increase in near future owing to climate change thereby necessitating the development of stress-tolerant and climate-resilient chickpea cultivars having region specific traits, which perform well under drought, heat, and/or low-temperature stress. Different approaches, such as genetic variability, genomic selection, molecular markers involving quantitative trait loci (QTLs), whole genome sequencing, and transcriptomics analysis have been exploited to improve chickpea production in extreme environments. Biotechnological tools have broadened our understanding of genetic basis as well as plants' responses to abiotic stresses in chickpea, and have opened opportunities to develop stress tolerant chickpea.
Collapse
Affiliation(s)
- Anju Rani
- Department of Botany, Panjab University, Chandigarh, India
| | - Poonam Devi
- Department of Botany, Panjab University, Chandigarh, India
| | - Uday Chand Jha
- Department of Crop Improvement Division, Indian Institute of Pulses Research, Kanpur, India
| | - Kamal Dev Sharma
- Department of Agricultural Biotechnology, Himachal Pradesh Agricultural University, Palampur, India
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
| | - Harsh Nayyar
- Department of Botany, Panjab University, Chandigarh, India
| |
Collapse
|
27
|
Wahab MMS, Akkareddy S, Shanthi P, Latha P. Identification of differentially expressed genes under heat stress conditions in rice (Oryza sativa L.). Mol Biol Rep 2020; 47:1935-1948. [PMID: 32067160 DOI: 10.1007/s11033-020-05291-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 01/29/2020] [Indexed: 11/28/2022]
Abstract
Rice production in recent years is highly affected by rapidly increasing temperatures in the tropical and sub-tropical countries, which threatens the sustainable production in near future. Hence, understanding the heat tolerance mechanism and evolving tolerant varieties is an immense need in the staple crop rice. An experiment has been conducted to identify differentially expressed genes in rice under heat stress conditions by employing a diverse set of 32 rice genotypes that includes reported heat tolerant genotypes Nagina 22 (N22) and Dular. Screening of the genotypes at field conditions during Summer-2018 for reproductive stage heat tolerance (wherein the mean minimum (29.8 °C) and maximum (38.4 °C) temperatures surpassed optimum temperatures (25 °C night/30 °C day) required for rice flowering and grain filling stages) and lab conditions employing thermal induction response (TIR) technique to know the genotype's acquired thermal tolerance revealed that the genotype FR13A (indica landrace) showed highest overall performance for multitude of traits viz., 95.29% of spikelet fertility (SF-%) at field level and 100% seedling survival percentage (SSP) at sub-lethal temperatures under laboratory conditions. The relative performance (under TIR) across all the three traits viz., relative shoot length (RSL) (4.91), relative root length (RRL) (equal to the control) and relative seedling dry weight (RSDW) (6.94) over control is high when compared to the other genotypes under study. However, the highly susceptible genotype PUSA1121 performed with 43.59 of SF%, 73.33% SSP, - 43.59 of RSL, - 36.02 of RRL over control. Hence, these contrasting genotypes were used for molecular analysis for identification of differentially expressed genes by employing 29 heat related gene specific primers. Five genes viz., OsGSK1, TT1, HSP70-OsEnS-45, OsHSP74.8 and OsHSP70 have shown differential expression between the two genotypes. Hence, the genotype FR13A, an 'indica' genotype, can be utilized in heat tolerance breeding programmes as donor parent in addition to the reported 'aus' genotypes, N22 and Dular. To our knowledge this is the first indica genotype identified for heat tolerance. The HSP70s, TT1 and OsGSK1 that proved with differential expression might be used for identification of gene specific InDels and thereby to develop functional markers that help in the marker assisted introgression breeding to develop heat tolerant varieties that can sustain production under dramatically changing climatic conditions.
Collapse
Affiliation(s)
- Mustaq Mohammed S Wahab
- Department of Genetics and Plant Breeding, S.V. Agricultural College, Acharya NG Ranga Agricultural University (ANGRAU), Tirupati, AP, 517502, India
| | - Srividhya Akkareddy
- Department of Plant Breeding, Institute of Frontier Technology, RARS, Acharya NG Ranga Agricultural University (ANGRAU), Tirupati, AP, 517502, India.
| | - P Shanthi
- Department of Genetics and Plant Breeding, S.V. Agricultural College, Acharya NG Ranga Agricultural University (ANGRAU), Tirupati, AP, 517502, India
| | - P Latha
- Department of Crop Physiology, Institute of Frontier Technology, RARS, ANGRAU, Tirupati, AP, 517502, India
| |
Collapse
|
28
|
Huo D, Sun L, Zhang L, Yang H, Liu S, Sun J, Su F. Time course analysis of immunity-related gene expression in the sea cucumber Apostichopus japonicus during exposure to thermal and hypoxic stress. FISH & SHELLFISH IMMUNOLOGY 2019; 95:383-390. [PMID: 31585241 DOI: 10.1016/j.fsi.2019.09.073] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/27/2019] [Accepted: 09/30/2019] [Indexed: 06/10/2023]
Abstract
Temperature and dissolved oxygen concentration are important abiotic factors that can limit the growth and survival of sea cucumbers by affecting their immune systems. As global warming intensifies, sea cucumbers are increasingly exposed to adverse environmental conditions, which can cause severe economic losses and limit the sustainable development of sea cucumber aquaculture. It is therefore important to better understand how sea cucumbers respond to environmental stress, especially with regard to its effects on immunity. In the present study, the time series of immunity-related gene expression in sea cucumbers under thermal and hypoxic stresses were analyzed separately. The expression trends of 17 genes related to the nuclear factor κB (NF-κB) pathway, the protease family, the complement system, heat shock proteins (HSPs) and the transferrin family during exposure to two stresses at eight time points were concluded. These genes have interconnected roles in stress defense. The expression levels of genes relating to the NF-κB pathways and HSPs were strongly affected in the sea cucumber thermal stress response, while melanotransferrin (Mtf), ferritin (Ft) and mannan-binding C-type lectin (MBCL) were affected by hypoxia. In contrast, complement factor B (Bf), myosin V (Mys) and serine protease inhibitor (SPI) were not that sensitive during the initial period of environmental stress. Similar expression patterns under both thermal and hypoxic stress for certain genes, including an increase in Hsp90 and decreases in lysozyme (Lys), major yolk protein (MYP) and cathepsin C (CTLC) were observed in sea cucumbers. Conversely, NF-κB and Hsp70 were differentially affected by the two stress treatments. Lysozyme-induced immune defense was inconstant in sea cucumbers coping with stress. A gene ontology (GO) analysis of the selected genes revealed that the most co-involved terms related to immunity and iron ion. Our analysis suggests that sea cucumbers demonstrate complex and varied immune responses to different types of stresses. This dynamic image of the immune responses and stress tolerance of sea cucumbers provides new insights into the adaptive strategies of holothurians in adverse environments.
Collapse
Affiliation(s)
- Da Huo
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Lina Sun
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China.
| | - Libin Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Hongsheng Yang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China.
| | - Shilin Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Jingchun Sun
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Fang Su
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| |
Collapse
|
29
|
Liu T, Liu Z, Li Z, Peng Y, Zhang X, Ma X, Huang L, Liu W, Nie G, He L. Regulation of Heat Shock Factor Pathways by γ-aminobutyric Acid (GABA) Associated with Thermotolerance of Creeping Bentgrass. Int J Mol Sci 2019; 20:ijms20194713. [PMID: 31547604 PMCID: PMC6801925 DOI: 10.3390/ijms20194713] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/13/2019] [Accepted: 09/17/2019] [Indexed: 01/17/2023] Open
Abstract
Activation and enhancement of heat shock factor (HSF) pathways are important adaptive responses to heat stress in plants. The γ-aminobutyric acid (GABA) plays an important role in regulating heat tolerance, but it is unclear whether GABA-induced thermotolerance is associated with activation of HSF pathways in plants. In this study, the changes of endogenous GABA level affecting physiological responses and genes involved in HSF pathways were investigated in creeping bentgrass during heat stress. The increase in endogenous GABA content induced by exogenous application of GABA effectively alleviated heat damage, as reflected by higher leaf relative water content, cell membrane stability, photosynthesis, and lower oxidative damage. Contrarily, the inhibition of GABA accumulation by the application of GABA biosynthesis inhibitor further aggravated heat damage. Transcriptional analyses showed that exogenous GABA could significantly upregulate transcript levels of genes encoding heat shock factor HSFs (HSFA-6a, HSFA-2c, and HSFB-2b), heat shock proteins (HSP17.8, HSP26.7, HSP70, and HSP90.1-b1), and ascorbate peroxidase 3 (APX3), whereas the inhibition of GABA biosynthesis depressed these genes expression under heat stress. Our results indicate GABA regulates thermotolerance associated with activation and enhancement of HSF pathways in creeping bentgrass.
Collapse
Affiliation(s)
- Ting Liu
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| | - Zhaoqiao Liu
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| | - Zhou Li
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| | - Yan Peng
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| | - Xinquan Zhang
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| | - Xiao Ma
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| | - Linkai Huang
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| | - Wei Liu
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| | - Gang Nie
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| | - Liwen He
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
30
|
Djukić N, Knežević D, Pantelić D, Živančev D, Torbica A, Marković S. Expression of protein synthesis elongation factors in winter wheat and oat in response to heat stress. JOURNAL OF PLANT PHYSIOLOGY 2019; 240:153015. [PMID: 31377481 DOI: 10.1016/j.jplph.2019.153015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 06/20/2019] [Accepted: 06/20/2019] [Indexed: 06/10/2023]
Abstract
The aim of our work was to examine the expression and accumulation of EF-Tu and eEF1A in grain filing stage of five genotypes of winter wheat and one oat genotype in conditions of heat stress. In addition, the correlation between accumulation of elongation factors eEF1A and EF-Tu, and yield components of cereals in the field was investigated. Flag leaf protein samples were analyzed by immunoblotting. Flag leaves were collected under conditions of moderate (23 °C; MT) and high air temperature (38 °C; HT) in a field experiment. After the harvest, grain yield was determined. The yield components, the weight of dry seed and grains number per spike, were assessed in the stage of full physiological maturity of investigated cultivars. Obtained results revealed a difference in the level of EF-Tu accumulation both under conditions of moderate air temperatures and conditions of heat stress among investigated cultivars. Cultivar Zvezdana was the only one that showed increase in EF-Tu accumulation under HT (25%) compared to MT. Immunoblot analysis indicated that the highest increase of eEF1A accumulation (43%) in relation to moderate temperature was detected in cultivar Talas. A significant, positive, linear correlation was found between the expression of eEF1A and small grains productivity under heat-stress conditions.
Collapse
Affiliation(s)
- Nevena Djukić
- University of Kragujevac, Faculty of Science, Radoja Domanovića 12, Kragujevac, Serbia.
| | - Desimir Knežević
- University of Priština, Faculty of Agriculture, Kosovska Mitrovica, Kopaonicka bb, Lešak, Kosovo and Metohia, Serbia
| | - Danijel Pantelić
- University of Belgrade, Institute for Biological Research "Siniša Stanković", Bul. Despota Stefana 142, Belgrade, Serbia
| | - Dragan Živančev
- Institute of Field and Vegetable Crops, Maksima Gorkog 30, Novi Sad, Serbia
| | - Aleksandra Torbica
- University of Novi Sad, Institute for Food Technology, Bulevar cara Lazara 1, Novi Sad, Serbia
| | - Stefan Marković
- University of Kragujevac, Faculty of Science, Radoja Domanovića 12, Kragujevac, Serbia
| |
Collapse
|
31
|
Ahmed W, Xia Y, Li R, Bai G, Siddique KHM, Guo P. Non-coding RNAs: Functional roles in the regulation of stress response in Brassica crops. Genomics 2019; 112:1419-1424. [PMID: 31430515 DOI: 10.1016/j.ygeno.2019.08.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 07/03/2019] [Accepted: 08/16/2019] [Indexed: 12/22/2022]
Abstract
Brassica crops face a combination of different abiotic and biotic stresses in the field that can reduce plant growth and development by affecting biochemical and morpho-physiological processes. Emerging evidence suggests that non-coding RNAs (ncRNAs), especially microRNAs (miRNAs) and long ncRNAs (lncRNAs), play a significant role in the modulation of gene expression in response to plant stresses. Recent advances in computational and experimental approaches are of great interest for identifying and functionally characterizing ncRNAs. While progress in this field is limited, numerous ncRNAs involved in the regulation of gene expression in response to stress have been reported in Brassica. In this review, we summarize the modes of action and functions of stress-related miRNAs and lncRNAs in Brassica as well as the approaches used to identify ncRNAs.
Collapse
Affiliation(s)
- Waqas Ahmed
- International Crop Research Center for Stress Resistance, College of Life Sciences, Guangzhou University, Guangzhou, China
| | - Yanshi Xia
- International Crop Research Center for Stress Resistance, College of Life Sciences, Guangzhou University, Guangzhou, China
| | - Ronghua Li
- International Crop Research Center for Stress Resistance, College of Life Sciences, Guangzhou University, Guangzhou, China
| | - Guihua Bai
- United States Department of Agriculture - Agricultural Research Service, Hard Winter Wheat Genetics Research Unit, Manhattan, Kansas 66506, United States
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture and School of Agriculture & Environment, The University of Western Australia, LB 5005, Perth, WA 6001, Australia
| | - Peiguo Guo
- International Crop Research Center for Stress Resistance, College of Life Sciences, Guangzhou University, Guangzhou, China.
| |
Collapse
|
32
|
Gahlaut V, Baranwal VK, Khurana P. miRNomes involved in imparting thermotolerance to crop plants. 3 Biotech 2018; 8:497. [PMID: 30498670 PMCID: PMC6261126 DOI: 10.1007/s13205-018-1521-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 11/17/2018] [Indexed: 12/20/2022] Open
Abstract
Thermal stress is one of the challenges to crop plants that negatively impacts crop yield. To overcome this ever-growing problem, utilization of regulatory mechanisms, especially microRNAs (miRNAs), that provide efficient and precise regulation in a targeted manner have been found to play determining roles. Besides their roles in plant growth and development, many recent studies have shown differential regulation of several miRNAs during abiotic stresses including heat stress (HS). Thus, understanding the underlying mechanism of miRNA-mediated gene expression during HS will enable researchers to exploit this regulatory mechanism to address HS responses. This review focuses on the miRNAs and regulatory networks that were involved in physiological, metabolic and morphological adaptations during HS in plant, specifically in crops. Illustrated examples including, the miR156-SPL, miR169-NF-YA5, miR395-APS/AST, miR396-WRKY, etc., have been discussed in specific relation to the crop plants. Further, we have also discussed the available plant miRNA databases and bioinformatics tools useful for miRNA identification and study of their regulatory role in response to HS. Finally, we have briefly discussed the future prospects about the miRNA-related mechanisms of HS for improving thermotolerance in crop plants.
Collapse
Affiliation(s)
- Vijay Gahlaut
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021 India
| | - Vinay Kumar Baranwal
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021 India
- Department of Botany, Swami Devanand Post Graduate College, Math-lar, Lar, Deoria, Uttar Pradesh 274502 India
| | - Paramjit Khurana
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021 India
| |
Collapse
|
33
|
Unraveling Field Crops Sensitivity to Heat Stress:Mechanisms, Approaches, and Future Prospects. AGRONOMY-BASEL 2018. [DOI: 10.3390/agronomy8070128] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The astonishing increase in temperature presents an alarming threat to crop production worldwide. As evident by huge yield decline in various crops, the escalating drastic impacts of heat stress (HS) are putting global food production as well as nutritional security at high risk. HS is a major abiotic stress that influences plant morphology, physiology, reproduction, and productivity worldwide. The physiological and molecular responses to HS are dynamic research areas, and molecular techniques are being adopted for producing heat tolerant crop plants. In this article, we reviewed recent findings, impacts, adoption, and tolerance at the cellular, organellar, and whole plant level and reported several approaches that are used to improve HS tolerance in crop plants. Omics approaches unravel various mechanisms underlying thermotolerance, which is imperative to understand the processes of molecular responses toward HS. Our review about physiological and molecular mechanisms may enlighten ways to develop thermo-tolerant cultivars and to produce crop plants that are agriculturally important in adverse climatic conditions.
Collapse
|
34
|
Hwang JE, Kim YJ, Shin MH, Hyun HJ, Bohnert HJ, Park HC. A comprehensive analysis of the Korean fir (Abies koreana) genes expressed under heat stress using transcriptome analysis. Sci Rep 2018; 8:10233. [PMID: 29980711 PMCID: PMC6035224 DOI: 10.1038/s41598-018-28552-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 06/22/2018] [Indexed: 11/09/2022] Open
Abstract
Korean fir (Abies koreana), a rare species endemic to South Korea, is sensitive to climate change. Here, we used next-generation massively parallel sequencing technology and de novo transcriptome assembly to gain a comprehensive overview of the Korean fir transcriptome under heat stress. Sequencing control and heat-treated samples of Korean fir, we obtained more than 194,872,650 clean reads from each sample. After de novo assembly and quantitative assessment, 42,056 unigenes were generated with an average length of 908 bp. In total, 6,401 differentially expressed genes were detected, of which 2,958 were up-regulated and 3,443 down-regulated, between the heat-treated and control samples. A gene ontology analysis of these unigenes revealed heat-stress-related terms, such as "response to stimulus". Further, in depth analysis revealed 204 transcription factors and 189 Hsps as differentially expressed. Finally, 12 regulated candidate genes associated with heat stress were examined using quantitative real-time PCR (qRT-PCR). In this study, we present the first comprehensive characterisation of Korean fir subjected to heat stress using transcriptome analysis. It provides an important resource for future studies of Korean fir with the objective of identifying heat stress tolerant lines.
Collapse
Affiliation(s)
- Jung Eun Hwang
- Division of Ecological Conservation, Bureau of Ecological Research, National Institute of Ecology, Seocheon, Republic of Korea
| | - Yun Jeong Kim
- Division of Ecological Conservation, Bureau of Ecological Research, National Institute of Ecology, Seocheon, Republic of Korea
| | - Myung Hwan Shin
- Division of Ecological Conservation, Bureau of Ecological Research, National Institute of Ecology, Seocheon, Republic of Korea
| | - Hwa Ja Hyun
- National Institute Forest Science Warm Temperate and Subtropical Forest Research Center, Jeju, Republic of Korea
| | - Hans J Bohnert
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Hyeong Cheol Park
- Division of Ecological Conservation, Bureau of Ecological Research, National Institute of Ecology, Seocheon, Republic of Korea.
| |
Collapse
|
35
|
Meireles B, Usié A, Barbosa P, Fortes AM, Folgado A, Chaves I, Carrasquinho I, Costa RL, Gonçalves S, Teixeira RT, Ramos AM, Nóbrega F. Characterization of the cork formation and production transcriptome in Quercus cerris × suber hybrids. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2018; 24:535-549. [PMID: 30042611 PMCID: PMC6041232 DOI: 10.1007/s12298-018-0526-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/13/2018] [Accepted: 03/20/2018] [Indexed: 05/31/2023]
Abstract
Cork oak is the main cork-producing species worldwide, and plays a significant economic, ecological and social role in the Mediterranean countries, in particular in Portugal and Spain. The ability to produce cork is limited to a few species, hence it must involve specific regulation mechanisms that are unique to these species. However, to date, these mechanisms remain largely understudied, especially with approaches involving the use of high-throughput sequencing technology. In this study, the transcriptome of cork-producing and non-cork-producing Quercus cerris × suber hybrids was analyzed in order to elucidate the differences between the two groups of trees displaying contrasting phenotypes for cork production. The results revealed the presence of a significant number of genes exclusively associated with cork production, in the trees that developed cork. Moreover, several gene ontology subcategories, such as cell wall biogenesis, lipid metabolic processes, metal ion binding and apoplast/cell wall, were only detected in the trees with cork production. These results indicate the existence, at the transcriptome level, of mechanisms that seem to be unique and necessary for cork production, which is an advancement in our knowledge regarding the genetic regulation behind cork formation and production.
Collapse
Affiliation(s)
- Brígida Meireles
- Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo (CEBAL), Instituto Politécnico de Beja (IPBeja), Beja, Portugal
| | - Ana Usié
- Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo (CEBAL), Instituto Politécnico de Beja (IPBeja), Beja, Portugal
- Instituto de Ciências Agrárias e Ambientais Mediterrânicas (ICAAM), Universidade de Évora, Évora, Portugal
| | - Pedro Barbosa
- Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo (CEBAL), Instituto Politécnico de Beja (IPBeja), Beja, Portugal
| | - Ana Margarida Fortes
- Faculdade de Ciências de Lisboa, Biosystems and Integrative Sciences Institute (BIOISI), Universidade de Lisboa, Lisbon, Portugal
| | - André Folgado
- Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo (CEBAL), Instituto Politécnico de Beja (IPBeja), Beja, Portugal
| | - Inês Chaves
- Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo (CEBAL), Instituto Politécnico de Beja (IPBeja), Beja, Portugal
| | - Isabel Carrasquinho
- Instituto Nacional de Investigação Agrária e Veterinária, I.P, Quinta do Marquês, 2780-159 Oeiras, Portugal
| | - Rita Lourenço Costa
- Instituto Nacional de Investigação Agrária e Veterinária, I.P, Quinta do Marquês, 2780-159 Oeiras, Portugal
- Centro de estudos Florestais, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisbon, Portugal
| | - Sónia Gonçalves
- Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo (CEBAL), Instituto Politécnico de Beja (IPBeja), Beja, Portugal
- Present Address: Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB101SA UK
| | - Rita Teresa Teixeira
- Instituto Superior de Agronomia da Universidade de Lisboa (ISA), Tapada da Ajuda, 1349-017 Lisbon, Portugal
| | - António Marcos Ramos
- Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo (CEBAL), Instituto Politécnico de Beja (IPBeja), Beja, Portugal
- Instituto de Ciências Agrárias e Ambientais Mediterrânicas (ICAAM), Universidade de Évora, Évora, Portugal
| | - Filomena Nóbrega
- Instituto Nacional de Investigação Agrária e Veterinária, I.P, Quinta do Marquês, 2780-159 Oeiras, Portugal
| |
Collapse
|
36
|
Wang W, Teng F, Lin Y, Ji D, Xu Y, Chen C, Xie C. Transcriptomic study to understand thermal adaptation in a high temperature-tolerant strain of Pyropia haitanensis. PLoS One 2018; 13:e0195842. [PMID: 29694388 PMCID: PMC5919043 DOI: 10.1371/journal.pone.0195842] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 04/01/2018] [Indexed: 01/31/2023] Open
Abstract
Pyropia haitanensis, a high-yield commercial seaweed in China, is currently undergoing increasing levels of high-temperature stress due to gradual global warming. The mechanisms of plant responses to high temperature stress vary with not only plant type but also the degree and duration of high temperature. To understand the mechanism underlying thermal tolerance in P. haitanensis, gene expression and regulation in response to short- and long-term temperature stresses (SHS and LHS) was investigated by performing genome-wide high-throughput transcriptomic sequencing for a high temperature tolerant strain (HTT). A total of 14,164 differential expression genes were identified to be high temperature-responsive in at least one time point by high-temperature treatment, representing 41.10% of the total number of unigenes. The present data indicated a decrease in the photosynthetic and energy metabolic rates in HTT to reduce unnecessary energy consumption, which in turn facilitated in the rapid establishment of acclimatory homeostasis in its transcriptome during SHS. On the other hand, an increase in energy consumption and antioxidant substance activity was observed with LHS, which apparently facilitates in the development of resistance against severe oxidative stress. Meanwhile, ubiquitin-mediated proteolysis, brassinosteroids, and heat shock proteins also play a vital role in HTT. The effects of SHS and LHS on the mechanism of HTT to resist heat stress were relatively different. The findings may facilitate further studies on gene discovery and the molecular mechanisms underlying high-temperature tolerance in P. haitanensis, as well as allow improvement of breeding schemes for high temperature-tolerant macroalgae that can resist global warming.
Collapse
Affiliation(s)
- Wenlei Wang
- Fisheries College, Jimei University, Xiamen, China
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Xiamen, China
| | - Fei Teng
- Fisheries College, Jimei University, Xiamen, China
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Xiamen, China
| | - Yinghui Lin
- Fisheries College, Jimei University, Xiamen, China
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Xiamen, China
| | - Dehua Ji
- Fisheries College, Jimei University, Xiamen, China
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Xiamen, China
| | - Yan Xu
- Fisheries College, Jimei University, Xiamen, China
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Xiamen, China
| | - Changsheng Chen
- Fisheries College, Jimei University, Xiamen, China
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Xiamen, China
| | - Chaotian Xie
- Fisheries College, Jimei University, Xiamen, China
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Xiamen, China
- * E-mail:
| |
Collapse
|
37
|
Wang X, Xu C, Cai X, Wang Q, Dai S. Heat-Responsive Photosynthetic and Signaling Pathways in Plants: Insight from Proteomics. Int J Mol Sci 2017; 18:E2191. [PMID: 29053587 PMCID: PMC5666872 DOI: 10.3390/ijms18102191] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 10/13/2017] [Accepted: 10/16/2017] [Indexed: 02/04/2023] Open
Abstract
Heat stress is a major abiotic stress posing a serious threat to plants. Heat-responsive mechanisms in plants are complicated and fine-tuned. Heat signaling transduction and photosynthesis are highly sensitive. Therefore, a thorough understanding of the molecular mechanism in heat stressed-signaling transduction and photosynthesis is necessary to protect crop yield. Current high-throughput proteomics investigations provide more useful information for underlying heat-responsive signaling pathways and photosynthesis modulation in plants. Several signaling components, such as guanosine triphosphate (GTP)-binding protein, nucleoside diphosphate kinase, annexin, and brassinosteroid-insensitive I-kinase domain interacting protein 114, were proposed to be important in heat signaling transduction. Moreover, diverse protein patterns of photosynthetic proteins imply that the modulations of stomatal CO₂ exchange, photosystem II, Calvin cycle, ATP synthesis, and chlorophyll biosynthesis are crucial for plant heat tolerance.
Collapse
Affiliation(s)
- Xiaoli Wang
- Shanghai Engineering Research Center of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China.
| | - Chenxi Xu
- Shanghai Engineering Research Center of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China.
| | - Xiaofeng Cai
- Shanghai Engineering Research Center of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China.
| | - Quanhua Wang
- Shanghai Engineering Research Center of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China.
| | - Shaojun Dai
- Shanghai Engineering Research Center of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China.
| |
Collapse
|
38
|
Song C, Kim T, Chung WS, Lim CO. The Arabidopsis Phytocystatin AtCYS5 Enhances Seed Germination and Seedling Growth under Heat Stress Conditions. Mol Cells 2017; 40:577-586. [PMID: 28756655 PMCID: PMC5582304 DOI: 10.14348/molcells.2017.0075] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 06/08/2017] [Accepted: 06/25/2017] [Indexed: 11/27/2022] Open
Abstract
Phytocystatins (PhyCYSs) are plant-specific proteinaceous inhibitors that are implicated in protein turnover and stress responses. Here, we characterized a PhyCYS from Arabidopsis thaliana, which was designated AtCYS5. RT-qPCR analysis showed that the expression of AtCYS5 in germinating seeds was induced by heat stress (HS) and exogenous abscisic acid (ABA) treatment. Analysis of the expression of the β-glucuronidase reporter gene under the control of the AtCYS5 promoter showed that AtCYS5 expression during seed germination was induced by HS and ABA. Constitutive overexpression of AtCYS5 driven by the cauliflower mosaic virus 35S promoter led to enhanced HS tolerance in transgenic Arabidopsis, which was characterized by higher fresh weight and root length compared to wild-type (WT) and knockout (cys5) plants grown under HS conditions. The HS tolerance of At-CYS5-overexpressing transgenic plants was associated with increased insensitivity to exogenous ABA during both seed germination and post-germination compared to WT and cys5. Although no HS elements were identified in the 5'-flanking region of AtCYS5, canonical ABA-responsive elements (ABREs) were detected. AtCYS5 was upregulated in ABA-treated protoplasts transiently co-expressing this gene and genes encoding bZIP ABRE-binding factors (ABFs and AREB3). In the absence of ABA, ABF1 and ABF3 directly bound to the ABREs in the AtCYS5 promoter, which activated the transcription of this gene in the presence of ABA. These results suggest that an ABA-dependent pathway plays a positive role in the HS-responsive expression of AtCYS5 during seed germination and post-germination growth.
Collapse
Affiliation(s)
- Chieun Song
- Systems and Synthetic Agrobiotech Center and PMBBRC, Gyeongsang National University, Jinju 52828,
Korea
| | - Taeyoon Kim
- Systems and Synthetic Agrobiotech Center and PMBBRC, Gyeongsang National University, Jinju 52828,
Korea
- Division of Life Science, Gyeongsang National University, Jinju 52828,
Korea
| | - Woo Sik Chung
- Systems and Synthetic Agrobiotech Center and PMBBRC, Gyeongsang National University, Jinju 52828,
Korea
- Division of Life Science, Gyeongsang National University, Jinju 52828,
Korea
| | - Chae Oh Lim
- Systems and Synthetic Agrobiotech Center and PMBBRC, Gyeongsang National University, Jinju 52828,
Korea
- Division of Life Science, Gyeongsang National University, Jinju 52828,
Korea
| |
Collapse
|
39
|
Witzel K, Üstün S, Schreiner M, Grosch R, Börnke F, Ruppel S. A Proteomic Approach Suggests Unbalanced Proteasome Functioning Induced by the Growth-Promoting Bacterium Kosakonia radicincitans in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2017; 8:661. [PMID: 28491076 PMCID: PMC5405128 DOI: 10.3389/fpls.2017.00661] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 04/11/2017] [Indexed: 06/07/2023]
Abstract
Endophytic plant growth-promoting bacteria have significant impact on the plant physiology and understanding this interaction at the molecular level is of particular interest to support crop productivity and sustainable production systems. We used a proteomics approach to investigate the molecular mechanisms underlying plant growth promotion in the interaction of Kosakonia radicincitans DSM 16656 with Arabidopsis thaliana. Four weeks after the inoculation, the proteome of roots from inoculated and control plants was compared using two-dimensional gel electrophoresis and differentially abundant protein spots were identified by liquid chromatography tandem mass spectrometry. Twelve protein spots were responsive to the inoculation, with the majority of them being related to cellular stress reactions. The protein expression of 20S proteasome alpha-3 subunit was increased by the presence of K. radicincitans. Determination of proteasome activity and immuno blotting analysis for ubiquitinated proteins revealed that endophytic colonization interferes with ubiquitin-dependent protein degradation. Inoculation of rpn12a, defective in a 26S proteasome regulatory particle, enhanced the growth-promoting effect. This indicates that the plant proteasome, besides being a known target for plant pathogenic bacteria, is involved in the establishment of beneficial interactions of microorganisms with plants.
Collapse
Affiliation(s)
- Katja Witzel
- Leibniz Institute of Vegetable and Ornamental CropsGroßbeeren, Germany
| | | | | | | | | | | |
Collapse
|
40
|
Rienth M, Torregrosa L, Sarah G, Ardisson M, Brillouet JM, Romieu C. Temperature desynchronizes sugar and organic acid metabolism in ripening grapevine fruits and remodels their transcriptome. BMC PLANT BIOLOGY 2016; 16:164. [PMID: 27439426 PMCID: PMC4955140 DOI: 10.1186/s12870-016-0850-0] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 07/08/2016] [Indexed: 05/05/2023]
Abstract
BACKGROUND Fruit composition at harvest is strongly dependent on the temperature during the grapevine developmental cycle. This raises serious concerns regarding the sustainability of viticulture and the socio-economic repercussions of global warming for many regions where the most heat-tolerant varieties are already cultivated. Despite recent progress, the direct and indirect effects of temperature on fruit development are far from being understood. Experimental limitations such as fluctuating environmental conditions, intra-cluster heterogeneity and the annual reproductive cycle introduce unquantifiable biases for gene expression and physiological studies with grapevine. In the present study, DRCF grapevine mutants (microvine) were grown under several temperature regimes in duly-controlled environmental conditions. A singly berry selection increased the accuracy of fruit phenotyping and subsequent gene expression analyses. The physiological and transcriptomic responses of five key stages sampled simultaneously at day and nighttime were studied by RNA-seq analysis. RESULTS A total of 674 millions reads were sequenced from all experiments. Analysis of differential expression yielded in a total of 10 788 transcripts modulated by temperature. An acceleration of green berry development under higher temperature was correlated with the induction of several candidate genes linked to cell expansion. High temperatures impaired tannin synthesis and degree of galloylation at the transcriptomic levels. The timing of malate breakdown was delayed to mid-ripening in transgressively cool conditions, revealing unsuspected plasticity of berry primary metabolism. Specific ATPases and malate transporters displayed development and temperature-dependent expression patterns, besides less marked but significant regulation of other genes in the malate pathway. CONCLUSION The present study represents, to our knowledge the first abiotic stress study performed on a fleshy fruits model using RNA-seq for transcriptomic analysis. It confirms that a careful stage selection and a rigorous control of environmental conditions are needed to address the long-term plasticity of berry development with respect to temperature. Original results revealed temperature-dependent regulation of key metabolic processes in the elaboration of berry composition. Malate breakdown no longer appears as an integral part of the veraison program, but as possibly triggered by an imbalance in cytoplasmic sugar, when efficient vacuolar storage is set on with ripening, in usual temperature conditions. Furthermore, variations in heat shock responsive genes that will be very valuable for further research on temperature adaptation of plants have been evidenced.
Collapse
Affiliation(s)
- Markus Rienth
- />Montpellier SupAgro-INRA, UMR AGAP-DAAV Amélioration Génétique et Adaptation des Plantes méditerranéennes et tropicales-Diversité, Adaptation et Amélioration de la Vigne, 2 place Pierre Viala, Montpellier, 34060 France
- />Fondation Jean Poupelain, 30 Rue Gâte Chien, Javrezac, 16100 France
- />CHANGINS, haute école de viticulture et œnologie, 50 route de Duillier, 1260 Nyon, Switzerland
| | - Laurent Torregrosa
- />Montpellier SupAgro-INRA, UMR AGAP-DAAV Amélioration Génétique et Adaptation des Plantes méditerranéennes et tropicales-Diversité, Adaptation et Amélioration de la Vigne, 2 place Pierre Viala, Montpellier, 34060 France
| | - Gautier Sarah
- />Montpellier SupAgro-INRA, UMR AGAP-DAAV Amélioration Génétique et Adaptation des Plantes méditerranéennes et tropicales-Diversité, Adaptation et Amélioration de la Vigne, 2 place Pierre Viala, Montpellier, 34060 France
| | - Morgane Ardisson
- />Montpellier SupAgro-INRA, UMR AGAP-DAAV Amélioration Génétique et Adaptation des Plantes méditerranéennes et tropicales-Diversité, Adaptation et Amélioration de la Vigne, 2 place Pierre Viala, Montpellier, 34060 France
| | - Jean-Marc Brillouet
- />INRA Montpellier UMR SPO- Science pour l’œnologie, 2 place, Pierre Viala, Montpellier, 34060 France
| | - Charles Romieu
- />Montpellier SupAgro-INRA, UMR AGAP-DAAV Amélioration Génétique et Adaptation des Plantes méditerranéennes et tropicales-Diversité, Adaptation et Amélioration de la Vigne, 2 place Pierre Viala, Montpellier, 34060 France
| |
Collapse
|
41
|
Skalák J, Černý M, Jedelský P, Dobrá J, Ge E, Novák J, Hronková M, Dobrev P, Vanková R, Brzobohatý B. Stimulation of ipt overexpression as a tool to elucidate the role of cytokinins in high temperature responses of Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:2861-73. [PMID: 27049021 PMCID: PMC4861028 DOI: 10.1093/jxb/erw129] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Cytokinins (CKs) are phytohormones regulating plant growth and development as well as response to the environment. In order to evaluate their function in heat stress (HS) responses, the effect of CK elevation was determined during three types of HS - targeted to shoots, targeted to roots and applied to the whole plant. The early (30min) and longer term (3h) responses were followed at the hormonal, transcriptomic and proteomic levels in Arabidopsis transformants with dexamethasone-inducible expression of the CK biosynthetic gene isopentenyltransferase (ipt) and the corresponding wild-type (Col-0). Combination of hormonal and phenotypic analyses showed transient up-regulation of the CK/abscisic acid ratio, which controls stomatal aperture, to be more pronounced in the transformant. HS responses of the root proteome and Rubisco-immunodepleted leaf proteome were followed using 2-D gel electrophoresis and MALDI-TOF/TOF. More than 100 HS-responsive proteins were detected, most of them being modulated by CK increase. Proteome and transcriptome analyses demonstrated that CKs have longer term positive effects on the stress-related proteins and transcripts, as well as on the photosynthesis-related ones. Transient accumulation of CKs and stimulation of their signal transduction in tissue(s) not exposed to HS indicate that they are involved in plant stress responses.
Collapse
Affiliation(s)
- Jan Skalák
- Laboratory of Plant Molecular Biology, Institute of Biophysics AS CR, v.v.i. and Mendel University in Brno, CEITEC - Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, CZ-613 00 Brno, Czech Republic
| | - Martin Černý
- Laboratory of Plant Molecular Biology, Institute of Biophysics AS CR, v.v.i. and Mendel University in Brno, CEITEC - Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, CZ-613 00 Brno, Czech Republic
| | - Petr Jedelský
- Laboratory of MS, Faculty of Science, Charles University, Viničná 7, CZ-128 43 Prague, Czech Republic
| | - Jana Dobrá
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany AS CR, Rozvojová 263, 165 02 Praha, Czech Republic
| | - Eva Ge
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany AS CR, Rozvojová 263, 165 02 Praha, Czech Republic
| | - Jan Novák
- Laboratory of Plant Molecular Biology, Institute of Biophysics AS CR, v.v.i. and Mendel University in Brno, CEITEC - Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, CZ-613 00 Brno, Czech Republic
| | - Marie Hronková
- Institute of Plant Molecular Biology, Biology Centre AS CR, Branišovská 31/1160, 370 05 České Budějovice, Czech Republic
| | - Petre Dobrev
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany AS CR, Rozvojová 263, 165 02 Praha, Czech Republic
| | - Radomira Vanková
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany AS CR, Rozvojová 263, 165 02 Praha, Czech Republic
| | - Břetislav Brzobohatý
- Laboratory of Plant Molecular Biology, Institute of Biophysics AS CR, v.v.i. and Mendel University in Brno, CEITEC - Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, CZ-613 00 Brno, Czech Republic
| |
Collapse
|
42
|
De novo transcriptome sequencing and gene expression profiling of spinach (Spinacia oleracea L.) leaves under heat stress. Sci Rep 2016; 6:19473. [PMID: 26857466 PMCID: PMC4746569 DOI: 10.1038/srep19473] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 12/09/2015] [Indexed: 02/08/2023] Open
Abstract
Spinach (Spinacia oleracea) has cold tolerant but heat sensitive characteristics. The spinach variety ‘Island,’ is suitable for summer periods. There is lack molecular information available for spinach in response to heat stress. In this study, high throughput de novo transcriptome sequencing and gene expression analyses were carried out at different spinach variety ‘Island’ leaves (grown at 24 °C (control), exposed to 35 °C for 30 min (S1), and 5 h (S2)). A total of 133,200,898 clean reads were assembled into 59,413 unigenes (average size 1259.55 bp). 33,573 unigenes could match to public databases. The DEG of controls vs S1 was 986, the DEG of control vs S2 was 1741 and the DEG of S1 vs S2 was 1587. Gene Ontology (GO) and pathway enrichment analysis indicated that a great deal of heat-responsive genes and other stress-responsive genes were identified in these DEGs, suggesting that the heat stress may have induced an extensive abiotic stress effect. Comparative transcriptome analysis found 896 unique genes in spinach heat response transcript. The expression patterns of 13 selected genes were verified by RT-qPCR (quantitative real-time PCR). Our study found a series of candidate genes and pathways that may be related to heat resistance in spinach.
Collapse
|
43
|
Zhao J, He Q, Chen G, Wang L, Jin B. Regulation of Non-coding RNAs in Heat Stress Responses of Plants. FRONTIERS IN PLANT SCIENCE 2016; 7:1213. [PMID: 27588021 PMCID: PMC4988968 DOI: 10.3389/fpls.2016.01213] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 07/29/2016] [Indexed: 05/18/2023]
Abstract
Heat stress is an important factor limiting plant growth, development, and productivity; thus, plants have evolved special adaptive mechanisms to cope with high-temperature stress. Non-coding RNAs (ncRNAs) are a class of regulatory RNAs that play an important role in many biological processes. Recently developed advanced technologies, such as genome-wide transcriptomic analysis, have revealed that abundant ncRNAs are expressed under heat stress. Although this area of research is still in its infancy, an increasing number of several classes of regulatory ncRNA (i.e., miRNA, siRNA, and lncRNA) related to heat stress responses have been reported. In this mini-review, we discuss our current understanding of the role of ncRNAs in heat stress responses in plants, especially miRNAs, siRNAs, and their targets. For example, the miR398-CSD/CCS-HSF, miR396-WRKY6, miR159-GAMYB, and TAS1-HTT-HSF pathways regulate plant heat tolerance. We highlight the hormone/development-related miRNAs involved in heat stress, and discuss the regulatory networks of miRNA-targets. We also note that DNA methylation and alternative splicing could affect miRNA expression under heat stress, and some lncRNAs could respond to heat stress. Finally, we briefly discuss future prospects concerning the ncRNA-related mechanisms of heat stress responses in plants.
Collapse
Affiliation(s)
- Jianguo Zhao
- College of Horticulture and Plant Protection, Yangzhou UniversityYangzhou, China
| | - Qingsong He
- College of Horticulture and Plant Protection, Yangzhou UniversityYangzhou, China
| | - Gang Chen
- College of Bio-Science and Bio-Technology, Yangzhou UniversityYangzhou, China
| | - Li Wang
- College of Horticulture and Plant Protection, Yangzhou UniversityYangzhou, China
| | - Biao Jin
- College of Horticulture and Plant Protection, Yangzhou UniversityYangzhou, China
- Key Laboratory of Crop Genetics and Physiology of Jiangsu ProvinceYangzhou, China
- *Correspondence: Biao Jin
| |
Collapse
|
44
|
Suseela V, Tharayil N, Xing B, Dukes JS. Warming and drought differentially influence the production and resorption of elemental and metabolic nitrogen pools in Quercus rubra. GLOBAL CHANGE BIOLOGY 2015; 21:4177-95. [PMID: 26179236 DOI: 10.1111/gcb.13033] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 05/05/2015] [Accepted: 05/28/2015] [Indexed: 05/07/2023]
Abstract
The process of nutrient retranslocation from plant leaves during senescence subsequently affects both plant growth and soil nutrient cycling; changes in either of these could potentially feed back to climate change. Although elemental nutrient resorption has been shown to respond modestly to temperature and precipitation, we know remarkably little about the influence of increasing intensities of drought and warming on the resorption of different classes of plant metabolites. We studied the effect of warming and altered precipitation on the production and resorption of metabolites in Quercus rubra. The combination of warming and drought produced a higher abundance of compounds that can help to mitigate climatic stress by functioning as osmoregulators and antioxidants, including important intermediaries of the tricarboxylic acid (TCA) cycle, amino acids including proline and citrulline, and polyamines such as putrescine. Resorption efficiencies (REs) of extractable metabolites surprisingly had opposite responses to drought and warming; drought treatments generally increased RE of metabolites compared to ambient and wet treatments, while warming decreased RE. However, RE of total N differed markedly from that of extractable metabolites such as amino acids; for instance, droughted plants resorbed a smaller fraction of elemental N from their leaves than plants exposed to the ambient control. In contrast, plants in drought treatment resorbed amino acids more efficiently (>90%) than those in ambient (65-77%) or wet (42-58%) treatments. Across the climate treatments, the RE of elemental N correlated negatively with tissue tannin concentration, indicating that polyphenols produced in leaves under climatic stress could interfere with N resorption. Thus, senesced leaves from drier conditions might have a lower nutritive value to soil heterotrophs during the initial stages of litter decomposition despite a higher elemental N content of these tissues. Our results suggest that N resorption may be controlled not only by plant demand, but also by climatic influences on the production and resorption of plant metabolites. As climate-carbon models incorporate increasingly sophisticated nutrient cycles, these results highlight the need to adequately understand plant physiological responses to climatic variables.
Collapse
Affiliation(s)
- Vidya Suseela
- School of Agricultural, Forest and Environmental Sciences, Clemson University, Clemson, SC, 29634, USA
| | - Nishanth Tharayil
- School of Agricultural, Forest and Environmental Sciences, Clemson University, Clemson, SC, 29634, USA
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts Amherst, Amherst, MA, USA
| | - Jeffrey S Dukes
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, 47907, USA
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
45
|
Yamasaki S, Matsuura H, Demura T, Kato K. Changes in Polysome Association of mRNA Throughout Growth and Development in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2015; 56:2169-80. [PMID: 26412777 DOI: 10.1093/pcp/pcv133] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 09/15/2015] [Indexed: 05/15/2023]
Abstract
Translational control is a key regulatory step in the expression of genes as proteins. In plant cells, the translational efficiency of mRNAs differs for different mRNA species, and the efficiency dynamically changes in various conditions. To gain a global view of translational control throughout growth and development, we performed genome-wide analysis of polysome association of mRNA during growth and leaf development in Arabidopsis thaliana by subjecting the mRNAs in polysomes to DNA microarray. This analysis revealed that the degree of polysome association of mRNA was different depending on the mRNA species, and the polysome association changed greatly throughout growth and development for each. In the growth stage, transcripts showed varying changes in polysome association from strongly depressed to unchanged, with the majority of transcripts showing dissociation from ribosomes. On the other hand, during leaf development, the polysome association of transcripts showed a normal distribution from repressed to activated mRNAs when comparing expanding and expanded leaves. In addition, functional category analysis of the microarray data suggested that translational control has a physiological significance in the plant growth and development process, especially in the categories of signaling and protein synthesis. In addition to this, we compared changes in polysome association of mRNAs between various conditions and characterized translational controls in each. This result suggested that mRNA translation might be controlled by complicated mechanisms for response to each condition. Our results highlight the importance of dynamic changes in mRNA translation in plant development and growth.
Collapse
Affiliation(s)
- Shotaro Yamasaki
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192 Japan
| | - Hideyuki Matsuura
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871 Japan
| | - Taku Demura
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192 Japan
| | - Ko Kato
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192 Japan
| |
Collapse
|
46
|
Wang K, Zhang X, Goatley M, Ervin E. Heat shock proteins in relation to heat stress tolerance of creeping bentgrass at different N levels. PLoS One 2014; 9:e102914. [PMID: 25050702 PMCID: PMC4106837 DOI: 10.1371/journal.pone.0102914] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 06/23/2014] [Indexed: 11/24/2022] Open
Abstract
Heat stress is a primary factor causing summer bentgrass decline. Changes in gene expression at the transcriptional and/or translational level are thought to be a fundamental mechanism in plant response to environmental stresses. Heat stress redirects protein synthesis in higher plants and results in stress protein synthesis, particularly heat shock proteins (HSPs). The goal of this work was to analyze the expression pattern of major HSPs in creeping bentgrass (Agrostis stolonifera L.) during different heat stress periods and to study the influence of nitrogen (N) on the HSP expression patterns. A growth chamber study on 'Penn-A4' creeping bentgrass subjected to 38/28°C day/night for 50 days, was conducted with four nitrate rates (no N-0, low N-2.5, medium N-7.5, and high N-12.5 kg N ha-1) applied biweekly. Visual turfgrass quality (TQ), normalized difference vegetation index (NDVI), photochemical efficiency of photosystem II (Fv/Fm), shoot electrolyte leakage (ShEL), and root viability (RV) were monitored, along with the expression pattern of HSPs. There was no difference in measured parameters between treatments until week seven, except TQ at week five. At week seven, grass at medium N had better TQ, NDVI, and Fv/Fm accompanied by lower ShEL and higher RV, suggesting a major role in improved heat tolerance. All the investigated HSPs (HSP101, HSP90, HSP70, and sHSPs) were up-regulated by heat stress. Their expression patterns indicated cooperation between different HSPs and their roles in bentgrass thermotolerance. In addition, their production seems to be resource dependent. This study could further improve our understanding about how different N levels affect bentgrass thermotolerance.
Collapse
Affiliation(s)
- Kehua Wang
- Department of Grassland Science, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Department of Crop and Soil Environmental Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Xunzhong Zhang
- Department of Crop and Soil Environmental Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Mike Goatley
- Department of Crop and Soil Environmental Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Erik Ervin
- Department of Crop and Soil Environmental Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| |
Collapse
|
47
|
Komatsu S, Kamal AHM, Makino T, Hossain Z. Ultraweak photon emission and proteomics analyses in soybean under abiotic stress. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1844:1208-18. [PMID: 24726903 DOI: 10.1016/j.bbapap.2014.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 03/30/2014] [Accepted: 04/01/2014] [Indexed: 10/25/2022]
Abstract
Biophotons are ultraweak photon emissions that are closely related to various biological activities and processes. In mammals, biophoton emissions originate from oxidative bursts in immunocytes during immunological responses. Biophotons emitted from plant organs provide novel information about the physiological state of plant under in vivo condition. In this review, the principles and recent advances in the measurement of biophoton emissions in plants are described. Furthermore, examples of biophoton emission and proteomics in soybean under abiotic stress are reviewed and discussed. Finally, this review suggests that the application of proteomics should provide a better interpretation of plant response to biophoton emission and allow the identification of genes that will allow the screening of crops able to produce maximal yields, even in stressful environments.
Collapse
Affiliation(s)
- Setsuko Komatsu
- National Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba 305-8518, Japan.
| | - Abu Hena Mostafa Kamal
- National Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba 305-8518, Japan
| | - Takahiro Makino
- Graduate School for the Creation of New Photonics Industries, Hamamatsu 431-1202, Japan
| | - Zahed Hossain
- Plant Stress Biology Lab, Department of Botany, West Bengal State University, Kolkata 700126, West Bengal, India
| |
Collapse
|
48
|
Rowe JM, Dunigan DD, Blanc G, Gurnon JR, Xia Y, Van Etten JL. Evaluation of higher plant virus resistance genes in the green alga, Chlorella variabilis NC64A, during the early phase of infection with Paramecium bursaria chlorella virus-1. Virology 2013; 442:101-13. [PMID: 23701839 PMCID: PMC4107423 DOI: 10.1016/j.virol.2013.04.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 04/18/2013] [Accepted: 04/20/2013] [Indexed: 01/25/2023]
Abstract
With growing industrial interest in algae plus their critical roles in aquatic systems, the need to understand the effects of algal pathogens is increasing. We examined a model algal host-virus system, Chlorella variabilis NC64A and virus, PBCV-1. C. variabilis encodes 375 homologs to genes involved in RNA silencing and in response to virus infection in higher plants. Illumina RNA-Seq data showed that 325 of these homologs were expressed in healthy and early PBCV-1 infected (≤60min) cells. For each of the RNA silencing genes to which homologs were found, mRNA transcripts were detected in healthy and infected cells. C. variabilis, like higher plants, may employ certain RNA silencing pathways to defend itself against virus infection. To our knowledge this is the first examination of RNA silencing genes in algae beyond core proteins, and the first analysis of their transcription during virus infection.
Collapse
Affiliation(s)
- Janet M. Rowe
- Department of Plant Pathology, University of Nebraska, Lincoln, NE 68583-0900, United States
- Nebraska Center for Virology, University of Nebraska, Lincoln, NE 68583-0900, United States
| | - David D. Dunigan
- Department of Plant Pathology, University of Nebraska, Lincoln, NE 68583-0900, United States
- Nebraska Center for Virology, University of Nebraska, Lincoln, NE 68583-0900, United States
| | - Guillaume Blanc
- Structural and Génomique Information Laboratoire, UMR7256 CNRS, Aix-Marseille Université, Marseille, FR-13385, France
| | - James R. Gurnon
- Department of Plant Pathology, University of Nebraska, Lincoln, NE 68583-0900, United States
- Nebraska Center for Virology, University of Nebraska, Lincoln, NE 68583-0900, United States
| | - Yuannan Xia
- Center for Biotechnology, University of Nebraska, Lincoln, NE 68588-0665, United States
| | - James L. Van Etten
- Department of Plant Pathology, University of Nebraska, Lincoln, NE 68583-0900, United States
- Nebraska Center for Virology, University of Nebraska, Lincoln, NE 68583-0900, United States
| |
Collapse
|
49
|
Bita CE, Gerats T. Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops. FRONTIERS IN PLANT SCIENCE 2013; 4:273. [PMID: 23914193 PMCID: PMC3728475 DOI: 10.3389/fpls.2013.00273] [Citation(s) in RCA: 662] [Impact Index Per Article: 55.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 07/03/2013] [Indexed: 05/17/2023]
Abstract
Global warming is predicted to have a general negative effect on plant growth due to the damaging effect of high temperatures on plant development. The increasing threat of climatological extremes including very high temperatures might lead to catastrophic loss of crop productivity and result in wide spread famine. In this review, we assess the impact of global climate change on the agricultural crop production. There is a differential effect of climate change both in terms of geographic location and the crops that will likely show the most extreme reductions in yield as a result of expected extreme fluctuations in temperature and global warming in general. High temperature stress has a wide range of effects on plants in terms of physiology, biochemistry and gene regulation pathways. However, strategies exist to crop improvement for heat stress tolerance. In this review, we present recent advances of research on all these levels of investigation and focus on potential leads that may help to understand more fully the mechanisms that make plants tolerant or susceptible to heat stress. Finally, we review possible procedures and methods which could lead to the generation of new varieties with sustainable yield production, in a world likely to be challenged both by increasing population, higher average temperatures and larger temperature fluctuations.
Collapse
Affiliation(s)
- Craita E. Bita
- Section Plant Sciences, Institute for Water and Wetland Research, Radboud University NijmegenNijmegen, Netherlands
| | | |
Collapse
|
50
|
DREB2C acts as a transcriptional activator of the thermo tolerance-related phytocystatin 4 (AtCYS4) gene. Transgenic Res 2013; 23:109-23. [PMID: 23868510 DOI: 10.1007/s11248-013-9735-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Accepted: 07/10/2013] [Indexed: 01/23/2023]
Abstract
Phytocystatins are proteinaceous inhibitors of cysteine proteases. They have been implicated in the regulation of plant protein turnover and in defense against pathogens and insects. Here, we have characterized an Arabidopsis phytocystatin family gene, Arabidopsis thaliana phytocystatin 4 (AtCYS4). AtCYS4 was induced by heat stress. The heat shock tolerance of AtCYS4-overexpressing transgenic plants was greater than that of wild-type and cys4 knock-down plants, as measured by fresh weight and root length. Although no heat shock elements were identified in the 5'-flanking region of the AtCYS4 gene, canonical ABA-responsive elements (ABREs) and dehydration-responsive elements (DREs) were found. Transient promoter activity measurements showed that AtCYS4 expression was up-regulated in unstressed protoplasts by co-expression of DRE-binding factor 2s (DREB2s), especially by DREB2C, but not by bZIP transcription factors that bind to ABREs (ABFs, ABI5 and AREBs). DREB2C bound to and activated transcription from the two DREs on the AtCYS4 promoter although some preference was observed for the GCCGAC DRE element over the ACCGAC element. AtCYS4 transcript and protein levels were elevated in transgenic DREB2C overexpression lines with corresponding decline of endogenous cysteine peptidase activity. We propose that AtCYS4 functions in thermotolerance under the control of the DREB2C cascade.
Collapse
|