1
|
Lee B, Kwon JT, Jeong Y, Caris H, Oh D, Feng M, Davila Mejia I, Zhang X, Ishikawa T, Watson BR, Moffitt JR, Chung K, Huh JR, Choi GB. Inflammatory and anti-inflammatory cytokines bidirectionally modulate amygdala circuits regulating anxiety. Cell 2025; 188:2190-2202.e15. [PMID: 40199321 DOI: 10.1016/j.cell.2025.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 11/17/2024] [Accepted: 03/04/2025] [Indexed: 04/10/2025]
Abstract
Patients with autoimmune or infectious diseases can develop persistent mood alterations after inflammatory episodes. Peripheral immune molecules, like cytokines, can influence behavioral and internal states, yet their impact on the function of specific neural circuits in the brain remains unclear. Here, we show that cytokines act as neuromodulators to regulate anxiety by engaging receptor-expressing neurons in the basolateral amygdala (BLA). Heightened interleukin-17A (IL-17A) and IL-17C levels, paradoxically induced from treatment with anti-IL-17 receptor A (IL-17RA) antibodies, promote anxiogenic behaviors by increasing the excitability of IL-17RA/RE-expressing BLA neurons. Conversely, the anti-inflammatory IL-10, acting on the same population of BLA neurons via its receptor, exerts opposite effects on neuronal excitability and behavior. These findings reveal that inflammatory and anti-inflammatory cytokines bidirectionally modulate anxiety by engaging their respective receptors in the same BLA population. Our results highlight the role of cytokine signaling in shaping internal states through direct modulation of specific neural substrates.
Collapse
Affiliation(s)
- Byeongjun Lee
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jeong-Tae Kwon
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yire Jeong
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Hannah Caris
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Dongsun Oh
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Mengyang Feng
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Irene Davila Mejia
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Xiaoying Zhang
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Tomoe Ishikawa
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Brianna R Watson
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Jeffrey R Moffitt
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Kwanghun Chung
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jun R Huh
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Bio2Q, Keio University, Tokyo, Japan; Lurie Center for Autism, Massachusetts General Hospital, Lexington, MA, USA.
| | - Gloria B Choi
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
2
|
Kemp PR, Griffiths M, Polkey MI, Sathyapala A. Variability in sensitivity to inflammation in muscle and lung of patients with COPD may underlie susceptibility to lung function decline. Thorax 2025:thorax-2024-221901. [PMID: 40240077 DOI: 10.1136/thorax-2024-221901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 04/03/2025] [Indexed: 04/18/2025]
Abstract
BACKGROUND Muscle wasting and weakness (sarcopenia) are commonly associated with COPD causing frailty and reduced quality of life. The contribution of inflammation to muscle loss and the susceptibility to rapid lung function decline is debated. We hypothesised that comparing the muscle transcriptome to circulating inflammatory cytokine profiles in patients would identify any contribution of systemic inflammation to muscle atrophy. METHODS Quadriceps differential gene expression was determined between mild-COPD (n=28) and severe-COPD (n=51) using GSE100281. These microarray data were compared by biweight mid-correlation with lung function and plasma cytokine levels from the same patients. RESULTS Patients with severe COPD had reduced fat-free mass index (a measurement of muscle mass) compared with patients with mild COPD despite similar physical activity and inflammatory cytokine levels. Gene sets associated with inflammation and epithelial mesenchymal transition (EMT) were elevated in severe COPD, suggesting that inflammation may contribute to the loss of muscle mass. In patients with severe COPD, EMT and inflammation gene sets were strongly associated with circulating proinflammatory and anti-inflammatory cytokines. However, in patients with mild COPD, anti-inflammatory cytokines showed negative associations with these gene sets and associations with proinflammatory cytokines were weak. In data from lung and blood samples, patients with severe COPD had elevated inflammatory and EMT gene expression compared with patients with mild COPD suggesting that this phenomenon is not muscle-specific. CONCLUSIONS In patients at the severe end of the COPD spectrum, the proinflammatory response in muscle predominates, whereas in patients at the mild end of the spectrum, the anti-inflammatory response predominates. This suggestion needs confirming in a longitudinal cohort.
Collapse
Affiliation(s)
- Paul R Kemp
- National Heart and Lung Institue, Imperial College London, London, UK
| | - Mark Griffiths
- National Heart and Lung Institue, Imperial College London, London, UK
- Barts Heart Centre, St Bartholomew's Hospital, London, UK
| | - Michael I Polkey
- National Heart and Lung Institue, Imperial College London, London, UK
- NIHR Respiratory BRU, Guy's and St Thomas' Hospitals NHS Trust, London, UK
| | - Amanda Sathyapala
- National Heart and Lung Institue, Imperial College London, London, UK
- Guy's and St Thomas' NHS Foundation Trust, London, UK
| |
Collapse
|
3
|
Jolink TA, Feldman MJ, Antenucci NM, Cardenas MN, West TN, Nakamura ZM, Muscatell KA. Effects of a mild inflammatory challenge on cytokines and sickness behavior: A randomized controlled trial using the influenza vaccine. Brain Behav Immun 2025; 128:429-439. [PMID: 40239903 DOI: 10.1016/j.bbi.2025.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 03/27/2025] [Accepted: 04/12/2025] [Indexed: 04/18/2025] Open
Abstract
The influenza vaccine has reliably been associated with mild, within-person increases in inflammation. However, the field lacks rigorous experimental work comparing the effects of the influenza vaccine to a placebo control on changes in plasma inflammatory cytokines and self-reported sickness behavior. In a double-blind, randomized, placebo-controlled trial, 102 participants received either the influenza vaccine or saline placebo. Four cytokines were measured in plasma 24-hours following injection; participants also reported on psychosocial outcomes, specifically sickness behavior, positive/negative affect, sleep, and subjective social disconnection. All cytokines-IL-6, IL-10, TNF-α, IFN-γ-were significantly increased in the influenza vaccine condition compared to placebo. None of the psychosocial outcomes differed by condition. This study fills a gap in the literature by presenting critical causal evidence that the influenza vaccine leads to elevated levels of four inflammatory cytokines, compared to placebo control. However, a more robust increase in inflammation or a larger sample size may be necessary to observe differences in self-reported sickness behavior and other psychosocial outcomes.
Collapse
Affiliation(s)
- Tatum A Jolink
- University of North Carolina at Chapel Hill, Department of Psychology & Neuroscience, United States; University of Michigan, Department of Psychology, United States.
| | - Mallory J Feldman
- University of North Carolina at Chapel Hill, Department of Psychology & Neuroscience, United States.
| | - Natalie M Antenucci
- University of North Carolina at Chapel Hill, Department of Psychology & Neuroscience, United States
| | - Megan N Cardenas
- University of North Carolina at Chapel Hill, Department of Psychology & Neuroscience, United States
| | - Taylor N West
- University of North Carolina at Chapel Hill, Department of Psychology & Neuroscience, United States
| | - Zev M Nakamura
- University of North Carolina at Chapel Hill, Department of Psychiatry, United States
| | - Keely A Muscatell
- University of North Carolina at Chapel Hill, Department of Psychology & Neuroscience, United States; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, United States; Carolina Population Center, University of North Carolina at Chapel Hill, United States
| |
Collapse
|
4
|
Khotskin NV, Komleva PD, Arefieva AB, Moskaliuk VS, Khotskina A, Alhalabi G, Izyurov AE, Sinyakova NA, Sherbakov D, Kulikova EA, Bazovkina DV, Kulikov AV. The C1473G Mutation in the Mouse Tph2 Gene: From Molecular Mechanism to Biological Consequences. Biomolecules 2025; 15:461. [PMID: 40305154 PMCID: PMC12024906 DOI: 10.3390/biom15040461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/28/2025] [Accepted: 03/12/2025] [Indexed: 05/02/2025] Open
Abstract
Tryptophan hydroxylase 2 (TPH2) hydroxylates L-tryptophan to L-5-hydroxy tryptophan-the key step of 5-HT synthesis in the mammalian brain. Some mutations in the human hTPH2 gene are associated with psychopathologies and resistance to antidepressant therapy. The C1473G polymorphism in the mouse Tph2 gene decreases the TPH2 activity in the mouse brain. In the present paper, B6-1473C and B6-1473G congenic mice that were different only in the C > G substitution were used. The molecular mechanism of decrease in the mutant enzyme activity and some physiological and behavioral traits affected by this mutation were revealed for the first time. Analysis of thermal denaturation curves in vitro revealed that the C > G substitution reduces the free energy of denaturation, stability and lifetime of mutant TPH2. Later, we evaluated the effect of the 1473G allele on the hierarchical state, competition for a sexual partner in adult mice, mouse embryos, hind legs dystonia and the response to LPS treatment in young mice. No effect of this mutation on the hierarchical state and competition for a female was observed in adult males. The C > G substitution does not affect survival, body mass or the TPH activity in the brain of 19-day-old mouse embryos. At the same time, we found that the 1473G allele causes hind legs dystonia in juvenile (3 weeks old) mice, which can affect their escape capability in threatening situations. Moreover, a significant increase in the vulnerability to LPS in juvenile B6-1473G males was shown: a single ip LPS administration killed about 40% of young mutant mice, but not wild-type ones. The body mass of mutant males was lower compared to wild-type ones, which also can indirectly decrease their concurrent and reproductive success.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Alexander V. Kulikov
- The Federal Research Center Institute Cytology and Genetics, Russian Academy of Sciences, Avenue Lavrentyev, 10, Novosibirsk 630090, Russia; (N.V.K.); (P.D.K.); (A.B.A.); (V.S.M.); (A.K.); (G.A.); (A.E.I.); (N.A.S.); (D.S.); (E.A.K.); (D.V.B.)
| |
Collapse
|
5
|
de Deus JL, Maia JM, Soriano RN, Amorim MR, Branco LGS. Psychedelics in neuroinflammation: Mechanisms and therapeutic potential. Prog Neuropsychopharmacol Biol Psychiatry 2025; 137:111278. [PMID: 39892847 DOI: 10.1016/j.pnpbp.2025.111278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 01/03/2025] [Accepted: 01/27/2025] [Indexed: 02/04/2025]
Abstract
Neuroinflammation is a critical factor in the pathogenesis of various neurodegenerative and psychiatric disorders, including Alzheimer's disease, Parkinson's disease, and major depressive disorder. Psychedelics, such as psilocybin, lysergic acid diethylamide (LSD), and dimethyltryptamine (DMT), have demonstrated promising therapeutic effects on neuroinflammation, primarily through interactions with serotonin (5-HT) receptors, particularly the 5-HT2A receptor. Activation of these receptors by psychedelics modulates the production of pro-inflammatory cytokines, regulates microglial activity, and shifts the balance between neurotoxic and neuroprotective metabolites. Additionally, psychedelics affect critical signaling pathways, including the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), phosphatidylinositol-3-kinase/protein kinase B (PI3K/Akt), and mechanistic target of rapamycin (mTOR) pathways, promoting neuroplasticity and exerting anti-inflammatory effects. Beyond the serotonergic system, other neurotransmitter systems-including the glutamatergic, dopaminergic, noradrenergic, gamma-aminobutyric acid (GABAergic), and cholinergic systems-also play significant roles in mediating the effects of psychedelics. This review examines the intricate mechanisms by which psychedelics modulate neuroinflammation and underscores their potential as innovative therapeutic agents for treating neuroinflammatory and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Junia Lara de Deus
- Department of Anesthesiology and Critical Care Medicine, George Washington University, Washington, DC, USA; Department of Oral and Basic Biology Ribeirão Preto, Dental School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Juliana Marino Maia
- Department of Medicine, Federal University of Juiz de Fora, Governador Valadares,MG, Brazil
| | - Renato Nery Soriano
- Division of Physiology and Biophysics, Department of Basic Life Sciences, Federal University of Juiz de Fora, Governador Valadares, MG, Brazil
| | - Mateus R Amorim
- Department of Anesthesiology and Critical Care Medicine, George Washington University, Washington, DC, USA; Program of Physiology, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Luiz G S Branco
- Department of Oral and Basic Biology Ribeirão Preto, Dental School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil; Program of Physiology, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
6
|
Otsuka I, Uchiyama S, Shirai T, Liu X, Takahashi M, Kamatani Y, Terao C, Hishimoto A. Increased somatic mosaicism in autosomal and X chromosomes for suicide death. Mol Psychiatry 2025; 30:881-888. [PMID: 39215187 PMCID: PMC11835753 DOI: 10.1038/s41380-024-02718-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Mosaic chromosomal alterations (mCAs) are classified as mosaic deletions (loss), copy-neutral loss of heterozygosity (CN-LOH), and duplications (gain), attracting special attention as biological aging-related acquired genetic alterations. While these mCAs have been linked with aging and various diseases, no study has investigated their association with suicide risk which is associated with abnormal biological aging. Here, we examined the association between suicide deaths and mCAs, including mosaic loss of the X (mLOX) and Y chromosomes, by leveraging blood-derived single nucleotide polymorphism-array data. The first (410 suicide decedents and 88,870 controls) and the second (363 suicide decedents and 88,870 controls) cohorts were analyzed and integrated using meta-analyses (773 suicide decedents and 177,740 controls). Total mCAs in autosomal chromosomes were significantly increased in suicide (p = 1.28 × 10-6, odds ratio [OR] = 1.78), mostly driven by loss (p = 4.05 × 10-9, OR = 2.70) and gain (p = 1.08 × 10-3, OR = 2.23). mLOX were significantly increased in female suicide (p = 2.66 × 10-21, OR = 4.00). The directions of effects of all mCAs in autosomal and sex chromosomes on suicide were the same in the first and second sets. Subgroup analyses suggest that our findings were mostly driven by suicide itself, and not confounded by comorbid psychiatric disorders or physical diseases, smoking status, sample location, or postmortem sample status. In conclusion, we provide the first evidence for aberrant mCAs in somatic autosomal and X chromosomes in suicide, which may contribute to an improved understanding of the genomic pathophysiology underlying suicide.
Collapse
Affiliation(s)
- Ikuo Otsuka
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Shunsuke Uchiyama
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Department of Allergy and Rheumatology, Nippon Medical School, Tokyo, Japan
| | - Toshiyuki Shirai
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Xiaoxi Liu
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Clinical Research Center, Shizuoka General Hospital, Shizuoka, Japan
| | - Motonori Takahashi
- Division of Legal Medicine, Department of Community Medicine and Social Health Science, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yoichiro Kamatani
- Laboratory of Complex Trait Genomics, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Chikashi Terao
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.
- Clinical Research Center, Shizuoka General Hospital, Shizuoka, Japan.
- The Department of Applied Genetics, The School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan.
| | - Akitoyo Hishimoto
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan.
| |
Collapse
|
7
|
Cavalcante MSB, Santos DS, Araújo LM, Freitas PL, Silva CAM, Carvalho KGB, Araújo MTF, da Silva EVP, Rodrigues de Farias APD, Guerreiro Diniz D, Picanço Diniz CW, Diniz JAP. Inflammatory and neuropathological responses to Vesiculovirus carajas encephalitis in adult mice: variability, tolerance and resistance. Front Cell Infect Microbiol 2025; 15:1499658. [PMID: 40078875 PMCID: PMC11897020 DOI: 10.3389/fcimb.2025.1499658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 02/05/2025] [Indexed: 03/14/2025] Open
Abstract
Vesiculovirus carajas (CARV) is a pathogen with neuroinvasive potential, yet its impact on neuroinflammation and sickness behavior remains poorly understood. In this study, we investigated the neuropathological and immunological responses to CARV encephalitis in adult BALB/c mice. Mice were intranasally inoculated with either infected or uninfected brain homogenates, and clinical, histopathological, and cytokine profiles were analyzed. CARV antigens were primarily detected in necrotic neurons, with prominent microglial activation near the ventricles and blood vessels. By day 10 post-infection, infected mice exhibited significantly elevated levels of MCP-1, IFN-γ, IL-12 p70, TNF-α, IL-6, and IL-10 in the brain, indicating a strong inflammatory response. These findings highlight the inflammatory modulation associated with CARV infection and suggest a hematogenous route of neuroinvasion, distinguishing CARV from other vesiculovirus species. This study provides new insights into the pathogenesis of CARV encephalitis and its potential impact on neuroimmune dynamics.
Collapse
Affiliation(s)
- Maria Sueli Barbosa Cavalcante
- Programa de Pós-Graduação em Neurociências e Biologia Celular, Universidade Federal do Pará, Belém, Pará, Brazil
- Laboratório de Análises Clínicas do Hospital Universitário João de Barros Barreto, Empresa Brasileira de Serviços Hospitalares, Belém, Pará, Brazil
| | - Diego Siqueira Santos
- Laboratório de Análises Clínicas do Hospital Universitário João de Barros Barreto, Empresa Brasileira de Serviços Hospitalares, Belém, Pará, Brazil
| | - Lidineuza Machado Araújo
- Laboratório de Análises Clínicas do Hospital Universitário João de Barros Barreto, Empresa Brasileira de Serviços Hospitalares, Belém, Pará, Brazil
| | - Priscilla Lieuthier Freitas
- Laboratório de Análises Clínicas do Hospital Universitário João de Barros Barreto, Empresa Brasileira de Serviços Hospitalares, Belém, Pará, Brazil
| | | | | | | | | | | | - Daniel Guerreiro Diniz
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Cristovam Wanderley Picanço Diniz
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil
| | | |
Collapse
|
8
|
Krauklis SA, Towers AE, York JM, Baynard T, Gainey SJ, Freund GG, Steelman AJ. Mouse Testing Methods in Psychoneuroimmunology: Measuring Behavioral Responses. Methods Mol Biol 2025; 2868:163-203. [PMID: 39546231 DOI: 10.1007/978-1-0716-4200-9_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
The field of psychoneuroimmunology (PNI) aims to uncover the processes and consequences of nervous, immune, and endocrine system relationships. Behavior is a consequence of such interactions and manifests from a complex interweave of factors including immune-to-neural and neural-to-immune communication. Often the signaling molecules involved during a particular episode of neuroimmune activation are not known, but behavioral response provides evidence that bioactives such as neurotransmitters and cytokines are perturbed. Immunobehavioral phenotyping is a first-line approach when examining the neuroimmune system and its reaction to immune stimulation or suppression. Behavioral response is significantly more sensitive than direct measurement of a single specific bioactive and can quickly and efficiently rule in or out relevance of a particular immune challenge or therapeutic to neuroimmunity. Classically, immunobehavioral research was focused on sickness symptoms related to bacterial infection, but neuroimmune activation is now a recognized complication of diseases and disorders ranging from cancer to diabesity to Alzheimer's. Immunobehaviors include lethargy, loss of appetite, and disinterest in social activity/surrounding environment. In addition, neuroimmune activation can diminish physical activity, precipitate feelings of depression and anxiety, and impair cognitive and executive function. Provided is a detailed overview of behavioral tests frequently used to examine neuroimmune activation in mice with a special emphasis on pre-experimental conditions that can confound or prevent successful immunobehavioral experimentation.
Collapse
Affiliation(s)
- Steven A Krauklis
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Champaign, IL, USA
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Albert E Towers
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Jason M York
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
| | - Tracy Baynard
- Academic Affairs, University of Massachusetts-Boston, Boston, MA, USA
| | - Stephen J Gainey
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Gregory G Freund
- Department of Pathology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Andrew J Steelman
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Champaign, IL, USA.
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Champaign, IL, USA.
- Neuroscience Program, University of Illinois at Urbana-Champaign, Champaign, IL, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Champaign, IL, USA.
| |
Collapse
|
9
|
Monory K, de Azua IR, Lutz B. Genetic Tools in Rodents to Study Cannabinoid Functions. Curr Top Behav Neurosci 2024. [PMID: 39680319 DOI: 10.1007/7854_2024_550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
During the past 30 years, the endocannabinoid system (ECS) has emerged as a major signalling system in the mammalian brain regulating neurotransmission in numerous brain regions and in various cell populations. Endocannabinoids are able to regulate specific physiological functions and thus modify their behavioural manifestations and allostatic alterations of the ECS linked to different pathological conditions. As discussed in detail in other chapters of this book, endocannabinoids are involved in learning and memory, stress, and anxiety, feeding, energy balance, development, and ageing. Likewise, many CNS disorders (e.g. schizophrenia, epilepsy, substance use disorders, and multiple sclerosis) are associated with dysregulation of the ECS. Discerning the physiological functions of the synthetic and degrading enzymes of endocannabinoids and their receptors is a challenging task because of their distinct and complex expression patterns. Techniques of genetic engineering have been able to shed light on a number of complex ECS-related tasks during the past years. In this chapter, first, we take a critical look at the toolbox available to researchers who would like to investigate cannabinoid effects using genetic engineering techniques, then we comprehensively discuss genetically modified rodent models in various neuronal and non-neuronal cell populations, both within and outside the nervous system.
Collapse
Affiliation(s)
- Krisztina Monory
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | | | - Beat Lutz
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany.
- Leibniz Institute for Resilience Research (LIR) gGmbH, Mainz, Germany.
| |
Collapse
|
10
|
Ortega MA, Fraile-Martinez O, García-Montero C, Diaz-Pedrero R, Lopez-Gonzalez L, Monserrat J, Barrena-Blázquez S, Alvarez-Mon MA, Lahera G, Alvarez-Mon M. Understanding immune system dysfunction and its context in mood disorders: psychoneuroimmunoendocrinology and clinical interventions. Mil Med Res 2024; 11:80. [PMID: 39681901 DOI: 10.1186/s40779-024-00577-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/01/2024] [Indexed: 12/18/2024] Open
Abstract
Mood disorders include a set of psychiatric manifestations of increasing prevalence in our society, being mainly represented by major depressive disorder (MDD) and bipolar disorder (BD). The etiopathogenesis of mood disorders is extremely complex, with a wide spectrum of biological, psychological, and sociocultural factors being responsible for their appearance and development. In this sense, immune system dysfunction represents a key mechanism in the onset and pathophysiology of mood disorders, worsening mainly the central nervous system (neuroinflammation) and the periphery of the body (systemic inflammation). However, these alterations cannot be understood separately, but as part of a complex picture in which different factors and systems interact with each other. Psychoneuroimmunoendocrinology (PNIE) is the area responsible for studying the relationship between these elements and the impact of mind-body integration, placing the immune system as part of a whole. Thus, the dysfunction of the immune system is capable of influencing and activating different mechanisms that promote disruption of the psyche, damage to the nervous system, alterations to the endocrine and metabolic systems, and disruption of the microbiota and intestinal ecosystem, as well as of other organs and, in turn, all these mechanisms are responsible for inducing and enhancing the immune dysfunction. Similarly, the clinical approach to these patients is usually multidisciplinary, and the therapeutic arsenal includes different pharmacological (for example, antidepressants, antipsychotics, and lithium) and non-pharmacological (i.e., psychotherapy, lifestyle, and electroconvulsive therapy) treatments. These interventions also modulate the immune system and other elements of the PNIE in these patients, which may be interesting to understand the therapeutic success or failure of these approaches. In this sense, this review aims to delve into the relationship between immune dysfunction and mood disorders and their integration in the complex context of PNIE. Likewise, an attempt will be made to explore the effects on the immune system of different strategies available in the clinical approach to these patients, in order to identify the mechanisms described and their possible uses as biomarkers.
Collapse
Affiliation(s)
- Miguel A Ortega
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcalá de Henares, Spain.
- Ramón y Cajal Institute of Sanitary Research IRYCIS, 28034, Madrid, Spain.
| | - Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research IRYCIS, 28034, Madrid, Spain
| | - Cielo García-Montero
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcalá de Henares, Spain.
- Ramón y Cajal Institute of Sanitary Research IRYCIS, 28034, Madrid, Spain.
| | - Raul Diaz-Pedrero
- Ramón y Cajal Institute of Sanitary Research IRYCIS, 28034, Madrid, Spain
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcala de Henares, Spain
| | - Laura Lopez-Gonzalez
- Ramón y Cajal Institute of Sanitary Research IRYCIS, 28034, Madrid, Spain
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcala de Henares, Spain
| | - Jorge Monserrat
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research IRYCIS, 28034, Madrid, Spain
| | - Silvestra Barrena-Blázquez
- Ramón y Cajal Institute of Sanitary Research IRYCIS, 28034, Madrid, Spain
- Department of Nursing and Physiotherapy, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcalá de Henares, Spain
| | - Miguel Angel Alvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research IRYCIS, 28034, Madrid, Spain
- Department of Psychiatry and Mental Health, Hospital Universitario Infanta Leonor, 28031, Madrid, Spain
| | - Guillermo Lahera
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research IRYCIS, 28034, Madrid, Spain
- Psychiatry Service, Center for Biomedical Research in the Mental Health Network, University Hospital Príncipe de Asturias, 28806, Alcalá de Henares, Spain
| | - Melchor Alvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research IRYCIS, 28034, Madrid, Spain
- Immune System Diseases-Rheumatology and Internal Medicine Service, University Hospital Príncipe de Asturias, CIBEREHD, 28806, Alcalá de Henares, Spain
| |
Collapse
|
11
|
Geng D, Wang W, Du N, Niwenahisemo LC, Xu H, Wang Y, Kuang L. Association of the neutrophil-to-platelet ratio with response to electroconvulsive therapy in adolescents with major depressive disorder. Front Psychiatry 2024; 15:1413608. [PMID: 39655209 PMCID: PMC11625731 DOI: 10.3389/fpsyt.2024.1413608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 11/06/2024] [Indexed: 12/12/2024] Open
Abstract
Background Major depressive disorder (MDD) is one of the most serious mental disorders affecting adolescents worldwide. Electroconvulsive therapy (ECT) is widely acknowledged as a first-line treatment for severe depression, but the clinical response varies. Neutrophils and platelets are both related to the progression of MDD. The aim of this study was to investigate the correlation between the neutrophil-to-platelet ratio (NPR) during the acute phase and the effectiveness of ECT treatment. Methods A total of 138 adolescent MDD patients who received ECT were included in the study. Neutrophil and platelet levels were obtained upon admission. At the same time, treatment response was the primary outcome measure, defined as a reduction of ≥ 50% in the HAMD-17 score from baseline to treatment endpoint, and the secondary outcome measure was remission of depression, defined as a HAMD-17 score ≤ 7. Results After receiving ECT, 103(74.6%) of all patients responded to treatment and 72(52.2%) achieved remission. Non-responders/non-remitters to ECT tended to have higher levels of NPR at baseline compared to ECT responders/remitters [Non-responder: 3.4 (2.5-4.8) vs 2.7 (2.2-3.5), P = 0.002; Non-remitter: 0.014 (0.011-0.017) vs 0.011 (0.008-0.015), P = 0.03]. In multiple logistic regression, high NPR (≥ 0.014) remained independently associated with ECT non-response/non-remission after adjusting for confounding factors [Non-responder: OR = 4.911, 95% CI (2.052 - 11.754), P < 0.001; Non-remitter: OR = 2.704, 95% CI (1.262 - 5.796), P = 0.011]. Conclusion High NPR correlates with poor ECT efficacy in adolescents with MDD, particularly among female and overweight patients.
Collapse
Affiliation(s)
- Dandan Geng
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Mental Health Center, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wenxin Wang
- The First Clinical College of Chongqing Medical University, Chongqing, China
| | - Ning Du
- Mental Health Center, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Mental Health Center, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Lisa Cynthia Niwenahisemo
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Mental Health Center, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Heyan Xu
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Mental Health Center, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuna Wang
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Mental Health Center, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Li Kuang
- Mental Health Center, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
12
|
Makhanova A, Tolliver MDM, Buckner Z, Shields GS, Hunter CL, Mengelkoch S, Houpt JW, Belote AE, Hoose DV, Schulz TK. Immune response and intergroup bias: Vaccine-induced increases in cytokine activity are associated with worse evaluations of resume for Latina job applicant. Brain Behav Immun 2024; 122:555-564. [PMID: 39168271 DOI: 10.1016/j.bbi.2024.08.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/28/2024] [Accepted: 08/18/2024] [Indexed: 08/23/2024] Open
Abstract
Situational factors can increase people's vulnerability to intergroup bias, including prejudicial attitudes, negative stereotyping, and discrimination. We proposed that increases in inflammatory activity that coincide with acute illness may represent a hitherto unstudied situational factor that increases intergroup bias. The current study experimentally manipulated increases in inflammatory activity by administering the seasonal influenza vaccine or a saline placebo. We quantified inflammatory activity by assessing change in salivary pro-inflammatory cytokines and assessed intergroup bias using a resume evaluation task and self-reported ethnocentrism. Primary analyses focused on a subsample of 117 participants who provided high quality data; robustness analyses included various permutations of lower quality participants. Findings revealed that changes in the cytokine interleukin-1β (IL-1β) in response to the vaccine were associated with greater intergroup bias. Among participants who received the vaccine, IL-1β change was negatively associated with evaluation of a Latina (but not a White woman) applicant's competency and recommended starting salary. Moreover, IL-1β change was positively associated with ethnocentrism. Overall, results provide support for the hypothesis that acute illness, via the mechanistic role of inflammatory cytokines, affects social cognition in ways that can increase intergroup bias.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Alex E Belote
- University of Arkansas for Medical Sciences-Northwest, United States
| | - Dalton V Hoose
- University of Arkansas for Medical Sciences-Northwest, United States
| | - Thomas K Schulz
- University of Arkansas for Medical Sciences-Northwest, United States; Loma Linda University, United States
| |
Collapse
|
13
|
Scheffzük C, Biedziak D, Gisch N, Goldmann T, Stamme C. Surfactant protein A modulates neuroinflammation in adult mice upon pulmonary infection. Brain Res 2024; 1840:149108. [PMID: 38964703 DOI: 10.1016/j.brainres.2024.149108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/17/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
BACKGROUND One of the most common entry gates for systemic infection is the lung. In humans, pulmonary infections can lead to significant neurological impairment, ranging from acute sickness behavior to long-term disorders. Surfactant proteins (SP), essential parts of the pulmonary innate immune defense, have been detected in the brain of rats and humans. Recent evidence suggests that SP-A, the major protein component of surfactant, also plays a functional role in modulating neuroinflammation. This study aimed to determine whether SP-A deficiency affects the inflammatory response in the brain of adult mice during pulmonary infection. EXPERIMENTAL PROCEDURE Adult male wild-type (WT, n = 72) and SP-A-deficient (SP-A-/-, n = 72) mice were oropharyngeally challenged with lipopolysaccharide (LPS), Pseudomonas aeruginosa (P. aeruginosa), or PBS (control). Both, behavioral assessment and subsequent brain tissue analysis, were performed 24, 48, and 72 h after challenge. The brain concentrations of the pro-inflammatory cytokines TNF-α, IL-6, and IL-1β were determined by ELISA. Quantitative rtPCR was used to detect SP-A mRNA expression in brain homogenates and immunohistochemistry was applied for the detection of SP-A protein expression in brain coronal slices. RESULTS SP-A mRNA and histological evidence of protein expression were detected in both the lungs and brains of WT mice, with significantly higher amounts in lung samples. SP-A-/- mice exhibited significantly higher baseline concentrations of brain TNF-α, IL-6, and IL-1β compared to WT mice. Oropharyngeal application of either LPS or P. aeruginosa elicited significantly higher brain levels of TNF-α and IL-1β in SP-A-/- mice compared to WT mice at all time points. In comparison, behavioral impairment as a measure of sickness behavior, was significantly stronger in WT than in SP-A-/- mice, particularly after LPS application. CONCLUSION SP-A is known for its anti-inflammatory role in the pulmonary immune response to bacterial infection. Recent evidence suggests that in an abdominal sepsis model SP-A deficiency can lead to increased cytokine levels in the brain. Our results extend this perception and provide evidence for an anti-inflammatory role of SP-A in the brain of adult WT mice after pulmonary infection.
Collapse
Affiliation(s)
- Claudia Scheffzük
- Division of Cellular Pneumology, Priority Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany; Department of Anesthesiology and Intensive Care Medicine, University Hospital of Schleswig-Holstein, Lübeck, Germany; Department of Anesthesiology and Intensive Care Medicine, University Hospital BG Bergmannsheil Bochum, Germany.
| | - Dominika Biedziak
- Division of Cellular Pneumology, Priority Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Nicolas Gisch
- Division of Bioanalytical Chemistry, Priority Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Torsten Goldmann
- Division of Histology, Research Center Borstel, Leibniz Lung Center, Borstel, Germany; Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Großhansdorf, Germany
| | - Cordula Stamme
- Division of Cellular Pneumology, Priority Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany; Department of Anesthesiology and Intensive Care Medicine, University Hospital of Schleswig-Holstein, Lübeck, Germany
| |
Collapse
|
14
|
Encel SA, Ward AJW. Immune challenge affects risk sensitivity and locomotion in mosquitofish ( Gambusia holbrooki). ROYAL SOCIETY OPEN SCIENCE 2024; 11:241059. [PMID: 39479234 PMCID: PMC11521614 DOI: 10.1098/rsos.241059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/21/2024] [Accepted: 09/30/2024] [Indexed: 11/02/2024]
Abstract
The immune system is crucial in responding to disease-causing pathogens. However, immune responses may also cause stereotypical changes in behaviour known as sickness behaviours, which often include reduced activity. Sickness behaviours are thought to have an important role in conserving energy required to support the immune response; however, little is known about how they manifest over time or in relation to risk, particularly in fishes. Here, we induced an immune response in mosquitofish (Gambusia holbrooki) by inoculating them with Escherichia coli lipopolysaccharide (LPS). We subsequently tested batches of fish at 24 h intervals and examined: locomotory behaviour, tendency to use a refuge and fast-start response immediately following a threat stimulus (measured as peak acceleration). Control and LPS-treated fish behaved similarly on days 1, 3 and 4. However, 2 days post-inoculation, LPS fish swam more slowly and spent more time in the refuge than control fish, although no difference in post-threat peak acceleration was found. Our findings suggest that sickness behaviours peak roughly 2 days following exposure to LPS and are relatively short-lived. Specifically, immune-challenged individuals exhibit reduced locomotion and exploratory behaviour, becoming more risk averse overall while still retaining the ability to respond acutely to a threat stimulus.
Collapse
Affiliation(s)
- Stella A. Encel
- School of Life and Environmental Sciences, University of Sydney, Camperdown2006, Australia
| | - Ashley J. W. Ward
- School of Life and Environmental Sciences, University of Sydney, Camperdown2006, Australia
| |
Collapse
|
15
|
Fernandes DC, Eto SF, Baldassi AC, Balbuena TS, Charlie-Silva I, de Andrade Belo MA, Pizauro JM. Meningitis caused by Aeromonas hydrophila in Oreochromis niloticus: Proteomics and druggability of virulence factors. FISH & SHELLFISH IMMUNOLOGY 2024; 151:109687. [PMID: 38866348 DOI: 10.1016/j.fsi.2024.109687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/30/2024] [Accepted: 06/08/2024] [Indexed: 06/14/2024]
Abstract
Meningitis caused by Gram-negative bacteria is a serious public health problem, causing morbidity and mortality in both children and adults. Here, we propose a novel experimental model using Nile tilapia (Oreochromis niloticus) to study neuroinflammation. The fish were infected with Aeromonas hydrophila, and the course of infection was monitored in the peripheral blood. Septicemia was obvious in the blood, while in the brain tissue, infection of the meninges was present. The histopathological examination showed suppurative meningitis, and the cellular immune response in the brain tissue during infection was mediated by microglia. These cells were morphologically characterized and phenotyped by MHC class II markers and CD68. The increased production of TNF-α, IL-1β and iNOS supported the infiltration of these cells during the neuroinflammatory process. In the proteomic analysis of A. hydrophila isolated from brain tissue, we found chemotactic and transport proteins, proteolytic enzymes and enzymes associated with the dismutation of nitric oxide (NO), as well as motor proteins and those responsible for cell division. After characterizing the most abundant proteins during the course of infection, we investigated the druggability index of these proteins and identified promising peptide sequences as molecular targets that are similar among bacteria. Thus, these findings deepened the understanding of the pathophysiology of meningitis caused by A. hydrophila. Moreover, through the proteomics analysis, important mechanisms and pathways used by the pathogen to subvert the host response were revealed, providing insights for the development of novel antibiotics and vaccines.
Collapse
Affiliation(s)
- Dayanne Carla Fernandes
- Institute of Chemistry, São Paulo State University (Unesp), Araraquara, Sao Paulo, SP, Brazil.
| | - Silas Fernandes Eto
- Laboratory Center of Excellence in New Target Discovery (CENTD) Special Laboratory, Butantan Institute, São Paulo, SP, Brazil
| | - Amanda Cristina Baldassi
- Department of Technology, School of Agrarian and Veterinary Sciences, São Paulo State University (Unesp), Jaboticabal, Sao Paulo, SP, Brazil
| | - Thiago Santana Balbuena
- Department of Technology, School of Agrarian and Veterinary Sciences, São Paulo State University (Unesp), Jaboticabal, Sao Paulo, SP, Brazil
| | - Ives Charlie-Silva
- Institute of Chemistry, São Paulo State University (Unesp), Araraquara, Sao Paulo, SP, Brazil
| | | | - João Martins Pizauro
- Department of Technology, School of Agrarian and Veterinary Sciences, São Paulo State University (Unesp), Jaboticabal, Sao Paulo, SP, Brazil
| |
Collapse
|
16
|
Truyens M, Lernout H, De Vos M, Laukens D, Lobaton T. Unraveling the fatigue puzzle: insights into the pathogenesis and management of IBD-related fatigue including the role of the gut-brain axis. Front Med (Lausanne) 2024; 11:1424926. [PMID: 39021817 PMCID: PMC11252009 DOI: 10.3389/fmed.2024.1424926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 06/17/2024] [Indexed: 07/20/2024] Open
Abstract
A significant percentage of patients with an inflammatory bowel disease (IBD) encounter fatigue which can profoundly diminish patients' quality of life, particularly during periods of disease remission when gastrointestinal symptoms have receded. Various contributing risk factors have been identified including active inflammation, anemia, psychological, lifestyle and drug-related factors. While addressing these risk factors has been suggested as the initial approach to managing fatigue, a considerable number of patients still experience persisting symptoms, the primary causes of which remain incompletely understood. Recent insights suggest that dysfunction of the gut-brain axis may play a pathogenic role. This review provides an overview of established risk factors for fatigue, alongside emerging perspectives on the role of the gut-brain axis, and potential treatment strategies.
Collapse
Affiliation(s)
- Marie Truyens
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Department of Gastroenterology, University Hospital Ghent, Ghent, Belgium
| | - Hannah Lernout
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- VIB Center for Inflammation Research (IRC), Ghent University, Ghent, Belgium
| | - Martine De Vos
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Debby Laukens
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- VIB Center for Inflammation Research (IRC), Ghent University, Ghent, Belgium
- Ghent Gut Inflammation Group (GGIG), Ghent University, Ghent, Belgium
| | - Triana Lobaton
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Department of Gastroenterology, University Hospital Ghent, Ghent, Belgium
| |
Collapse
|
17
|
Steffen J, Focken N, Çalışkan G. Recognizing depression as an inflammatory disease: the search for endotypes. Am J Physiol Cell Physiol 2024; 327:C205-C212. [PMID: 38826138 DOI: 10.1152/ajpcell.00246.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/04/2024]
Abstract
Major depressive disorder (MDD) affects millions of individuals worldwide, leading to considerable social and economic costs. Despite advancements in pharmacological treatments, achieving remission remains a key challenge, with a substantial number of patients showing resistance to existing therapies. This resistance is often associated with elevated levels of proinflammatory cytokines, suggesting a connection between inflammation, MDD pathophysiology, and treatment efficacy. The observation of increased immune activation in about a quarter of patients with MDD resulted in the distinction between inflammatory and noninflammatory endotypes. Although anti-inflammatory treatments show promise in alleviating depression-like symptoms, responses are heterogeneous, thus highlighting the importance of identifying distinct inflammatory endotypes to tailor effective therapeutic strategies. The intestinal microbiome emerges as a crucial modulator of mental health, mediating its effects partially through different immune pathways. Microbiota-derived short-chain fatty acids (SCFAs) significantly impact innate and adaptive immune cells, regulating their differentiation, function, and cellular response. Furthermore, gut-educated immune cells reach the border regions of the central nervous system (CNS), regulating glial cell functions. Although the CNS modulates immune responses via efferent parts of the vagus nerve, afferent tracts concurrently transport information on peripheral inflammation back to the brain. This bidirectional communication is particularly relevant in depression, allowing for therapeutic stimulation of the vagus nerve in the context of inflammatory depression endotypes. In this review, we explore the intricate relationship between inflammation and depression, discuss how inflammatory signals are translated into depressive-like symptoms, and highlight immune-modulating therapeutic avenues.
Collapse
Affiliation(s)
- Johannes Steffen
- Institute of Inflammation and Neurodegeneration, Health Campus Immunology, Infectiology and Inflammation (GC-I3), Otto-Von-Guericke University, Magdeburg, Germany
| | - Nis Focken
- Research Group "Synapto-Oscillopathies," Department of Genetics and Molecular Neurobiology, Institute of Biology, Otto-von-Guericke-University, Magdeburg, Germany
| | - Gürsel Çalışkan
- Research Group "Synapto-Oscillopathies," Department of Genetics and Molecular Neurobiology, Institute of Biology, Otto-von-Guericke-University, Magdeburg, Germany
| |
Collapse
|
18
|
Kaplan CM, Kelleher E, Irani A, Schrepf A, Clauw DJ, Harte SE. Deciphering nociplastic pain: clinical features, risk factors and potential mechanisms. Nat Rev Neurol 2024; 20:347-363. [PMID: 38755449 DOI: 10.1038/s41582-024-00966-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2024] [Indexed: 05/18/2024]
Abstract
Nociplastic pain is a mechanistic term used to describe pain that arises or is sustained by altered nociception, despite the absence of tissue damage. Although nociplastic pain has distinct pathophysiology from nociceptive and neuropathic pain, these pain mechanisms often coincide within individuals, which contributes to the intractability of chronic pain. Key symptoms of nociplastic pain include pain in multiple body regions, fatigue, sleep disturbances, cognitive dysfunction, depression and anxiety. Individuals with nociplastic pain are often diffusely tender - indicative of hyperalgesia and/or allodynia - and are often more sensitive than others to non-painful sensory stimuli such as lights, odours and noises. This Review summarizes the risk factors, clinical presentation and treatment of nociplastic pain, and describes how alterations in brain function and structure, immune processing and peripheral factors might contribute to the nociplastic pain phenotype. This article concludes with a discussion of two proposed subtypes of nociplastic pain that reflect distinct neurobiological features and treatment responsivity.
Collapse
Affiliation(s)
- Chelsea M Kaplan
- Chronic Pain and Fatigue Research Center, Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Eoin Kelleher
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Anushka Irani
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
- Division of Rheumatology, Mayo Clinic Florida, Jacksonville, FL, USA
| | - Andrew Schrepf
- Chronic Pain and Fatigue Research Center, Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Daniel J Clauw
- Chronic Pain and Fatigue Research Center, Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Steven E Harte
- Chronic Pain and Fatigue Research Center, Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
19
|
Chang CY, Chang HH, Wu CY, Tsai YT, Lu TH, Chang WH, Hsu CF, Chen PS, Tseng HH. Peripheral inflammation is associated with impaired sadness recognition in euthymic bipolar patients. J Psychiatr Res 2024; 173:333-339. [PMID: 38579478 DOI: 10.1016/j.jpsychires.2024.03.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 03/06/2024] [Accepted: 03/26/2024] [Indexed: 04/07/2024]
Abstract
BACKGROUND Inflammation impairs cognitive function in healthy individuals and people with psychiatric disorders, such as bipolar disorder (BD). This effect may also impact emotion recognition, a fundamental element of social cognition. Our study aimed to investigate the relationships between pro-inflammatory cytokines and emotion recognition in euthymic BD patients and healthy controls (HCs). METHODS We recruited forty-four euthymic BD patients and forty healthy controls (HCs) and measured their inflammatory markers, including high-sensitivity C-reactive protein (hs-CRP), interleukin-6 (IL-6), and TNF-α. We applied validated cognitive tasks, the Wisconsin Card-Sorting Test (WCST) and Continuous Performance Test (CPT), and a social cognitive task for emotion recognition, Diagnostic Analyses of Nonverbal Accuracy, Taiwanese Version (DANVA-2-TW). We analyzed the relationships between cytokines and cognition and then explored possible predictive factors of sadness recognition accuracy. RESULTS Regarding pro-inflammatory cytokines, TNF-α was elevated in euthymic BD patients relative to HCs. In euthymic BD patients only, higher TNF-α levels were associated with lower accuracy of sadness recognition. Regression analysis revealed that TNF-α was an independent predictive factor of sadness recognition in patients with euthymic BD when neurocognition was controlled for. CONCLUSIONS We demonstrated that enhanced inflammation, indicated by increased TNF-α, was an independent predictive factor of impaired sadness recognition in BD patients but not in HCs. Our findings suggested a direct influence of TNF-α on sadness recognition and indicated vulnerability to depression in euthymic BD patients with chronic inflammation.
Collapse
Affiliation(s)
- Chih-Yu Chang
- Department of Medicine, College of Medicine, National Cheng Kung University, Taiwan
| | - Hui Hua Chang
- Institute of Clinical Pharmacy and Pharmaceutical Sciences, College of Medicine, National Cheng University, Tainan, Taiwan; School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Pharmacy, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Pharmacy, National Cheng Kung University Hospital, Dou-Liou Branch, Yunlin, Taiwan
| | - Cheng Ying Wu
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ying Tsung Tsai
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Tsung-Hua Lu
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wei Hung Chang
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Psychiatry, National Cheng Kung University Hospital, Dou-Liou Branch, Yunlin, Taiwan
| | - Chia-Fen Hsu
- Department of Occupational Therapy, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
| | - Po See Chen
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Institute of Behavioral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Public Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Huai-Hsuan Tseng
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Institute of Behavioral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Public Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
20
|
Lodin K, Espinosa-Ortega F, Dastmalchi M, Vencovsky J, Andersson H, Chinoy H, Lilleker JB, Shinjo SK, Maurer B, Griger Z, Ceribelli A, Torres-Ruiz J, Mercado M VD, Leonard D, Alexanderson H, Lundberg IE. Patient global assessment and inflammatory markers in patients with idiopathic inflammatory myopathies - A longitudinal study. Semin Arthritis Rheum 2024; 65:152379. [PMID: 38241913 DOI: 10.1016/j.semarthrit.2024.152379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 01/21/2024]
Abstract
AIM To explore if patient global assessment (PGA) is associated with inflammation over time and if associations are explained by other measures of disease activity and function in patients with idiopathic inflammatory myopathies (IIM). METHODS PGA and systemic inflammatory markers prospectively collected over five years were retrieved from the International MyoNet registry for 1200 patients with IIM. Associations between PGA, erythrocyte sedimentation rate (ESR), C-reactive protein (CRP) and creatine kinase (CK) were analyzed using mixed models. Mediation analysis was used to test if the association between PGA and inflammatory markers during the first year of observation could be explained by measures of disease activity and function. RESULTS PGA improved, and inflammatory markers decreased during the first year of observation. In the mixed models, high levels of inflammatory markers were associated with worse PGA in both men and women across time points during five years of observation. In men, but not in women, the association between elevated ESR, CRP and poorer PGA was explained by measures of function and disease activity. With a few exceptions, the association between improved PGA and reduced inflammatory markers was partially mediated by improvements in all measures of function and disease activity. CONCLUSION Increased levels of systemic inflammation are associated with poorer PGA in patients with IIM. In addition to known benefits of lowered inflammation, these findings emphasize the need to reduce systemic inflammation to improve subjective health in patients with IIM. Furthermore, the results demonstrate the importance of incorporating PGA as an outcome measure in clinical practice and clinical trials.
Collapse
Affiliation(s)
- Karin Lodin
- Department of Medicine, Division of Rheumatology, Karolinska Institutet, Solna, Stockholm, Sweden; Department of Gastroenterology, Dermatology and Rheumatology, Karolinska University Hospital, Stockholm, Sweden.
| | - Fabricio Espinosa-Ortega
- Department of Medicine, Division of Rheumatology, Karolinska Institutet, Solna, Stockholm, Sweden; Department of Gastroenterology, Dermatology and Rheumatology, Karolinska University Hospital, Stockholm, Sweden
| | - Maryam Dastmalchi
- Department of Medicine, Division of Rheumatology, Karolinska Institutet, Solna, Stockholm, Sweden; Department of Gastroenterology, Dermatology and Rheumatology, Karolinska University Hospital, Stockholm, Sweden
| | - Jiri Vencovsky
- Institute of Rheumatology and Department of Rheumatology, First Medical Faculty, Charles University, Prague, Czech Republic
| | - Helena Andersson
- Department of Rheumatology, Oslo University Hospital, Oslo, Norway
| | - Hector Chinoy
- National Institute for Health Research Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, The University of Manchester, Manchester, United Kingdom; Department of Rheumatology, Salford Royal Hospital, Northern Care Alliance NHS Foundation Trust, Manchester Academic Health Science Centre, Salford, United Kingdom; Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, Centre for Musculoskeletal Research, Manchester Academic Health Science Centre, The University of Manchester, Manchester, United Kingdom
| | - James B Lilleker
- Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, Centre for Musculoskeletal Research, Manchester Academic Health Science Centre, The University of Manchester, Manchester, United Kingdom; Manchester Centre for Clinical Neurosciences, Northern Care Alliance NHS Foundation Trust, Salford, United Kingdom
| | - Samuel Katsuyuki Shinjo
- Division of Rheumatology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Britta Maurer
- Department of Rheumatology and Immunology, Inselspital, Bern University Hospital, University of Bern, Bern CH-3010, Switzerland
| | - Zoltan Griger
- Division of Clinical Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Angela Ceribelli
- Division of Rheumatology and Clinical Immunology, IRCCS Humanitas Research Hospital, 20089, Rozzano, Milan, Italy; Department of Biomedical Sciences, Humanitas University, 20072, Pieve Emanuele, Milan, Italy
| | - Jiram Torres-Ruiz
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Vazquez-Del Mercado M
- Universidad de Guadalajara, Centro Universitario de Ciencias de la Salud, Departamento de Biología Molecular y Genómica, Instituto de Investigación en Reumatología y del Sistema Músculo Esquelético (IIRSME), Guadalajara, Mexico
| | - Dag Leonard
- Department of Medical Sciences, Section of Rheumatology, Uppsala University, Uppsala, Sweden
| | - Helene Alexanderson
- Department of Medicine, Division of Rheumatology, Karolinska Institutet, Solna, Stockholm, Sweden; Women's Health and Health Professional Theme, Medical Unit Occupational Therapy and Physical Therapy, Karolinska University Hospital, Stockholm, Sweden
| | - Ingrid E Lundberg
- Department of Medicine, Division of Rheumatology, Karolinska Institutet, Solna, Stockholm, Sweden; Department of Gastroenterology, Dermatology and Rheumatology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
21
|
Sowa JE, Tokarski K, Hess G. Activation of the CXCR4 Receptor by Chemokine CXCL12 Increases the Excitability of Neurons in the Rat Central Amygdala. J Neuroimmune Pharmacol 2024; 19:9. [PMID: 38430337 DOI: 10.1007/s11481-024-10112-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 02/23/2024] [Indexed: 03/03/2024]
Abstract
Primarily regarded as immune proteins, chemokines are emerging as a family of molecules serving neuromodulatory functions in the developing and adult brain. Among them, CXCL12 is constitutively and widely expressed in the CNS, where it was shown to act on cellular, synaptic, network, and behavioral levels. Its receptor, CXCR4, is abundant in the amygdala, a brain structure involved in pathophysiology of anxiety disorders. Dysregulation of CXCL12/CXCR4 signaling has been implicated in anxiety-related behaviors. Here we demonstrate that exogenous CXCL12 at 2 nM but not at 5 nM increased neuronal excitability in the lateral division of the rat central amygdala (CeL) which was evident in the Late-Firing but not Regular-Spiking neurons. These effects were blocked by AMD3100, a CXCR4 antagonist. Moreover, CXCL12 increased the excitability of the neurons of the basolateral amygdala (BLA) that is known to project to the CeL. However, CXCL12 increased neither the spontaneous excitatory nor spontaneous inhibitory synaptic transmission in the CeL. In summary, the data reveal specific activation of Late-Firing CeL cells along with BLA neurons by CXCL12 and suggest that this chemokine may alter information processing by the amygdala that likely contributes to anxiety and fear conditioning.
Collapse
Affiliation(s)
- Joanna Ewa Sowa
- Department of Physiology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, Krakow, 31-343, Poland.
| | - Krzysztof Tokarski
- Department of Physiology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, Krakow, 31-343, Poland
| | - Grzegorz Hess
- Department of Physiology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, Krakow, 31-343, Poland
| |
Collapse
|
22
|
Oliveira TG, Araspin L, Navas CA, Herrel A. Impacts of a Simulated Infection on the Locomotor Behavior of Invasive and Noninvasive Species of Congeneric Anurans. ECOLOGICAL AND EVOLUTIONARY PHYSIOLOGY 2024; 97:71-80. [PMID: 38728690 DOI: 10.1086/729774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
AbstractLocomotion is essential for survival, but it requires resources such as energy and metabolites and therefore may conflict with other physiological processes that also demand resources, particularly expensive processes such as immunological responses. This possible trade-off may impose limits on either the magnitude of immune responses or the patterns of activity and performance. Previous studies have shown that invasive species may have a depressed immune response, allowing them to maintain locomotor function and reproduction even when sick. This may contribute to the ecological success of invasive species in colonization and dispersal. In contrast, noninvasive species tend to reduce activity as a response to infection. Here, we studied the impact of a simulated infection on locomotor performance and voluntary movement in the anurans Xenopus laevis (a globally invasive species) and Xenopus allofraseri (a noninvasive congeneric). We found that a simulated infection reduces locomotor performance in both species, with an accentuated effect on X. allofraseri. Voluntary movement was marginally different between species. Our data suggest that a simulated infection leads to behavioral depression and reduced locomotor performance in anurans and show that this effect is limited in the invasive X. laevis. Contrasting responses to an immune challenge have been reported in the few amphibian taxa analyzed to date and suggest relationships between ecology and immunology that deserve further investigation. Specifically, a depressed immune response may underlie a propension to invasion in some species. Whether this is a general trend for invasive species remains to be tested, but our data add to the growing body of work documenting depressed immune systems in invasive species.
Collapse
|
23
|
Murck H, Karailiev P, Karailievova L, Puhova A, Jezova D. Treatment with Glycyrrhiza glabra Extract Induces Anxiolytic Effects Associated with Reduced Salt Preference and Changes in Barrier Protein Gene Expression. Nutrients 2024; 16:515. [PMID: 38398838 PMCID: PMC10893552 DOI: 10.3390/nu16040515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
We have previously identified that low responsiveness to antidepressive therapy is associated with higher aldosterone/cortisol ratio, lower systolic blood pressure, and higher salt preference. Glycyrrhiza glabra (GG) contains glycyrrhizin, an inhibitor of 11β-hydroxysteroid-dehydrogenase type-2 and antagonist of toll-like receptor 4. The primary hypothesis of this study is that food enrichment with GG extract results in decreased anxiety behavior and reduced salt preference under stress and non-stress conditions. The secondary hypothesis is that the mentioned changes are associated with altered gene expression of barrier proteins in the prefrontal cortex. Male Sprague-Dawley rats were exposed to chronic mild stress for five weeks. Both stressed and unstressed rats were fed a diet with or without an extract of GG roots for the last two weeks. GG induced anxiolytic effects in animals independent of stress exposure, as measured in elevated plus maze test. Salt preference and intake were significantly reduced by GG under control, but not stress conditions. The gene expression of the barrier protein claudin-11 in the prefrontal cortex was increased in control rats exposed to GG, whereas stress-induced rise was prevented. Exposure to GG-enriched diet resulted in reduced ZO-1 expression irrespective of stress conditions. In conclusion, the observed effects of GG are in line with a reduction in the activity of central mineralocorticoid receptors. The treatment with GG extract or its active components may, therefore, be a useful adjunct therapy for patients with subtypes of depression and anxiety disorders with heightened renin-angiotensin-aldosterone system and/or inflammatory activity.
Collapse
Affiliation(s)
- Harald Murck
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, 35039 Marburg, Germany
| | - Peter Karailiev
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia; (P.K.); (L.K.); (A.P.); (D.J.)
| | - Lucia Karailievova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia; (P.K.); (L.K.); (A.P.); (D.J.)
| | - Agnesa Puhova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia; (P.K.); (L.K.); (A.P.); (D.J.)
| | - Daniela Jezova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia; (P.K.); (L.K.); (A.P.); (D.J.)
| |
Collapse
|
24
|
Murck H, Fava M, Cusin C, Fatt CC, Trivedi M. Brain ventricle and choroid plexus morphology as predictor of treatment response in major depression: Findings from the EMBARC study. Brain Behav Immun Health 2024; 35:100717. [PMID: 38186634 PMCID: PMC10767278 DOI: 10.1016/j.bbih.2023.100717] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 01/09/2024] Open
Abstract
Recent observations suggest a role of the volume of the cerebral ventricle volume, corpus callosum (CC) segment volume, in particular that of the central-anterior part, and choroid plexus (CP) volume for treatment resistance of major depressive disorder (MDD). An increased CP volume has been associated with increased inflammatory activity and changes in the structure of the ventricles and corpus callosum. We attempt to replicate and confirm that these imaging markers are associated with clinical outcome in subjects from the EMBARC study, as implied by a recent pilot study. The EMBARC study is a placebo controlled randomized study comparing sertraline vs. placebo in patients with MDD to identify biological markers of therapy resistance. Association of baseline volumes of the lateral ventricles (LVV), choroid plexus volume (CPV) and volume of segments of the CC with treatment response after 4 weeks treatment was evaluated. 171 subjects (61 male, 110 female) completed the 4 week assessments; gender and age were taken into account for this analyses. As previously reported, no treatment effect of sertraline vs. placebo was observed, therefore the study characterized prognostic markers of response in the pooled population. Change in depression severity was identified by the ratio of the Hamilton-Depression rating scale 17 (HAMD-17) at week 4 divided by the HAMD-17 at baseline (HAMD-17 ratio). Volumes of the lateral ventricles and choroid plexi were positively correlated with the HAMD-17 ratio, indication worse outcome with larger ventricles and choroid plexus volumes, whereas the volume of the central-anterior corpus callosum was negatively correlated with the HAMD-17 ratio. Responders (n = 54) had significantly smaller volumes of the lateral ventricles and CP compared to non-responders (n = 117), whereas the volume of mid-anterior CC was significantly larger compared to non-responders (n = 117), confirming our previous findings. In an exploratory way associations between enlarged LVV and CPV and signs of lipid dysregulation were observed. In conclusion, we confirmed that volumes of lateral ventricles, choroid plexi and the mid-anterior corpus callosum are associated with clinical improvement of depression and may be indicators of metabolic/inflammatory activity.
Collapse
Affiliation(s)
- Harald Murck
- Dept. of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
| | - Maurizio Fava
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Cristina Cusin
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Cherise Chin Fatt
- The University of Texas Southwestern Medical Center, Department of Psychiatry, Center for Depression Research and Clinical Care, Dallas, USA
| | - Madhukar Trivedi
- The University of Texas Southwestern Medical Center, Department of Psychiatry, Center for Depression Research and Clinical Care, Dallas, USA
| |
Collapse
|
25
|
Reyes J, Zhao Y, Pandya K, Yap GS. Growth differentiation factor-15 is an IFN-γ regulated mediator of infection-induced weight loss and the hepatic FGF21 response. Brain Behav Immun 2024; 116:24-33. [PMID: 38013040 DOI: 10.1016/j.bbi.2023.11.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/07/2023] [Accepted: 11/23/2023] [Indexed: 11/29/2023] Open
Abstract
Infections are often accompanied by weight loss caused by alterations in host behavior and metabolism, also known as sickness behaviors. Recent studies have revealed that sickness behaviors can either promote or impede survival during infections depending on factors such as the type of infectious pathogen. Nevertheless, we have an incomplete understanding of the underlying mechanisms of sickness behaviors. Furthermore, although the host immune responses to infections have long been known to contribute to the induction of sickness behaviors, recent studies have identified emerging cytokines that are also key regulators of host metabolism during infection and inflammation, such as growth differentiation factor 15 (GDF-15). GDF-15 is a distant member of the TGF-β superfamily that causes weight loss by suppressing appetite and food consumption and causing emesis. These effects require activation of neurons that express the only known GDF-15 receptor, the GFRAL receptor. GDF-15 also functions in the periphery including the induction of ketogenesis and immunoregulation. Nevertheless, the functions and regulation of GDF-15 during live infections is not yet known. Murine infection with avirulent Toxoplasma gondii is an established model to understand infection-induced weight loss. Past studies have determined that acute T. gondii infection causes weight loss due to diminished food consumption and increased energy expenditure through unknown mechanisms. Additionally, our lab previously demonstrated that T. gondii causes upregulation in serum GDF-15 in an IFN-γ-dependent manner during the post-acute phase of the infection. In this study, we interrogated the in-vivo functions and immune regulation of GDF-15 during Toxoplasma gondii infection. First, we found that in wild-type mice, acute T. gondii infection caused a significant weight loss that is preceded by elevation of serum levels of IFN-γ and GDF-15. To determine whether IFN-γ regulates GDF-15, we neutralized IFN-γ on days 5 and 6 and measured GDF-15 on day 7 and found that serum but not tissue levels of GDF-15 decreased after IFN-γ neutralization. Additionally, exogenous IFN-γ was sufficient to elevate serum GDF-15 in the absence of infection. Next, we compared the outcomes of T. gondii infection between WT and Gdf15-/- mice. We observed that the weight trajectories were declining in WT mice while they were increasing in Gdf15-/-mice during the acute phase of the infection. This difference in trajectories extended throughout the chronic infection resulting to an overall weight loss relative to initial weights in WT mice but not Gdf15-/-mice. Then, we determined that GDF-15 is not essential for survival and immunoregulation during T. gondii infection. We also demonstrated that GDF-15 is required for the induction of FGF21, stress-induced cytokine with prominent roles in regulating host metabolism. Finally, we discovered a cytokine cascade IFN-γ-GDF-15-FGF21 that is likely involved in the regulation of host metabolism. Overall, our study provides evidence that IFN-γ contributes to the regulation of host metabolism during infection by inducing GDF-15 and FGF21. GDF-15 orchestrates changes in host metabolism that supports the host immune response in clearing the infection. These physiological alterations induce FGF21, which in turn, orchestrates the adaptive responses to the effects of GDF-15, which can be detrimental when protracted.
Collapse
Affiliation(s)
- Jojo Reyes
- Department of Medicine and Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103, United States
| | - Yanlin Zhao
- Department of Medicine and Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103, United States
| | - Krushang Pandya
- Department of Medicine and Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103, United States; Program of Bioengineering, Department of Electrical & Computer Engineering, New York Institute of Technology, United States
| | - George S Yap
- Department of Medicine and Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103, United States.
| |
Collapse
|
26
|
Dorsey AF, Miller EM. Revisiting geophagy: An evolved sickness behavior to microbiome-mediated gastrointestinal inflammation. Evol Anthropol 2023; 32:325-335. [PMID: 37661330 DOI: 10.1002/evan.22004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/19/2023] [Accepted: 08/21/2023] [Indexed: 09/05/2023]
Abstract
Geophagy, the consumption of clay or similar substances, is known as an evolved behavior that protects vulnerable populations, such as pregnant women and children, against gastrointestinal injury. However, perplexing questions remain, like the presence of geophagy in the absence of overt gastrointestinal infection and the potential causal relationship between geophagy and iron deficiency anemia. In this review, we hypothesize that geophagy is an inflammation-mediated sickness behavior regulated via the vagus nerve. We further hypothesize that the gut microbiome plays a critical role in mediating the relationship between inflammation and geophagy. By including inflammation and the microbiome within the existing protection hypothesis, we can explain how subclinical gastrointestinal states induce geophagy. Furthermore, we can explain how gastrointestinal inflammation is responsible for both geophagy and iron-deficiency anemia, explaining why the two phenomena frequently co-occur. Ultimately, defining geophagy as a sickness behavior allows us to integrate the gut-brain axis into geophagy research.
Collapse
Affiliation(s)
- Achsah F Dorsey
- Department of Anthropology, University of Massachusetts, Amherst, Massachusetts, USA
| | - Elizabeth M Miller
- Department of Anthropology, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
27
|
Luo Y, Ali T, Liu Z, Gao R, Li A, Yang C, Ling L, He L, Li S. EPO prevents neuroinflammation and relieves depression via JAK/STAT signaling. Life Sci 2023; 333:122102. [PMID: 37769806 DOI: 10.1016/j.lfs.2023.122102] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 09/04/2023] [Accepted: 09/15/2023] [Indexed: 10/03/2023]
Abstract
AIMS Erythropoietin (EPO) is a glycoprotein cytokine that exerts therapeutic potential on neurological disorders by promoting neurogenesis and angiogenesis. However, its role as an antidepressant via anti-inflammatory axes is poorly explored. Furthermore, chronic inflammation can induce neuroinflammation, concurrent with depressive-like behaviors that anti-inflammatory and antidepressant agents could avert. Here, we aimed to elucidate the antidepressant potential of Erythropoietin (EPO) in the LPS-induced depression model. MAIN METHODS For in vivo analysis, mice were treated with LPS (2 mg/kg BW), Erythropoietin (EPO) (5000 U/kg/day), (Ruxolitinib,15 mg/kg), and K252a (25 μg/kg). Depressive-like behaviors were confirmed via behavior tests, including OFT, FST, SPT, and TST. Cytokines were measured via ELISA, while IBA-1/GFAP expression was determined by immunofluorescence. Further, the desired gene expression was measured by immunoblotting. For in vitro analysis, BV2 and N2a cell lines were cultured, treated with LPS, EPO, Ruxolitinib, and K252a, collected, and analyzed. KEY FINDINGS LPS treatment significantly induced neuroinflammation accompanied by depression-like behaviors in mice. However, EPO treatment rescued LPS-induced changes by averting cytokine production, secretion, and glial cell activation and reducing depressive-like behaviors in mice. Surprisingly, EPO treatment ameliorated LPS-induced JAK2/STAT5 signaling impairment, as validated by JAK2-antagonism. Furthermore, synaptic and dendritic spine defects and BNDF/TrkB signaling upon LPS administration could be prevented by EPO treatment. SIGNIFICANCE EPO could act as an antidepressant via its anti-inflammatory potential by regulating JAK2/STAT5 signaling.
Collapse
Affiliation(s)
- Yanhua Luo
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - Tahir Ali
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China; Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China.
| | - Zizhen Liu
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - Ruyan Gao
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - Axiang Li
- Institute of Forensic Injury, Institute of Forensic Bio-Evidence, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an, China.
| | - Canyu Yang
- Institute of Forensic Injury, Institute of Forensic Bio-Evidence, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an, China.
| | - Li Ling
- Department of Endocrinology, The 6th Affiliated Hospital of Shenzhen University Medical School and Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China.
| | - Liufang He
- Pediatrics Department, Shenzhen University General Hospital, Shenzhen University, Shenzhen, China.
| | - Shupeng Li
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China; Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China; Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
28
|
Wangler LM, Godbout JP. Microglia moonlighting after traumatic brain injury: aging and interferons influence chronic microglia reactivity. Trends Neurosci 2023; 46:926-940. [PMID: 37723009 PMCID: PMC10592045 DOI: 10.1016/j.tins.2023.08.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/11/2023] [Accepted: 08/24/2023] [Indexed: 09/20/2023]
Abstract
Most of the individuals who experience traumatic brain injury (TBI) develop neuropsychiatric and cognitive complications that negatively affect recovery and health span. Activation of multiple inflammatory pathways persists after TBI, but it is unclear how inflammation contributes to long-term behavioral and cognitive deficits. One outcome of TBI is microglial priming and subsequent hyper-reactivity to secondary stressors, injuries, or immune challenges that further augment complications. Additionally, microglia priming with aging contributes to exaggerated glial responses to TBI. One prominent inflammatory pathway, interferon (IFN) signaling, is increased after TBI and may contribute to microglial priming and subsequent reactivity. This review discusses the contributions of microglia to inflammatory processes after TBI, as well as the influence of aging and IFNs on microglia reactivity and chronic inflammation after TBI.
Collapse
Affiliation(s)
- Lynde M Wangler
- Department of Neuroscience, The Ohio State University Wexner Medical Center, 333 W 10th Ave, Columbus, OH, USA
| | - Jonathan P Godbout
- Department of Neuroscience, The Ohio State University Wexner Medical Center, 333 W 10th Ave, Columbus, OH, USA; Institute for Behavioral Medicine Research, Ohio State University Wexner Medical Center, 460 Medical Center Drive, Columbus, OH, USA; Chronic Brain Injury Program, The Ohio State University, 190 North Oval Mall, Columbus, OH, USA.
| |
Collapse
|
29
|
Kolmos MG, Arribas AP, Kornum BR, Justinussen JL. Experimental sickness reduces hypocretin receptor 1 expression in the lateral hypothalamus and ventral tegmental area of female mice. Eur J Neurosci 2023; 58:4002-4010. [PMID: 37818927 DOI: 10.1111/ejn.16151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/23/2023] [Accepted: 09/11/2023] [Indexed: 10/13/2023]
Abstract
Recent studies have focused on how sickness behaviours, including lethargy, are coordinated in the brain in response to peripheral infections. Decreased hypocretin (orexin) signalling is associated with lethargy and previous research suggests that hypocretin signalling is downregulated during sickness. However, there are studies that find increases or no change in hypocretin signalling during sickness. It is further unknown whether hypocretin receptor expression changes during sickness. Using lipopolysaccharide (LPS) to induce sickness in female mice, we investigated how LPS-injection affects gene expression of hypocretin receptors and prepro-hypocretin as well as hypocretin-1 peptide concentrations in brain tissue. We found that hypocretin receptor 1 gene expression was downregulated during sickness in the lateral hypothalamus and ventral tegmental area, but not in the dorsal raphe nucleus or locus coeruleus. We found no changes in hypocretin receptor 2 expression. Using a gene expression calculation that accounts for primer efficiencies and multiple endogenous controls, we were unable to detect changes in prepro-hypocretin expression. Using radioimmunoassay, we found no change in hypocretin-1 peptide in rostral brain tissue. Our results indicate that hypocretin receptor expression can fluctuate during sickness, adding an additional level of complexity to understanding hypocretin signalling during sickness.
Collapse
Affiliation(s)
- Mie Gunni Kolmos
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Alba Pérez Arribas
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Birgitte Rahbek Kornum
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jessica Lauren Justinussen
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
30
|
Mueller C, Fang YHD, Jones C, McConathy JE, Raman F, Lapi SE, Younger JW. Evidence of neuroinflammation in fibromyalgia syndrome: a [ 18 F]DPA-714 positron emission tomography study. Pain 2023; 164:2285-2295. [PMID: 37326674 PMCID: PMC10502894 DOI: 10.1097/j.pain.0000000000002927] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 03/21/2023] [Accepted: 03/28/2023] [Indexed: 06/17/2023]
Abstract
ABSTRACT This observational study aimed to determine whether individuals with fibromyalgia (FM) exhibit higher levels of neuroinflammation than healthy controls (HCs), as measured with positron emission tomography using [ 18 F]DPA-714, a second-generation radioligand for the translocator protein (TSPO). Fifteen women with FM and 10 HCs underwent neuroimaging. Distribution volume (V T ) was calculated for in 28 regions of interest (ROIs) using Logan graphical analysis and compared between groups using multiple linear regressions. Group (FM vs HC) was the main predictor of interest and TSPO binding status (high- vs mixed-affinity) was added as a covariate. The FM group had higher V T in the right postcentral gyrus ( b = 0.477, P = 0.033), right occipital gray matter (GM; b = 0.438, P = 0.039), and the right temporal GM ( b = 0.466, P = 0.042). The FM group also had lower V T than HCs in the left isthmus of the cingulate gyrus ( b = -0.553, P = 0.014). In the subgroup of high-affinity binders, the FM group had higher V T in the bilateral precuneus, postcentral gyrus, parietal GM, occipital GM, and supramarginal gyrus. Group differences in the right parietal GM were associated with decreased quality of life, higher pain severity and interference, and cognitive problems. In support of our hypothesis, we found increased radioligand binding (V T ) in the FM group compared with HCs in several brain regions regardless of participants' TSPO binding status. The ROIs overlapped with prior reports of increased TSPO binding in FM. Overall, increasing evidence supports the hypothesis that FM involves microglia-mediated neuroinflammation in the brain.
Collapse
Affiliation(s)
| | - Yu-Hua D. Fang
- Radiology and Neurology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Chloe Jones
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jonathan E. McConathy
- Department of Radiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Fabio Raman
- Department of Radiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Suzanne E. Lapi
- Department of Radiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jarred W. Younger
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
31
|
Benkortbi Elouaer AAE, Ben Mohamed B, Zaafrane F, Gaha L, Bel Hadj Jrad Tensaout B. Case control study: G-allele of rs4244165 in JAK1 gene correlated with high-level brief psychiatric rating scale in bipolar patients. Medicine (Baltimore) 2023; 102:e34652. [PMID: 37713898 PMCID: PMC10508567 DOI: 10.1097/md.0000000000034652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 07/18/2023] [Indexed: 09/17/2023] Open
Abstract
Bipolar disorder (BD) is a chronic and clinically complex disease, characterized by pathological disturbances in mood and energy. Cytokines can access the brain and their signaling pathways affect brain functions, such as neurotransmitter metabolism, neuroendocrine function, neural/synaptic plasticity, and mood neural circuitry. JAK 1 is the most common phosphorylation protein combined with the tyrosine kinase cytokine receptors; therefore, we investigated the association between the Janus family kinase 1 (JAK1) gene polymorphisms (rs2780895, rs4244165, and rs17127024) and susceptibility to BD. The case study population included 93 patients diagnosed with BD and 112 healthy controls, selected from the central coastal region of Tunisia. Polymerase chain reaction-restriction fragment length polymorphism was used to investigate these 3 JAK1 polymorphisms. We compared the sociodemographic and clinical parameters of 3 genotypes of this single nucleotide polymorphisms rs2780895, rs4244165, and rs17127024 of the JAK1 gene. The frequencies of the 3 genotypes were similar in the patient and control groups. One-way analysis of variance revealed a significant variation in rs4244165. After hospitalization, the average of the brief psychiatric rating scale score was significantly higher for the wild-type GG genotype than that for the double-mutation TT genotype (31.23% vs 22.85%, P = .043). The least significant difference post hoc test also showed a significant difference between the GG and TT genotypes at both hospital admission (P = .001) and after hospitalization (P = .012), with the GG genotype being associated with a higher brief psychiatric rating scale score. Haplotypic analysis revealed that the wild-type haplotype with the highest frequency (46.62%) was CTG. Our results showed no association between the 3 studied positions and bipolar disorder. However, the G-allele of rs4244165 in JAK1 is associated with the highest level of the brief psychiatric rating scale in patients with bipolar disorder. The JAK/signal transducer and activator of transcription pathway is an interesting therapeutic route that requires further investigations. Studying their regulatory regions can provide a clearer picture of all the interactions involved in the regulation of genetic expression in response to treatment.
Collapse
Affiliation(s)
- Akila Ahlem Elouaer Benkortbi Elouaer
- Laboratory of Genetics, Biodiversity and Bioresource Valorization LR11ES41, Higher Institute of Biotechnology of Monastir, University of Monastir, Monastir, Tunisia
| | - Bochra Ben Mohamed
- Department of Psychiatry and Vulnerability to Psychoses Laboratory–Fattouma Bourguiba University Hospital of Monastir, Faculty of Medicine of Monastir, Monastir, Tunisia
| | - Ferid Zaafrane
- Department of Psychiatry and Vulnerability to Psychoses Laboratory–Fattouma Bourguiba University Hospital of Monastir, Faculty of Medicine of Monastir, Monastir, Tunisia
| | - Lotfi Gaha
- Department of Psychiatry and Vulnerability to Psychoses Laboratory–Fattouma Bourguiba University Hospital of Monastir, Faculty of Medicine of Monastir, Monastir, Tunisia
| | - Besma Bel Hadj Jrad Tensaout
- Laboratory of Genetics, Biodiversity and Bioresource Valorization LR11ES41, Higher Institute of Biotechnology of Monastir, University of Monastir, Monastir, Tunisia
| |
Collapse
|
32
|
Lin C, Jyotaki M, Quinlan J, Feng S, Zhou M, Jiang P, Matsumoto I, Huang L, Ninomiya Y, Margolskee RF, Reed DR, Wang H. Lipopolysaccharide increases bitter taste sensitivity via epigenetic changes in Tas2r gene clusters. iScience 2023; 26:106920. [PMID: 37283808 PMCID: PMC10239704 DOI: 10.1016/j.isci.2023.106920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 02/27/2023] [Accepted: 05/15/2023] [Indexed: 06/08/2023] Open
Abstract
T2R bitter receptors, encoded by Tas2r genes, are not only critical for bitter taste signal transduction but also important for defense against bacteria and parasites. However, little is known about whether and how Tas2r gene expression are regulated. Here, we show that in an inflammation model mimicking bacterial infection using lipopolysaccharide, the expression of many Tas2rs was significantly upregulated and mice displayed markedly increased neural and behavioral responses to bitter compounds. Using single-cell assays for transposase-accessible chromatin with sequencing (scATAC-seq), we found that the chromatin accessibility of Tas2rs was highly celltype specific and lipopolysaccharide increased the accessibility of many Tas2rs. scATAC-seq also revealed substantial chromatin remodeling in immune response genes in taste tissue stem cells, suggesting potential long-lasting effects. Together, our results suggest an epigenetic mechanism connecting inflammation, Tas2r gene regulation, and altered bitter taste, which may explain heightened bitter taste that can occur with infections and cancer treatments.
Collapse
Affiliation(s)
- Cailu Lin
- Monell Chemical Senses Center, 3500 Market St., Philadelphia, PA 19104, USA
| | - Masafumi Jyotaki
- Monell Chemical Senses Center, 3500 Market St., Philadelphia, PA 19104, USA
| | - John Quinlan
- Monell Chemical Senses Center, 3500 Market St., Philadelphia, PA 19104, USA
| | - Shan Feng
- Monell Chemical Senses Center, 3500 Market St., Philadelphia, PA 19104, USA
| | - Minliang Zhou
- Monell Chemical Senses Center, 3500 Market St., Philadelphia, PA 19104, USA
| | - Peihua Jiang
- Monell Chemical Senses Center, 3500 Market St., Philadelphia, PA 19104, USA
| | - Ichiro Matsumoto
- Monell Chemical Senses Center, 3500 Market St., Philadelphia, PA 19104, USA
| | - Liquan Huang
- Monell Chemical Senses Center, 3500 Market St., Philadelphia, PA 19104, USA
- Institute of Cellular and Developmental Biology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yuzo Ninomiya
- Monell Chemical Senses Center, 3500 Market St., Philadelphia, PA 19104, USA
- Division of Sensory Physiology, Research and Development Center for Five-Sense Device, Kyushu University, Fukuoka, Japan
- Okayama University, Okayama, Japan
- Oral Science Research Center, Tokyo Dental College, Tokyo, Japan
| | | | - Danielle R. Reed
- Monell Chemical Senses Center, 3500 Market St., Philadelphia, PA 19104, USA
| | - Hong Wang
- Monell Chemical Senses Center, 3500 Market St., Philadelphia, PA 19104, USA
| |
Collapse
|
33
|
Kani AS, Çinçin A, Özercan A, Şenoğuz UD, Örnek E, Dokuz G, Topçuoğlu V, Sayar K. Exploring the role of adult attachment, major depression and childhood trauma in arterial stiffness: A preliminary study. J Psychosom Res 2023; 171:111386. [PMID: 37269643 DOI: 10.1016/j.jpsychores.2023.111386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 06/05/2023]
Abstract
OBJECTIVE Prior research indicates a noteworthy and intricate connection between depression and subclinical atherosclerosis. Nevertheless, the biological and psychological mechanisms that underlie this association are not yet fully understood. To address this gap, this exploratory study aimed to examine the relationship between active clinical depression and arterial stiffness (AS), with a particular focus on the potential mediating roles of attachment security and childhood trauma. METHODS In this cross-sectional study, we examined 38 patients with active major depression free of dyslipidemia, diabetes mellitus, hypertension, and obesity and 32 healthy controls. All participants underwent blood tests, psychometric assessments, and AS measurements using the Mobil-O-Graph arteriograph system. AS severity was evaluated using an augmentation index (AIx) normalized to 75 beats/min. RESULTS In the absence of defined clinical cardiovascular risk factors, there was no significant difference in AIx between individuals with depression and healthy controls (p = .75). Patients with longer intervals between depressive episodes had lower AIx (r = -0.44, p < .01). Insecure attachment and childhood trauma did not significantly associate with AIx in patients. Whereas insecure attachment was positively correlated with AIx only in healthy controls (r = 0.50, p = 01). CONCLUSIONS Our analysis of established risk factors for atherosclerosis revealed that depression and childhood trauma had no significant relationship with AS. However, we did identify a novel finding: insecure attachment was significantly associated with AS severity in healthy adults without defined cardiovascular risk factors for the first time. To our knowledge, this is the first study to demonstrate this relationship.
Collapse
Affiliation(s)
- Ayşe Sakallı Kani
- Department of Psychiatry, Marmara University, School of Medicine, Istanbul, Turkey.
| | - Altuğ Çinçin
- Department of Cardiology, Marmara University, School of Medicine, Istanbul, Turkey
| | - Ahmet Özercan
- Department of Psychiatry, Marmara University, School of Medicine, Istanbul, Turkey
| | - Uzay Dural Şenoğuz
- Department of Psychology, Istanbul Medeniyet University Faculty of Arts and Humanities, Istanbul, Turkey
| | - Erdem Örnek
- Department of Psychology, Istanbul Medeniyet University Faculty of Arts and Humanities, Istanbul, Turkey
| | - Gonca Dokuz
- Department of Psychiatry, Bezmialem Vakıf University, Istanbul, Turkey
| | - Volkan Topçuoğlu
- Department of Psychiatry, Marmara University, School of Medicine, Istanbul, Turkey
| | - Kemal Sayar
- Department of Psychiatry, Marmara University, School of Medicine, Istanbul, Turkey
| |
Collapse
|
34
|
Lee DS, Jiang T, Crocker J, Way BM. Can Inflammation Predict Social Media Use? Linking a Biological Marker of Systemic Inflammation with Social Media Use Among College Students and Middle-Aged Adults. Brain Behav Immun 2023; 112:1-10. [PMID: 37224891 DOI: 10.1016/j.bbi.2023.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 05/26/2023] Open
Abstract
Drawing on recent evidence that inflammation may promote social affiliative motivation, the present research proposes a novel perspective that inflammation may be associated with more social media use. In a cross-sectional analysis of a nationally representative sample, Study 1 (N = 863) found a positive association between C-reactive protein (CRP), a biomarker of systemic inflammation, and the amount of social media use by middle-aged adults. Study 2 (N = 228) showed that among college students CRP was prospectively associated with more social media use 6 weeks later. Providing stronger evidence of the directionality of this effect, Study 3 (N = 171) showed that in college students CRP predicted increased social media use in the subsequent week even after controlling for current week's use. Additionally, in exploratory analyses of CRP and different types of social media use in the same week, CRP was only associated with using social media for social interaction and not for other purposes (e.g., entertainment). The present research sheds light on the social effects of inflammation and highlights potential benefits of using social media as a context for studying the impact of inflammation on social motivation and behavior.
Collapse
Affiliation(s)
- David S Lee
- University at Buffalo, the State University of New York, Buffalo, NY, USA.
| | - Tao Jiang
- Institute for Policy Research, Northwestern University, Evanston, IL, USA
| | | | | |
Collapse
|
35
|
Hallihan H, Tsai P, Lv N, Xiao L, Peñalver Bernabé B, Wu Y, Pandey GN, Williams LM, Ajilore OA, Ma J. Affective neural circuits and inflammatory markers linked to depression and anxiety symptoms in patients with comorbid obesity. J Psychiatr Res 2023; 160:9-18. [PMID: 36764197 PMCID: PMC10023437 DOI: 10.1016/j.jpsychires.2023.01.044] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/19/2023] [Accepted: 01/26/2023] [Indexed: 02/05/2023]
Abstract
Although we have effective treatments for depression and anxiety, we lack mechanistic understanding or evidence-based strategies to tailor these treatments in the context of major comorbidities such as obesity. The current feasibility study uses functional neuroimaging and biospecimen data to determine if changes in inflammatory markers, fecal short-chain fatty acids, and neural circuit-based targets can predict depression and anxiety outcomes among participants with comorbid obesity. Blood and stool samples and functional magnetic resonance imaging data were obtained at baseline and 2 months, during the parent ENGAGE-2 trial. From 30 participants with both biospecimen and fMRI data, this subsample study explored the relationship among changes in inflammatory markers and fecal short-chain fatty acids and changes in neural targets, and their joint relationship with depression and anxiety symptoms. Bivariate and partial correlation, canonical correlation, and partial least squares analyses were conducted, with adjustments for age, sex, and treatment group. Initial correlation analyses revealed three inflammatory markers (IL-1RA, IL-6, and TNF-α) and five neural targets (in Negative Affect, Positive Affect, and Default Mode Circuits) with significantly associated changes at 2 months. Partial least squares analyses then showed that changes in IL-1RA and TNF-α and changes in three neural targets (in Negative Affect and Positive Affect Circuits) at 2 months were associated with changes in depression and anxiety symptoms at 6 months. This study sheds light on the plausibility of incorporation of inflammatory and gastrointestinal biomarkers with neural targets as predictors of depression and comorbid anxiety outcomes among patients with obesity.
Collapse
Affiliation(s)
- Hagar Hallihan
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, 60608, USA
| | - Perry Tsai
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Nan Lv
- Institute for Health Research and Policy, University of Illinois at Chicago, Chicago, IL, 60608, USA
| | - Lan Xiao
- Department of Epidemiology and Population Health, Stanford University, Palo Alto, CA, USA
| | | | - Yichao Wu
- Department of Mathematics, Statistics, and Computer Science, College of Liberal Arts and Sciences, Chicago, IL, 60607, USA
| | - Ghanshyam N Pandey
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Leanne M Williams
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA; Sierra-Pacific Mental Illness Research, Education, and Clinical Center (MIRECC), Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Olusola A Ajilore
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Jun Ma
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, 60608, USA.
| |
Collapse
|
36
|
Tarn J, Evans E, Traianos E, Collins A, Stylianou M, Parikh J, Bai Y, Guan Y, Frith J, Lendrem D, Macrae V, McKinnon I, Simon BS, Blake J, Baker MR, Taylor JP, Watson S, Gallagher P, Blamire A, Newton J, Ng WF. The Effects of Noninvasive Vagus Nerve Stimulation on Fatigue in Participants With Primary Sjögren's Syndrome. Neuromodulation 2023; 26:681-689. [PMID: 37032583 DOI: 10.1016/j.neurom.2022.08.461] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 07/07/2022] [Accepted: 08/08/2022] [Indexed: 11/07/2022]
Abstract
OBJECTIVES Fatigue is one of the most important symptoms needing improvement in Primary Sjögren's syndrome (PSS). Previous data from our group suggest that noninvasive stimulation of the vagus nerve (nVNS) may improve symptoms of fatigue. This experimental medicine study uses the gammaCore device (electroCore) and a sham device to investigate the relationship between nVNS and fatigue in PSS, and to explore potential mechanisms involved. MATERIALS AND METHODS Forty participants with PSS were randomly assigned to use active (n = 20) or sham (n = 20) nVNS devices twice daily for 54 days in a double-blind manner. Patient-reported measures of fatigue were collected at baseline and day 56: Profile of Fatigue (PRO-F)-Physical, PRO-F-Mental and Visual Analogue Scale of abnormal fatigue (fVAS). Neurocognitive tests, immunologic responses, electroencephalography alpha reactivity, muscle acidosis, and heart rate variability were compared between devices from baseline to day 56 using analysis of covariance. RESULTS PRO-F-Physical, PRO-F-Mental, and fVAS scores were significantly reduced at day 56 in the active group only (p = 0.02, 0.02, and 0.04, respectively). Muscle bioenergetics and heart rate variability showed no change between arms. There were significant improvements in digit span and a neurocognitive test (p = 0.03), and upon acute nVNS stimulation, frontal region alpha reactivity showed a significant negative relationship with fatigue scores in the active group (p < 0.01). CONCLUSIONS We observed significant improvements in three measures of fatigue at day 56 with the active device but not the sham device. Directly after device use, fatigue levels correlate with measures of alpha reactivity, suggesting modulation of cholinergic system integrity as a mechanism of action for nVNS.
Collapse
Affiliation(s)
- Jessica Tarn
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Evelyn Evans
- Cumbria, Northumberland, Tyne and Wear NHS Foundation Trust, Gosforth, Newcastle upon Tyne, UK
| | - Emmanuella Traianos
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Alexis Collins
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Mryto Stylianou
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK; Neuropathology Department, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | - Jehill Parikh
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Yang Bai
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Yu Guan
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - James Frith
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Dennis Lendrem
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Victoria Macrae
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Iain McKinnon
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK; Cumbria, Northumberland, Tyne and Wear NHS Foundation Trust, Gosforth, Newcastle upon Tyne, UK
| | | | | | - Mark R Baker
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - John Paul Taylor
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Stuart Watson
- Cumbria, Northumberland, Tyne and Wear NHS Foundation Trust, Gosforth, Newcastle upon Tyne, UK
| | - Peter Gallagher
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Andrew Blamire
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Julia Newton
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Wan-Fai Ng
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK; National Institute for Health and Care Research (NIHR) Newcastle Biomedical Research Centre & NIHR Newcastle Clinical Research Facility, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.
| |
Collapse
|
37
|
Knight EL, Engeland CG, Yocum AK, Abu-Mohammad A, Bertram H, Vest E, McInnis MG, Saunders EF. Heightened inflammation in bipolar disorder occurs independent of symptom severity and is explained by body mass index. Brain Behav Immun Health 2023; 29:100613. [PMID: 37025250 PMCID: PMC10070374 DOI: 10.1016/j.bbih.2023.100613] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 02/02/2023] [Accepted: 03/08/2023] [Indexed: 03/11/2023] Open
Abstract
Inflammation is hypothesized to be a key component of bipolar disorder (BP) development and progression. However, findings linking BP prevalence and symptomology to immune functioning have been mixed, with some work suggesting that obesity may play an important role in BP-relevant inflammation. Here we investigate differences in biomarkers of inflammation [C-reactive protein (CRP), interleukin (IL)-1β, IL-6, IL-8, IL-10] between healthy controls (HC) and individuals with BP or other mental illness (MI). Adults with BP, MI, or HC (n = 545, 70% BP, 21% HC, 9% MI) self-reported depressive and manic symptoms close to a blood draw and physical exam that included measurement of height and weight. A composite score was calculated from the four cytokines measured in plasma; follow-up analyses explored a pro-inflammatory composite and IL-10, individually. BP individuals had elevated cytokine concentrations compared to HC (B = 0.197, [0.062, 0.333], t (542) = 2.855, p = .004); this difference was also evident for the pro-inflammatory composite and for IL-10. Cytokine concentrations were not associated with BP mood states. Body mass index (BMI), an indicator of obesity, was significantly higher in BP compared to HC (B = 3.780, [2.118, 5.443], t (479) = 4.457, p < .001) and differences in cytokines between the two groups was no longer significant after controlling for BMI. No differences in CRP were evident between BP and HC. These results suggest that cytokine concentrations are elevated in BP and this difference from HC is associated with obesity. Interventions targeting immune modulators in BP must carefully consider the complex relationships within the BP-inflammation-obesity triangle.
Collapse
|
38
|
Murck H, Fava M, Cusin C, Chin Fatt C, Trivedi M. Brain Ventricle and Choroid Plexus Morphology as Predictor of Treatment Response: Findings from the EMBARC Study. RESEARCH SQUARE 2023:rs.3.rs-2618151. [PMID: 36909585 PMCID: PMC10002825 DOI: 10.21203/rs.3.rs-2618151/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
Recent observations suggest a role of the choroid plexus (CP) and cerebral ventricle volume (CV), to identify treatment resistance of major depressive disorder (MDD). We tested the hypothesis that these markers are associated with clinical improvement in subjects from the EMBARC study, as implied by a recent pilot study. The EMBARC study characterized biological markers in a randomized placebo-controlled trial of sertraline vs. placebo in patients with MDD. Association of baseline volumes of CV, CP and of the corpus callosum (CC) with treatment response after 4 weeks treatment were evaluated. 171 subjects (61 male, 110 female) completed the 4 week assessments; gender, site and age were taken into account for this analyses. As previously reported, no treatment effect of sertraline was observed, but prognostic markers for clinical improvement were identified. Responders (n = 54) had significantly smaller volumes of the CP and lateral ventricles, whereas the volume of mid-anterior and mid-posterior CC was significantly larger compared to non-responders (n = 117). A positive correlation between CV volume and CP volume was observed, whereas a negative correlation between CV volume and both central-anterior and central-posterior parts of the CC emerged. In an exploratory way correlations between enlarged VV and CP volume on the one hand and signs of metabolic syndrome, in particular triglyceride plasma concentrations, were observed. A primary abnormality of CP function in MDD may be associated with increased ventricles, compression of white matter volume, which may affect treatment response speed or outcome. Metabolic markers may mediate this relationship.
Collapse
Affiliation(s)
- Harald Murck
- Dept. of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
| | - Maurizio Fava
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Cristina Cusin
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Cherise Chin Fatt
- The University of Texas Southwestern Medical Center, Department of Psychiatry, Center for Depression Research and Clinical Care, Department of Psychiatry, Dallas, USA
| | - Madhukar Trivedi
- The University of Texas Southwestern Medical Center, Department of Psychiatry, Center for Depression Research and Clinical Care, Department of Psychiatry, Dallas, USA
| |
Collapse
|
39
|
Pate BS, Bouknight SJ, Harrington EN, Mott SE, Augenblick LM, Smiley CE, Morgan CG, Calatayud BM, Martínez-Muñiz GA, Thayer JF, Wood SK. Site-Specific knockdown of microglia in the locus coeruleus regulates hypervigilant responses to social stress in female rats. Brain Behav Immun 2023; 109:190-203. [PMID: 36682513 PMCID: PMC11195023 DOI: 10.1016/j.bbi.2023.01.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/11/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Women are at increased risk for psychosocial stress-related anxiety disorders, yet mechanisms regulating this risk are unknown. Psychosocial stressors activate microglia, and the resulting neuroimmune responses that females exhibit heightened sensitivity to may serve as an etiological factor in their elevated risk. However, studies examining the role of microglia during stress in females are lacking. METHODS Microglia were manipulated in the stress-sensitive locus coeruleus (LC) of female rats in the context of social stress in two ways. First, intra-LC lipopolysaccharide (LPS; 0 or 3 μg/side, n = 5-6/group), a potent TLR4 agonist and microglial activator, was administered. One hour later, rats were exposed to control or an aggressive social defeat encounter between two males (WS, 15-min). In a separate study, females were treated with intra-LC or intra-central amygdala mannosylated liposomes containing clodronate (m-CLD; 0 or 25 μg/side, n = 13-14/group), a compound toxic to microglia. WS-evoked burying, cardiovascular responses, and sucrose preference were measured. Brain and plasma cytokines were quantified, and cardiovascular telemetry assessed autonomic balance. RESULTS Intra-LC LPS augmented the WS-induced burying response and increased plasma corticosterone and interleukin-1β (IL-1β). Further, the efficacy and selectivity of microinjected m-CLD was fully characterized. In the context of WS, intra-LC m-CLD attenuated the hypervigilant burying response during WS as well as the accumulation of intra-LC IL-1β. Intra-central amygdala m-CLD had no effect on WS-evoked behavior. CONCLUSIONS These studies highlight an innovative method for depleting microglia in a brain region specific manner and indicate that microglia in the LC differentially regulate hypervigilant WS-evoked behavioral and autonomic responses.
Collapse
Affiliation(s)
- Brittany S Pate
- Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA; Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Samantha J Bouknight
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Evelynn N Harrington
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Sarah E Mott
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Lee M Augenblick
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Cora E Smiley
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA; WJB Dorn VA Medical Center, Columbia, SC, USA
| | - Christopher G Morgan
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Brittney M Calatayud
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Gustavo A Martínez-Muñiz
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Julian F Thayer
- Department of Psychological Science, University of California, Irvine, CA, USA
| | - Susan K Wood
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA; WJB Dorn VA Medical Center, Columbia, SC, USA.
| |
Collapse
|
40
|
Lin C, Jyotaki M, Quinlan J, Feng S, Zhou M, Jiang P, Matsumoto I, Huang L, Ninomiya Y, Margolskee RF, Reed DR, Wang H. Inflammation induces bitter taste oversensitization via epigenetic changes in Tas2r gene clusters. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.08.527520. [PMID: 36798225 PMCID: PMC9934667 DOI: 10.1101/2023.02.08.527520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
T2R bitter receptors, encoded by Tas2r genes, are not only critical for bitter taste signal transduction but also important for defense against bacteria and parasites. However, little is known about whether and how Tas2r gene expression are regulated. Here we show that, in an inflammation model mimicking bacterial infection, the expression of many Tas2rs are significantly up-regulated and mice displayed markedly increased neural and behavioral responses to bitter compounds. Using single-cell assays for transposase-accessible chromatin with sequencing (scATAC-seq), we found that the chromatin accessibility of Tas2rs was highly cell type specific and inflammation increased the accessibility of many Tas2rs . scATAC-seq also revealed substantial chromatin remodeling in immune response genes in taste tissue stem cells, suggesting potential long-term effects. Together, our results suggest an epigenetic mechanism connecting inflammation, Tas2r gene regulation, and altered bitter taste, which may explain heightened bitter taste that can occur with infections and cancer treatments.
Collapse
|
41
|
Murck H, Lehr L, Jezova D. A viewpoint on aldosterone and BMI related brain morphology in relation to treatment outcome in patients with major depression. J Neuroendocrinol 2023; 35:e13219. [PMID: 36539978 DOI: 10.1111/jne.13219] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 11/06/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022]
Abstract
An abundance of knowledge has been collected describing the involvement of neuroendocrine parameters in major depression. The hypothalamic-pituitary-adrenocortical (HPA) axis regulating cortisol release has been extensively studied; however, attempts to target the HPA axis pharmacologically to treat major depression have failed. This review focuses on the importance of the adrenocortical stress hormone aldosterone, which is released by adrenocorticotropic hormone and angiotensin, and the mineralocorticoid receptor (MR) in depression. Depressed patients, in particular those with atypical depression, have signs of central hyperactivation of the aldosterone sensitive MR, potentially as a consequence of a reactive aldosterone release induced by low blood pressure and as a result of low sensitivity of peripheral MR. This is reflected in reduced heart rate variability, increased salt appetite and sleep changes in this group of patients. In addition, enlarged brain ventricles, compressed corpus callosum and changes of the choroid plexus are associated with increased aldosterone (in relation to cortisol). Furthermore, subjects with these features often show obesity. These characteristics are related to a worse antidepressant treatment outcome. Alterations in choroid plexus function as a consequence of increased aldosterone levels, autonomic dysregulation, metabolic changes and/or inflammation may be involved. The characterization of this regulatory system is in its early days but may identify new targets for therapeutic interventions.
Collapse
Affiliation(s)
- Harald Murck
- Philipps-University Marburg, Marburg, Germany
- Murck-Neuroscience LLC Westfield, Westfield, NJ, USA
| | - Lisa Lehr
- Department of Nephrology, Klinikum Rechts der Isar, Technical University Munich, Munich, Germany
| | - Daniela Jezova
- Slovak Academy of Sciences, Biomedical Research Center, Institute of Experimental Endocrinology, Bratislava, Slovakia
| |
Collapse
|
42
|
Hughes FM, Odom MR, Cervantes A, Livingston AJ, Purves JT. Why Are Some People with Lower Urinary Tract Symptoms (LUTS) Depressed? New Evidence That Peripheral Inflammation in the Bladder Causes Central Inflammation and Mood Disorders. Int J Mol Sci 2023; 24:2821. [PMID: 36769140 PMCID: PMC9917564 DOI: 10.3390/ijms24032821] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/27/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
Anecdotal evidence has long suggested that patients with lower urinary tract symptoms (LUTS) develop mood disorders, such as depression and anxiety, at a higher rate than the general population and recent prospective studies have confirmed this link. Breakthroughs in our understanding of the diseases underlying LUTS have shown that many have a substantial inflammatory component and great strides have been made recently in our understanding of how this inflammation is triggered. Meanwhile, studies on mood disorders have found that many are associated with central neuroinflammation, most notably in the hippocampus. Excitingly, work on other diseases characterized by peripheral inflammation has shown that they can trigger central neuroinflammation and mood disorders. In this review, we discuss the current evidence tying LUTS to mood disorders, its possible bidirectionally, and inflammation as a common mechanism. We also review modern theories of inflammation and depression. Finally, we discuss exciting new animal studies that directly tie two bladder conditions characterized by extensive bladder inflammation (cyclophosphamide-induced hemorrhagic cystitis and bladder outlet obstruction) to neuroinflammation and depression. We conclude with a discussion of possible mechanisms by which peripheral inflammation is translated into central neuroinflammation with the resulting psychiatric concerns.
Collapse
Affiliation(s)
- Francis M. Hughes
- Department Urology, Duke University Medical Center, P.O. Box 3831, Durham, NC 27710, USA
| | | | | | | | | |
Collapse
|
43
|
Myers S, McCracken K, Buck DJ, Curtis JT, Davis RL. Anti-inflammatory actions of β-funaltrexamine in a mouse model of lipopolysaccharide-induced inflammation. Inflammopharmacology 2023; 31:349-358. [PMID: 36527567 DOI: 10.1007/s10787-022-01113-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022]
Abstract
Neuroinflammation is involved in a wide range of brain disorders, thus there is great interest in identifying novel anti-inflammatory agents to include in therapeutic strategies. Our previous in vitro studies revealed that beta-funaltrexamine (β-FNA), a well-characterized selective mu-opioid receptor (MOR) antagonist, inhibits inflammatory signaling in human astroglial cells, albeit through an apparent MOR-independent mechanism. We also previously determined that lipopolysaccharide (LPS)-induced sickness behavior and neuroinflammation in mice are prevented by pretreatment with β-FNA. Herein we investigated the temporal importance of β-FNA treatment in this pre-clinical model of LPS-induced neuroinflammation. Adult, male C57BL/6J mice were administered an i.p. injection of LPS followed by treatment (i.p. injection) with β-FNA immediately or 4 h post-LPS. Sickness behavior was assessed using an open-field test, followed by assessment of inflammatory signaling in the brain, spleen, and plasma. Levels of inflammatory chemokines/cytokines (interferon γ-induced protein, CXCL10; monocyte chemotactic protein 1, CCL2; and interleukin-6, IL-6) in tissues were measured using an enzyme-linked immunosorbent assay and nuclear factor-kappa B (NFκB), p38 mitogen activated kinase (p38 MAPK), and glial fibrillary acidic protein (GFAP) expression were measured by western blot. LPS-induced sickness behavior and chemokine expression were inhibited more effectively when β-FNA treatment occurred immediately after LPS administration, as opposed to 4 h post-LPS; and β-FNA-mediated effects were time-dependent as evidenced by inhibition at 24 h, but not at 8 h. The inhibitory effects of β-FNA on chemokine expression were more evident in the brain versus the spleen or plasma. LPS-induced NFκB-p65 and p38 MAPK expression in the brain and spleen were inhibited at 8 and 24 h post-LPS. These findings extend our understanding of the anti-inflammatory effects of β-FNA and warrant further investigation into its therapeutic potential.
Collapse
Affiliation(s)
- Stephanie Myers
- Department of Pharmacology/Physiology, Oklahoma State University Center for Health Sciences, Tulsa, OK, 74107, USA
| | - Kelly McCracken
- Department of Pharmacology/Physiology, Oklahoma State University Center for Health Sciences, Tulsa, OK, 74107, USA
| | - Daniel J Buck
- Department of Pharmacology/Physiology, Oklahoma State University Center for Health Sciences, Tulsa, OK, 74107, USA
| | - J Thomas Curtis
- Department of Pharmacology/Physiology, Oklahoma State University Center for Health Sciences, Tulsa, OK, 74107, USA
| | - Randall L Davis
- Department of Pharmacology/Physiology, Oklahoma State University Center for Health Sciences, Tulsa, OK, 74107, USA.
| |
Collapse
|
44
|
Myers S, McCracken K, Buck DJ, Curtis JT, Davis RL. Anti-inflammatory effects of β-FNA are sex-dependent in a pre-clinical model of LPS-induced inflammation. J Inflamm (Lond) 2023; 20:4. [PMID: 36698151 PMCID: PMC9878921 DOI: 10.1186/s12950-023-00328-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/15/2023] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Inflammation is present in neurological and peripheral disorders. Thus, targeting inflammation has emerged as a viable option for treating these disorders. Previous work indicated pretreatment with beta-funaltrexamine (β-FNA), a selective mu-opioid receptor (MOR) antagonist, inhibited inflammatory signaling in vitro in human astroglial cells, as well as lipopolysaccharide (LPS)-induced neuroinflammation and sickness-like-behavior in mice. This study explores the protective effects of β-FNA when treatment occurs 10 h after LPS administration and is the first-ever investigation of the sex-dependent effects of β-FNA on LPS-induced inflammation in the brain and peripheral tissues, including the intestines. RESULTS Male and female C57BL/6J mice were administered LPS followed by treatment with β-FNA-immediately or 10 h post-LPS. Sickness- and anxiety-like behavior were assessed using an open-field test and an elevated-plus-maze test, followed by the collection of whole brain, hippocampus, prefrontal cortex, cerebellum/brain stem, plasma, spleen, liver, large intestine (colon), proximal small intestine, and distal small intestine. Levels of inflammatory chemokines/cytokines (interferon γ-induced-protein, IP-10 (CXCL10); monocyte-chemotactic-protein 1, MCP-1 (CCL2); interleukin-6, IL-6; interleukin-1β, IL-1β; and tumor necrosis factor-alpha, TNF-α) in tissues were measured using an enzyme-linked immunosorbent assay. Western blot analysis was used to assess nuclear factor-kappa B (NF-κB) expression. There were sex-dependent differences in LPS-induced inflammation across brain regions and peripheral tissues. Overall, LPS-induced CXCL10, CCL2, TNF-α, and NF-κB were most effectively downregulated by β-FNA; and β-FNA effects differed across brain regions, peripheral tissues, timing of the dose, and in some instances, in a sex-dependent manner. β-FNA reduced LPS-induced anxiety-like behavior most effectively in female mice. CONCLUSION These findings provide novel insights into the sex-dependent anti-inflammatory effects of β-FNA and advance this agent as a potential therapeutic option for reducing both neuroinflammation an intestinal inflammation.
Collapse
Affiliation(s)
- Stephanie Myers
- grid.261367.70000 0004 0542 825XDepartment of Pharmacology/Physiology, Oklahoma State University Center for Health Sciences, 1111 West 17th Street, Tulsa, OK 74107 USA
| | - Kelly McCracken
- grid.261367.70000 0004 0542 825XDepartment of Pharmacology/Physiology, Oklahoma State University Center for Health Sciences, 1111 West 17th Street, Tulsa, OK 74107 USA
| | - Daniel J. Buck
- grid.261367.70000 0004 0542 825XDepartment of Pharmacology/Physiology, Oklahoma State University Center for Health Sciences, 1111 West 17th Street, Tulsa, OK 74107 USA
| | - J. Thomas Curtis
- grid.261367.70000 0004 0542 825XDepartment of Pharmacology/Physiology, Oklahoma State University Center for Health Sciences, 1111 West 17th Street, Tulsa, OK 74107 USA
| | - Randall L. Davis
- grid.261367.70000 0004 0542 825XDepartment of Pharmacology/Physiology, Oklahoma State University Center for Health Sciences, 1111 West 17th Street, Tulsa, OK 74107 USA
| |
Collapse
|
45
|
Presby RE, Rotolo RA, Katz S, Sarwat Z, Correa M, Salamone JD. Lipopolysaccharide-induced changes in effort-related motivational function: Interactions with 2-deoxyglucose. Physiol Behav 2023; 258:114005. [PMID: 36283457 DOI: 10.1016/j.physbeh.2022.114005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/25/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
Abstract
Inflammation is linked to motivational deficits seen in depression and other disorders. Lipopolysaccharide (LPS) induces an inflammatory response and impairs motivated behavior in humans and rodents. It has been suggested that inflammation can shift metabolic needs to functions that warrant more response to the perceived threat (e.g., fighting infection), therefore altering aspects of motivation. Animal models have been developed to assess alterations in motivated behavior by giving the animal the option to work (i.e., lever press) for a highly palatable food reward vs. approaching and consuming a freely available, albeit less preferred, food. This model was used to determine if administration of 2-deoxy-D-glucose (2DG), a substance that inhibits glucose uptake and glycolysis, could reverse the motivational deficits induced by LPS in rats. A food preference/intake task was also conducted to see if LPS affected intake of the highly palatable vs. less palatable foods when both are freely available. It was hypothesized that 2-DG would reverse the motivational deficits caused by LPS and there would be no effect on food preference/intake of the highly palatable food. Results showed that 2-DG significantly reversed LPS effects at the lowest dose, while methylphenidate did not. The food intake/preference tests showed that LPS significantly decreased food intake of both foods but did not alter preference for the highly palatable food compared to vehicle. These results suggest that in addition to having effects on exertion of effort during instrumental behavior, LPS also has direct effects on primary food motivation.
Collapse
Affiliation(s)
- Rose E Presby
- Behavioral Neuroscience Division, Department of Psychological Sciences, University of Connecticut, Storrs, CT, 06269-1020, United States; Sage Thereapeutics, Boston, MA, United States
| | - Renee A Rotolo
- Behavioral Neuroscience Division, Department of Psychological Sciences, University of Connecticut, Storrs, CT, 06269-1020, United States
| | - Sydney Katz
- Behavioral Neuroscience Division, Department of Psychological Sciences, University of Connecticut, Storrs, CT, 06269-1020, United States
| | - Zoha Sarwat
- Behavioral Neuroscience Division, Department of Psychological Sciences, University of Connecticut, Storrs, CT, 06269-1020, United States
| | - Merce Correa
- Behavioral Neuroscience Division, Department of Psychological Sciences, University of Connecticut, Storrs, CT, 06269-1020, United States; Area de Psicobiologia, Universitat Jaume I, Castelló, Spain
| | - John D Salamone
- Behavioral Neuroscience Division, Department of Psychological Sciences, University of Connecticut, Storrs, CT, 06269-1020, United States.
| |
Collapse
|
46
|
Nguyen TNB, Ely BA, Pick D, Patel M, Xie H, Kim-Schulze S, Gabbay V. Clenbuterol attenuates immune reaction to lipopolysaccharide and its relationship to anhedonia in adolescents. Brain Behav Immun 2022; 106:89-99. [PMID: 35914697 PMCID: PMC9817216 DOI: 10.1016/j.bbi.2022.07.163] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 02/01/2023] Open
Abstract
While inflammation has been implicated in psychopathology, relationships between immune-suppressing processes and psychiatric constructs remain elusive. This study sought to assess whether β2-agonist clenbuterol (CBL) would attenuate immune activation in adolescents with mood and anxiety symptoms following ex vivo exposure of whole blood to lipopolysaccharide (LPS). Our focus on adolescents aimed to target a critical developmental period when psychiatric conditions often emerge and prior to chronicity effects. To capture a diverse range of immunologic and symptomatologic phenotypes, we included 97 psychotropic-medication free adolescents with mood and anxiety symptoms and 33 healthy controls. All participants had comprehensive evaluations and dimensional assessments of psychiatric symptoms. Fasting whole-blood samples were collected and stimulated with LPS in the presence and absence of CBL for 6 hours, then analyzed for 41 cytokines, chemokines, and hematopoietic growth factors. Comparison analyses used Bonferroni-corrected nonparametric tests. Levels of nine immune biomarkers-including IL-1RA, IL-1β, IL-6, IP-10, MCP-1, MIP-1α, MIP-1β, TGF-α, and TNF-α-were significantly reduced by CBL treatment compared to LPS alone. Exploratory factor analysis reduced 41 analytes into 5 immune factors in each experimental condition, and their relationships with psychiatric symptoms were examined as a secondary aim. CBL + LPS Factor 4-comprising EGF, PDGF-AA, PDGF-AB/BB, sCD40L, and GRO-significantly correlated with anticipatory and consummatory anhedonia, even after controlling for depression severity. This study supports the possible inhibitory effect of CBL on immune activation. Using a data-driven method, distinctive relationships between CBL-affected immune biomarkers and dimensional anhedonia were reported, further elucidating the role of β2-agonism in adolescent affective symptomatology.
Collapse
Affiliation(s)
- Tram N B Nguyen
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY, United States.
| | - Benjamin A Ely
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY, United States.
| | - Danielle Pick
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY, United States.
| | - Manishkumar Patel
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| | - Hui Xie
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| | - Seunghee Kim-Schulze
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| | - Vilma Gabbay
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY, United States; Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, United States.
| |
Collapse
|
47
|
Chithanathan K, Jürgenson M, Guha M, Yan L, Žarkovskaja T, Pook M, Magilnick N, Boldin MP, Rebane A, Tian L, Zharkovsky A. Paradoxical attenuation of neuroinflammatory response upon LPS challenge in miR-146b deficient mice. Front Immunol 2022; 13:996415. [PMID: 36389659 PMCID: PMC9659615 DOI: 10.3389/fimmu.2022.996415] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 10/14/2022] [Indexed: 10/26/2023] Open
Abstract
The miR-146 family consists of two microRNAs (miRNAs), miR-146a and miR-146b (miR-146a/b), both of which are known to suppress immune responses in a variety of conditions. Here, we studied how constitutive deficiency of miR-146b (Mir146b-/-) affects lipopolysaccharide (LPS)-induced neuroinflammation in mice. Our experiments demonstrated that miR-146b deficiency results in the attenuation of LPS-induced neuroinflammation, as it was evidenced by the reduction of sickness behavior, a decrease in the inflammatory status of microglia, and the loss of morphological signs of microglial activation in the hippocampus. Gene expression analysis revealed that LPS-induced upregulation of hippocampal pro-inflammatory cytokines is attenuated in Mir146b-/- mice, compared to wild-type (WT) mice. In addition, reduced expression of the NF-κB nuclear protein p65, reduced miR-146 family target TLR4 expression and relatively stronger upregulation of miR-146a was found in Mir146b-/- mice as compared to WT mice upon LPS challenge. Compensatory upregulation of miR-146a can explain the attenuation of the LPS-induced neuroinflammation. This was supported by experiments conducted with miR-146a/b deficient mice (Mir146a/b-/-), which demonstrated that additional deletion of the miR-146a led to the restoration of LPS-induced sickness behavior and proinflammatory cytokines. Our experiments also showed that the observed upregulation of miR-146a in Mir146b-/- mice is due to the overexpression of a miR-146a transcription inducer, interferon regulatory factor 7 (Irf7). Altogether, our results show the existence of crosstalk between miR-146a and mir-146b in the regulation of LPS-induced neuroinflammation.
Collapse
Affiliation(s)
- Keerthana Chithanathan
- Department of Physiology, Institute of Biomedicine and Translational Medicine, Faculty of Medicine, University of Tartu, Tartu, Estonia
| | - Monika Jürgenson
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Mithu Guha
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Ling Yan
- Department of Physiology, Institute of Biomedicine and Translational Medicine, Faculty of Medicine, University of Tartu, Tartu, Estonia
| | - Tamara Žarkovskaja
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Martin Pook
- Department of Biomedicine, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Nathaniel Magilnick
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope National Medical Center, Duarte, CA, United States
| | - Mark P. Boldin
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope National Medical Center, Duarte, CA, United States
| | - Ana Rebane
- Department of Biomedicine, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Li Tian
- Department of Physiology, Institute of Biomedicine and Translational Medicine, Faculty of Medicine, University of Tartu, Tartu, Estonia
| | - Alexander Zharkovsky
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| |
Collapse
|
48
|
Bendezú JJ, Handley ED, Manly JT, Toth SL, Cicchetti D. Psychobiological foundations of coping and emotion regulation: Links to maltreatment and depression in a racially diverse, economically disadvantaged sample of adolescent girls. Psychoneuroendocrinology 2022; 143:105826. [PMID: 35700563 PMCID: PMC9357119 DOI: 10.1016/j.psyneuen.2022.105826] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 06/02/2022] [Accepted: 06/03/2022] [Indexed: 11/22/2022]
Abstract
Adolescent risk for depression and passive or active suicidal ideation (PASI) involves disturbance across multiple systems (e.g., arousal regulatory, affective valence, neurocognitive). Exposure to maltreatment while growing up as a child or teenager may potentiate this risk by noxiously impacting these systems. However, research exploring how coordinated disturbance across these systems (i.e., profiles) might be uniquely linked to depressogenic function, and how past maltreatment contributes to such disturbance, is lacking. Utilizing a racially diverse, economically disadvantaged sample of adolescent girls, this person-centered study identified psychobiological profiles and linked them to maltreatment histories, as well as current depressive symptoms and PASI. Girls (N = 237, Mage=13.98, SD=0.85) who were non-depressed/non-maltreated (15.1%), depressed/non-maltreated (40.5%), or depressed/maltreated (44.4%) provided morning saliva samples, completed questionnaires, a clinical interview, and a neurocognitive battery. Latent profile analysis of girls' morning cortisol:C-reactive protein ratio, positive and negative affect levels, and attentional set-shifting ability revealed four profiles. Relative to Normative (66.6%), girls exhibiting a Pro-inflammatory Affective Disturbance (13.1%), Severe Affective Disturbance (10.1%), or Hypercortisol Affective Neurocognitive Disturbance (n = 24, 10.1%) profile reported exposure to a greater number of maltreatment subtypes while growing up. Girls exhibiting these dysregulated profiles were also more likely (relative to Normative) to report current depressive symptoms (all three profiles) and PASI (only Pro-inflammatory Affective Disturbance and Hypercortisol Affective Neurocognitive Disturbance). Of note, girls' cognitive reappraisal utilization moderated profile membership-depression linkages (depressive symptoms, but not PASI). A synthesis of the findings is presented alongside implications for person-centered tailoring of intervention efforts.
Collapse
Affiliation(s)
- Jason José Bendezú
- The Institute of Child Development, University of Minnesota, USA; Department of Psychology, University of Minnesota, USA.
| | | | - Jody T Manly
- Mt. Hope Family Center, University of Rochester, USA
| | - Sheree L Toth
- Mt. Hope Family Center, University of Rochester, USA
| | - Dante Cicchetti
- The Institute of Child Development, University of Minnesota, USA
| |
Collapse
|
49
|
Ziaka M, Exadaktylos A. ARDS associated acute brain injury: from the lung to the brain. Eur J Med Res 2022; 27:150. [PMID: 35964069 PMCID: PMC9375183 DOI: 10.1186/s40001-022-00780-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 07/29/2022] [Indexed: 01/10/2023] Open
Abstract
A complex interrelation between lung and brain in patients with acute lung injury (ALI) has been established by experimental and clinical studies during the last decades. Although, acute brain injury represents one of the most common insufficiencies in patients with ALI and acute respiratory distress syndrome (ARDS), the underlying pathophysiology of the observed crosstalk remains poorly understood due to its complexity. Specifically, it involves numerous pathophysiological parameters such as hypoxemia, neurological adverse events of lung protective ventilation, hypotension, disruption of the BBB, and neuroinflammation in such a manner that the brain of ARDS patients-especially hippocampus-becomes very vulnerable to develop secondary lung-mediated acute brain injury. A protective ventilator strategy could reduce or even minimize further systemic release of inflammatory mediators and thus maintain brain homeostasis. On the other hand, mechanical ventilation with low tidal volumes may lead to self-inflicted lung injury, hypercapnia and subsequent cerebral vasodilatation, increased cerebral blood flow, and intracranial hypertension. Therefore, by describing the pathophysiology of ARDS-associated acute brain injury we aim to highlight and discuss the possible influence of mechanical ventilation on ALI-associated acute brain injury.
Collapse
Affiliation(s)
- Mairi Ziaka
- Department of Internal Medicine, Thun General Hospital, Thun, Switzerland
| | - Aristomenis Exadaktylos
- Department of Emergency Medicine, Inselspital, University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
50
|
Russell B, Hrelja KM, Adams WK, Zeeb FD, Taves MD, Kaur S, Soma KK, Winstanley CA. Differential effects of lipopolysaccharide on cognition, corticosterone and cytokines in socially-housed vs isolated male rats. Behav Brain Res 2022; 433:114000. [PMID: 35817135 DOI: 10.1016/j.bbr.2022.114000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 05/20/2022] [Accepted: 07/05/2022] [Indexed: 11/25/2022]
Abstract
Social isolation is an established risk factor for mental illness and impaired immune function. Evidence suggests that neuroinflammatory processes contribute to mental illness, possibly via cytokine-induced modulation of neural activity. We examined the effects of lipopolysaccharide (LPS) administration and social home cage environment on cognitive performance in the 5-Choice Serial Reaction Time Task (5CSRTT), and their effects on corticosterone and cytokines in serum and brain tissue. Male Long-Evans rats were reared in pairs or in isolation before training on the 5CSRTT. The effects of saline and LPS (150 µg/kg i.p.) administration on sickness behaviour and task performance were then assessed. LPS-induced sickness behaviour was augmented in socially-isolated rats, translating to increased omissions and slower response times in the 5CSRTT. Both social isolation and LPS administration reduced impulsive responding, while discriminative accuracy remained unaffected. With the exception of reduced impulsivity in isolated rats, these effects were not observed following a second administration of LPS, revealing behavioural tolerance to repeated LPS injections. In a separate cohort of animals, social isolation potentiated the ability of LPS to increase serum corticosterone and IL-6, which corresponded to increased IL-6 in the orbitofrontal and medial prefrontal cortices and the nucleus accumbens. Basal IL-4 levels in the nucleus accumbens were reduced in socially-isolated rats. These findings are consistent with the adaptive response of reduced motivational drive following immune challenge, and identify social isolation as an exacerbating factor. Enhanced IL-6 signalling may play a role in mediating the potentiated behavioural response to LPS administration in isolated animals.
Collapse
Affiliation(s)
- Brittney Russell
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada; Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Kelly M Hrelja
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.
| | - Wendy K Adams
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada; Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Fiona D Zeeb
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada; Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Matthew D Taves
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada; Department of Zoology, University of British Columbia, Vancouver, BC, Canada; Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Sukhbir Kaur
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada; Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Kiran K Soma
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada; Department of Zoology, University of British Columbia, Vancouver, BC, Canada; Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Catharine A Winstanley
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada; Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|