1
|
Zhang W, Tang S, Li X, Chen Y, Li J, Wang Y, Bian R, Jin Y, Zhu X, Zhang K. Arabidopsis WRKY1 promotes monocarpic senescence by integrative regulation of flowering, leaf senescence, and nitrogen remobilization. MOLECULAR PLANT 2024; 17:1289-1306. [PMID: 39003499 DOI: 10.1016/j.molp.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 06/17/2024] [Accepted: 07/10/2024] [Indexed: 07/15/2024]
Abstract
Monocarpic senescence, characterized by whole-plant senescence following a single flowering phase, is widespread in seed plants, particularly in crops, determining seed harvest time and quality. However, how external and internal signals are systemically integrated into monocarpic senescence remains largely unknown. Here, we report that the Arabidopsis thaliana transcription factor WRKY1 plays essential roles in multiple key steps of monocarpic senescence. WRKY1 expression is induced by age, salicylic acid (SA), and nitrogen (N) deficiency. Flowering and leaf senescence are accelerated in the WRKY1 overexpression lines but are delayed in the wrky1 mutants. The combined DNA affinity purification sequencing and RNA sequencing analyses uncover the direct target genes of WRKY1. Further studies show that WRKY1 coordinately regulates three processes in monocarpic senescence: (1) suppressing FLOWERING LOCUS C gene expression to initiate flowering, (2) inducing SA biosynthesis genes to promote leaf senescence, and (3) activating the N assimilation and transport genes to trigger N remobilization. In summary, our study reveals how one stress-responsive transcription factor, WRKY1, integrates flowering, leaf senescence, and N remobilization processes into monocarpic senescence, providing important insights into plant lifetime regulation.
Collapse
Affiliation(s)
- Wei Zhang
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, P.R. China
| | - Shufei Tang
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, P.R. China
| | - Xuying Li
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, P.R. China
| | - Yuanyuan Chen
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, P.R. China
| | - Jiajia Li
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, P.R. China
| | - Yuyang Wang
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, P.R. China
| | - Ruichao Bian
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, P.R. China
| | - Ying Jin
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, P.R. China
| | - Xiaoxian Zhu
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, P.R. China
| | - Kewei Zhang
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, P.R. China.
| |
Collapse
|
2
|
Zhai D, Zhang LY, Li LZ, Xu ZG, Liu XL, Shang GD, Zhao B, Gao J, Wang FX, Wang JW. Reciprocal conversion between annual and polycarpic perennial flowering behavior in the Brassicaceae. Cell 2024; 187:3319-3337.e18. [PMID: 38810645 DOI: 10.1016/j.cell.2024.04.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/22/2024] [Accepted: 04/30/2024] [Indexed: 05/31/2024]
Abstract
The development of perennial crops holds great promise for sustainable agriculture and food security. However, the evolution of the transition between perenniality and annuality is poorly understood. Here, using two Brassicaceae species, Crucihimalaya himalaica and Erysimum nevadense, as polycarpic perennial models, we reveal that the transition from polycarpic perennial to biennial and annual flowering behavior is a continuum determined by the dosage of three closely related MADS-box genes. Diversification of the expression patterns, functional strengths, and combinations of these genes endows species with the potential to adopt various life-history strategies. Remarkably, we find that a single gene among these three is sufficient to convert winter-annual or annual Brassicaceae plants into polycarpic perennial flowering plants. Our work delineates a genetic basis for the evolution of diverse life-history strategies in plants and lays the groundwork for the generation of diverse perennial Brassicaceae crops in the future.
Collapse
Affiliation(s)
- Dong Zhai
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China; University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Lu-Yi Zhang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China; University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Ling-Zi Li
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China
| | - Zhou-Geng Xu
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China
| | - Xiao-Li Liu
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China
| | - Guan-Dong Shang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China; University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Bo Zhao
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China
| | - Jian Gao
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China
| | - Fu-Xiang Wang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China
| | - Jia-Wei Wang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Key Laboratory of Plant Carbon Capture, CAS, Shanghai 200032, China; New Cornerstone Science Laboratory, Shanghai 200032, China.
| |
Collapse
|
3
|
Maple R, Zhu P, Hepworth J, Wang JW, Dean C. Flowering time: From physiology, through genetics to mechanism. PLANT PHYSIOLOGY 2024; 195:190-212. [PMID: 38417841 PMCID: PMC11060688 DOI: 10.1093/plphys/kiae109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/12/2024] [Accepted: 02/12/2024] [Indexed: 03/01/2024]
Abstract
Plant species have evolved different requirements for environmental/endogenous cues to induce flowering. Originally, these varying requirements were thought to reflect the action of different molecular mechanisms. Thinking changed when genetic and molecular analysis in Arabidopsis thaliana revealed that a network of environmental and endogenous signaling input pathways converge to regulate a common set of "floral pathway integrators." Variation in the predominance of the different input pathways within a network can generate the diversity of requirements observed in different species. Many genes identified by flowering time mutants were found to encode general developmental and gene regulators, with their targets having a specific flowering function. Studies of natural variation in flowering were more successful at identifying genes acting as nodes in the network central to adaptation and domestication. Attention has now turned to mechanistic dissection of flowering time gene function and how that has changed during adaptation. This will inform breeding strategies for climate-proof crops and help define which genes act as critical flowering nodes in many other species.
Collapse
Affiliation(s)
- Robert Maple
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Pan Zhu
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Jo Hepworth
- Department of Biosciences, Durham University, Stockton Road, Durham, DH1 3LE, UK
| | - Jia-Wei Wang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China
- School of Life Science and Technology, Shanghai Tech University, Shanghai 201210, China
- New Cornerstone Science Laboratory, Shanghai 200032, China
| | - Caroline Dean
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| |
Collapse
|
4
|
Zhao B, Wang JW. Perenniality: From model plants to applications in agriculture. MOLECULAR PLANT 2024; 17:141-157. [PMID: 38115580 DOI: 10.1016/j.molp.2023.12.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/04/2023] [Accepted: 12/14/2023] [Indexed: 12/21/2023]
Abstract
To compensate for their sessile nature, plants have evolved sophisticated mechanisms enabling them to adapt to ever-changing environments. One such prominent feature is the evolution of diverse life history strategies, particularly such that annuals reproduce once followed by seasonal death, while perennials live longer by cycling growth seasonally. This intrinsic phenology is primarily genetic and can be altered by environmental factors. Although evolutionary transitions between annual and perennial life history strategies are common, perennials account for most species in nature because they survive well under year-round stresses. This proportion, however, is reversed in agriculture. Hence, perennial crops promise to likewise protect and enhance the resilience of agricultural ecosystems in response to climate change. Despite significant endeavors that have been made to generate perennial crops, progress is slow because of barriers in studying perennials, and many developed species await further improvement. Recent findings in model species have illustrated that simply rewiring existing genetic networks can lead to lifestyle variation. This implies that engineering plant life history strategy can be achieved by manipulating only a few key genes. In this review, we summarize our current understanding of genetic basis of perenniality and discuss major questions and challenges that remain to be addressed.
Collapse
Affiliation(s)
- Bo Zhao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China
| | - Jia-Wei Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Key Laboratory of Plant Carbon Capture, CAS, Shanghai 200032, China; New Cornerstone Science Laboratory, Shanghai 200032, China.
| |
Collapse
|
5
|
Wunder J, Fulgione A, Toräng P, Wötzel S, Herzog M, Obeso JR, Kourmpetis Y, van Ham R, Odong T, Bink M, Kemi U, Ågren J, Coupland G. Adaptation of perennial flowering phenology across the European range of Arabis alpina. Proc Biol Sci 2023; 290:20231401. [PMID: 37989245 PMCID: PMC10688268 DOI: 10.1098/rspb.2023.1401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/24/2023] [Indexed: 11/23/2023] Open
Abstract
Flowering phenology is important in the adaptation of many plants to their local environment, but its adaptive value has not been extensively studied in herbaceous perennials. We used Arabis alpina as a model system to determine the importance of flowering phenology to fitness of a herbaceous perennial with a wide geographical range. Individual plants representative of local genetic diversity (accessions) were collected across Europe, including in Spain, the Alps and Scandinavia. The flowering behaviour of these accessions was documented in controlled conditions, in common-garden experiments at native sites and in situ in natural populations. Accessions from the Alps and Scandinavia varied in whether they required exposure to cold (vernalization) to induce flowering, and in the timing and duration of flowering. By contrast, all Spanish accessions obligately required vernalization and had a short duration of flowering. Using experimental gardens at native sites, we show that an obligate requirement for vernalization increases survival in Spain. Based on our analyses of genetic diversity and flowering behaviour across Europe, we propose that in the model herbaceous perennial A. alpina, an obligate requirement for vernalization, which is correlated with short duration of flowering, is favoured by selection in Spain where the plants experience a long growing season.
Collapse
Affiliation(s)
- Jörg Wunder
- Department of Developmental Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Andrea Fulgione
- Department of Developmental Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Per Toräng
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, 752 36 Uppsala, Sweden
| | - Stefan Wötzel
- Department of Developmental Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Michel Herzog
- Laboratoire d’Écologie Alpine, LECA, Université Grenoble Alpes, 38000 Grenoble, France
| | - José Ramón Obeso
- Research Unit of Biodiversity (UO-CSIC-PA), Universidad de Oviedo, Campus de Mieres, 33600 Mieres, Spain
| | - Yiannis Kourmpetis
- Biometris, Wageningen University and Research Centre, 6700 AC Wageningen, The Netherlands
| | - Roeland van Ham
- Laboratory of Bioinformatics, Wageningen University, 6708 PB Wageningen, The Netherlands
- KeyGene, 6708 PW Wageningen, The Netherlands
| | - Thomas Odong
- Biometris, Wageningen University and Research Centre, 6700 AC Wageningen, The Netherlands
| | - Marco Bink
- Biometris, Wageningen University and Research Centre, 6700 AC Wageningen, The Netherlands
| | - Ulla Kemi
- Department of Developmental Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Jon Ågren
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, 752 36 Uppsala, Sweden
| | - George Coupland
- Department of Developmental Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| |
Collapse
|
6
|
Rehman S, Bahadur S, Xia W. An overview of floral regulatory genes in annual and perennial plants. Gene 2023; 885:147699. [PMID: 37567454 DOI: 10.1016/j.gene.2023.147699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/31/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
The floral initiation in angiosperms is a complex process influenced by endogenous and exogenous signals. With this approach, we aim to provide a comprehensive review to integrate this complex floral regulatory process and summarize the regulatory genes and their functions in annuals and perennials. Seven primary paths leading to flowering have been discovered in Arabidopsis under several growth condition that include; photoperiod, ambient temperature, vernalization, gibberellins, autonomous, aging and carbohydrates. These pathways involve a series of interlinked signaling pathways that respond to both internal and external signals, such as light, temperature, hormones, and developmental cues, to coordinate the expression of genes that are involved in flower development. Among them, the photoperiodic pathway was the most important and conserved as some of the fundamental loci and mechanisms are shared even by closely related plant species. The activation of floral regulatory genes such as FLC, FT, LFY, and SOC1 that determine floral meristem identity and the transition to the flowering stage result from the merging of these pathways. Recent studies confirmed that alternative splicing, antisense RNA and epigenetic modification play crucial roles by regulating the expression of genes related to blooming. In this review, we documented recent progress in the floral transition time in annuals and perennials, with emphasis on the specific regulatory mechanisms along with the application of various molecular approaches including overexpression studies, RNA interference and Virus-induced flowering. Furthermore, the similarities and differences between annual and perennial flowering will aid significant contributions to the field by elucidating the mechanisms of perennial plant development and floral initiation regulation.
Collapse
Affiliation(s)
- Shazia Rehman
- Sanya Nanfan Research Institution, Hainan University, Haikou 572025, China; College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Saraj Bahadur
- College of Forestry, Hainan University, Haikou 570228 China
| | - Wei Xia
- Sanya Nanfan Research Institution, Hainan University, Haikou 572025, China; College of Tropical Crops, Hainan University, Haikou 570228, China.
| |
Collapse
|
7
|
Henderson-Carter A, Kinmonth-Schultz H, Hileman L, Ward JK. FLOWERING LOCUS C drives delayed flowering in Arabidopsis grown and selected at elevated CO 2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.15.545149. [PMID: 37398485 PMCID: PMC10312727 DOI: 10.1101/2023.06.15.545149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Altered flowering time at elevated [CO 2 ] is well documented, although mechanisms are not well understood. An Arabidopsis genotype previously selected for high fitness at elevated [CO 2 ] (SG) showed delayed flowering and larger size at flowering when grown at elevated (700 ppm) versus current (380 ppm) [CO 2 ]. This response was correlated with prolonged expression of FLOWERING LOCUS C ( FLC ), a vernalization-responsive floral repressor gene. To determine if FLC directly delays flowering at elevated [CO 2 ] in SG, we used vernalization (extended cold) to downregulate FLC expression. We hypothesized that vernalization would eliminate delayed flowering at elevated [CO 2 ] through the direct reduction of FLC expression, eliminating differences in flowering time between current and elevated [CO 2 ]. We found that with downregulation of FLC expression via vernalization, SG plants grown at elevated [CO 2 ] no longer delayed flowering compared to current [CO 2 ]. Thus, vernalization returned the earlier flowering phenotype, counteracting effects of elevated [CO 2 ] on flowering. This study indicates that elevated [CO 2 ] can delay flowering directly through FLC , and downregulation of FLC under elevated [CO 2 ] reverses this effect. Moreover, this study demonstrates that increasing [CO 2 ] may potentially drive major changes in development through FLC .
Collapse
|
8
|
Gullotta G, Korte A, Marquardt S. Functional variation in the non-coding genome: molecular implications for food security. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:2338-2351. [PMID: 36316269 DOI: 10.1093/jxb/erac395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/06/2022] [Indexed: 06/06/2023]
Abstract
The growing world population, in combination with the anticipated effects of climate change, is pressuring food security. Plants display an impressive arsenal of cellular mechanisms conferring resilience to adverse environmental conditions, and humans rely on these mechanisms for stable food production. The elucidation of the molecular basis of the mechanisms used by plants to achieve resilience promises knowledge-based approaches to enhance food security. DNA sequence polymorphisms can reveal genomic regions that are linked to beneficial traits of plants. However, our ability to interpret how a given DNA sequence polymorphism confers a fitness advantage at the molecular level often remains poor. A key factor is that these polymorphisms largely localize to the enigmatic non-coding genome. Here, we review the functional impact of sequence variations in the non-coding genome on plant biology in the context of crop breeding and agricultural traits. We focus on examples of non-coding with particularly convincing functional support. Our survey combines findings that are consistent with the view that the non-coding genome contributes to cellular mechanisms assisting many plant traits. Understanding how DNA sequence polymorphisms in the non-coding genome shape plant traits at the molecular level offers a largely unexplored reservoir of solutions to address future challenges in plant growth and resilience.
Collapse
Affiliation(s)
- Giorgio Gullotta
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Bülowsvej 21A, 1871 Frederiksberg, Denmark
| | - Arthur Korte
- Center for Computational and Theoretical Biology, University of Würzburg, Hubland Nord 32, 97074 Würzburg, Germany
| | - Sebastian Marquardt
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Bülowsvej 21A, 1871 Frederiksberg, Denmark
| |
Collapse
|
9
|
Nishio H, Kudoh H. Distinct responses to autumn and spring temperatures by the key flowering-time regulator FLOWERING LOCUS C. Curr Opin Genet Dev 2023; 78:102016. [PMID: 36549195 DOI: 10.1016/j.gde.2022.102016] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/10/2022] [Accepted: 11/22/2022] [Indexed: 12/24/2022]
Abstract
Despite the similarity in temperature regimes between late autumn and early spring, plants exhibit distinct developmental responses that result in distinct morphologies, that is, overwintering and reproductive forms. In Arabidopsis, the control of autumn-spring distinction involves the transcriptional regulation of the floral repressor FLOWERING LOCUS C (FLC). The memory of winter cold is registered as epigenetic silencing of FLC. Recent studies on A. thaliana FLC revealed detailed and additional mechanisms of silencing in response to autumn and winter cold. Studies on perennial Arabidopsis FLC revealed that its expression responds to spring warmth and is robustly upregulated, ignoring cold. These new studies provide mechanistic insights into the distinct regulation of FLC under autumn and spring temperature regimes.
Collapse
Affiliation(s)
- Haruki Nishio
- Center for Ecological Research, Kyoto University, Shiga 520-2113, Japan; Data Science and AI Innovation Research Promotion Center, Shiga University, Shiga 522-8522, Japan
| | - Hiroshi Kudoh
- Center for Ecological Research, Kyoto University, Shiga 520-2113, Japan.
| |
Collapse
|
10
|
Hjertaas AC, Preston JC, Kainulainen K, Humphreys AM, Fjellheim S. Convergent evolution of the annual life history syndrome from perennial ancestors. FRONTIERS IN PLANT SCIENCE 2023; 13:1048656. [PMID: 36684797 PMCID: PMC9846227 DOI: 10.3389/fpls.2022.1048656] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Despite most angiosperms being perennial, once-flowering annuals have evolved multiple times independently, making life history traits among the most labile trait syndromes in flowering plants. Much research has focused on discerning the adaptive forces driving the evolution of annual species, and in pinpointing traits that distinguish them from perennials. By contrast, little is known about how 'annual traits' evolve, and whether the same traits and genes have evolved in parallel to affect independent origins of the annual syndrome. Here, we review what is known about the distribution of annuals in both phylogenetic and environmental space and assess the evidence for parallel evolution of annuality through similar physiological, developmental, and/or genetic mechanisms. We then use temperate grasses as a case study for modeling the evolution of annuality and suggest future directions for understanding annual-perennial transitions in other groups of plants. Understanding how convergent life history traits evolve can help predict species responses to climate change and allows transfer of knowledge between model and agriculturally important species.
Collapse
Affiliation(s)
- Ane C. Hjertaas
- Department of Plant Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Jill C. Preston
- Department of Plant Biology, The University of Vermont, Burlington, VT, United States
| | - Kent Kainulainen
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Aelys M. Humphreys
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
- Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
| | - Siri Fjellheim
- Department of Plant Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
11
|
Singh RK, Bhalerao RP, Maurya JP. When to branch: seasonal control of shoot architecture in trees. FEBS J 2022; 289:8062-8070. [PMID: 34652884 DOI: 10.1111/febs.16227] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/07/2021] [Accepted: 10/13/2021] [Indexed: 01/14/2023]
Abstract
Long-lived perennial plants optimize their shoot architecture by responding to seasonal cues. The main strategy used by plants of temperate and boreal regions with respect to surviving the extremely unfavourable conditions of winter comprises the protection of their apical and lateral meristematic tissues. This involves myriads of transcriptional, translational and metabolic changes in the plants because shoot architecture is controlled by multiple pathways that regulate processes such as bud formation and flowering, small RNAs, environmental factors (especially light quality, photoperiod and temperature), hormones, and sugars. Recent studies have begun to reveal how these pathways are recruited for the seasonal adaptation and regulation of shoot architecture in perennial plants, including the role of a regulatory module consisting of antagonistic players terminal flower 1 (TFL1) and like-ap1 (LAP1) in the hybrid aspen. Here, we review recent progress in our understanding of the genetic control of shoot architecture in perennials compared to in annuals.
Collapse
Affiliation(s)
- Rajesh Kumar Singh
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Rishikesh P Bhalerao
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Jay P Maurya
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
12
|
Preston JC, Fjellheim S. Flowering time runs hot and cold. PLANT PHYSIOLOGY 2022; 190:5-18. [PMID: 35274728 PMCID: PMC9434294 DOI: 10.1093/plphys/kiac111] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 02/13/2022] [Indexed: 05/16/2023]
Abstract
Evidence suggests that anthropogenically-mediated global warming results in accelerated flowering for many plant populations. However, the fact that some plants are late flowering or unaffected by warming, underscores the complex relationship between phase change, temperature, and phylogeny. In this review, we present an emerging picture of how plants sense temperature changes, and then discuss the independent recruitment of ancient flowering pathway genes for the evolution of ambient, low, and high temperature-regulated reproductive development. As well as revealing areas of research required for a better understanding of how past thermal climates have shaped global patterns of plasticity in plant phase change, we consider the implications for these phenological thermal responses in light of climate change.
Collapse
Affiliation(s)
- Jill C Preston
- Department of Plant Biology, University of Vermont, Burlington, Vermont 05405, USA
| | - Siri Fjellheim
- Department of Plant Sciences, Norwegian University of Life Sciences, Ås 1430, Norway
| |
Collapse
|
13
|
Chapman MA, He Y, Zhou M. Beyond a reference genome: pangenomes and population genomics of underutilized and orphan crops for future food and nutrition security. THE NEW PHYTOLOGIST 2022; 234:1583-1597. [PMID: 35318683 PMCID: PMC9994440 DOI: 10.1111/nph.18021] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 01/22/2022] [Indexed: 04/14/2023]
Abstract
Underutilized crops are, by definition, under-researched compared to staple crops yet come with traits that may be especially important given climate change and the need to feed a globally increasing population. These crops are often stress-tolerant, and this combined with unique and beneficial nutritional profiles. Whilst progress is being made by generating reference genome sequences, in this Tansley Review, we show how this is only the very first step. We advocate that going 'beyond a reference genome' should be a priority, as it is only at this stage one can identify the specific genes and the adaptive alleles that underpin the valuable traits. We sum up how population genomic and pangenomic approaches have led to the identification of stress- and disease-tolerant alleles in staple crops and compare this to the small number of examples from underutilized crops. We also demonstrate how previously underutilized crops have benefitted from genomic advances and that many breeding targets in underutilized crops are often well studied in staple crops. This cross-crop population-level resequencing could lead to an understanding of the genetic basis of adaptive traits in underutilized crops. This level of investment may be crucial for fully understanding the value of these crops before they are lost.
Collapse
Affiliation(s)
- Mark A. Chapman
- Biological SciencesUniversity of SouthamptonLife Sciences Building 85, Highfield CampusSouthamptonSO17 1BJUK
| | - Yuqi He
- Institute of Crop SciencesChinese Academy of Agricultural SciencesRoom 405, National Crop Gene Bank BuildingZhongguancun South Street No. 12Haidian DistrictBeijing100081China
| | - Meiliang Zhou
- Institute of Crop SciencesChinese Academy of Agricultural SciencesRoom 405, National Crop Gene Bank BuildingZhongguancun South Street No. 12Haidian DistrictBeijing100081China
| |
Collapse
|
14
|
de Pedro M, Mayol M, González-Martínez SC, Regalado I, Riba M. Environmental patterns of adaptation after range expansion in Leontodon longirostris: The effect of phenological events on fitness-related traits. AMERICAN JOURNAL OF BOTANY 2022; 109:602-615. [PMID: 35067917 DOI: 10.1002/ajb2.1815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 12/27/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
PREMISE Because of expected range shifts associated with climate change, there is a renewed interest in the evolutionary factors constraining adaptation, among which are genetic bottlenecks, drift, and increased mutational load after range expansion. Here we study adaptation in the short-lived species Leontodon longirostris showing reduced genetic diversity and increased genetic load along an expansion route. METHODS We assessed the phenological patterns of variation, and their effect on fitness-related traits, on 42 L. longirostris populations and six populations of the sister taxa L. saxatilis in a common garden located within the current range of both species. The comparison among L. longirostris populations allowed us to test for genetic clines consistent with local adaptation, whereas the comparison between taxa provided evidence for common adaptive features at the species level. RESULTS We found significant within-species variability for most traits, as well as differences with its close relative L. saxatilis. In general, seeds from drier, warmer, and unpredictable habitats showed overall lower and more restricted conditions for germination, seedlings emerged later and plants flowered earlier. Consequently, genotypes from arid and unpredictable environments attained smaller reproductive sizes and allocated more biomass to reproduction. Flowering time had the strongest direct effect on total plant size, but seedling emergence also showed an important indirect effect. CONCLUSIONS Our results show the crucial role of phenological patterns in shaping adaptive clines for major life-history stage transitions. Furthermore, the genetic load observed in L. longirostris does not seem to preclude adaptation to the climatic variability encountered along the expansion route.
Collapse
Affiliation(s)
| | - Maria Mayol
- CREAF, Cerdanyola del Vallès 08193, Spain
- Univ. Autònoma Barcelona, Cerdanyola del Vallès 08193, Spain
| | | | | | - Miquel Riba
- CREAF, Cerdanyola del Vallès 08193, Spain
- Univ. Autònoma Barcelona, Cerdanyola del Vallès 08193, Spain
| |
Collapse
|
15
|
Li Z, Lathe RS, Li J, He H, Bhalerao RP. Towards understanding the biological foundations of perenniality. TRENDS IN PLANT SCIENCE 2022; 27:56-68. [PMID: 34561180 DOI: 10.1016/j.tplants.2021.08.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
Perennial life cycles enable plants to have remarkably long lifespans, as exemplified by trees that can live for thousands of years. For this, they require sophisticated regulatory networks that sense environmental changes and initiate adaptive responses in their growth patterns. Recent research has gradually elucidated fundamental mechanisms underlying the perennial life cycle. Intriguingly, several conserved components of the floral transition pathway in annuals such as Arabidopsis thaliana also participate in these regulatory mechanisms underpinning perenniality. Here, we provide an overview of perennials' physiological features and summarise their recently discovered molecular foundations. We also highlight the importance of deepening our understanding of perenniality in the development of perennial grain crops, which are promising elements of future sustainable agriculture.
Collapse
Affiliation(s)
- Zheng Li
- State Key Laboratory for Conservation and Utilisation of Bio-Resources in Yunnan, Research Centre for Perennial Rice Engineering and Technology of Yunnan, School of Agriculture, Yunnan University, 650091 Kunming, China.
| | - Rahul S Lathe
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 87 Umeå, Sweden
| | - Jinping Li
- State Key Laboratory for Conservation and Utilisation of Bio-Resources in Yunnan, Research Centre for Perennial Rice Engineering and Technology of Yunnan, School of Agriculture, Yunnan University, 650091 Kunming, China
| | - Hong He
- State Key Laboratory for Conservation and Utilisation of Bio-Resources in Yunnan, Research Centre for Perennial Rice Engineering and Technology of Yunnan, School of Agriculture, Yunnan University, 650091 Kunming, China
| | - Rishikesh P Bhalerao
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 87 Umeå, Sweden.
| |
Collapse
|
16
|
Gutiérrez-Valencia J, Fracassetti M, Horvath R, Laenen B, Désamore A, Drouzas AD, Friberg M, Kolář F, Slotte T. Genomic Signatures of Sexual Selection on Pollen-Expressed Genes in Arabis alpina. Mol Biol Evol 2021; 39:6456311. [PMID: 34878144 PMCID: PMC8788238 DOI: 10.1093/molbev/msab349] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Fertilization in angiosperms involves the germination of pollen on the stigma, followed by the extrusion of a pollen tube that elongates through the style and delivers two sperm cells to the embryo sac. Sexual selection could occur throughout this process when male gametophytes compete for fertilization. The strength of sexual selection during pollen competition should be affected by the number of genotypes deposited on the stigma. As increased self-fertilization reduces the number of mating partners, and the genetic diversity and heterozygosity of populations, it should thereby reduce the intensity of sexual selection during pollen competition. Despite the prevalence of mating system shifts, few studies have directly compared the molecular signatures of sexual selection during pollen competition in populations with different mating systems. Here we analyzed whole-genome sequences from natural populations of Arabis alpina, a species showing mating system variation across its distribution, to test whether shifts from cross- to self-fertilization result in molecular signatures consistent with sexual selection on genes involved in pollen competition. We found evidence for efficient purifying selection on genes expressed in vegetative pollen, and overall weaker selection on sperm-expressed genes. This pattern was robust when controlling for gene expression level and specificity. In agreement with the expectation that sexual selection intensifies under cross-fertilization, we found that the efficacy of purifying selection on male gametophyte-expressed genes was significantly stronger in genetically more diverse and outbred populations. Our results show that intra-sexual competition shapes the evolution of pollen-expressed genes, and that its strength fades with increasing self-fertilization rates.
Collapse
Affiliation(s)
- Juanita Gutiérrez-Valencia
- Department of Ecology, Environment, and Plant Sciences, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Marco Fracassetti
- Department of Ecology, Environment, and Plant Sciences, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Robert Horvath
- Department of Ecology, Environment, and Plant Sciences, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Benjamin Laenen
- Department of Ecology, Environment, and Plant Sciences, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Aurélie Désamore
- Department of Ecology, Environment, and Plant Sciences, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Andreas D Drouzas
- Laboratory of Systematic Botany and Phytogeography, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Magne Friberg
- Department of Biology, Lund University, Lund, Sweden
| | - Filip Kolář
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic
| | - Tanja Slotte
- Department of Ecology, Environment, and Plant Sciences, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| |
Collapse
|
17
|
Vest K, Sobel JM. Variation in seasonal timing traits and life history along a latitudinal transect in Mimulus ringens. J Evol Biol 2021; 34:1803-1816. [PMID: 34582606 DOI: 10.1111/jeb.13941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 11/28/2022]
Abstract
Seasonal timing traits are commonly under recurrent, spatially variable selection, and are therefore predicted to exhibit clinal variation. Temperate perennial plants often require vernalization to prompt growth and reproduction; however, little is known about whether vernalization requirements change across the range of a broadly distributed species. We performed a critical vernalization duration study in Mimulus ringens, coupled with population genomic analysis. Plants from eight populations spanning the latitudinal range were exposed to varying durations of 4°C vernalization between 0 and 56 days, and flowering response was assessed. RADSeq was also performed to generate 1179 polymorphic SNPs, which were used to examine population structure. We found unexpected life history variation, with some populations lacking vernalization requirement. Population genomic analyses show that these life history variants are highly divergent from perennials, potentially revealing a cryptic species. For perennial populations, minimum vernalization time was surprisingly consistent. However, once vernalized, northern populations flowered almost 3 weeks faster than southern. Furthermore, southern populations exhibited sensitivity to vernalization times beyond flowering competency, suggesting an ability to respond adaptively to different lengths of winter. Mimulus ringens, therefore, reveals evidence of clinal variation, and provides opportunities for future studies addressing mechanistic and ecological hypotheses both within and between incipient species.
Collapse
Affiliation(s)
- Kelly Vest
- Department of Biological Sciences, Binghamton University (SUNY), Binghamton, New York, USA
| | - James M Sobel
- Department of Biological Sciences, Binghamton University (SUNY), Binghamton, New York, USA
| |
Collapse
|
18
|
Transposition and duplication of MADS-domain transcription factor genes in annual and perennial Arabis species modulates flowering. Proc Natl Acad Sci U S A 2021; 118:2109204118. [PMID: 34548402 PMCID: PMC8488671 DOI: 10.1073/pnas.2109204118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2021] [Indexed: 12/02/2022] Open
Abstract
Annual and perennial species differ in their timing and intensity of flowering, but the underlying mechanisms are poorly understood. We hybridized closely related annual and perennial plants and used genetics, transgenesis, and genomics to characterize differences in the activity and function of their flowering-time genes. We identify a gene encoding a transcription factor that moved between chromosomes and is retained in the annual but absent from the perennial. This gene strongly delays flowering, and we propose that it has been retained in the annual to compensate for reduced activity of closely related genes. This study highlights the value of using direct hybridization between closely related plant species to characterize functional differences in fast-evolving reproductive traits. The timing of reproduction is an adaptive trait in many organisms. In plants, the timing, duration, and intensity of flowering differ between annual and perennial species. To identify interspecies variation in these traits, we studied introgression lines derived from hybridization of annual and perennial species, Arabis montbretiana and Arabis alpina, respectively. Recombination mapping identified two tandem A. montbretiana genes encoding MADS-domain transcription factors that confer extreme late flowering on A. alpina. These genes are related to the MADS AFFECTING FLOWERING (MAF) cluster of floral repressors of other Brassicaceae species and were named A. montbretiana (Am) MAF-RELATED (MAR) genes. AmMAR1 but not AmMAR2 prevented floral induction at the shoot apex of A. alpina, strongly enhancing the effect of the MAF cluster, and MAR1 is absent from the genomes of all A. alpina accessions analyzed. Exposure of plants to cold (vernalization) represses AmMAR1 transcription and overcomes its inhibition of flowering. Assembly of the tandem arrays of MAR and MAF genes of six A. alpina accessions and three related species using PacBio long-sequence reads demonstrated that the MARs arose within the Arabis genus by interchromosomal transposition of a MAF1-like gene followed by tandem duplication. Time-resolved comparative RNA-sequencing (RNA-seq) suggested that AmMAR1 may be retained in A. montbretiana to enhance the effect of the AmMAF cluster and extend the duration of vernalization required for flowering. Our results demonstrate that MAF genes transposed independently in different Brassicaceae lineages and suggest that they were retained to modulate adaptive flowering responses that differ even among closely related species.
Collapse
|
19
|
Wötzel S, Andrello M, Albani MC, Koch MA, Coupland G, Gugerli F. Arabis alpina: A perennial model plant for ecological genomics and life-history evolution. Mol Ecol Resour 2021; 22:468-486. [PMID: 34415668 PMCID: PMC9293087 DOI: 10.1111/1755-0998.13490] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 07/28/2021] [Accepted: 08/16/2021] [Indexed: 01/03/2023]
Abstract
Many model organisms were chosen and achieved prominence because of an advantageous combination of their life‐history characteristics, genetic properties and also practical considerations. Discoveries made in Arabidopsis thaliana, the most renowned noncrop plant model species, have markedly stimulated studies in other species with different biology. Within the family Brassicaceae, the arctic–alpine Arabis alpina has become a model complementary to Arabidopsis thaliana to study the evolution of life‐history traits, such as perenniality, and ecological genomics in harsh environments. In this review, we provide an overview of the properties that facilitated the rapid emergence of A. alpina as a plant model. We summarize the evolutionary history of A. alpina, including genomic aspects, the diversification of its mating system and demographic properties, and we discuss recent progress in the molecular dissection of developmental traits that are related to its perennial life history and environmental adaptation. From this published knowledge, we derive open questions that might inspire future research in A. alpina, other Brassicaceae species or more distantly related plant families.
Collapse
Affiliation(s)
- Stefan Wötzel
- Institute of Ecology, Evolution and Diversity, Goethe University Frankfurt and Senckenberg Biodiversity and Climate Research Centre, Frankfurt (Main), Germany
| | - Marco Andrello
- Institute for the Study of Anthropic Impacts and Sustainability in the Marine Environment, National Research Council, CNR-IAS, Rome, Italy
| | - Maria C Albani
- Institute for Plant Sciences, University of Cologne, Cologne, Germany
| | - Marcus A Koch
- Biodiversity and Plant Systematics, Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - George Coupland
- Department of Plant Development Biology, MPI for Plant Breeding Research, Cologne, Germany
| | - Felix Gugerli
- WSL Swiss Federal Research Institute, Birmensdorf, Switzerland
| |
Collapse
|
20
|
Menon G, Schulten A, Dean C, Howard M. Digital paradigm for Polycomb epigenetic switching and memory. CURRENT OPINION IN PLANT BIOLOGY 2021; 61:102012. [PMID: 33662809 PMCID: PMC8250048 DOI: 10.1016/j.pbi.2021.102012] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/21/2021] [Accepted: 01/24/2021] [Indexed: 05/04/2023]
Abstract
How epigenetic memory states are established and maintained is a central question in gene regulation. A major epigenetic process important for developmental biology involves Polycomb-mediated chromatin silencing. Significant progress has recently been made on elucidating Polycomb silencing in plant systems through analysis of Arabidopsis FLOWERING LOCUS C (FLC). Quantitative silencing of FLC by prolonged cold exposure was shown to represent an ON to OFF switch in an increasing proportion of cells. Here, we review the underlying all-or-nothing, digital paradigm for Polycomb epigenetic silencing. We then examine other Arabidopsis Polycomb-regulated targets where digital regulation may also be relevant.
Collapse
Affiliation(s)
- Govind Menon
- Department of Computational and Systems Biology, John Innes Centre, Norwich NR4 7UH, UK
| | - Anna Schulten
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK
| | - Caroline Dean
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK
| | - Martin Howard
- Department of Computational and Systems Biology, John Innes Centre, Norwich NR4 7UH, UK.
| |
Collapse
|
21
|
Buzas DM, Nishio H, Kudoh H. The Flowering Season-Meter at FLOWERING LOCUS C Across Life Histories in Crucifers. FRONTIERS IN PLANT SCIENCE 2021; 12:640442. [PMID: 33777074 PMCID: PMC7991900 DOI: 10.3389/fpls.2021.640442] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/04/2021] [Indexed: 06/12/2023]
Abstract
Many plant species overwinter before they flower. Transition to flowering is aligned to the seasonal transition as a response to the prolonged cold in winter by a process called vernalization. Multiple well-documented vernalization properties in crucifer species with diverse life histories are derived from environmental regulation of a central inhibitor of the flowering gene, Flowering Locus C (FLC). Episode(s) of flowering are prevented during high FLC expression and enabled during low FLC expression. FLC repression outlasts the winter to coincide with spring; this heterochronic aspect is termed "winter memory." In the annual Arabidopsis thaliana, winter memory has long been associated with the highly conserved histone modifiers Polycomb and Trithorax, which have antagonistic roles in transcription. However, there are experimental limitations in determining how dynamic, heterogenous histone modifications within the FLC locus generate the final transcriptional output. Recent theoretical considerations on cell-to-cell variability in gene expression and histone modifications generating bistable states brought support to the hypothesis of chromatin-encoded memory, as with other experimental systems in eukaryotes. Furthermore, these advances unify multiple properties of vernalization, not only the winter memory. Similarly, in the perennial Arabidopsis halleri ssp. gemmifera, recent integration of molecular with mathematical and ecological approaches unifies FLC chromatin features with the all-year-round memory of seasonal temperature. We develop the concept of FLC season-meter to combine existing information from the contrasting annual/perennial and experimental/theoretical sectors into a transitional framework. We highlight simplicity, high conservation, and discrete differences across extreme life histories in crucifers.
Collapse
Affiliation(s)
- Diana Mihaela Buzas
- Faculty of Life and Environmental Sciences, Tsukuba-Plant Innovation Research Center, University of Tsukuba, Tsukuba, Japan
| | - Haruki Nishio
- Center for Ecological Research, Kyoto University, Otsu, Japan
| | - Hiroshi Kudoh
- Center for Ecological Research, Kyoto University, Otsu, Japan
| |
Collapse
|
22
|
Sergeeva A, Liu H, Mai HJ, Mettler-Altmann T, Kiefer C, Coupland G, Bauer P. Cytokinin-promoted secondary growth and nutrient storage in the perennial stem zone of Arabis alpina. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:1459-1476. [PMID: 33336445 DOI: 10.1111/tpj.15123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 11/30/2020] [Indexed: 06/12/2023]
Abstract
Perennial plants maintain their lifespan through several growth seasons. Arabis alpina serves as a model Brassicaceae species to study perennial traits. Lateral stems of A. alpina have a proximal vegetative zone with a dormant bud zone and a distal senescing seed-producing inflorescence zone. We addressed how this zonation is distinguished at the anatomical level, whether it is related to nutrient storage and which signals affect the zonation. We found that the vegetative zone exhibits secondary growth, which we termed the perennial growth zone (PZ). High-molecular-weight carbon compounds accumulate there in cambium and cambium derivatives. Neither vernalization nor flowering were requirements for secondary growth and the sequestration of storage compounds. The inflorescence zone with only primary growth, termed the annual growth zone (AZ), or roots exhibited different storage characteristics. Following cytokinin application cambium activity was enhanced and secondary phloem parenchyma was formed in the PZ and also in the AZ. In transcriptome analysis, cytokinin-related genes represented enriched gene ontology terms and were expressed at a higher level in the PZ than in the AZ. Thus, A. alpina primarily uses the vegetative PZ for nutrient storage, coupled to cytokinin-promoted secondary growth. This finding lays a foundation for future studies addressing signals for perennial growth.
Collapse
Affiliation(s)
- Anna Sergeeva
- Institute of Botany, Heinrich Heine University, Düsseldorf, D-40225, Germany
- Cluster of Excellence on Plant Science (CEPLAS), Heinrich Heine University, Düsseldorf, Germany
| | - Hongjiu Liu
- Institute of Botany, Heinrich Heine University, Düsseldorf, D-40225, Germany
| | - Hans-Jörg Mai
- Institute of Botany, Heinrich Heine University, Düsseldorf, D-40225, Germany
| | - Tabea Mettler-Altmann
- Cluster of Excellence on Plant Science (CEPLAS), Heinrich Heine University, Düsseldorf, Germany
- Institute of Plant Biochemistry, Heinrich Heine University, Düsseldorf, D-40225, Germany
| | - Christiane Kiefer
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, D-50829, Germany
| | - George Coupland
- Cluster of Excellence on Plant Science (CEPLAS), Heinrich Heine University, Düsseldorf, Germany
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, D-50829, Germany
| | - Petra Bauer
- Institute of Botany, Heinrich Heine University, Düsseldorf, D-40225, Germany
- Cluster of Excellence on Plant Science (CEPLAS), Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
23
|
Kopriva S, Weber APM. Genetic encoding of complex traits. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:1-3. [PMID: 33471904 PMCID: PMC7816844 DOI: 10.1093/jxb/eraa498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Affiliation(s)
- Stanislav Kopriva
- Institute for Plant Sciences and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
- Correspondence: or
| | - Andreas P M Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, Düsseldorf, Germany
- Correspondence: or
| |
Collapse
|
24
|
Madrid E, Chandler JW, Coupland G. Gene regulatory networks controlled by FLOWERING LOCUS C that confer variation in seasonal flowering and life history. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:4-14. [PMID: 32369593 PMCID: PMC7816851 DOI: 10.1093/jxb/eraa216] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 04/28/2020] [Indexed: 05/07/2023]
Abstract
Responses to environmental cues synchronize reproduction of higher plants to the changing seasons. The genetic basis of these responses has been intensively studied in the Brassicaceae. The MADS-domain transcription factor FLOWERING LOCUS C (FLC) plays a central role in the regulatory network that controls flowering of Arabidopsis thaliana in response to seasonal cues. FLC blocks flowering until its transcription is stably repressed by extended exposure to low temperatures in autumn or winter and, therefore, FLC activity is assumed to limit flowering to spring. Recent reviews describe the complex epigenetic mechanisms responsible for FLC repression in cold. We focus on the gene regulatory networks controlled by FLC and how they influence floral transition. Genome-wide approaches determined the in vivo target genes of FLC and identified those whose transcription changes during vernalization or in flc mutants. We describe how studying FLC targets such as FLOWERING LOCUS T, SQUAMOSA PROMOTER BINDING PROTEIN-LIKE 15, and TARGET OF FLC AND SVP 1 can explain different flowering behaviours in response to vernalization and other environmental cues, and help define mechanisms by which FLC represses gene transcription. Elucidating the gene regulatory networks controlled by FLC provides access to the developmental and physiological mechanisms that regulate floral transition.
Collapse
Affiliation(s)
- Eva Madrid
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg, Germany
| | - John W Chandler
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg, Germany
| | - George Coupland
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg, Germany
- Correspondence:
| |
Collapse
|
25
|
Soppe WJJ, Viñegra de la Torre N, Albani MC. The Diverse Roles of FLOWERING LOCUS C in Annual and Perennial Brassicaceae Species. FRONTIERS IN PLANT SCIENCE 2021; 12:627258. [PMID: 33679840 PMCID: PMC7927791 DOI: 10.3389/fpls.2021.627258] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 01/25/2021] [Indexed: 05/07/2023]
Abstract
Most temperate species require prolonged exposure to winter chilling temperatures to flower in the spring. In the Brassicaceae, the MADS box transcription factor FLOWERING LOCUS C (FLC) is a major regulator of flowering in response to prolonged cold exposure, a process called vernalization. Winter annual Arabidopsis thaliana accessions initiate flowering in the spring due to the stable silencing of FLC by vernalization. The role of FLC has also been explored in perennials within the Brassicaceae family, such as Arabis alpina. The flowering pattern in A. alpina differs from the one in A. thaliana. A. alpina plants initiate flower buds during vernalization but only flower after subsequent exposure to growth-promoting conditions. Here we discuss the role of FLC in annual and perennial Brassicaceae species. We show that, besides its conserved role in flowering, FLC has acquired additional functions that contribute to vegetative and seed traits. PERPETUAL FLOWERING 1 (PEP1), the A. alpina FLC ortholog, contributes to the perennial growth habit. We discuss that PEP1 directly and indirectly, regulates traits such as the duration of the flowering episode, polycarpic growth habit and shoot architecture. We suggest that these additional roles of PEP1 are facilitated by (1) the ability of A. alpina plants to form flower buds during long-term cold exposure, (2) age-related differences between meristems, which enable that not all meristems initiate flowering during cold exposure, and (3) differences between meristems in stable silencing of PEP1 after long-term cold, which ensure that PEP1 expression levels will remain low after vernalization only in meristems that commit to flowering during cold exposure. These features result in spatiotemporal seasonal changes of PEP1 expression during the A. alpina life cycle that contribute to the perennial growth habit. FLC and PEP1 have also been shown to influence the timing of another developmental transition in the plant, seed germination, by influencing seed dormancy and longevity. This suggests that during evolution, FLC and its orthologs adopted both similar and divergent roles to regulate life history traits. Spatiotemporal changes of FLC transcript accumulation drive developmental decisions and contribute to life history evolution.
Collapse
Affiliation(s)
| | - Natanael Viñegra de la Torre
- Institute for Plant Sciences, University of Cologne, Cologne, Germany
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
- Cluster of Excellence on Plant Sciences, “SMART Plants for Tomorrow’s Needs,” Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Maria C. Albani
- Institute for Plant Sciences, University of Cologne, Cologne, Germany
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
- Cluster of Excellence on Plant Sciences, “SMART Plants for Tomorrow’s Needs,” Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- *Correspondence: Maria C. Albani, ;
| |
Collapse
|
26
|
Sergeeva A, Mettler‐Altmann T, Liu H, Mai H, Bauer P. Glycerolipid profile differences between perennial and annual stem zones in the perennial model plant Arabis alpina. PLANT DIRECT 2021; 5:e00302. [PMID: 33506166 PMCID: PMC7814627 DOI: 10.1002/pld3.302] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/21/2020] [Accepted: 12/24/2020] [Indexed: 06/12/2023]
Abstract
The perennial life style is a successful ecological strategy, and Arabis alpina is a recently developed model Brassicaceae species for studying it. One aspect, poorly investigated until today, concerns the differing patterns of allocation, storage, and metabolism of nutrients between perennials and annuals and the yet unknown signals that regulate this process. A. alpina has a complex lateral stem architecture with a proximal vegetative perennial (PZ) and a distal annual flowering zone (AZ) inside the same stems. Lipid bodies (LBs) with triacylglycerols (TAGs) accumulate in the PZ. To identify potential processes of lipid metabolism linked with the perennial lifestyle, we analyzed lipid species in the PZ versus AZ. Glycerolipid fractions, including neutral lipids with mainly TAGs, phospholipids, and glycolipids, were present at higher levels in the PZ as compared to AZ or roots. Concomitantly, contents of specific long-chain and very long-chain fatty acids increased during formation of the PZ. Corresponding gene expression data, gene ontology term enrichment, and correlation analysis with lipid species pinpoint glycerolipid-related genes to be active during the development of the PZ. Possibilities that lipid metabolism genes may be targets of regulatory mechanisms specifying PZ differentiation in A. alpina are discussed.
Collapse
Affiliation(s)
- Anna Sergeeva
- Institute of BotanyHeinrich Heine UniversityDüsseldorfGermany
- Cluster of Excellence on Plant Science (CEPLAS)Heinrich Heine UniversityDüsseldorfGermany
| | - Tabea Mettler‐Altmann
- Cluster of Excellence on Plant Science (CEPLAS)Heinrich Heine UniversityDüsseldorfGermany
- Institute of Plant BiochemistryHeinrich Heine UniversityDüsseldorfGermany
| | - Hongjiu Liu
- Institute of BotanyHeinrich Heine UniversityDüsseldorfGermany
| | - Hans‐Jörg Mai
- Institute of BotanyHeinrich Heine UniversityDüsseldorfGermany
| | - Petra Bauer
- Institute of BotanyHeinrich Heine UniversityDüsseldorfGermany
- Cluster of Excellence on Plant Science (CEPLAS)Heinrich Heine UniversityDüsseldorfGermany
| |
Collapse
|
27
|
Jensen E, Shafiei R, Ma X, Serba DD, Smith DP, Slavov GT, Robson P, Farrar K, Thomas Jones S, Swaller T, Flavell R, Clifton‐Brown J, Saha MC, Donnison I. Linkage mapping evidence for a syntenic QTL associated with flowering time in perennial C 4 rhizomatous grasses Miscanthus and switchgrass. GLOBAL CHANGE BIOLOGY. BIOENERGY 2021; 13:98-111. [PMID: 33381230 PMCID: PMC7756372 DOI: 10.1111/gcbb.12755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 08/10/2020] [Indexed: 06/12/2023]
Abstract
Flowering in perennial species is directed via complex signalling pathways that adjust to developmental regulations and environmental cues. Synchronized flowering in certain environments is a prerequisite to commercial seed production, and so the elucidation of the genetic architecture of flowering time in Miscanthus and switchgrass could aid breeding in these underdeveloped species. In this context, we assessed a mapping population in Miscanthus and two ecologically diverse switchgrass mapping populations over 3 years from planting. Multiple flowering time quantitative trait loci (QTL) were identified in both species. Remarkably, the most significant Miscanthus and switchgrass QTL proved to be syntenic, located on linkage groups 4 and 2, with logarithm of odds scores of 17.05 and 21.8 respectively. These QTL regions contained three flowering time transcription factors: Squamosa Promoter-binding protein-Like, MADS-box SEPELLATA2 and gibberellin-responsive bHLH137. The former is emerging as a key component of the age-related flowering time pathway.
Collapse
Affiliation(s)
- Elaine Jensen
- Institute of Biological, Environmental and Rural SciencesAberystwyth UniversityAberystwythUK
| | - Reza Shafiei
- Institute of Biological, Environmental and Rural SciencesAberystwyth UniversityAberystwythUK
- University of Dundee at JHIDundeeUK
| | - Xue‐Feng Ma
- Ceres, Inc.Thousand OaksCAUSA
- Noble Research Institute, LLC.ArdmoreOKUSA
| | - Desalegn D. Serba
- Noble Research Institute, LLC.ArdmoreOKUSA
- Agricultural Research Center‐HaysKansas State UniversityHaysKSUSA
| | - Daniel P. Smith
- Institute of Biological, Environmental and Rural SciencesAberystwyth UniversityAberystwythUK
- ScionRotoruaNew Zealand
| | - Gancho T. Slavov
- Institute of Biological, Environmental and Rural SciencesAberystwyth UniversityAberystwythUK
- ScionRotoruaNew Zealand
| | - Paul Robson
- Institute of Biological, Environmental and Rural SciencesAberystwyth UniversityAberystwythUK
| | - Kerrie Farrar
- Institute of Biological, Environmental and Rural SciencesAberystwyth UniversityAberystwythUK
| | - Sian Thomas Jones
- Institute of Biological, Environmental and Rural SciencesAberystwyth UniversityAberystwythUK
| | - Timothy Swaller
- Ceres, Inc.Thousand OaksCAUSA
- Genomics Institute of the Novartis Research FoundationSan DiegoCAUSA
| | - Richard Flavell
- Ceres, Inc.Thousand OaksCAUSA
- International Wheat Yield PartnershipTexas A&M UniversityCollege StationTXUSA
| | - John Clifton‐Brown
- Institute of Biological, Environmental and Rural SciencesAberystwyth UniversityAberystwythUK
| | | | - Iain Donnison
- Institute of Biological, Environmental and Rural SciencesAberystwyth UniversityAberystwythUK
| |
Collapse
|
28
|
Friedman J. The Evolution of Annual and Perennial Plant Life Histories: Ecological Correlates and Genetic Mechanisms. ANNUAL REVIEW OF ECOLOGY, EVOLUTION, AND SYSTEMATICS 2020. [DOI: 10.1146/annurev-ecolsys-110218-024638] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Flowering plants exhibit two principal life-history strategies: annuality (living and reproducing in one year) and perenniality (living more than one year). The advantages of either strategy depend on the relative benefits of immediate reproduction balanced against survivorship and future reproduction. This trade-off means that life-history strategies are associated with particular environments, with annuals being found more often in unpredictable habitats. Annuality and perenniality are the outcome of developmental genetic programs responding to their environment, with perennials being distinguished by their delayed competence to flower and reversion to growth after flowering. Evolutionary transitions between these strategies are frequent and have consequences for mating systems and genome evolution, with perennials being more likely to outcross with higher inbreeding depression and lower rates of molecular evolution. Integrating expectations from life-history theory with knowledge of the developmental genetics of flowering and seasonality is required to understand the mechanisms involved in the evolution of annual and perennial life histories.
Collapse
Affiliation(s)
- Jannice Friedman
- Department of Biology, Queen's University, Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
29
|
Lindberg CL, Hanslin HM, Schubert M, Marcussen T, Trevaskis B, Preston JC, Fjellheim S. Increased above-ground resource allocation is a likely precursor for independent evolutionary origins of annuality in the Pooideae grass subfamily. THE NEW PHYTOLOGIST 2020; 228:318-329. [PMID: 32421861 DOI: 10.1111/nph.16666] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 05/07/2020] [Indexed: 06/11/2023]
Abstract
Semelparous annual plants flower a single time during their 1-yr life cycle, investing much of their energy into rapid reproduction. By contrast, iteroparous perennial plants flower multiple times over several years, and partition their resources between reproduction and persistence. To which extent evolutionary transitions between life-cycle strategies are internally constrained at the developmental, genetic and phylogenetic level is unknown. Here we study the evolution of life-cycle strategies in the grass subfamily Pooideae and test if transitions between them are facilitated by evolutionary precursors. We integrate ecological, life-cycle strategy and growth data in a phylogenetic framework. We investigate if growth traits are candidates for a precursor. Species in certain Pooideae clades are predisposed to evolve annuality from perenniality, potentially due to the shared inheritance of specific evolutionary precursors. Seasonal dry climates, which have been linked to annuality, were only able to select for transitions to annuality when the precursor was present. Allocation of more resources to above-ground rather than below-ground growth is a candidate for the precursor. Our findings support the hypothesis that only certain lineages can respond quickly to changing external conditions by switching their life-cycle strategy, likely due to the presence of evolutionary precursors.
Collapse
Affiliation(s)
- Camilla Lorange Lindberg
- Department of Plant Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, 1432, Norway
| | - Hans Martin Hanslin
- Department of Urban Greening and Vegetation Ecology, Norwegian Institute of Bioeconomy Research, Ås, 1431, Norway
| | - Marian Schubert
- Department of Plant Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, 1432, Norway
| | - Thomas Marcussen
- Department of Plant Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, 1432, Norway
| | - Ben Trevaskis
- Commonwealth Scientific and Industrial Research Organization, Canberra, ACT, 2601, Australia
| | | | - Siri Fjellheim
- Department of Plant Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, 1432, Norway
| |
Collapse
|
30
|
Nishio H, Iwayama K, Kudoh H. Duration of cold exposure defines the rate of reactivation of a perennial FLC orthologue via H3K27me3 accumulation. Sci Rep 2020; 10:16056. [PMID: 32994432 PMCID: PMC7525499 DOI: 10.1038/s41598-020-72566-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/31/2020] [Indexed: 12/15/2022] Open
Abstract
Vernalisation is the process in which long-term cold exposure makes plants competent to flower. In vernalisation of Arabidopsis thaliana, a floral repressor, AtFLC, undergoes epigenetic silencing. Although the silencing of AtFLC is maintained under warm conditions after a sufficient duration of cold, FLC orthologues are reactivated under the same conditions in perennial plants, such as A. halleri. In contrast to the abundant knowledge on cold requirements in AtFLC silencing, it has remained unknown how cold duration affects the reactivation of perennial FLC. Here, we analysed the dynamics of A. halleri FLC (AhgFLC) mRNA, H3K4me3, and H3K27me3 over 8 weeks and 14 weeks cold followed by warm conditions. We showed that the minimum levels of AhgFLC mRNA and H3K4me3 were similar between 8 and 14 weeks vernalisation; however, the maximum level of H3K27me3 was higher after 14 weeks than after 8 weeks vernalisation. Combined with mathematical modelling, we showed that H3K27me3 prevents a rapid increase in AhgFLC expression in response to warm temperatures after vernalisation, which controls AhgFT expression and the initiation of flowering. Thus, the duration of cold defines the rate of AhgFLC reactivation via the buffering function of H3K27me3 against temperature increase.
Collapse
Affiliation(s)
- Haruki Nishio
- Center for Ecological Research, Kyoto University, 2-509-3 Hirano, Otsu, 520-2113, Japan.
| | - Koji Iwayama
- Faculty of Data Science, Shiga University, 1-1-1 Bamba, Hikone, Shiga, 522-8522, Japan.,PRESTO, Japan Science and Technology Agency, Kawaguchi, 332-0012, Japan
| | - Hiroshi Kudoh
- Center for Ecological Research, Kyoto University, 2-509-3 Hirano, Otsu, 520-2113, Japan.
| |
Collapse
|
31
|
Hepworth J, Antoniou-Kourounioti RL, Berggren K, Selga C, Tudor EH, Yates B, Cox D, Collier Harris BR, Irwin JA, Howard M, Säll T, Holm S, Dean C. Natural variation in autumn expression is the major adaptive determinant distinguishing Arabidopsis FLC haplotypes. eLife 2020; 9:57671. [PMID: 32902380 PMCID: PMC7518893 DOI: 10.7554/elife.57671] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 09/08/2020] [Indexed: 12/27/2022] Open
Abstract
In Arabidopsis thaliana, winter is registered during vernalization through the temperature-dependent repression and epigenetic silencing of floral repressor FLOWERING LOCUS C (FLC). Natural Arabidopsis accessions show considerable variation in vernalization. However, which aspect of the FLC repression mechanism is most important for adaptation to different environments is unclear. By analysing FLC dynamics in natural variants and mutants throughout winter in three field sites, we find that autumnal FLC expression, rather than epigenetic silencing, is the major variable conferred by the distinct Arabidopsis FLChaplotypes. This variation influences flowering responses of Arabidopsis accessions resulting in an interplay between promotion and delay of flowering in different climates to balance survival and, through a post-vernalization effect, reproductive output. These data reveal how expression variation through non-coding cis variation at FLC has enabled Arabidopsis accessions to adapt to different climatic conditions and year-on-year fluctuations.
Collapse
Affiliation(s)
- Jo Hepworth
- Cell and Developmental Biology, John Innes Centre, Norwich, United Kingdom
| | | | - Kristina Berggren
- Department of Natural Sciences, Mid Sweden University, Sundsvall, Sweden
| | - Catja Selga
- Department of Biology, Lund University, Lund, Sweden
| | - Eleri H Tudor
- Crop Genetics, John Innes Centre, Norwich, United Kingdom
| | - Bryony Yates
- Cell and Developmental Biology, John Innes Centre, Norwich, United Kingdom
| | - Deborah Cox
- Cell and Developmental Biology, John Innes Centre, Norwich, United Kingdom
| | | | - Judith A Irwin
- Crop Genetics, John Innes Centre, Norwich, United Kingdom
| | - Martin Howard
- Computational and Systems Biology, John Innes Centre, Norwich, United Kingdom
| | - Torbjörn Säll
- Department of Biology, Lund University, Lund, Sweden
| | - Svante Holm
- Department of Natural Sciences, Mid Sweden University, Sundsvall, Sweden
| | - Caroline Dean
- Cell and Developmental Biology, John Innes Centre, Norwich, United Kingdom
| |
Collapse
|
32
|
Nishio H, Buzas DM, Nagano AJ, Iwayama K, Ushio M, Kudoh H. Repressive chromatin modification underpins the long-term expression trend of a perennial flowering gene in nature. Nat Commun 2020; 11:2065. [PMID: 32358518 PMCID: PMC7195410 DOI: 10.1038/s41467-020-15896-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 04/01/2020] [Indexed: 11/17/2022] Open
Abstract
Natural environments require organisms to possess robust mechanisms allowing responses to seasonal trends. In Arabidopsis halleri, the flowering regulator AhgFLC shows upregulation and downregulation phases along with long-term past temperature, but the underlying machinery remains elusive. Here, we investigate the seasonal dynamics of histone modifications, H3K27me3 and H3K4me3, at AhgFLC in a natural population. Our advanced modelling and transplant experiments reveal that H3K27me3-mediated chromatin regulation at AhgFLC provides two essential properties. One is the ability to respond to the long-term temperature trends via bidirectional interactions between H3K27me3 and H3K4me3; the other is the ratchet-like character of the AhgFLC system, i.e. reversible in the entire perennial life cycle but irreversible during the upregulation phase. Furthermore, we show that the long-term temperature trends are locally indexed at AhgFLC in the form of histone modifications. Our study provides a more comprehensive understanding of H3K27me3 function at AhgFLC in a complex natural environment. The flowering regulator FLC shows upregulation and downregulation phases along with long-term past temperature in Arabidopsishalleri. Here, the authors reveal that H3K27me3-mediated chromatin regulation at AhgFLC provides the ability to respond to both the seasonal temperature trends and the perennial life cycle.
Collapse
Affiliation(s)
- Haruki Nishio
- Center for Ecological Research, Kyoto University, Otsu, 520-2113, Japan.
| | - Diana M Buzas
- Tsukuba-Plant Innovation Research Center and Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8572, Japan
| | - Atsushi J Nagano
- Center for Ecological Research, Kyoto University, Otsu, 520-2113, Japan.,Faculty of Agriculture, Ryukoku University, Seta Oe-cho, Otsu, 520-2194, Japan
| | - Koji Iwayama
- Faculty of Data Science, Shiga University, Hikone, 522-8522, Japan.,PRESTO, Japan Science and Technology Agency, Kawaguchi, 332-0012, Japan
| | - Masayuki Ushio
- Center for Ecological Research, Kyoto University, Otsu, 520-2113, Japan.,PRESTO, Japan Science and Technology Agency, Kawaguchi, 332-0012, Japan.,Hakubi Center, Kyoto University, Yoshida-honmachi, Kyoto, 606-8501, Japan
| | - Hiroshi Kudoh
- Center for Ecological Research, Kyoto University, Otsu, 520-2113, Japan.
| |
Collapse
|
33
|
Karami O, Rahimi A, Khan M, Bemer M, Hazarika RR, Mak P, Compier M, van Noort V, Offringa R. A suppressor of axillary meristem maturation promotes longevity in flowering plants. NATURE PLANTS 2020; 6:368-376. [PMID: 32284551 DOI: 10.1038/s41477-020-0637-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 03/11/2020] [Indexed: 05/27/2023]
Abstract
Post-embryonic development and longevity of flowering plants are, for a large part, determined by the activity and maturation state of stem cell niches formed in the axils of leaves, the so-called axillary meristems (AMs)1,2. The genes that are associated with AM maturation and underlie the differences between monocarpic (reproduce once and die) annual and the longer-lived polycarpic (reproduce more than once) perennial plants are still largely unknown. Here we identify a new role for the Arabidopsis AT-HOOK MOTIF NUCLEAR LOCALIZED 15 (AHL15) gene as a suppressor of AM maturation. Loss of AHL15 function accelerates AM maturation, whereas ectopic expression of AHL15 suppresses AM maturation and promotes longevity in monocarpic Arabidopsis and tobacco. Accordingly, in Arabidopsis grown under longevity-promoting short-day conditions, or in polycarpic Arabidopsis lyrata, expression of AHL15 is upregulated in AMs. Together, our results indicate that AHL15 and other AHL clade-A genes play an important role, directly downstream of flowering genes (SOC1, FUL) and upstream of the flowering-promoting hormone gibberellic acid, in suppressing AM maturation and extending the plant's lifespan.
Collapse
Affiliation(s)
- Omid Karami
- Plant Developmental Genetics, Institute of Biology Leiden, Leiden University, Leiden, the Netherlands
| | - Arezoo Rahimi
- Plant Developmental Genetics, Institute of Biology Leiden, Leiden University, Leiden, the Netherlands
| | - Majid Khan
- Plant Developmental Genetics, Institute of Biology Leiden, Leiden University, Leiden, the Netherlands
- Institute of Biotechnology and Genetic Engineering, University of Agriculture Peshawar, Peshawar, Pakistan
| | - Marian Bemer
- Laboratory of Molecular Biology and B.U. Bioscience, Wageningen University and Research, Wageningen, the Netherlands
| | | | - Patrick Mak
- Plant Developmental Genetics, Institute of Biology Leiden, Leiden University, Leiden, the Netherlands
- Sanquin Plasma Products BV, Department of Product Development, Amsterdam, the Netherlands
| | - Monique Compier
- Plant Developmental Genetics, Institute of Biology Leiden, Leiden University, Leiden, the Netherlands
- Rijk Zwaan, De Lier, the Netherlands
| | - Vera van Noort
- KU Leuven, Centre of Microbial and Plant Genetics, Leuven, Belgium
- Bioinformatics and Genomics, Institute of Biology Leiden, Leiden University, Leiden, the Netherlands
| | - Remko Offringa
- Plant Developmental Genetics, Institute of Biology Leiden, Leiden University, Leiden, the Netherlands.
| |
Collapse
|
34
|
Qüesta JI, Antoniou-Kourounioti RL, Rosa S, Li P, Duncan S, Whittaker C, Howard M, Dean C. Noncoding SNPs influence a distinct phase of Polycomb silencing to destabilize long-term epigenetic memory at Arabidopsis FLC. Genes Dev 2020; 34:446-461. [PMID: 32001513 PMCID: PMC7050481 DOI: 10.1101/gad.333245.119] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 01/06/2020] [Indexed: 12/21/2022]
Abstract
In Arabidopsis thaliana, the cold-induced epigenetic regulation of FLOWERING LOCUS C (FLC) involves distinct phases of Polycomb repressive complex 2 (PRC2) silencing. During cold, a PHD-PRC2 complex metastably and digitally nucleates H3K27me3 within FLC On return to warm, PHD-PRC2 spreads across the locus delivering H3K27me3 to maintain long-term silencing. Here, we studied natural variation in this process in Arabidopsis accessions, exploring Lov-1, which shows FLC reactivation on return to warm, a feature characteristic of FLC in perennial Brassicaceae This analysis identifies an additional phase in this Polycomb silencing mechanism downstream from H3K27me3 spreading. In this long-term silencing (perpetuated) phase, the PHD proteins are lost from the nucleation region and silencing is likely maintained by the read-write feedbacks associated with H3K27me3. A combination of noncoding SNPs in the nucleation region mediates instability in this long-term silencing phase with the result that Lov-1 FLC frequently digitally reactivates in individual cells, with a probability that diminishes with increasing cold duration. We propose that this decrease in reactivation probability is due to reduced DNA replication after flowering. Overall, this work defines an additional phase in the Polycomb mechanism instrumental in natural variation of silencing, and provides avenues to dissect broader evolutionary changes at FLC.
Collapse
Affiliation(s)
- Julia I Qüesta
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | | | - Stefanie Rosa
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Peijin Li
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Susan Duncan
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Charles Whittaker
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Martin Howard
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Caroline Dean
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| |
Collapse
|
35
|
Gaudinier A, Blackman BK. Evolutionary processes from the perspective of flowering time diversity. THE NEW PHYTOLOGIST 2020; 225:1883-1898. [PMID: 31536639 DOI: 10.1111/nph.16205] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 08/30/2019] [Indexed: 05/18/2023]
Abstract
Although it is well appreciated that genetic studies of flowering time regulation have led to fundamental advances in the fields of molecular and developmental biology, the ways in which genetic studies of flowering time diversity have enriched the field of evolutionary biology have received less attention despite often being equally profound. Because flowering time is a complex, environmentally responsive trait that has critical impacts on plant fitness, crop yield, and reproductive isolation, research into the genetic architecture and molecular basis of its evolution continues to yield novel insights into our understanding of domestication, adaptation, and speciation. For instance, recent studies of flowering time variation have reconstructed how, when, and where polygenic evolution of phenotypic plasticity proceeded from standing variation and de novo mutations; shown how antagonistic pleiotropy and temporally varying selection maintain polymorphisms in natural populations; and provided important case studies of how assortative mating can evolve and facilitate speciation with gene flow. In addition, functional studies have built detailed regulatory networks for this trait in diverse taxa, leading to new knowledge about how and why developmental pathways are rewired and elaborated through evolutionary time.
Collapse
Affiliation(s)
- Allison Gaudinier
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| | - Benjamin K Blackman
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| |
Collapse
|
36
|
Mandáková T, Hloušková P, Koch MA, Lysak MA. Genome Evolution in Arabideae Was Marked by Frequent Centromere Repositioning. THE PLANT CELL 2020; 32:650-665. [PMID: 31919297 PMCID: PMC7054033 DOI: 10.1105/tpc.19.00557] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 12/02/2019] [Accepted: 01/09/2020] [Indexed: 05/04/2023]
Abstract
Centromere position may change despite conserved chromosomal collinearity. Centromere repositioning and evolutionary new centromeres (ENCs) were frequently encountered during vertebrate genome evolution but only rarely observed in plants. The largest crucifer tribe, Arabideae (∼550 species; Brassicaceae, the mustard family), diversified into several well-defined subclades in the virtual absence of chromosome number variation. Bacterial artificial chromosome-based comparative chromosome painting uncovered a constancy of genome structures among 10 analyzed genomes representing seven Arabideae subclades classified as four genera: Arabis, Aubrieta, Draba, and Pseudoturritis Interestingly, the intra-tribal diversification was marked by a high frequency of ENCs on five of the eight homoeologous chromosomes in the crown-group genera, but not in the most ancestral Pseudoturritis genome. From the 32 documented ENCs, at least 26 originated independently, including 4 ENCs recurrently formed at the same position in not closely related species. While chromosomal localization of ENCs does not reflect the phylogenetic position of the Arabideae subclades, centromere seeding was usually confined to long chromosome arms, transforming acrocentric chromosomes to (sub)metacentric chromosomes. Centromere repositioning is proposed as the key mechanism differentiating overall conserved homoeologous chromosomes across the crown-group Arabideae subclades. The evolutionary significance of centromere repositioning is discussed in the context of possible adaptive effects on recombination and epigenetic regulation of gene expression.
Collapse
Affiliation(s)
- Terezie Mandáková
- Central European Institute of Technology (CEITEC) and Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Petra Hloušková
- Central European Institute of Technology (CEITEC) and Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Marcus A Koch
- Centre for Organismal Studies (COS) Heidelberg, Biodiversity and Plant Systematics/Botanical Garden and Herbarium (HEID), Heidelberg University, Heidelberg, Germany
| | - Martin A Lysak
- Central European Institute of Technology (CEITEC) and Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| |
Collapse
|
37
|
Hoijemberg M, Cerdán PD. Epigenetic accounting of a previous harvest. THE NEW PHYTOLOGIST 2020; 225:10-12. [PMID: 31721235 DOI: 10.1111/nph.16258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Affiliation(s)
- Mauro Hoijemberg
- Fundación Instituto Leloir, IIBBA-CONICET, Avenida Patricias Argentinas 435, 1405-Buenos, Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, 1428-Buenos, Aires, Argentina
| | - Pablo D Cerdán
- Fundación Instituto Leloir, IIBBA-CONICET, Avenida Patricias Argentinas 435, 1405-Buenos, Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, 1428-Buenos, Aires, Argentina
| |
Collapse
|
38
|
Kemi U, Leinonen PH, Savolainen O, Kuittinen H. Inflorescence shoot elongation, but not flower primordia formation, is photoperiodically regulated in Arabidopsis lyrata. ANNALS OF BOTANY 2019; 124:91-102. [PMID: 31321402 PMCID: PMC6676387 DOI: 10.1093/aob/mcz035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 02/22/2019] [Indexed: 05/23/2023]
Abstract
BACKGROUND AND AIMS Photoperiod contains information about the progress of seasons. Plants use the changing photoperiod as a cue for the correct timing of important life history events, including flowering. Here the effect of photoperiod on flowering in four Arabidopsis lyrata populations originating from different latitudes was studied, as well as expression levels of candidate genes for governing the between-population differences. METHODS Flowering of plants from four A. lyrata populations was studied in three different photoperiods after vernalization. Flowering development was separated into three steps: flower primordia formation, inflorescence shoot elongation and opening of the first flower. Circadian expression rhythms of the A. lyrata homologues of GIGANTEA (GI), FLAVIN-BINDING, KELCH REPEAT, F-BOX 1 (FKF1), CONSTANS (CO) and FLOWERING LOCUS T (FT) were studied in three of the populations in the intermediate (14 h) photoperiod treatment. KEY RESULTS Most plants in all populations formed visible flower primordia during vernalization. Further inflorescence development after vernalization was strongly inhibited by short days in the northern European population (latitude 61°N), only slightly in the central European population (49°N) and not at all in the North American populations (36°N and 42°N). In the 14 h daylength, where all plants from the three southernmost populations but only 60 % of the northernmost population flowered, the circadian expression rhythm of the A. lyrata FT was only detected in the southern populations, suggesting differentiation in the critical daylength for activation of the long-day pathway. However, circadian expression rhythms of A. lyrata GI, FKF1 and CO were similar between populations. CONCLUSIONS The results indicate that in A. lyrata, transition to flowering can occur through pathways independent of long days, but elongation of inflorescences is photoperiodically regulated.
Collapse
Affiliation(s)
- Ulla Kemi
- Department of Ecology and Genetics, University of Oulu, FIN-90014 Oulu, Finland
- Max Planck Institute for Plant Breeding Research, Carl von Linné Weg, Cologne, Germany
| | - Päivi H Leinonen
- Department of Ecology and Genetics, University of Oulu, FIN-90014 Oulu, Finland
- Biodiversity Unit, University of Turku, Turku, Finland
| | - Outi Savolainen
- Department of Ecology and Genetics, University of Oulu, FIN-90014 Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Helmi Kuittinen
- Department of Ecology and Genetics, University of Oulu, FIN-90014 Oulu, Finland
| |
Collapse
|
39
|
Hyun Y, Vincent C, Tilmes V, Bergonzi S, Kiefer C, Richter R, Martinez-Gallegos R, Severing E, Coupland G. A regulatory circuit conferring varied flowering response to cold in annual and perennial plants. Science 2019; 363:409-412. [PMID: 30679374 DOI: 10.1126/science.aau8197] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 12/19/2018] [Indexed: 12/23/2022]
Abstract
The reproductive strategies of plants are highly variable. Short-lived annuals flower abundantly soon after germination, whereas longer-lived perennials postpone and spatially restrict flowering. We used CRISPR/Cas9 and interspecies gene transfer to understand divergence in reproductive patterns between annual and perennial crucifers. We show that in perennial Arabis alpina, flowering in response to winter cold depends on the floral integrator SQUAMOSA PROMOTER BINDING PROTEIN-LIKE 15 (SPL15), whose activity is limited to older shoots and branches during cold exposure. In annuals, this regulatory system is conserved, but cold-induced flowering occurs in young shoots, without requirement for SPL15, through the photoperiodic pathway when plants return to warm. By reconstructing the annual response in perennials, we conclude that characteristic patterns of reproduction in annuals and perennials are conferred through variation in dependency on distinct flowering pathways acting in parallel.
Collapse
Affiliation(s)
- Youbong Hyun
- Max Planck Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, D50829, Germany
| | - Coral Vincent
- Max Planck Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, D50829, Germany
| | - Vicky Tilmes
- Max Planck Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, D50829, Germany
| | - Sara Bergonzi
- Max Planck Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, D50829, Germany
| | - Christiane Kiefer
- Max Planck Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, D50829, Germany
| | - René Richter
- Max Planck Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, D50829, Germany
| | | | - Edouard Severing
- Max Planck Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, D50829, Germany
| | - George Coupland
- Max Planck Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, D50829, Germany.
| |
Collapse
|
40
|
Friedman J. Variation in gene regulation underlying annual and perennial flowering in Arabideae species. Mol Ecol 2019. [PMID: 28632342 DOI: 10.1111/mec.14171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The diversity of life history strategies within the angiosperms illustrates the evolutionary flexibility of reproductive characteristics. The number of times an individual reproduces is a key life history trait, and transitions from iteroparous perennials to semelparous annuals have occurred frequently in the flowering plants. Despite the frequency of this evolutionary transition, and the importance of annuality versus perenniality to both agriculture and ecology, understanding the molecular and genetic mechanisms involved in perennial flowering is in their infancy. In this issue of Molecular Ecology, Kiefer et al. () make significant progress towards understanding divergence in seasonal flowering between annual and perennial species in the Arabideae tribe of Brassicaceae. By combining a comparative approach with gene expression and sequence comparisons, they show that transcriptional differences in FLC orthologs, a floral inhibitor in Arabidopsis thaliana, have occurred repeatedly and underlie differences in flowering between annuals and perennials.
Collapse
|
41
|
Takou M, Wieters B, Kopriva S, Coupland G, Linstädter A, De Meaux J. Linking genes with ecological strategies in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:1141-1151. [PMID: 30561727 PMCID: PMC6382341 DOI: 10.1093/jxb/ery447] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/30/2018] [Accepted: 11/15/2018] [Indexed: 05/22/2023]
Abstract
Arabidopsis thaliana is the most prominent model system in plant molecular biology and genetics. Although its ecology was initially neglected, collections of various genotypes revealed a complex population structure, with high levels of genetic diversity and substantial levels of phenotypic variation. This helped identify the genes and gene pathways mediating phenotypic change. Population genetics studies further demonstrated that this variation generally contributes to local adaptation. Here, we review evidence showing that traits affecting plant life history, growth rate, and stress reactions are not only locally adapted, they also often co-vary. Co-variation between these traits indicates that they evolve as trait syndromes, and reveals the ecological diversification that took place within A. thaliana. We argue that examining traits and the gene that control them within the context of global summary schemes that describe major ecological strategies will contribute to resolve important questions in both molecular biology and ecology.
Collapse
Affiliation(s)
| | | | | | - George Coupland
- Max Planck Institute of Plant Breeding Research, Cologne, Germany
| | - Anja Linstädter
- Institute of Botany, University of Cologne, Germany
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Germany
| | | |
Collapse
|
42
|
Antoniou-Kourounioti RL, Hepworth J, Heckmann A, Duncan S, Qüesta J, Rosa S, Säll T, Holm S, Dean C, Howard M. Temperature Sensing Is Distributed throughout the Regulatory Network that Controls FLC Epigenetic Silencing in Vernalization. Cell Syst 2018; 7:643-655.e9. [PMID: 30503646 PMCID: PMC6310686 DOI: 10.1016/j.cels.2018.10.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/15/2018] [Accepted: 10/25/2018] [Indexed: 12/14/2022]
Abstract
Many organisms need to respond to complex, noisy environmental signals for developmental decision making. Here, we dissect how Arabidopsis plants integrate widely fluctuating field temperatures over month-long timescales to progressively upregulate VERNALIZATION INSENSITIVE3 (VIN3) and silence FLOWERING LOCUS C (FLC), aligning flowering with spring. We develop a mathematical model for vernalization that operates on multiple timescales-long term (month), short term (day), and current (hour)-and is constrained by experimental data. Our analysis demonstrates that temperature sensing is not localized to specific nodes within the FLC network. Instead, temperature sensing is broadly distributed, with each thermosensory process responding to specific features of the plants' history of exposure to warm and cold. The model accurately predicts FLC silencing in new field data, allowing us to forecast FLC expression in changing climates. We suggest that distributed thermosensing may be a general property of thermoresponsive regulatory networks in complex natural environments.
Collapse
Affiliation(s)
| | - Jo Hepworth
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Amélie Heckmann
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Susan Duncan
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Julia Qüesta
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Stefanie Rosa
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Torbjörn Säll
- Department of Biology, Lund University, Lund 223 62, Sweden
| | - Svante Holm
- Department of Natural Sciences, Mid Sweden University, Sundsvall 851 70, Sweden
| | - Caroline Dean
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK.
| | - Martin Howard
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK.
| |
Collapse
|
43
|
Leijten W, Koes R, Roobeek I, Frugis G. Translating Flowering Time From Arabidopsis thaliana to Brassicaceae and Asteraceae Crop Species. PLANTS 2018; 7:plants7040111. [PMID: 30558374 PMCID: PMC6313873 DOI: 10.3390/plants7040111] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/07/2018] [Accepted: 12/13/2018] [Indexed: 12/31/2022]
Abstract
Flowering and seed set are essential for plant species to survive, hence plants need to adapt to highly variable environments to flower in the most favorable conditions. Endogenous cues such as plant age and hormones coordinate with the environmental cues like temperature and day length to determine optimal time for the transition from vegetative to reproductive growth. In a breeding context, controlling flowering time would help to speed up the production of new hybrids and produce high yield throughout the year. The flowering time genetic network is extensively studied in the plant model species Arabidopsis thaliana, however this knowledge is still limited in most crops. This article reviews evidence of conservation and divergence of flowering time regulation in A. thaliana with its related crop species in the Brassicaceae and with more distant vegetable crops within the Asteraceae family. Despite the overall conservation of most flowering time pathways in these families, many genes controlling this trait remain elusive, and the function of most Arabidopsis homologs in these crops are yet to be determined. However, the knowledge gathered so far in both model and crop species can be already exploited in vegetable crop breeding for flowering time control.
Collapse
Affiliation(s)
- Willeke Leijten
- ENZA Zaden Research & Development B.V., Haling 1E, 1602 DB Enkhuizen, The Netherlands.
| | - Ronald Koes
- Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands.
| | - Ilja Roobeek
- ENZA Zaden Research & Development B.V., Haling 1E, 1602 DB Enkhuizen, The Netherlands.
| | - Giovanna Frugis
- Istituto di Biologia e Biotecnologia Agraria (IBBA), Operative Unit of Rome, Consiglio Nazionale delle Ricerche (CNR), Via Salaria Km. 29,300 ⁻ 00015, Monterotondo Scalo, Roma, Italy.
| |
Collapse
|
44
|
Glander S, He F, Schmitz G, Witten A, Telschow A, de Meaux J. Assortment of Flowering Time and Immunity Alleles in Natural Arabidopsis thaliana Populations Suggests Immunity and Vegetative Lifespan Strategies Coevolve. Genome Biol Evol 2018; 10:2278-2291. [PMID: 30215800 PMCID: PMC6133262 DOI: 10.1093/gbe/evy124] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2018] [Indexed: 12/31/2022] Open
Abstract
The selective impact of pathogen epidemics on host defenses can be strong but remains transient. By contrast, life-history shifts can durably and continuously modify the balance between costs and benefits of immunity, which arbitrates the evolution of host defenses. Their impact on the evolutionary dynamics of host immunity, however, has seldom been documented. Optimal investment into immunity is expected to decrease with shortening lifespan, because a shorter life decreases the probability to encounter pathogens or enemies. Here, we document that in natural populations of Arabidopsis thaliana, the expression levels of immunity genes correlate positively with flowering time, which in annual species is a proxy for lifespan. Using a novel genetic strategy based on bulk-segregants, we partitioned flowering time-dependent from -independent immunity genes and could demonstrate that this positive covariation can be genetically separated. It is therefore not explained by the pleiotropic action of some major regulatory genes controlling both immunity and lifespan. Moreover, we find that immunity genes containing variants reported to impact fitness in natural field conditions are among the genes whose expression covaries most strongly with flowering time. Taken together, these analyses reveal that natural selection has likely assorted alleles promoting lower expression of immunity genes with alleles that decrease the duration of vegetative lifespan in A. thaliana and vice versa. This is the first study documenting a pattern of variation consistent with the impact that selection on flowering time is predicted to have on diversity in host immunity.
Collapse
Affiliation(s)
- Shirin Glander
- Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Germany
| | - Fei He
- Institute of Botany, University of Cologne, Germany
| | | | - Anika Witten
- Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Germany
| | - Arndt Telschow
- Institute for Evolution and Biodiversity, University of Münster, Germany
| | | |
Collapse
|
45
|
Yang L, Wang HN, Hou XH, Zou YP, Han TS, Niu XM, Zhang J, Zhao Z, Todesco M, Balasubramanian S, Guo YL. Parallel Evolution of Common Allelic Variants Confers Flowering Diversity in Capsella rubella. THE PLANT CELL 2018; 30:1322-1336. [PMID: 29764984 PMCID: PMC6048796 DOI: 10.1105/tpc.18.00124] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 05/13/2018] [Accepted: 05/13/2018] [Indexed: 05/04/2023]
Abstract
Flowering time is an adaptive life history trait. Capsella rubella, a close relative of Arabidopsis thaliana and a young species, displays extensive variation for flowering time but low standing genetic variation due to an extreme bottleneck event, providing an excellent opportunity to understand how phenotypic diversity can occur with a limited initial gene pool. Here, we demonstrate that common allelic variation and parallel evolution at the FLC locus confer variation in flowering time in C. rubella. We show that two overlapping deletions in the 5' untranslated region (UTR) of C. rubella FLC, which are associated with local changes in chromatin conformation and histone modifications, reduce its expression levels and promote flowering. We further show that these two pervasive variants originated independently in natural C. rubella populations after speciation and spread to an intermediate frequency, suggesting a role of this parallel cis-regulatory change in adaptive evolution. Our results provide an example of how parallel mutations in the same 5' UTR region can shape phenotypic evolution in plants.
Collapse
Affiliation(s)
- Li Yang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Hui-Na Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Xing-Hui Hou
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu-Pan Zou
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ting-Shen Han
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao-Min Niu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhong Zhao
- School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Marco Todesco
- Department of Botany, University of British Columbia, Vancouver BC V6T 1Z4, Canada
| | | | - Ya-Long Guo
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
46
|
Lazaro A, Obeng-Hinneh E, Albani MC. Extended Vernalization Regulates Inflorescence Fate in Arabis alpina by Stably Silencing PERPETUAL FLOWERING1. PLANT PHYSIOLOGY 2018; 176:2819-2833. [PMID: 29467177 PMCID: PMC5884582 DOI: 10.1104/pp.17.01754] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 02/04/2018] [Indexed: 05/20/2023]
Abstract
The alpine perennial Arabis alpina initiates flower buds during prolonged exposure to cold. In the accession Pajares, we demonstrate that the length of vernalization influences flowering time and inflorescence fate but does not affect the axillary branches that maintain vegetative growth. The expression of floral organ identity genes gradually increases in the main shoot apex during vernalization, correlating with an increase in floral commitment. In northern Arabidopsis (Arabidopsis thaliana) accessions, the length of vernalization modulates the stable silencing of the floral repressor FLOWERING LOCUS C (FLC). We demonstrate that expression of PERPETUAL FLOWERING1 (PEP1), the ortholog of FLC in A. alpina, is similarly influenced by the duration of the exposure to cold. Extended vernalization results in stable silencing of PEP1 in the inflorescence. In contrast, insufficient vernalization leads to PEP1 reactivation after cold treatment, which correlates with delayed flowering and the appearance of floral reversion phenotypes such as bracts and vegetative inflorescence branches. Floral reversion phenotypes are reduced in the pep1-1 mutant, suggesting that PEP1 regulates the fate of the inflorescence after vernalization. The effect of vernalization duration on stable silencing of PEP1 is specific to meristems that initiate flowering during cold treatment. Extended vernalization fails to silence PEP1 in young seedlings and axillary branches that arise from buds initiated during cold treatment, which remain vegetative. We conclude that the duration of vernalization in A. alpina differentially regulates PEP1 in the inflorescence and axillary branches. PEP1 has a dual role regulating meristem fate; it prevents meristems from flowering and antagonizes inflorescence development after vernalization.
Collapse
Affiliation(s)
- Ana Lazaro
- Botanical Institute, Cologne Biocenter, University of Cologne, Zülpicher Strasse 47B, 50674 Cologne, Germany
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Evelyn Obeng-Hinneh
- Botanical Institute, Cologne Biocenter, University of Cologne, Zülpicher Strasse 47B, 50674 Cologne, Germany
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
- Cluster of Excellence on Plant Sciences "From Complex Traits towards Synthetic Modules," 40225 Düsseldorf, Germany
| | - Maria C Albani
- Botanical Institute, Cologne Biocenter, University of Cologne, Zülpicher Strasse 47B, 50674 Cologne, Germany
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
- Cluster of Excellence on Plant Sciences "From Complex Traits towards Synthetic Modules," 40225 Düsseldorf, Germany
| |
Collapse
|
47
|
Demography and mating system shape the genome-wide impact of purifying selection in Arabis alpina. Proc Natl Acad Sci U S A 2018; 115:816-821. [PMID: 29301967 DOI: 10.1073/pnas.1707492115] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Plant mating systems have profound effects on levels and structuring of genetic variation and can affect the impact of natural selection. Although theory predicts that intermediate outcrossing rates may allow plants to prevent accumulation of deleterious alleles, few studies have empirically tested this prediction using genomic data. Here, we study the effect of mating system on purifying selection by conducting population-genomic analyses on whole-genome resequencing data from 38 European individuals of the arctic-alpine crucifer Arabis alpina We find that outcrossing and mixed-mating populations maintain genetic diversity at similar levels, whereas highly self-fertilizing Scandinavian A. alpina show a strong reduction in genetic diversity, most likely as a result of a postglacial colonization bottleneck. We further find evidence for accumulation of genetic load in highly self-fertilizing populations, whereas the genome-wide impact of purifying selection does not differ greatly between mixed-mating and outcrossing populations. Our results demonstrate that intermediate levels of outcrossing may allow efficient selection against harmful alleles, whereas demographic effects can be important for relaxed purifying selection in highly selfing populations. Thus, mating system and demography shape the impact of purifying selection on genomic variation in A. alpina These results are important for an improved understanding of the evolutionary consequences of mating system variation and the maintenance of mixed-mating strategies.
Collapse
|
48
|
Lee CR, Hsieh JW, Schranz ME, Mitchell-Olds T. The Functional Change and Deletion of FLC Homologs Contribute to the Evolution of Rapid Flowering in Boechera stricta. FRONTIERS IN PLANT SCIENCE 2018; 9:1078. [PMID: 30108602 PMCID: PMC6080596 DOI: 10.3389/fpls.2018.01078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 07/03/2018] [Indexed: 05/04/2023]
Abstract
Differences in the timing of vegetative-to-reproductive phase transition have evolved independently and repeatedly in different plant species. Due to their specific biological functions and positions in pathways, some genes are important targets of repeated evolution - independent mutations on these genes caused the evolution of similar phenotypes in distantly related organisms. While many studies have investigated these genes, it remains unclear how gene duplications influence repeated phenotypic evolution. Here we characterized the genetic architecture underlying a novel rapid-flowering phenotype in Boechera stricta and investigated the candidate genes BsFLC1 and BsFLC2. The expression patterns of BsFLC1 suggested its function in flowering time suppression, and the deletion of BsFLC1 is associated with rapid flowering and loss of vernalization requirement. In contrast, BsFLC2 did not appear to be associated with flowering and had accumulated multiple amino acid substitutions in the relatively short evolutionary timeframe after gene duplication. These non-synonymous substitutions greatly changed the physicochemical properties of the original amino acids, concentrated non-randomly near a protein-interacting domain, and had greater substitution rate than synonymous changes. Here we suggested that, after recent gene duplication of the FLC gene, the evolution of rapid phenology was made possible by the change of BsFLC2 expression pattern or protein sequences and the deletion of BsFLC1.
Collapse
Affiliation(s)
- Cheng-Ruei Lee
- Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei, Taiwan
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
- Genome and Systems Biology Degree Program, National Taiwan University, Taipei, Taiwan
- *Correspondence: Cheng-Ruei Lee,
| | - Jo-Wei Hsieh
- Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei, Taiwan
| | - M. E. Schranz
- Biosystematics Group, Wageningen University & Research, Wageningen, Netherlands
| | | |
Collapse
|
49
|
Bloomer RH, Dean C. Fine-tuning timing: natural variation informs the mechanistic basis of the switch to flowering in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:5439-5452. [PMID: 28992087 DOI: 10.1093/jxb/erx270] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The evolution of diverse life history strategies has allowed Arabidopsis thaliana to adapt to worldwide locations, spanning a range of latitudinal and environmental conditions. Arabidopsis thaliana accessions are either vernalization-requiring winter annuals or rapid cyclers, with extensive natural variation in vernalization requirement and response. Genetic and molecular analysis of this variation has enhanced our understanding of the mechanisms involved in life history determination, with translation to both natural and crop systems in the Brassicaceae and beyond.
Collapse
Affiliation(s)
- R H Bloomer
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - C Dean
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| |
Collapse
|