1
|
da Silva WSFL, Amorim PK, Ferreira GRS, Alves RRDV, da Silva CES, Dos Santos PÉM, Guedes Paiva PM, Ingmer H, da Silva SP, da Silva PM, Napoleão TH. Moringa oleifera seed preparations containing the lectin WSMoL inhibit growth, cell aggregation, and biofilm production of Listeria monocytogenes. Microb Pathog 2025; 204:107600. [PMID: 40246157 DOI: 10.1016/j.micpath.2025.107600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 04/03/2025] [Accepted: 04/15/2025] [Indexed: 04/19/2025]
Abstract
This work evaluated the antibacterial properties of aqueous extract (AE), protein-rich fraction (PF), and isolated water-soluble lectin (WSMoL) from Moringa oleifera Lam. seeds against the gram-positive bacterium Listeria monocytogenes, which causes listeriosis. Foodborne bacterial infections, which are facilitated by biofilm formation, pose significant public health threats. Listeriosis is an infection that involves bacteremia, meningitis, or meningoencephalitis. The strains N53-1 and EGD-e were assessed in this work. Bacteriostatic and bactericidal effects on planktonic cells were assessed by broth microdilution assay and flow cytometry. Possible combined effects with antibiotics (ciprofloxacin and cephalexin) were also determined, as well as the impact of all preparations on bacterial aggregation and biofilm formation. AE, PF and WSMoL presented minimum inhibitory concentration (MIC) ranging from 250 to 300 μg/mL for N53-1, and between 150 and 250 μg/mL for EGD-e. AE and WSMoL did not show bactericidal action but PF was bactericidal to EGD-e (minimal bactericidal concentration: 1500 μg/mL). AE, PF, and WSMoL demonstrated synergistic effects with ciprofloxacin, while AE and PF were synergic together with cephalexin. Moreover, AE, PF and WSMoL showed an inhibitory effect on aggregation of cells of both strains. At 0.97 μg/mL, WSMoL inhibited 95 % the biofilm formation by N53-1, while PF at 4.68 μg/mL elicited a biofilm inhibition of 87 % on the same strain. The data stimulate more studies assessing the potential of crude and purified preparations from M. oleifera containing the lectin WSMoL to combat the causer of listeriosis, as synergistic agents and as aggregation inhibitors.
Collapse
Affiliation(s)
| | - Poliana Karla Amorim
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | | | | | | | | | - Patrícia Maria Guedes Paiva
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Hanne Ingmer
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Suéllen Pedrosa da Silva
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Pollyanna Michelle da Silva
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Thiago Henrique Napoleão
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil.
| |
Collapse
|
2
|
Chop M, Del Rio M, Radicioni MB, Cevey ÁC, Hernández-Chávez MJ, Mora-Montes HM, Regente M, Rodriguez Rodrigues C. Helja lectin inhibits Candida albicans phagocytosis and induces pro-inflammatory responses in dendritic cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 143:156637. [PMID: 40347922 DOI: 10.1016/j.phymed.2025.156637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 03/03/2025] [Accepted: 03/11/2025] [Indexed: 05/14/2025]
Abstract
BACKGROUND Plant lectins have gained attention for their antimicrobial and immunomodulatory properties and potential therapeutic applications in controlling infectious diseases and inflammatory disorders. PURPOSE This study focused on the effect of the sunflower lectin Helja on Candida albicans phagocytosis and its immunomodulatory effects on dendritic cells, to explore alternative immunotherapeutic strategies to control infectious diseases. RESULTS Here, we showed that Helja lectin opsonizes and inhibits C. albicans phagocytosis by bone marrow-derived dendritic cells, induces dendritic cell maturation by upregulating co-stimulatory molecules, such as CD86 and MHC class II, promotes reactive oxygen species and nitric oxide generation and increases the production of the pro-inflammatory cytokines TNF-α, IL-12, and TGF-β. This cytokine profile was also observed in peripheral blood mononuclear cells, where Helja and C. albicans pre-incubated with the lectin promoted the release of TNF-α and IL-1β. CONCLUSION These findings suggest that Helja lectin has the potential to modulate dendritic cells and cytokine responses, indicating its role in immune regulation and underscoring the significance of this plant lectin as a potential therapeutic agent.
Collapse
Affiliation(s)
- Maia Chop
- Instituto de Química y Bioquímica de Mar del Plata (IQUIBIM), Departamento de Química y Bioquímica, Facultad de Ciencias, Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP), Mar del Plata, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Marianela Del Rio
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Instituto de Investigaciones biológicas (IIB), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP), Argentina
| | - Melisa B Radicioni
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Instituto de Investigaciones biológicas (IIB), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP), Argentina
| | - Ágata C Cevey
- Instituto de Química y Bioquímica de Mar del Plata (IQUIBIM), Departamento de Química y Bioquímica, Facultad de Ciencias, Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP), Mar del Plata, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Marco J Hernández-Chávez
- Departamento de Biología, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, Guanajuato, Gto. C.P. 36050, Mexico
| | - Héctor M Mora-Montes
- Departamento de Biología, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, Guanajuato, Gto. C.P. 36050, Mexico
| | - Mariana Regente
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Instituto de Investigaciones biológicas (IIB), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP), Argentina
| | - Christian Rodriguez Rodrigues
- Instituto de Química y Bioquímica de Mar del Plata (IQUIBIM), Departamento de Química y Bioquímica, Facultad de Ciencias, Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP), Mar del Plata, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| |
Collapse
|
3
|
Wang Y, Song M, Chang W. Antimicrobial peptides and proteins against drug-resistant pathogens. Cell Surf 2024; 12:100135. [PMID: 39687062 PMCID: PMC11646788 DOI: 10.1016/j.tcsw.2024.100135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/24/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
The rise of drug-resistant pathogens, driven by the misuse and overuse of antibiotics, has created a formidable challenge for global public health. Antimicrobial peptides and proteins have garnered considerable attention as promising candidates for novel antimicrobial agents. These bioactive molecules, whether derived from natural sources, designed synthetically, or predicted using artificial intelligence, can induce lethal effects on pathogens by targeting key microbial structures or functional components, such as cell membranes, cell walls, biofilms, and intracellular components. Additionally, they may enhance overall immune defenses by modulating innate or adaptive immune responses in the host. Of course, development of antimicrobial peptides and proteins also face some limitations, including high toxicity, lack of selectivity, insufficient stability, and potential immunogenicity. Despite these challenges, they remain a valuable resource in the fight against drug-resistant pathogens. Future research should focus on overcoming these limitations to fully realize the therapeutic potential of antimicrobial peptides in the infection control.
Collapse
Affiliation(s)
- Yeji Wang
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Minghui Song
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wenqiang Chang
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
4
|
da Silva RCC, Roldan-Filho RS, de Luna-Aragão MA, de Oliveira Silva RL, Ferreira-Neto JRC, da Silva MD, Benko-Iseppon AM. Omics-driven bioinformatics for plant lectins discovery and functional annotation - A comprehensive review. Int J Biol Macromol 2024; 279:135511. [PMID: 39260647 DOI: 10.1016/j.ijbiomac.2024.135511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/07/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
Lectins are known for their specific and reversible binding capacity to carbohydrates. These molecules have been particularly explored in plants due to their reported properties, highlighting antimicrobial, antiviral, anticancer, antiparasitic, insecticidal, and immunoregulatory actions. The increasing availability of lectin and lectin-like sequences in omics data banks provides an opportunity to identify important candidates, inferring their roles in essential signaling pathways and processes in plants. Bioinformatics enables a fast and low-cost scenario for elucidating sequences and predicting functions in the lectinology universe. Thus, this review addresses the state of the art of annotation, structural characterization, classification, and predicted applications of plant lectins. Their allergenic and toxic properties are also discussed, as well as tools for predicting such effects from the primary structure. This review uncovers a promising scenario for plant lectins and new study possibilities, particularly for studies in lectinology in the omics era.
Collapse
Affiliation(s)
| | | | | | - Roberta Lane de Oliveira Silva
- General Microbiology Laboratory, Agricultural Science Campus, Universidade Federal do Vale do São Francisco, Petrolina 56300-990, Brazil.
| | | | - Manassés Daniel da Silva
- Bioscience Centre, Genetics Department, Universidade Federal de Pernambuco, Recife 50670-420, Brazil.
| | - Ana Maria Benko-Iseppon
- Bioscience Centre, Genetics Department, Universidade Federal de Pernambuco, Recife 50670-420, Brazil.
| |
Collapse
|
5
|
Barashkova AS, Smirnov AN, Rogozhin EA. Complex of Defense Polypeptides of Wheatgrass ( Elytrigia elongata) Associated with Plant Immunity to Biotic and Abiotic Stress Factors. PLANTS (BASEL, SWITZERLAND) 2024; 13:2459. [PMID: 39273943 PMCID: PMC11396971 DOI: 10.3390/plants13172459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/19/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024]
Abstract
Plant defense polypeptides play a crucial role in providing plants with constitutive immunity against various biotic and abiotic stressors. In this study, we explored a complex of proteins from wheatgrass (Elytrigia elongata) spikelets to estimate their role in the plant's tolerance to various environmental factors. The current research shows that in vitro protein extracts from E. elongata spikelets possess antifungal activity against certain Fusarium species, which are specific cereal pathogens, at concentrations of 1-2 mg/mL. In this study, we reproduced these antifungal activities using a 4 mg/mL extract in artificial fungal infection experiments on wheat grain (Triticum aestivum) under controlled laboratory conditions. Furthermore, the tested extract demonstrated a protective effect on Saccharomyces cerevisiae exposed to hyper-salinity stress at a concentration of 2 mg/mL. A combined scheme of fractionation and structural identification was applied for the estimation of the diversity of defense polypeptides. Defensins, lipid-transfer proteins, hydrolase inhibitors (cereal bifunctional trypsin/alpha-amylase inhibitors from a Bowman-Birk trypsin inhibitor), and high-molecular-weight disease resistance proteins were isolated from the extract. Thus, wheatgrass spikelets appear to be a reservoir of defense polypeptides. Our findings contribute to a deeper understanding of plant defense proteins and peptides and their involvement in the adaptation to various stress factors, and they reveal the regulatory effect at the ecosystem level.
Collapse
Affiliation(s)
- Anna S Barashkova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- All-Russian Institute of Plant Protection, 196608 Saint Petersburg, Russia
| | - Alexey N Smirnov
- Department of Plant Protection, Institute of Agrobiotechnology, Timiryazev Russian State Agrarian University, 127550 Moscow, Russia
| | - Eugene A Rogozhin
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- All-Russian Institute of Plant Protection, 196608 Saint Petersburg, Russia
- Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, 152742 Borok, Russia
| |
Collapse
|
6
|
Chauhan K, Rao A. Clean-label alternatives for food preservation: An emerging trend. Heliyon 2024; 10:e35815. [PMID: 39247286 PMCID: PMC11379619 DOI: 10.1016/j.heliyon.2024.e35815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 08/04/2024] [Accepted: 08/05/2024] [Indexed: 09/10/2024] Open
Abstract
Consumer demand for natural or 'clean-label' food ingredients has risen over the past 50 years and continues growing. Consumers have become more aware of their health and, therefore, insist on transparency in the list of ingredients. Preservatives are the most crucial food additives, ensuring food safety and security. Despite tremendous technological advancements, food preservation remains a significant challenge worldwide, primarily because most are synthetic and non-biodegradable. As a result, the food industry is placing more value on microbiota and other natural sources for bio-preservation, leading to the substitution of conventional processing and chemical preservatives with natural alternatives to ensure 'clean-label.' General Standard for Food Additives (GSFA) includes some of these 'clean-label' options in its list of additives. However, they are very rarely capable of replacing a synthetic preservative on a 'one-for-one' basis, putting pressure on researchers to decipher newer, cleaner, and more economical alternatives. Academic and scientific research has led to the discovery of several plant, animal, and microbial metabolites that may function as effective bio-preservatives. However, most have not yet been put in the market or are under trial. Hence, the present review aims to summarise such relevant and potential metabolites with bio-preservative properties comprehensively. This article will help readers comprehend recent innovations in the 'clean-label' era, provide informed choices to consumers, and improve the business of regulatory approvals.
Collapse
Affiliation(s)
- Kanika Chauhan
- CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, 160036, India
| | - Alka Rao
- CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, 160036, India
- Academy of Scientific and Innovation Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, 201002, India
- Food Safety and Standards Authority of India (FSSAI), New Delhi 110002, India
| |
Collapse
|
7
|
Belfiori B, Riccioni C, Pietrella D, Rubini A, Caceres ME, Pupilli F, Bellucci M, De Marchis F. Vicia ervilia lectin (VEA) has an antibiofilm effect on both Gram-positive and Gram-negative pathogenic bacteria. Arch Microbiol 2024; 206:371. [PMID: 39122975 PMCID: PMC11315768 DOI: 10.1007/s00203-024-04100-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/23/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024]
Abstract
Bacterial growing resistance to antibiotics poses a critical threat to global health. This study investigates, for the first time, the antibiofilm properties of Vicia ervilia agglutinin (VEA) from six different V. ervilia accessions against pathogenic bacteria, and the yeast Candida albicans. In the absence of antimicrobial properties, purified VEA significantly inhibited biofilm formation, both in Gram-positive and Gram-negative bacteria, but not in C. albicans. With an inhibitory concentration ranging from 100 to 500 µg/ml, the VEA antibiofilm activity was more relevant against the Gram-positive bacteria Streptococcus aureus and Staphylococcus epidermidis, whose biofilm was reduced up to 50% by VEA purified from accessions #5 and #36. VEA antibiofilm variability between accessions was observed, likely due to co-purified small molecules rather than differences in VEA protein sequences. In conclusion, VEA seed extracts from the accessions with the highest antibiofilm activity could represent a valid approach for the development of an effective antibiofilm agent.
Collapse
Affiliation(s)
- Beatrice Belfiori
- Institute of Biosciences and Bioresources (IBBR), National Research Council (CNR), 06128, Perugia, Italy
| | - Claudia Riccioni
- Institute of Biosciences and Bioresources (IBBR), National Research Council (CNR), 06128, Perugia, Italy
| | - Donatella Pietrella
- Department of Medicine and Surgery, University of Perugia, Piazzale S. Gambuli 1, 06132, Perugia, Italy
| | - Andrea Rubini
- Institute of Biosciences and Bioresources (IBBR), National Research Council (CNR), 06128, Perugia, Italy
| | - Maria Eugenia Caceres
- Institute of Biosciences and Bioresources (IBBR), National Research Council (CNR), 06128, Perugia, Italy
| | - Fulvio Pupilli
- Institute of Biosciences and Bioresources (IBBR), National Research Council (CNR), 06128, Perugia, Italy
| | - Michele Bellucci
- Institute of Biosciences and Bioresources (IBBR), National Research Council (CNR), 06128, Perugia, Italy.
| | - Francesca De Marchis
- Institute of Biosciences and Bioresources (IBBR), National Research Council (CNR), 06128, Perugia, Italy.
| |
Collapse
|
8
|
Dik I, Dik B, Tufan Ö, Er A. Evaluation of potential antiviral activities of antimicrobial peptides in fish mucus. Fundam Clin Pharmacol 2024; 38:695-702. [PMID: 38378226 DOI: 10.1111/fcp.12996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/24/2024] [Accepted: 02/06/2024] [Indexed: 02/22/2024]
Abstract
BACKGROUND Fish skin mucus contains innate immune factors and acts as the first line of physical or chemical defense against pathogens. OBJECTIVE The primary aim of this study was to determine the antiviral activity of sea bream (SBr), rainbow trout (RT), and sea bass (SBa) fish skin mucus against herpes simplex virus (HSV)-1. In addition, it was aimed to associate possible antiviral activity with antimicrobial peptides (AMPs) such as cathelicidin, hepcidin, galectin 2, and C10ORF99, whose levels were determined in the mucus. METHODS The antiviral activity and oxidative/antioxidant status of mucus against HSV-1 virus was evaluated. In addition, AMPs, SOD, and CAT activities, and immunoglobulin M levels were also analyzed in mucus of fish. RESULTS Antiviral activity mucus of SBr, RT, and SBa against HSV-1 were determined as 2-4, 2-5, and 2-2, respectively. The higher antiviral activity of SBr and RT mucus compared to the mucus of SBa can be associated with higher AMP levels in them. CONCLUSION The skin mucus of SBr and RT may be nutritional supplement, adjuvant, and a new agent that can potentiate the effects of antimicrobial/antiviral agents.
Collapse
Affiliation(s)
- Irmak Dik
- Department of Virology, Faculty of Veterinary, Selcuk University, Konya, Turkey
| | - Burak Dik
- Department of Pharmacology and Toxicology, Faculty of Veterinary, Selcuk University, Konya, Turkey
| | - Öznur Tufan
- Department of Pharmacology and Toxicology, Faculty of Veterinary, Selcuk University, Konya, Turkey
| | - Ayşe Er
- Department of Pharmacology and Toxicology, Faculty of Veterinary, Selcuk University, Konya, Turkey
| |
Collapse
|
9
|
Velkova L, Dolashki A, Petrova V, Pisareva E, Kaynarov D, Kermedchiev M, Todorova M, Dolashka P. Antibacterial Properties of Peptide and Protein Fractions from Cornu aspersum Mucus. Molecules 2024; 29:2886. [PMID: 38930951 PMCID: PMC11206429 DOI: 10.3390/molecules29122886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/28/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
The discovery and investigation of new natural compounds with antimicrobial activity are new potential strategies to reduce the spread of antimicrobial resistance. The presented study reveals, for the first time, the promising antibacterial potential of two fractions from Cornu aspersum mucus with an MW < 20 kDa and an MW > 20 kDa against five bacterial pathogens-Bacillus cereus 1085, Propionibacterium acnes 1897, Salmonella enterica 8691, Enterococcus faecalis 3915, and Enterococcus faecium 8754. Using de novo sequencing, 16 novel peptides with potential antibacterial activity were identified in a fraction with an MW < 20 kDa. Some bioactive compounds in a mucus fraction with an MW > 20 kDa were determined via a proteomic analysis on 12% sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and bioinformatics. High homology with proteins and glycoproteins was found, with potential antibacterial activity in mucus proteins named aspernin, hemocyanins, H-lectins, and L-amino acid oxidase-like protein, as well as mucins (mucin-5AC, mucin-5B, mucin-2, and mucin-17). We hypothesize that the synergy between the bioactive components determined in the composition of the fraction > 20 kDa are responsible for the high antibacterial activity against the tested pathogens in concentrations between 32 and 128 µg/mL, which is comparable to vancomycin, but without cytotoxic effects on model eukaryotic cells of Saccharomyces cerevisiae. Additionally, a positive effect, by reducing the levels of intracellular oxidative damage and increasing antioxidant capacity, on S. cerevisiae cells was found for both mucus extract fractions of C. aspersum. These findings may serve as a basis for further studies to develop a new antibacterial agent preventing the development of antibiotic resistance.
Collapse
Affiliation(s)
- Lyudmila Velkova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 9, 1113 Sofia, Bulgaria; (A.D.); (D.K.); (M.K.); (M.T.)
| | - Aleksandar Dolashki
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 9, 1113 Sofia, Bulgaria; (A.D.); (D.K.); (M.K.); (M.T.)
| | - Ventsislava Petrova
- Faculty of Biology, Sofia University, 8 Dragan Tzankov blvd., 1164 Sofia, Bulgaria; (V.P.); (E.P.)
| | - Emiliya Pisareva
- Faculty of Biology, Sofia University, 8 Dragan Tzankov blvd., 1164 Sofia, Bulgaria; (V.P.); (E.P.)
| | - Dimitar Kaynarov
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 9, 1113 Sofia, Bulgaria; (A.D.); (D.K.); (M.K.); (M.T.)
| | - Momchil Kermedchiev
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 9, 1113 Sofia, Bulgaria; (A.D.); (D.K.); (M.K.); (M.T.)
| | - Maria Todorova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 9, 1113 Sofia, Bulgaria; (A.D.); (D.K.); (M.K.); (M.T.)
- Businesslab Ltd., Acad. G. Bonchev Str., bl. 4A, 1113 Sofia, Bulgaria
| | - Pavlina Dolashka
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 9, 1113 Sofia, Bulgaria; (A.D.); (D.K.); (M.K.); (M.T.)
| |
Collapse
|
10
|
Devi OS, Singh SS, Kamei R, Sharma HJ, Devi MA, Brahmacharimayum N. Glycosylated SARs Cov 2 interaction with plant lectins. Glycoconj J 2024; 41:185-199. [PMID: 38748325 DOI: 10.1007/s10719-024-10154-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/20/2024] [Accepted: 04/29/2024] [Indexed: 08/17/2024]
Abstract
Lectins are non-immune carbohydrate-binding proteins/glycoproteins that are found everywhere in nature, from bacteria to human cells. They have also been a valuable biological tool for the purification and subsequent characterisation of glycoproteins due to their carbohydrate binding recognition capacity. Antinociceptive, antiulcer, anti-inflammatory activities and immune modulatory properties have been discovered in several plant lectins, with these qualities varying depending on the lectin carbohydrate-binding site. The Coronavirus of 2019 (COVID-19) is a respiratory disease that has swept the globe, killing millions and infecting millions more. Despite the availability of COVID-19 vaccinations and the vaccination of a huge portion of the world's population, viral infection rates continue to rise, causing major concern. Part of the reason for the vaccine's ineffectiveness has been attributed to repeated mutations in the virus's epitope determinant elements. The surface of the Coronavirus envelope is heavily glycosylated, with approximately sixty N-linked oligomannose, composite, and hybrid glycans covering the core of Man3GlcNAc2Asn. Some O-linked glycans have also been discovered. Many of these glyco-chains have also been subjected to multiple mutations, with only a few remaining conserved. As a result, numerous plant lectins with specificity for these viral envelope sugars have been discovered to interact preferentially with them and are being investigated as a potential future tool to combat coronaviruses such as the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by preventing viral attachment to the host. The review will discuss the possible applications of plant lectins as anti-coronaviruses including SARS-CoV-2, antinociceptive, anti-inflammation and its immune modulating effect.
Collapse
Affiliation(s)
| | | | - Rana Kamei
- Department of Biochemistry, Manipur University, Imphal, India
| | | | | | | |
Collapse
|
11
|
Reis WF, Silva MES, Gondim ACS, Torres RCF, Carneiro RF, Nagano CS, Sampaio AH, Teixeira CS, Gomes LCBF, Sousa BL, Andrade AL, Teixeira EH, Vasconcelos MA. Glucose-Binding Dioclea bicolor Lectin (DBL): Purification, Characterization, Structural Analysis, and Antibacterial Properties. Protein J 2024; 43:559-576. [PMID: 38615284 DOI: 10.1007/s10930-024-10199-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2024] [Indexed: 04/15/2024]
Abstract
In this study, we purified a lectin isolated from the seeds of Dioclea bicolor (DBL) via affinity purification. Electrophoresis analysis revealed that DBL had three bands, α, β, and γ chains, with molecular masses of approximately 29, 14, and 12 kDa, respectively. Gel filtration chromatography revealed that the native form of DBL had a molecular mass of approximately 100 kDa, indicating that it is a tetramer. Interestingly, DBL-induced hemagglutination was inhibited by several glucosides, mannosides, ampicillin, and tetracycline with minimum inhibitory concentration (MIC) values of 1.56-50 mM. Analysis of the complete amino acid sequence of DBL revealed the presence of 237 amino acids with high similarity to other Diocleinae lectins. Circular dichroism showed the prominent β-sheet secondary structure of DBL. Furthermore, DBL structure prediction revealed a Discrete Optimized Protein Energy (DOPE) score of -26,642.69141/Normalized DOPE score of -1.84041. The DBL monomer was found to consist a β-sandwich based on its 3D structure. Molecular docking showed the interactions between DBL and α-D-glucose, N-acetyl-D-glucosamine, α-D-mannose, α-methyl-D-mannoside, ampicillin, and tetracycline. In addition, DBL showed antimicrobial activity with an MIC of 125 μg/mL and exerted synergistic effects in combination with ampicillin and tetracycline (fractional inhibitory concentration index ≤ 0.5). Additionally, DBL significantly inhibited biofilm formation and showed no toxicity in murine fibroblasts (p < 0.05). These results suggest that DBL exhibits antimicrobial activity and works synergistically with antibiotics.
Collapse
Affiliation(s)
- Willian F Reis
- Departamento de Ciências da Natureza E da Terra, Universidade Do Estado de Minas Gerais, Unidade de Divinópolis, Divinópolis, MG, Brazil
| | - Marcos E S Silva
- Faculdade de Educação de Itapipoca, Universidade Estadual Do Ceará, Itapipoca, CE, Brazil
- Faculdade de Ciências Exatas E Naturais, Universidade Do Estado Do Rio Grande Do Norte, Mossoró, RN, Brazil
| | - Ana C S Gondim
- Departamento de Química Orgânica E Inorgânica, Universidade Federal Do Ceará, Fortaleza, CE, Brazil
| | - Renato C F Torres
- Centro de Ciências Agrárias E da Biodiversidade, Universidade Federal Do Cariri, Crato, CE, Brazil
| | - Rômulo F Carneiro
- Laboratório de Biotecnologia Marinha - BioMar-Lab, Departamento de Engenharia de Pesca, Universidade Federal Do Ceará, Fortaleza, CE, Brazil
| | - Celso S Nagano
- Laboratório de Biotecnologia Marinha - BioMar-Lab, Departamento de Engenharia de Pesca, Universidade Federal Do Ceará, Fortaleza, CE, Brazil
| | - Alexandre H Sampaio
- Laboratório de Biotecnologia Marinha - BioMar-Lab, Departamento de Engenharia de Pesca, Universidade Federal Do Ceará, Fortaleza, CE, Brazil
| | - Claudener S Teixeira
- Centro de Ciências Agrárias E da Biodiversidade, Universidade Federal Do Cariri, Crato, CE, Brazil
| | - Lenita C B F Gomes
- Faculdade de Filosofia Dom Aureliano Matos, Universidade Estadual Do Ceará, Limoeiro Do Norte, CE, Brazil
| | - Bruno L Sousa
- Faculdade de Filosofia Dom Aureliano Matos, Universidade Estadual Do Ceará, Limoeiro Do Norte, CE, Brazil
| | - Alexandre L Andrade
- Laboratório Integrado de Biomoléculas - LIBS, Departamento de Patologia E Medicina Legal, Universidade Federal Do Ceará, Fortaleza, CE, Brazil
| | - Edson H Teixeira
- Laboratório Integrado de Biomoléculas - LIBS, Departamento de Patologia E Medicina Legal, Universidade Federal Do Ceará, Fortaleza, CE, Brazil
| | - Mayron A Vasconcelos
- Departamento de Ciências da Natureza E da Terra, Universidade Do Estado de Minas Gerais, Unidade de Divinópolis, Divinópolis, MG, Brazil.
- Faculdade de Educação de Itapipoca, Universidade Estadual Do Ceará, Itapipoca, CE, Brazil.
- Faculdade de Ciências Exatas E Naturais, Universidade Do Estado Do Rio Grande Do Norte, Mossoró, RN, Brazil.
| |
Collapse
|
12
|
Li S, Li N, Wang Y, Zhang X, Wang J, Zhang M, Chen H. Structural Characterization of the Staphylococcus aureus Targeting Lectin Peptides from Garlic (Allium sativum L) by Liquid Nitrogen Grinding Coupled with the Proteomic and Antimicrobial Mechanism Analysis. Probiotics Antimicrob Proteins 2024; 16:964-978. [PMID: 37217612 DOI: 10.1007/s12602-023-10078-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2023] [Indexed: 05/24/2023]
Abstract
Garlic has long been used as an antimicrobial spice and herbal remedy. The aim of this study was to isolate the antimicrobial agent in garlic water extract against Staphylococcus aureus (S. aureus) and investigate its antimicrobial mechanism. By an activity-guided separation, garlic lectin-derived peptides (GLDPs) with main molecular weight of around 12 kDa were extracted by liquid nitrogen grinding and identified with high bactericidal activity toward S. aureus, and the MIC was determined as 24.38 μg/mL. In-gel digestion-based proteomic analysis indicated that the peptide sequences were highly identical to the B strain of garlic protein lectin II. Structure analysis suggested that the secondary structure was strongly affected by lyophilization and thus resulted in the inactivation of GLDPs (P < 0.05). Mechanism study revealed that treatment of GLDPs resulted in cell membrane depolarization in a dose-dependent manner, and the disruptions of the cell wall and membrane integrities were observed under electric microscopies. GLDPs could successfully dock with cell wall component lipoteichoic acid (LTA) via van der Waals and conventional bonds in molecular docking analysis. These results suggested that GLDPs were responsible for the S. aureus targeting activity and might be promising candidates for antibiotic development against bacterial infection.
Collapse
Affiliation(s)
- Shuqin Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Nannan Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Yajie Wang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Xiaoyu Zhang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Jia Wang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Min Zhang
- Tianjin Agricultural University, Tianjin, 300384, People's Republic of China
- State Key Laboratory of Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, 300457, People's Republic of China
| | - Haixia Chen
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, People's Republic of China.
| |
Collapse
|
13
|
Li C, Zhou Z, Wang W, Zhao Y, Yin X, Meng Y, Zhao P, Wang M, Liu X, Wang X, Wang S, Ren B, Zhang L, Xia X. Development of Antibacterial Peptides with Membrane Disruption and Folate Pathway Inhibitory Activities against Methicillin-Resistant Staphylococcus aureus. J Med Chem 2024; 67:1044-1060. [PMID: 38173250 DOI: 10.1021/acs.jmedchem.3c01360] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Antimicrobial peptides (AMPs) offer an opportunity to overcome multidrug resistance. Here, novel peptides were designed based on AMP fragments derived from sea cucumber hemolytic lectin to enhance anti-methicillin-resistant Staphylococcus aureus (MRSA) activity with less side effects. Two designed peptides, CGS19 (LARVARRVIRFIRRAW-NH2) and CGS20 (RRRLARRLIFFIRRAW-NH2), exhibited strong antibacterial activities against clinically isolated MRSA with MICs of 3-6 μM, but no obvious cytotoxicity was observed. Consistently, CGS19 and CGS20 exerted rapid bactericidal activity and effectively induced 5.9 and 5.8 log reduction of MRSA counts in mouse subeschar, respectively. Further, CGS19 and CGS20 kill bacteria not only through disturbing membrane integrity but also by binding formate-tetrahydrofolate ligase, a key enzyme in the folate metabolism pathway, thereby inhibiting the folate pathway of MRSA. CGS19 and CGS20 are promising lead candidates for drug development against MRSA infection. The dual mechanisms on the identical peptide sequence or scaffold might be an underappreciated manner of treating life-threatening pathogens.
Collapse
Affiliation(s)
- Chunlei Li
- Shandong Provincial Key Laboratory for Bio-Manufacturing, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
- Department of Pharmacy, Qilu Hospital, Cheloo College of Medicine, Shandong University, Jinan 250012, China
| | - Ziyi Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Weitao Wang
- Shandong Provincial Key Laboratory for Bio-Manufacturing, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Yanqiu Zhao
- Shandong Provincial Key Laboratory for Bio-Manufacturing, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Xin Yin
- Shandong Provincial Key Laboratory for Bio-Manufacturing, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Yiwei Meng
- Shandong Provincial Key Laboratory for Bio-Manufacturing, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Peipei Zhao
- Shandong Provincial Key Laboratory for Bio-Manufacturing, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Mengmeng Wang
- Shandong Provincial Key Laboratory for Bio-Manufacturing, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Xueting Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xinye Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shenlin Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Biao Ren
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Lixin Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xuekui Xia
- Shandong Provincial Key Laboratory for Bio-Manufacturing, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| |
Collapse
|
14
|
Zahmanova G, Aljabali AAA, Takova K, Minkov G, Tambuwala MM, Minkov I, Lomonossoff GP. Green Biologics: Harnessing the Power of Plants to Produce Pharmaceuticals. Int J Mol Sci 2023; 24:17575. [PMID: 38139405 PMCID: PMC10743837 DOI: 10.3390/ijms242417575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/11/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023] Open
Abstract
Plants are increasingly used for the production of high-quality biological molecules for use as pharmaceuticals and biomaterials in industry. Plants have proved that they can produce life-saving therapeutic proteins (Elelyso™-Gaucher's disease treatment, ZMapp™-anti-Ebola monoclonal antibodies, seasonal flu vaccine, Covifenz™-SARS-CoV-2 virus-like particle vaccine); however, some of these therapeutic proteins are difficult to bring to market, which leads to serious difficulties for the manufacturing companies. The closure of one of the leading companies in the sector (the Canadian biotech company Medicago Inc., producer of Covifenz) as a result of the withdrawal of investments from the parent company has led to the serious question: What is hindering the exploitation of plant-made biologics to improve health outcomes? Exploring the vast potential of plants as biological factories, this review provides an updated perspective on plant-derived biologics (PDB). A key focus is placed on the advancements in plant-based expression systems and highlighting cutting-edge technologies that streamline the production of complex protein-based biologics. The versatility of plant-derived biologics across diverse fields, such as human and animal health, industry, and agriculture, is emphasized. This review also meticulously examines regulatory considerations specific to plant-derived biologics, shedding light on the disparities faced compared to biologics produced in other systems.
Collapse
Affiliation(s)
- Gergana Zahmanova
- Department of Plant Physiology and Molecular Biology, University of Plovdiv, 4000 Plovdiv, Bulgaria; (K.T.)
- Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Alaa A. A. Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid 21163, Jordan;
| | - Katerina Takova
- Department of Plant Physiology and Molecular Biology, University of Plovdiv, 4000 Plovdiv, Bulgaria; (K.T.)
| | - George Minkov
- Department of Plant Physiology and Molecular Biology, University of Plovdiv, 4000 Plovdiv, Bulgaria; (K.T.)
| | - Murtaza M. Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln LN6 7TS, UK;
| | - Ivan Minkov
- Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
- Institute of Molecular Biology and Biotechnologies, 4108 Markovo, Bulgaria
| | | |
Collapse
|
15
|
Liu P, Li W, Peng Y, Han S, Liang Z, Cen Y, Li X, Wang P, Lv H, Zhang Q, Chen H, Lin J. Molecular cloning, expression, and functional analysis of a putative lectin from the pearl oyster (Pinctada fucata, Gould 1850). FISH & SHELLFISH IMMUNOLOGY 2023; 143:109215. [PMID: 37951320 DOI: 10.1016/j.fsi.2023.109215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 11/03/2023] [Accepted: 11/05/2023] [Indexed: 11/13/2023]
Abstract
Marine lectins are a group of proteins that possess specific carbohydrate recognition and binding domains. They exhibit various activities, including antimicrobial, antitumor, antiviral, and immunomodulatory effects. In this study, a novel galectin-binding lectin gene named PFL-96 (GenBank: OQ561753.1) was cloned from Pinctada fucata. The PFL-96 gene has an open reading frame of 324 base pairs (bp) and encodes a protein comprising 107 amino acids. The protein has a molecular weight of 11.95 kDa and an isoelectric point of 9.27. It contains an N-terminal signal peptide and a galactose-binding lectin domain. The sequence identity to lectin proteins from fish, echinoderms, coelenterates, and shellfish ranges from 31.90 to 40.00 %. In the phylogenetic analysis, it was found that the PFL-96 protein is closely related to the lectin from Pteria penguin. The PFL-96 recombinant protein exhibited coagulation activity on 2 % rabbit red blood cells at a concentration of ≥8 μg/mL. Additionally, it showed significant hemolytic activity at a concentration of ≥32 μg/mL. The PFL-96 recombinant protein exhibited significant antibacterial activity against Bacillus subtilis, Staphylococcus aureus, Candida albicans, and Vibrio alginolyticus, with minimum inhibitory concentrations (MIC) of 4, 8, 16, and 16 μg/mL, respectively. The minimum bactericidal concentrations (MBC) were determined to be 8, 16, 32, and 32 μg/mL, respectively. Furthermore, the PFL-96 recombinant protein exhibited inhibitory effects on the proliferation of Hela tumor cells, HepG2 tumor cells, and C666-1 tumor cells, with IC50 values of 7.962, 8.007, and 9.502 μg/mL, respectively. These findings suggest that the recombinant protein PFL-96 exhibits significant bioactivity in vitro, contributing to a better understanding of the active compounds found in P. fucata. The present study establishes a fundamental basis for further investigation into the mechanism of action and structural optimization of the recombinant protein PFL-96. The aim is to develop potential candidates for antibacterial and anti-tumor agents.
Collapse
Affiliation(s)
- Peng Liu
- Comprehensive Laboratory of Medical Innovation, School of Basic Medical Science, Guangxi University of Chinese Medicine, Nanning, China.
| | - Wenyue Li
- Comprehensive Laboratory of Medical Innovation, School of Basic Medical Science, Guangxi University of Chinese Medicine, Nanning, China
| | - Yue Peng
- Comprehensive Laboratory of Medical Innovation, School of Basic Medical Science, Guangxi University of Chinese Medicine, Nanning, China
| | - Siyin Han
- Comprehensive Laboratory of Medical Innovation, School of Basic Medical Science, Guangxi University of Chinese Medicine, Nanning, China
| | - Zhongxiu Liang
- Comprehensive Laboratory of Medical Innovation, School of Basic Medical Science, Guangxi University of Chinese Medicine, Nanning, China
| | - Yanhui Cen
- Comprehensive Laboratory of Medical Innovation, School of Basic Medical Science, Guangxi University of Chinese Medicine, Nanning, China
| | - Xinrong Li
- Comprehensive Laboratory of Medical Innovation, School of Basic Medical Science, Guangxi University of Chinese Medicine, Nanning, China
| | - Peiyan Wang
- Comprehensive Laboratory of Medical Innovation, School of Basic Medical Science, Guangxi University of Chinese Medicine, Nanning, China
| | - Huiying Lv
- Comprehensive Laboratory of Medical Innovation, School of Basic Medical Science, Guangxi University of Chinese Medicine, Nanning, China
| | - Qingying Zhang
- Comprehensive Laboratory of Medical Innovation, School of Basic Medical Science, Guangxi University of Chinese Medicine, Nanning, China
| | - Honglin Chen
- Comprehensive Laboratory of Medical Innovation, School of Basic Medical Science, Guangxi University of Chinese Medicine, Nanning, China
| | - Jiang Lin
- Comprehensive Laboratory of Medical Innovation, School of Basic Medical Science, Guangxi University of Chinese Medicine, Nanning, China.
| |
Collapse
|
16
|
Grinchenko A, Buriak I, Kumeiko V. Invertebrate C1q Domain-Containing Proteins: Molecular Structure, Functional Properties and Biomedical Potential. Mar Drugs 2023; 21:570. [PMID: 37999394 PMCID: PMC10672478 DOI: 10.3390/md21110570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/23/2023] [Accepted: 10/28/2023] [Indexed: 11/25/2023] Open
Abstract
C1q domain-containing proteins (C1qDC proteins) unexpectedly turned out to be widespread molecules among a variety of invertebrates, despite their lack of an integral complement system. Despite the wide distribution in the genomes of various invertebrates, data on the structure and properties of the isolated and characterized C1qDC proteins, which belong to the C1q/TNF superfamily, are sporadic, although they hold great practical potential for the creation of new biotechnologies. This review not only summarizes the current data on the properties of already-isolated or bioengineered C1qDC proteins but also projects further strategies for their study and biomedical application. It has been shown that further broad study of the carbohydrate specificity of the proteins can provide great opportunities, since for many of them only interactions with pathogen-associated molecular patterns (PAMPs) was evaluated and their antimicrobial, antiviral, and fungicidal activities were studied. However, data on the properties of C1qDC proteins, which researchers originally discovered as lectins and therefore studied their fine carbohydrate specificity and antitumor activity, intriguingly show the great potential of this family of proteins for the creation of targeted drug delivery systems, vaccines, and clinical assays for the differential diagnosis of cancer. The ability of invertebrate C1qDC proteins to recognize patterns of aberrant glycosylation of human cell surfaces and interact with mammalian immunoglobulins indicates the great biomedical potential of these molecules.
Collapse
Affiliation(s)
- Andrei Grinchenko
- School of Medicine and Life Sciences, Far Eastern Federal University, 690922 Vladivostok, Russia; (A.G.); (I.B.)
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia
| | - Ivan Buriak
- School of Medicine and Life Sciences, Far Eastern Federal University, 690922 Vladivostok, Russia; (A.G.); (I.B.)
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia
| | - Vadim Kumeiko
- School of Medicine and Life Sciences, Far Eastern Federal University, 690922 Vladivostok, Russia; (A.G.); (I.B.)
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia
| |
Collapse
|
17
|
Grosche VR, Souza LPF, Ferreira GM, Guevara-Vega M, Carvalho T, Silva RRDS, Batista KLR, Abuna RPF, Silva JS, Calmon MDF, Rahal P, da Silva LCN, Andrade BS, Teixeira CS, Sabino-Silva R, Jardim ACG. Mannose-Binding Lectins as Potent Antivirals against SARS-CoV-2. Viruses 2023; 15:1886. [PMID: 37766292 PMCID: PMC10536204 DOI: 10.3390/v15091886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/17/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
The SARS-CoV-2 entry into host cells is mainly mediated by the interactions between the viral spike protein (S) and the ACE-2 cell receptor, which are highly glycosylated. Therefore, carbohydrate binding agents may represent potential candidates to abrogate virus infection. Here, we evaluated the in vitro anti-SARS-CoV-2 activity of two mannose-binding lectins isolated from the Brazilian plants Canavalia brasiliensis and Dioclea violacea (ConBR and DVL). These lectins inhibited SARS-CoV-2 Wuhan-Hu-1 strain and variants Gamma and Omicron infections, with selectivity indexes (SI) of 7, 1.7, and 6.5, respectively for ConBR; and 25, 16.8, and 22.3, for DVL. ConBR and DVL inhibited over 95% of the early stages of the viral infection, with strong virucidal effect, and also protected cells from infection and presented post-entry inhibition. The presence of mannose resulted in the complete lack of anti-SARS-CoV-2 activity by ConBR and DVL, recovering virus titers. ATR-FTIR, molecular docking, and dynamic simulation between SARS-CoV-2 S and either lectins indicated molecular interactions with predicted binding energies of -85.4 and -72.0 Kcal/Mol, respectively. Our findings show that ConBR and DVL lectins possess strong activities against SARS-CoV-2, potentially by interacting with glycans and blocking virus entry into cells, representing potential candidates for the development of novel antiviral drugs.
Collapse
Affiliation(s)
- Victória Riquena Grosche
- Laboratory of Antiviral Research, Institute of Biomedical Science (ICBIM), Federal University of Uberlândia (UFU), Uberlândia 38405-317, Brazil; (V.R.G.); (G.M.F.)
- Institute of Biosciences, Languages, and Exact Sciences (Ibilce), São Paulo State University (Unesp), São José do Rio Preto 15054-000, Brazil; (T.C.); (M.d.F.C.); (P.R.)
| | - Leandro Peixoto Ferreira Souza
- Innovation Center in Salivary Diagnostic and Nanobiotechnology, Institute of Biomedical Science (ICBIM), Federal University of Uberlândia (UFU), Uberlândia 38405-317, Brazil; (L.P.F.S.); (M.G.-V.)
| | - Giulia Magalhães Ferreira
- Laboratory of Antiviral Research, Institute of Biomedical Science (ICBIM), Federal University of Uberlândia (UFU), Uberlândia 38405-317, Brazil; (V.R.G.); (G.M.F.)
| | - Marco Guevara-Vega
- Innovation Center in Salivary Diagnostic and Nanobiotechnology, Institute of Biomedical Science (ICBIM), Federal University of Uberlândia (UFU), Uberlândia 38405-317, Brazil; (L.P.F.S.); (M.G.-V.)
| | - Tamara Carvalho
- Institute of Biosciences, Languages, and Exact Sciences (Ibilce), São Paulo State University (Unesp), São José do Rio Preto 15054-000, Brazil; (T.C.); (M.d.F.C.); (P.R.)
| | | | | | - Rodrigo Paolo Flores Abuna
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, Brazil; (R.P.F.A.); (J.S.S.)
- Oswaldo Cruz Foundation (Fiocruz), Bi-Institutional Platform for Translational Medicine, Ribeirão Preto 14049-900, Brazil
| | - João Santana Silva
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, Brazil; (R.P.F.A.); (J.S.S.)
- Oswaldo Cruz Foundation (Fiocruz), Bi-Institutional Platform for Translational Medicine, Ribeirão Preto 14049-900, Brazil
| | - Marília de Freitas Calmon
- Institute of Biosciences, Languages, and Exact Sciences (Ibilce), São Paulo State University (Unesp), São José do Rio Preto 15054-000, Brazil; (T.C.); (M.d.F.C.); (P.R.)
| | - Paula Rahal
- Institute of Biosciences, Languages, and Exact Sciences (Ibilce), São Paulo State University (Unesp), São José do Rio Preto 15054-000, Brazil; (T.C.); (M.d.F.C.); (P.R.)
| | | | - Bruno Silva Andrade
- Laboratory of Bioinformatics and Computational Chemistry, State University of Southwest of Bahia, Jequié 45205-490, Brazil;
| | - Claudener Souza Teixeira
- Center of Agrarian Science and Biodiversity, Federal University of Cariri (UFCA), Crato 63130-025, Brazil; (R.R.d.S.S.); (C.S.T.)
| | - Robinson Sabino-Silva
- Innovation Center in Salivary Diagnostic and Nanobiotechnology, Institute of Biomedical Science (ICBIM), Federal University of Uberlândia (UFU), Uberlândia 38405-317, Brazil; (L.P.F.S.); (M.G.-V.)
| | - Ana Carolina Gomes Jardim
- Laboratory of Antiviral Research, Institute of Biomedical Science (ICBIM), Federal University of Uberlândia (UFU), Uberlândia 38405-317, Brazil; (V.R.G.); (G.M.F.)
- Institute of Biosciences, Languages, and Exact Sciences (Ibilce), São Paulo State University (Unesp), São José do Rio Preto 15054-000, Brazil; (T.C.); (M.d.F.C.); (P.R.)
| |
Collapse
|
18
|
Peng J, Li J, Liang J, Li W, Yang Y, Yang Y, Zhang S, Huang X, Han F. A C-type lectin-like receptor CD302 in yellow drum (Nibea albiflora) functioning in antibacterial activity and innate immune signaling. Int J Biol Macromol 2023; 247:125734. [PMID: 37423436 DOI: 10.1016/j.ijbiomac.2023.125734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/22/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023]
Abstract
Molecular dissection of disease resistance against Vibrio harveyi infection in yellow drum at the genome-wide level uncovered a C-type lectin-like receptor cluster of differentiation CD302 (named as YdCD302) in our previous study. Here, the gene expression pattern of YdCD302 and its function in mediating the defense response to V. harveyi attack were investigated. Gene expression analysis demonstrated that YdCD302 was ubiquitously distributed in various tissues with the highest transcript abundance in liver. The YdCD302 protein exhibited agglutination and antibacterial activity against V. harveyi cells. Binding assay indicated that YdCD302 can physically interact with V. harveyi cells in a Ca2+-independent manner, and the interaction can activate reactive oxygen species (ROS) production in the bacterial cells to induce RecA/LexA-mediated cell death. After infection with V. harveyi, the expression of YdCD302 can be up-regulated significantly in the main immune organs of yellow drum and potentially further trigger the cytokines involved innate immunity. These findings provide insight into the genetic basis of the disease resistance trait in yellow drum and shed light on the functioning of the CD302 C-type lectin-like receptor in host-pathogen interactions. The molecular and functional characterization of YdCD302 is a significant step towards a better understanding of disease resistance mechanisms and the development of new strategies for disease control.
Collapse
Affiliation(s)
- Jia Peng
- Key Laboratory of Healthy Mariculture for the East China Sea, Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Fisheries College, Jimei University, Xiamen 361000, China
| | - Jiacheng Li
- Key Laboratory of Healthy Mariculture for the East China Sea, Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Fisheries College, Jimei University, Xiamen 361000, China
| | - Jingjie Liang
- Key Laboratory of Healthy Mariculture for the East China Sea, Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Fisheries College, Jimei University, Xiamen 361000, China
| | - Wanbo Li
- Key Laboratory of Healthy Mariculture for the East China Sea, Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Fisheries College, Jimei University, Xiamen 361000, China
| | - Yao Yang
- Key Laboratory of Healthy Mariculture for the East China Sea, Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Fisheries College, Jimei University, Xiamen 361000, China
| | - Yukai Yang
- Shenzhen Base of South China Sea Fishery Research Institute, Chinese Academy of Fishery Sciences, Shenzhen 518121, China; Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Sen Zhang
- Key Laboratory of Healthy Mariculture for the East China Sea, Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Fisheries College, Jimei University, Xiamen 361000, China
| | - Xiaolin Huang
- Shenzhen Base of South China Sea Fishery Research Institute, Chinese Academy of Fishery Sciences, Shenzhen 518121, China; Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Fang Han
- Key Laboratory of Healthy Mariculture for the East China Sea, Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Fisheries College, Jimei University, Xiamen 361000, China.
| |
Collapse
|
19
|
Yang Y, Wu B, Li W, Han F. Molecular Characterization of Galectin-3 in Large Yellow Croaker Larimichthys crocea Functioning in Antibacterial Activity. Int J Mol Sci 2023; 24:11539. [PMID: 37511297 PMCID: PMC10380712 DOI: 10.3390/ijms241411539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/13/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023] Open
Abstract
Galectins are proteins that play a crucial role in the innate immune response against pathogenic microorganisms. Previous studies have suggested that Galectin-3 could be a candidate gene for antibacterial immunity in the large yellow croaker Larimichthys crocea. In this study, we cloned the Galectin-3 gene in the large yellow croaker, and named it LcGal-3. The deduced amino acid sequence of LcGal-3 contains a carbohydrate recognition domain with two conserved β-galactoside binding motifs. Quantitative reverse transcription PCR (qRT-PCR) analysis revealed that LcGal-3 was expressed in all the organs/tissues that were tested, with the highest expression level in the gill. In Larimichthys crocea kidney cell lines, LcGal-3 protein was distributed in both the cytoplasm and nucleus. Moreover, we found that the expression of LcGal-3 was significantly upregulated upon infection with Pseudomonas plecoglossicida, as demonstrated by qRT-PCR analyses. We also purified the LcGal-3 protein that was expressed in prokaryotes, and found that it has the ability to agglutinate large yellow croaker red blood cells in a Ca2+-independent manner. The agglutination activity of LcGal-3 was inhibited by lipopolysaccharides (LPS) in a concentration-dependent manner, as shown in the sugar inhibition test. Additionally, LcGal-3 exhibited agglutination and antibacterial activities against three Gram-negative bacteria, including P. plecoglossicida, Vibrio parahaemolyticus, and Vibrio harveyi. Furthermore, we studied the agglutination mechanism of the LcGal-3 protein using blood coagulation tests with LcGal-3 deletion and point mutation proteins. Our results indicate that LcGal-3 protein plays a critical role in the innate immunity of the large yellow croaker, providing a basis for further studies on the immune mechanism and disease-resistant breeding in L. crocea and other marine fish.
Collapse
Affiliation(s)
- Yao Yang
- Key Laboratory of Healthy Mariculture for the East China Sea, Minsistry of Agriculture and Rural Affairs Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-Environment, Jimei University, Xiamen 361021, China
| | - Baolan Wu
- Key Laboratory of Healthy Mariculture for the East China Sea, Minsistry of Agriculture and Rural Affairs Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-Environment, Jimei University, Xiamen 361021, China
| | - Wanbo Li
- Key Laboratory of Healthy Mariculture for the East China Sea, Minsistry of Agriculture and Rural Affairs Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-Environment, Jimei University, Xiamen 361021, China
| | - Fang Han
- Key Laboratory of Healthy Mariculture for the East China Sea, Minsistry of Agriculture and Rural Affairs Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-Environment, Jimei University, Xiamen 361021, China
| |
Collapse
|
20
|
Yang ZS, Lin CY, Khan MB, Hsu MC, Assavalapsakul W, Thitithanyanont A, Wang SF. Understanding the role of galectins toward influenza A virus infection. Expert Opin Ther Targets 2023; 27:927-937. [PMID: 37747065 DOI: 10.1080/14728222.2023.2263912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 09/24/2023] [Indexed: 09/26/2023]
Abstract
INTRODUCTION Influenza A virus (IAV) is highly contagious and causes respiratory diseases in birds, mammals, and humans. Some strains of IAV, whether from human or avian sources, have developed resistance to existing antiviral drugs. Therefore, the discovery of new influenza antiviral drugs and therapeutic approaches is crucial. Recent studies have shown that galectins (Gal), a group of β-galactose-binding lectins, play a role in regulating various viral infections, including IAVs. AREAS COVERED This review provides an overview of the roles of different galectins in IAV infection. We discuss the characteristics of galectins, their impact on IAV infection and spread, and highlight their positive or negative regulatory functions and potential mechanisms during IAV infection. Furthermore, we explore the potential application of galectins in IAV therapy. EXPERT OPINION Galectins were first identified in the mid-1970s, and currently, 15 mammalian galectins have been identified. While all galectin members possess the carbohydrate recognition domain (CRD) that interacts with β-galactoside, their regulatory functions vary in different DNA or RNA virus infections. Certain galectin members have been found to regulate IAV infection through diverse mechanisms. Therefore, a comprehensive understanding of their roles in IAV infection is essential, as it may pave the way for novel therapeutic strategies.
Collapse
Affiliation(s)
- Zih-Syuan Yang
- Center for Tropical Medicine and Infectious Disease Research, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chih-Yen Lin
- Center for Tropical Medicine and Infectious Disease Research, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Muhammad Bilal Khan
- Center for Tropical Medicine and Infectious Disease Research, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ming-Cheng Hsu
- Center for Tropical Medicine and Infectious Disease Research, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wanchai Assavalapsakul
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | | | - Sheng-Fan Wang
- Center for Tropical Medicine and Infectious Disease Research, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Program in Tropical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
21
|
Venkateswaran P, Vasudevan S, David H, Shaktivel A, Shanmugam K, Neelakantan P, Solomon AP. Revisiting ESKAPE Pathogens: virulence, resistance, and combating strategies focusing on quorum sensing. Front Cell Infect Microbiol 2023; 13:1159798. [PMID: 37457962 PMCID: PMC10339816 DOI: 10.3389/fcimb.2023.1159798] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/08/2023] [Indexed: 07/18/2023] Open
Abstract
The human-bacterial association is long-known and well-established in terms of both augmentations of human health and attenuation. However, the growing incidents of nosocomial infections caused by the ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter sp.) call for a much deeper understanding of these organisms. Adopting a holistic approach that includes the science of infection and the recent advancements in preventing and treating infections is imperative in designing novel intervention strategies against ESKAPE pathogens. In this regard, this review captures the ingenious strategies commissioned by these master players, which are teamed up against the defenses of the human team, that are equally, if not more, versatile and potent through an analogy. We have taken a basketball match as our analogy, dividing the human and bacterial species into two teams playing with the ball of health. Through this analogy, we make the concept of infectious biology more accessible.
Collapse
Affiliation(s)
- Parvathy Venkateswaran
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Sahana Vasudevan
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Helma David
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Adityan Shaktivel
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Karthik Shanmugam
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Prasanna Neelakantan
- Division of Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Adline Princy Solomon
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| |
Collapse
|
22
|
Ghosh S, Ahearn CP, Isabella CR, Marando VM, Dodge GJ, Bartlett H, McPherson RL, Dugan AE, Jain S, Neznanova L, Tettelin H, Putnik R, Grimes CL, Ruhl S, Kiessling LL, Imperiali B. Human oral lectin ZG16B acts as a cell wall polysaccharide probe to decode host-microbe interactions with oral commensals. Proc Natl Acad Sci U S A 2023; 120:e2216304120. [PMID: 37216558 PMCID: PMC10235990 DOI: 10.1073/pnas.2216304120] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 04/14/2023] [Indexed: 05/24/2023] Open
Abstract
The oral microbiome is critical to human health and disease, yet the role that host salivary proteins play in maintaining oral health is unclear. A highly expressed gene in human salivary glands encodes the lectin zymogen granule protein 16 homolog B (ZG16B). Despite the abundance of this protein, its interaction partners in the oral microbiome are unknown. ZG16B possesses a lectin fold, but whether it binds carbohydrates is unclear. We postulated that ZG16B would bind microbial glycans to mediate recognition of oral microbes. To this end, we developed a microbial glycan analysis probe (mGAP) strategy based on conjugating the recombinant protein to fluorescent or biotin reporter functionality. Applying the ZG16B-mGAP to dental plaque isolates revealed that ZG16B predominantly binds to a limited set of oral microbes, including Streptococcus mitis, Gemella haemolysans, and, most prominently, Streptococcus vestibularis. S. vestibularis is a commensal bacterium widely distributed in healthy individuals. ZG16B binds to S. vestibularis through the cell wall polysaccharides attached to the peptidoglycan, indicating that the protein is a lectin. ZG16B slows the growth of S. vestibularis with no cytotoxicity, suggesting that it regulates S. vestibularis abundance. The mGAP probes also revealed that ZG16B interacts with the salivary mucin MUC7. Analysis of S. vestibularis and MUC7 with ZG16B using super-resolution microscopy supports ternary complex formation that can promote microbe clustering. Together, our data suggest that ZG16B influences the compositional balance of the oral microbiome by capturing commensal microbes and regulating their growth using a mucin-assisted clearance mechanism.
Collapse
Affiliation(s)
- Soumi Ghosh
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Christian P. Ahearn
- Department of Oral Biology, University at Buffalo School of Dental Medicine, Buffalo, NY14214
| | | | - Victoria M. Marando
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Gregory J. Dodge
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Helen Bartlett
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Robert L. McPherson
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Amanda E. Dugan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Shikha Jain
- Department of Oral Biology, University at Buffalo School of Dental Medicine, Buffalo, NY14214
| | - Lubov Neznanova
- Department of Oral Biology, University at Buffalo School of Dental Medicine, Buffalo, NY14214
| | - Hervé Tettelin
- Department of Microbiology and Immunology, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD21201
| | - Rachel Putnik
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE19716
| | - Catherine L. Grimes
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE19716
| | - Stefan Ruhl
- Department of Oral Biology, University at Buffalo School of Dental Medicine, Buffalo, NY14214
| | - Laura L. Kiessling
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Barbara Imperiali
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA02139
| |
Collapse
|
23
|
Nova ICV, de Almeida WA, Procópio TF, Godoy RSM, Miranda FR, Barbosa RC, Nascimento JDS, Paiva PMG, Ferreira MRA, Soares LAL, Pimenta PFP, Martins GF, Navarro DMDAF, Napoleão TH, Pontual EV. Extract from Opuntia ficus-indica cladode delays the Aedes aegypti larval development by inducing an axenic midgut environment. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2023; 113:e21872. [PMID: 35112391 DOI: 10.1002/arch.21872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/31/2021] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
This study evaluated the effects of acute exposure of Aedes aegypti third instar (L3 ) larvae to the saline extract of Opuntia ficus-indica cladodes on the biological cycle and fertility of the emerging adults. For this, larvae were treated for 24 h with the extract at ¼ LC50 (lethal concentration to kill 50% of larvae), ½ LC50 or LC50 ; the development and reproduction of the emerged adults were evaluated after a recovery period of 9 days. The resistance of proteins in the extract to hydrolysis by L3 digestive enzymes and histomorphological alterations in the larval midgut were also investigated. The extract contained lectin, flavonoids, cinnamic derivatives, terpenes, steroids, and reducing sugars. It showed a LC50 of 3.71% for 48 h. The data indicated mean survival times similar in control and extract treatments. It was observed development delay in extract-treated groups, with a lower number of adults than in control. However, the females that emerged laid similar number of eggs in control and treatments. Histological evaluation revealed absence of bacterial and fungal microorganisms in the food content in midguts from larvae treated with cladode extract. Electrophoresis revealed that three polypeptides in the extract resisted to hydrolysis by L3 digestive proteases for 90 min. The lectin activity was not altered even after 24-h incubation with the enzymes. In conclusion, the extract from O. ficus-indica can delay the development of Ae. aegypti larvae, which may be linked to induction of an axenic environment at larval midgut and permanence of lectin activity even after proteolysis.
Collapse
Affiliation(s)
- Isabella C V Nova
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Brazil
| | - Welton A de Almeida
- Departamento de Morfologia e Fisiologia Animal, Universidade Federal Rural de Pernambuco, Recife, Brazil
| | - Thamara F Procópio
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Brazil
| | - Raquel S M Godoy
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Brazil
- Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | - Franciane R Miranda
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Renata C Barbosa
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Jéssica da Silva Nascimento
- Departamento de Química Fundamental, Centro de Ciências Exatas e da Natureza, Universidade Federal Rural de Pernambuco, Recife, Brazil
| | - Patrícia M G Paiva
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Brazil
| | - Magda R A Ferreira
- Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco, Recife, Brazil
| | - Luiz A L Soares
- Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco, Recife, Brazil
| | - Paulo F P Pimenta
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Gustavo F Martins
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Daniela Maria do Amaral F Navarro
- Departamento de Química Fundamental, Centro de Ciências Exatas e da Natureza, Universidade Federal Rural de Pernambuco, Recife, Brazil
| | - Thiago H Napoleão
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Brazil
| | - Emmanuel V Pontual
- Departamento de Morfologia e Fisiologia Animal, Universidade Federal Rural de Pernambuco, Recife, Brazil
| |
Collapse
|
24
|
da Silva SP, da Silva JDF, da Costa CBL, da Silva PM, de Freitas AFS, da Silva CES, da Silva AR, de Oliveira AM, Sá RA, Peixoto AR, de Oliveira APS, Paiva PMG, Napoleão TH. Purification, Characterization, and Assessment of Antimicrobial Activity and Toxicity of Portulaca elatior Leaf Lectin (PeLL). Probiotics Antimicrob Proteins 2023; 15:287-299. [PMID: 34420188 DOI: 10.1007/s12602-021-09837-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2021] [Indexed: 10/20/2022]
Abstract
Lectins are carbohydrate-binding proteins with several bioactivities, including antimicrobial properties. Portulaca elatior is a species found at Brazilian Caatinga and data on the biochemical composition of this plant are scarce. The present work describes the purification of P. elatior leaf lectin (PeLL) as well as the assessment of its antimicrobial activity and toxicity. PeLL, isolated by chromatography on a chitin column, had native liquid charge and subunit composition evaluated by electrophoresis. Hemagglutinating activity (HA) of PeLL was determined in the presence of carbohydrates or divalent cations, as well as after heating and incubation at different pH values. Changes in the lectin conformation were monitored by evaluating intrinsic tryptophan fluorescence and using the extrinsic probe bis-ANS. Antimicrobial activity was evaluated against Pectobacterium strains and Candida species. The minimal inhibitory (MIC), bactericidal (MBC), and fungicidal (MFC) concentrations were determined. Finally, PeLL was evaluated for in vitro hemolytic activity in human erythrocytes and in vivo acute toxicity in mice (5 and 10 mg/kg b.w. per os). PeLL (pI 5.4; 20 kDa) had its HA was inhibited by mannose, galactose, Ca2+, Mg2+, and Mn2+. PeLL HA was resistant to heating at 100 °C, although conformational changes were detected. PeLL was more active in the acidic pH range, in which no conformational changes were observed. The lectin presented MIC and MBC of 0.185 and 0.74 μg/mL for all Pectobacterium strains, respectively; MIC of 1.48 μg/mL for C. albicans, C. tropicalis, and C. krusei; MIC and MFC of 0.74 and 2.96 μg/mL for C. parapsilosis. No hemolytic activity or signs of acute toxicity were observed in the mice. In conclusion, a new, low-toxic, and thermostable lectin was isolated from P. elatior leaves, being the first plant compound to show antibacterial activity against Pectobacterium.
Collapse
Affiliation(s)
- Suéllen Pedrosa da Silva
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | | | | | - Pollyanna Michelle da Silva
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | | | | | - Abdênego Rodrigues da Silva
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Alisson Macário de Oliveira
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Roberto Araújo Sá
- Centro Acadêmico Do Agreste, Universidade Federal de Pernambuco, Caruaru, Pernambuco, Brazil
| | - Ana Rosa Peixoto
- Departamento de Tecnologia E Ciências Sociais, Universidade Do Estado da Bahia, Juazeiro, Bahia, Brazil
| | | | - Patrícia Maria Guedes Paiva
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Thiago Henrique Napoleão
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil.
| |
Collapse
|
25
|
Gritti MA, González KY, Tavares FL, Teibler GP, Peichoto ME. Exploring the antibacterial potential of venoms from Argentinian animals. Arch Microbiol 2023; 205:121. [PMID: 36934358 DOI: 10.1007/s00203-023-03465-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/27/2023] [Accepted: 03/03/2023] [Indexed: 03/20/2023]
Abstract
The resistance to antimicrobials developed by several bacterial species has become one of the main health problems in recent decades. It has been widely reported that natural products are important sources of antimicrobial compounds. Considering that animal venoms are under-explored in this line of research, in this study, we screened the antibacterial activity of venoms of eight snake and five lepidopteran species from northeastern Argentina. Twofold serial dilutions of venoms were tested by the agar well-diffusion method and the minimum inhibitory concentration (MIC) determination against seven bacterial strains. We studied the comparative protein profile of the venoms showing antibacterial activity. Only the viperid and elapid venoms showed remarkable dose-dependent antibacterial activity towards most of the strains tested. Bothrops diporus venom showed the lowest MIC values against all the strains, and S. aureus ATCC 25923 was the most sensitive strain for all the active venoms. Micrurus baliocoryphus venom was unable to inhibit the growth of Enterococcus faecalis. Neither colubrid snake nor lepidopteran venoms exhibited activity on any bacterial strain tested. The snake venoms exhibiting antibacterial activity showed distinctive protein profiles by SDS-PAGE, highlighting that we could reveal for the first time the main protein families which may be thought to contribute to the antibacterial activity of M. baliocoryphus venom. This study paves the way to search for new antibacterial agents from Argentinian snake venoms, which may be a further opportunity to give an added value to the local biodiversity.
Collapse
Affiliation(s)
- Micaela A Gritti
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Instituto Nacional de Medicina Tropical (INMeT)-ANLIS "Dr. Carlos G Malbrán", Almafuerte y Ambar s/n, 3370, Puerto Iguazú, Argentina
| | - Karen Y González
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Facultad de Ciencias Veterinarias (FCV), Universidad Nacional del Nordeste (UNNE), Sargento Cabral 2139, 3400, Corrientes, Argentina
| | - Flavio L Tavares
- Universidade Federal da Integração Latino-Americana (UNILA), Av. Tarquínio Joslin dos Santos, nº. 1.000, Jd. Universitário, Foz do Iguaçu, PR, CEP 85870-901, Brazil
| | - Gladys P Teibler
- Facultad de Ciencias Veterinarias (FCV), Universidad Nacional del Nordeste (UNNE), Sargento Cabral 2139, 3400, Corrientes, Argentina
| | - María E Peichoto
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
- Instituto Nacional de Medicina Tropical (INMeT)-ANLIS "Dr. Carlos G Malbrán", Almafuerte y Ambar s/n, 3370, Puerto Iguazú, Argentina.
- Universidade Federal da Integração Latino-Americana (UNILA), Av. Tarquínio Joslin dos Santos, nº. 1.000, Jd. Universitário, Foz do Iguaçu, PR, CEP 85870-901, Brazil.
| |
Collapse
|
26
|
Molecular Cloning and Characteristics of a Lectin from the Bivalve Glycymeris yessoensis. Mar Drugs 2023; 21:md21020055. [PMID: 36827096 PMCID: PMC9965136 DOI: 10.3390/md21020055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/10/2023] [Accepted: 01/16/2023] [Indexed: 01/19/2023] Open
Abstract
C-type lectins (CTLs) are a family of carbohydrate-binding proteins that mediate multiple biological events, including adhesion between cells, the turnover of serum glycoproteins, and innate immune system reactions to prospective invaders. Here, we describe the cDNA cloning of lectin from the bivalve Glycymeris yessoensis (GYL), which encodes 161 amino acids and the C-type carbohydrate recognition domain (CRD) with EPN and WND motifs. The deduced amino acid sequence showed similarity to other CTLs. GYL is a glycoprotein containing two N-glycosylation sites per subunit. N-glycans are made up of xylose, mannose, D-glucosamine, 3-O-methylated galactose, D-quinovoses, and 3-O-methylated 6-deoxy-D-glucose. The potential CRD tertiary structure of the GYL adopted CTL-typical long-form double-loop structure and included three disulfide bridges at the bases of the loops. Additionally, when confirming the GYL sequence, eight isoforms of this lectin were identified. This fact indicates the presence of a multigene family of GYL-like C-type lectins in the bivalve G. yessoensis. Using the glycan microarray approach, natural carbohydrate ligands were established, and the glycotope for GYL was reconstructed as "Galβ1-4GlcNAcβ obligatory containing an additional fragment", like a sulfate group or a methyl group of fucose or N-acetylgalactosamine residues.
Collapse
|
27
|
de Carvalho MH, de Araújo HDA, da Silva RP, Dos Santos Correia MT, de Freitas KCS, de Souza SR, Barroso Coelho LCB. Biosensor Characterization from Cratylia mollis Seed Lectin (Cramoll)-MOF and Specific Carbohydrate Interactions in an Electrochemical Model. Chem Biodivers 2022; 19:e202200515. [PMID: 36250754 DOI: 10.1002/cbdv.202200515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 10/14/2022] [Indexed: 12/27/2022]
Abstract
Biosensors are small devices known for their selectivity, high specificity and sensitivity to the respective analyte, at low concentrations. We developed an electrochemical biosensor using the crystalline polymer MOF-[Cu3 (BTC)2 (H2 O)2 ]n to characterize Cratylia mollis seed lectin (Cramoll) and its interaction with free carbohydrate (glucose) and carbohydrates on the surface of rabbit erythrocytes. The electrochemical potentials presented by the exponential curves that vary from 96 to 142 mV in relation to concentrations of 10 to 20 mM of glucose are decisive for the use of the system containing gold electrode/MOF/Cramoll for the characterization of biological models due to its high sensitivity. As well as the kinetic behavior presented in the cyclic voltammograms, with a cathodic current response of 0.000 3 A for a glucose concentration of 15 mM. These results were due to the high specificity of Cramoll under these conditions, promoting stability of surface charges at the Cramoll/electrode interface. This phenomenon facilitates the monitoring of the interaction with free glucose present in the electrolyte medium by potentiometric and amperometric methods and with carbohydrates present on the surface of rabbit erythrocytes through the potentiometric method. Through scanning electron microscopy (SEM) it was possible to observe Cramoll immobilized on the MOF surface, proving the specificity of the ligand (glucose-lectin) through the morphological lectin changes in this process. This electrochemical model, Cramoll/MOF biosensor, is effective for evaluating free lectin/carbohydrate or in the erythrocyte membrane.
Collapse
Affiliation(s)
- Maryana Hermínio de Carvalho
- Departamento de Bioquímica, Centro de Biociências, CB, Universidade Federal de Pernambuco, Avenida Prof. Moraes Rego, 1235, Cidade Universitária, 50670-420, Recife-PE, Brazil
- Departamento de Química, Universidade Federal Rural de Pernambuco, UFRPE, Rua Dom Manuel de Medeiros, S/N, Dois Irmãos, Recife-PE, 52171-900, Brazil
| | - Hallysson Douglas Andrade de Araújo
- Departamento de Bioquímica, Centro de Biociências, CB, Universidade Federal de Pernambuco, Avenida Prof. Moraes Rego, 1235, Cidade Universitária, 50670-420, Recife-PE, Brazil
| | - Renata Pereira da Silva
- Departamento de Química, Universidade Federal Rural de Pernambuco, UFRPE, Rua Dom Manuel de Medeiros, S/N, Dois Irmãos, Recife-PE, 52171-900, Brazil
| | - Maria Tereza Dos Santos Correia
- Departamento de Bioquímica, Centro de Biociências, CB, Universidade Federal de Pernambuco, Avenida Prof. Moraes Rego, 1235, Cidade Universitária, 50670-420, Recife-PE, Brazil
| | - Katia Cristina Silva de Freitas
- Departamento de Química, Universidade Federal Rural de Pernambuco, UFRPE, Rua Dom Manuel de Medeiros, S/N, Dois Irmãos, Recife-PE, 52171-900, Brazil
| | - Sandra Rodrigues de Souza
- Departamento de Educação, UFRPE, Rua Dom Manuel de Medeiros, S/N, Dois Irmãos, Recife-PE, 52171-900, Brazil
| | - Luana Cassandra Breitenbach Barroso Coelho
- Departamento de Bioquímica, Centro de Biociências, CB, Universidade Federal de Pernambuco, Avenida Prof. Moraes Rego, 1235, Cidade Universitária, 50670-420, Recife-PE, Brazil
| |
Collapse
|
28
|
Costa ACM, Malveira EA, Mendonça LP, Maia MES, Silva RRS, Roma RR, Aguiar TKB, Grangeiro YA, Souza PFN. Plant Lectins: A Review on their Biotechnological Potential Toward Human Pathogens. Curr Protein Pept Sci 2022; 23:851-861. [PMID: 36239726 DOI: 10.2174/1389203724666221014142740] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/08/2022] [Accepted: 08/14/2022] [Indexed: 11/05/2022]
Abstract
The indiscriminate use of antibiotics is associated with the appearance of bacterial resistance. In light of this, plant-based products treating infections are considered potential alternatives. Lectins are a group of proteins widely distributed in nature, capable of reversibly binding carbohydrates. Lectins can bind to the surface of pathogens and cause damage to their structure, thus preventing host infection. The antimicrobial activity of plant lectins results from their interaction with carbohydrates present in the bacterial cell wall and fungal membrane. The data about lectins as modulating agents of antibiotic activity, potentiates the effect of antibiotics without triggering microbial resistance. In addition, lectins play an essential role in the defense against fungi, reducing their infectivity and pathogenicity. Little is known about the antiviral activity of plant lectins. However, their effectiveness against retroviruses and parainfluenza is reported in the literature. Some authors still consider mannose/ glucose/N-Acetylglucosamine binding lectins as potent antiviral agents against coronavirus, suggesting that these lectins may have inhibitory activity against SARS-CoV-2. Thus, it was found that plant lectins are an alternative for producing new antimicrobial drugs, but further studies still need to decipher some mechanisms of action.
Collapse
Affiliation(s)
- Ana C M Costa
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, Caixa 60430-275 Fortaleza, CE, Brazil
| | - Ellen A Malveira
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, Caixa 60430-275 Fortaleza, CE, Brazil
| | - Lidiane P Mendonça
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, Caixa 60430-275 Fortaleza, CE, Brazil
| | - Maria E S Maia
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, Caixa 60430-275 Fortaleza, CE, Brazil
| | - Romério R S Silva
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, Caixa 60430-275 Fortaleza, CE, Brazil
| | - Renato R Roma
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, Caixa 60430-275 Fortaleza, CE, Brazil
| | - Tawanny K B Aguiar
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, Caixa 60430-275 Fortaleza, CE, Brazil
| | - Yasmim A Grangeiro
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, Caixa 60430-275 Fortaleza, CE, Brazil
| | - Pedro F N Souza
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, Caixa 60430-275 Fortaleza, CE, Brazil.,Drug Research and Development Center, Department of Medicine, Federal University of Ceará, Caixa 60430- 275 Fortaleza, CE, Brazil
| |
Collapse
|
29
|
Nunes MAS, Silva LDS, Santos DM, Cutrim BDS, Vieira SL, Silva ISS, Castelo Branco SJDS, do Nascimento MDS, Vale AAM, dos Santos-Azevedo APS, Zagmignan A, Sousa JCDS, Napoleão TH, Paiva PMG, Monteiro-Neto V, Nascimento da Silva LC. Schinus terebinthifolius Leaf Lectin (SteLL) Reduces the Bacterial and Inflammatory Burden of Wounds Infected by Staphylococcus aureus Promoting Skin Repair. Pharmaceuticals (Basel) 2022; 15:ph15111441. [PMID: 36422571 PMCID: PMC9697850 DOI: 10.3390/ph15111441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/09/2022] [Accepted: 11/12/2022] [Indexed: 11/23/2022] Open
Abstract
Staphylococcus aureus is commonly found in wound infections where this pathogen impairs skin repair. The lectin isolated from leaves of Schinus terebinthifolius (named SteLL) has antimicrobial and antivirulence action against S. aureus. This study evaluated the effects of topical administration of SteLL on mice wounds infected by S. aureus. Seventy-two C57/BL6 mice (6−8 weeks old) were allocated into four groups: (i) uninfected wounds; (ii) infected wounds, (iii) infected wounds treated with 32 µg/mL SteLL solution; (iv) infected wounds treated with 64 µg/mL SteLL solution. The excisional wounds (64 mm2) were induced on the dorsum and infected by S. aureus 432170 (4.0 × 106 CFU/wound). The daily treatment started 1-day post-infection (dpi). The topical application of both SteLL concentrations significantly accelerated the healing of S. aureus-infected wounds until the 7th dpi, when compared to untreated infected lesions (reductions of 1.95−4.55-fold and 1.79−2.90-fold for SteLL at 32 µg/mL and 64 µg/mL, respectively). The SteLL-based treatment also amended the severity of wound infection and reduced the bacterial load (12-fold to 72-fold for 32 µg/mL, and 14-fold to 282-fold for 64 µg/mL). SteLL-treated wounds show higher collagen deposition and restoration of skin structure than other groups. The bacterial load and the levels of inflammatory markers (IL-6, MCP-1, TNF-α, and VEGF) were also reduced by both SteLL concentrations. These results corroborate the reported anti-infective properties of SteLL, making this lectin a lead candidate for developing alternative agents for the treatment of S. aureus-infected skin lesions.
Collapse
Affiliation(s)
- Marcio Anderson Sousa Nunes
- Rede de Biodiversidade e Biotecnologia da Amazônia Legal, BIONORTE, São Luís 65055-310, Brazil
- Laboratório de Patogenicidade Microbiana, Universidade Ceuma, São Luís 65075-120, Brazil
| | - Lucas dos Santos Silva
- Laboratório de Patogenicidade Microbiana, Universidade Ceuma, São Luís 65075-120, Brazil
| | - Deivid Martins Santos
- Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-000, Brazil
| | - Brenda da Silva Cutrim
- Laboratório de Bioquímica de Proteínas, Centro de Biociências, Universidade Federal de Pernambuco, Recife 50740-570, Brazil
| | - Silvamara Leite Vieira
- Laboratório de Patogenicidade Microbiana, Universidade Ceuma, São Luís 65075-120, Brazil
| | | | | | | | | | | | - Adrielle Zagmignan
- Laboratório de Patogenicidade Microbiana, Universidade Ceuma, São Luís 65075-120, Brazil
| | | | - Thiago Henrique Napoleão
- Laboratório de Bioquímica de Proteínas, Centro de Biociências, Universidade Federal de Pernambuco, Recife 50740-570, Brazil
| | - Patrícia Maria Guedes Paiva
- Laboratório de Bioquímica de Proteínas, Centro de Biociências, Universidade Federal de Pernambuco, Recife 50740-570, Brazil
| | - Valério Monteiro-Neto
- Rede de Biodiversidade e Biotecnologia da Amazônia Legal, BIONORTE, São Luís 65055-310, Brazil
- Centro de Ciências Biológicas e da Saúde, Universidade Federal do Maranhão, São Luís 65080-805, Brazil
- Correspondence: (V.M.-N.); (L.C.N.d.S.)
| | - Luís Cláudio Nascimento da Silva
- Rede de Biodiversidade e Biotecnologia da Amazônia Legal, BIONORTE, São Luís 65055-310, Brazil
- Laboratório de Patogenicidade Microbiana, Universidade Ceuma, São Luís 65075-120, Brazil
- Correspondence: (V.M.-N.); (L.C.N.d.S.)
| |
Collapse
|
30
|
The Anxiolytic Activity of Schinus terebinthifolia Leaf Lectin (SteLL) Is Dependent on Monoaminergic Signaling although Independent of the Carbohydrate-Binding Domain of the Lectin. Pharmaceuticals (Basel) 2022; 15:ph15111364. [DOI: 10.3390/ph15111364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
The potential of plant lectins (carbohydrate-binding proteins) for the treatment of neurological disorders such as anxiety and depression has started to be reported in the last few years. Schinus terebinthifolia leaves contain a lectin called SteLL, which has displayed antimicrobial, immunomodulatory, antitumor, and analgesic activities. However, the effects of SteLL on the Central Nervous System (CNS) have not yet been determined. In this study, we investigated the in vivo anxiolytic effect of SteLL in mice using the open field (OF) and elevated plus maze (EPM) tests. In the OF, SteLL (1, 2, and 4 mg/kg, i.p.) did not interfere with the number of crossings but significantly reduced the number of rearings. In the EPM, SteLL 4 mg/kg and the combination SteLL (1 mg/kg) plus diazepam (1 mg/kg) significantly increased the time spent in the open arms while reducing the time spent in the closed arms. The anxiolytic effect of SteLL did not seem to be dependent on the carbohydrate-binding domain of the lectin. Nevertheless, the SteLL effect in the EPM was reversed by the pretreatment with the pharmacological antagonists of the α2-adrenoceptor, 5-HT2A/2C serotonin receptor, and the D1 dopamine receptor. Overall, our results suggest that the anxiolytic effect of SteLL is dependent on the monoaminergic signaling cascade.
Collapse
|
31
|
Konozy EHE, Osman MEFM, Dirar AI, Ghartey-Kwansah G. Plant lectins: A new antimicrobial frontier. Biomed Pharmacother 2022; 155:113735. [PMID: 36152414 DOI: 10.1016/j.biopha.2022.113735] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/19/2022] [Accepted: 09/19/2022] [Indexed: 11/02/2022] Open
Abstract
Pathogenic bacteria, viruses, fungi, parasites, and other microbes constantly change to ensure survival. Several pathogens have adopted strict and intricate strategies to fight medical treatments. Many drugs, frequently prescribed to treat these pathogens, are becoming obsolete and ineffective. Because pathogens have gained the capacity to tolerate or resist medications targeted at them, hence the term antimicrobial resistance (AMR), in that regard, many natural compounds have been routinely used as new antimicrobial agents to treat infections. Thus, plant lectins, the carbohydrate-binding proteins, have been targeted as promising drug candidates. This article reviewed more than 150 published papers on plant lectins with promising antibacterial and antifungal properties. We have also demonstrated how some plant lectins could express a synergistic action as adjuvants to boost the efficacy of obsolete or abandoned antimicrobial drugs. Emphasis has also been given to their plausible mechanism of action. The study further reports on the immunomodulatory effect of plant lectins and how they boost the immune system to curb or prevent infection.
Collapse
Affiliation(s)
| | | | - Amina I Dirar
- Medicinal, Aromatic Plants and Traditional Medicine Research Institute (MAPTRI), National Center for Research, Mek Nimr Street, Khartoum, Sudan.
| | - George Ghartey-Kwansah
- Department of Biomedical Sciences, School of Allied Health Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana.
| |
Collapse
|
32
|
Rooney J, Northcote HM, Williams TL, Cortés A, Cantacessi C, Morphew RM. Parasitic helminths and the host microbiome - a missing 'extracellular vesicle-sized' link? Trends Parasitol 2022; 38:737-747. [PMID: 35820945 DOI: 10.1016/j.pt.2022.06.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/15/2022] [Accepted: 06/15/2022] [Indexed: 12/12/2022]
Abstract
Infections by gastrointestinal (GI) helminths have been associated with significant alterations of the structure of microbial communities inhabiting the host gut. However, current understanding of the biological mechanisms that regulate these relationships is still lacking. We propose that helminth-derived extracellular vesicles (EVs) likely represent key players in helminth-microbiota crosstalk. Here, we explore knowledge of helminth EVs with an emphasis on their putative antimicrobial properties, and we argue that (i) an enhanced understanding of the mechanisms governing such interactions might assist the discovery and development of novel strategies of parasite control, and that (ii) the identification and characterisation of helminth molecules with antimicrobial properties might pave the way towards the discovery of novel antibiotics, thus aiding the global fight against antimicrobial resistance.
Collapse
Affiliation(s)
- James Rooney
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| | - Holly M Northcote
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 2DA, UK
| | - Tim L Williams
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| | - Alba Cortés
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK; Departament de Farmàcia i Tecnologia Farmacèutica i Parasitologia, Facultat de Farmàcia, Universitat de València, Burjassot 46100, Spain
| | - Cinzia Cantacessi
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK.
| | - Russell M Morphew
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 2DA, UK.
| |
Collapse
|
33
|
Konozy E, Osman M, Dirar A. Plant lectins as potent Anti-coronaviruses, Anti-inflammatory, antinociceptive and antiulcer agents. Saudi J Biol Sci 2022; 29:103301. [PMID: 35475119 PMCID: PMC9026953 DOI: 10.1016/j.sjbs.2022.103301] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/12/2022] [Accepted: 04/17/2022] [Indexed: 12/14/2022] Open
Abstract
Lectins are defined as carbohydrate-binding proteins/glycoproteins of none immune origin, they are ubiquitous in nature, exist from bacteria to human cells. And due to their carbohydrate-binding recognition capacity, they have been a useful biological tool for the purification of glycoproteins and their subsequent characterization. Some plant lectins have also been revealed to own antinociceptive, antiulcer, and anti-inflammatory properties, where these features, in many instances, depending on the lectin carbohydrate-binding site. Coronavirus disease of 2019 (COVID-19) is a respiratory disease that struck the entire world leaving millions of people dead and more infected. Although COVID-19 vaccines have been made available, and quite a large number of world populations have already been immunized, the viral infection rates remained in acceleration, which continues to provoke major concern about the vaccines' efficacy. The belief in the ineffectiveness of the vaccine has been attributed in part to the recurrent mutations that occur in the epitope determinant fragments of the virus. Coronavirus envelope surface is extensively glycosylated being covered by more than sixty N-linked oligomannose, composite, and hybrid glycans with a core of Man3GlcNAc2Asn. In addition some O-linked glycans are also detected. Of these glyco-chains, many have also been exposed to several mutations, and a few remained conserved. Therefore, numerous plant lectins with a specificity directed towards these viral envelope sugars have been found to interact preferentially with them and are suggested to be scrutinized as a possible future tool to combat coronaviruses including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) through blocking the viral attachment to the host cells. In this review, we will discuss the possible applications of plant lectins as anti-coronaviruses including SARS-CoV-2, antinociceptive, anti-inflammatory, and antiulcer agents with the proposed mechanism of their actions.
Collapse
Affiliation(s)
- Emadeldin Konozy
- Department of Biotechnology, Africa City of Technology, Khartoum, Sudan
| | - Makarim Osman
- Department of Zoology, University of Khartoum, Khartoum, Sudan
| | - Amina Dirar
- Medicinal, Aromatic Plants and Traditional Medicine Research Institute (MAPTRI), National Center for Research, Mek Nimr Street, Khartoum, Sudan
| |
Collapse
|
34
|
Ahmed MN, Jahan R, Nissapatorn V, Wilairatana P, Rahmatullah M. Plant lectins as prospective antiviral biomolecules in the search for COVID-19 eradication strategies. Biomed Pharmacother 2022; 146:112507. [PMID: 34891122 PMCID: PMC8648558 DOI: 10.1016/j.biopha.2021.112507] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 12/12/2022] Open
Abstract
Lectins or clusters of carbohydrate-binding proteins of non-immune origin are distributed chiefly in the Plantae. Lectins have potent anti-infectivity properties for several RNA viruses including SARS-CoV-2. The primary purpose of this review is to review the ability of lectins mediated potential biotherapeutic and bioprophylactic strategy against coronavirus causing COVID-19. Lectins have binding affinity to the glycans of SARS-COV-2 Spike glycoprotein that has N-glycosylation sites. Apart from this, the complement lectin pathway is a "first line host defense" against the viral infection that is activated by mannose-binding lectins. Mannose-binding lectins deficiency in serum influences innate immunity of the host and facilitates infectious diseases including COVID-19. Our accumulated evidence obtained from scientific databases particularly PubMed and Google Scholar databases indicate that mannose-specific/mannose-binding lectins (MBL) have potent efficacies like anti-infectivity, complement cascade induction, immunoadjuvants, DC-SIGN antagonists, or glycomimetic approach, which can prove useful in the strategy of COVID-19 combat along with the glycobiological aspects of SARS-CoV-2 infections and antiviral immunity. For example, plant-derived mannose-specific lectins BanLac, FRIL, Lentil, and GRFT from red algae can inhibit and neutralize SARS-CoV-2 infectivity, as confirmed with in-vitro, in-vivo, and in-silico assessments. Furthermore, Bangladesh has a noteworthy resource of antiviral medicinal plants as well as plant lectins. Intensifying research on the antiviral plant lectins, adopting a glyco-biotechnological approach, and with deeper insights into the "glycovirological" aspects may result in the designing of alternative and potent blueprints against the 21st century's biological pandemic of SARS-CoV-2 causing COVID-19.
Collapse
Affiliation(s)
- Md Nasir Ahmed
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Dhaka, Bangladesh; Biotechnology & Natural Medicine Division, TechB Nutrigenomics, Dhaka, Bangladesh.
| | - Rownak Jahan
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Dhaka, Bangladesh.
| | - Veeranoot Nissapatorn
- School of Allied Health Sciences and World Union for Herbal Drug Discovery (WUHeDD), Walailak University, Nakhon Si Thammarat, Thailand
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| | - Mohammed Rahmatullah
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Dhaka, Bangladesh.
| |
Collapse
|
35
|
Barre A, Van Damme EJM, Klonjkowski B, Simplicien M, Sudor J, Benoist H, Rougé P. Legume Lectins with Different Specificities as Potential Glycan Probes for Pathogenic Enveloped Viruses. Cells 2022; 11:cells11030339. [PMID: 35159151 PMCID: PMC8834014 DOI: 10.3390/cells11030339] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/13/2022] [Accepted: 01/18/2022] [Indexed: 12/12/2022] Open
Abstract
Pathogenic enveloped viruses are covered with a glycan shield that provides a dual function: the glycan structures contribute to virus protection as well as host cell recognition. The three classical types of N-glycans, in particular complex glycans, high-mannose glycans, and hybrid glycans, together with some O-glycans, participate in the glycan shield of the Ebola virus, influenza virus, human cytomegalovirus, herpes virus, human immunodeficiency virus, Lassa virus, and MERS-CoV, SARS-CoV, and SARS-CoV-2, which are responsible for respiratory syndromes. The glycans are linked to glycoproteins that occur as metastable prefusion glycoproteins on the surface of infectious virions such as gp120 of HIV, hemagglutinin of influenza, or spike proteins of beta-coronaviruses. Plant lectins with different carbohydrate-binding specificities and, especially, mannose-specific lectins from the Vicieae tribe, such as pea lectin and lentil lectin, can be used as glycan probes for targeting the glycan shield because of their specific interaction with the α1,6-fucosylated core Man3GlcNAc2, which predominantly occurs in complex and hybrid glycans. Other plant lectins with Neu5Ac specificity or GalNAc/T/Tn specificity can also serve as potential glycan probes for the often sialylated complex glycans and truncated O-glycans, respectively, which are abundantly distributed in the glycan shield of enveloped viruses. The biomedical and therapeutical potential of plant lectins as antiviral drugs is discussed.
Collapse
Affiliation(s)
- Annick Barre
- UMR 152 PharmaDev, Institut de Recherche et Développement, Faculté de Pharmacie, Université Paul Sabatier, 35 Chemin des Maraîchers, F-31062 Toulouse, France; (A.B.); (M.S.); (J.S.); (H.B.)
| | - Els J. M. Van Damme
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium;
| | - Bernard Klonjkowski
- UMR Virologie, INRA, ANSES, Ecole Nationale Vétérinaire d’Alfort, F-94700 Maisons-Alfort, France;
| | - Mathias Simplicien
- UMR 152 PharmaDev, Institut de Recherche et Développement, Faculté de Pharmacie, Université Paul Sabatier, 35 Chemin des Maraîchers, F-31062 Toulouse, France; (A.B.); (M.S.); (J.S.); (H.B.)
| | - Jan Sudor
- UMR 152 PharmaDev, Institut de Recherche et Développement, Faculté de Pharmacie, Université Paul Sabatier, 35 Chemin des Maraîchers, F-31062 Toulouse, France; (A.B.); (M.S.); (J.S.); (H.B.)
| | - Hervé Benoist
- UMR 152 PharmaDev, Institut de Recherche et Développement, Faculté de Pharmacie, Université Paul Sabatier, 35 Chemin des Maraîchers, F-31062 Toulouse, France; (A.B.); (M.S.); (J.S.); (H.B.)
| | - Pierre Rougé
- UMR 152 PharmaDev, Institut de Recherche et Développement, Faculté de Pharmacie, Université Paul Sabatier, 35 Chemin des Maraîchers, F-31062 Toulouse, France; (A.B.); (M.S.); (J.S.); (H.B.)
- Correspondence: ; Tel.: +33-069-552-0851
| |
Collapse
|
36
|
Kolkas H, Balliau T, Chourré J, Zivy M, Canut H, Jamet E. The Cell Wall Proteome of Marchantia polymorpha Reveals Specificities Compared to Those of Flowering Plants. FRONTIERS IN PLANT SCIENCE 2022; 12:765846. [PMID: 35095945 PMCID: PMC8792609 DOI: 10.3389/fpls.2021.765846] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 12/16/2021] [Indexed: 05/30/2023]
Abstract
Primary plant cell walls are composite extracellular structures composed of three major classes of polysaccharides (pectins, hemicelluloses, and cellulose) and of proteins. The cell wall proteins (CWPs) play multiple roles during plant development and in response to environmental stresses by remodeling the polysaccharide and protein networks and acting in signaling processes. To date, the cell wall proteome has been mostly described in flowering plants and has revealed the diversity of the CWP families. In this article, we describe the cell wall proteome of an early divergent plant, Marchantia polymorpha, a Bryophyte which belong to one of the first plant species colonizing lands. It has been possible to identify 410 different CWPs from three development stages of the haploid gametophyte and they could be classified in the same functional classes as the CWPs of flowering plants. This result underlied the ability of M. polymorpha to sustain cell wall dynamics. However, some specificities of the M. polymorpha cell wall proteome could be highlighted, in particular the importance of oxido-reductases such as class III peroxidases and polyphenol oxidases, D-mannose binding lectins, and dirigent-like proteins. These proteins families could be related to the presence of specific compounds in the M. polymorpha cell walls, like mannans or phenolics. This work paves the way for functional studies to unravel the role of CWPs during M. polymorpha development and in response to environmental cues.
Collapse
Affiliation(s)
- Hasan Kolkas
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Auzeville-Tolosane, France
| | - Thierry Balliau
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE-Le Moulon, PAPPSO, Gif-sur-Yvette, France
| | - Josiane Chourré
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Auzeville-Tolosane, France
| | - Michel Zivy
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE-Le Moulon, PAPPSO, Gif-sur-Yvette, France
| | - Hervé Canut
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Auzeville-Tolosane, France
| | - Elisabeth Jamet
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Auzeville-Tolosane, France
| |
Collapse
|
37
|
Shanina E, Kuhaudomlarp S, Lal K, Seeberger PH, Imberty A, Rademacher C. Allosterische, Wirkstoff‐zugängliche Bindestellen in β‐Propeller‐Lektinen. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202109339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Elena Shanina
- Department of Biomolecular Systems Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Deutschland
- Department of Chemistry and Biochemistry Freie Universität Berlin Arnimallee 22 14195 Berlin Deutschland
| | - Sakonwan Kuhaudomlarp
- University Grenoble Alpes CNRS CERMAV 38000 Grenoble Frankreich
- Department of Biochemistry Faculty of Science Mahidol University 10400 Bangkok Thailand
- Center for Excellence in Protein and Enzyme Technology Faculty of Science Mahidol University 10400 Bangkok Thailand
| | - Kanhaya Lal
- University Grenoble Alpes CNRS CERMAV 38000 Grenoble Frankreich
- Dipartimento di Chimica via Golgi 19 Università degli Studi di Milano 20133 Milano Italien
| | - Peter H. Seeberger
- Department of Biomolecular Systems Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Deutschland
- Department of Chemistry and Biochemistry Freie Universität Berlin Arnimallee 22 14195 Berlin Deutschland
| | - Anne Imberty
- University Grenoble Alpes CNRS CERMAV 38000 Grenoble Frankreich
| | - Christoph Rademacher
- Department of Biomolecular Systems Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Deutschland
- Department of Chemistry and Biochemistry Freie Universität Berlin Arnimallee 22 14195 Berlin Deutschland
- Department of Pharmaceutical Chemistry University of Vienna Althanstraße 14 1080 Wien Österreich
- Department of Microbiology, Immunobiology and Genetics Max F. Perutz Labs Campus Vienna Biocenter 5 1030 Wien Österreich
| |
Collapse
|
38
|
Shanina E, Kuhaudomlarp S, Lal K, Seeberger PH, Imberty A, Rademacher C. Druggable Allosteric Sites in β-Propeller Lectins. Angew Chem Int Ed Engl 2022; 61:e202109339. [PMID: 34713573 PMCID: PMC9298952 DOI: 10.1002/anie.202109339] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/05/2021] [Indexed: 12/24/2022]
Abstract
Carbohydrate‐binding proteins (lectins) are auspicious targets in drug discovery to combat antimicrobial resistance; however, their non‐carbohydrate drug‐like inhibitors are still unavailable. Here, we present a druggable pocket in a β‐propeller lectin BambL from Burkholderia ambifaria as a potential target for allosteric inhibitors. This site was identified employing 19F NMR fragment screening and a computational pocket prediction algorithm SiteMap. The structure–activity relationship study revealed the most promising fragment with a dissociation constant of 0.3±0.1 mM and a ligand efficiency of 0.3 kcal mol−1 HA−1 that affected the orthosteric site. This effect was substantiated by site‐directed mutagenesis in the orthosteric and secondary pockets. Future drug‐discovery campaigns that aim to develop small molecule inhibitors can benefit from allosteric sites in lectins as a new therapeutic approach against antibiotic‐resistant pathogens.
Collapse
Affiliation(s)
- Elena Shanina
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany.,Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195, Berlin, Germany
| | - Sakonwan Kuhaudomlarp
- University Grenoble Alpes, CNRS, CERMAV, 38000, Grenoble, France.,Department of Biochemistry, Faculty of Science, Mahidol University, 10400, Bangkok, Thailand.,Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, 10400, Bangkok, Thailand
| | - Kanhaya Lal
- University Grenoble Alpes, CNRS, CERMAV, 38000, Grenoble, France.,Dipartimento di Chimica via Golgi 19, Universita" degli Studi di Milano, 20133, Milano, Italy
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany.,Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195, Berlin, Germany
| | - Anne Imberty
- University Grenoble Alpes, CNRS, CERMAV, 38000, Grenoble, France
| | - Christoph Rademacher
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany.,Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195, Berlin, Germany.,Department of Pharmaceutical Chemistry, University of Vienna, Althanstrasse 14, 1080, Vienna, Austria.,Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Labs, Campus Vienna Biocenter 5, 1030, Vienna, Austria
| |
Collapse
|
39
|
Van Damme EJM. 35 years in plant lectin research: a journey from basic science to applications in agriculture and medicine. Glycoconj J 2022; 39:83-97. [PMID: 34427812 PMCID: PMC8383723 DOI: 10.1007/s10719-021-10015-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 06/30/2021] [Accepted: 07/29/2021] [Indexed: 02/07/2023]
Abstract
Plants contain an extended group of lectins differing from each other in their molecular structures, biochemical properties and carbohydrate-binding specificities. The heterogeneous group of plant lectins can be classified in several families based on the primary structure of the lectin domain. All proteins composed of one or more lectin domains, or having a domain architecture including one or more lectin domains in combination with other protein domains can be defined as lectins. Plant lectins reside in different cell compartments, and depending on their location will encounter a large variety carbohydrate structures, allowing them to be involved in multiple biological functions. Over the years lectins have been studied intensively for their carbohydrate-binding properties and biological activities, which also resulted in diverse applications. The present overview on plant lectins especially focuses on the structural and functional characteristics of plant lectins and their applications for crop improvement, glycobiology and biomedical research.
Collapse
Affiliation(s)
- Els J. M. Van Damme
- Laboratory of Glycobiology and Biochemistry, Department of Biotechnology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| |
Collapse
|
40
|
Algal and Cyanobacterial Lectins and Their Antimicrobial Properties. Mar Drugs 2021; 19:md19120687. [PMID: 34940686 PMCID: PMC8707200 DOI: 10.3390/md19120687] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/19/2021] [Accepted: 11/25/2021] [Indexed: 02/06/2023] Open
Abstract
Lectins are proteins with a remarkably high affinity and specificity for carbohydrates. Many organisms naturally produce them, including animals, plants, fungi, protists, bacteria, archaea, and viruses. The present report focuses on lectins produced by marine or freshwater organisms, in particular algae and cyanobacteria. We explore their structure, function, classification, and antimicrobial properties. Furthermore, we look at the expression of lectins in heterologous systems and the current research on the preclinical and clinical evaluation of these fascinating molecules. The further development of these molecules might positively impact human health, particularly the prevention or treatment of diseases caused by pathogens such as human immunodeficiency virus, influenza, and severe acute respiratory coronaviruses, among others.
Collapse
|
41
|
De Coninck T, Van Damme EJM. Review: The multiple roles of plant lectins. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 313:111096. [PMID: 34763880 DOI: 10.1016/j.plantsci.2021.111096] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 10/14/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
For decades, the biological roles of plant lectins remained obscure and subject to speculation. With the advent of technological and scientific progress, researchers have compiled a vast amount of information regarding the structure, biological activities and functionality of hundreds of plant lectins. Data mining of genomes and transcriptome sequencing and high-throughput analyses have resulted in new insights. This review aims to provide an overview of what is presently known about plant lectins, highlighting their versatility and the importance of plant lectins for a multitude of biological processes, such as plant development, immunity, stress signaling and regulation of gene expression. Though lectins primarily act as readers of the glycocode, the multiple roles of plant lectins suggest that their functionality goes beyond carbohydrate-recognition.
Collapse
Affiliation(s)
- Tibo De Coninck
- Laboratory of Glycobiology & Biochemistry, Dept. of Biotechnology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
| | - Els J M Van Damme
- Laboratory of Glycobiology & Biochemistry, Dept. of Biotechnology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
| |
Collapse
|
42
|
Glycan detecting tools developed from the Clostridium botulinum whole hemagglutinin complex. Sci Rep 2021; 11:21973. [PMID: 34754033 PMCID: PMC8578614 DOI: 10.1038/s41598-021-01501-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/25/2021] [Indexed: 01/24/2023] Open
Abstract
Lectins are proteins with the ability to recognize and bind to specific glycan structures. These molecules play important roles in many biological systems and are actively being studied because of their ability to detect glycan biomarkers for many diseases. Hemagglutinin (HA) proteins from Clostridium botulinum type C neurotoxin complex; HA1, HA2, and HA3 are lectins that aid in the internalization of the toxin complex by binding to glycoproteins on the cell surface. HA1 mutants have been previously reported, namely HA1 W176A/D271F and HA1 N278A/Q279A which are specific to galactose (Gal)/N-acetylgalactosamine (GalNAc) and N-acetylneuraminic acid (Neu5Ac) sugars, respectively. In this study, we utilized HA1 mutants and expressed them in complex with HA2 WT and HA3 WT to produce glycan detecting tools with high binding affinity. Particularly, two types were made: Gg and Rn. Gg is an Alexa 488 conjugated lectin complex specific to Gal and GalNAc, while Rn is an Alexa 594 conjugated lectin complex specific to Neu5Ac. The specificities of these lectins were identified using a glycan microarray followed by competitive sugar inhibition experiments on cells. In addition, we confirmed that Gg and Rn staining is clearly different depending on cell type, and the staining pattern of these lectins reflects the glycans present on the cell surface as shown in enzyme treatment experiments. The availability of Gg and Rn provide us with new promising tools to study Gal, GalNAc, and Neu5Ac terminal epitopes which can aid in understanding the functional role of glycans in physiological and pathological events.
Collapse
|
43
|
Ward EM, Kizer ME, Imperiali B. Strategies and Tactics for the Development of Selective Glycan-Binding Proteins. ACS Chem Biol 2021; 16:1795-1813. [PMID: 33497192 PMCID: PMC9200409 DOI: 10.1021/acschembio.0c00880] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The influences of glycans impact all biological processes, disease states, and pathogenic interactions. Glycan-binding proteins (GBPs), such as lectins, are decisive tools for interrogating glycan structure and function because of their ease of use and ability to selectively bind defined carbohydrate epitopes and glycosidic linkages. GBP reagents are prominent tools for basic research, clinical diagnostics, therapeutics, and biotechnological applications. However, the study of glycans is hindered by the lack of specific and selective protein reagents to cover the massive diversity of carbohydrate structures that exist in nature. In addition, existing GBP reagents often suffer from low affinity or broad specificity, complicating data interpretation. There have been numerous efforts to expand the GBP toolkit beyond those identified from natural sources through protein engineering, to improve the properties of existing GBPs or to engineer novel specificities and potential applications. This review details the current scope of proteins that bind carbohydrates and the engineering methods that have been applied to enhance the affinity, selectivity, and specificity of binders.
Collapse
Affiliation(s)
- Elizabeth M. Ward
- Department of Biology, Massachusetts Institute of Technology, 31 Ames St, Cambridge, MA 02142, USA
- Microbiology Graduate Program, Massachusetts Institute of Technology, 31 Ames St, Cambridge, MA 02142, USA
| | - Megan E. Kizer
- Department of Biology, Massachusetts Institute of Technology, 31 Ames St, Cambridge, MA 02142, USA
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139, USA
| | - Barbara Imperiali
- Department of Biology, Massachusetts Institute of Technology, 31 Ames St, Cambridge, MA 02142, USA
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139, USA
| |
Collapse
|
44
|
He L, Li L, Zhu Y, Pan Y, Zhang X, Han X, Li M, Chen C, Li H, Wang C. BolTLP1, a Thaumatin-like Protein Gene, Confers Tolerance to Salt and Drought Stresses in Broccoli ( Brassica oleracea L. var. Italica). Int J Mol Sci 2021. [PMID: 34681789 DOI: 10.3390/ijms222011132/s1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023] Open
Abstract
Plant thaumatin-like proteins (TLPs) play pleiotropic roles in defending against biotic and abiotic stresses. However, the functions of TLPs in broccoli, which is one of the major vegetables among the B. oleracea varieties, remain largely unknown. In the present study, bolTLP1 was identified in broccoli, and displayed remarkably inducible expression patterns by abiotic stress. The ectopic overexpression of bolTLP1 conferred increased tolerance to high salt and drought conditions in Arabidopsis. Similarly, bolTLP1-overexpressing broccoli transgenic lines significantly improved tolerance to salt and drought stresses. These results demonstrated that bolTLP1 positively regulates drought and salt tolerance. Transcriptome data displayed that bolTLP1 may function by regulating phytohormone (ABA, ethylene and auxin)-mediated signaling pathways, hydrolase and oxidoreductase activity, sulfur compound synthesis, and the differential expression of histone variants. Further studies confirmed that RESPONSE TO DESICCATION 2 (RD2), RESPONSIVE TO DEHYDRATION 22 (RD22), VASCULAR PLANT ONE-ZINC FINGER 2 (VOZ2), SM-LIKE 1B (LSM1B) and MALATE DEHYDROGENASE (MDH) physically interacted with bolTLP1, which implied that bolTLP1 could directly interact with these proteins to confer abiotic stress tolerance in broccoli. These findings provide new insights into the function and regulation of bolTLP1, and suggest potential applications for bolTLP1 in breeding broccoli and other crops with increased tolerance to salt and drought stresses.
Collapse
Affiliation(s)
- Lixia He
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Lihong Li
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yinxia Zhu
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yu Pan
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xiuwen Zhang
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xue Han
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Muzi Li
- College of Horticulture and Landscape, Tianjin Agricultural University, Tianjin 300384, China
| | - Chengbin Chen
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Hui Li
- College of Horticulture and Landscape, Tianjin Agricultural University, Tianjin 300384, China
| | - Chunguo Wang
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
- State Key Laboratory of Vegetable Germplasm Innovation, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| |
Collapse
|
45
|
He L, Li L, Zhu Y, Pan Y, Zhang X, Han X, Li M, Chen C, Li H, Wang C. BolTLP1, a Thaumatin-like Protein Gene, Confers Tolerance to Salt and Drought Stresses in Broccoli ( Brassica oleracea L. var. Italica). Int J Mol Sci 2021; 22:ijms222011132. [PMID: 34681789 PMCID: PMC8537552 DOI: 10.3390/ijms222011132] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/09/2021] [Accepted: 10/11/2021] [Indexed: 11/16/2022] Open
Abstract
Plant thaumatin-like proteins (TLPs) play pleiotropic roles in defending against biotic and abiotic stresses. However, the functions of TLPs in broccoli, which is one of the major vegetables among the B. oleracea varieties, remain largely unknown. In the present study, bolTLP1 was identified in broccoli, and displayed remarkably inducible expression patterns by abiotic stress. The ectopic overexpression of bolTLP1 conferred increased tolerance to high salt and drought conditions in Arabidopsis. Similarly, bolTLP1-overexpressing broccoli transgenic lines significantly improved tolerance to salt and drought stresses. These results demonstrated that bolTLP1 positively regulates drought and salt tolerance. Transcriptome data displayed that bolTLP1 may function by regulating phytohormone (ABA, ethylene and auxin)-mediated signaling pathways, hydrolase and oxidoreductase activity, sulfur compound synthesis, and the differential expression of histone variants. Further studies confirmed that RESPONSE TO DESICCATION 2 (RD2), RESPONSIVE TO DEHYDRATION 22 (RD22), VASCULAR PLANT ONE-ZINC FINGER 2 (VOZ2), SM-LIKE 1B (LSM1B) and MALATE DEHYDROGENASE (MDH) physically interacted with bolTLP1, which implied that bolTLP1 could directly interact with these proteins to confer abiotic stress tolerance in broccoli. These findings provide new insights into the function and regulation of bolTLP1, and suggest potential applications for bolTLP1 in breeding broccoli and other crops with increased tolerance to salt and drought stresses.
Collapse
Affiliation(s)
- Lixia He
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin 300071, China; (L.H.); (L.L.); (Y.Z.); (Y.P.); (X.Z.); (X.H.); (C.C.)
| | - Lihong Li
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin 300071, China; (L.H.); (L.L.); (Y.Z.); (Y.P.); (X.Z.); (X.H.); (C.C.)
| | - Yinxia Zhu
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin 300071, China; (L.H.); (L.L.); (Y.Z.); (Y.P.); (X.Z.); (X.H.); (C.C.)
| | - Yu Pan
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin 300071, China; (L.H.); (L.L.); (Y.Z.); (Y.P.); (X.Z.); (X.H.); (C.C.)
| | - Xiuwen Zhang
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin 300071, China; (L.H.); (L.L.); (Y.Z.); (Y.P.); (X.Z.); (X.H.); (C.C.)
| | - Xue Han
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin 300071, China; (L.H.); (L.L.); (Y.Z.); (Y.P.); (X.Z.); (X.H.); (C.C.)
| | - Muzi Li
- College of Horticulture and Landscape, Tianjin Agricultural University, Tianjin 300384, China;
| | - Chengbin Chen
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin 300071, China; (L.H.); (L.L.); (Y.Z.); (Y.P.); (X.Z.); (X.H.); (C.C.)
| | - Hui Li
- College of Horticulture and Landscape, Tianjin Agricultural University, Tianjin 300384, China;
- Correspondence: (H.L.); (C.W.)
| | - Chunguo Wang
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin 300071, China; (L.H.); (L.L.); (Y.Z.); (Y.P.); (X.Z.); (X.H.); (C.C.)
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
- State Key Laboratory of Vegetable Germplasm Innovation, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
- Correspondence: (H.L.); (C.W.)
| |
Collapse
|
46
|
Carneiro DC, Fernandez LG, Monteiro-Cunha JP, Benevides RG, Cunha Lima ST. A patent review of the antimicrobial applications of lectins: Perspectives on therapy of infectious diseases. J Appl Microbiol 2021; 132:841-854. [PMID: 34416098 DOI: 10.1111/jam.15263] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 08/09/2021] [Accepted: 08/16/2021] [Indexed: 12/15/2022]
Abstract
Patents of lectins with antiviral, antibacterial and antifungal applications were searched and reviewed. Lectins are proteins that reversibly bind to specific carbohydrates and have the potential for therapy of infectious diseases as biopharmaceuticals, biomedical tools or in drug design. Given the rising concerns over drug resistance and epidemics, our patent review aims to add information, open horizons and indicate our view of the future perspectives about the antimicrobial applications of lectins. Patents with publications until December 2020 were retrieved from Espacenet using defined search terms and Boolean operators. The documents were used to identify the geographical and temporal distribution of the patents, characterize their lectins, and classify and summarize their antiviral, antibiotic and antifungal applications. Lectins are promising antiviral agents against viruses with epidemics and drug resistance concerns. Mannose-binding lectins were the most suggested antiviral agents since glycans with mannose residues are commonly involved in viral entry mechanisms. They were also immobilized onto surfaces to trap viral particles and inhibit their spread and replication. Many patents described the extraction, isolation, amino acid and nucleotide sequences, and expression vectors of lectins with antibiotic and/or antifungal activities in terms of MIC and IC50 for in vitro assays. The inventions also included lectins as biological tools in nanosensors for antibiotics susceptibility tests, drug-delivery systems for the treatment of resistant bacteria, diagnostics of viral diseases and as a vaccine adjuvant. Although research and development of new medicines is highly expensive, antimicrobial lectins may be worth investments given the emergence of epidemics and drug resistance. For this purpose, less invasive routes should be developed as alternatives to the parenteral administration of biologics. While anti-glycan neutralizing antibodies are difficult to develop due to the low immunogenicity of carbohydrates, lectins can be produced more easily and have a broad-spectrum activity. Protein engineering technologies may make the antimicrobial applications of lectins more successful.
Collapse
Affiliation(s)
- Diego C Carneiro
- Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador, Brazil
| | - Luzimar G Fernandez
- Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador, Brazil
| | - Joana P Monteiro-Cunha
- Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador, Brazil
| | - Raquel G Benevides
- Department of Biological Sciences, State University of Feira de Santana, Feira de Santana, Brazil
| | | |
Collapse
|
47
|
Midha A, Goyette-Desjardins G, Goerdeler F, Moscovitz O, Seeberger PH, Tedin K, Bertzbach LD, Lepenies B, Hartmann S. Lectin-Mediated Bacterial Modulation by the Intestinal Nematode Ascaris suum. Int J Mol Sci 2021; 22:ijms22168739. [PMID: 34445445 PMCID: PMC8395819 DOI: 10.3390/ijms22168739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/05/2021] [Accepted: 08/11/2021] [Indexed: 11/16/2022] Open
Abstract
Ascariasis is a global health problem for humans and animals. Adult Ascaris nematodes are long-lived in the host intestine where they interact with host cells as well as members of the microbiota resulting in chronic infections. Nematode interactions with host cells and the microbial environment are prominently mediated by parasite-secreted proteins and peptides possessing immunomodulatory and antimicrobial activities. Previously, we discovered the C-type lectin protein AsCTL-42 in the secreted products of adult Ascaris worms. Here we tested recombinant AsCTL-42 for its ability to interact with bacterial and host cells. We found that AsCTL-42 lacks bactericidal activity but neutralized bacterial cells without killing them. Treatment of bacterial cells with AsCTL-42 reduced invasion of intestinal epithelial cells by Salmonella. Furthermore, AsCTL-42 interacted with host myeloid C-type lectin receptors. Thus, AsCTL-42 is a parasite protein involved in the triad relationship between Ascaris, host cells, and the microbiota.
Collapse
Affiliation(s)
- Ankur Midha
- Institute of Immunology, Freie Universität Berlin, 14163 Berlin, Germany;
| | - Guillaume Goyette-Desjardins
- Institute for Immunology & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (G.G.-D.); (B.L.)
| | - Felix Goerdeler
- Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany; (F.G.); (O.M.); (P.H.S.)
- Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
| | - Oren Moscovitz
- Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany; (F.G.); (O.M.); (P.H.S.)
- Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
| | - Peter H. Seeberger
- Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany; (F.G.); (O.M.); (P.H.S.)
- Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
| | - Karsten Tedin
- Institute of Microbiology and Epizootics, Freie Universität Berlin, 14163 Berlin, Germany;
| | - Luca D. Bertzbach
- Institute of Virology, Freie Universität Berlin, 14163 Berlin, Germany;
- Department of Viral Transformation, Leibniz Institute for Experimental Virology (HPI), 20251 Hamburg, Germany
| | - Bernd Lepenies
- Institute for Immunology & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (G.G.-D.); (B.L.)
| | - Susanne Hartmann
- Institute of Immunology, Freie Universität Berlin, 14163 Berlin, Germany;
- Correspondence:
| |
Collapse
|
48
|
Chettri D, Boro M, Sarkar L, Verma AK. Lectins: Biological significance to biotechnological application. Carbohydr Res 2021; 506:108367. [PMID: 34130214 DOI: 10.1016/j.carres.2021.108367] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 05/31/2021] [Indexed: 10/21/2022]
Abstract
Lectins are a set of non-enzymatic carbohydrate binding proteins appearing in all domains of life. They function to recognize, interact and bring about reversible binding of a specific sugar moiety present in a molecule. Since glycans are ubiquitous in nature and are an essential part of various biological process, the lectins are been investigated to understand the profile of these versatile but complex glycan molecule. The knowledge gained can be used to explore and streamline the various mechanisms involving glycans and their conjugates. Thus, lectins have gained importance in carbohydrate-protein interactions contributing to the development in the field of glycobiology. This has led to a deeper understanding of the importance of saccharide recognition in life. Since their discovery, the lectins have become a great choice of research in the field of glycobiology and their biological significances have recently received considerable attention in the biocontrol field as well as medical sectors.
Collapse
Affiliation(s)
| | - Manswama Boro
- Department of Microbiology, Sikkim University, India.
| | - Lija Sarkar
- Department of Microbiology, Sikkim University, India.
| | | |
Collapse
|
49
|
Mao F, Bao Y, Wong NK, Huang M, Liu K, Zhang X, Yang Z, Yi W, Shu X, Xiang Z, Yu Z, Zhang Y. Large-Scale Plasma Peptidomic Profiling Reveals a Novel, Nontoxic, Crassostrea hongkongensis-Derived Antimicrobial Peptide against Foodborne Pathogens. Mar Drugs 2021; 19:420. [PMID: 34436258 PMCID: PMC8399951 DOI: 10.3390/md19080420] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/22/2021] [Accepted: 07/22/2021] [Indexed: 11/16/2022] Open
Abstract
Antimicrobial peptides are a fundamental component of mollusks' defense systems, though they remain a thinly investigated subject. Here, infection by Vibrio parahemolyticus triggered a significant increase in antimicrobial activity in oyster plasma. By using PBS-challenged oysters as a control, plasma peptides from immunologically challenged oysters were subjected to peptidomic profiling and in silico data mining to identify bioactive peptides. Thirty-five identified plasma peptides were up-regulated post infection, among which, six up-regulated peptides (URPs) showed a relatively high positive charge. URP20 was validated with significant antibacterial activity. Virtually, URP20 triggered aggregation of bacterial cells, accompanied by their membrane permeabilization. Interestingly, URP20 was found to be active against Gram-positive and Gram-negative foodborne pathogens as well as Candida albicans, with no cytotoxicity to mammalian cells and mice. Our study provides the first large-scale plasma peptidomic dataset that identifies novel bioactive peptides in marine mollusks. Further exploration of peptide diversity in marine invertebrates should prove a fruitful pursuit for designing novel AMPs with broad applications.
Collapse
Affiliation(s)
- Fan Mao
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 510301, China; (F.M.); (N.-K.W.); (M.H.); (K.L.); (X.Z.); (Z.Y.); (W.Y.); (X.S.); (Z.X.)
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 510301, China
| | - Yongbo Bao
- Zhejiang Key Laboratory of Aquatic Germplasm Resources, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China;
| | - Nai-Kei Wong
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 510301, China; (F.M.); (N.-K.W.); (M.H.); (K.L.); (X.Z.); (Z.Y.); (W.Y.); (X.S.); (Z.X.)
- Department of Pharmacology, Medical College, Shantou University, Shantou 515063, China
| | - Minwei Huang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 510301, China; (F.M.); (N.-K.W.); (M.H.); (K.L.); (X.Z.); (Z.Y.); (W.Y.); (X.S.); (Z.X.)
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 510301, China
| | - Kunna Liu
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 510301, China; (F.M.); (N.-K.W.); (M.H.); (K.L.); (X.Z.); (Z.Y.); (W.Y.); (X.S.); (Z.X.)
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 510301, China
| | - Xiangyu Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 510301, China; (F.M.); (N.-K.W.); (M.H.); (K.L.); (X.Z.); (Z.Y.); (W.Y.); (X.S.); (Z.X.)
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 510301, China
| | - Zhuo Yang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 510301, China; (F.M.); (N.-K.W.); (M.H.); (K.L.); (X.Z.); (Z.Y.); (W.Y.); (X.S.); (Z.X.)
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 510301, China
| | - Wenjie Yi
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 510301, China; (F.M.); (N.-K.W.); (M.H.); (K.L.); (X.Z.); (Z.Y.); (W.Y.); (X.S.); (Z.X.)
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 510301, China
| | - Xiao Shu
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 510301, China; (F.M.); (N.-K.W.); (M.H.); (K.L.); (X.Z.); (Z.Y.); (W.Y.); (X.S.); (Z.X.)
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 510301, China
| | - Zhiming Xiang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 510301, China; (F.M.); (N.-K.W.); (M.H.); (K.L.); (X.Z.); (Z.Y.); (W.Y.); (X.S.); (Z.X.)
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 510301, China
| | - Ziniu Yu
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 510301, China; (F.M.); (N.-K.W.); (M.H.); (K.L.); (X.Z.); (Z.Y.); (W.Y.); (X.S.); (Z.X.)
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 510301, China
| | - Yang Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 510301, China; (F.M.); (N.-K.W.); (M.H.); (K.L.); (X.Z.); (Z.Y.); (W.Y.); (X.S.); (Z.X.)
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 510301, China
| |
Collapse
|
50
|
Di Lorenzo F, Duda KA, Lanzetta R, Silipo A, De Castro C, Molinaro A. A Journey from Structure to Function of Bacterial Lipopolysaccharides. Chem Rev 2021; 122:15767-15821. [PMID: 34286971 DOI: 10.1021/acs.chemrev.0c01321] [Citation(s) in RCA: 132] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Lipopolysaccharide (LPS) is a crucial constituent of the outer membrane of most Gram-negative bacteria, playing a fundamental role in the protection of bacteria from environmental stress factors, in drug resistance, in pathogenesis, and in symbiosis. During the last decades, LPS has been thoroughly dissected, and massive information on this fascinating biomolecule is now available. In this Review, we will give the reader a third millennium update of the current knowledge of LPS with key information on the inherent peculiar carbohydrate chemistry due to often puzzling sugar residues that are uniquely found on it. Then, we will drive the reader through the complex and multifarious immunological outcomes that any given LPS can raise, which is strictly dependent on its chemical structure. Further, we will argue about issues that still remain unresolved and that would represent the immediate future of LPS research. It is critical to address these points to complete our notions on LPS chemistry, functions, and roles, in turn leading to innovative ways to manipulate the processes involving such a still controversial and intriguing biomolecule.
Collapse
Affiliation(s)
- Flaviana Di Lorenzo
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 4, 80126 Naples, Italy.,Task Force on Microbiome Studies, University of Naples Federico II, Via Cinthia 4, 80126 Naples, Italy
| | - Katarzyna A Duda
- Research Center Borstel Leibniz Lung Center, Parkallee 4a, 23845 Borstel, Germany
| | - Rosa Lanzetta
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 4, 80126 Naples, Italy
| | - Alba Silipo
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 4, 80126 Naples, Italy.,Task Force on Microbiome Studies, University of Naples Federico II, Via Cinthia 4, 80126 Naples, Italy
| | - Cristina De Castro
- Task Force on Microbiome Studies, University of Naples Federico II, Via Cinthia 4, 80126 Naples, Italy.,Department of Agricultural Sciences, University of Naples Federico II, Via Università 96, 80055 Portici, Naples, Italy
| | - Antonio Molinaro
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 4, 80126 Naples, Italy.,Task Force on Microbiome Studies, University of Naples Federico II, Via Cinthia 4, 80126 Naples, Italy.,Department of Chemistry, School of Science, Osaka University, 1-1 Osaka University Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|