1
|
Jiang H, Tang Y, Liu A, Ren C, Lin W, Liu K, Zhao X, Li Y. Elucidating the preventive and therapeutic effects of cardiac telocytes paracrine microRNAs on ischemic heart disease. Front Cardiovasc Med 2025; 12:1540051. [PMID: 40236257 PMCID: PMC11997980 DOI: 10.3389/fcvm.2025.1540051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 02/24/2025] [Indexed: 04/17/2025] Open
Abstract
Telocytes (TCs), a newly identified type of mesenchymal cell since 2010, possess substantial potential in maintaining tissue homeostasis, orchestrating organ development, and facilitating tissue regeneration. Their distribution in blood, the adventitia of blood vessels, and the intima implies a close association with vascular function. Ischemic heart disease (IHD), a significant challenge in cardiovascular disease, is characterized by the occlusion of major vessels, obstruction of collateral circulation, and disruption of the capillary network-pathological features closely linked to endothelial cell damage. Myocardial tissue is rich in cardiac telocytes (cTCs), which, following myocardial injury, can secrete numerous miRNAs that promote angiogenesis, including miR-let-7e, miR-10a, and miR-126-3p. This indicates that cTCs may have therapeutic potential for IHD. The primary mechanism by which cTCs-derived exosomes exert paracrine effects is through reducing endothelial cell injury, suggesting that enhancing the production of cTCs could offer a novel therapeutic approach for treating IHD.
Collapse
Affiliation(s)
- Hugang Jiang
- Department of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Yan Tang
- Department of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Ai Liu
- Department of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Chunzhen Ren
- Department of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Wenyan Lin
- Daytime Diagnosis and Treatment Center, Gansu Provincial People’s Hospital, Lanzhou, Gansu, China
| | - Kai Liu
- Department of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Xinke Zhao
- Cardiovascular Clinical Medical Center, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Yingdong Li
- Department of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| |
Collapse
|
2
|
Haberberger RV, Matusica D, Shiers S, Sankaranarayanan I, Price TJ. Transcriptomic and Histological Characterization of Telocytes in the Human Dorsal Root Ganglion. J Comp Neurol 2025; 533:e70044. [PMID: 40097369 PMCID: PMC11913768 DOI: 10.1002/cne.70044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 01/23/2025] [Accepted: 03/05/2025] [Indexed: 03/19/2025]
Abstract
Telocytes are interstitial cells characterized by long processes that span considerable distances within tissues, likely facilitating coordination and interaction with various cell types. Although present in central and peripheral neuronal tissues, their role remains elusive. Dorsal root ganglia (DRG) house pseudounipolar afferent neurons responsible for transmitting signals related to temperature, proprioception, and nociception. This study aimed to investigate the presence and function of telocytes in human DRG by examining their transcriptional profile, anatomical location, and ultrastructure. Combined expression of CD34 and PDGFRA is a marker gene set for telocytes, and our sequencing data revealed CD34 and PDGFRA expressing cells comprise roughly 1.5%-3% of DRG cells. Combined expression of CD34 and PDGFRA is a putative marker gene set for telocytes. Further analysis identified nine subclusters with enriched cluster-specific genes. Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) pathway analysis suggested vascular, immune, and connective tissue-associated putative telocyte subtypes, mapping over 3000 potential receptor-ligand interactions between sensory neurons and these CD34 and PDGFRA expressing putative telocytes were identified using a ligand-receptors interactome platform. Immunohistochemistry identified CD34+ve telocytes in the endoneural space of DRGs, next to neuron-satellite complexes, in perivascular spaces and in the endoneural space between nerve fiber bundles, consistent with pathway analysis. Transmission electron microscopy (TEM) confirmed their location identifying characteristic elongated nucleus, long and thin telopodes containing vesicles, often surrounded by a basal lamina. This study provides the first gene expression analysis of telocytes in complex human tissue, specifically the DRG, highlighting functional differences based on tissue location while revealing no significant ultrastructural variations.
Collapse
Affiliation(s)
- Rainer V. Haberberger
- Department of Anatomy and Pathology, School of BiomedicineThe University of AdelaideAdelaideAustralia
- Anatomy, Histology & Pathology, College of Medicine and Public HealthFlinders UniversityAdelaideAustralia
| | - Dusan Matusica
- Anatomy, Histology & Pathology, College of Medicine and Public HealthFlinders UniversityAdelaideAustralia
| | - Stephanie Shiers
- Department of Neuroscience, Center for Advanced Pain StudiesThe University of Texas at DallasRichardsonTexasUSA
| | - Ishwarya Sankaranarayanan
- Department of Neuroscience, Center for Advanced Pain StudiesThe University of Texas at DallasRichardsonTexasUSA
| | - Theodore J. Price
- Department of Neuroscience, Center for Advanced Pain StudiesThe University of Texas at DallasRichardsonTexasUSA
| |
Collapse
|
3
|
Risvanli A, Hatipoglu F, Salykov R, Timurkaan N, Kadiralieva N, Kasymalieva KK, Seker I, Ekinci E. Evaluation of Telocytes in the Ovary, Oviduct and Uterus of Kyrgyz Mares According to Pregnancy Status. Anat Histol Embryol 2025; 54:e70024. [PMID: 39968722 DOI: 10.1111/ahe.70024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/18/2024] [Accepted: 02/10/2025] [Indexed: 02/20/2025]
Abstract
In the current study, we aimed to determine the distribution of telocytes in the ovary, oviduct and uterus of Kyrgyz mares depending on whether they were pregnant. We also studied the progression during the first 6 months of pregnancy. To this end, ovary, oviduct and uterus tissues from 53 Kyrgyz mares were obtained post-mortem. The mare tissue samples were divided into two groups: pregnant (n = 43) and non-pregnant (n = 10). Telocyte levels in the tissues were determined using light microscopic and immunohistochemical methods. Subsequently, the data acquired were evaluated based on whether the mare was pregnant, and if so, the month of pregnancy was also taken into account. After the study, we found a higher number of telocytes in the myometrium (5.69 ± 0.90, p < 0.001) and oviduct propria (0.14 ± 0.05, p < 0.006) of pregnant mares. We also noted an increased number of telocytes in the oviduct propria (0.04 ± 0.02, p < 0.03) of mares 4 months into the pregnancy, and in the muscle layer (1.62 ± 0.57, p < 0.01), myometrium (4.83 ± 0.78, p < 0.03) and ovarian stroma (0.14 ± 0.06, p < 0.04) of mares 6 months into pregnancy. In conclusion, we observed an increase in telocytes in the ovaries, oviducts and uterus of Kyrgyz mares during pregnancy, with this increase becoming more marked towards the sixth month of gestation. Therefore, additional research on the role of telocytes in pregnancy may prove beneficial.
Collapse
Affiliation(s)
- Ali Risvanli
- Faculty of Veterinary Medicine, Kyrgyzstan-Turkey Manas University, Bishkek, Kyrgyzstan
- Faculty of Veterinary Medicine, Firat University, Elazığ, Türkiye
| | - Fatih Hatipoglu
- Faculty of Veterinary Medicine, Kyrgyzstan-Turkey Manas University, Bishkek, Kyrgyzstan
- Faculty of Veterinary Medicine, Selcuk University, Konya, Türkiye
| | - Ruslan Salykov
- Faculty of Veterinary Medicine, Kyrgyzstan-Turkey Manas University, Bishkek, Kyrgyzstan
| | - Necati Timurkaan
- Faculty of Veterinary Medicine, Firat University, Elazığ, Türkiye
| | - Nariste Kadiralieva
- Faculty of Veterinary Medicine, Kyrgyzstan-Turkey Manas University, Bishkek, Kyrgyzstan
| | | | - Ibrahim Seker
- Faculty of Veterinary Medicine, Firat University, Elazığ, Türkiye
| | - Elif Ekinci
- Faculty of Veterinary Medicine, Dicle University, Diyarbakır, Türkiye
| |
Collapse
|
4
|
Lv J, Yuan L, Chen G, Ma L, Qi Y, Zeng J, Wang X, Jin Y. Distribution characteristics and morphological comparison of telocytes in the aortic bulb and myocardium of yak heart. BMC Vet Res 2025; 21:88. [PMID: 39987074 PMCID: PMC11846454 DOI: 10.1186/s12917-025-04553-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 01/31/2025] [Indexed: 02/24/2025] Open
Abstract
BACKGROUND Telocytes (TCs) are small interstitial cells that extend into multiple bead-like protrusions called telopodes (TPs). TCs are widely found in many tissues and organs, form connections with almost all types of cardiomyocytes, and participate in regulating cardiac microenvironment homeostasis. METHODS In this study, transmission electron microscopy combined with special staining techniques (Gomori's, Masson's trichrome, and toluidine blue staining) were used to analyse the ultrastructure, distribution, and cytochemical characteristics of TCs in yak hearts. Immunohistochemistry and immunofluorescence double staining techniques were combined to identify the immunophenotypic characteristics of TCs functional markers (CD34, CD117, PDGFR-α and α-SMA) and further reveal their potential functions. RESULTS The results showed that the TCs in the aortic bulb of yak hearts had prominent nuclei, and thin, long TPs with abundant secretory vesicles. TCs in the myocardial tissue exhibited irregularly shaped nuclei, shorter TPs, and connections with myocardial fibres and adjacent capillaries, forming a complex TC network. Immunohistochemical results demonstrated the positive expression of functional markers CD34, CD117, α-SMA and PDGFR-α in both the aortic bulb and myocardium. Immunofluorescence double staining results indicated co-expression of CD34/CD117, CD34/α-SMA, and CD117/PDGFR-α in TCs. CONCLUSION This is the first study to report the presence of TCs in the aortic bulb and myocardium of yak hearts and that it may form TC networks that mainly participate in mechanical support and cell communication in the heart. The presence and distribution characteristics of TCs in the heart of yaks provide important clues for further research on the role of TC networks in the adaptability of plateau animals to the environment.
Collapse
Affiliation(s)
- Jinhan Lv
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Ligang Yuan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China.
- College of Veterinary Medicine, Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Gansu Agricultural University, Lanzhou city, Gansu province, 730070, China.
| | - Guojuan Chen
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
- Huangzhong District Animal Disease Control Center of Xining City, Xining, 811600, China
| | - Long Ma
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yumei Qi
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Jianlin Zeng
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Xiaofen Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yajuan Jin
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| |
Collapse
|
5
|
Arvola O, Stigzelius V, Ampuja M, Kivelä R. Neural progenitor cell-derived exosomes in ischemia/reperfusion injury in cardiomyoblasts. BMC Neurosci 2025; 26:11. [PMID: 39910431 PMCID: PMC11800440 DOI: 10.1186/s12868-025-00931-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 01/22/2025] [Indexed: 02/07/2025] Open
Abstract
The physiologic relationship between the brain and heart is emerging as a novel therapeutic target for clinical intervention for acute myocardial infarction. In the adult human brain, vestigial neuronal progenitor stem cells contribute to neuronal repair and recovery following cerebral ischemic injury, an effect modulated by secreted exosomes. Ischemia conditioned neuronal cell derived supernatant and experimental stroke has been shown to be injurious to the heart. However, whether unconditioned neuronal progenitor cell derived-exosomes can instead protect myocardium represents a profound research gap. We investigated the effects of unconditioned neural stem cell derived exosomes as post-injury treatment for cardiomyoblasts from three neuronal culture conditions; adherent cultures, neurosphere cultures and bioreactor cultures. Small extracellular vesicles were enriched with serial ultracentrifugation, validated via nanoparticle tracking analysis, transmission electron microscopy and Western blot analysis prior to utilization as post-injury treatment for H9c2 cardiomyoblasts following oxygen and glucose deprivation. LDH assay was used to assess viability and Seahorse XF high-resolution respirometry analyzer to investigate post-injury cardiomyocyte bioenergetics. We found no evidence that unconditioned neural stem cell derived exosomes are cardiotoxic nor cardioprotective to H9c2 cardiomyoblasts following ischemia-reperfusion injury. Based on our findings, utilizing unconditioned neural stem cell derived exosomes as post-injury treatment for other organs should not have adverse effects to the damaged cardiac cells.
Collapse
Affiliation(s)
- Oiva Arvola
- Division of Intensive Care, Department of Anaesthesiology and Intensive Care, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
- Stem Cells and Metabolism Research Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| | - Virpi Stigzelius
- Stem Cells and Metabolism Research Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Minna Ampuja
- Stem Cells and Metabolism Research Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Riikka Kivelä
- Stem Cells and Metabolism Research Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Wihuri Research Institute, Helsinki, Finland
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
6
|
Rosa I, Fioretto BS, Andreucci E, Biagioni A, Romano E, Manetti M. Skin Telocyte Secretome as Conditioned Medium Prevents Profibrotic Differentiation of Skin Fibroblasts into Myofibroblasts. Int J Mol Sci 2025; 26:1284. [PMID: 39941052 PMCID: PMC11818514 DOI: 10.3390/ijms26031284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/29/2025] [Accepted: 01/31/2025] [Indexed: 02/16/2025] Open
Abstract
Telocytes (TCs) are distinctive cells widely localized in the stromal compartment of several human organs, including the skin. By means of their peculiar prolongations named telopodes, skin TCs are organized in networks interconnected with a variety of adjacent cells, being thus supposed to take part in skin homeostasis through both cell-to-cell contacts and the release of extracellular vesicles. A disarrangement/loss of the TC network was shown in human fibrotic skin as well as in the murine model of bleomycin-induced cutaneous fibrosis, but whether such TC alterations may represent just a consequence or a trigger of the fibrotic process still remains to be clarified. Thus, we investigated the effects of skin TC secretome as conditioned medium (TC-CM) on the transition of skin fibroblasts into myofibroblasts promoted by the master profibrotic cytokine transforming growth factor β1 (TGFβ1). Primary cultures of both adult human skin TCs and fibroblasts were obtained by means of immunomagnetic cell separation. Nanoparticle tracking analysis was carried out to measure extracellular vesicles in TC-CM. The combination of multiple morphological, gene/protein expression, and functional assessments demonstrated that TC-CM was able to significantly prevent TGFβ1-induced fibroblast-to-myofibroblast transition. TC-CM did not influence cell viability, while it effectively inhibited TGFβ1-induced fibroblast proliferation, migration, and morphological changes. Indeed, TC-CM was able to reduce TGFβ1-mediated skin fibroblast phenotypic and functional differentiation into myofibroblasts, as shown by a significant decrease in FAP, ACTA2, COL1A1, COL1A2, FN1, and CTGF gene expression, α-smooth muscle actin, N-cadherin, COL1A1, and FN-EDA protein levels, and collagen gel matrix contraction. Furthermore, TC-CM significantly lowered TGFβ1-mediated ERK1/2 signaling pathway activation. This in vitro study proves for the first time that TCs may play an important role in skin homeostasis through the prevention of fibroblast-to-myofibroblast transition via paracrine mechanisms and affords the necessary basis to investigate in the future the feasibility of TC secretome as an innovative antifibrotic therapeutic tool.
Collapse
Affiliation(s)
- Irene Rosa
- Section of Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy; (I.R.); (B.S.F.)
- Imaging Platform, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| | - Bianca Saveria Fioretto
- Section of Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy; (I.R.); (B.S.F.)
| | - Elena Andreucci
- Section of Experimental Pathology and Oncology, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (E.A.); (A.B.)
| | - Alessio Biagioni
- Section of Experimental Pathology and Oncology, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (E.A.); (A.B.)
| | - Eloisa Romano
- Section of Internal Medicine, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy;
| | - Mirko Manetti
- Section of Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy; (I.R.); (B.S.F.)
- Imaging Platform, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| |
Collapse
|
7
|
Hu H, Wang X, Yu H, Wang Z. Extracellular vesicular microRNAs and cardiac hypertrophy. Front Endocrinol (Lausanne) 2025; 15:1444940. [PMID: 39850481 PMCID: PMC11753959 DOI: 10.3389/fendo.2024.1444940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 12/23/2024] [Indexed: 01/25/2025] Open
Abstract
Cardiac hypertrophy is an adaptive response to pressure or volume overload such as hypertension and ischemic heart diseases. Sustained cardiac hypertrophy eventually leads to heart failure. The pathophysiological alterations of hypertrophy are complex, involving both cellular and molecular systems. Understanding the molecular events that inhibit or repress cardiac hypertrophy may help identify novel therapeutic strategies. Increasing evidence has indicated that extracellular vesicle (EV)-derived microRNAs (miRNAs) play a significant role in the development and progression of cardiac hypertrophy. In this review, we briefly review recent advancements in EV research, especially on biogenesis, cargoes and its role in cardiac hypertrophy. We then describe the latest findings regarding EV-derived miRNAs, highlighting their functions and regulatory mechanisms in cardiac hypertrophy. Finally, the potential role of EV-derived miRNAs as targets in the diagnosis and treatment of cardiac hypertrophy will be discussed.
Collapse
Affiliation(s)
- Hai Hu
- Inner Mongolia Key Laboratory of Disease-Related Biomarkers, The Second Affiliated Hospital, Baotou Medical College, Baotou, China
- School of Basic Medicine, Baotou Medical College, Baotou, China
| | - Xiulian Wang
- Inner Mongolia Key Laboratory of Disease-Related Biomarkers, The Second Affiliated Hospital, Baotou Medical College, Baotou, China
| | - Hui Yu
- Inner Mongolia Key Laboratory of Disease-Related Biomarkers, The Second Affiliated Hospital, Baotou Medical College, Baotou, China
- School of Basic Medicine, Baotou Medical College, Baotou, China
| | - Zhanli Wang
- Inner Mongolia Key Laboratory of Disease-Related Biomarkers, The Second Affiliated Hospital, Baotou Medical College, Baotou, China
| |
Collapse
|
8
|
Yim KHW, Al Hrout A, Chahwan R. Intercellular Epigenomic Signalling via Extracellular Vesicles During B Cell Maturation. J Extracell Vesicles 2025; 14:e70040. [PMID: 39868437 PMCID: PMC11770373 DOI: 10.1002/jev2.70040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 12/18/2024] [Accepted: 01/05/2025] [Indexed: 01/28/2025] Open
Abstract
B cell maturation is crucial for effective adaptive immunity. It requires a complex signalling network to mediate antibody diversification through mutagenesis. B cells also rely on queues from other cells within the germinal centre. Recently, a novel class of intercellular signals mediated by extracellular vesicles (EVs) has emerged. Studies have shown that B cell EV-mediated signalling is involved in immune response regulation and tumorigenesis. However, the mechanistic role of B cell EVs is not yet established. We herein study the biological properties and physiological function of B cell EVs during B cell maturation. We use emerging technologies to profile B cell EV surface marker signatures at the single particle level, molecular cargo and physiological roles in B cell maturation. EV ncRNA cargo, characterised by RNA-seq, identified an EV-mediated novel non-coding RNA (ncRNA) regulatory network for B cell maturation. We show that a previously uncharacterised micro-RNA (miR-5099) in combination with a set of long ncRNA are carried within B cell EVs and could contribute to antibody diversification. The physiological role of EVs in B cell maturation is investigated using EV blockade assays and complementation studies using diverse EV sources further confirmed the physiological role and mode of action of EVs in B cell maturation.
Collapse
Affiliation(s)
- Kevin Ho Wai Yim
- Institute of Experimental ImmunologyUniversity of ZurichZurichSwitzerland
- EVIIVE AGZurichSwitzerland
| | - Ala'a Al Hrout
- Institute of Experimental ImmunologyUniversity of ZurichZurichSwitzerland
| | - Richard Chahwan
- Institute of Experimental ImmunologyUniversity of ZurichZurichSwitzerland
- EVIIVE AGZurichSwitzerland
| |
Collapse
|
9
|
Ding HW, Wang Q, Wang M, Chen Y, Yuan SM. Immunohistochemical and ultrastructural identification of telocytes in the infantile hemangioma. Ultrastruct Pathol 2024; 48:563-574. [PMID: 39397344 DOI: 10.1080/01913123.2024.2415608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/23/2024] [Accepted: 10/08/2024] [Indexed: 10/15/2024]
Abstract
Telocytes (TCs) are a distinctive cell entity of the stromal microenvironment of multiple tumors; to date, their existence in infantile hemangioma (IH) remains almost unexplored. This study was therefore undertaken to characterize the immunophenotype, location, morphology, and ultrastructure of telocytes in the IH by means of immunohistochemistry, immunofluorescence confocal microscopy, and transmission electron microscopy. Telocytes were initially identified by CD34, PDGFR-α, Vimentin, and AQP-1 immunostaining. Analyzing the spatial relationship among telocytes, stem cells, endothelial cells, pericytes in the IH with AQP-1/CD31, AQP-1/Glut-1, AQP-1/α-SMA, AQP-1/CD146 and AQP-1/CD133 double immunofluorescence. TCs were immunonegative for CD31, Glut-1, CD146, α-SMA, CD133, and C-kit in the IH. The ultrastructural examination confirmed the presence of TCs, namely stromal cells with characteristic cytoplasmic processes (i.e. telopodes) forming labyrinthine networks around microvessels and releasing extracellular vesicles. Our study provides evidence that telocytes are present and PDGFR-α and AQP-1 are specific antigenic markers in the IH.
Collapse
Affiliation(s)
- Han-Wen Ding
- Department of Plastic Surgery, Jinling Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qian Wang
- Department of Plastic Surgery, Nanjing Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, Jiangsu, China
| | - Min Wang
- Department of Plastic Surgery, Nanjing Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, Jiangsu, China
| | - Yong Chen
- Department of Plastic Surgery, Nanjing Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, Jiangsu, China
| | - Si-Ming Yuan
- Department of Plastic Surgery, Jinling Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Plastic Surgery, Nanjing Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
10
|
Haberberger RV, Matusica D, Shiers S, Sankaranarayanan I, Price TJ. Transcriptomic and histological characterization of telocytes in the human dorsal root ganglion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.24.614693. [PMID: 39386553 PMCID: PMC11463542 DOI: 10.1101/2024.09.24.614693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Telocytes are interstitial cells with long processes that cover distances in tissues and likely coordinate interacts with other cell types. Though present in central and peripheral neuronal tissues, their role remains unclear. Dorsal root ganglia (DRG) house pseudounipolar afferent neurons responsible for signals such as temperature, proprioception and nociception. This study aimed to investigate the presence and function of telocytes in human DRG by investigating their transcriptional profile, location and ultrastructure. Sequencing data revealed CD34 and PDGFRA expressing cells comprise roughly 1.5-3% of DRG cells. Combined expression of CD34 and PDGFRA is a putative marker gene set for telocytes. Further analysis identified nine subclusters with enriched cluster-specific genes. KEGG and GO pathway analysis suggested vascular, immune and connective tissue associated putative telocyte subtypes. Over 3000 potential receptor-ligand interactions between sensory neurons and these CD34 and PDGFRA expressing putative telocytes were identified using a ligand-receptors interactome platform. Immunohisto-chemistry showed CD34+ telocytes in the endoneural space of DRGs, next to neuron-satellite complexes, in perivascular spaces and in the endoneural space between nerve fibre bundles, consistent with pathway analysis. Transmission electron microscopy (TEM) confirmed their location identifying characteristic elongated nucleus, long and thin telopods containing vesicles, surrounded by a basal lamina. This is the first study that provides gene expression analysis of telocytes in complex human tissue such as the DRG, highlighting functional differences based on tissue location with no significant ultrastructural variation.
Collapse
Affiliation(s)
- Rainer V Haberberger
- Department of Anatomy and Pathology, School of Biomedicine, The University of Adelaide, Adelaide, Australia
- Anatomy, Histology & Pathology, College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Dusan Matusica
- Anatomy, Histology & Pathology, College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Stephanie Shiers
- Department of Neuroscience, Center for Advanced Pain Studies, The University of Texas at Dallas. Richardson, TX
| | - Ishwarya Sankaranarayanan
- Department of Neuroscience, Center for Advanced Pain Studies, The University of Texas at Dallas. Richardson, TX
| | - Theodore J Price
- Department of Neuroscience, Center for Advanced Pain Studies, The University of Texas at Dallas. Richardson, TX
| |
Collapse
|
11
|
Imam RAEN, Aboulhoda BE, Amer MM, Hassan FE, Alghamdi MA, Abdel-Hamed MR. Role of mesenchymal stem cells-derived exosomes on inflammation, apoptosis, fibrosis and telocyte modulation in doxorubicin-induced cardiotoxicity: A closer look at the structural level. Microsc Res Tech 2024; 87:1598-1614. [PMID: 38441397 DOI: 10.1002/jemt.24544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/13/2024] [Accepted: 02/23/2024] [Indexed: 06/03/2024]
Abstract
Cardiotoxicity induced by doxorubicin (Dox) is a major complication in cancer patients. Exosomes (Ex) derived from mesenchymal cells could be a promising therapeutic for various heart diseases. This study investigated the role of Ex in Dox-induced cardiotoxicity and its mechanistic insights, using Sacubitril/valsartan (S/V) as a reference drug widely recommended in heart failure management. The study involved 24 Wistar rats, divided into a control, Dox, Dox + S/V, and Dox + Ex groups. The rats were assessed for cardiac enzymes, inflammatory and oxidative stress markers. Immunohistochemical expression of caspase-1, nuclear factor erythroid 2-related factor 2 (NrF2), E-Cadherin, CD117/c-kit, and Platelet-derived growth factor-α (PDGFα) was evaluated. P53 and Annexin V were assessed by PCR. Histological examination was performed using hematoxylin and eosin and Sirius red stains. Ex ameliorated the adverse cardiac pathological changes and significantly decreased the cardiac enzymes and inflammatory and oxidative stress markers. Ex also exerted antifibrotic and antiapoptotic effect in heart tissue. Ex treatment also improved NrF2 immunohistochemistry, up-regulated E-Cadherin immune expression, and restored the telocyte markers CD117/c-kit and PDGFα. Ex can mitigate Dox-induced cardiotoxicity by acting as an anti-inflammatory, antioxidant, antiapoptotic, and antifibrotic agents, restoring telocytes and modulating epithelial mesenchymal transition. RESEARCH HIGHLIGHTS: Exosomes exhibit positive expression for CD90 and CD105 whereas showing -ve expression for CD 34 by flow cytometry. Exosomes restore the immunohistochemical expression of the telocytes markers CD117/c-kit and PDGFα. Exosomes alleviate myocardial apoptosis, oxidative stress and fibrosis.
Collapse
Affiliation(s)
- Reda A El Nasser Imam
- Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Basma Emad Aboulhoda
- Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Maha M Amer
- Department of Anatomy and Embryology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Fatma E Hassan
- Medical Physiology Department, Kasr Alainy, Faculty of Medicine, Cairo University, Giza, Egypt
- General Medicine Practice Program, Department of Physiology, Batterjee Medical College, Jeddah, Saudi Arabia
| | - Mansour A Alghamdi
- College of Medicine, King Khalid University, Abha, Saudi Arabia
- Genomics and Personalized Medicine Unit, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Mohamed R Abdel-Hamed
- Department of Anatomy and Embryology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
12
|
Wang S, Cheng Y, Liu L, Chen R, Li Y, Wang H, Zhang R. The Morphology and Ultrastructure of Dermal Telocytes Characterized by TEM and AFM. Cell Biochem Biophys 2024; 82:705-713. [PMID: 38300374 DOI: 10.1007/s12013-024-01222-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/17/2024] [Indexed: 02/02/2024]
Abstract
This investigation delves into the structural foundation of human dermal telocytes (TCs) with the aim of elucidating their role in signal transmission. Dermal TCs were isolated from human foreskins via enzymatic digestion and flow cytometric sorting, and identified by immunohistochemical staining with an antibody against CD34. The ultrastructure of TCs was examined using transmission electron microscopy (TEM). The proliferation rates of sorted TCs and CD34-negative fibroblasts were compared using the MTS assay (Cell Proliferation Assay). Images of viable cultured TCs were analyzed using atomic force microscopy (AFM) under normal atmospheric pressure and temperature. Results demonstrated that dermal TCs were positive for CD34 and vimentin, predominantly distributed in the reticular dermis and subcutaneous tissue, forming interwoven networks. Each TC had a small body with a high nuclear-plasma ratio and two or three extremely long and thin telopodes (TPs), exhibiting a typical 'moniliform' appearance. Compared with CD34-negative fibroblasts, dermal TCs exhibited significantly lower proliferation rates. Cultured TCs displayed typical moniliform projections (namely, TPs) in the AFM images. The distal ends of TPs were enlarged, shaped like a broom, and extended multiple pseudopods to contact other cell bodies. Slender filamentary pseudopodia and thick, short cone-like structures were observed on the surfaces of the dilated segments and terminals of TPs. These structures are assumed to be evidence of the secretion and release of endosomes, such as exosomes, and the communication between cells. TCs form interstitial networks in the reticular dermis and subcutaneous tissue, providing a structural basis for contacts between cells and the secretion of signal-carrying substances, involving intercellular connections and communication.
Collapse
Affiliation(s)
- Shengyi Wang
- Department of Dermatology, Xuzhou Central Hospital, Xuzhou, 221009, China
| | - Yan Cheng
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Lei Liu
- Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou, Jiangsu, 213164, China
| | - Renhe Chen
- Department of Dermatology, the Third Affiliated Hospital of Soochow University, 185 Juqian Road, Changzhou, 213003, China
| | - Yue Li
- Department of Dermatology, the Third Affiliated Hospital of Soochow University, 185 Juqian Road, Changzhou, 213003, China
| | - Huiying Wang
- Department of Dermatology, the Third Affiliated Hospital of Soochow University, 185 Juqian Road, Changzhou, 213003, China
| | - Ruzhi Zhang
- Department of Dermatology, the Second Affiliated Hospital of Wannan Medical College, Wuhu, 241000, China.
| |
Collapse
|
13
|
Qi R, Zhang Y, Yan F. Exosomes enriched by miR-429-3p derived from ITGB1 modified Telocytes alleviates hypoxia-induced pulmonary arterial hypertension through regulating Rac1 expression. Cell Biol Toxicol 2024; 40:32. [PMID: 38767703 PMCID: PMC11106170 DOI: 10.1007/s10565-024-09879-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 05/15/2024] [Indexed: 05/22/2024]
Abstract
BACKGROUND Recent studies have emphasized the critical role of Telocytes (TCs)-derived exosomes in organ tissue injury and repair. Our previous research showed a significant increase in ITGB1 within TCs. Pulmonary Arterial Hypertension (PAH) is marked by a loss of microvessel regeneration and progressive vascular remodeling. This study aims to investigate whether exosomes derived from ITGB1-modified TCs (ITGB1-Exo) could mitigate PAH. METHODS We analyzed differentially expressed microRNAs (DEmiRs) in TCs using Affymetrix Genechip miRNA 4.0 arrays. Exosomes isolated from TC culture supernatants were verified through transmission electron microscopy and Nanoparticle Tracking Analysis. The impact of miR-429-3p-enriched exosomes (Exo-ITGB1) on hypoxia-induced pulmonary arterial smooth muscle cells (PASMCs) was evaluated using CCK-8, transwell assay, and inflammatory factor analysis. A four-week hypoxia-induced mouse model of PAH was constructed, and H&E staining, along with Immunofluorescence staining, were employed to assess PAH progression. RESULTS Forty-five miRNAs exhibited significant differential expression in TCs following ITGB1 knockdown. Mus-miR-429-3p, significantly upregulated in ITGB1-overexpressing TCs and in ITGB1-modified TC-derived exosomes, was selected for further investigation. Exo-ITGB1 notably inhibited the migration, proliferation, and inflammation of PASMCs by targeting Rac1. Overexpressing Rac1 partly counteracted Exo-ITGB1's effects. In vivo administration of Exo-ITGB1 effectively reduced pulmonary vascular remodeling and inflammation. CONCLUSIONS Our findings reveal that ITGB1-modified TC-derived exosomes exert anti-inflammatory effects and reverse vascular remodeling through the miR-429-3p/Rac1 axis. This provides potential therapeutic strategies for PAH treatment.
Collapse
Affiliation(s)
- Ruixue Qi
- Center for Tumor Diagnosis and Therapy, Jinshan Hospital, Fudan University, Shanghai, China.
| | - Yong Zhang
- Department of Respiratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Furong Yan
- Center for Tumor Diagnosis and Therapy, Jinshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
14
|
Pulze L, Baranzini N, Acquati F, Marcolli G, Grimaldi A. Dynamic relationship among extracellular matrix and body wall cells in Hirudo verbana morphogenesis. Cell Tissue Res 2024; 396:213-229. [PMID: 38424269 PMCID: PMC11055932 DOI: 10.1007/s00441-024-03874-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 02/05/2024] [Indexed: 03/02/2024]
Abstract
A great bulk of recent experimental evidence suggests the key role of the complex crosstalk between the extracellular matrix (ECM) and the cellular component of tissues during morphogenesis and embryogenesis. In particular, remodeling of the ECM and of its physical interactions pattern with surrounding cells represent two crucial processes that might be involved in muscle development. However, little information is available on this topic, especially on invertebrate species. To obtain new insights on how tuning the ECM microenvironment might drive cellular fate during embryonic development, we used the invertebrate medicinal leech Hirudo verbana as a valuable experimental model, due to its simple anatomy and the recapitulation of many aspects of the basic biological processes of vertebrates. Our previous studies on leech post-embryonic development have already shown the pivotal role of ECM changes during the growth of the body wall and the role of Yes-associated protein 1 (YAP1) in mechanotransduction. Here, we suggest that the interactions between stromal cell telocytes and ECM might be crucial in driving the organization of muscle layers during embryogenesis. Furthermore, we propose a possible role of the pleiotropic enzyme HvRNASET2 as a possible modulator of collagen deposition and ECM remodeling not only during regenerative processes (as previously demonstrated) but also in embryogenesis.
Collapse
Affiliation(s)
- Laura Pulze
- Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant 3, 21100, Varese, Italy
- ILFARM s.r.l., via Guicciardini 14, 21100, Varese, Italy
| | - Nicolò Baranzini
- Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant 3, 21100, Varese, Italy
- ILFARM s.r.l., via Guicciardini 14, 21100, Varese, Italy
| | - Francesco Acquati
- Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant 3, 21100, Varese, Italy
- ILFARM s.r.l., via Guicciardini 14, 21100, Varese, Italy
| | - Gaia Marcolli
- Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant 3, 21100, Varese, Italy
| | - Annalisa Grimaldi
- Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant 3, 21100, Varese, Italy.
- ILFARM s.r.l., via Guicciardini 14, 21100, Varese, Italy.
| |
Collapse
|
15
|
Junatas KL, Couck L, Tay H, Sinowatz F, Van Den Broeck W. Ultrastructural evidence of telocytes in the embryonic chick heart. Anat Histol Embryol 2024; 53:e12970. [PMID: 37740674 DOI: 10.1111/ahe.12970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 09/01/2023] [Accepted: 09/04/2023] [Indexed: 09/25/2023]
Abstract
The cardiac telocyte (TC) is a novel interstitial cell type with a unique ultrastructure and great potential in therapy. The present study examined its presence in the heart of chicken embryos ageing 7-15 days old (Hamburger-Hamilton [HH] stages 31-41) using transmission electron microscopy. TCs were identified across all stages in the atrial and ventricular myocardium, close to maturing cardiomyocytes, blood vessels and lymphatics. Early-stage TCs have immature features resembling mesenchymal cells. Late-stage TCs were distinct, possessing the cytoplasmic prolongations termed telopodes (Tps), which are very long and thin, usually 1-3 in number, and display a moniliform appearance and have an average thickness below 0.2 μm. TCs residing in the epicardium and endocardium were also detected. In the subepicardium near developing coronary vessels, they were localized in the cardiac stem cell niches, coexisting with cardiac stem cells and cardiomyocyte progenitors. Electron-dense structures and the release of extracellular vesicles were observed between embryonic TCs and surrounding structures, suggesting roles in intercellular communication, cardiomyocyte differentiation and maturation, angiogenesis, and stem cell nursing and guidance.
Collapse
Affiliation(s)
- Khan Lamanero Junatas
- Department of Morphology, Medical Imaging, Orthopaedics, Physiotherapy and Nutrition - Laboratory of Morphology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
- Department of Basic Veterinary Sciences, College of Veterinary Medicine, University of Southern Mindanao, Cotabato, Philippines
| | - Liesbeth Couck
- Department of Morphology, Medical Imaging, Orthopaedics, Physiotherapy and Nutrition - Laboratory of Morphology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Hanna Tay
- Department of Morphology, Medical Imaging, Orthopaedics, Physiotherapy and Nutrition - Laboratory of Morphology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Fred Sinowatz
- Institute of Anatomy, Histology and Embryology, Department of Veterinary Sciences, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Wim Van Den Broeck
- Department of Morphology, Medical Imaging, Orthopaedics, Physiotherapy and Nutrition - Laboratory of Morphology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
16
|
Borges LF, Manetti M. Telocytes and Stem Cells. RESIDENT STEM CELLS AND REGENERATIVE THERAPY 2024:305-337. [DOI: 10.1016/b978-0-443-15289-4.00011-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
17
|
Ishii N, Noguchi K, Ikemoto MJ, Yohda M, Odahara T. Optimizing Exosome Preparation Based on Size and Morphology: Insights From Electron Microscopy. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2023; 29:2068-2079. [PMID: 37831006 DOI: 10.1093/micmic/ozad103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/14/2023] [Accepted: 09/08/2023] [Indexed: 10/14/2023]
Abstract
Extracellular vesicles (EVs), including exosomes, are crucial in intercellular communication, but differentiating between exosomes and microvesicles is challenging due to their similar morphology and size. This study focuses on multivesicular bodies (MVBs), where exosomes mature, and optimizes exosome isolation using transmission electron microscopy (TEM) for size information. Considering that EVs are nanocolloidal particles, a salt-free Bis-Tris buffer is found to maintain EV integrity better than phosphate-buffered saline (PBS). Dynamic light scattering (DLS) and TEM analysis confirm that intact exosome fractions under the salt-free Bis-Tris buffer condition exhibit polydispersity, including a unique population of <50 nm vesicles resembling intraluminal membrane vesicles (ILVs) in MVBs, alongside larger populations. This <50 nm population disappears in PBS or Bis-Tris buffer with 140 mM NaCl, transforming into a monodisperse population >100 nm. Immunoelectron microscopy also validates the presence of CD63, an exosome biomarker, on approximately 50 nm EVs. These findings provide valuable insights into exosome characterization and isolation, essential for future biomedical applications in diagnostics and drug delivery.
Collapse
Affiliation(s)
- Noriyuki Ishii
- Cellular and Molecular Biotechnology Research Institute, Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central-6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
- Electron Microscopy Facility, Open Research Facilities Station, Open Research Platform Unit, Tsukuba Innovation Arena (TIA) Central Office, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central-6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
- The United Graduate School of Agricultural Science, Gifu University, 1-1 Yanagido, Gifu, Gifu 501-1193, Japan
| | - Keiichi Noguchi
- Instrumentation Analysis Center, Tokyo University of Agriculture and Technology, 2-24-16 Naka, Koganei, Tokyo 184-8588, Japan
| | - Mitsushi J Ikemoto
- Health and Medical Research Institute, Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central-6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
- Graduate School of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
| | - Masafumi Yohda
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka, Koganei, Tokyo 184-8588, Japan
| | - Takayuki Odahara
- Biomedical Research Institute, Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central-6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| |
Collapse
|
18
|
Wei XJ, Huang YL, Chen TQ, Yang XJ. Inhibitory effect of telocyte-induced M1 macrophages on endometriosis: Targeting angiogenesis and invasion. Acta Histochem 2023; 125:152099. [PMID: 37813067 DOI: 10.1016/j.acthis.2023.152099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 09/28/2023] [Accepted: 09/30/2023] [Indexed: 10/11/2023]
Abstract
PURPOSE Telocytes (TCs), a novel type of stromal cells found in tissues, induce macrophage differentiation into classically activated macrophages (M1) types and enhance their phagocytic function. The purpose of this study was to investigate the inhibitory effects of TC-induced M1 macrophages on endometriosis (EMs). METHODS mouse uterine primary TCs and endometrial stromal cells (ESCs) were isolated and identified using double immunofluorescence staining. For the in vitro study, ESCs were treated with TC-induced M1 macrophages, and the vascular endothelial growth factor (VEGF), matrix metalloproteinase 9 (MMP9), and nuclear factor kappa B (NF-κb) genes were identified by quantitative real-time PCR (qRT-PCR) or western blotting (WB). For the in vivo study, an EMs mouse model received TC-conditioned medium (TCM) via abdominal administration, and characterized the inhibitory effects on growth (lesion weight, volume, and pathology), tissue-resident macrophages differentiation by immunostaining, angiogenic capacity (CD31 and VEGF), invasive capacity (MMP9), and NF-κb expression within EMs lesions. RESULTS immunofluorescent staining showed that uterine TCs expressed CD34+ and vimentin+, whereas ESCs expressed vimentin+ and cytokeratin-. At the cellular level, TC-induced M1 macrophages can significantly inhibit the expression of VEGF and MMP9 in ESCs through WB or qRT-PCR, possibly by suppressing the NF-κb pathway. The in vivo study showed that macrophages switch from the alternatively activated macrophages (M2) in untreated EMs lesions to the M1 subtype after TCM exposure. Thereby, TC-induced M1 macrophages contributed to the inhibition of EMs lesions. More importantly, this effect may be achieved by suppressing the expression of NF-κb to inhibit angiogenesis (CD31 and VEGF) and invasion (MMP9) in the tissue. CONCLUSION TC-induced M1 macrophages play a prevailing role in suppressing EMs by inhibiting angiogenic and invasive capacity through the NF-κb pathway, which provides a promising therapeutic approach for EMs.
Collapse
Affiliation(s)
- Xiao-Jiao Wei
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu Province 215006, PR China
| | - Yue-Lin Huang
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Guizhou Medical University, Guiyang City, Guizhou Province 550000, PR China
| | - Tian-Quan Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu Province 215006, PR China; Department of Obstetrics and Gynecology, The Affiliated Hospital of Yangzhou University, Yangzhou City, Jiangsu Province 225000, PR China
| | - Xiao-Jun Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu Province 215006, PR China.
| |
Collapse
|
19
|
Sanches BDA, Tamarindo GH, da Silva ADT, Amaro GM, Dos Santos Maldarine J, Dos Santos VA, Guerra LHA, Baraldi CMB, Góes RM, Taboga SR, Carvalho HF. Stromal cell-derived factor 1 (SDF-1) increases the number of telocytes in ex vivo and in vitro assays. Histochem Cell Biol 2023; 160:419-433. [PMID: 37474667 DOI: 10.1007/s00418-023-02223-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2023] [Indexed: 07/22/2023]
Abstract
Telocytes are interstitial cells that are present in various tissues, have long cytoplasmic projections known as telopodes, and are classified as CD34+ cells. Telopodes form extensive networks that permeate the stroma, and there is evidence that these networks connect several stromal cell types, giving them an important role in intercellular communication and the maintenance of tissue organisation. Data have also shown that these networks can be impaired and the number of telocytes reduced in association with many pathological conditions such as cancer and fibrosis. Thus, techniques that promote telocyte proliferation have become an important therapeutic target. In this study, ex vivo and in vitro assays were conducted to evaluate the impact on prostatic telocytes of SDF-1, a factor involved in the proliferation and migration of CD34+ cells. SDF-1 caused an increase in the number of telocytes in explants, as well as morphological changes that were possibly related to the proliferation of these cells. These changes involved the fusion of telopode segments, linked to an increase in cell body volume. In vitro assays also showed that SDF-1 enriched prostate stromal cells with telocytes. Altogether, the data indicate that SDF-1 may offer promising uses in therapies that aim to increase the number of telocytes. However, further studies are needed to confirm the efficiency of this factor in different tissues/pathological conditions.
Collapse
Affiliation(s)
- Bruno Domingos Azevedo Sanches
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Bertrand Russel Av., Carl Von Linnaeus Street., Campinas, São Paulo, Brazil
| | - Guilherme Henrique Tamarindo
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Bertrand Russel Av., Carl Von Linnaeus Street., Campinas, São Paulo, Brazil
| | - Alana Della Torre da Silva
- Laboratory of Microscopy and Microanalysis, Department of Biology, São Paulo State University (UNESP), Cristóvão Colombo St., São José Do Rio Preto, São Paulo, 2265, Brazil
| | - Gustavo Matheus Amaro
- Laboratory of Microscopy and Microanalysis, Department of Biology, São Paulo State University (UNESP), Cristóvão Colombo St., São José Do Rio Preto, São Paulo, 2265, Brazil
| | - Juliana Dos Santos Maldarine
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Bertrand Russel Av., Carl Von Linnaeus Street., Campinas, São Paulo, Brazil
| | - Vitória Alário Dos Santos
- Laboratory of Microscopy and Microanalysis, Department of Biology, São Paulo State University (UNESP), Cristóvão Colombo St., São José Do Rio Preto, São Paulo, 2265, Brazil
| | - Luiz Henrique Alves Guerra
- Laboratory of Microscopy and Microanalysis, Department of Biology, São Paulo State University (UNESP), Cristóvão Colombo St., São José Do Rio Preto, São Paulo, 2265, Brazil
| | - Carolina Marques Bedolo Baraldi
- Laboratory of Microscopy and Microanalysis, Department of Biology, São Paulo State University (UNESP), Cristóvão Colombo St., São José Do Rio Preto, São Paulo, 2265, Brazil
| | - Rejane Maira Góes
- Laboratory of Microscopy and Microanalysis, Department of Biology, São Paulo State University (UNESP), Cristóvão Colombo St., São José Do Rio Preto, São Paulo, 2265, Brazil
| | - Sebastião Roberto Taboga
- Laboratory of Microscopy and Microanalysis, Department of Biology, São Paulo State University (UNESP), Cristóvão Colombo St., São José Do Rio Preto, São Paulo, 2265, Brazil
| | - Hernandes F Carvalho
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Bertrand Russel Av., Carl Von Linnaeus Street., Campinas, São Paulo, Brazil.
| |
Collapse
|
20
|
Babadag S, Çelebi-Saltik B. A cellular regulator of the niche: telocyte. Tissue Barriers 2023; 11:2131955. [PMID: 36218299 PMCID: PMC10606812 DOI: 10.1080/21688370.2022.2131955] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/24/2022] [Accepted: 09/28/2022] [Indexed: 10/17/2022] Open
Abstract
Interstitial cells are present in the environment of stem cells in order to increase stem cell proliferation and differentiation and they are important to increase the efficiency of their transplantation. Telocytes (TCs) play an important role both in the preservation of tissue organ integrity and in the pathophysiology of many diseases, especially cancer. They make homo- or heterocellular contacts to form the structure of 3D network through their telopodes and deliver signaling molecules via a juxtacrine and/or paracrine association by budding shed vesicles into the vascular, nervous and endocrine systems. During this interaction, along with organelles, mRNA, microRNA, long non-coding RNA, and genomic DNA are transferred. This review article not only specifies the properties of TCs and their roles in the tissue organ microenvironment but also gives information about the factors that play a role in the transport of epigenetic information by TCs.
Collapse
Affiliation(s)
- Sena Babadag
- Department of Stem Cell Sciences, Hacettepe University Graduate School of Health Sciences, Sihhiye, Turkey
- Center for Stem Cell Research and Development, Hacettepe University, Sihhiye, Turkey
| | - Betül Çelebi-Saltik
- Department of Stem Cell Sciences, Hacettepe University Graduate School of Health Sciences, Sihhiye, Turkey
- Center for Stem Cell Research and Development, Hacettepe University, Sihhiye, Turkey
| |
Collapse
|
21
|
Mei L, Zhu Q, Bai X, Zhang Y, Huang H, Yang M, Shi Y, Liang C, Zhang Z, Chen Q. Cellular Evidence for Telocytes Mediating Electroacupuncture to Ameliorate Obesity in Mice. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2023; 29:1746-1754. [PMID: 37639834 DOI: 10.1093/micmic/ozad092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 07/10/2023] [Accepted: 08/06/2023] [Indexed: 08/31/2023]
Abstract
Electroacupuncture has been generally applied to target obesity, the principle of which is based on the meridian in traditional Chinese medicine. Although Telocytes (TCs) have been reported as the potential essence of meridians, their specific role in the electroacupuncture treatment of obesity remains unclear. Thus, we investigated the cellular evidence for TC-mediated electroacupuncture to alleviate obesity. Mice were divided into three groups as follows: electroacupuncture group (EA), control group (CG), and normal group (NG). The present study showed that the weight of perirenal white adipose tissue (rWAT), the serum level of total cholesterol, and the low-density lipoprotein cholesterol were all significantly decreased after electroacupuncture. Ultrastructurally, the prolongations (telopodes, Tps) of TCs were in direct contact with adipocytes, and lipid droplets were distributed on the surface of Tps. The proportions of double-positive fluorescent areas of TCs (CD34 and PDGFRα) were significantly elevated with concomitant elongated Tps in EA mice, as compared to those in CG mice. The expression of Cx43 and CD63 (gap junction and exosome markers) was significantly enhanced. These characteristics facilitated the transmission of electroacupuncture stimulation from skin to rWAT. We conclude that electroacupuncture relieved obesity by activating TCs morphologically, upregulating the gap junctions between TCs, and increasing the exosomes around TCs.
Collapse
Affiliation(s)
- Lu Mei
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Xuanwu District, Nanjing, Jiangsu Province 210095, China
| | - Qianmei Zhu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Xuanwu District, Nanjing, Jiangsu Province 210095, China
| | - Xuebing Bai
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Xuanwu District, Nanjing, Jiangsu Province 210095, China
| | - Yingxin Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Xuanwu District, Nanjing, Jiangsu Province 210095, China
| | - Haixiang Huang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Xuanwu District, Nanjing, Jiangsu Province 210095, China
| | - Min Yang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Xuanwu District, Nanjing, Jiangsu Province 210095, China
| | - Yonghong Shi
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Xuanwu District, Nanjing, Jiangsu Province 210095, China
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Ziyue Road, Minhang District, Shanghai 200241, China
| | - Chunhua Liang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Xuanwu District, Nanjing, Jiangsu Province 210095, China
| | - Zhenwei Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Xuanwu District, Nanjing, Jiangsu Province 210095, China
| | - Qiusheng Chen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Xuanwu District, Nanjing, Jiangsu Province 210095, China
| |
Collapse
|
22
|
Díaz-Flores L, Gutiérrez R, González-Gómez M, García MDP, Carrasco JL, Madrid JF, Díaz-Flores L. Telocytes/CD34+ Stromal Cells in the Normal, Hyperplastic, and Adenomatous Human Parathyroid Glands. Int J Mol Sci 2023; 24:12118. [PMID: 37569493 PMCID: PMC10419317 DOI: 10.3390/ijms241512118] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Telocytes/CD34+ stromal cells (TCs/CD34+ SCs) have been studied in numerous organs and tissues, but their presence and characteristics in the parathyroid glands have not been explored. Using immunological and ultrastructural procedures, we assess the location, arrangement, and behavior of TCs/CD34+ SCs in normal human parathyroids, during their development and in their most frequent pathologic conditions. In normal parathyroids, TCs/CD34+ SCs show a small somatic body and long thin processes with a moniliform aspect, form labyrinthine systems, connect other neighboring TCs/CD34+ SCs, vessels, adipocytes, and parenchymal cells directly or by extracellular vesicles, and associate with collagen I. TCs/CD34+ SCs and collagen I are absent around vessels and adipocytes within parenchymal clusters. In developing parathyroids, TCs/CD34+ SC surround small parenchymal nests and adipocytes. In hyperplastic parathyroids, TCs/CD34+ SCs are prominent in some thickened internodular septa and surround small extraglandular parenchymal cell nests. TCs/CD34+ SCs are present in delimiting regions with compressed parathyroids and their capsule in adenomas but absent in most adenomatous tissue. In conclusion, TCs/CD34+ SCs are an important cellular component in the human parathyroid stroma, except around vessels within parenchymal nests. They show typical characteristics, including those of connecting cells, are present in developing parathyroids, and participate in the most frequent parathyroid pathology, including hyperplastic and adenomatous parathyroids.
Collapse
Affiliation(s)
- Lucio Díaz-Flores
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 38071 La Laguna, Spain (J.L.C.)
| | - Ricardo Gutiérrez
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 38071 La Laguna, Spain (J.L.C.)
| | - Miriam González-Gómez
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 38071 La Laguna, Spain (J.L.C.)
- Canary Biomedical Technology Institute, University of La Laguna, 38071 La Laguna, Spain
| | - Maria del Pino García
- Department of Pathology, Eurofins Megalab–Hospiten Hospitals, 38100 La Laguna, Spain
| | - Jose Luis Carrasco
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 38071 La Laguna, Spain (J.L.C.)
| | - Juan Francisco Madrid
- Department of Cell Biology and Histology, School of Medicine, Campus of International Excellence “Campus Mare Nostrum”, IMIB-Arrixaca, University of Murcia, 30100 Murcia, Spain;
| | - Lucio Díaz-Flores
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 38071 La Laguna, Spain (J.L.C.)
| |
Collapse
|
23
|
Skalon EK, Starunov VV, Bondarenko NI, Slyusarev GS. Plasmodium structure of Intoshia linei (Orthonectida). J Morphol 2023; 284:e21602. [PMID: 37313769 DOI: 10.1002/jmor.21602] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/10/2023] [Accepted: 05/13/2023] [Indexed: 06/15/2023]
Abstract
Orthonectids are enigmatic parasitic bilaterians whose exact position on the phylogenetic tree is still uncertain. Despite ongoing debate about their phylogenetic position, the parasitic stage of orthonectids known as "plasmodium" remains underexplored. There is still no consensus on the origin of the plasmodium: whether it is an altered host cell or a parasitic organism that develops in the host extracellular environment. To determine the origin of the orthonectid parasitic stage, we studied in detail the fine structure of the Intoshia linei orthonectid plasmodium using a variety of morphological methods. The orthonectid plasmodium is a shapeless multinucleated organism separated from host tissues by a double membrane envelope. Besides numerous nuclei, its cytoplasm contains organelles typical for other bilaterians, reproductive cells, and maturing sexual specimens. Reproductive cells, as well as developing orthonectid males and females, are covered by an additional membrane. The plasmodium forms protrusions directed to the surface of the host body and used by mature individuals for egress from the host. The obtained results indicate that the orthonectid plasmodium is an extracellular parasite. A possible mechanism for its formation might involve spreading parasitic larva cells across the host tissues with subsequent generation of a cell-within-cell complex. The cytoplasm of the plasmodium originates from the outer cell, which undergoes multiple nuclear divisions without cytokinesis, while the inner cell divides, giving rise to reproductive cells and embryos. The term "plasmodium" should be avoided and the term "orthonectid plasmodium" could be temporarily used instead.
Collapse
Affiliation(s)
- Elizaveta K Skalon
- Department of Invertebrate Zoology, Faculty of Biology, St. Petersburg University, St. Petersburg, Russia
| | - Viktor V Starunov
- Department of Invertebrate Zoology, Faculty of Biology, St. Petersburg University, St. Petersburg, Russia
| | - Natalya I Bondarenko
- Department of Invertebrate Zoology, Faculty of Biology, St. Petersburg University, St. Petersburg, Russia
| | - George S Slyusarev
- Department of Invertebrate Zoology, Faculty of Biology, St. Petersburg University, St. Petersburg, Russia
| |
Collapse
|
24
|
Etcharren V, Mouguelar H, Aguilar Valenciano JJ. Identification of telocytes in the oviduct of the mare. Theriogenology 2023; 205:18-26. [PMID: 37084500 DOI: 10.1016/j.theriogenology.2023.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/29/2023] [Accepted: 04/14/2023] [Indexed: 04/23/2023]
Abstract
Telocytes (TCs), a recently discovered special type of stromal cells, have been identified in many organs of many species, including the female and male reproductive system, with proposed multiple potential bio-functions such as homeostasis, immunomodulation, tissue remodeling and regeneration, embryogenesis, angiogenesis and even tumorigenesis. The aim of this study was to investigate the existence, and characteristics of telocytes in normal equine oviduct. To identify them, we used routine light microscopy, non-conventional light microscopy (NCLM), transmission electron microscopy (TEM), and immunohistochemistry. We found that telocytes of the equine oviduct can be recognized in fixed specimens by light microscopy (methylene blue staining), with more details on Epon semi-thin sections (toluidine blue staining) by NCLM, and that they showed positive immunostaining for CD34. The telocytes, with their typical long and moniliform prolongations, formed networks in the stromal space of the submucosa, muscular and serosa layers, particularly in the lamina propia where they were observed in greater quantity. By TEM we have also confirmed the presence of cells ultrastructurally identifiable as telocytes (cells with telopodes alternating podomers and podoms) in the aforementioned locations. Direct intercellular contacts between epithelial cells and neighboring telocytes were evidenced. EIn conclusion, we demonstrated that telocytes are present in the equine oviduct as previously reported in other species. The potential implication of telocytes in multiple potential functions of physiological and pathological processes deserves further investigation.
Collapse
Affiliation(s)
- V Etcharren
- Departamento de Producción Animal, Facultad de Agronomía y Veterinaria, Universidad Nacional de Rio Cuarto, Argentina
| | - H Mouguelar
- Departamento de Anatomía, Facultad de Agronomía y Veterinaria, National University of Río Cuarto, Córdoba, Argentina
| | - J J Aguilar Valenciano
- Departamento de Producción Animal, Facultad de Agronomía y Veterinaria, Universidad Nacional de Rio Cuarto, Argentina.
| |
Collapse
|
25
|
Dama G, Hu X, Yan Y, Li Y, Li H, Yang F, Liu Y, Lin J. Identification and protective role of CD34 + stromal cells/telocytes in experimental autoimmune encephalomyelitis (EAE) mouse spleen. Histochem Cell Biol 2023:10.1007/s00418-023-02186-5. [PMID: 37014442 DOI: 10.1007/s00418-023-02186-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2023] [Indexed: 04/05/2023]
Abstract
Experimental autoimmune encephalomyelitis (EAE) is a classical animal model of human multiple sclerosis (MS) that is most commonly used to study the neuropathology and therapeutic effects of the disease. Telocytes (TCs) are a specialized type of interstitial or mesenchymal cell first identified by Popescu in various tissues and organs. However, the existence, distribution and role of CD34+ stromal cells (SCs)/TCs in the EAE-induced mouse spleen remain to be elucidated. We conducted immunohistochemistry, immunofluorescence (double staining for CD34 and c-kit, vimentin, F4/80, CD163, Nanog, Sca-1, CD31 or tryptase) and transmission electron microscopy experiments to investigate the existence, distribution and role of CD34+ SCs/TCs in the EAE-induced mouse spleen. Interestingly, immunohistochemistry, double-immunofluorescence, and transmission electron microscopy results revealed that CD34+ SCs/TCs were significantly upregulated in the EAE mouse spleen. Immunohistochemical or double-immunofluorescence staining of CD34+ SCs/TCs showed positive expression for CD34, c-kit, vimentin, CD34/vimentin, c-kit/vimentin and CD34/c-kit, and negative expression for CD31 and tryptase. Transmission electron microscopy (TEM) results demonstrated that CD34+ SCs/TCs established close connections with lymphocytes, reticular cells, macrophages, endothelial cells and erythrocytes. Furthermore, we also found that M1 (F4/80) or M2 (CD163) macrophages, and haematopoietic, pluripotent stem cells were markedly increased in EAE mice. Our results suggest that CD34+ SCs/TCs are abundant and may play a contributing role in modulating the immune response, recruiting macrophages and proliferation of haematopoietic and pluripotent stem cells following injury to promote tissue repair and regeneration in EAE mouse spleens. This suggests that their transplantation combined with stem cells might represent a promising therapeutic target for the treatment and prevention of multiple autoimmune and chronic inflammatory disorders.
Collapse
Affiliation(s)
- Ganesh Dama
- Henan Joint International Research Laboratory of Stem Cell Medicine, Stem Cell and Biotherapy Engineering Research Center of Henan, Xinxiang Medical University, East of JinSui Road #601, Xinxiang City, 453003, Henan Province, China
- Department of Community Health, Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200, Kepala Batas, Pulau Pinang, Malaysia
| | - Xiaoxi Hu
- College of Life Sciences and Technology, Stem Cell and Biotherapy Engineering Research Center of Henan, Xinxiang Medical University, East of JinSui Road # 601, Xinxiang, 453003, China
| | - Yushan Yan
- College of Life Sciences and Technology, Stem Cell and Biotherapy Engineering Research Center of Henan, Xinxiang Medical University, East of JinSui Road # 601, Xinxiang, 453003, China
| | - Yonghai Li
- College of Life Sciences and Technology, Stem Cell and Biotherapy Engineering Research Center of Henan, Xinxiang Medical University, East of JinSui Road # 601, Xinxiang, 453003, China
| | - Han Li
- College of Life Sciences and Technology, Stem Cell and Biotherapy Engineering Research Center of Henan, Xinxiang Medical University, East of JinSui Road # 601, Xinxiang, 453003, China
| | - Fen Yang
- Henan Joint International Research Laboratory of Stem Cell Medicine, Stem Cell and Biotherapy Engineering Research Center of Henan, Xinxiang Medical University, East of JinSui Road #601, Xinxiang City, 453003, Henan Province, China
- College of Medical Engineering, Xinxiang Medical University, Xinxiang, 453003, China
| | - Yanli Liu
- Henan Joint International Research Laboratory of Stem Cell Medicine, Stem Cell and Biotherapy Engineering Research Center of Henan, Xinxiang Medical University, East of JinSui Road #601, Xinxiang City, 453003, Henan Province, China.
- College of Life Sciences and Technology, Stem Cell and Biotherapy Engineering Research Center of Henan, Xinxiang Medical University, East of JinSui Road # 601, Xinxiang, 453003, China.
| | - Juntang Lin
- Henan Joint International Research Laboratory of Stem Cell Medicine, Stem Cell and Biotherapy Engineering Research Center of Henan, Xinxiang Medical University, East of JinSui Road #601, Xinxiang City, 453003, Henan Province, China.
- College of Life Sciences and Technology, Stem Cell and Biotherapy Engineering Research Center of Henan, Xinxiang Medical University, East of JinSui Road # 601, Xinxiang, 453003, China.
- College of Medical Engineering, Xinxiang Medical University, Xinxiang, 453003, China.
| |
Collapse
|
26
|
Zhang X, Lu P, Shen X. Morphologies and potential roles of telocytes in nervous tissue. CLINICAL AND TRANSLATIONAL DISCOVERY 2023; 3. [DOI: 10.1002/ctd2.186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/16/2023] [Indexed: 01/03/2025]
Abstract
AbstractStructurally similar cells have been found and termed telocytes (TCs) since the first characterisation of interstitial Cajal‐like cells in 1911. TCs are a novel and peculiar interstitial cell type with a small cellular body, markedly long cell processes named telopodes and a wide distribution in numerous tissues throughout the body. Besides specific morphological characteristics and immunohistochemical profiles, TCs build three‐dimensional mixed networks through homocellular (connection to each other) and/or heterocellular contacts (connection with other cell types), interaction with extracellular matrix and their vicinity to nerve endings, and thus might play, as part of an integrated system, roles in maintaining organ/tissue function. In this mini‐review, we summarise physical properties, general characteristics and distribution of TCs in diverse organs and tissues, focusing on their potential functions in nervous tissue and current challenges in investigating TCs as a distinct cell type.
Collapse
Affiliation(s)
- Xu Zhang
- Institute for Reproductive Health Shanghai Institute for Biomedical and Pharmaceutical Technologies Shanghai China
| | - Ping Lu
- Institute for Reproductive Health Shanghai Institute for Biomedical and Pharmaceutical Technologies Shanghai China
| | - Xiaorong Shen
- Institute for Reproductive Health Shanghai Institute for Biomedical and Pharmaceutical Technologies Shanghai China
| |
Collapse
|
27
|
Mistlberger-Reiner A, Sterneder S, Reipert S, Wolske S, Somoza V. Extracellular Vesicles and Particles Modulate Proton Secretion in a Model of Human Parietal Cells. ACS OMEGA 2023; 8:2213-2226. [PMID: 36687051 PMCID: PMC9850724 DOI: 10.1021/acsomega.2c06442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
The secretion of extracellular vesicles and particles (EVPs) is an important mechanism of cellular communication. In this work, we demonstrate a functional role of EVPs in mechanisms regulating gastric acid secretion. HGT-1 cells were used as a model system to assess proton secretion. First, in order to prove EVP secretion by HGT-1 cells, EVPs were isolated by size exclusion chromatography and characterized by nanoparticle tracking analysis, Western blot, and cryo transmission electron microscopy. For examination of the potential role of EVPs in proton secretion, HGT-1 cells were treated with pharmacological EV-inhibitors, resulting in a reduction of histamine-induced proton secretion. To demonstrate the functional role of EVPs in the mechanism of proton secretion, EVP-conditioned supernatant was collected after stimulation of HGT-1 cells with histamine, fractionated, and subjected to an activity screening. The results revealed constituents of the HGT-1-derived secretome with an MW of >100 kDa (including EVPs) to modulate proton secretion, while smaller constituents had no effect. Finally, a dose-dependent modulatory effect on proton secretion of HGT-1 cells was demonstrated by isolated HGT-1-derived EVPs. Hence, this study presents first results on the potential function of EVPs as a previously undiscovered mechanism of regulation of gastric acid secretion by parietal cells.
Collapse
Affiliation(s)
- Agnes Mistlberger-Reiner
- Department
of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Vienna 1090, Austria
| | - Sonja Sterneder
- Department
of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Vienna 1090, Austria
| | - Siegfried Reipert
- Core
Facility Cell Imaging and Ultrastructure Research, University of Vienna, Vienna 1030, Austria
| | - Sara Wolske
- Department
of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Vienna 1090, Austria
| | - Veronika Somoza
- Department
of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Vienna 1090, Austria
- Leibniz-Institute
for Food Systems Biology at the Technical University of Munich, Freising 85354, Germany
- Nutritional
Systems Biology, Technical University of
Munich, Freising 85354, Germany
| |
Collapse
|
28
|
De Sousa KP, Rossi I, Abdullahi M, Ramirez MI, Stratton D, Inal JM. Isolation and characterization of extracellular vesicles and future directions in diagnosis and therapy. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1835. [PMID: 35898167 PMCID: PMC10078256 DOI: 10.1002/wnan.1835] [Citation(s) in RCA: 106] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/23/2022] [Accepted: 06/30/2022] [Indexed: 01/31/2023]
Abstract
Extracellular vesicles (EVs) are a unique and heterogeneous class of lipid bilayer nanoparticles secreted by most cells. EVs are regarded as important mediators of intercellular communication in both prokaryotic and eukaryotic cells due to their ability to transfer proteins, lipids and nucleic acids to recipient cells. In addition to their physiological role, EVs are recognized as modulators in pathological processes such as cancer, infectious diseases, and neurodegenerative disorders, providing new potential targets for diagnosis and therapeutic intervention. For a complete understanding of EVs as a universal cellular biological system and its translational applications, optimal techniques for their isolation and characterization are required. Here, we review recent progress in those techniques, from isolation methods to characterization techniques. With interest in therapeutic applications of EVs growing, we address fundamental points of EV-related cell biology, such as cellular uptake mechanisms and their biodistribution in tissues as well as challenges to their application as drug carriers or biomarkers for less invasive diagnosis or as immunogens. This article is categorized under: Diagnostic Tools > Biosensing Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease.
Collapse
Affiliation(s)
- Karina P. De Sousa
- Bioscience Research Group, School of Life and Medical SciencesUniversity of HertfordshireHertfordshireUK
| | - Izadora Rossi
- School of Human SciencesLondon Metropolitan UniversityLondonUK
- Federal University of ParanáCuritibaBrazil
| | | | - Marcel Ivan Ramirez
- Federal University of ParanáCuritibaBrazil
- Carlos Chagas Institute (ICC)CuritibaBrazil
| | - Dan Stratton
- Open UniversityThe School of Life, Health and Chemical SciencesMilton KeynesUK
| | - Jameel Malhador Inal
- Bioscience Research Group, School of Life and Medical SciencesUniversity of HertfordshireHertfordshireUK
- School of Human SciencesLondon Metropolitan UniversityLondonUK
| |
Collapse
|
29
|
Chen TQ, Wei XJ, Liu HY, Zhan SH, Yang XJ. Telocyte-Derived Exosomes Provide an Important Source of Wnts That Inhibits Fibrosis and Supports Regeneration and Repair of Endometrium. Cell Transplant 2023; 32:9636897231212746. [PMID: 38006220 PMCID: PMC10676634 DOI: 10.1177/09636897231212746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 09/22/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023] Open
Abstract
Intrauterine adhesions (IUAs) often occurred after common obstetrical and gynecological procedures or infections in women of reproductive age. It was characterized by the formation of endometrial fibrosis and prevention of endometrial regeneration, usually with devastating fertility consequences and poor treatment outcomes so far. Telocytes (TCs), as a novel interstitial cell type, present in female uterus with in vitro therapeutic potential in decidualization-defective gynecologic diseases. This study aims to further investigate the role of TC-derived Wnt ligands carried by exosomes (Exo) in reversal of fibrosis and enhancement of regeneration repair in endometrium. IUA cellular and animal models were established from endometrial stromal cells (ESCs) and mice, followed with treatment of TC-conditioned medium (TCM) or TC-derived Exo. In cellular model, fibrosis markers (collagen type 1 alpha 1 [COL1A1], fibronectin [FN], and α-smooth muscle actin [α-SMA]), angiogenesis (vascular endothelial growth factor [VEGF]), and pathway protein (β-catenin) were determined by quantitative reverse transcription polymerase chain reaction (qRT-PCR), Western blotting (WB), and immunofluorescence. Results showed that, TCs (either TCM or TC-derived Exo) provide a source of Wnts that inhibit cellular fibrosis, as evidenced by significantly elevated VEGF and β-catenin with decreased fibrotic markers, whereas TCs lost salvage on fibrosis after being blocked with Wnt/β-catenin inhibitors (XAV939 or ETC-159). Further in mouse model, regeneration repair (endometrial thickness, number of glands, and fibrosis area ratio), fibrosis markers (fibronectin [FN]), mesenchymal-epithelial transition (MET) (E-cadherin, N-cadherin), and angiogenesis (VEGF, microvessel density [MVD]) were studied by hematoxylin-eosin (HE), Masson staining, and immunohistochemistry. Results demonstrated that TC-Exo treatment effectively promotes regeneration repair of endometrium by relieving fibrosis, enhancing MET, and angiogenesis. These results confirmed new evidence for therapeutic perspective of TC-derived Exo in IUAs.
Collapse
Affiliation(s)
- Tian-Quan Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Xiao-Jiao Wei
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hai-Yan Liu
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Sheng-Hua Zhan
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiao-Jun Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
30
|
Manole CG, Gherghiceanu M, Ceafalan LC, Hinescu ME. Dermal Telocytes: A Different Viewpoint of Skin Repairing and Regeneration. Cells 2022; 11:3903. [PMID: 36497161 PMCID: PMC9736852 DOI: 10.3390/cells11233903] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/14/2022] [Accepted: 11/23/2022] [Indexed: 12/11/2022] Open
Abstract
Fifteen years after their discovery, telocytes (TCs) are yet perceived as a new stromal cell type. Their presence was initially documented peri-digestively, and gradually throughout the interstitia of many (non-)cavitary mammalian, human, and avian organs, including skin. Each time, TCs proved to be involved in diverse spatial relations with elements of interstitial (ultra)structure (blood vessels, nerves, immune cells, etc.). To date, transmission electron microscopy (TEM) remained the single main microscopic technique able to correctly and certainly attest TCs by their well-acknowledged (ultra)structure. In skin, dermal TCs reiterate almost all (ultra)structural features ascribed to TCs in other locations, with apparent direct implications in skin physiology and/or pathology. TCs' uneven distribution within skin, mainly located in stem cell niches, suggests involvement in either skin homeostasis or dermatological pathologies. On the other hand, different skin diseases involve different patterns of disruption of TCs' structure and ultrastructure. TCs' cellular cooperation with other interstitial elements, their immunological profile, and their changes during remission of diseases suggest their role(s) in tissue regeneration/repair processes. Thus, expanding the knowledge on dermal TCs could offer new insights into the natural skin capacity of self-repairing. Moreover, it would become attractive to consider that augmenting dermal TCs' presence/density could become an attractive therapeutic alternative for treating various skin defects.
Collapse
Affiliation(s)
- Catalin G. Manole
- Ultrastructural Pathology Laboratory, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania
- Department of Cellular and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Mihaela Gherghiceanu
- Ultrastructural Pathology Laboratory, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania
- Department of Cellular and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Laura Cristina Ceafalan
- Ultrastructural Pathology Laboratory, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania
- Cell Biology, Neurosciences and Experimental Myology Laboratory, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania
| | - Mihail E. Hinescu
- Ultrastructural Pathology Laboratory, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania
- Cell Biology, Neurosciences and Experimental Myology Laboratory, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania
| |
Collapse
|
31
|
Holland ND, Holland LZ, Somorjai IML. Three-dimensional fine structure of fibroblasts and other mesodermally derived tissues in the dermis of adults of the Bahamas lancelet (Chordata, Cephalohordata), as seen by serial block-face scanning electron microscopy. J Morphol 2022; 283:1289-1298. [PMID: 35971624 DOI: 10.1002/jmor.21502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/27/2022] [Accepted: 08/02/2022] [Indexed: 11/07/2022]
Abstract
Tissues of adult cephalochordates include sparsely distributed fibroblasts. Previous work on these cells has left unsettled such questions as their developmental origin, range of functions, and even their overall shape. Here, we describe fibroblasts of a cephalochordate, the Bahamas lancelet, Asymmetron lucayanum, by serial block-face scanning electron microscopy to demonstrate their three-dimensional (3D) distribution and fine structure in a 0.56-mm length of the tail. The technique reveals in detail their position, abundance, and morphology. In the region studied, we found only 20 fibroblasts, well separated from one another. Each was strikingly stellate with long cytoplasmic processes rather similar to those of a vertebrate telocyte, a possibly fortuitous resemblance that is considered in the discussion section. In the cephalochordate dermis, the fibroblasts were never linked with one another, although they occasionally formed close associations of unknown significance with other cell types. The fibroblasts, in spite of their name, showed no signs of directly synthesizing fibrillar collagen. Instead, they appeared to be involved in the production of nonfibrous components of the extracellular matrix-both by the release of coarsely granular dense material and by secretion of more finely granular material by the local breakdown of their cytoplasmic processes. For context, the 3D structures of two other mesoderm-derived tissues (the midline mesoderm and the posteriormost somite) are also described for the region studied.
Collapse
Affiliation(s)
- Nicholas D Holland
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, California, USA
| | - Linda Z Holland
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, California, USA
| | - Ildiko M L Somorjai
- School of Biology, University of Saint Andrews, St. Andrews, Fife, Scotland, UK
| |
Collapse
|
32
|
Fertig TE, Chitoiu L, Marta DS, Ionescu VS, Cismasiu VB, Radu E, Angheluta G, Dobre M, Serbanescu A, Hinescu ME, Gherghiceanu M. Vaccine mRNA Can Be Detected in Blood at 15 Days Post-Vaccination. Biomedicines 2022; 10:biomedicines10071538. [PMID: 35884842 PMCID: PMC9313234 DOI: 10.3390/biomedicines10071538] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/15/2022] [Accepted: 06/24/2022] [Indexed: 11/16/2022] Open
Abstract
COVID-19 mRNA vaccines effectively reduce incidence of severe disease, hospitalisation and death. The biodistribution and pharmacokinetics of the mRNA-containing lipid nanoparticles (LNPs) in these vaccines are unknown in humans. In this study, we used qPCR to track circulating mRNA in blood at different time-points after BNT162b2 vaccination in a small cohort of healthy individuals. We found that vaccine-associated synthetic mRNA persists in systemic circulation for at least 2 weeks. Furthermore, we used transmission electron microscopy (TEM) to investigate SARS-CoV-2 spike protein expression in human leukemic cells and in primary mononuclear blood cells treated in vitro with the BNT162b2 vaccine. TEM revealed morphological changes suggestive of LNP uptake, but only a small fraction of K562 leukemic cells presented spike-like structures at the cell surface, suggesting reduced levels of expression for these specific phenotypes.
Collapse
Affiliation(s)
- Tudor Emanuel Fertig
- Victor Babeș National Institute of Pathology, 050096 Bucharest, Romania; (L.C.); (D.S.M.); (V.-S.I.); (V.B.C.); (M.D.); (M.E.H.); (M.G.)
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (E.R.); (G.A.)
- Correspondence:
| | - Leona Chitoiu
- Victor Babeș National Institute of Pathology, 050096 Bucharest, Romania; (L.C.); (D.S.M.); (V.-S.I.); (V.B.C.); (M.D.); (M.E.H.); (M.G.)
| | - Daciana Silvia Marta
- Victor Babeș National Institute of Pathology, 050096 Bucharest, Romania; (L.C.); (D.S.M.); (V.-S.I.); (V.B.C.); (M.D.); (M.E.H.); (M.G.)
- Faculty of Medicine, Titu Maiorescu University, 040441 Bucharest, Romania
| | - Victor-Stefan Ionescu
- Victor Babeș National Institute of Pathology, 050096 Bucharest, Romania; (L.C.); (D.S.M.); (V.-S.I.); (V.B.C.); (M.D.); (M.E.H.); (M.G.)
| | - Valeriu Bogdan Cismasiu
- Victor Babeș National Institute of Pathology, 050096 Bucharest, Romania; (L.C.); (D.S.M.); (V.-S.I.); (V.B.C.); (M.D.); (M.E.H.); (M.G.)
| | - Eugen Radu
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (E.R.); (G.A.)
- Laboratory of Molecular Biology and Pathology Research, Emergency University Hospital Bucharest, 050098 Bucharest, Romania
| | - Giulia Angheluta
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (E.R.); (G.A.)
| | - Maria Dobre
- Victor Babeș National Institute of Pathology, 050096 Bucharest, Romania; (L.C.); (D.S.M.); (V.-S.I.); (V.B.C.); (M.D.); (M.E.H.); (M.G.)
| | - Ana Serbanescu
- Cantacuzino NIRDMM-Research and Development Center, 050096 Bucharest, Romania;
| | - Mihail Eugen Hinescu
- Victor Babeș National Institute of Pathology, 050096 Bucharest, Romania; (L.C.); (D.S.M.); (V.-S.I.); (V.B.C.); (M.D.); (M.E.H.); (M.G.)
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (E.R.); (G.A.)
| | - Mihaela Gherghiceanu
- Victor Babeș National Institute of Pathology, 050096 Bucharest, Romania; (L.C.); (D.S.M.); (V.-S.I.); (V.B.C.); (M.D.); (M.E.H.); (M.G.)
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (E.R.); (G.A.)
| |
Collapse
|
33
|
Gao H, Zhang L, Wang Z, Yan K, Zhao L, Xiao W. Research Progress on Transorgan Regulation of the Cardiovascular and Motor System through Cardiogenic Exosomes. Int J Mol Sci 2022; 23:ijms23105765. [PMID: 35628575 PMCID: PMC9146752 DOI: 10.3390/ijms23105765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 02/01/2023] Open
Abstract
The heart is the core organ of the circulatory system. Through the blood circulation system, it has close contact with all tissues and cells in the body. An exosome is an extracellular vesicle enclosed by a phospholipid bilayer. A variety of heart tissue cells can secrete and release exosomes, which transfer RNAs, lipids, proteins, and other biomolecules to adjacent or remote cells, mediate intercellular communication, and regulate the physiological and pathological activities of target cells. Cardiogenic exosomes play an important role in regulating almost all pathological and physiological processes of the heart. In addition, they can also reach distant tissues and organs through the peripheral circulation, exerting profound influence on their functional status. In this paper, the composition and function of cardiogenic exosomes, the factors affecting cardiogenic exosomes and their roles in cardiovascular physiology and pathophysiology are discussed, and the close relationship between cardiovascular system and motor system is innovatively explored from the perspective of exosomes. This study provides a reference for the development and application of exosomes in regenerative medicine and sports health, and also provides a new idea for revealing the close relationship between the heart and other organ systems.
Collapse
|
34
|
Cucu I, Nicolescu MI, Busnatu ȘS, Manole CG. Dynamic Involvement of Telocytes in Modulating Multiple Signaling Pathways in Cardiac Cytoarchitecture. Int J Mol Sci 2022; 23:5769. [PMID: 35628576 PMCID: PMC9143034 DOI: 10.3390/ijms23105769] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 12/21/2022] Open
Abstract
Cardiac interstitium is a complex and dynamic environment, vital for normal cardiac structure and function. Telocytes are active cellular players in regulating main events that feature myocardial homeostasis and orchestrating its involvement in heart pathology. Despite the great amount of data suggesting (microscopically, proteomically, genetically, etc.) the implications of telocytes in the different physiological and reparatory/regenerative processes of the heart, understanding their involvement in realizing the heart's mature cytoarchitecture is still at its dawn. Our scrutiny of the recent literature gave clearer insights into the implications of telocytes in the WNT signaling pathway, but also TGFB and PI3K/AKT pathways that, inter alia, conduct cardiomyocytes differentiation, maturation and final integration into heart adult architecture. These data also strengthen evidence for telocytes as promising candidates for cellular therapies in various heart pathologies.
Collapse
Affiliation(s)
- Ioana Cucu
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Mihnea Ioan Nicolescu
- Division of Histology, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Laboratory of Radiobiology, “Victor Babeș” National Institute of Pathology, 050096 Bucharest, Romania
| | - Ștefan-Sebastian Busnatu
- Department of Cardiology-“Bagdasar Arseni” Emergency Clinical Hospital, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 041915 Bucharest, Romania
| | - Cătălin Gabriel Manole
- Department of Cellular & Molecular Biology and Histology, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
- Laboratory of Ultrastructural Pathology, “Victor Babeș” National Institute of Pathology, 050096 Bucharest, Romania
| |
Collapse
|
35
|
Maldarine JS, Sanches BDA, Santos VA, Góes RM, Vilamaior PSL, Carvalho HF, Taboga SR. The complex role of telocytes in female prostate tumorigenesis in a rodent model. Cell Biol Int 2022; 46:1495-1509. [PMID: 35598087 DOI: 10.1002/cbin.11816] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 04/05/2022] [Accepted: 05/02/2022] [Indexed: 01/11/2023]
Abstract
The prostate is not an organ exclusive to the male. It is also found in females of several species, including humans, in which part of the Skene gland is homologous to the male prostate. Evidence is accumulating that changes in the stroma are central to tumorigenesis. Equally, telocytes, a recently discovered type of interstitial cell, are essential for the maintenance of stromal organization. However, it is still uncertain whether there are telocytes in the female prostate and if they play a role in tumorigenesis. The present study used ultrastructural and immunofluorescence techniques to investigate the presence of telocytes in the prostate of Mongolian gerbil females, a rodent model that often has a functional prostate in females, as well as to assess the impact of a combination of N-ethyl-N-nitrosourea, testosterone, and estradiol on telocytes. The results point to the presence of telocytes in the female prostate in the perialveolar and interalveolar regions, and reveal that these cells are absent in regions of benign and premalignant lesions in the gland, in which the perialveolar smooth muscle is altered. Additionally, telocytes are also closely associated with infiltrated immune cells in the stroma. Our data suggest that telocytes are important for both the maintenance of smooth muscle and prostatic epithelium integrity, which indicates a protective role against the advancement of tumorigenesis. But telocytes are also associated with immune cells and a proinflammatory/proangiogenic role for these cells cannot be ruled out, implying that telocytes have a complex role in prostatic tumorigenesis in females.
Collapse
Affiliation(s)
- Juliana S Maldarine
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), São Paulo, Brazil
| | - Bruno D A Sanches
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), São Paulo, Brazil
| | - Vitória A Santos
- Department of Biological Sciences, Laboratory of Microscopy and Microanalysis, Universidade Estadual Paulista-UNESP, São Paulo, Brazil
| | - Rejane M Góes
- Department of Biological Sciences, Laboratory of Microscopy and Microanalysis, Universidade Estadual Paulista-UNESP, São Paulo, Brazil
| | - Patricia S L Vilamaior
- Department of Biological Sciences, Laboratory of Microscopy and Microanalysis, Universidade Estadual Paulista-UNESP, São Paulo, Brazil
| | - Hernandes F Carvalho
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), São Paulo, Brazil
| | - Sebastião R Taboga
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), São Paulo, Brazil.,Department of Biological Sciences, Laboratory of Microscopy and Microanalysis, Universidade Estadual Paulista-UNESP, São Paulo, Brazil
| |
Collapse
|
36
|
Meng X, Zhu Z, Ahmed N, Ma Q, Wang Q, Deng B, Chen Q, Lu Y, Yang P. Dermal Microvascular Units in Domestic Pigs (Sus scrofa domestica): Role as Transdermal Passive Immune Channels. Front Vet Sci 2022; 9:891286. [PMID: 35548054 PMCID: PMC9083201 DOI: 10.3389/fvets.2022.891286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 03/30/2022] [Indexed: 12/14/2022] Open
Abstract
The dermal microvascular unit (DMU) is a perivascular functional unit in the dermis. It is composed of microvascular and capillary lymphatics surrounded by immune cells. In this study, jet needle-free injection system was used to injected biocompatible carbon nanoparticles into the cervical skin of domestic pigs (Sus scrofa domestica) and assessed the morphological distribution of DMUs by hematoxylin erythrosine staining, immunohistochemistry (IHC), and transmission electron microscopy (TEM), and TEM was also used to observe the ultrastructural changes of DMUs after jet needle-free injection. Following our study, we identified DMUs in the dermis stratum papillare and similar structures in the dermis stratum reticulare, but the aggregation of CD68+ and CD1a+ cells in the dermis stratum papillare of DMUs by IHC confirmed that DMUs act as reservoirs of dermal immune cells, while similar structures in the dermis stratum reticulare should not be considered as DMUs. Ultrastructure of DMUs was revealed by TEM. Marvelous changes were found following xenobiotics attack, including the rearrangement of endothelial cells and pericytes, and the reactivity of immune cells. Novel interstitial cell telocyte (TC) was also identified around the microvasculature, which may have been previously known as the veil cell. Our results successfully identified the distribution of DMUs in the skin of domestic pigs, which might act as reservoirs of immune cells in the skin and play a role in immune surveillance and immune defense.
Collapse
Affiliation(s)
- Xiangfei Meng
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Zhaoxuan Zhu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Nisar Ahmed
- Department of Veterinary Anatomy and Histology, Faculty of Veterinary and Animal Sciences, Lasbela University of Agriculture, Water & Marine Sciences (LUAWMS), Uthal, Pakistan
| | - Qianhui Ma
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Qi Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Bihua Deng
- National Research Center of Engineering and Technology for Veterinary Biologicals, Institute of Veterinary Immunology and Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Qiusheng Chen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yu Lu
- National Research Center of Engineering and Technology for Veterinary Biologicals, Institute of Veterinary Immunology and Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Yu Lu
| | - Ping Yang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- *Correspondence: Ping Yang
| |
Collapse
|
37
|
Wei XJ, Chen TQ, Yang XJ. Telocytes in Fibrosis Diseases: From Current Findings to Future Clinical Perspectives. Cell Transplant 2022; 31:9636897221105252. [PMID: 35748420 PMCID: PMC9235300 DOI: 10.1177/09636897221105252] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2022] [Indexed: 11/17/2022] Open
Abstract
Telocytes (TCs), a distinct type of interstitial (stromal) cells, have been discovered in many organs of human and mammal animals. TCs, which have unique morphological characteristics and abundant paracrine substance, construct a three-dimensional (3D) interstitial network within the stromal compartment by homocellular and heterocellular communications which are important for tissue homeostasis and normal development. Fibrosis-related diseases remain a common but challenging problem in the field of medicine with unclear pathogenesis and limited therapeutic options. Recently, increasing evidences suggest that where TCs are morphologically or numerically destructed, many diseases continuously develop, finally lead to irreversible interstitial fibrosis. It is not difficult to find that TCs are associated with chronic inflammation and fibrosis. This review mainly discusses relationship between TCs and the occurrence of fibrosis in various diseases. We analyzed in detail the potential roles and speculated mechanisms of TCs in onset and progression of systemic fibrosis diseases, as well as providing the most up-to-date research on the current therapeutic roles of TCs and involved related pathways. Only through continuous research and exploration in the future can we uncover its magic veil and provide strategies for treatment of fibrosis-related disease.
Collapse
Affiliation(s)
- Xiao-jiao Wei
- Department of Obstetrics and
Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, P.R.
China
| | - Tian-quan Chen
- Department of Obstetrics and
Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, P.R.
China
| | - Xiao-jun Yang
- Department of Obstetrics and
Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, P.R.
China
| |
Collapse
|
38
|
Culenova M, Nicodemou A, Novakova ZV, Debreova M, Smolinská V, Bernatova S, Ivanisova D, Novotna O, Vasicek J, Varga I, Ziaran S, Danisovic L. Isolation, Culture and Comprehensive Characterization of Biological Properties of Human Urine-Derived Stem Cells. Int J Mol Sci 2021; 22:12503. [PMID: 34830384 PMCID: PMC8624597 DOI: 10.3390/ijms222212503] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stem cells (MSCs) represent an attractive source within the field of tissue engineering. However, their harvesting often requires invasive medical procedures. Urine-derived stem cells (UDSCs) display similar properties to MSCs, and their obtention and further processing is non-invasive for the donors as well as low cost. Here, we offer a comprehensive analysis of their biological properties. The goal of this study was to analyze their morphology, stemness, differentiation potential and cytokine profile. We have successfully isolated UDSCs from 25 urine samples. First colonies emerged up to 9 days after the initial seeding. Cell doubling time was 45 ± 0.24 SD, and when seeded at the density of 100 cells/cm2, they formed 42 ± 6.5 SD colonies within 10 days. Morphological analyzes revealed that two different types of the cell populations have been present. The first type had a rice-grain shape and the second one was characterized by a polyhedral shape. In several cell cultures, dome-shaped cells were observed as well. All examined UDSCs expressed typical MSC-like surface markers, CD73, CD90 and CD105. Moreover, conditioned media from UDSCs were harvested, and cytokine profile has been evaluated showing a significantly higher secretory rate of IL-8, IL-6 and chemokines MCP-1 and GM-CSF. We have also successfully induced human UDSCs into chondrogenic, osteogenic and myogenic cell lineages. Our findings indicate that UDSCs might have immense potential in the regeneration of the damaged tissues.
Collapse
Affiliation(s)
- Martina Culenova
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia; (M.C.); (A.N.); (Z.V.N.); (V.S.); (S.B.); (D.I.)
- Panara Ltd., Krskanska 21, 949 05 Nitra, Slovakia
- National Institute of Rheumatic Diseases, Nabrezie I. Krasku 4, 921 12 Piestany, Slovakia; (M.D.); (I.V.); (S.Z.)
| | - Andreas Nicodemou
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia; (M.C.); (A.N.); (Z.V.N.); (V.S.); (S.B.); (D.I.)
- National Institute of Rheumatic Diseases, Nabrezie I. Krasku 4, 921 12 Piestany, Slovakia; (M.D.); (I.V.); (S.Z.)
| | - Zuzana Varchulova Novakova
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia; (M.C.); (A.N.); (Z.V.N.); (V.S.); (S.B.); (D.I.)
- National Institute of Rheumatic Diseases, Nabrezie I. Krasku 4, 921 12 Piestany, Slovakia; (M.D.); (I.V.); (S.Z.)
| | - Michaela Debreova
- National Institute of Rheumatic Diseases, Nabrezie I. Krasku 4, 921 12 Piestany, Slovakia; (M.D.); (I.V.); (S.Z.)
| | - Veronika Smolinská
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia; (M.C.); (A.N.); (Z.V.N.); (V.S.); (S.B.); (D.I.)
- National Institute of Rheumatic Diseases, Nabrezie I. Krasku 4, 921 12 Piestany, Slovakia; (M.D.); (I.V.); (S.Z.)
| | - Sona Bernatova
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia; (M.C.); (A.N.); (Z.V.N.); (V.S.); (S.B.); (D.I.)
| | - Dana Ivanisova
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia; (M.C.); (A.N.); (Z.V.N.); (V.S.); (S.B.); (D.I.)
| | - Olga Novotna
- Department of Pediatric Urology, Faculty of Medicine, Comenius University, Limbova 1, 831 01 Bratislava, Slovakia;
| | - Jaromir Vasicek
- Institute of Farm Animal Genetics and Reproduction, NPPC-Research Institute for Animal Production in Nitra, Hlohovecka 2, 951 41 Luzianky, Slovakia;
- Institute of Biotechnology, Faculty of Biotechnology and Food Science, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
| | - Ivan Varga
- National Institute of Rheumatic Diseases, Nabrezie I. Krasku 4, 921 12 Piestany, Slovakia; (M.D.); (I.V.); (S.Z.)
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia
| | - Stanislav Ziaran
- National Institute of Rheumatic Diseases, Nabrezie I. Krasku 4, 921 12 Piestany, Slovakia; (M.D.); (I.V.); (S.Z.)
- Department of Urology, Faculty of Medicine, Comenius University, Limbova 5, 833 05 Bratislava, Slovakia
| | - Lubos Danisovic
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia; (M.C.); (A.N.); (Z.V.N.); (V.S.); (S.B.); (D.I.)
- National Institute of Rheumatic Diseases, Nabrezie I. Krasku 4, 921 12 Piestany, Slovakia; (M.D.); (I.V.); (S.Z.)
| |
Collapse
|
39
|
Aschacher T, Schmidt K, Aschacher O, Eichmair E, Baranyi U, Winkler B, Grabenwoeger M, Spittler A, Enzmann F, Messner B, Riebandt J, Laufer G, Bergmann M, Ehrlich M. Telocytes in the human ascending aorta: Characterization and exosome-related KLF-4/VEGF-A expression. J Cell Mol Med 2021; 25:9697-9709. [PMID: 34562312 PMCID: PMC8505852 DOI: 10.1111/jcmm.16919] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 08/22/2021] [Accepted: 09/01/2021] [Indexed: 12/13/2022] Open
Abstract
Telocytes (TCs), a novel interstitial cell entity promoting tissue regeneration, have been described in various tissues. Their role in inter‐cellular signalling and tissue remodelling has been reported in almost all human tissues. This study hypothesizes that TC also contributes to tissue remodelling and regeneration of the human thoracic aorta (HTA). The understanding of tissue homeostasis and regenerative potential of the HTA is of high clinical interest as it plays a crucial role in pathogenesis from aortic dilatation to lethal dissection. Therefore, we obtained twenty‐five aortic specimens of heart donors during transplantation. The presence of TCs was detected in different layers of aortic tissue and characterized by immunofluorescence and transmission electron microscopy. Further, we cultivated and isolated TCs in highly differentiated form identified by positive staining for CD34 and c‐kit. Aortic‐derived TC was characterized by the expression of PDGFR‐α, PDGFR‐β, CD29/integrin β‐1 and αSMA and the stem cell markers Nanog and KLF‐4. Moreover, TC exosomes were isolated and characterized for soluble angiogenic factors by Western blot. CD34+/c‐kit+ TCs shed exosomes containing the soluble factors VEGF‐A, KLF‐4 and PDGF‐A. In summary, TC occurs in the aortic wall. Correspondingly, exosomes, derived from aortic TCs, contain vasculogenesis‐relevant proteins. Understanding the regulation of TC‐mediated aortic remodelling may be a crucial step towards designing strategies to promote aortic repair and prevent adverse remodelling.
Collapse
Affiliation(s)
- Thomas Aschacher
- Department of Cardio-Vascular Surgery, Clinic Floridsdorf and Karl Landsteiner Institute for Cardio-Vascular Research, Vienna, Austria
| | - Katy Schmidt
- Centre for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Olivia Aschacher
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Vienna, Austria
| | - Eva Eichmair
- Cardiac Surgery Research Laboratory, Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | - Ulrike Baranyi
- Cardiac Surgery Research Laboratory, Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | - Bernhard Winkler
- Department of Cardio-Vascular Surgery, Clinic Floridsdorf and Karl Landsteiner Institute for Cardio-Vascular Research, Vienna, Austria
| | - Martin Grabenwoeger
- Department of Cardio-Vascular Surgery, Clinic Floridsdorf and Karl Landsteiner Institute for Cardio-Vascular Research, Vienna, Austria
| | - Andreas Spittler
- Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Florian Enzmann
- Department of Vascular Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Barbara Messner
- Cardiac Surgery Research Laboratory, Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | - Julia Riebandt
- Cardiac Surgery Research Laboratory, Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | - Guenther Laufer
- Cardiac Surgery Research Laboratory, Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | - Michael Bergmann
- Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Marek Ehrlich
- Cardiac Surgery Research Laboratory, Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
40
|
Jayaraman S, Gnanasampanthapandian D, Rajasingh J, Palaniyandi K. Stem Cell-Derived Exosomes Potential Therapeutic Roles in Cardiovascular Diseases. Front Cardiovasc Med 2021; 8:723236. [PMID: 34447796 PMCID: PMC8382889 DOI: 10.3389/fcvm.2021.723236] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 07/12/2021] [Indexed: 12/12/2022] Open
Abstract
Owing to myocardial abnormalities, cardiac ailments are considered to be the major cause of morbidity and mortality worldwide. According to a recent study, membranous vesicles that are produced naturally, termed as "exosomes", have emerged as the potential candidate in the field of cardiac regenerative medicine. A wide spectrum of stem cells has also been investigated in the treatment of cardiovascular diseases (CVD). Exosomes obtained from the stem cells are found to be cardioprotective and offer great hope in the treatment of CVD. The basic nature of exosomes is to deal with the intracellular delivery of both proteins and nucleic acids. This activity of exosomes helps us to rely on them as the attractive pharmaceutical delivery agents. Most importantly, exosomes derived from microRNAs (miRNAs) hold great promise in assessing the risk of CVD, as they serve as notable biomarkers of the disease. Exosomes are small, less immunogenic, and lack toxicity. These nanovesicles harbor immense potential as a therapeutic entity and would provide fruitful benefits if consequential research were focused on their upbringing and development as a useful diagnostic and therapeutic tool in the field of medicine.
Collapse
Affiliation(s)
- Selvaraj Jayaraman
- Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Dhanavathy Gnanasampanthapandian
- Cancer Science Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Chennai, India
| | - Johnson Rajasingh
- Department of Bioscience Research & Medicine-Cardiology, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Kanagaraj Palaniyandi
- Cancer Science Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Chennai, India
| |
Collapse
|
41
|
Yang R, Tang Y, Chen X, Yang Y. Telocytes-derived extracellular vesicles alleviate aortic valve calcification by carrying miR-30b. ESC Heart Fail 2021; 8:3935-3946. [PMID: 34165260 PMCID: PMC8497371 DOI: 10.1002/ehf2.13460] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 05/13/2021] [Accepted: 05/23/2021] [Indexed: 12/28/2022] Open
Abstract
AIMS Calcific aortic valve disease (CAVD) is frequent in the elderly. Telocytes (TCs) are implicated in intercellular communication by releasing extracellular vesicles (EVs). This study investigated the role of TC-EVs in aortic valve calcification. METHODS AND RESULTS TCs were obtained and identified using enzymolysis method and flow cytometry. EVs were isolated from TCs using differential high-speed centrifugation method and identified using transmission electron microscope, western blot, and qNano analysis. The mouse model of CAVD was established. The changes of aortic valve activity-related indicators were analysed by ultrasound, and the expressions of TC markers CD34 and vimentin in mouse valve tissues were detected using RT-qPCR and western blot. The model mice were injected with TC-derived EVs. The expressions of Runx2, osteocalcin, and caspase-3 were detected using RT-qPCR and western blot. The calcification model of valvular interstitial cells (VICs) was established. TC-EVs were co-cultured with calcified VICs, and calcium deposition was detected using alizarin red S staining. miR-30b expression in calcified valvular tissues and cells was detected after EV treatment. miR-30b expression in TCs was knocked down and then EVs were extracted and co-cultured with calcified VICs. The target of miR-30b was predicted through bioinformatics website and verified using dual-luciferase assay. The levels of Wnt/β-catenin pathway-related proteins were detected. ApoE-/- mice fed with a high-fat diet showed decreased aortic valve orifice area, increased aortic transvalvular pressure difference and velocity, reduced left ventricular ejection fraction, decreased CD34 and vimentin, and increased caspase-3, Runx2, and osteocalcin. The levels of apoptosis- and osteogenesis- related proteins were inhibited after EV treatment. TC-EVs reduced calcium deposition and osteogenic proteins in calcified VICs. EVs could be absorbed by VICs. miR-30b expression was promoted in calcified valvular tissues and cells after EV treatment. Knockdown of miR-30b weakened the inhibitory effects of TC-EVs on calcium deposition and osteogenic proteins. miR-30b targeted Runx2. EV treatment inhibited the Wnt/β-catenin pathway, and knockdown of miR-30b in TCs attenuated the inhibitory effect of TC-EVs on the Wnt/β-catenin pathway. CONCLUSION TC-EVs played a protective role in aortic valve calcification via the miR-30b/Runx2/Wnt/β-catenin axis.
Collapse
Affiliation(s)
- Rong Yang
- Department of Rheumatology, The Affiliated Zhongda Hospital, Southeast University, Nanjing, China
| | - Yihu Tang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, Jiangsu, 210029, China
| | - Xiaowen Chen
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yang Yang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
42
|
Collins HE, Kane MS, Litovsky SH, Darley-Usmar VM, Young ME, Chatham JC, Zhang J. Mitochondrial Morphology and Mitophagy in Heart Diseases: Qualitative and Quantitative Analyses Using Transmission Electron Microscopy. FRONTIERS IN AGING 2021; 2:670267. [PMID: 35822027 PMCID: PMC9261312 DOI: 10.3389/fragi.2021.670267] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 03/26/2021] [Indexed: 01/21/2023]
Abstract
Transmission electron microscopy (TEM) has long been an important technique, capable of high degree resolution and visualization of subcellular structures and organization. Over the last 20 years, TEM has gained popularity in the cardiovascular field to visualize changes at the nanometer scale in cardiac ultrastructure during cardiovascular development, aging, and a broad range of pathologies. Recently, the cardiovascular TEM enabled the studying of several signaling processes impacting mitochondrial function, such as mitochondrial fission/fusion, autophagy, mitophagy, lysosomal degradation, and lipophagy. The goals of this review are to provide an overview of the current usage of TEM to study cardiac ultrastructural changes; to understand how TEM aided the visualization of mitochondria, autophagy, and mitophagy under normal and cardiovascular disease conditions; and to discuss the overall advantages and disadvantages of TEM and potential future capabilities and advancements in the field.
Collapse
Affiliation(s)
- Helen E. Collins
- Division of Environmental Medicine, Department of Medicine, University of Louisville, KY, United States
| | - Mariame Selma Kane
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Silvio H. Litovsky
- Division of Anatomic Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Victor M. Darley-Usmar
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Martin E. Young
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - John C. Chatham
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jianhua Zhang
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
43
|
Cimini M, Kishore R. Role of Podoplanin-Positive Cells in Cardiac Fibrosis and Angiogenesis After Ischemia. Front Physiol 2021; 12:667278. [PMID: 33912076 PMCID: PMC8072458 DOI: 10.3389/fphys.2021.667278] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 03/15/2021] [Indexed: 01/05/2023] Open
Abstract
New insights into the cellular and extra-cellular composition of scar tissue after myocardial infarction (MI) have been identified. Recently, a heterogeneous podoplanin-expressing cell population has been associated with fibrogenic and inflammatory responses and lymphatic vessel growth during scar formation. Podoplanin is a mucin-like transmembrane glycoprotein that plays an important role in heart development, cell motility, tumorigenesis, and metastasis. In the adult mouse heart, podoplanin is expressed only by cardiac lymphatic endothelial cells; after MI, it is acquired with an unexpected heterogeneity by PDGFRα-, PDGFRβ-, and CD34-positive cells. Podoplanin may therefore represent a sign of activation of a cohort of progenitor cells during different phases of post-ischemic myocardial wound repair. Podoplanin binds to C-type lectin-like receptor 2 (CLEC-2) which is exclusively expressed by platelets and a variety of immune cells. CLEC-2 is upregulated in CD11bhigh cells, including monocytes and macrophages, following inflammatory stimuli. We recently published that inhibition of the interaction between podoplanin-expressing cells and podoplanin-binding cells using podoplanin-neutralizing antibodies reduces but does not fully suppress inflammation post-MI while improving heart function and scar composition after ischemic injury. These data support an emerging and alternative mechanism of interactome in the heart that, when neutralized, leads to altered inflammatory response and preservation of cardiac function and structure. The overarching objective of this review is to assimilate and discuss the available evidence on the functional role of podoplanin-positive cells on cardiac fibrosis and remodeling. A detailed characterization of cell-to-cell interactions and paracrine signals between podoplanin-expressing cells and the other type of cells that compose the heart tissue is needed to open a new line of investigation extending beyond the known function of these cells. This review attempts to discuss the role and biology of podoplanin-positive cells in the context of cardiac injury, repair, and remodeling.
Collapse
Affiliation(s)
- Maria Cimini
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Raj Kishore
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| |
Collapse
|
44
|
Guettler J, Forstner D, Cvirn G, Maninger S, Brugger BA, Nonn O, Kupper N, Pritz E, Wernitznig S, Dohr G, Hutter H, Juch H, Isermann B, Kohli S, Gauster M. Maternal platelets pass interstices of trophoblast columns and are not activated by HLA-G in early human pregnancy. J Reprod Immunol 2021; 144:103280. [PMID: 33530024 DOI: 10.1016/j.jri.2021.103280] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/11/2020] [Accepted: 01/22/2021] [Indexed: 11/28/2022]
Abstract
In early human gestation, maternal arterial blood flow into the intervillous space of the developing placenta is obstructed by invaded trophoblasts, which form cellular plugs in uterine spiral arteries. These trophoblast plugs have recently been described to be loosely cohesive with clear capillary-sized channels into the intervillous space by 7 weeks of gestation. Here, we analysed localisation of maternal platelets at the maternal-foetal interface of human first trimester pregnancy, and tested the hypothesis whether HLA-G, which is primarily expressed by extravillous trophoblasts, affects aggregation and adhesion of isolated platelets. Immunohistochemistry of first trimester placental sections localised maternal platelets in vessel-like channels and adjacent intercellular gaps of extravillous trophoblasts in distal parts of columns. Furthermore, this localisation was confirmed by transmission electron microscopy. Neither co-incubation of HLA-G overexpressing JAR cells with isolated platelets, nor incubation with cell-derived soluble HLA-G or recombinant HLA-G affected platelet adhesion and aggregation. Our study suggests that maternal platelets flow through vessel-like channels of distal trophoblast columns and spread into adjacent lateral intercellular gaps, where platelet-derived factors could contribute to trophoblast differentiation into the invasive phenotype.
Collapse
Affiliation(s)
- Jacqueline Guettler
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Austria
| | - Désirée Forstner
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Austria
| | - Gerhard Cvirn
- Division of Physiological Chemistry, Otto Loewi Research Center, Medical University of Graz, Austria
| | - Sabine Maninger
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Austria
| | - Beatrice A Brugger
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Austria
| | - Olivia Nonn
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Austria
| | - Nadja Kupper
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Austria
| | - Elisabeth Pritz
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Austria
| | - Stefan Wernitznig
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Austria
| | - Gottfried Dohr
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Austria
| | - Heinz Hutter
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Austria
| | - Herbert Juch
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Austria
| | - Berend Isermann
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig, Germany
| | - Shrey Kohli
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig, Germany
| | - Martin Gauster
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Austria.
| |
Collapse
|
45
|
Sukhacheva TV, Nizyaeva NV, Samsonova MV, Cherniaev AL, Burov AA, Iurova MV, Shchegolev AI, Serov RA, Sukhikh GT. Morpho-functional changes of cardiac telocytes in isolated atrial amyloidosis in patients with atrial fibrillation. Sci Rep 2021; 11:3563. [PMID: 33574429 PMCID: PMC7878494 DOI: 10.1038/s41598-021-82554-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 01/19/2021] [Indexed: 12/15/2022] Open
Abstract
Telocytes are interstitial cells with long, thin processes by which they contact each other and form a network in the interstitium. Myocardial remodeling of adult patients with different forms of atrial fibrillation (AF) occurs with an increase in fibrosis, age-related isolated atrial amyloidosis (IAA), cardiomyocyte hypertrophy and myolysis. This study aimed to determine the ultrastructural and immunohistochemical features of cardiac telocytes in patients with AF and AF + IAA. IAA associated with accumulation of atrial natriuretic factor was detected in 4.3-25% biopsies of left (LAA) and 21.7-41.7% of right (RAA) atrial appendage myocardium. Telocytes were identified at ultrastructural level more often in AF + IAA, than in AF group and correlated with AF duration and mitral valve regurgitation. Telocytes had ultrastructural signs of synthetic, proliferative, and phagocytic activity. Telocytes corresponded to CD117+, vimentin+, CD34+, CD44+, CD68+, CD16+, S100-, CD105- immunophenotype. No significant differences in telocytes morphology and immunophenotype were found in patients with various forms of AF. CD68-positive cells were detected more often in AF + IAA than AF group. We assume that in aged AF + IAA patients remodeling of atrial myocardium provoked transformation of telocytes into "transitional forms" combining the morphological and immunohistochemical features with signs of fibroblast-, histiocyte- and endotheliocyte-like cells.
Collapse
Affiliation(s)
- Tatyana V Sukhacheva
- A.N. Bakulev National Medical Research Center of Cardiovascular Surgery, The Ministry of Health of Russian Federation, Moscow, Russia.
| | - Natalia V Nizyaeva
- National Medical Research Center for Obstetrics, Gynecology, and Perinatology Named After Academician V.I. Kulakov of the Ministry of Healthcare of the Russian Federation, Moscow, Russia, 117997
| | - Maria V Samsonova
- Pulmonology Scientific Research Institute under Federal Medical and Biological Agency of Russian Federation, Moscow, 115682, Russia
| | - Andrey L Cherniaev
- Pulmonology Scientific Research Institute under Federal Medical and Biological Agency of Russian Federation, Moscow, 115682, Russia
| | - Artem A Burov
- National Medical Research Center for Obstetrics, Gynecology, and Perinatology Named After Academician V.I. Kulakov of the Ministry of Healthcare of the Russian Federation, Moscow, Russia, 117997
| | - Mariia V Iurova
- National Medical Research Center for Obstetrics, Gynecology, and Perinatology Named After Academician V.I. Kulakov of the Ministry of Healthcare of the Russian Federation, Moscow, Russia, 117997
- First Moscow State Medical University Named After I.M. Sechenov, Moscow, Russia
| | - Aleksandr I Shchegolev
- National Medical Research Center for Obstetrics, Gynecology, and Perinatology Named After Academician V.I. Kulakov of the Ministry of Healthcare of the Russian Federation, Moscow, Russia, 117997
| | - Roman A Serov
- A.N. Bakulev National Medical Research Center of Cardiovascular Surgery, The Ministry of Health of Russian Federation, Moscow, Russia
| | - Gennady T Sukhikh
- National Medical Research Center for Obstetrics, Gynecology, and Perinatology Named After Academician V.I. Kulakov of the Ministry of Healthcare of the Russian Federation, Moscow, Russia, 117997
- First Moscow State Medical University Named After I.M. Sechenov, Moscow, Russia
| |
Collapse
|
46
|
Hoshina R, Tsukii Y, Harumoto T, Suzaki T. Characterization of a green Stentor with symbiotic algae growing in an extremely oligotrophic environment and storing large amounts of starch granules in its cytoplasm. Sci Rep 2021; 11:2865. [PMID: 33536497 PMCID: PMC7859197 DOI: 10.1038/s41598-021-82416-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 12/30/2020] [Indexed: 01/30/2023] Open
Abstract
The genus Stentor is a relatively well-known ciliate owing to its lucid trumpet shape. Stentor pyriformis represents a green, short, and fat Stentor, but it is a little-known species. We investigated 124 ponds and wetlands in Japan and confirmed the presence of S. pyriformis at 23 locations. All these ponds were noticeably oligotrophic. With the improvement of oligotrophic culture conditions, we succeeded in long-term cultivation of three strains of S. pyriformis. The cytoplasm of S. piriformis contains a large number of 1-3 μm refractive granules that turn brown by Lugol's staining. The granules also show a typical Maltese-cross pattern by polarization microscopy, strongly suggesting that the granules are made of amylopectin-rich starch. By analyzing the algal rDNA, it was found that all S. pyriformis symbionts investigated in this study were Chlorella variabilis. This species is known as the symbiont of Paramecium bursaria and is physiologically specialized for endosymbiosis. Genetic discrepancies between C. variabilis of S. pyriformis and P. bursaria may indicate that algal sharing was an old incident. Having symbiotic algae and storing carbohydrate granules in the cytoplasm is considered a powerful strategy for this ciliate to withstand oligotrophic and cold winter environments in highland bogs.
Collapse
Affiliation(s)
- Ryo Hoshina
- grid.419056.f0000 0004 1793 2541Nagahama Institute of Bio-Science and Technology, Tamura 1266, Nagahama, Shiga 526-0829 Japan
| | - Yuuji Tsukii
- grid.257114.40000 0004 1762 1436Laboratory of Biological Science, Hosei University, 2-17-1 Fujimi, Chiyoda-ku, Tokyo 102-8160 Japan
| | - Terue Harumoto
- grid.174568.90000 0001 0059 3836Research Group of Biological Sciences, Division of Natural Sciences, Nara Women’s University, Kitauoya-Nishimachi, Nara 630-8506 Japan
| | - Toshinobu Suzaki
- grid.31432.370000 0001 1092 3077Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, 657-8501 Japan
| |
Collapse
|
47
|
Liao Z, Chen Y, Duan C, Zhu K, Huang R, Zhao H, Hintze M, Pu Q, Yuan Z, Lv L, Chen H, Lai B, Feng S, Qi X, Cai D. Cardiac telocytes inhibit cardiac microvascular endothelial cell apoptosis through exosomal miRNA-21-5p-targeted cdip1 silencing to improve angiogenesis following myocardial infarction. Am J Cancer Res 2021; 11:268-291. [PMID: 33391474 PMCID: PMC7681094 DOI: 10.7150/thno.47021] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 09/22/2020] [Indexed: 12/15/2022] Open
Abstract
Promotion of cardiac angiogenesis in ischemic myocardium is a critical strategy for repairing and regenerating the myocardium after myocardial infarction (MI). Currently, effective methods to aid in the survival of endothelial cells, to avoid apoptosis in ischemic myocardium and to achieve long-term cardiac angiogenesis are still being pursued. Here, we investigated whether cardiac telocyte (CT)-endothelial cell communication suppresses apoptosis and promotes the survival of endothelial cells to facilitate cardiac angiogenesis during MI. Methods: CT exosomes were isolated from CT conditioned medium, and their miRNA profile was characterized by small RNA sequencing. A rat model of left anterior descending coronary artery ligation (LAD)-mediated MI was assessed with histology for infarct size and fibrosis, immunostaining for angiogenesis and cell apoptosis and echocardiography to evaluate the therapeutic effects. Cardiac microvascular endothelial cells (CMECs) and the LAD-MI model treated with CT exosomes or CT exosomal miRNA-21-5p in vitro and in vivo were assessed with cellular and molecular techniques to demonstrate the underlying mechanism. Results: CTs exert therapeutic effects on MI via the potent paracrine effects of CT exosomes to facilitate the inhibition of apoptosis and survival of CMECs and promote cardiac angiogenesis. A novel mechanism of CTs is revealed, in which CT-endothelial cell communication suppresses apoptosis and promotes the survival of endothelial cells in the pathophysiological myocardium. CT exosomal miRNA-21-5p targeted and silenced the cell death inducing p53 target 1 (Cdip1) gene and thus down-regulated the activated caspase-3, which then inhibited the apoptosis of recipient endothelial cells under ischemic and hypoxic conditions, facilitating angiogenesis and regeneration following MI. Conclusions: The present study is the first to show that CTs inhibit cardiac microvascular endothelial cell apoptosis through exosomal miRNA-21-5p-targeted Cdip1 silencing to improve angiogenesis in myocardial infarction. It is believed that these novel findings and the discovery of cellular and molecular mechanisms will provide new opportunities to tailor novel cardiac cell therapies and cell-free therapies for the functional and structural regeneration of the injured myocardium.
Collapse
|
48
|
Condrat CE, Barbu MG, Thompson DC, Dănilă CA, Boboc AE, Suciu N, Crețoiu D, Voinea SC. Roles and distribution of telocytes in tissue organization in health and disease. TISSUE BARRIERS IN DISEASE, INJURY AND REGENERATION 2021:1-41. [DOI: 10.1016/b978-0-12-818561-2.00001-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
49
|
Küçükgüven MB, Çelebi-Saltik B. Stem Cell Based Exosomes: Are They Effective in Disease or Health? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1341:45-65. [PMID: 33782904 DOI: 10.1007/5584_2021_630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Exosomes are nano-sized vesicles involved in intercellular communication via delivery of molecules including lipids, nucleic acids, proteins, or other cellular components to distant or neighboring sites. Their ability to pass biological barriers, stability in physiological fluids without degradation, and distinctive affinity to target cells make exosomes very remarkable therapeutic vehicles. Virus-based approaches are some of the most widely used gene therapy methods; however, there are many issues need to be clarified such as high immunogenicity. Using of the exosomes procures the functional transfer of their cargo with minimal intervention from the immune system and it has been reported to be secure and well-tolerated. When the regenerative medicine is taken into consideration, stem cell-based approaches have been aimed to utilize but the general efficacy and safety profile of stem cell therapy has still not been enlightened. At this point, stem cell-derived exosomes exhibit a way to procure cell-free regenerative medicine with their unique characteristics. Exosomes are considered as appropriate and highly stable biological nano-vectors taking part in a wide variety of healthy and pathological processes for advanced targeted therapies. However, there are still crucial obstacles to achieve efficient isolation of large amount of specific and pure exosomes. Thus, large-scale exosome production under good manufacturing practice is required. The purpose of this review is to focus on stem cell-based exosomes for gene delivery and to introduce synthetic exosome-mimics as a potential alternative in the field of targeted gene therapies. Further, we aim to highlight the biobanking and large-scale manufacturing methods of exosomes.
Collapse
Affiliation(s)
- Meriç Bilgiç Küçükgüven
- Department of Oral and Maxillofacial Surgery, Hacettepe University Faculty of Dentistry, Ankara, Turkey.,Department of Stem Cell Sciences, Hacettepe University Graduate School of Health Sciences, Ankara, Turkey.,Center for Stem Cell Research and Development, Hacettepe University, Ankara, Turkey
| | - Betül Çelebi-Saltik
- Department of Stem Cell Sciences, Hacettepe University Graduate School of Health Sciences, Ankara, Turkey. .,Center for Stem Cell Research and Development, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
50
|
Xuebing B, Ruizhi W, Yue Z, Chunhua L, Yonghong S, Yingxin Z, Baitao D, Tarique I, Ping Y, Qiusheng C. Tissue Micro-channels Formed by Collagen Fibers and their Internal Components: Cellular Evidence of Proposed Meridian Conduits in Vertebrate Skin. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2020; 26:1069-1075. [PMID: 32883394 DOI: 10.1017/s1431927620024381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In order to clarify fine structures of the hypothetical meridian conduits of Chinese traditional medicine (CTM) in the skin, the present study used light and transmission electron microscopy to examine fasciae in different vertebrate species. Collagen fiber bundles and layers were arranged in a crisscross pattern, which developed into a special tissue micro-channel (TMC) network, in a manner that was analogs to the proposed skin meridian conduits. It was further revealed that tissue fluid in lateral TMC branches drained into wide longitudinal channels, which were distinctly different from lymphatic capillary. Mast cells, macrophages, and extracellular vesicles such as ectosomes and exosomes were distributed around telocytes (TCs) and their long processes (Telopodes, Tps) within the TMC. Cell junctions between TCs developed, which could enable the communication between contiguous but distant Tps. On the other hand, winding free Tps without cell junctions were also uncovered inside the TMC. Tissue fluid, cell junctions of TCs, mast cells, macrophages, and extracellular vesicles within the TMC corresponded to the circulating "" ("Qi-Xue", i.e., information, message, and energy) of meridian conduits at the cytological level. These results could provide morphological evidence for the hypothesis that "meridians are the conduit for Qi-Xue circulation" in CTM.
Collapse
Affiliation(s)
- Bai Xuebing
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province210095, China
| | - Wu Ruizhi
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province210095, China
| | - Zhang Yue
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province210095, China
| | - Liang Chunhua
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province210095, China
| | - Shi Yonghong
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province210095, China
| | - Zhang Yingxin
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province210095, China
| | - Ding Baitao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province210095, China
| | - Imran Tarique
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province210095, China
| | - Yang Ping
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province210095, China
| | - Chen Qiusheng
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province210095, China
| |
Collapse
|