1
|
Buzón-Durán L, Molinuevo-Salces B, García-González MC, Sánchez-Báscones M, Vitoria C, Horta C. Effect of Streptomyces spp. metabolites and the combination of biochar and compost on Fusarium graminearum inhibition, triticale growth, and soil properties. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 981:179595. [PMID: 40334464 DOI: 10.1016/j.scitotenv.2025.179595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 04/14/2025] [Accepted: 05/01/2025] [Indexed: 05/09/2025]
Abstract
Fusarium graminearum is the most harmful pathogen associated with Fusarium Head Blight (FHB) disease in triticale. Among the strategies that can be envisaged for its control, the reuse of organic residues for the production of secondary metabolites from Streptomyces spp. is particularly promising. The study presented herein focuses on the assessment of the antagonistic capacity of the culture filtrates of Streptomyces rochei alone, with compost, with biochar or with both of them, and their culture filtrates against F. graminearum. Firstly, the secondary metabolites were characterized by gas chromatography-mass spectrometry, with 5-Hydroxymethylfurfural, 2-3 Butanediol, Oxime-, methoxy-phenyl and acid butanoic being the most abundant chemical species. Subsequently, the capacity of S. rochei to inhibit the growth of the pathogen was tested in dual culture plate assays, finding 83 % inhibition. Sporangial tests showed that the mixture of S. rochei and biochar can inhibit 100 % of sporangia germination. Micropot trials conducted on triticale using the crop filtrates not only inhibited pathogen growth with all treatments but also improved crop growth. Hence, the culture filtrates of biochar, compost, compost and biochar, and the selected Streptomyces spp. culture filtrates may be put forward as promising protection treatments for the sustainable control of fusariosis.
Collapse
Affiliation(s)
- Laura Buzón-Durán
- Department of Agricultural and Forestry Engineering, ETSIIAA, Universidad de Valladolid, Avenida de Madrid 44, 34004 Palencia, Spain.
| | - Beatriz Molinuevo-Salces
- Department of Agroforestry Sciences, ETSIIAA, Universidad de Valladolid, Avenida de Madrid 44, 34004 Palencia, Spain
| | - Mari Cruz García-González
- Department of Agroforestry Sciences, ETSIIAA, Universidad de Valladolid, Avenida de Madrid 44, 34004 Palencia, Spain
| | - Mercedes Sánchez-Báscones
- Department of Agroforestry Sciences, ETSIIAA, Universidad de Valladolid, Avenida de Madrid 44, 34004 Palencia, Spain
| | - Claudia Vitoria
- Instituto Politécnico de Castelo Branco, Escola Superior Agrária, Quinta da Senhora de Mércules, 6001-909 Castelo Branco, Portugal; CERNAS-IPCB Research Centre for Natural Resources, Environment and Society, Instituto Politécnico de Castelo Branco, 6001-909 Castelo Branco, Portugal
| | - Carmo Horta
- Instituto Politécnico de Castelo Branco, Escola Superior Agrária, Quinta da Senhora de Mércules, 6001-909 Castelo Branco, Portugal; CERNAS-IPCB Research Centre for Natural Resources, Environment and Society, Instituto Politécnico de Castelo Branco, 6001-909 Castelo Branco, Portugal
| |
Collapse
|
2
|
Bruyant P, Doré J, Vallon L, Moënne‐Loccoz Y, Almario J. Needle in a Haystack: Culturing Plant-Beneficial Helotiales Lineages From Plant Roots. Environ Microbiol 2025; 27:e70082. [PMID: 40228525 PMCID: PMC11996241 DOI: 10.1111/1462-2920.70082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 02/18/2025] [Accepted: 02/24/2025] [Indexed: 04/16/2025]
Abstract
Root-associated Helotiales fungi are increasingly recognised as beneficial fungal partners promoting plant growth under nutrient-limited conditions, particularly, in non-mycorrhizal hosts lacking the ancestral arbuscular mycorrhizal symbiosis. However, the ecology of these fungi is still cryptic as relatively few lineages have been successfully cultivated from roots for further study. Here, we attempted the mass isolation of root endophytic fungi to evaluate the recovery of known plant-beneficial Helotiales lineages using a tailored culture-based approach. We sampled six wild non-mycorrhizal species from the Brassicaceae, Caryophyllaceae, and Cyperaceae, growing in nutrient-limited alpine soils. We isolated 602 root endophytes and compared this culturable diversity with the one observed via fungal ITS2 metabarcoding. Metabarcoding revealed that Helotiales taxa dominated the fungal communities, with 43% of these detected taxa also represented in our collection. Accordingly, most root endophytes in our collection (53%) were Helotiales. These isolates, some with P solubilisation potential, belonged primarily to three Helotialean clades and were phylogenetically related to plant growth-promoting or mycorrhizal-like strains. This analysis highlights that the roots of alpine non-mycorrhizal plants harbour diverse plant-beneficial root-endophytic Helotiales, and the isolates obtained are a promising resource to explore the plant-beneficial mechanisms and ecological traits of these fungi.
Collapse
Affiliation(s)
- Pauline Bruyant
- Laboratoire d'Ecologie Microbienne LEM, CNRS UMR5557, INRAE UMR1418Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro SupVilleurbanneFrance
| | - Jeanne Doré
- Laboratoire d'Ecologie Microbienne LEM, CNRS UMR5557, INRAE UMR1418Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro SupVilleurbanneFrance
| | - Laurent Vallon
- Laboratoire d'Ecologie Microbienne LEM, CNRS UMR5557, INRAE UMR1418Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro SupVilleurbanneFrance
| | - Yvan Moënne‐Loccoz
- Laboratoire d'Ecologie Microbienne LEM, CNRS UMR5557, INRAE UMR1418Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro SupVilleurbanneFrance
- Institut Universitaire de FranceParisFrance
| | - Juliana Almario
- Laboratoire d'Ecologie Microbienne LEM, CNRS UMR5557, INRAE UMR1418Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro SupVilleurbanneFrance
| |
Collapse
|
3
|
Bolin LG. Soil microbes influence the ecology and evolution of plant plasticity. THE NEW PHYTOLOGIST 2025; 245:2224-2236. [PMID: 39775550 DOI: 10.1111/nph.20383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025]
Abstract
Stress often induces plant trait plasticity, and microbial communities also alter plant traits. Therefore, it is unclear how much plasticity results from direct plant responses to stress vs indirect responses due to stress-induced changes in soil microbial communities. To test how microbes and microbial community responses to stress affect the ecology and potentially the evolution of plant plasticity, I grew plants in four stress environments (salt, herbicide, herbivory, and no stress) with microbes that had responded to these same environments or with sterile inoculant. Plants delayed flowering under stress only when inoculated with live microbial communities, and this plasticity was maladaptive. However, microbial communities responded to stress in ways that accelerated flowering across all environments. Microbes also affected the expression of genetic variation for plant flowering time and specific leaf area, as well as genetic variation for plasticity of both traits, and disrupted a positive genetic correlation for plasticity in response to herbicide and herbivory stress, suggesting that microbes may affect the pace of plant evolution. Together, these results highlight an important role for soil microbes in plant plastic responses to stress and suggest that microbes may alter the evolution of plant plasticity.
Collapse
Affiliation(s)
- Lana G Bolin
- Department of Biology, The University of New Mexico, Castetter Hall, 219 Yale Blvd NE, Albuquerque, NM, 87131-0001, USA
| |
Collapse
|
4
|
Wall CB, Kajihara K, Rodriguez FE, Vilonen L, Yogi D, Swift SOI, Hynson NA. Symbiotic fungi alter plant resource allocation independent of water availability. AMERICAN JOURNAL OF BOTANY 2025; 112:e16459. [PMID: 39825495 DOI: 10.1002/ajb2.16459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 01/20/2025]
Abstract
PREMISE The ability of plants to adapt or acclimate to climate change is inherently linked to their interactions with symbiotic microbes, notably fungi. However, it is unclear whether fungal symbionts from different climates have different impacts on the outcome of plant-fungal interactions, especially under environmental stress. METHODS We tested three provenances of fungal inoculum (originating from dry, moderate or wet environments) with one host plant genotype exposed to three soil moisture regimes (low, moderate and high). Inoculated and uninoculated plants were grown in controlled conditions for 151 days, then shoot and root biomass were weighed and fungal diversity and community composition determined via amplicon sequencing. RESULTS The source of inoculum and water regime elicited significant changes in plant resource allocation to shoots versus roots, but only specific inocula affected total plant biomass. Shoot biomass increased in the high water treatment but was negatively impacted by all inoculum treatments relative to the controls. The opposite was true for roots, where the low water treatment led to greater proportional root biomass, and plants inoculated with wet site fungi allocated significantly more resources to root growth than dry- or moderate-site inoculated plants and the controls. Fungal communities of shoots and roots partitioned by inoculum source, water treatment, and the interaction of the two. CONCLUSIONS The provenance of fungi can significantly affect total plant biomass and resource allocation above- and belowground, with fungi derived from more extreme environments eliciting the strongest plant responses.
Collapse
Affiliation(s)
- Christopher B Wall
- Pacific Biosciences Research Center, University of Hawai'i at Mānoa, Honolulu, HI, USA
- Department of Ecology, Behavior and Evolution, Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Kacie Kajihara
- Pacific Biosciences Research Center, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Francisca E Rodriguez
- Pacific Biosciences Research Center, University of Hawai'i at Mānoa, Honolulu, HI, USA
- Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Leena Vilonen
- Pacific Biosciences Research Center, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Danyel Yogi
- Pacific Biosciences Research Center, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Sean O I Swift
- Pacific Biosciences Research Center, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Nicole A Hynson
- Pacific Biosciences Research Center, University of Hawai'i at Mānoa, Honolulu, HI, USA
| |
Collapse
|
5
|
Liu W, Wang Y, Gu C, Wang J, Dai Y, Maryam B, Chen X, Yi X, Liu X. Polyethylene microplastics distinctly affect soil microbial community and carbon and nitrogen cycling during plant litter decomposition. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123616. [PMID: 39653617 DOI: 10.1016/j.jenvman.2024.123616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/23/2024] [Accepted: 12/01/2024] [Indexed: 01/15/2025]
Abstract
Plant litter is an important input source of carbon and nitrogen in soil. While microplastics (MPs) and plant litter are ubiquitously present in soil, their combined impact on soil biogeochemical processes remains poorly understood. To address this gap, we examined the soil changes resulting from the coexistence of plant litter (Alfalfa) and polyethylene microplastics (PE). The soil changes included physicochemical properties, composition of soil dissolved organic matter, and structure of the soil microbial community. The results showed that the addition of polyethylene (PE) inhibited the degradation of humus-like substances and decreased the quantity of humic acid-like compounds in soil dissolved organic matter (DOM). PE negatively impacted plant litter decomposition, disrupted soil organic carbon (SOC) breakdown, interfered with the nitrogen cycle, and significantly altered microbial community structures during the process. By day 35, SOC and total nitrogen (TN) levels were reduced by 39.8% and 10.1%, respectively, in the presence of PE. Furthermore, PE significantly decreased the abundance of nitrogen-fixing microbes, including Streptomyces (43.1%) and Bacillus (45.9%), which play key roles in nitrate reduction to ammonium. This study highlights the environmental effects of MPs on plant litter decomposition and their potential implications for soil biogeochemical processes.
Collapse
Affiliation(s)
- Wanxin Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300354, China
| | - Yi Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300354, China
| | - Chunbo Gu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300354, China
| | - Jiao Wang
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Yexin Dai
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300354, China
| | - Bushra Maryam
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300354, China
| | - Xiaochen Chen
- Innovation Center for Soil Remediation and Restoration Technologies, College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350108, China
| | - Xianliang Yi
- School of Ocean Science and Technology, Dalian University of Technology, Panjin, 116024, China
| | - Xianhua Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300354, China.
| |
Collapse
|
6
|
O'Brien AM, Sawers RJH, Gasca-Pineda J, Baxter I, Eguiarte LE, Ross-Ibarra J, Strauss SY. Teosinte populations exhibit weak local adaptation to their rhizosphere biota despite strong effects of biota source on teosinte fitness and traits. Evolution 2024; 78:1991-2005. [PMID: 39277541 DOI: 10.1093/evolut/qpae130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 08/16/2024] [Accepted: 09/12/2024] [Indexed: 09/17/2024]
Abstract
While biotic interactions often impose selection, species and populations vary in whether they are locally adapted to biotic interactions. Evolutionary theory predicts that environmental conditions drive this variable local adaptation by altering the fitness impacts of species interactions. To investigate the influence of an environmental gradient on adaptation between a plant and its associated rhizosphere biota, we cross-combined teosinte (Zea mays ssp. mexicana) and rhizosphere biota collected across a gradient of decreasing temperature, precipitation, and nutrients in a greenhouse common garden experiment. We measured both fitness and phenotypes expected to be influenced by biota, including concentrations of nutrients in leaves. Independent, main effects of teosinte and biota source explained most variation in teosinte fitness and traits. For example, biota from warmer sites provided population-independent fitness benefits across teosinte hosts. Effects of biota that depended on teosinte genotype were often not specific to their local hosts, and most traits had similar relationships to fitness across biota treatments. However, we found weak patterns of local adaptation between teosinte and biota from colder sites, suggesting environmental gradients may alter the importance of local adaptation in teosinte-biota interactions, as evolutionary theory predicts.
Collapse
Affiliation(s)
- Anna M O'Brien
- Center for Population Biology, University of California, Davis, CA, United States
- Department of Evolution and Ecology, University of California, Davis, CA, United States
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH, United States
| | - Ruairidh J H Sawers
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, Guanajuato, México
- Department of Plant Science, Pennsylvania State University, State College, PA, United States
| | - Jaime Gasca-Pineda
- Laboratorio de Evolución Molecular y Experimental, Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Ivan Baxter
- Donald Danforth Plant Science Center, St. Louis, MO, United States
| | - Luis E Eguiarte
- Laboratorio de Evolución Molecular y Experimental, Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Jeffrey Ross-Ibarra
- Center for Population Biology, University of California, Davis, CA, United States
- Department of Evolution and Ecology, University of California, Davis, CA, United States
- Genome Center, University of California, Davis, CA, United States
| | - Sharon Y Strauss
- Center for Population Biology, University of California, Davis, CA, United States
- Department of Evolution and Ecology, University of California, Davis, CA, United States
| |
Collapse
|
7
|
Feng J, Dan X, Cui Y, Gong Y, Peng M, Sang Y, Ingvarsson PK, Wang J. Integrating evolutionary genomics of forest trees to inform future tree breeding amid rapid climate change. PLANT COMMUNICATIONS 2024; 5:101044. [PMID: 39095989 PMCID: PMC11573912 DOI: 10.1016/j.xplc.2024.101044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 06/03/2024] [Accepted: 07/31/2024] [Indexed: 08/04/2024]
Abstract
Global climate change is leading to rapid and drastic shifts in environmental conditions, posing threats to biodiversity and nearly all life forms worldwide. Forest trees serve as foundational components of terrestrial ecosystems and play a crucial and leading role in combating and mitigating the adverse effects of extreme climate events, despite their own vulnerability to these threats. Therefore, understanding and monitoring how natural forests respond to rapid climate change is a key priority for biodiversity conservation. Recent progress in evolutionary genomics, driven primarily by cutting-edge multi-omics technologies, offers powerful new tools to address several key issues. These include precise delineation of species and evolutionary units, inference of past evolutionary histories and demographic fluctuations, identification of environmentally adaptive variants, and measurement of genetic load levels. As the urgency to deal with more extreme environmental stresses grows, understanding the genomics of evolutionary history, local adaptation, future responses to climate change, and conservation and restoration of natural forest trees will be critical for research at the nexus of global change, population genomics, and conservation biology. In this review, we explore the application of evolutionary genomics to assess the effects of global climate change using multi-omics approaches and discuss the outlook for breeding of climate-adapted trees.
Collapse
Affiliation(s)
- Jiajun Feng
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xuming Dan
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yangkai Cui
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yi Gong
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Minyue Peng
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yupeng Sang
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Pär K Ingvarsson
- Department of Plant Biology, Linnean Centre for Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Jing Wang
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China.
| |
Collapse
|
8
|
Sun RZ, Wang YY, Liu XQ, Yang ZL, Deng X. Structure and dynamics of microbial communities associated with the resurrection plant Boea hygrometrica in response to drought stress. PLANTA 2024; 260:24. [PMID: 38858226 DOI: 10.1007/s00425-024-04459-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/06/2024] [Indexed: 06/12/2024]
Abstract
MAIN CONCLUSION The resurrection plant Boea hygrometrica selectively recruits and assembles drought-specific microbial communities across the plant-soil compartments, which may benefit plant growth and fitness under extreme drought conditions. Plant-associated microbes are essential for facilitating plant growth and fitness under drought stress. The resurrection plant Boea hygrometrica in natural habitats with seasonal rainfall can survive rapid desiccation, yet their interaction with microbiomes under drought conditions remains unexplored. This study examined the bacterial and fungal microbiome structure and drought response across plant-soil compartments of B. hygrometrica by high-throughput amplicon sequencing of 16S rRNA gene and internal transcribed spacer. Our results demonstrated that the diversity, composition, and functional profile of the microbial community varied considerably across the plant-soil compartments and were strongly affected by drought stress. Bacterial and fungal diversity was significantly reduced from soil to endosphere and belowground to aboveground compartments. The compartment-specific enrichment of the dominant bacteria phylum Cyanobacteriota and genus Methylorubrum in leaf endosphere, genera Pseudonocardia in rhizosphere soil and Actinoplanes in root endosphere, and fungal phylum Ascomycota in the aboveground compartments and genera Knufia in root endosphere and Cladosporium in leaf endosphere composed part of the core microbiota with corresponding enrichment of beneficial functions for plant growth and fitness. Moreover, the recruitment of dominant microbial genera Sphingosinicella and Plectosphaerella, Ceratobasidiaceae mycorrhizal fungi, and numerous plant growth-promoting bacteria involving nutrient supply and auxin regulation was observed in desiccated B. hygrometrica plants. Our results suggest that the stable assembled drought-specific microbial community of B. hygrometrica may contribute to plant survival under extreme environments and provide valuable microbial resources for the microbe-mediated drought tolerance enhancement in crops.
Collapse
Affiliation(s)
- Run-Ze Sun
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, 100093, Beijing, China.
- China National Botanical Garden, 100093, Beijing, China.
| | - Yuan-Yuan Wang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, 100093, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Xiao-Qiang Liu
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, 100093, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Zhao-Lin Yang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, 100093, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Xin Deng
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, 100093, Beijing, China.
- China National Botanical Garden, 100093, Beijing, China.
| |
Collapse
|
9
|
Cao Y, Li Z, Du P, Ji J, Sun W, Xu J, Liang B. Effects of different dwarfing interstocks on the rhizosphere, endophytic bacteria, and drought resistance of apple trees. Microbiol Res 2024; 283:127690. [PMID: 38461571 DOI: 10.1016/j.micres.2024.127690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 03/12/2024]
Abstract
Rootstock is commonly used to enhance plant resistance to drought stress. However, it is necessary to investigate the effects of different rootstock, interstock, and scion combinations on rhizosphere and root endophytic bacteria under drought stress. We conducted a pot experiment to investigate how interstock [SH40, Jizhen 1 (J1), and Jizhen 2 (J2)] affects the drought tolerance and nitrogen (N) uptake and utilization of apple trees under drought stress. The results showed that the total dry weight, total chlorophyll content, carotenoid content, photosynthesis rate, and N absorption and utilization efficiency of apple trees decreased significantly, whereas relative electrolyte leakage increased significantly under drought stress. Membership function analysis showed that the apple plants with the J1 interstock had the greatest drought resistance. In addition, drought treatment significantly affected the diversity and composition of rhizosphere and root endophytic communities in all three rootstock/interstock/scion combinations. Further analysis revealed that the relative abundance of the plant pathogen Ralstonia was significantly increased in J2 drought-treated roots, compared to the other groups, whereas those of some potentially beneficial bacteria (0134_terrestrial_group, Phenylobacterium, Ellin6067, Kribbella, Chloronema, and Streptomyces) increased significantly in the J1 drought-treated sample. Co-occurrence network analysis showed that some potentially beneficial bacteria (Ellin6067, S0134_terrestrial_group, Pedomicrobium, and Subgroup_10) were significantly positively correlated with N content. These modifications of the rhizosphere and endophytic bacterial communities may influence the drought resilience and N uptake efficiency of different combinations of interstocks and scions. This study is a much-needed step towards understanding the stress response mechanism of scion-rootstock combinations.
Collapse
Affiliation(s)
- Yang Cao
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Zhongyong Li
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Peihua Du
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Jiahao Ji
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Wei Sun
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Jizhong Xu
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Bowen Liang
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei 071001, China.
| |
Collapse
|
10
|
Li H, Hu X, Geng X, Xiao B, Miao W, Xu Z, Deng Y, Jiang B, Hou Y. Competition mode and soil nutrient status shape the role of soil microbes in the diversity-invasibility relationship. Ecol Evol 2024; 14:e11425. [PMID: 38746546 PMCID: PMC11091549 DOI: 10.1002/ece3.11425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/24/2024] [Accepted: 05/02/2024] [Indexed: 01/06/2025] Open
Abstract
Understanding the relationship between plant diversity and invasibility is essential in invasion ecology. Species-rich communities are hypothesized to be more resistant to invasions than species-poor communities. However, while soil microorganisms play a crucial role in regulating this diversity-invasibility relationship, the effects of plant competition mode and soil nutrient status on their role remain unclear. To address this, we conducted a two-stage greenhouse experiment. Soils were first conditioned by growing nine native species separately in them for 1 year, then mixed in various configurations with soils conditioned using one, three, or six species, respectively. Next, we inoculated the mixed soil into sterilized substrate soil and planted the alien species Rhus typhina and native species Ailanthus altissima as test plants. We set up two competition modes (intraspecific and interspecific) and two nutrient levels (fertilization using slow-release fertilizer and nonfertilization). Under intraspecific competition, regardless of fertilization, the biomass of the alien species was higher in soil conditioned by six native species. By contrast, under interspecific competition, the biomass increased without fertilization but remained stable with fertilization in soil conditioned by six native species. Analysis of soil microbes suggests that pathogens and symbiotic fungi in diverse plant communities influenced R. typhina growth, which varied with competition mode and nutrient status. Our findings suggest that the soil microbiome is pivotal in mediating the diversity-invasibility relationship, and this influence varies according to competition mode and nutrient status.
Collapse
Affiliation(s)
- Haokun Li
- College of Life SciencesLudong UniversityYantaiChina
| | - Xinyu Hu
- College of Life SciencesLudong UniversityYantaiChina
| | - Xinze Geng
- College of Life SciencesLudong UniversityYantaiChina
| | - Bo Xiao
- Analysis and Testing CenterLudong UniversityYantaiChina
| | | | - Zhiguang Xu
- College of Life SciencesLudong UniversityYantaiChina
| | - Yizhuo Deng
- College of Life SciencesLudong UniversityYantaiChina
| | - Bohan Jiang
- College of Life SciencesLudong UniversityYantaiChina
| | - Yuping Hou
- College of Life SciencesLudong UniversityYantaiChina
| |
Collapse
|
11
|
O'Brien AM, Laurich JR, Frederickson ME. Evolutionary consequences of microbiomes for hosts: impacts on host fitness, traits, and heritability. Evolution 2024; 78:237-252. [PMID: 37828761 DOI: 10.1093/evolut/qpad183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 08/30/2023] [Accepted: 10/03/2023] [Indexed: 10/14/2023]
Abstract
An organism's phenotypes and fitness often depend on the interactive effects of its genome (Ghost), microbiome (Gmicrobe), and environment (E). These G × G, G × E, and G × G × E effects fundamentally shape host-microbiome (co)evolution and may be widespread, but are rarely compared within a single experiment. We collected and cultured Lemnaminor (duckweed) and its associated microbiome from 10 sites across an urban-to-rural ecotone. We factorially manipulated host genotype and microbiome in two environments (low and high zinc, an urban aquatic stressor) in an experiment with 200 treatments: 10 host genotypes × 10 microbiomes × 2 environments. Host genotype explained the most variation in L.minor fitness and traits, while microbiome effects often depended on host genotype (G × G). Microbiome composition predicted G × G effects: when compared in more similar microbiomes, duckweed genotypes had more similar effects on traits. Further, host fitness increased and microbes grew faster when applied microbiomes more closely matched the host's field microbiome, suggesting some local adaptation between hosts and microbiota. Finally, selection on and heritability of host traits shifted across microbiomes and zinc exposure. Thus, we found that microbiomes impact host fitness, trait expression, and heritability, with implications for host-microbiome evolution and microbiome breeding.
Collapse
Affiliation(s)
- Anna M O'Brien
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH, United States
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Jason R Laurich
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Megan E Frederickson
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
12
|
Vassilev N, Mendes GDO. Soil Fungi in Sustainable Agriculture. Microorganisms 2024; 12:163. [PMID: 38257989 PMCID: PMC10819681 DOI: 10.3390/microorganisms12010163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
It is widely accepted that the continuously growing human population needs rapid solutions to respond to the increased global demand for high agricultural productivity [...].
Collapse
Affiliation(s)
- Nikolay Vassilev
- Department of Chemical Engineering, University of Granada, C/Fuentenueva s/n, 18071 Granada, Spain
- Institute of Biotechnology, University of Granada, C/Fuentenueva s/n, 18071 Granada, Spain
| | - Gilberto de Oliveira Mendes
- Laboratório de Microbiologia e Fitopatologia, Instituto de Ciências Agrárias, Universidade Federal de Uberlândia, Monte Carmelo 38500-000, Brazil;
| |
Collapse
|
13
|
Santiago JM, Hallman LM, Fox JP, Pitino M, Shatters RG, Cano LM, Rossi L. Impacts of Oak Mulch Amendments on Rhizosphere Microbiome of Citrus Trees Grown in Florida Flatwood Soils. Microorganisms 2023; 11:2764. [PMID: 38004775 PMCID: PMC10673100 DOI: 10.3390/microorganisms11112764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/06/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Rhizosphere interactions are an understudied component of citrus production. This is even more important in Florida flatwood soils, which pose significant challenges in achieving sustainable and effective fruit production due to low natural fertility and organic matter. Citrus growers apply soil amendments, including oak mulch, to ameliorate their soil conditions. Thus, the aim of this research was to evaluate the effects of oak mulch on citrus nutrient uptake, soil characteristics, and rhizosphere composition. The plant material consisted of 'Valencia' sweet orange (Citrus × sinensis) trees grafted on 'US-812' (C. reticulata × C. trifoliata) rootstock. The experiment consisted of two treatments, which included trees treated with oak mulch (300 kg of mulch per plot) and a control. The soil and leaf nutrient contents, soil pH, cation exchange capacity, moisture, temperature, and rhizosphere bacterial compositions were examined over the course of one year (spring and fall 2021). During the spring samplings, the citrus trees treated with oak mulch resulted in significantly greater soil Zn and Mn contents, greater soil moisture, and greater rhizosphere bacterial diversity compared to the control, while during the fall samplings, only a greater soil moisture content was observed in the treated trees. The soil Zn and Mn content detected during the spring samplings correlated with the significant increases in the diversity of the rhizosphere bacterial community composition. Similarly, the reduced rates of leaching and evaporation (at the soil surface) of oak mulch applied to Florida sandy soils likely played a large role in the significant increase in moisture and nutrient retention.
Collapse
Affiliation(s)
- John M. Santiago
- Horticultural Sciences Department, Indian River Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Fort Pierce, FL 34945, USA
| | - Lukas M. Hallman
- Horticultural Sciences Department, Indian River Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Fort Pierce, FL 34945, USA
| | - John-Paul Fox
- Horticultural Sciences Department, Indian River Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Fort Pierce, FL 34945, USA
| | - Marco Pitino
- Plant Pathology Department, Indian River Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Fort Pierce, FL 34945, USA
| | - Robert G. Shatters
- Horticultural Research Laboratory, U.S. Department of Agriculture, Agricultural Research Services, Fort Pierce, FL 34945, USA
| | - Liliana M. Cano
- Plant Pathology Department, Indian River Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Fort Pierce, FL 34945, USA
| | - Lorenzo Rossi
- Horticultural Sciences Department, Indian River Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Fort Pierce, FL 34945, USA
| |
Collapse
|
14
|
Seward J, Bräuer S, Beckett P, Roy-Léveillée P, Emilson E, Watmough S, Basiliko N. Recovery of Smelter-Impacted Peat and Sphagnum Moss: a Microbial Perspective. MICROBIAL ECOLOGY 2023; 86:2894-2903. [PMID: 37632540 DOI: 10.1007/s00248-023-02289-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/15/2023] [Indexed: 08/28/2023]
Abstract
Peatlands store approximately one-half of terrestrial soil carbon and one-tenth of non-glacial freshwater. Some of these important ecosystems are located near heavy metal emitting smelters. To improve the understanding of smelter impacts and potential recovery after initial pollution controls in the 1970s (roughly 50 years of potential recovery), we sampled peatlands along a distance gradient of 134 km from a smelter in Sudbury, Ontario, Canada, an area with over a century of nickel (Ni) and copper (Cu) mining activity. This work is aimed at evaluating potential shifts in bacterial and archaeal community structures in Sphagnum moss and its underlying peat within smelter-impacted poor fens. In peat, total Ni and Cu concentrations were higher (0.062-0.067 and 0.110-0.208 mg/g, respectively) at sites close to the smelter and exponentially dropped with distance from the smelter. This exponential decrease in Ni concentrations was also observed in Sphagnum. 16S rDNA amplicon sequencing showed that peat and Sphagnum moss host distinct microbiomes with peat accommodating a more diverse community structure. The microbiomes of Sphagnum were dominated by Proteobacteria (62.5%), followed by Acidobacteria (11.9%), with no observable trends with distance from the smelter. Dominance of Acidobacteria (32.4%) and Proteobacteria (29.6%) in peat was reported across all sites. No drift in taxonomy was seen across the distance gradient or from the reference sites, suggesting a potential microbiome recovery toward that of the reference peatlands microbiomes after decades of pollution controls. These results advance the understanding of peat and Sphagnum moss microbiomes, as well as depict the sensitivities and the resilience of peatland ecosystems.
Collapse
Affiliation(s)
- James Seward
- Vale Living with Lakes Centre and the School of Natural Sciences, Laurentian University, 935 Ramsey Lake Rd, Sudbury, ON, P3E 2C6, Canada.
| | - Suzanna Bräuer
- Department of Biology, Appalachian State University, 572 Rivers Street, Boone, NC, 28608, USA
| | - Peter Beckett
- Vale Living with Lakes Centre and the School of Natural Sciences, Laurentian University, 935 Ramsey Lake Rd, Sudbury, ON, P3E 2C6, Canada
| | - Pascale Roy-Léveillée
- Department of Geography, Université Laval, Pavillon Abitibi-Price, Quebec, G1V 0A6, Canada
| | - Erik Emilson
- Natural Resources Canada, Great Lakes Forestry Centre, 1219 Queen St. East, Sault Ste. Marie, ON, P6A 2E5, Canada
| | - Shaun Watmough
- School of the Environment, Trent University, Peterborough, Ontario, Canada
| | - Nathan Basiliko
- Department of Natural Resources Management, Lakehead University, 955 Oliver Rd., Thunder Bay, ON, P7B 5E1, Canada
| |
Collapse
|
15
|
Ricks KD, Ricks NJ, Yannarell AC. Patterns of Plant Salinity Adaptation Depend on Interactions with Soil Microbes. Am Nat 2023; 202:276-287. [PMID: 37606945 DOI: 10.1086/725393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
AbstractAs plant-microbe interactions are both ubiquitous and critical in shaping plant fitness, patterns of plant adaptation to their local environment may be influenced by these interactions. Identifying the contribution of soil microbes to plant adaptation may provide insight into the evolution of plant traits and their microbial symbioses. To this end, we assessed the contribution of soil microbes to plant salinity adaptation by growing 10 populations of Bromus tectorum, collected from habitats differing in their salinity, in the greenhouse under either high-salinity or nonsaline conditions and with or without soil microbial partners. Across two live soil inoculum treatments, we found evidence for adaptation of these populations to their home salinity environment. However, when grown in sterile soils, plants were slightly maladapted to their home salinity environment. As plants were on average more fit in sterile soils, pathogenic microbes may have been significant drivers of plant fitness herein. Consequently, we hypothesized that the plant fitness advantage in their home salinity may have been due to increased plant resistance to pathogenic attack in those salinity environments. Our results highlight that plant-microbe interactions may partially mediate patterns of plant adaptation as well as be important selective agents in plant evolution.
Collapse
|
16
|
Putra AR, Yen JDL, Fournier-Level A. Forecasting trait responses in novel environments to aid seed provenancing under climate change. Mol Ecol Resour 2023; 23:565-580. [PMID: 36308465 DOI: 10.1111/1755-0998.13728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 10/23/2022] [Accepted: 10/27/2022] [Indexed: 11/28/2022]
Abstract
Revegetation projects face the major challenge of sourcing optimal plant material. This is often done with limited information about plant performance and increasingly requires factoring resilience to climate change. Functional traits can be used as quantitative indices of plant performance and guide seed provenancing, but trait values expected under novel conditions are often unknown. To support climate-resilient provenancing efforts, we develop a trait prediction model that integrates the effect of genetic variation with fine-scale temperature variation. We train our model on multiple field plantings of Arabidopsis thaliana and predict two relevant fitness traits-days-to-bolting and fecundity-across the species' European range. Prediction accuracy was high for days-to-bolting and moderate for fecundity, with the majority of trait variation explained by temperature differences between plantings. Projection under future climate predicted a decline in fecundity, although this response was heterogeneous across the range. In response, we identified novel genotypes that could be introduced to genetically offset the fitness decay. Our study highlights the value of predictive models to aid seed provenancing and improve the success of revegetation projects.
Collapse
Affiliation(s)
- Andhika R Putra
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Jian D L Yen
- Arthur Rylah Institute for Environmental Research, Heidelberg, Victoria, Australia
| | | |
Collapse
|
17
|
de Vries F, Lau J, Hawkes C, Semchenko M. Plant-soil feedback under drought: does history shape the future? Trends Ecol Evol 2023:S0169-5347(23)00054-X. [PMID: 36973124 DOI: 10.1016/j.tree.2023.03.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/29/2023]
Abstract
Plant-soil feedback (PSF) is widely recognised as a driver of plant community composition, but understanding of its response to drought remains in its infancy. Here, we provide a conceptual framework for the role of drought in PSF, considering plant traits, drought severity, and historical precipitation over ecological and evolutionary timescales. Comparing experimental studies where plants and microbes do or do not share a drought history (through co-sourcing or conditioning), we hypothesise that plants and microbes with a shared drought history experience more positive PSF under subsequent drought. To reflect real-world responses to drought, future studies need to explicitly include plant-microbial co-occurrence and potential co-adaptation and consider the precipitation history experienced by both plants and microbes.
Collapse
Affiliation(s)
- Franciska de Vries
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands.
| | - Jennifer Lau
- Department of Biology and Environmental Resilience Institute, Indiana University, IN, USA
| | - Christine Hawkes
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
| | - Marina Semchenko
- Institute of Ecology and Earth Sciences, University of Tartu, Liivi 2, 50409 Tartu, Estonia
| |
Collapse
|
18
|
Faist H, Trognitz F, Antonielli L, Symanczik S, White PJ, Sessitsch A. Potato root-associated microbiomes adapt to combined water and nutrient limitation and have a plant genotype-specific role for plant stress mitigation. ENVIRONMENTAL MICROBIOME 2023; 18:18. [PMID: 36918963 PMCID: PMC10012461 DOI: 10.1186/s40793-023-00469-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Due to climate change and reduced use of fertilizers combined stress scenarios are becoming increasingly frequent in crop production. In a field experiment we tested the effect of combined water and phosphorus limitation on the growth performance and plant traits of eight tetraploid and two diploid potato varieties as well as on root-associated microbiome diversity and functional potential. Microbiome and metagenome analysis targeted the diversity and potential functions of prokaryotes, fungi, plasmids, and bacteriophages and was linked to plant traits like tuber yield or timing of canopy closure. RESULTS The different potato genotypes responded differently to the combined stress and hosted distinct microbiota in the rhizosphere and the root endosphere. Proximity to the root, stress and potato genotype had significant effects on bacteria, whereas fungi were only mildly affected. To address the involvement of microbial functions, we investigated well and poorly performing potato genotypes (Stirling and Desirée, respectively) under stress conditions and executed a metagenome analysis of rhizosphere microbiomes subjected to stress and no stress conditions. Functions like ROS detoxification, aromatic amino acid and terpene metabolism were enriched and in synchrony with the metabolism of stressed plants. In Desirée, Pseudonocardiales had the genetic potential to take up assimilates produced in the fast-growing canopy and to reduce plant stress-sensing by degrading ethylene, but overall yield losses were high. In Stirling, Xanthomonadales had the genetic potential to reduce oxidative stress and to produce biofilms, potentially around roots. Biofilm formation could be involved in drought resilience and nutrient accessibility of Stirling and explain the recorded low yield losses. In the rhizosphere exposed to combined stress, the relative abundance of plasmids was reduced, and the diversity of phages was enriched. Moreover, mobile elements like plasmids and phages were affected by combined stresses in a genotype-specific manner. CONCLUSION Our study gives new insights into the interconnectedness of root-associated microbiota and plant stress responses in the field. Functional genes in the metagenome, phylogenetic composition and mobile elements play a role in potato stress adaption. In a poor and a well performing potato genotype grown under stress conditions, distinct functional genes pinpoint to a distinct stress sensing, water availability and compounds in the rhizospheres.
Collapse
Affiliation(s)
- Hanna Faist
- Bioresources Unit, AIT Austrian Institute of Technology, Konrad-Lorenz-Straße 24, 3430 Tulln, Austria
| | - Friederike Trognitz
- Bioresources Unit, AIT Austrian Institute of Technology, Konrad-Lorenz-Straße 24, 3430 Tulln, Austria
| | - Livio Antonielli
- Bioresources Unit, AIT Austrian Institute of Technology, Konrad-Lorenz-Straße 24, 3430 Tulln, Austria
| | - Sarah Symanczik
- Soil Science Department, Research Institute of Organic Agriculture (FiBL), Ackerstraße 113, 5070 Frick, Switzerland
| | | | - Angela Sessitsch
- Bioresources Unit, AIT Austrian Institute of Technology, Konrad-Lorenz-Straße 24, 3430 Tulln, Austria
| |
Collapse
|
19
|
Albano LJ, Johnson MTJ. Interactions between environmental factors drive selection on cyanogenesis in
Trifolium repens. OIKOS 2023. [DOI: 10.1111/oik.09629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Lucas J. Albano
- Dept of Ecology and Evolutionary Biology, Univ. of Toronto Toronto ON Canada
- Dept of Biology, Univ. of Toronto Mississauga Mississauga ON Canada
| | | |
Collapse
|
20
|
Cui Z, Li R, Li F, Jin L, Wu H, Cheng C, Ma Y, Wang Z, Wang Y. Structural characteristics and diversity of the rhizosphere bacterial communities of wild Fritillaria przewalskii Maxim. in the northeastern Tibetan Plateau. Front Microbiol 2023; 14:1070815. [PMID: 36876117 PMCID: PMC9981654 DOI: 10.3389/fmicb.2023.1070815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 02/01/2023] [Indexed: 02/19/2023] Open
Abstract
Introduction Fritillaria przewalskii Maxim. is a Chinese endemic species with high medicinal value distributed in the northeastern part of the Tibetan Plateau. F. przewalskii root-associated rhizosphere bacterial communities shaped by soil properties may maintain the stability of soil structure and regulate F. przewalskii growth, but the rhizosphere bacterial community structure of wild F. przewalskii from natural populations is not clear. Methods In the current study, soil samples from 12 sites within the natural range of wild F. przewalskii were collected to investigate the compositions of bacterial communities via high-throughput sequencing of 16S rRNA genes and multivariate statistical analysis combined with soil properties and plant phenotypic characteristics. Results Bacterial communities varied between rhizosphere and bulk soil, and also between sites. Co-occurrence networks were more complex in rhizosphere soil (1,169 edges) than in bulk soil (676 edges). There were differences in bacterial communities between regions, including diversity and composition. Proteobacteria (26.47-37.61%), Bacteroidetes (10.53-25.22%), and Acidobacteria (10.45-23.54%) were the dominant bacteria, and all are associated with nutrient cycling. In multivariate statistical analysis, both soil properties and plant phenotypic characteristics were significantly associated with the bacterial community (p < 0.05). Soil physicochemical properties accounted for most community differences, and pH was a key factor (p < 0.01). Interestingly, when the rhizosphere soil environment remained alkaline, the C and N contents were lowest, as was the biomass of the medicinal part bulb. This might relate to the specific distribution of genera, such as Pseudonocardia, Ohtaekwangia, Flavobacterium (relative abundance >0.01), which all have significantly correlated with the biomass of F. przewalskii (p < 0.05). Discussion F. przewalskii is evidently averse to alkaline soil with high potassium contents, but this requires future verification. The results of the present study may provide theoretical guidance and new insights for the cultivation and domestication of F. przewalskii.
Collapse
Affiliation(s)
- Zhijia Cui
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, Gansu, China.,Northwest Collaborative Innovation Center for Traditional Chinese Medicine Co-Constructed by Gansu Province & MOE of PRC, Lanzhou, Gansu, China
| | - Ran Li
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Fan Li
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Ling Jin
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, Gansu, China.,Northwest Collaborative Innovation Center for Traditional Chinese Medicine Co-Constructed by Gansu Province & MOE of PRC, Lanzhou, Gansu, China
| | - Haixu Wu
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Chunya Cheng
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Yi Ma
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, Gansu, China.,Northwest Collaborative Innovation Center for Traditional Chinese Medicine Co-Constructed by Gansu Province & MOE of PRC, Lanzhou, Gansu, China
| | - Zhenheng Wang
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, Gansu, China.,Northwest Collaborative Innovation Center for Traditional Chinese Medicine Co-Constructed by Gansu Province & MOE of PRC, Lanzhou, Gansu, China
| | - Yuanyuan Wang
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| |
Collapse
|
21
|
Abstract
The concept of one health highlights that human health is not isolated but connected to the health of animals, plants and environments. In this Review, we demonstrate that soils are a cornerstone of one health and serve as a source and reservoir of pathogens, beneficial microorganisms and the overall microbial diversity in a wide range of organisms and ecosystems. We list more than 40 soil microbiome functions that either directly or indirectly contribute to soil, plant, animal and human health. We identify microorganisms that are shared between different one health compartments and show that soil, plant and human microbiomes are perhaps more interconnected than previously thought. Our Review further evaluates soil microbial contributions to one health in the light of dysbiosis and global change and demonstrates that microbial diversity is generally positively associated with one health. Finally, we present future challenges in one health research and formulate recommendations for practice and evaluation.
Collapse
Affiliation(s)
- Samiran Banerjee
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND, USA.
| | - Marcel G A van der Heijden
- Plant-Soil Interactions Group, Agroscope, Zurich, Switzerland. .,Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
22
|
Fan W, Tang F, Wang J, Dong J, Xing J, Shi F. Drought-induced recruitment of specific root-associated bacteria enhances adaptation of alfalfa to drought stress. Front Microbiol 2023; 14:1114400. [PMID: 36910228 PMCID: PMC9995459 DOI: 10.3389/fmicb.2023.1114400] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/06/2023] [Indexed: 02/25/2023] Open
Abstract
Drought is a major abiotic stress that threatens crop production. Soil microbiomes are thought to play a role in enhancing plant adaptation to various stresses. However, it remains unclear whether soil microbiomes play a key role when plants are challenged by drought and whether different varieties are enriched with specific bacteria at the rhizosphere. In this study, we measured changes in growth phenotypes, physiological and biochemical characteristics of drought-tolerant alfalfa (AH) and drought-sensitive (QS) under sterilized and unsterilized soil conditions with adequate watering and with drought stress, and analyzed the rhizosphere bacterial community composition and changes using 16S rRNA high-throughput sequencing. We observed that the unsterilized treatment significantly improved the growth, and physiological and biochemical characteristics of alfalfa seedlings under drought stress compared to the sterilized treatment. Under drought stress, the fresh and dry weight of seedlings increased by 35.24, 29.04, and 11.64%, 2.74% for unsterilized AH and QS, respectively, compared to sterilized treatments. The improvement was greater for AH than for QS. AH and QS recruited different rhizosphere bacteria when challenged by drought. Interestingly, under well-watered conditions, the AH rhizosphere was already rich in drought-tolerant bacterial communities, mainly Proteobacteria and Bacteroidetes, whereas these bacteria started to increase only when QS was subjected to drought. When drought stress was applied, AH was enriched with more drought-tolerant bacteria, mainly Acidobacteria, while the enrichment was weaker in QS rhizosphere. Therefore, the increase in drought tolerance of the drought-tolerant variety AH was greater than that of the drought-sensitive variety QS. Overall, this study confirmed the key role of drought-induced rhizosphere bacteria in improving the adaptation of alfalfa to drought stress, and clarified that this process is significantly related to the variety (genotype). The results of this study provide a basis for improving drought tolerance in alfalfa by regulating the rhizosphere microbiome.
Collapse
Affiliation(s)
- Wenqiang Fan
- Key Laboratory of Grassland Resources of the Ministry of Education and Key Laboratory of Forage Cultivation, Processing and High-Efficiency Utilization of the Ministry of Agriculture, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Fang Tang
- Key Laboratory of Grassland Resources of the Ministry of Education and Key Laboratory of Forage Cultivation, Processing and High-Efficiency Utilization of the Ministry of Agriculture, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Jiani Wang
- Key Laboratory of Grassland Resources of the Ministry of Education and Key Laboratory of Forage Cultivation, Processing and High-Efficiency Utilization of the Ministry of Agriculture, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Jiaqi Dong
- Key Laboratory of Grassland Resources of the Ministry of Education and Key Laboratory of Forage Cultivation, Processing and High-Efficiency Utilization of the Ministry of Agriculture, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Jing Xing
- Key Laboratory of Grassland Resources of the Ministry of Education and Key Laboratory of Forage Cultivation, Processing and High-Efficiency Utilization of the Ministry of Agriculture, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Fengling Shi
- Key Laboratory of Grassland Resources of the Ministry of Education and Key Laboratory of Forage Cultivation, Processing and High-Efficiency Utilization of the Ministry of Agriculture, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
23
|
Keeler AM, Rafferty NE. Legume germination is delayed in dry soils and in sterile soils devoid of microbial mutualists: Species-specific implications for upward range expansions. Ecol Evol 2022; 12:e9186. [PMID: 36016820 PMCID: PMC9398887 DOI: 10.1002/ece3.9186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/27/2022] [Accepted: 07/15/2022] [Indexed: 11/14/2022] Open
Abstract
Climate change is affecting species and their mutualists and can lead to the weakening or loss of important interspecific interactions. Through independent shifts in partner phenology and distribution, climatic stress can separate mutualists temporally or spatially, leading to alterations in partner functional traits and fitness. Here, we explored the effects of the loss of microbial mutualists on legume germination success and phenology. In particular, we assessed the effects of mutualism loss via soil sterilization, increased drought, and introduction to novel soils found beyond the current distributions of two focal legume species in subalpine environments. Through common garden experiments in controlled environments, we found evidence that soil sterilization (and consequent microbial absence) and dry soils caused species-specific phenological delays of 2-5 weeks in germination, likely as a result of interaction loss between legumes and specialized germination-promoting soil microbes, such as mutualistic rhizobia. Delays in germination caused by a mismatch between legumes and beneficial microbes could negatively affect legume fitness through increased plant-plant competition later in the season. Additionally, we found evidence of the presence of beneficial microbes beyond the current elevational range of one of our focal legumes, which may allow for expansion of the leading edge, although harsh abiotic factors in the alpine may hinder this. Alterations in the strength of soil microbe-legume mutualisms may lead to reduced fitness and altered demography for both soil microbes and legumes.
Collapse
Affiliation(s)
- Andrea M. Keeler
- Department of Evolution, Ecology, and Organismal BiologyUniversity of California, RiversideRiversideCaliforniaUSA
- Rocky Mountain Biological LaboratoryCrested ButteColoradoUSA
| | - Nicole E. Rafferty
- Department of Evolution, Ecology, and Organismal BiologyUniversity of California, RiversideRiversideCaliforniaUSA
- Rocky Mountain Biological LaboratoryCrested ButteColoradoUSA
| |
Collapse
|
24
|
Chieppa J, Power SA, Nielsen UN, Tissue DT. Plant functional traits affect competitive vigor of pasture grasses during drought and following recovery. Ecosphere 2022. [DOI: 10.1002/ecs2.4156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Jeff Chieppa
- Hawkesbury Institute for the Environment, Hawkesbury Campus Western Sydney University Richmond New South Wales Australia
- Department of Biological Sciences Texas Tech University Lubbock Texas USA
| | - Sally A. Power
- Hawkesbury Institute for the Environment, Hawkesbury Campus Western Sydney University Richmond New South Wales Australia
| | - Uffe N. Nielsen
- Hawkesbury Institute for the Environment, Hawkesbury Campus Western Sydney University Richmond New South Wales Australia
| | - David T. Tissue
- Hawkesbury Institute for the Environment, Hawkesbury Campus Western Sydney University Richmond New South Wales Australia
- Global Centre for Land‐based Innovation Western Sydney University, Hawkesbury Campus Richmond New South Wales Australia
| |
Collapse
|
25
|
Branch HA, Klingler AN, Byers KJRP, Panofsky A, Peers D. Discussions of the "Not So Fit": How Ableism Limits Diverse Thought and Investigative Potential in Evolutionary Biology. Am Nat 2022; 200:101-113. [PMID: 35737982 DOI: 10.1086/720003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
AbstractEvolutionary biology and many of its foundational concepts are grounded in a history of ableism and eugenics. The field has not made a concerted effort to divest our concepts and investigative tools from this fraught history, and as a result, an ableist investigative lens has persisted in present-day evolutionary research, limiting the scope of research and harming the ability to communicate and synthesize knowledge about evolutionary processes. This failure to divest from our eugenicist and ableist history has harmed progress in evolutionary biology and allowed principles from evolutionary biology to continue to be weaponized against marginalized communities in the modern day. To rectify this problem, scholars in evolutionary research must come to terms with how the history of the field has influenced their investigations and work to establish a new framework for defining and investigating concepts such as selection and fitness.
Collapse
|
26
|
Harutyunyan N, Kushugulova A, Hovhannisyan N, Pepoyan A. One Health Probiotics as Biocontrol Agents: One Health Tomato Probiotics. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11101334. [PMID: 35631758 PMCID: PMC9145216 DOI: 10.3390/plants11101334] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/08/2022] [Accepted: 05/08/2022] [Indexed: 05/06/2023]
Abstract
Tomato (Lycopersicon esculentum) is one of the most popular and valuable vegetables in the world. The most common products of its industrial processing in the food industry are juice, tomato paste, various sauces, canned or sun-dried fruits and powdered products. Tomato fruits are susceptible to bacterial diseases, and bacterial contamination can be a risk factor for the safety of processed tomato products. Developments in bioinformatics allow researchers to discuss target probiotic strains from an existing large number of probiotic strains for any link in the soil-plant-animal-human chain. Based on the literature and knowledge on the "One Health" concept, this study relates to the suggestion of a new term for probiotics: "One Health probiotics", beneficial for the unity of people, animals, and the environment. Strains of Lactiplantibacillus plantarum, having an ability to ferment a broad spectrum of plant carbohydrates, probiotic effects in human, and animal health, as well as being found in dairy products, vegetables, sauerkraut, pickles, some cheeses, fermented sausages, fish products, and rhizospheric soil, might be suggested as one of the probable candidates for "One Health" probiotics (also, for "One Health-tomato" probiotics) for the utilization in agriculture, food processing, and healthcare.
Collapse
Affiliation(s)
- Natalya Harutyunyan
- Food Safety and Biotechnology Department, Armenian National Agrarian University, 74 Teryan St., Yerevan 0009, Armenia;
| | - Almagul Kushugulova
- Laboratory of Human Microbiome and Longevity, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, 53 Kabanbay Batyr Ave., Nur-Sultan 010000, Kazakhstan;
| | - Narine Hovhannisyan
- Plant Origin Raw Material Processing Technology Department, Armenian National Agrarian University, 74 Teryan St., Yerevan 0009, Armenia;
| | - Astghik Pepoyan
- Food Safety and Biotechnology Department, Armenian National Agrarian University, 74 Teryan St., Yerevan 0009, Armenia;
- Correspondence: ; Tel.: +374-91-432-493
| |
Collapse
|
27
|
Ali S, Tyagi A, Mushtaq M, Al-Mahmoudi H, Bae H. Harnessing plant microbiome for mitigating arsenic toxicity in sustainable agriculture. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 300:118940. [PMID: 35122918 DOI: 10.1016/j.envpol.2022.118940] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 01/08/2022] [Accepted: 01/30/2022] [Indexed: 06/14/2023]
Abstract
Heavy metal toxicity has become an impediment to agricultural productivity, which presents major human health concerns in terms of food safety. Among them, arsenic (As) a non-essential heavy metal has gained worldwide attention because of its noxious effects on agriculture and public health. The increasing rate of global warming and anthropogenic activities have promptly exacerbated As levels in the agricultural soil, thereby causing adverse effects to crop genetic and phenotypic traits and rendering them vulnerable to other stresses. Conventional breeding and transgenic approaches have been widely adapted for producing heavy metal resilient crops; however, they are time-consuming and labor-intensive. Hence, finding new mitigation strategies for As toxicity would be a game-changer for sustainable agriculture. One such promising approach is harnessing plant microbiome in the era of 'omics' which is gaining prominence in recent years. The use of plant microbiome and their cocktails to combat As metal toxicity has gained widespread attention, because of their ability to metabolize toxic elements and offer an array of perquisites to host plants such as increased nutrient availability, stress resilience, soil fertility, and yield. A comprehensive understanding of below-ground plant-microbiome interactions and their underlying molecular mechanisms in exhibiting resilience towards As toxicity will help in identifying elite microbial communities for As mitigation. In this review, we have discussed the effect of As, their accumulation, transportation, signaling, and detoxification in plants. We have also discussed the role of the plant microbiome in mitigating As toxicity which has become an intriguing research frontier in phytoremediation. This review also provides insights on the advancements in constructing the beneficial synthetic microbial communities (SynComs) using microbiome engineering that will facilitate the development of the most advanced As remedial tool kit in sustainable agriculture.
Collapse
Affiliation(s)
- Sajad Ali
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Anshika Tyagi
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | | | - Henda Al-Mahmoudi
- Directorate of Programs, International Center for Biosaline Agriculture, Dubai, United Arab Emirates
| | - Hanhong Bae
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| |
Collapse
|
28
|
Wang T, Yang K, Ma Q, Jiang X, Zhou Y, Kong D, Wang Z, Parales RE, Li L, Zhao X, Ruan Z. Rhizosphere Microbial Community Diversity and Function Analysis of Cut Chrysanthemum During Continuous Monocropping. Front Microbiol 2022; 13:801546. [PMID: 35369487 PMCID: PMC8967409 DOI: 10.3389/fmicb.2022.801546] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/19/2022] [Indexed: 11/23/2022] Open
Abstract
As an ornamental flower crop, the long-term continuous monocropping of cut chrysanthemum causes frequent occurrence of diseases, seriously affecting the quality of cut chrysanthemum. The rhizosphere microbial community plays an important role in maintaining the healthy growth of plants, whereas the composition and dynamics of rhizosphere microbial community under continuous monocropping of cut chrysanthemum have not been fully revealed. In this study, the Illumina MiSeq high-throughput sequencing platform was used to monitor the dynamic changes of rhizosphere microbial communities in four varieties of cut chrysanthemum during 0–3 years of monocropping, and the soil physicochemical properties were also determined. Results showed that continuous monocropping significantly increased the fungal community richness and altered the profiles of the bacterial and fungal communities, leading to variation of community beta-diversity. With the increase of continuous cropping time, biocontrol bacteria decreased, while some plant pathogenic fungi were enriched in the rhizosphere of cut chrysanthemum. FAPROTAX-based functional prediction showed that the abundance of gene related to nitrogen and sulfur metabolism and chitin lysis was reduced in the rhizosphere of cut chrysanthemum. FUNGuild-based fungal function prediction showed that plant pathogenic fungal taxa were increasing in the rhizosphere of cut chrysanthemum, mainly Acremonium, Plectosphaerellaceae, Fusarium, and Cladosporium. Continuous cropping also reduced the content of ammonium nitrogen and increased soil salinity, resulting in deterioration of soil physical and chemical properties, which, together with the transformation of rhizosphere microbial community, became part of the reasons for the continuous cropping obstacle of cut chrysanthemum.
Collapse
Affiliation(s)
- Tan Wang
- CAAS-CIAT Joint Laboratory in Advanced Technologies for Sustainable Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China.,State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Kexin Yang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qingyun Ma
- CAAS-CIAT Joint Laboratory in Advanced Technologies for Sustainable Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China.,State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Xu Jiang
- CAAS-CIAT Joint Laboratory in Advanced Technologies for Sustainable Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yiqing Zhou
- CAAS-CIAT Joint Laboratory in Advanced Technologies for Sustainable Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Delong Kong
- CAAS-CIAT Joint Laboratory in Advanced Technologies for Sustainable Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhiye Wang
- Key Laboratory of Microbial Resources Exploitation and Application of Gansu Province, Institute of Biology, Gansu Academy of Sciences, Lanzhou, China
| | - Rebecca E Parales
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, Davis, CA, United States
| | - Lin Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Xin Zhao
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhiyong Ruan
- CAAS-CIAT Joint Laboratory in Advanced Technologies for Sustainable Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China.,College of Resources and Environment, Tibet Agricultural and Animal Husbandry University, Linzhi, China.,College of Life Sciences, Yantai University, Yantai, China
| |
Collapse
|
29
|
Yang N, Nesme J, Røder HL, Li X, Zuo Z, Petersen M, Burmølle M, Sørensen SJ. Emergent bacterial community properties induce enhanced drought tolerance in Arabidopsis. NPJ Biofilms Microbiomes 2021; 7:82. [PMID: 34795326 PMCID: PMC8602335 DOI: 10.1038/s41522-021-00253-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 10/08/2021] [Indexed: 01/04/2023] Open
Abstract
Drought severely restricts plant production and global warming is further increasing drought stress for crops. Much information reveals the ability of individual microbes affecting plant stress tolerance. However, the effects of emergent bacterial community properties on plant drought tolerance remain largely unexplored. Here, we inoculated Arabidopsis plants in vivo with a four-species bacterial consortium (Stenotrophomonas rhizophila, Xanthomonas retroflexus, Microbacterium oxydans, and Paenibacillus amylolyticus, termed as SPMX), which is able to synergistically produce more biofilm biomass together than the sum of the four single-strain cultures, to investigate its effects on plant performance and rhizo-microbiota during drought. We found that SPMX remarkably improved Arabidopsis survival post 21-day drought whereas no drought-tolerant effect was observed when subjected to the individual strains, revealing emergent properties of the SPMX consortium as the underlying cause of the induced drought tolerance. The enhanced drought tolerance was associated with sustained chlorophyll content and endogenous abscisic acid (ABA) signaling. Furthermore, our data showed that the addition of SPMX helped to stabilize the diversity and structure of root-associated microbiomes, which potentially benefits plant health under drought. These SPMX-induced changes jointly confer an increased drought tolerance to plants. Our work may inform future efforts to engineer the emergent bacterial community properties to improve plant tolerance to drought.
Collapse
Affiliation(s)
- Nan Yang
- grid.5254.60000 0001 0674 042XSection of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Joseph Nesme
- grid.5254.60000 0001 0674 042XSection of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Henriette Lyng Røder
- grid.5254.60000 0001 0674 042XSection of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Xuanji Li
- grid.5254.60000 0001 0674 042XSection of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Zhangli Zuo
- grid.5254.60000 0001 0674 042XDepartment of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Morten Petersen
- grid.5254.60000 0001 0674 042XDepartment of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Mette Burmølle
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| | - Søren Johannes Sørensen
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
30
|
O'Brien AM, Ginnan NA, Rebolleda-Gómez M, Wagner MR. Microbial effects on plant phenology and fitness. AMERICAN JOURNAL OF BOTANY 2021; 108:1824-1837. [PMID: 34655479 DOI: 10.1002/ajb2.1743] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
Plant development and the timing of developmental events (phenology) are tightly coupled with plant fitness. A variety of internal and external factors determine the timing and fitness consequences of these life-history transitions. Microbes interact with plants throughout their life history and impact host phenology. This review summarizes current mechanistic and theoretical knowledge surrounding microbe-driven changes in plant phenology. Overall, there are examples of microbes impacting every phenological transition. While most studies have focused on flowering time, microbial effects remain important for host survival and fitness across all phenological phases. Microbe-mediated changes in nutrient acquisition and phytohormone signaling can release plants from stressful conditions and alter plant stress responses inducing shifts in developmental events. The frequency and direction of phenological effects appear to be partly determined by the lifestyle and the underlying nature of a plant-microbe interaction (i.e., mutualistic or pathogenic), in addition to the taxonomic group of the microbe (fungi vs. bacteria). Finally, we highlight biases, gaps in knowledge, and future directions. This biotic source of plasticity for plant adaptation will serve an important role in sustaining plant biodiversity and managing agriculture under the pressures of climate change.
Collapse
Affiliation(s)
- Anna M O'Brien
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Nichole A Ginnan
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, USA
| | - María Rebolleda-Gómez
- Department of Ecology and Evolutionary Biology, University of California-Irvine, Irvine, CA, USA
| | - Maggie R Wagner
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, USA
- Kansas Biological Survey and Center for Ecological Research, University of Kansas, Lawrence, KS, USA
| |
Collapse
|
31
|
Jung JH, Reis F, Richards CL, Bossdorf O. Understanding plant microbiomes requires a genotype × environment framework. AMERICAN JOURNAL OF BOTANY 2021; 108:1820-1823. [PMID: 34613613 DOI: 10.1002/ajb2.1742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 08/06/2021] [Accepted: 08/06/2021] [Indexed: 05/10/2023]
Affiliation(s)
- Jun Hee Jung
- Plant Evolutionary Ecology, University of Tübingen, Auf der Morgenstelle 5, 72076 Tübingen, Germany
| | - Frank Reis
- Plant Evolutionary Ecology, University of Tübingen, Auf der Morgenstelle 5, 72076 Tübingen, Germany
| | - Christina L Richards
- Plant Evolutionary Ecology, University of Tübingen, Auf der Morgenstelle 5, 72076 Tübingen, Germany
- Department of Integrative Biology, University of South Florida, Tampa, FL, 33620, USA
| | - Oliver Bossdorf
- Plant Evolutionary Ecology, University of Tübingen, Auf der Morgenstelle 5, 72076 Tübingen, Germany
| |
Collapse
|
32
|
Subrahmaniam HJ, Roby D, Roux F. Toward Unifying Evolutionary Ecology and Genomics to Understand Positive Plant-Plant Interactions Within Wild Species. FRONTIERS IN PLANT SCIENCE 2021; 12:683373. [PMID: 34305981 PMCID: PMC8299075 DOI: 10.3389/fpls.2021.683373] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 06/10/2021] [Indexed: 06/08/2023]
Abstract
In a local environment, plant networks include interactions among individuals of different species and among genotypes of the same species. While interspecific interactions are recognized as main drivers of plant community patterns, intraspecific interactions have recently gained attention in explaining plant community dynamics. However, an overview of intraspecific genotype-by-genotype interaction patterns within wild plant species is still missing. From the literature, we identified 91 experiments that were mainly designed to investigate the presence of positive interactions based on two contrasting hypotheses. Kin selection theory predicts partisan help given to a genealogical relative. The rationale behind this hypothesis relies on kin/non-kin recognition, with the positive outcome of kin cooperation substantiating it. On the other hand, the elbow-room hypothesis supports intraspecific niche partitioning leading to positive outcome when genetically distant genotypes interact. Positive diversity-productivity relationship rationalizes this hypothesis, notably with the outcome of overyielding. We found that both these hypotheses have been highly supported in experimental studies despite their opposite predictions between the extent of genetic relatedness among neighbors and the level of positive interactions. Interestingly, we identified a highly significant effect of breeding system, with a high proportion of selfing species associated with the presence of kin cooperation. Nonetheless, we identified several shortcomings regardless of the species considered, such as the lack of a reliable estimate of genetic relatedness among genotypes and ecological characterization of the natural habitats from which genotypes were collected, thereby impeding the identification of selective drivers of positive interactions. We therefore propose a framework combining evolutionary ecology and genomics to establish the eco-genomic landscape of positive GxG interactions in wild plant species.
Collapse
|
33
|
Climate-driven divergence in plant-microbiome interactions generates range-wide variation in bud break phenology. Commun Biol 2021; 4:748. [PMID: 34135464 PMCID: PMC8209103 DOI: 10.1038/s42003-021-02244-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 05/12/2021] [Indexed: 02/05/2023] Open
Abstract
Soil microbiomes are rapidly becoming known as an important driver of plant phenotypic variation and may mediate plant responses to environmental factors. However, integrating spatial scales relevant to climate change with plant intraspecific genetic variation and soil microbial ecology is difficult, making studies of broad inference rare. Here we hypothesize and show: 1) the degree to which tree genotypes condition their soil microbiomes varies by population across the geographic distribution of a widespread riparian tree, Populus angustifolia; 2) geographic dissimilarity in soil microbiomes among populations is influenced by both abiotic and biotic environmental variation; and 3) soil microbiomes that vary in response to abiotic and biotic factors can change plant foliar phenology. We show soil microbiomes respond to intraspecific variation at the tree genotype and population level, and geographic variation in soil characteristics and climate. Using a fully reciprocal plant population by soil location feedback experiment, we identified a climate-based soil microbiome effect that advanced and delayed bud break phenology by approximately 10 days. These results demonstrate a landscape-level feedback between tree populations and associated soil microbial communities and suggest soil microbes may play important roles in mediating and buffering bud break phenology with climate warming, with whole ecosystem implications.
Collapse
|
34
|
Silica Particles Trigger the Exopolysaccharide Production of Harsh Environment Isolates of Growth-Promoting Rhizobacteria and Increase Their Ability to Enhance Wheat Biomass in Drought-Stressed Soils. Int J Mol Sci 2021; 22:ijms22126201. [PMID: 34201354 PMCID: PMC8229586 DOI: 10.3390/ijms22126201] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 01/16/2023] Open
Abstract
In coming decades, drought is expected to expand globally owing to increased evaporation and reduced rainfall. Understanding, predicting, and controlling crop plants’ rhizosphere has the potential to manipulate its responses to environmental stress. Our plant growth-promoting rhizobacteria (PGPR) are isolated from a natural laboratory, ‘The Evolution Canyon’, Israel, (EC), from the wild progenitors of cereals, where they have been co-habituating with their hosts for long periods of time. The study revealed that commercial TM50 silica particles (SN) triggered the PGPR production of exopolysaccharides (EPS) containing D-glucuronate (D-GA). The increased EPS content increased the PGPR water-holding capacity (WHC) and osmotic pressure of the biofilm matrix, which led to enhanced plant biomass in drought-stressed growth environments. Light- and cryo-electron- microscopic studies showed that, in the presence of silica (SN) particles, bacterial morphology is changed, indicating that SNs are associated with significant reprogramming in bacteria. The findings encourage the development of large-scale methods for isolate formulation with natural silicas that ensure higher WHC and hyperosmolarity under field conditions. Osmotic pressure involvement of holobiont cohabitation is also discussed.
Collapse
|
35
|
Benning JW, Moeller DA. Plant-soil interactions limit lifetime fitness outside a native plant's geographic range margin. Ecology 2020; 102:e03254. [PMID: 33231288 DOI: 10.1002/ecy.3254] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/31/2020] [Accepted: 09/14/2020] [Indexed: 11/08/2022]
Abstract
Plant species' distributions are often thought to overwhelmingly reflect their climatic niches. However, climate represents only a fraction of the n-dimensional environment to which plant populations adapt, and studies are increasingly uncovering strong effects of nonclimatic factors on species' distributions. We used a manipulative, factorial field experiment to quantify the effects of soil environment and precipitation (the putatively overriding climatic factor) on plant lifetime fitness outside the geographic range boundary of a native California annual plant. We grew plants outside the range edge in large mesocosms filled with soil from either within or outside the range, and plants were subjected to either a low (ambient) or high (supplemental) spring precipitation treatment. Soil environment had large effects on plant lifetime fitness that were similar in magnitude to the effects of precipitation. Moreover, mean fitness of plants grown with within-range soil in the low precipitation treatment approximated that of plants grown with beyond-range soil in the high precipitation treatment. The positive effects of within-range soil persisted in the second, wetter year of the experiment, though the magnitude of the soil effect was smaller than in the first, drier year. These results are the first we know of to quantify the effects of edaphic variation on plant lifetime fitness outside a geographic range limit and highlight the need to include factors other than climate in models of species' distributions.
Collapse
Affiliation(s)
- John W Benning
- Department of Plant and Microbial Biology, University of Minnesota, 140 Gortner Labs, 1479 Gortner Avenue, Saint Paul, Minnesota, 55108, USA
| | - David A Moeller
- Department of Plant and Microbial Biology, University of Minnesota, 140 Gortner Labs, 1479 Gortner Avenue, Saint Paul, Minnesota, 55108, USA
| |
Collapse
|
36
|
Xi N, Bloor JMG, Chu C. Soil microbes alter seedling performance and biotic interactions under plant competition and contrasting light conditions. ANNALS OF BOTANY 2020; 126:1089-1098. [PMID: 32686833 PMCID: PMC7596364 DOI: 10.1093/aob/mcaa134] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 07/13/2020] [Indexed: 05/31/2023]
Abstract
BACKGROUND AND AIMS Growing evidence suggests that the net effect of soil microbes on plants depends on both abiotic and biotic conditions, but the context-dependency of soil feedback effects remains poorly understood. Here we test for interactions between the presence of conspecific soil microbes, plant competition and light availability on tree seedling performance. METHODS Seedlings of two congeneric tropical tree species, Bauhinia brachycarpa and Bauhinia variegata, were grown in either sterilized soil or soil conditioned by conspecific soil microorganisms in a two-phase greenhouse feedback experiment. We examined the interactive effects of soil treatment (live, sterilized), light availability (low, high) and plant competition (no competition, intraspecific and interspecific competition) on tree seedling biomass. We also investigated the linkages between the outcomes of soil feedback effects and soil microbial community structure. KEY RESULTS The outcomes of soil feedback effects on seedling biomass varied depending on both competition treatment and light availability. Under low light conditions, soil feedback effects were neutral irrespective of competition treatment and plant species. Soil feedback effects were negative in high light for seedlings with interspecific competition, but positive for seedlings growing alone or with intraspecific competition. Soil feedback effects for seedlings were driven by variation in the Gram-positive:Gram-negative bacteria ratio. Light and conspecific soil microbes had interactive effects on the competitive environment experienced by tree species; in low light the presence of conspecific soil microbes decreased plant competition intensity, whereas in high light both the intensity and the importance of competition increased for seedlings in the presence of soil microbes, irrespective of plant species. CONCLUSIONS Our findings underline the importance of light and plant competition for the outcomes of soil feedback effects on young tree seedlings, and suggest that reduced light availability may reduce the influence of conspecific soil microbes on plant-plant interactions.
Collapse
Affiliation(s)
- Nianxun Xi
- Department of Ecology, State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Juliette M G Bloor
- INRAE, VetAgro-Sup, UREP, 5 Chemin de Beaulieu, Clermont-Ferrand, France
| | - Chengjin Chu
- Department of Ecology, State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
37
|
Jia T, Yao Y, Guo T, Wang R, Chai B. Effects of Plant and Soil Characteristics on Phyllosphere and Rhizosphere Fungal Communities During Plant Development in a Copper Tailings Dam. Front Microbiol 2020; 11:556002. [PMID: 33133030 PMCID: PMC7550642 DOI: 10.3389/fmicb.2020.556002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 09/02/2020] [Indexed: 01/06/2023] Open
Abstract
Interactions between plants and microbes can affect ecosystem functions, and many studies have demonstrated that plant properties influence mutualistic microorganisms. Here, high-throughput sequencing was used to investigate rhizosphere and phyllosphere fungal communities during different plant development stages. Results demonstrated that phyllosphere and rhizosphere fungal community structures were distinct during all developmental stages while they were mediated separately by plant carbon and soil sulfur. Comparatively, the effect of root properties on phyllosphere fungal diversity was greater than soil properties. Moreover, rhizosphere fungal networks of Bothriochloa ischaemum were more complex than phyllosphere fungal networks. This study demonstrated that the effect of plant and soil traits on phyllosphere and rhizosphere fungal communities could potentially be significant, depending on the applicable environmental condition and plant development stage. Although links between phyllosphere and rhizosphere communities have been established, further studies on functional fungal groups during phytoremediation processes are necessary. This study comprehensively analyzed dynamic relationships between phyllosphere and rhizosphere fungal communities during different plant development stages in a polluted environment. These fungal communities were determined to be expedient to the development and utilization of beneficial microbial communities during different development stages, which could more effectively help to stabilize and reclaim contaminated copper tailings soil.
Collapse
Affiliation(s)
- Tong Jia
- Shanxi Key Laboratory of Ecological Restoration on Loess Plateau, Institute of Loess Plateau, Shanxi University, Taiyuan, China
| | - Yushan Yao
- Shanxi Key Laboratory of Ecological Restoration on Loess Plateau, Institute of Loess Plateau, Shanxi University, Taiyuan, China
| | - Tingyan Guo
- Shanxi Key Laboratory of Ecological Restoration on Loess Plateau, Institute of Loess Plateau, Shanxi University, Taiyuan, China
| | - Ruihong Wang
- Shanxi Key Laboratory of Ecological Restoration on Loess Plateau, Institute of Loess Plateau, Shanxi University, Taiyuan, China
| | - Baofeng Chai
- Shanxi Key Laboratory of Ecological Restoration on Loess Plateau, Institute of Loess Plateau, Shanxi University, Taiyuan, China
| |
Collapse
|
38
|
Plant–microbiome interactions: from community assembly to plant health. Nat Rev Microbiol 2020; 18:607-621. [DOI: 10.1038/s41579-020-0412-1] [Citation(s) in RCA: 597] [Impact Index Per Article: 119.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2020] [Indexed: 01/17/2023]
|
39
|
de la Fuente Cantó C, Simonin M, King E, Moulin L, Bennett MJ, Castrillo G, Laplaze L. An extended root phenotype: the rhizosphere, its formation and impacts on plant fitness. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:951-964. [PMID: 32324287 DOI: 10.1111/tpj.14781] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 04/03/2020] [Accepted: 04/09/2020] [Indexed: 05/13/2023]
Abstract
Plants forage soil for water and nutrients, whose distribution is patchy and often dynamic. To improve their foraging activities, plants have evolved mechanisms to modify the physicochemical properties and microbial communities of the rhizosphere, i.e. the soil compartment under the influence of the roots. This dynamic interplay in root-soil-microbiome interactions creates emerging properties that impact plant nutrition and health. As a consequence, the rhizosphere can be considered an extended root phenotype, a manifestation of the effects of plant genes on their environment inside and/or outside of the organism. Here, we review current understanding of how plants shape the rhizosphere and the benefits it confers to plant fitness. We discuss future research challenges and how applying their solutions in crops will enable us to harvest the benefits of the extended root phenotype.
Collapse
Affiliation(s)
- Carla de la Fuente Cantó
- UMR DIADE, Université de Montpellier, Institut de Recherche pour le Développement (IRD), Montpellier, France
| | - Marie Simonin
- UMR DIADE, Université de Montpellier, Institut de Recherche pour le Développement (IRD), Montpellier, France
- UMR IPME, IRD, Cirad, Université de Montpellier, Montpellier, France
- IRHS-UMR1345, Université d'Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, 49071, Beaucouzé, France
| | - Eoghan King
- UMR IPME, IRD, Cirad, Université de Montpellier, Montpellier, France
| | - Lionel Moulin
- UMR IPME, IRD, Cirad, Université de Montpellier, Montpellier, France
| | - Malcolm J Bennett
- Future Food Beacon of Excellence, School of Biosciences, University of Nottingham, Sutton Bonington, UK
| | - Gabriel Castrillo
- Future Food Beacon of Excellence, School of Biosciences, University of Nottingham, Sutton Bonington, UK
| | - Laurent Laplaze
- UMR DIADE, Université de Montpellier, Institut de Recherche pour le Développement (IRD), Montpellier, France
- Laboratoire Mixte International Adaptation des Plantes et Microorganismes Associés aux Stress Environnementaux (LAPSE), Dakar, Senegal
| |
Collapse
|
40
|
Vassileva M, Flor-Peregrin E, Malusá E, Vassilev N. Towards Better Understanding of the Interactions and Efficient Application of Plant Beneficial Prebiotics, Probiotics, Postbiotics and Synbiotics. FRONTIERS IN PLANT SCIENCE 2020; 11:1068. [PMID: 32765556 PMCID: PMC7378762 DOI: 10.3389/fpls.2020.01068] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/29/2020] [Indexed: 05/07/2023]
Affiliation(s)
- Maria Vassileva
- Department of Chemical Engineering, Institute of Biotechnology, University of Granada, Granada, Spain
| | - Elena Flor-Peregrin
- Department of Chemical Engineering, Institute of Biotechnology, University of Granada, Granada, Spain
| | - Eligio Malusá
- Research Institute of Horticulture, Skierniewice, Poland
| | - Nikolay Vassilev
- Department of Chemical Engineering, Institute of Biotechnology, University of Granada, Granada, Spain
- *Correspondence: Nikolay Vassilev,
| |
Collapse
|
41
|
Thiergart T, Durán P, Ellis T, Vannier N, Garrido-Oter R, Kemen E, Roux F, Alonso-Blanco C, Ågren J, Schulze-Lefert P, Hacquard S. Root microbiota assembly and adaptive differentiation among European Arabidopsis populations. Nat Ecol Evol 2019; 4:122-131. [DOI: 10.1038/s41559-019-1063-3] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 11/08/2019] [Indexed: 11/09/2022]
|
42
|
Successive passaging of a plant-associated microbiome reveals robust habitat and host genotype-dependent selection. Proc Natl Acad Sci U S A 2019; 117:1148-1159. [PMID: 31806755 DOI: 10.1073/pnas.1908600116] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
There is increasing interest in the plant microbiome as it relates to both plant health and agricultural sustainability. One key unanswered question is whether we can select for a plant microbiome that is robust after colonization of target hosts. We used a successive passaging experiment to address this question by selecting upon the tomato phyllosphere microbiome. Beginning with a diverse microbial community generated from field-grown tomato plants, we inoculated replicate plants across 5 plant genotypes for 4 45-d passages, sequencing the microbial community at each passage. We observed consistent shifts in both the bacterial (16S amplicon sequencing) and fungal (internal transcribed spacer region amplicon sequencing) communities across replicate lines over time, as well as a general loss of diversity over the course of the experiment, suggesting that much of the naturally observed microbial community in the phyllosphere is likely transient or poorly adapted within the experimental setting. We found that both host genotype and environment shape microbial composition, but the relative importance of genotype declines through time. Furthermore, using a community coalescence experiment, we found that the bacterial community from the end of the experiment was robust to invasion by the starting bacterial community. These results highlight that selecting for a stable microbiome that is well adapted to a particular host environment is indeed possible, emphasizing the great potential of this approach in agriculture and beyond. In light of the consistent response of the microbiome to selection in the absence of reciprocal host evolution (coevolution) described here, future studies should address how such adaptation influences host health.
Collapse
|
43
|
Xu L, Coleman-Derr D. Causes and consequences of a conserved bacterial root microbiome response to drought stress. Curr Opin Microbiol 2019; 49:1-6. [DOI: 10.1016/j.mib.2019.07.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/24/2019] [Accepted: 07/29/2019] [Indexed: 10/26/2022]
|