1
|
Gorospe JM, Záveská E, Chala D, Gizaw A, Tusiime FM, Gustafsson ALS, Piálek L, Kolář F, Brochmann C, Schmickl R. Ecological speciation with gene flow followed initial large-scale geographic speciation in the enigmatic afroalpine giant senecios (Dendrosenecio). THE NEW PHYTOLOGIST 2025; 246:2307-2323. [PMID: 39891508 PMCID: PMC12059534 DOI: 10.1111/nph.20432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 01/10/2025] [Indexed: 02/03/2025]
Abstract
Mountains have highly heterogeneous environments that generate ample opportunities for lineage differentiation through ecological adaptation, geographic isolation and secondary contact. The geographic and ecological isolation of the afroalpine vegetation fragments on the East African mountain tops makes them an excellent system to study speciation. The initial diversification within the afroalpine endemic genus Dendrosenecio was shown to occur via allopatric divergence among four isolated mountain groups, but the potential role of ecological speciation within these groups and the role of gene flow in speciation remained uncertain. Here we extend the sampling of Dendrosenecio and use phylogenomics to assess the importance of gene flow in the diversification of the genus. Then, population genomics, demographic modelling and habitat differentiation analyses are used to study ecological speciation in two sister species occurring on Mount Kenya. We found that two sympatric sister species on Mt Kenya occupy distinct microhabitats, and our analyses support that they originated in situ via ecological speciation with gene flow. In addition, we obtained signals of admixture history between mountain groups. Taken together, these results suggest that geographic isolation shaped main lineages, while ecologically mediated speciation occurred within a single mountain.
Collapse
Affiliation(s)
- Juan Manuel Gorospe
- Department of Botany, Faculty of ScienceCharles UniversityBenátská 2Prague12801Czech Republic
- Department of Evolutionary Plant BiologyInstitute of Botany of the Czech Academy of SciencesZámek 1Průhonice25243Czech Republic
| | - Eliška Záveská
- Department of Evolutionary Plant BiologyInstitute of Botany of the Czech Academy of SciencesZámek 1Průhonice25243Czech Republic
| | - Desalegn Chala
- Natural History MuseumUniversity of OsloPO Box 1172 BlindernOsloNO‐0318Norway
| | - Abel Gizaw
- Natural History MuseumUniversity of OsloPO Box 1172 BlindernOsloNO‐0318Norway
- Department of Urban Greening and Vegetation EcologyNorwegian Institute of Bioeconomy ResearchPO Box 115ÅsNO‐1431Norway
| | - Felly Mugizi Tusiime
- Department of Forestry, Biodiversity and TourismMakerere UniversityPO Box 7062KampalaUganda
| | | | - Lubomír Piálek
- Department of Zoology, Faculty of ScienceUniversity of South BohemiaBranišovská 1645/31aČeské Budějovice37005Czech Republic
| | - Filip Kolář
- Department of Botany, Faculty of ScienceCharles UniversityBenátská 2Prague12801Czech Republic
- Department of Evolutionary Plant BiologyInstitute of Botany of the Czech Academy of SciencesZámek 1Průhonice25243Czech Republic
| | - Christian Brochmann
- Natural History MuseumUniversity of OsloPO Box 1172 BlindernOsloNO‐0318Norway
| | - Roswitha Schmickl
- Department of Botany, Faculty of ScienceCharles UniversityBenátská 2Prague12801Czech Republic
- Department of Evolutionary Plant BiologyInstitute of Botany of the Czech Academy of SciencesZámek 1Průhonice25243Czech Republic
| |
Collapse
|
2
|
Avila-Cervantes J, Charruau P, Cedeño-Vázquez JR, Bui HN, Venegas-Anaya M, Vargas M, López-Luna MA, González-Cortés H, Macías-Díaz DA, Pérez-Flores JS, Barrios-Quiroz G, Salazar JM, McMillan WO, Larsson HCE. Novel island species elucidate a species complex of Neotropical crocodiles. Mol Phylogenet Evol 2025; 207:108341. [PMID: 40158784 DOI: 10.1016/j.ympev.2025.108341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 03/19/2025] [Accepted: 03/20/2025] [Indexed: 04/02/2025]
Abstract
The evolutionary history of Neotropical crocodiles has remained elusive. They inhabit a broad geographic range with populations spanning from coastal, inland, and insular locations. Using a selection of natural insular, coastal, and one inland population of C. acutus, coastal C. moreletii, and the single surviving population of C. rhombifer, we discovered a remarkable genetic diversity for the group. Moreover, geometric morphometric results of skull shapes shows that these crocodylus species span a morphological cline. We recovered a high genetic differentiation between C. moreletii, C. rhombifer, and five clusters of C. acutus. The genetic and geographic differences among the C. acutus clusters were used to suggest these may be a species complex. Several ecological, morphological and genetics traits are identified in the well-studied populations from Banco Chinchorro and Cozumel islands off the Mexican Yucatan Peninsula to support discrete species designations for these populations. This work suggests the presence of rapid, recent evolution of several cryptic Crocodylus species throughout the Neotropics.
Collapse
Affiliation(s)
| | - Pierre Charruau
- El Colegio de la Frontera Sur, Villahermosa, Tabasco, Mexico
| | | | - Hoai-Nam Bui
- McGill University, Redpath Museum Montreal, Quebec, Canada
| | | | - Marta Vargas
- Smithsonian Tropical Research Institute, Panama, Panama
| | | | | | - David A Macías-Díaz
- Comisión Nacional de Áreas Naturales Protegidas, Reserva de la Biosfera Banco Chinchorro, Chetumal, Quintana Roo, Mexico
| | - Jonathan S Pérez-Flores
- El Colegio de la Frontera Sur, Chetumal, Quintana Roo, Mexico; Universidad Tecnológica de Calakmul, Calakmul, Campeche, Mexico
| | - Gabriel Barrios-Quiroz
- Centro de Investigación y Experimentación de Alternativas Agroecológicas, Coyoacan, Mexico
| | - J Miguel Salazar
- Center for Research in Geospatial Information Sciences, Ciudad de México, Mexico
| | | | | |
Collapse
|
3
|
Ogolowa BO, Brelsford A, Fjeldså J, Fulgione A, Hadjioannou L, Henderson EC, Moyle RG, Moysi M, Nwankwo EC, Rancilhac L, Smith TB, von Holdt BM, Kirschel ANG. Plio-Pleistocene Climatic Fluctuations and Divergence With Gene Flow Drive Continent-Wide Diversification in an African Bird. Mol Ecol 2025; 34:e17770. [PMID: 40259458 PMCID: PMC12051741 DOI: 10.1111/mec.17770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 04/01/2025] [Accepted: 04/07/2025] [Indexed: 04/23/2025]
Abstract
Diversification mechanisms in Sub-Saharan Africa have long attracted research interest, with varying support for either allopatric or parapatric models of speciation. However, studies have seldom been performed across the entire continent, a scale which could elucidate the relative importance of allopatric and parapatric models of divergence. To shed light on continental-scale patterns of African biogeography and diversification, we investigated the historical demography of a bird with a continent-wide distribution in Sub-Saharan Africa, the Yellow-Rumped Tinkerbird, Pogoniulus bilineatus. We sampled populations from across the continent and, using genomic data, assessed genetic diversity, structure, and differentiation, reconstructed the phylogeny, and performed alternative demographic model selection between neighbouring clade pairs. We uncovered substantial genetic structure and differentiation patterns which corroborated the phylogenetic topology. Structure was chiefly influenced by the arid corridor, a postulated biogeographical barrier in Sub-Saharan Africa. Moreover, peak genetic diversities coincided with postulated refugial areas while demographic reconstructions between genetic lineages supported allopatric models consistent with the Pleistocene Forest Refuge hypothesis. However, within lineages, divergence with gene flow was supported. Continent-wide patterns of diversification involve an integration of both allopatric and parapatric mechanisms, with a role for both periods of divergence in isolation and across ecological gradients. Furthermore, our study emphasises the importance of the arid corridor as a primary biogeographical feature across which diversification occurs, yet one that has hitherto received scant attention regarding its importance in avian diversification in Sub-Saharan Africa.
Collapse
Affiliation(s)
| | - Alan Brelsford
- Department of Evolution, Ecology and Organismal BiologyUniversity of California RiversideRiversideCaliforniaUSA
| | - Jon Fjeldså
- Natural History of Museum, DenmarkUniversity of CopenhagenCopenhagenDenmark
| | - Andrea Fulgione
- Max Planck Institute for Plant Breeding ResearchCologneGermany
| | | | - Elisa C. Henderson
- Department of Evolution, Ecology and Organismal BiologyUniversity of California RiversideRiversideCaliforniaUSA
| | - Robert G. Moyle
- Biodiversity Institute and Department of Ecology and Evolutionary BiologyUniversity of KansasLawrenceKansasUSA
| | - Michaella Moysi
- Department of Biological SciencesUniversity of CyprusNicosiaCyprus
| | | | - Loïs Rancilhac
- Department of Biological SciencesUniversity of CyprusNicosiaCyprus
| | - Thomas B. Smith
- Department of Ecology and Evolutionary Biology and Institute of the Environment and SustainabilityUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - Bridgett M. von Holdt
- Department of Ecology and Evolutionary BiologyPrinceton UniversityPrincetonNew JerseyUSA
| | - Alexander N. G. Kirschel
- Department of Biological SciencesUniversity of CyprusNicosiaCyprus
- Department of Ecology and Evolutionary Biology and Institute of the Environment and SustainabilityUniversity of California Los AngelesLos AngelesCaliforniaUSA
| |
Collapse
|
4
|
Kent TV, Schrider DR, Matute DR. Demographic History, Genetic Load, and the Efficacy of Selection in the Globally Invasive Mosquito Aedes aegypti. Genome Biol Evol 2025; 17:evaf066. [PMID: 40181735 PMCID: PMC12034524 DOI: 10.1093/gbe/evaf066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Accepted: 03/21/2025] [Indexed: 04/05/2025] Open
Abstract
Aedes aegypti is the main vector species of yellow fever, dengue, Zika, and chikungunya. The species is originally from Africa but has experienced a spectacular expansion in its geographic range to a large swath of the world, and the demographic effects of which have remained largely understudied. In this report, we examine whole-genome sequences from six countries in Africa, North America, and South America to investigate the demographic history of the spread of A. aegypti into the Americas and its impact on genomic diversity and deleterious genetic load. In the Americas, we observe patterns of strong population structure consistent with relatively low (but probably nonzero) levels of gene flow but occasional long-range dispersal and/or recolonization events. We also find evidence that the colonization of the Americas has resulted in introduction bottlenecks. However, while each sampling location shows evidence of a past population contraction and subsequent recovery, our results suggest that the bottlenecks in America have led to a reduction in genetic diversity of only ∼35% relative to African populations, and the American samples have retained high levels of genetic diversity (expected heterozygosity of ∼0.02 at synonymous sites). We additionally find that American populations of aegypti have experienced only a minor reduction in the efficacy of selection, with evidence for both an accumulation of deleterious alleles and some purging of strongly deleterious alleles. These results exemplify how an invasive species can expand its range with remarkable genetic resilience in the face of strong eradication pressure.
Collapse
Affiliation(s)
- Tyler V Kent
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
- Department of Biology, College of Arts and Sciences, University of North Carolina, Chapel Hill, NC, USA
- Department of Genetics, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Daniel R Schrider
- Department of Genetics, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Daniel R Matute
- Department of Biology, College of Arts and Sciences, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
5
|
Cohen ZP, Perkin LC, Raszick TJ, Sim SB, Geib SM, Childers AK, Sword GA, Suh CPC. Pangenomics Links Boll Weevil Divergence With Ancient Mesoamerican Cotton Cultivation. Mol Ecol Resour 2025; 25:e14054. [PMID: 39838887 DOI: 10.1111/1755-0998.14054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 12/14/2024] [Accepted: 12/17/2024] [Indexed: 01/23/2025]
Abstract
The boll weevil, Anthonomus grandis grandis Boheman, and thurberia weevil, Anthonomus grandis thurberiae Pierce, together comprise a species complex that ranges throughout Mexico, the southwestern regions of the United States and parts of South America. The boll weevil is a historically damaging and contemporaneously threatening pest to commercial upland cotton, Gossypium hirsutum L. (Malvales: Malvaceae), whereas the thurberia weevil is regarded as an innocuous non-pest subspecies that is mostly found on non-cultivated Thurber's or Arizona cotton, Gossypium thurberi L., throughout its native range in western Mexico and the southwestern United States. Recent independent analyses, using mitochondrial and whole-genome markers, have suggested the independent evolution of these lineages is more attributable to geographic isolation than biotic factors. We suggest a combination of drivers after employing comparative genomic, population genetic and pangenome methodologies to identify large and small polymorphisms. By leveraging genetic differences, we determined 39,310 diagnostic loci between the subspecies, find genes under selection, and model the subspecies' shared and unique evolutionary history. Interestingly, structural variations capture a large proportion of genes at the population level and demographic reconstruction suggests a split between approximately 3,320-16,300 before present (YBP), which coincides with cotton cultivation in Mesoamerica, approximately 3,000-5,000 YBP. Observed polymorphisms are enriched for reproductive, regulatory, and metabolic genes, which may be attributed to the subspecies split and coevolution with cultivated cotton. Our results demonstrate the utility of a holistic, comparative framework utilising small and large polymorphisms to reconstruct demography and identify genetic novelty via pangenomics.
Collapse
Affiliation(s)
- Zachary P Cohen
- USDA, Agricultural Research Service, Southern Plains Agricultural Research Center, Insect Control and Cotton Disease Research Unit, College Station, Texas, USA
| | - Lindsey C Perkin
- USDA, Agricultural Research Service, Southern Plains Agricultural Research Center, Insect Control and Cotton Disease Research Unit, College Station, Texas, USA
| | - Tyler J Raszick
- USDA-Animal Plant Health Inspection Service, Plant Protection and Quarantine, Center for Plant Health Science and Technology, Edinburg, Texas, USA
| | - Sheina B Sim
- Tropical Crop and Commodity Protection Research Unit, U.S. Pacific Basin Agricultural Research Center, USDA, Agricultural Research Service, Hilo, Hawaii, USA
| | - Scott M Geib
- Tropical Crop and Commodity Protection Research Unit, U.S. Pacific Basin Agricultural Research Center, USDA, Agricultural Research Service, Hilo, Hawaii, USA
| | - Anna K Childers
- Bee Research Laboratory, Beltsville Agricultural Research Center, USDA, Agricultural Research Service, Beltsville, Maryland, USA
| | - Gregory A Sword
- Department of Entomology, Texas A&M University, College Station, Texas, USA
| | - Charles P-C Suh
- USDA, Agricultural Research Service, Southern Plains Agricultural Research Center, Insect Control and Cotton Disease Research Unit, College Station, Texas, USA
| |
Collapse
|
6
|
Pelosi JA, Sorojsrisom ES, Barbazuk WB, Sessa EB. Population genomics of the gametophyte-only fern Vittaria appalachiana provides insights into clonal plant evolution. THE NEW PHYTOLOGIST 2025; 246:349-364. [PMID: 39902625 DOI: 10.1111/nph.20433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 01/11/2025] [Indexed: 02/05/2025]
Abstract
How asexually reproducing organisms maintain genetic diversity and adaptive potential is a long-standing question in evolutionary biology. Asexual lineages have historically been thought of as evolutionary dead ends, yet some exhibit remarkable persistence through time. The gametophyte-only fern Vittaria appalachiana is a clonal eukaryote, the focus of extensive study due to its peculiar habit and life history, and is an excellent system to explore the consequences of asexuality. Using reduced representation sequencing and life cycle simulations, we assess theoretical expectations for genomic consequences of long-term asexual reproduction and test hypotheses about its origin and demographic history. We show that V. appalachiana colonies are not patches of single genotypes but are mosaics of genetic diversity, and the accumulation of mutations in the absence of recombination plays an important role in driving this diversity. We identify increased genomic variation, excess heterozygosity, decreased population differentiation, and increased effective population size, all of which are consistent with the expectations for prolonged clonality. Our analyses support the hypothesis that the loss of sexual reproduction in V. appalachiana occurred during the Last Glacial Maximum. Our results from empirical and simulation-based analyses illuminate how an asexual eukaryote generates, retains, and partitions genomic diversity.
Collapse
Affiliation(s)
- Jessie A Pelosi
- Department of Biology, University of Florida, Gainesville, FL, 32611, USA
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| | - Elissa S Sorojsrisom
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, NY, 10027, USA
- Pfizer Plant Research Laboratory, New York Botanical Garden, Bronx, NY, 10458, USA
| | - William Brad Barbazuk
- Department of Biology, University of Florida, Gainesville, FL, 32611, USA
- Genetics Institute, University of Florida, Gainesville, FL, 32611, USA
| | - Emily B Sessa
- Department of Biology, University of Florida, Gainesville, FL, 32611, USA
- William and Lynda Steere Herbarium, New York Botanical Garden, Bronx, NY, 10458, USA
| |
Collapse
|
7
|
Ping J, Liu X, Lu Y, Quan C, Fan P, Lu H, Li Q, Wang C, Zhang Z, Liu M, Chen S, Chang L, Jiang Y, Huang Q, Liu J, Wuren T, Liu H, Hao Y, Kang L, Liu G, Lu H, Wei X, Wang Y, Li Y, Guo H, Cui Y, Zhang H, Zhang Y, Zhai Y, He Y, Zheng W, Qi X, Ouzhuluobu, Ma H, Yang L, Wang X, Jin W, Cui Y, Ge R, Wu S, Wei Y, Su B, He F, Zhang H, Zhou G. A highland-adaptation variant near MCUR1 reduces its transcription and attenuates erythrogenesis in Tibetans. CELL GENOMICS 2025; 5:100782. [PMID: 40043709 PMCID: PMC11960549 DOI: 10.1016/j.xgen.2025.100782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 09/03/2024] [Accepted: 02/03/2025] [Indexed: 03/15/2025]
Abstract
To identify genomic regions subject to positive selection that might contain genes involved in high-altitude adaptation (HAA), we performed a genome-wide scan by whole-genome sequencing of Tibetan highlanders and Han lowlanders. We revealed a collection of candidate genes located in 30 genomic loci under positive selection. Among them, MCUR1 at 6p23 was a novel pronounced candidate. By single-cell RNA sequencing and comprehensive functional studies, we demonstrated that MCUR1 depletion leads to impairment of erythropoiesis under hypoxia and normoxia. Mechanistically, MCUR1 knockdown reduced mitochondrial Ca2+ uptake and then concomitantly increased cytosolic Ca2+ levels, which thereby reduced erythropoiesis via the CAMKK2-AMPK-mTOR axis. Further, we revealed rs61644582 at 6p23 as an expression quantitative trait locus for MCUR1 and a functional variant that confers an allele-specific transcriptional regulation of MCUR1. Overall, MCUR1-mediated mitochondrial Ca2+ homeostasis is highlighted as a novel regulator of erythropoiesis, deepening our understanding of the genetic mechanism of HAA.
Collapse
Affiliation(s)
- Jie Ping
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Xinyi Liu
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Yiming Lu
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Cheng Quan
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Pengcheng Fan
- Pharmacy Department, General Hospital of Lanzhou, Lanzhou City 730050, P.R. China; State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, P.R. China
| | - Hao Lu
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Qi Li
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Cuiling Wang
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Zheng Zhang
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Mengyu Liu
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Shunqi Chen
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Lingle Chang
- Medical College of Guizhou University, Guiyang City 550025, P.R. China
| | - Yuqing Jiang
- Collaborative Innovation Center for Personalized Cancer Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing City 211166, P.R. China
| | - Qilin Huang
- Collaborative Innovation Center for Personalized Cancer Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing City 211166, P.R. China
| | - Jie Liu
- Research Center for High-Altitude Medicine, Qinghai University Medical School, Xining City 810001, P.R. China; Qinghai Provincial People's Hospital, Xining City 810001, P.R. China
| | - Tana Wuren
- Research Center for High-Altitude Medicine, Qinghai University Medical School, Xining City 810001, P.R. China
| | - Huifang Liu
- Research Center for High-Altitude Medicine, Qinghai University Medical School, Xining City 810001, P.R. China
| | - Ying Hao
- College of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, P.R. China
| | - Longli Kang
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High-Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang City 712082, P.R. China; Key Laboratory of High-Altitude Environment and Genes Related to Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang City 712082, P.R. China
| | - Guanjun Liu
- Henan Provincial People's Hospital, Zhengzhou City 450000, P.R. China; Affiliated Cancer Hospital of Guangxi Medical University, Nanning City 530021, P.R. China
| | - Hui Lu
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Xiaojun Wei
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Yuting Wang
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Yuanfeng Li
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Hao Guo
- No. 945 Hospital of Joint Logistic Support Force of Chinese PLA, Ya'an City 625000, P.R. China
| | - Yongquan Cui
- No. 945 Hospital of Joint Logistic Support Force of Chinese PLA, Ya'an City 625000, P.R. China
| | - Haoxiang Zhang
- No. 954 Hospital of Joint Logistic Support Force of Chinese PLA, Shannan City 856000, P.R. China
| | - Yang Zhang
- Medical Center for Human Reproduction, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Yujia Zhai
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Yaoxi He
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming City 650223, P.R. China
| | - Wangshan Zheng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming City 650223, P.R. China
| | - Xuebin Qi
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650000, China; Fukang Obstetrics, Gynecology and Children Branch Hospital, Tibetan Fukang Hospital, Lhasa 850000, China
| | - Ouzhuluobu
- Fukang Obstetrics, Gynecology and Children Branch Hospital, Tibetan Fukang Hospital, Lhasa 850000, China
| | - Huiping Ma
- Pharmacy Department, General Hospital of Lanzhou, Lanzhou City 730050, P.R. China
| | - Linpeng Yang
- Pharmacy Department, General Hospital of Lanzhou, Lanzhou City 730050, P.R. China
| | - Xin Wang
- Pharmacy Department, General Hospital of Lanzhou, Lanzhou City 730050, P.R. China
| | - Wanjun Jin
- Pharmacy Department, General Hospital of Lanzhou, Lanzhou City 730050, P.R. China
| | - Ying Cui
- Affiliated Cancer Hospital of Guangxi Medical University, Nanning City 530021, P.R. China
| | - Rili Ge
- Research Center for High-Altitude Medicine, Qinghai University Medical School, Xining City 810001, P.R. China
| | - Shizheng Wu
- Research Center for High-Altitude Medicine, Qinghai University Medical School, Xining City 810001, P.R. China; Qinghai Provincial People's Hospital, Xining City 810001, P.R. China
| | - Yuan Wei
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Bing Su
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming City 650223, P.R. China
| | - Fuchu He
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, P.R. China
| | - Hongxing Zhang
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, P.R. China.
| | - Gangqiao Zhou
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China; Medical College of Guizhou University, Guiyang City 550025, P.R. China; Collaborative Innovation Center for Personalized Cancer Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing City 211166, P.R. China.
| |
Collapse
|
8
|
Terbot JW, Soni V, Versoza CJ, Pfeifer SP, Jensen JD. Inferring the Demographic History of Aye-Ayes (Daubentonia madagascariensis) from High-Quality, Whole-Genome, Population-Level Data. Genome Biol Evol 2025; 17:evae281. [PMID: 39749927 PMCID: PMC11746965 DOI: 10.1093/gbe/evae281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 12/28/2024] [Accepted: 12/30/2024] [Indexed: 01/04/2025] Open
Abstract
The nocturnal aye-aye, Daubentonia madagascariensis, is one of the most elusive lemurs on the island of Madagascar. The timing of its activity and arboreal lifestyle has generally made it difficult to obtain accurate assessments of population size using traditional census methods. Therefore, alternative estimates provided by population genetic inference are essential for yielding much needed information for conservation measures and for enabling ecological and evolutionary studies of this species. Here, we utilize genomic data from 17 individuals-including 5 newly sequenced, high-coverage genomes-to estimate this history. Essential to this estimation are recently published annotations of the aye-aye genome which allow for variation at putatively neutral genomic regions to be included in the estimation procedures, and regions subject to selective constraints, or in linkage to such sites, to be excluded owing to the biasing effects of selection on demographic inference. By comparing a variety of demographic estimation tools to develop a well-supported model of population history, we find strong support for two demes, separating northern Madagascar from the rest of the island. Additionally, we find that the aye-aye has experienced two severe reductions in population size. The first occurred rapidly, ∼3,000 to 5,000 years ago, and likely corresponded with the arrival of humans to Madagascar. The second occurred over the past few decades and is likely related to substantial habitat loss, suggesting that the species is still undergoing population decline and remains at great risk for extinction.
Collapse
Affiliation(s)
- John W Terbot
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Vivak Soni
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Cyril J Versoza
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Susanne P Pfeifer
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Jeffrey D Jensen
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
9
|
Chen Y, Tan S, Xu Q, Fu J, Qi Y, Qiu X, Yang W. Genomic Architecture Underlying the Striking Colour Variation in the Presence of Gene Flow for the Guinan Toad-Headed Lizard. Mol Ecol 2025; 34:e17594. [PMID: 39548709 DOI: 10.1111/mec.17594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/29/2024] [Accepted: 11/06/2024] [Indexed: 11/18/2024]
Abstract
How divergence occurs between closely related organisms in the absence of geographic barriers to gene flow stands as one of the long-standing questions in evolutionary biology. Previous studies suggested that the interplay between selection, gene flow and recombination strongly affected the process of divergence with gene flow. However, the extent to which these forces interact to drive divergence remains largely ambiguous. Guinan toad-headed lizards (Phrynocephalus guinanensis) in the Mugetan Desert exhibit striking colour differences from lizards outside the desert and provide an excellent model to address this question. Through extensive sampling and whole genome sequencing, we obtained genotypes for 191 samples from 14 populations inside and outside the desert. Despite the colour differences, continuous and asymmetric gene flow was detected across the desert border. More importantly, 273 highly diverged regions (HDRs) were identified between them, accounting only for 0.47% of the genome but widely distributed across 20 (out of the total 24) chromosomes. Strong signatures of selection were identified in HDRs, and local recombination rates were repressed. Furthermore, five HDRs exhibited significantly higher divergence, which contained key genes associated with crucial functions in animal coloration, including pteridine and melanocyte pigmentation. Genes related to retinal cells and steroid hormones were identified in other HDRs, which might have also contributed to the formation of colour variation in the presence of gene flow. This study provided novel insights into the understanding of the evolutionary mechanisms of genetic divergence in the presence of gene flow.
Collapse
Affiliation(s)
- Ying Chen
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Song Tan
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Qiwei Xu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jinzhong Fu
- Department of Integrative Biology, University of Guelph, Guelph, Canada
| | - Yin Qi
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Xia Qiu
- College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Weizhao Yang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| |
Collapse
|
10
|
Yusuf LH, Pascoal S, Moran PA, Bailey NW. Testing the genomic overlap between intraspecific mating traits and interspecific mating barriers. Evol Lett 2024; 8:902-915. [PMID: 39677567 PMCID: PMC11637687 DOI: 10.1093/evlett/qrae042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 06/19/2024] [Accepted: 07/18/2024] [Indexed: 12/17/2024] Open
Abstract
Differences in interspecific mating traits, such as male sexual signals and female preferences, often evolve quickly as initial barriers to gene flow between nascent lineages, and they may also strengthen such barriers during secondary contact via reinforcement. However, it is an open question whether loci contributing to intraspecific variation in sexual traits are co-opted during the formation and strengthening of mating barriers between species. To test this, we used a population genomics approach in natural populations of Australian cricket sister species that overlap in a contact zone: Teleogryllus oceanicus and Teleogryllus commodus. First, we identified loci associated with intraspecific variation in T. oceanicus mating signals: advertisement song and cuticular hydrocarbon (CHC) pheromones. We then separately identified candidate interspecific barrier loci between the species. Genes showing elevated allelic divergence between species were enriched for neurological functions, indicating potential behavioral rewiring. Only two CHC-associated genes overlapped with these interspecific candidate barrier loci, and intraspecific CHC loci showed signatures of being under strong selective constraints between species. In contrast, 10 intraspecific song-associated genes showed high genetic differentiation between T. commodus and T. oceanicus, and 2 had signals of high genomic divergence. The overall lack of shared loci in intra vs. interspecific comparisons of mating trait and candidate barrier loci is consistent with limited co-option of the genetic architecture of interspecific mating signals during the establishment and maintenance of reproductive isolation.
Collapse
Affiliation(s)
- Leeban H Yusuf
- Centre for Biological Diversity, School of Biology, University of St Andrews, Fife, United Kingdom
| | - Sonia Pascoal
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Peter A Moran
- A-LIFE, Section Ecology & Evolution, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Nathan W Bailey
- Centre for Biological Diversity, School of Biology, University of St Andrews, Fife, United Kingdom
| |
Collapse
|
11
|
Barley AJ, Nieto-Montes de Oca A, Manríquez-Morán NL, Thomson RC. Understanding Species Boundaries that Arise from Complex Histories: Gene Flow Across the Speciation Continuum in the Spotted Whiptail Lizards. Syst Biol 2024; 73:901-919. [PMID: 39022995 DOI: 10.1093/sysbio/syae040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 07/17/2024] [Indexed: 07/20/2024] Open
Abstract
-Gene flow between diverging lineages challenges the resolution of species boundaries and the understanding of evolutionary history in recent radiations. Here, we integrate phylogenetic and coalescent tools to resolve reticulate patterns of diversification and use a perspective focused on evolutionary mechanisms to distinguish interspecific and intraspecific taxonomic variation. We use this approach to resolve the systematics for one of the most intensively studied but difficult to understand groups of reptiles: the spotted whiptail lizards of the genus Aspidoscelis (A. gularis complex). Whiptails contain the largest number of unisexual species known within any vertebrate group and the spotted whiptail complex has played a key role in the generation of this diversity through hybrid speciation. Understanding lineage boundaries and the evolutionary history of divergence and reticulation within this group is therefore key to understanding the generation of unisexual diversity in whiptails. Despite this importance, long-standing confusion about their systematics has impeded understanding of which gonochoristic species have contributed to the formation of unisexual lineages. Using reduced representation genomic data, we resolve patterns of divergence and gene flow within the spotted whiptails and clarify patterns of hybrid speciation. We find evidence that biogeographically structured ecological and environmental variation has been important in morphological and genetic diversification, as well as the maintenance of species boundaries in this system. Our study elucidates how gene flow among lineages and the continuous nature of speciation can bias the practice of species delimitation and lead taxonomists operating under different frameworks to different conclusions (here we propose that a 2 species arrangement best reflects our current understanding). In doing so, this study provides conceptual and methodological insights into approaches to resolving diversification patterns and species boundaries in rapid radiations with complex histories, as well as long-standing taxonomic challenges in the field of systematic biology.
Collapse
Affiliation(s)
- Anthony J Barley
- School of Mathematical and Natural Sciences, Arizona State University, West Valley Campus, 4701 W Thunderbird Road, Glendale, AZ 85306, USA
| | - Adrián Nieto-Montes de Oca
- Laboratorio de Herpetología and Museo de Zoología Alfonso L. Herrera, Departamento de Biología Evolutiva, Facultad de Ciencias, Universidad Nacional Autónoma de México, Cd. Universitaria, Del. Coyoacán, Ciudad de México, C.P. 04510, México
| | - Norma L Manríquez-Morán
- Laboratorio de Sistemática Molecular, Centro de Investigaciones Biológicas, Universidad Autónoma del Estado de Hidalgo, Km. 4.5 Carr. Pachuca-Tulancingo, Col. Carboneras, Mineral de la Reforma, Hidalgo, C.P. 42184, México
| | - Robert C Thomson
- School of Life Sciences, University of Hawai'i, 3190 Maile Way, Honolulu, HI 96822, USA
| |
Collapse
|
12
|
Šlenker M, Kantor A, Senko D, Mártonfiová L, Šrámková G, Cetlová V, Dönmez AA, Yüzbaşıoğlu S, Zozomová-Lihová J. Genome-Wide Data Uncover Cryptic Diversity With Multiple Reticulation Events in the Balkan-Anatolian Cardamine (Brassicaceae) Species Complex. Mol Ecol 2024; 33:e17564. [PMID: 39463165 DOI: 10.1111/mec.17564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/03/2024] [Accepted: 10/10/2024] [Indexed: 10/29/2024]
Abstract
Plant species diversity may be considerably underestimated, especially in evolutionarily complex genera and in diversity hotspots that have enabled long-term species persistence and diversification, such as the Balkan Peninsula. Here, we address the topic of underexplored plant diversity and underlying evolutionary and biogeographic processes by investigating the hygrophytic mountain species complex of Cardamine acris s.l. distributed in the Balkans (three subspecies within C. acris) and northwestern Anatolia (C. anatolica). We performed a series of phylogenetic and phylogeographic analyses based on restriction-site associated DNA sequencing (RADseq) and target enrichment (Hyb-Seq) data in combination with habitat suitability modelling. We found C. anatolica as a clade nested within the Balkan C. acris, probably resulting from a founder event, and uncovered three allopatric cryptic lineages within C. acris subsp. acris, allowing us to recognise a total of six entities in this complex. We observed the deepest genetic split within C. acris subsp. acris in the western Balkans, which was at odds with taxonomy and showed no distribution gap. We inferred vicariance as the most likely process for population divergence in the Balkans, accompanied by gene flow between the recognised entities, which was consistent with the modelled habitat suitability dynamics. Furthermore, we discovered several polyploid populations in C. acris, representing both pure intra- and inter-lineage hybrid polyploids, but detected only minor traces of hybridization with related congeners. Overall, our results illustrate that diverse evolutionary processes may influence the history of mountain plant species in the Balkan Peninsula, including vicariance, reticulation, polyploidization and cryptic diversification.
Collapse
Affiliation(s)
- Marek Šlenker
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Adam Kantor
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Dušan Senko
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Lenka Mártonfiová
- Botanical Garden of P. J. Šafárik University in Košice, Košice, Slovakia
| | - Gabriela Šrámková
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic
| | - Veronika Cetlová
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Ali A Dönmez
- Botany Section, Department of Biology, Faculty of Science, Hacettepe University, Beytepe-Ankara, Türkiye
| | - Sırrı Yüzbaşıoğlu
- Department of Botany, Faculty of Science, İstanbul University, Istanbul, Türkiye
| | - Judita Zozomová-Lihová
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Bratislava, Slovak Republic
| |
Collapse
|
13
|
Marfurt SM, Chabanne DBH, Wittwer S, Bizzozzero MR, Allen SJ, Gerber L, Nicholson K, Krützen M. Demographic History and Adaptive Evolution of Indo-Pacific Bottlenose Dolphins (Tursiops aduncus) in Western Australia. Mol Ecol 2024; 33:e17555. [PMID: 39435496 DOI: 10.1111/mec.17555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/06/2024] [Accepted: 09/30/2024] [Indexed: 10/23/2024]
Abstract
Demographic processes can substantially affect a species' response to changing ecological conditions, necessitating the combined consideration of genetic responses to environmental variables and neutral genetic variation. Using a seascape genomics approach combined with population demographic modelling, we explored the interplay of demographic and environmental factors that shaped the current population structure in Indo-Pacific bottlenose dolphins (Tursiops aduncus) along the Western Australian coastline. We combined large-scale environmental data gathered via remote sensing with RADseq genomic data from 133 individuals at 19 sampling sites. Using population genetic and outlier detection analyses, we identified three distinct genetic clusters, coinciding with tropical, subtropical and temperate provincial bioregions. In contrast to previous studies, our demographic models indicated that populations occupying the paleo-shoreline split into two demographically independent lineages before the last glacial maximum (LGM). A subsequent split after the LGM 12-15 kya gave rise to the Shark Bay population, thereby creating the three currently observed clusters. Although multi-locus heterozygosity declined from north to south, dolphins from the southernmost cluster inhabiting temperate waters had higher heterozygosity in potentially adaptive loci compared to dolphins from subtropical and tropical waters. These findings suggest ongoing adaptation to cold-temperate waters in the southernmost cluster, possibly linked to distinct selective pressures between the different bioregions. Our study demonstrated that in the marine realm, without apparent physical boundaries, only a combined approach can fully elucidate the intricate environmental and genetic interactions shaping the evolutionary trajectory of marine mammals.
Collapse
Affiliation(s)
- Svenja M Marfurt
- Evolutionary Genetics Group, Department of Evolutionary Anthropology, University of Zurich, Zurich, Switzerland
| | - Delphine B H Chabanne
- Evolutionary Genetics Group, Department of Evolutionary Anthropology, University of Zurich, Zurich, Switzerland
- Harry Butler Institute, Murdoch University, Murdoch, Western Australia, Australia
| | - Samuel Wittwer
- Evolutionary Genetics Group, Department of Evolutionary Anthropology, University of Zurich, Zurich, Switzerland
| | - Manuela R Bizzozzero
- Evolutionary Genetics Group, Department of Evolutionary Anthropology, University of Zurich, Zurich, Switzerland
| | - Simon J Allen
- Evolutionary Genetics Group, Department of Evolutionary Anthropology, University of Zurich, Zurich, Switzerland
- School of Biological Sciences, University of Bristol, Bristol, UK
- School of Biological Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Livia Gerber
- Australian National Wildlife Collection, Commonwealth Scientific and Industrial Research Organisation, Canberra, Australia
| | - Krista Nicholson
- Harry Butler Institute, Murdoch University, Murdoch, Western Australia, Australia
| | - Michael Krützen
- Evolutionary Genetics Group, Department of Evolutionary Anthropology, University of Zurich, Zurich, Switzerland
- School of Biological Sciences, University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
14
|
Bernáthová I, Swiacká M, Bath Shéba Vitel LC, Tinsman JC, Hulva P, Černá Bolfíková B. Population structure and demographic history of two highly-trafficked species of pangolin in the Congo Basin. Sci Rep 2024; 14:22177. [PMID: 39333261 PMCID: PMC11437027 DOI: 10.1038/s41598-024-68928-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/30/2024] [Indexed: 09/29/2024] Open
Abstract
African pangolins are hunted for their meat and for use in local traditional medicine, as well as for their scales, which are trafficked internationally, especially to growing Asian markets. Pangolin's population genetic structure can be used to trace the geographic origins of trafficked scales, but substantial sampling gaps across pangolins' ranges hinder these efforts. In this study, we documented population structure and dynamics in the two species of African pangolin, the white-bellied pangolin (Phataginus tricuspis) and the giant pangolin (Smutsia gigantea) in the underexplored Republic of Congo. Using the mitochondrial control region and two nuclear markers (beta-fibrinogen and titin), we identified high genetic diversity in both species. We document a distinct mitochondrial lineage of the white-bellied pangolin, which was most likely shaped by river barriers together with dynamics of forest refugia related to the climatic shifts during the Pleistocene. We detected population growth in the white-bellied pangolin coinciding with a dry period during the Pleistocene, suggesting some ability for this typically forest-dwelling species to persist under diverse environmental conditions. Using landscape genetics, we found all but one of the pangolins we sampled at bush meat markets originated locally. A single individual appeared to have been imported to Congo from Cameroon. These findings significantly contribute to our understanding of pangolin population biology and local trade dynamics. In addition, our data from a previously unstudied part of pangolins' ranges will help us to better understand international wildlife trafficking patterns and to target conservation and protection strategies for these highly vulnerable species.
Collapse
Affiliation(s)
- Iva Bernáthová
- Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Markéta Swiacká
- Department of Spatial Sciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | | | - Jen C Tinsman
- Center for Tropical Research, University of California, Los Angeles, CA, USA
- US Fish & Wildlife National Forensic Laboratory, Ashland, OR, USA
| | - Pavel Hulva
- Faculty of Science, Charles University, Prague, Czech Republic
| | - Barbora Černá Bolfíková
- Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Prague, Czech Republic.
| |
Collapse
|
15
|
Caputo B, De Marco CM, Pichler V, Bottà G, Bennett KL, Amambua-Ngwa A, Assogba SB, Opondo KO, Clarkson CS, Tennessen JA, Weetman D, Miles A, Della Torre A. Population genomic evidence of a putative 'far-west' African cryptic taxon in the Anopheles gambiae complex. Commun Biol 2024; 7:1115. [PMID: 39256556 PMCID: PMC11387608 DOI: 10.1038/s42003-024-06809-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/29/2024] [Indexed: 09/12/2024] Open
Abstract
The two main Afrotropical malaria vectors - Anopheles coluzzii and An. gambiae - are genetically distinct and reproductively isolated across West Africa. However, populations at the western extreme of their range are assigned as "intermediate" between the two species by whole genome sequence (WGS) data, and as hybrid forms by conventional molecular diagnostics. By exploiting WGS data from 1190 specimens collected across west Africa via the Anopheles gambiae 1000 Genomes network, we identified a putative taxon in the far-west (provisionally named Bissau molecular form), which did not arise by admixture but rather may have originated at the same time as the split between An. coluzzii and An. gambiae. Intriguingly, this taxon lacks insecticide resistance mechanisms commonly observed in the two main species. These findings lead to a change of perspective on malaria vector species in the far-west region with potential for epidemiological implications, and a new challenge for genetic-based mosquito control approaches.
Collapse
Affiliation(s)
- Beniamino Caputo
- Dipartimento di Sanità Pubblica e Malattie Infettive, Istituto Pasteur Italia-Fondazione Cenci-Bolognetti, Università di Roma "Sapienza", Rome, Italy
| | - Carlo M De Marco
- Dipartimento di Sanità Pubblica e Malattie Infettive, Istituto Pasteur Italia-Fondazione Cenci-Bolognetti, Università di Roma "Sapienza", Rome, Italy
| | - Verena Pichler
- Dipartimento di Sanità Pubblica e Malattie Infettive, Istituto Pasteur Italia-Fondazione Cenci-Bolognetti, Università di Roma "Sapienza", Rome, Italy
| | - Giordano Bottà
- Dipartimento di Sanità Pubblica e Malattie Infettive, Istituto Pasteur Italia-Fondazione Cenci-Bolognetti, Università di Roma "Sapienza", Rome, Italy
| | - Kelly L Bennett
- Wellcome Sanger Genomic Surveillance Unit, Wellcome Sanger Institute, Cambridge, UK
| | - Alfred Amambua-Ngwa
- Disease Control and Elimination Theme (DCE), Medical Research Council Unit, The Gambia at the London School of Hygiene and Tropical Medicine (MRCG-LSHTM), Banjul, The Gambia
| | - Sessinou B Assogba
- Disease Control and Elimination Theme (DCE), Medical Research Council Unit, The Gambia at the London School of Hygiene and Tropical Medicine (MRCG-LSHTM), Banjul, The Gambia
| | - Kevin O Opondo
- Disease Control and Elimination Theme (DCE), Medical Research Council Unit, The Gambia at the London School of Hygiene and Tropical Medicine (MRCG-LSHTM), Banjul, The Gambia
| | - Chris S Clarkson
- Wellcome Sanger Genomic Surveillance Unit, Wellcome Sanger Institute, Cambridge, UK
| | - Jacob A Tennessen
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Broad Institute, Cambridge, MA, USA
| | - David Weetman
- Liverpool School of Tropical Medicine, Liverpool, UK
| | - Alistair Miles
- Wellcome Sanger Genomic Surveillance Unit, Wellcome Sanger Institute, Cambridge, UK
| | - Alessandra Della Torre
- Dipartimento di Sanità Pubblica e Malattie Infettive, Istituto Pasteur Italia-Fondazione Cenci-Bolognetti, Università di Roma "Sapienza", Rome, Italy.
| |
Collapse
|
16
|
Chen Y, Dong L, Yi H, Kidner C, Kang M. Genomic divergence and mutation load in the Begonia masoniana complex from limestone karsts. PLANT DIVERSITY 2024; 46:575-584. [PMID: 39290887 PMCID: PMC11403149 DOI: 10.1016/j.pld.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 09/19/2024]
Abstract
Understanding genome-wide diversity, inbreeding, and the burden of accumulated deleterious mutations in small and isolated populations is essential for predicting and enhancing population persistence and resilience. However, these effects are rarely studied in limestone karst plants. Here, we re-sequenced the nuclear genomes of 62 individuals of the Begonia masoniana complex (B. liuyanii, B. longgangensis, B. masoniana and B. variegata) and investigated genomic divergence and genetic load for these four species. Our analyses revealed four distinct clusters corresponding to each species within the complex. Notably, there was only limited admixture between B. liuyanii and B. longgangensis occurring in overlapping geographic regions. All species experienced historical bottlenecks during the Pleistocene, which were likely caused by glacial climate fluctuations. We detected an asymmetric historical gene flow between group pairs within this timeframe, highlighting a distinctive pattern of interspecific divergence attributable to karst geographic isolation. We found that isolated populations of B. masoniana have limited gene flow, the smallest recent population size, the highest inbreeding coefficients, and the greatest accumulation of recessive deleterious mutations. These findings underscore the urgency to prioritize conservation efforts for these isolated population. This study is among the first to disentangle the genetic differentiation and specific demographic history of karst Begonia plants at the whole-genome level, shedding light on the potential risks associated with the accumulation of deleterious mutations over generations of inbreeding. Moreover, our findings may facilitate conservation planning by providing critical baseline genetic data and a better understanding of the historical events that have shaped current population structure of rare and endangered karst plants.
Collapse
Affiliation(s)
- Yiqing Chen
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lina Dong
- Guangxi Key Laboratory of Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhang Autonomous Region and the Chinese Academy of Sciences, Guilin 541006, China
| | - Huiqin Yi
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, Guangzhou 510650, China
| | - Catherine Kidner
- Institute of Molecular Plant Sciences, University of Edinburgh, Daniel Rutherford Building Max Born Crescent, The King's Buildings, Edinburgh EH9 3BF, UK
- Royal Botanic Garden Edinburgh, 20a Inverleith Row, Edinburgh EH3 5LR, UK
| | - Ming Kang
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, Guangzhou 510650, China
- State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
17
|
Aleman A, Arteaga MC, Gasca-Pineda J, Bello-Bedoy R. Divergent lineages in a young species: The case of datilillo (Yucca valida), a broadly distributed plant from the Baja California Peninsula. AMERICAN JOURNAL OF BOTANY 2024; 111:e16385. [PMID: 39113241 DOI: 10.1002/ajb2.16385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 11/06/2024]
Abstract
PREMISE Globally, barriers triggered by climatic changes have caused habitat fragmentation and population allopatric divergence. Across North America, oscillations during the Quaternary have played important roles in the distribution of wildlife. Notably, diverse plant species from the Baja California Peninsula in western North America, isolated during the Pleistocene glacial-interglacial cycles, exhibit strong genetic structure and highly concordant divergent lineages across their ranges. A representative plant genus of the peninsula is Yucca, with Y. valida having the widest range. Although a dominant species, it has an extensive distribution discontinuity between 26° N and 27° N, suggesting restricted gene flow. Moreover, historical distribution models indicate the absence of an area with suitable conditions for the species during the Last Interglacial, making it an interesting model for studying genetic divergence. METHODS We assembled 4411 SNPs from 147 plants of Y. valida throughout its range to examine its phylogeography to identify the number of genetic lineages, quantify their genetic differentiation, reconstruct their demographic history and estimate the age of the species. RESULTS Three allopatric lineages were identified based on the SNPs. Our analyses support that genetic drift is the driver of genetic differentiation among these lineages. We estimated an age of less than 1 million years for the common ancestor of Y. valida and its sister species. CONCLUSIONS Habitat fragmentation caused by climatic changes, low dispersal, and an extensive geographical range gap acted as cumulative mechanisms leading to allopatric divergence in Y. valida.
Collapse
Affiliation(s)
- Alberto Aleman
- Departamento de Biología de la Conservación, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada, Baja California, México
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, Ontario, Canada
| | - Maria Clara Arteaga
- Departamento de Biología de la Conservación, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada, Baja California, México
| | - Jaime Gasca-Pineda
- Instituto de Ecología, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
| | - Rafael Bello-Bedoy
- Facultad de Ciencias, Universidad Autónoma de Baja California (UABC), Ensenada, Baja California, Mexico
| |
Collapse
|
18
|
Dhakal U, Yue W, Leslie JF, Toomajian C. Population genomics of Fusarium graminearum isolates from the Americas. Fungal Genet Biol 2024; 174:103924. [PMID: 39094785 DOI: 10.1016/j.fgb.2024.103924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 07/18/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
Fusarium head blight (FHB) is a major disease of wheat and barley worldwide and is caused by different species in the genus Fusarium, Fusarium graminearum being the most important. We conducted population genomics analyses using SNPs obtained through genotyping by sequencing of over 500 isolates of F. graminearum from the US Upper Midwest, New York, Louisiana, and Uruguay. PCA and STRUCTURE analyses group our isolates into four previously described populations: NA1, NA2, Southern Louisiana (SLA) and Gulf Coast (GC). Some isolates were not assigned to populations because of mixed ancestry. Population structure was associated with toxin genotype and geographic origin. The NA1, NA2, and SLA populations are differentiated (FST 0.385 - 0.551) but the presence of admixed isolates indicates that the populations are not reproductively isolated. Patterns of linkage disequilibrium (LD) decay suggest frequent recombination within populations. Fusarium graminearum populations from the US have great evolutionary potential given the high recombination rate and a large proportion of admixed isolates. The NA1, NA2, and Southern Louisiana (SLA) populations separated from their common ancestral population roughly at the same time in the past and are evolving with moderate levels of subsequent gene flow between them. Genome-wide selection scans in all three populations revealed outlier regions with the strongest signatures of recent positive natural selection. These outlier regions include many genes with unknown function and some genes with known roles in plant-microbe interaction, fungicide/drug resistance, cellular transport and genes that are related to cellular organelles. Only a very small proportion of outlier regions are shared as outliers among the three populations, suggesting unique host-pathogen interactions and environmental adaptation.
Collapse
Affiliation(s)
- Upasana Dhakal
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas 66506, USA
| | - Wei Yue
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas 66506, USA
| | - John F Leslie
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas 66506, USA
| | - Christopher Toomajian
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas 66506, USA.
| |
Collapse
|
19
|
Fonseca EM, Tran LN, Mendoza H, Gutenkunst RN. Modeling biases from low-pass genome sequencing to enable accurate population genetic inferences. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.19.604366. [PMID: 39091836 PMCID: PMC11291017 DOI: 10.1101/2024.07.19.604366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Low-pass genome sequencing is cost-effective and enables analysis of large cohorts. However, it introduces biases by reducing heterozygous genotypes and low-frequency alleles, impacting subsequent analyses such as demographic history inference. We developed a probabilistic model of low-pass biases from the Genome Analysis Toolkit (GATK) multi-sample calling pipeline, and we implemented it in the population genomic inference software dadi. We evaluated the model using simulated low-pass datasets and found that it alleviated low-pass biases in inferred demographic parameters. We further validated the model by downsampling 1000 Genomes Project data, demonstrating its effectiveness on real data. Our model is widely applicable and substantially improves model-based inferences from low-pass population genomic data.
Collapse
Affiliation(s)
- Emanuel M. Fonseca
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Linh N. Tran
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Hannah Mendoza
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Ryan N. Gutenkunst
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
20
|
Portnoy DS, O'Leary SJ, Fields AT, Hollenbeck CM, Grubbs RD, Peterson CT, Gardiner JM, Adams DH, Falterman B, Drymon JM, Higgs JM, Pulster EL, Wiley TR, Murawski SA. Complex patterns of genetic population structure in the mouthbrooding marine catfish, Bagre marinus, in the Gulf of Mexico and U.S. Atlantic. Ecol Evol 2024; 14:e11514. [PMID: 38859886 PMCID: PMC11163162 DOI: 10.1002/ece3.11514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 06/12/2024] Open
Abstract
Patterns of genetic variation reflect interactions among microevolutionary forces that vary in strength with changing demography. Here, patterns of variation within and among samples of the mouthbrooding gafftopsail catfish (Bagre marinus, Family Ariidae) captured in the U.S. Atlantic and throughout the Gulf of Mexico were analyzed using genomics to generate neutral and non-neutral SNP data sets. Because genomic resources are lacking for ariids, linkage disequilibrium network analysis was used to examine patterns of putatively adaptive variation. Finally, historical demographic parameters were estimated from site frequency spectra. The results show four differentiated groups, corresponding to the (1) U.S. Atlantic, and the (2) northeastern, (3) northwestern, and (4) southern Gulf of Mexico. The non-neutral data presented two contrasting signals of structure, one due to increases in diversity moving west to east and north to south, and another to increased heterozygosity in the Atlantic. Demographic analysis suggested that recently reduced long-term effective population size in the Atlantic is likely an important driver of patterns of genetic variation and is consistent with a known reduction in population size potentially due to an epizootic. Overall, patterns of genetic variation resemble that of other fishes that use the same estuarine habitats as nurseries, regardless of the presence/absence of a larval phase, supporting the idea that adult/juvenile behavior and habitat are important predictors of contemporary patterns of genetic structure.
Collapse
Affiliation(s)
- David S. Portnoy
- Marine Genomics Laboratory, Department of Life SciencesTexas A&M University – Corpus ChristiCorpus ChristiTexasUSA
| | - Shannon J. O'Leary
- Department of Biological SciencesSaint Anselm CollegeManchesterNew HampshireUSA
| | - Andrew T. Fields
- Marine Genomics Laboratory, Department of Life SciencesTexas A&M University – Corpus ChristiCorpus ChristiTexasUSA
| | - Christopher M. Hollenbeck
- Marine Genomics Laboratory, Department of Life SciencesTexas A&M University – Corpus ChristiCorpus ChristiTexasUSA
| | - R. Dean Grubbs
- Florida State University Coastal and Marine LaboratorySt. TeresaFloridaUSA
| | | | | | - Douglas H. Adams
- Florida Fish and Wildlife Conservation CommissionFish and Wildlife Research Institute, Indian River Field LabMelbourneFloridaUSA
| | | | - J. Marcus Drymon
- Mississippi State University Coastal Research and Extension CenterBiloxiMississippiUSA
- Mississippi‐Alabama Sea Grant ConsortiumOcean SpringsMississippiUSA
| | - Jeremy M. Higgs
- Center for Fisheries Research and DevelopmentThe University of Southern MississippiOcean SpringsMississippiUSA
| | - Erin L. Pulster
- U.S. Geological Survey, Columbia Environmental Research CenterColumbiaMissouriUSA
- College of Marine ScienceUniversity of South FloridaSt. PetersburgFloridaUSA
| | | | - Steven A. Murawski
- College of Marine ScienceUniversity of South FloridaSt. PetersburgFloridaUSA
| |
Collapse
|
21
|
Tran LN, Sun CK, Struck TJ, Sajan M, Gutenkunst RN. Computationally Efficient Demographic History Inference from Allele Frequencies with Supervised Machine Learning. Mol Biol Evol 2024; 41:msae077. [PMID: 38636507 PMCID: PMC11082913 DOI: 10.1093/molbev/msae077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 04/08/2024] [Accepted: 04/12/2024] [Indexed: 04/20/2024] Open
Abstract
Inferring past demographic history of natural populations from genomic data is of central concern in many studies across research fields. Previously, our group had developed dadi, a widely used demographic history inference method based on the allele frequency spectrum (AFS) and maximum composite-likelihood optimization. However, dadi's optimization procedure can be computationally expensive. Here, we present donni (demography optimization via neural network inference), a new inference method based on dadi that is more efficient while maintaining comparable inference accuracy. For each dadi-supported demographic model, donni simulates the expected AFS for a range of model parameters then trains a set of Mean Variance Estimation neural networks using the simulated AFS. Trained networks can then be used to instantaneously infer the model parameters from future genomic data summarized by an AFS. We demonstrate that for many demographic models, donni can infer some parameters, such as population size changes, very well and other parameters, such as migration rates and times of demographic events, fairly well. Importantly, donni provides both parameter and confidence interval estimates from input AFS with accuracy comparable to parameters inferred by dadi's likelihood optimization while bypassing its long and computationally intensive evaluation process. donni's performance demonstrates that supervised machine learning algorithms may be a promising avenue for developing more sustainable and computationally efficient demographic history inference methods.
Collapse
Affiliation(s)
- Linh N Tran
- Genetics Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ 85721, USA
- Department of Molecular & Cellular Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Connie K Sun
- Department of Molecular & Cellular Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Travis J Struck
- Department of Molecular & Cellular Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Mathews Sajan
- Department of Molecular & Cellular Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Ryan N Gutenkunst
- Department of Molecular & Cellular Biology, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
22
|
Rota F, Carnicero P, Casazza G, Nascimbene J, Schönswetter P, Wellstein C. Survival in nunatak and peripheral glacial refugia of three alpine plant species is partly predicted by altitudinal segregation. Mol Ecol 2024; 33:e17343. [PMID: 38596873 DOI: 10.1111/mec.17343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 03/12/2024] [Indexed: 04/11/2024]
Abstract
Mountain biota survived the Quaternary cold stages most probably in peripheral refugia and/or ice-free peaks within ice-sheets (nunataks). While survival in peripheral refugia has been broadly demonstrated, evidence for nunatak refugia is still scarce. We generated RADseq data from three mountain plant species occurring at different elevations in the southeastern European Alps to investigate the role of different glacial refugia during the Last Glacial Maximum (LGM). We tested the following hypotheses. (i) The deep Piave Valley forms the deepest genetic split in the species distributed across it, delimiting two peripheral refugia. (ii) The montane to alpine species Campanula morettiana and Primula tyrolensis survived the LGM in peripheral refugia, while high-alpine to subnival Saxifraga facchinii likely survived in several nunatak refugia. (iii) The lower elevation species suffered a strong population decline during the LGM. By contrast, the higher elevation species shows long-term stability of population sizes due to survival on permanently ice-free peaks and small population sizes at present. We found peripheral refugia on both sides of the Piave Valley, which acted as a major genetic barrier. Demographic modelling confirmed nunatak survival not only for S. facchinii but also for montane to alpine C. morettiana. Altitudinal segregation influenced the species' demographic fluctuations, with the lower elevation species showing a significant population increase at the end of the LGM, and the higher elevation species either showing decrease towards the present or stable population sizes with a short bottleneck. Our results highlight the role of nunatak survival and species ecology in the demographic history of mountain species.
Collapse
Affiliation(s)
- Francesco Rota
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Bolzano, Italy
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Pau Carnicero
- Department of Botany, University of Innsbruck, Innsbruck, Austria
| | - Gabriele Casazza
- Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, Genova, Italy
| | - Juri Nascimbene
- BIOME Group, Department of Biological, Geological and Environmental Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | | | - Camilla Wellstein
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Bolzano, Italy
| |
Collapse
|
23
|
Gottscho AD, Mulcahy DG, Leaché AD, de Queiroz K, Lovich RE. Population genomics of flat-tailed horned lizards (Phrynosoma mcallii) informs conservation and management across a fragmented Colorado Desert landscape. Mol Ecol 2024; 33:e17308. [PMID: 38445567 DOI: 10.1111/mec.17308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/23/2024] [Accepted: 02/01/2024] [Indexed: 03/07/2024]
Abstract
Phrynosoma mcallii (flat-tailed horned lizards) is a species of conservation concern in the Colorado Desert of the United States and Mexico. We analysed ddRADseq data from 45 lizards to estimate population structure, infer phylogeny, identify migration barriers, map genetic diversity hotspots, and model demography. We identified the Colorado River as the main geographic feature contributing to population structure, with the populations west of this barrier further subdivided by the Salton Sea. Phylogenetic analysis confirms that northwestern populations are nested within southeastern populations. The best-fit demographic model indicates Pleistocene divergence across the Colorado River, with significant bidirectional gene flow, and a severe Holocene population bottleneck. These patterns suggest that management strategies should focus on maintaining genetic diversity on both sides of the Colorado River and the Salton Sea. We recommend additional lands in the United States and Mexico that should be considered for similar conservation goals as those in the Rangewide Management Strategy. We also recommend periodic rangewide genomic sampling to monitor ongoing attrition of diversity, hybridization, and changing structure due to habitat fragmentation, climate change, and other long-term impacts.
Collapse
Affiliation(s)
- Andrew D Gottscho
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Daniel G Mulcahy
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
| | - Adam D Leaché
- Department of Biology, Burke Museum of Natural History and Culture, University of Washington, Seattle, Washington, USA
| | - Kevin de Queiroz
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Robert E Lovich
- Naval Facilities Engineering Command Southwest, San Diego, California, USA
| |
Collapse
|
24
|
Dai X, Xiang S, Zhang Y, Yang S, Hu Q, Wu Z, Zhou T, Xiang J, Chen G, Tan X, Wang J, Ding J. Genomic evidence for evolutionary history and local adaptation of two endemic apricots: Prunus hongpingensis and P. zhengheensis. HORTICULTURE RESEARCH 2024; 11:uhad215. [PMID: 38689695 PMCID: PMC11059793 DOI: 10.1093/hr/uhad215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 10/16/2023] [Indexed: 05/02/2024]
Abstract
Apricot, belonging to the Armeniaca section of Rosaceae, is one of the economically important crop fruits that has been extensively cultivated. The natural wild apricots offer valuable genetic resources for crop improvement. However, some of them are endemic, with small populations, and are even at risk of extinction. In this study we unveil chromosome-level genome assemblies for two southern China endemic apricots, Prunus hongpingensis (PHP) and P. zhengheensis (PZH). We also characterize their evolutionary history and the genomic basis of their local adaptation using whole-genome resequencing data. Our findings reveal that PHP and PZH are closely related to Prunus armeniaca and form a distinct lineage. Both species experienced a decline in effective population size following the Last Glacial Maximum (LGM), which likely contributed to their current small population sizes. Despite the observed decrease in genetic diversity and heterozygosity, we do not observe an increased accumulation of deleterious mutations in these two endemic apricots. This is likely due to the combined effects of a low inbreeding coefficient and strong purifying selection. Furthermore, we identify a set of genes that have undergone positive selection and are associated with local environmental adaptation in PHP and PZH, respectively. These candidate genes can serve as valuable genetic resources for targeted breeding and improvement of cultivated apricots. Overall, our study not only enriches our comprehension of the evolutionary history of apricot species but also offers crucial insights for the conservation and future breeding of other endemic species amidst rapid climate changes.
Collapse
Affiliation(s)
- Xiaokang Dai
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Hubei Hongshan Laboratory, Hubei Engineering Technology Research Center for Forestry Information, Huazhong Agricultural University, 430070, Wuhan, Hubei, China
| | - Songzhu Xiang
- Shennongjia Academy of Forestry, 442499, Shennongjia Forestry District, Hubei, China
| | - Yulin Zhang
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 610065, Chengdu, Sichuan, China
| | - Siting Yang
- Shennongjia Academy of Forestry, 442499, Shennongjia Forestry District, Hubei, China
| | - Qianqian Hu
- Shennongjia Academy of Forestry, 442499, Shennongjia Forestry District, Hubei, China
| | - Zhihao Wu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Hubei Hongshan Laboratory, Hubei Engineering Technology Research Center for Forestry Information, Huazhong Agricultural University, 430070, Wuhan, Hubei, China
| | - Tingting Zhou
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Hubei Hongshan Laboratory, Hubei Engineering Technology Research Center for Forestry Information, Huazhong Agricultural University, 430070, Wuhan, Hubei, China
| | - Jingsong Xiang
- Shennongjia Academy of Forestry, 442499, Shennongjia Forestry District, Hubei, China
| | - Gongyou Chen
- Shennongjia Academy of Forestry, 442499, Shennongjia Forestry District, Hubei, China
| | - Xiaohua Tan
- Shennongjia Academy of Forestry, 442499, Shennongjia Forestry District, Hubei, China
| | - Jing Wang
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 610065, Chengdu, Sichuan, China
| | - Jihua Ding
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Hubei Hongshan Laboratory, Hubei Engineering Technology Research Center for Forestry Information, Huazhong Agricultural University, 430070, Wuhan, Hubei, China
| |
Collapse
|
25
|
Marques V, Hinojosa JC, Dapporto L, Talavera G, Stefanescu C, Gutiérrez D, Vila R. The opposed forces of differentiation and admixture across glacial cycles in the butterfly Aglais urticae. Mol Ecol 2024; 33:e17304. [PMID: 38421113 DOI: 10.1111/mec.17304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 02/13/2024] [Accepted: 02/15/2024] [Indexed: 03/02/2024]
Abstract
Glacial cycles lead to periodic population interbreeding and isolation in warm-adapted species, which impact genetic structure and evolution. However, the effects of these processes on highly mobile and more cold-tolerant species are not well understood. This study aims to shed light on the phylogeographic history of Aglais urticae, a butterfly species with considerable dispersal ability, and a wide Palearctic distribution reaching the Arctic. Through the analysis of genomic data, four main genetic lineages are identified: European, Sierra Nevada, Sicily/Calabria/Peloponnese, and Eastern. The results indicate that the Sardo-Corsican endemic taxon ichnusa is a distinct species. The split between the relict lineages in southern Europe and the main European lineage is estimated to have happened 400-450 thousand years ago, with admixture observed during the Quaternary glacial cycles, and still ongoing, albeit to a much smaller extent. These results suggest that these lineages may be better treated as subspecific parapatric taxa. Ecological niche modelling supported the existence of both Mediterranean and extra-Mediterranean refugia during the glacial periods, with the main one located on the Atlantic coast. Nevertheless, gene flow between populations was possible, indicating that both differentiation and admixture have acted continuously across glacial cycles in this cold-tolerant butterfly, generally balancing each other but producing differentiated lineages in the southern peninsulas. We conclude that the population dynamics and the processes shaping the population genetic structure of cold-adapted species during the Quaternary ice ages may be different than those classically accepted for warm-adapted species.
Collapse
Affiliation(s)
- Valéria Marques
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | - Joan Carles Hinojosa
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | - Leonardo Dapporto
- Dipartimento di Biologia, Università degli Studi di Firenze, Sesto Fiorentino, Italy
| | - Gerard Talavera
- Institut Botànic de Barcelona (IBB), CSIC-CMCNB, Barcelona, Spain
| | - Constantí Stefanescu
- Natural Sciences Museum of Granollers, Granollers, Spain
- CREAF, Cerdanyola del Vallès, Spain
| | - David Gutiérrez
- Instituto de Investigación en Cambio Global (IICG), Universidad Rey Juan Carlos, Madrid, Spain
- Área de Biodiversidad y Conservación, Universidad Rey Juan Carlos, Madrid, Spain
| | - Roger Vila
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| |
Collapse
|
26
|
Coelho JFR, Mendes LDF, Di Dario F, Carvalho PH, Dias RM, Lima SMQ, Verba JT, Pereira RJ. Integration of genomic and ecological methods inform management of an undescribed, yet highly exploited, sardine species. Proc Biol Sci 2024; 291:20232746. [PMID: 38444338 PMCID: PMC10915539 DOI: 10.1098/rspb.2023.2746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/06/2024] [Indexed: 03/07/2024] Open
Abstract
Assessing genetic diversity within species is key for conservation strategies in the context of human-induced biotic changes. This is important in marine systems, where many species remain undescribed while being overfished, and conflicts between resource-users and conservation agencies are common. Combining niche modelling with population genomics can contribute to resolving those conflicts by identifying management units and understanding how past climatic cycles resulted in current patterns of genetic diversity. We addressed these issues on an undescribed but already overexploited species of sardine of the genus Harengula. We find that the species distribution is determined by salinity and depth, with a continuous distribution along the Brazilian mainland and two disconnected oceanic archipelagos. Genomic data indicate that such biogeographic barriers are associated with two divergent intraspecific lineages. Changes in habitat availability during the last glacial cycle led to different demographic histories among stocks. One coastal population experienced a 3.6-fold expansion, whereas an island-associated population contracted 3-fold, relative to the size of the ancestral population. Our results indicate that the island population should be managed separately from the coastal population, and that a Marine Protected Area covering part of the island population distribution can support the viability of this lineage.
Collapse
Affiliation(s)
- Jéssica Fernanda Ramos Coelho
- Departamento de Botânica e Zoologia, Universidade Federal do Rio Grande do Norte, Avenida Senador Salgado Filho S/N, Campus Universitário, 59078-970, Natal/RN, Brazil
| | - Liana de Figueiredo Mendes
- Departamento de Ecologia, Universidade Federal do Rio Grande do Norte, Avenida Senador Salgado Filho S/N, Campus Universitário, 59078-970, Natal/RN, Brazil
| | - Fabio Di Dario
- Instituto de Biodiversidade e Sustentabilidade - Universidade Federal do Rio de Janeiro, Avenida São José do Barreto, 764, 27965-045, Macaé/RJ, Brazil
| | - Pedro Hollanda Carvalho
- Instituto de Biodiversidade e Sustentabilidade - Universidade Federal do Rio de Janeiro, Avenida São José do Barreto, 764, 27965-045, Macaé/RJ, Brazil
| | - Ricardo Marques Dias
- Museu Nacional, Universidade Federal do Rio de Janeiro, Quinta da Boa Vista - São Cristóvão, 20940-040, Rio de Janeiro/RJ, Brazil
| | - Sergio Maia Queiroz Lima
- Departamento de Botânica e Zoologia, Universidade Federal do Rio Grande do Norte, Avenida Senador Salgado Filho S/N, Campus Universitário, 59078-970, Natal/RN, Brazil
| | - Julia Tovar Verba
- Evolutionary Biology, Ludwig Maximilian University of Munich, Grosshaderner Strasse 2, 82152, Planegg-Martinsried, Germany
| | - Ricardo J. Pereira
- Evolutionary Biology, Ludwig Maximilian University of Munich, Grosshaderner Strasse 2, 82152, Planegg-Martinsried, Germany
- Department of Zoology, State Museum of Natural History Stuttgart, Rosenstein 1–3, 70191, Stuttgart, Germany
| |
Collapse
|
27
|
Jiao X, Wu L, Zhang D, Wang H, Dong F, Yang L, Wang S, Amano HE, Zhang W, Jia C, Rheindt FE, Lei F, Song G. Landscape Heterogeneity Explains the Genetic Differentiation of a Forest Bird across the Sino-Himalayan Mountains. Mol Biol Evol 2024; 41:msae027. [PMID: 38318973 PMCID: PMC10919924 DOI: 10.1093/molbev/msae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 01/26/2024] [Accepted: 01/31/2024] [Indexed: 02/07/2024] Open
Abstract
Mountains are the world's most important centers of biodiversity. The Sino-Himalayan Mountains are global biodiversity hotspot due to their extremely high species richness and endemicity. Ample research investigated the impact of the Qinghai-Tibet Plateau uplift and Quaternary glaciations in driving species diversification in plants and animals across the Sino-Himalayan Mountains. However, little is known about the role of landscape heterogeneity and other environmental features in driving diversification in this region. We utilized whole genomes and phenotypic data in combination with landscape genetic approaches to investigate population structure, demography, and genetic diversity in a forest songbird species native to the Sino-Himalayan Mountains, the red-billed leiothrix (Leiothrix lutea). We identified 5 phylogeographic clades, including 1 in the East of China, 1 in Yunnan, and 3 in Tibet, roughly consistent with differences in song and plumage coloration but incongruent with traditional subspecies boundaries. Isolation-by-resistance model best explained population differentiation within L. lutea, with extensive secondary contact after allopatric isolation leading to admixture among clades. Ecological niche modeling indicated relative stability in the extent of suitable distribution areas of the species across Quaternary glacial cycles. Our results underscore the importance of mountains in the diversification of this species, given that most of the distinct genetic clades are concentrated in a relatively small area in the Sino-Himalayan Mountain region, while a single shallow clade populates vast lower-lying areas to the east. This study highlights the crucial role of landscape heterogeneity in promoting differentiation and provides a deep genomic perspective on the mechanisms through which diversity hotspots form.
Collapse
Affiliation(s)
- Xiaolu Jiao
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Lei Wu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Dezhi Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Huan Wang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Feng Dong
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Le Yang
- Tibet Plateau Institute of Biology, Lhasa 850000, China
| | - Shangyu Wang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | | | - Weiwei Zhang
- Center for Wildlife Resources Conservation Research, Jiangxi Agricultural University, Nanchang, China
| | - Chenxi Jia
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Frank E Rheindt
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Fumin Lei
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Gang Song
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
28
|
Kessler C, Shafer ABA. Genomic Analyses Capture the Human-Induced Demographic Collapse and Recovery in a Wide-Ranging Cervid. Mol Biol Evol 2024; 41:msae038. [PMID: 38378172 PMCID: PMC10917209 DOI: 10.1093/molbev/msae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 02/08/2024] [Accepted: 02/14/2024] [Indexed: 02/22/2024] Open
Abstract
The glacial cycles of the Quaternary heavily impacted species through successions of population contractions and expansions. Similarly, populations have been intensely shaped by human pressures such as unregulated hunting and land use changes. White-tailed and mule deer survived in different refugia through the Last Glacial Maximum, and their populations were severely reduced after the European colonization. Here, we analyzed 73 resequenced deer genomes from across their North American range to understand the consequences of climatic and anthropogenic pressures on deer demographic and adaptive history. We found strong signals of climate-induced vicariance and demographic decline; notably, multiple sequentially Markovian coalescent recovers a severe decline in mainland white-tailed deer effective population size (Ne) at the end of the Last Glacial Maximum. We found robust evidence for colonial overharvest in the form of a recent and dramatic drop in Ne in all analyzed populations. Historical census size and restocking data show a clear parallel to historical Ne estimates, and temporal Ne/Nc ratio shows patterns of conservation concern for mule deer. Signatures of selection highlight genes related to temperature, including a cold receptor previously highlighted in woolly mammoth. We also detected immune genes that we surmise reflect the changing land use patterns in North America. Our study provides a detailed picture of anthropogenic and climatic-induced decline in deer diversity and clues to understanding the conservation concerns of mule deer and the successful demographic recovery of white-tailed deer.
Collapse
Affiliation(s)
- Camille Kessler
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, Ontario, Canada
| | - Aaron B A Shafer
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, Ontario, Canada
- Department of Forensic Science, Trent University, Peterborough, Ontario, Canada
| |
Collapse
|
29
|
Tran LN, Sun CK, Struck TJ, Sajan M, Gutenkunst RN. Computationally efficient demographic history inference from allele frequencies with supervised machine learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.24.542158. [PMID: 38405827 PMCID: PMC10888863 DOI: 10.1101/2023.05.24.542158] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Inferring past demographic history of natural populations from genomic data is of central concern in many studies across research fields. Previously, our group had developed dadi, a widely used demographic history inference method based on the allele frequency spectrum (AFS) and maximum composite likelihood optimization. However, dadi's optimization procedure can be computationally expensive. Here, we developed donni (demography optimization via neural network inference), a new inference method based on dadi that is more efficient while maintaining comparable inference accuracy. For each dadi-supported demographic model, donni simulates the expected AFS for a range of model parameters then trains a set of Mean Variance Estimation neural networks using the simulated AFS. Trained networks can then be used to instantaneously infer the model parameters from future input data AFS. We demonstrated that for many demographic models, donni can infer some parameters, such as population size changes, very well and other parameters, such as migration rates and times of demographic events, fairly well. Importantly, donni provides both parameter and confidence interval estimates from input AFS with accuracy comparable to parameters inferred by dadi's likelihood optimization while bypassing its long and computationally intensive evaluation process. donni's performance demonstrates that supervised machine learning algorithms may be a promising avenue for developing more sustainable and computationally efficient demographic history inference methods.
Collapse
Affiliation(s)
- Linh N. Tran
- Genetics Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ, USA
- Department of Molecular & Cellular Biology, University of Arizona, Tucson, AZ, USA
| | - Connie K. Sun
- Department of Molecular & Cellular Biology, University of Arizona, Tucson, AZ, USA
| | - Travis J. Struck
- Department of Molecular & Cellular Biology, University of Arizona, Tucson, AZ, USA
| | - Mathews Sajan
- Department of Molecular & Cellular Biology, University of Arizona, Tucson, AZ, USA
| | - Ryan N. Gutenkunst
- Department of Molecular & Cellular Biology, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
30
|
Díaz-Arce N, Gagnaire PA, Richardson DE, Walter JF, Arnaud-Haond S, Fromentin JM, Brophy D, Lutcavage M, Addis P, Alemany F, Allman R, Deguara S, Fraile I, Goñi N, Hanke AR, Karakulak FS, Pacicco A, Quattro JM, Rooker JR, Arrizabalaga H, Rodríguez-Ezpeleta N. Unidirectional trans-Atlantic gene flow and a mixed spawning area shape the genetic connectivity of Atlantic bluefin tuna. Mol Ecol 2024; 33:e17188. [PMID: 37921120 DOI: 10.1111/mec.17188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/02/2023] [Accepted: 10/19/2023] [Indexed: 11/04/2023]
Abstract
The commercially important Atlantic bluefin tuna (Thunnus thynnus), a large migratory fish, has experienced notable recovery aided by accurate resource assessment and effective fisheries management efforts. Traditionally, this species has been perceived as consisting of eastern and western populations, spawning respectively in the Mediterranean Sea and the Gulf of Mexico, with mixing occurring throughout the Atlantic. However, recent studies have challenged this assumption by revealing weak genetic differentiation and identifying a previously unknown spawning ground in the Slope Sea used by Atlantic bluefin tuna of uncertain origin. To further understand the current and past population structure and connectivity of Atlantic bluefin tuna, we have assembled a unique dataset including thousands of genome-wide single-nucleotide polymorphisms (SNPs) from 500 larvae, young of the year and spawning adult samples covering the three spawning grounds and including individuals of other Thunnus species. Our analyses support two weakly differentiated but demographically connected ancestral populations that interbreed in the Slope Sea. Moreover, we also identified signatures of introgression from albacore (Thunnus alalunga) into the Atlantic bluefin tuna genome, exhibiting varied frequencies across spawning areas, indicating strong gene flow from the Mediterranean Sea towards the Slope Sea. We hypothesize that the observed genetic differentiation may be attributed to increased gene flow caused by a recent intensification of westward migration by the eastern population, which could have implications for the genetic diversity and conservation of western populations. Future conservation efforts should consider these findings to address potential genetic homogenization in the species.
Collapse
Affiliation(s)
- Natalia Díaz-Arce
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Sukarrieta, Spain
| | | | - David E Richardson
- Northeast Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration (NOAA), Narragansett, Rhode Island, USA
| | - John F Walter
- Southeast Fisheries Sciences Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration (NOAA), Miami, Florida, USA
| | | | | | - Deirdre Brophy
- Marine and Freshwater Research Center, Atlantic Technological University (ATU), Galway City, Ireland
| | - Molly Lutcavage
- Large Pelagics Research Center, School for the Environment, University of Massachusetts Boston, Gloucester, Massachusetts, USA
| | - Piero Addis
- Department of Environmental and Life Science, University of Cagliari, Cagliari, Italy
| | - Francisco Alemany
- International Commission for the Conservation of Atlantic Tunas, GBYP, Madrid, Spain
| | - Robert Allman
- National Marine Fisheries Service, Southeast Fisheries Science Center, Panama City Laboratory, Panama City, Florida, USA
| | | | - Igaratza Fraile
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Pasaia, Spain
| | - Nicolas Goñi
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Pasaia, Spain
| | - Alex R Hanke
- St Andrews Biological Station, Fisheries and Oceans Canada, St. Andrews, New Brunswick, Canada
| | | | - Ashley Pacicco
- Cooperative Institute for Marine and Atmospheric Studies Rosenstiel School of Marine, Atmospheric and Earth Science, University of Miami, Miami, Florida, USA
| | - Joseph M Quattro
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, USA
| | - Jay R Rooker
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, Texas, USA
| | - Haritz Arrizabalaga
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Pasaia, Spain
| | | |
Collapse
|
31
|
Farleigh K, Ascanio A, Farleigh ME, Schield DR, Card DC, Leal M, Castoe TA, Jezkova T, Rodríguez-Robles JA. Signals of differential introgression in the genome of natural hybrids of Caribbean anoles. Mol Ecol 2023; 32:6000-6017. [PMID: 37861454 DOI: 10.1111/mec.17170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 08/30/2023] [Accepted: 10/03/2023] [Indexed: 10/21/2023]
Abstract
Hybridization facilitates recombination between divergent genetic lineages and can be shaped by both neutral and selective processes. Upon hybridization, loci with no net fitness effects introgress randomly from parental species into the genomes of hybrid individuals. Conversely, alleles from one parental species at some loci may provide a selective advantage to hybrids, resulting in patterns of introgression that do not conform to random expectations. We investigated genomic patterns of differential introgression in natural hybrids of two species of Caribbean anoles, Anolis pulchellus and A. krugi in Puerto Rico. Hybrids exhibit A. pulchellus phenotypes but possess A. krugi mitochondrial DNA, originated from multiple, independent hybridization events, and appear to have replaced pure A. pulchellus across a large area in western Puerto Rico. Combining genome-wide SNP datasets with bioinformatic methods to identify signals of differential introgression in hybrids, we demonstrate that the genomes of hybrids are dominated by pulchellus-derived alleles and show only 10%-20% A. krugi ancestry. The majority of A. krugi loci in hybrids exhibit a signal of non-random differential introgression and include loci linked to genes involved in development and immune function. Three of these genes (delta like canonical notch ligand 1, jagged1 and notch receptor 1) affect cell differentiation and growth and interact with mitochondrial function. Our results suggest that differential non-random introgression for a subset of loci may be driven by selection favouring the inheritance of compatible mitochondrial and nuclear-encoded genes in hybrids.
Collapse
Affiliation(s)
- Keaka Farleigh
- Department of Biology, Miami University, Oxford, Ohio, USA
| | | | | | - Drew R Schield
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, USA
| | - Daren C Card
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
- Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts, USA
| | - Manuel Leal
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, USA
| | - Todd A Castoe
- Department of Biology, University of Texas, Arlington, Arlington, Texas, USA
| | - Tereza Jezkova
- Department of Biology, Miami University, Oxford, Ohio, USA
| | | |
Collapse
|
32
|
Rosing-Asvid A, Löytynoja A, Momigliano P, Hansen RG, Scharff-Olsen CH, Valtonen M, Kammonen J, Dietz R, Rigét FF, Ferguson SH, Lydersen C, Kovacs KM, Holland DM, Jernvall J, Auvinen P, Tange Olsen M. An evolutionarily distinct ringed seal in the Ilulissat Icefjord. Mol Ecol 2023; 32:5932-5943. [PMID: 37855154 DOI: 10.1111/mec.17163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/20/2023] [Accepted: 10/02/2023] [Indexed: 10/20/2023]
Abstract
The Earth's polar regions are low rates of inter- and intraspecific diversification. An extreme mammalian example is the Arctic ringed seal (Pusa hispida hispida), which is assumed to be panmictic across its circumpolar Arctic range. Yet, local Inuit communities in Greenland and Canada recognize several regional variants; a finding supported by scientific studies of body size variation. It is however unclear whether this phenotypic variation reflects plasticity, morphs or distinct ecotypes. Here, we combine genomic, biologging and survey data, to document the existence of a unique ringed seal ecotype in the Ilulissat Icefjord (locally 'Kangia'), Greenland; a UNESCO World Heritage site, which is home to the most productive marine-terminating glacier in the Arctic. Genomic analyses reveal a divergence of Kangia ringed seals from other Arctic ringed seals about 240 kya, followed by secondary contact since the Last Glacial Maximum. Despite ongoing gene flow, multiple genomic regions appear under strong selection in Kangia ringed seals, including candidate genes associated with pelage coloration, growth and osmoregulation, potentially explaining the Kangia seal's phenotypic and behavioural uniqueness. The description of 'hidden' diversity and adaptations in yet another Arctic species merits a reassessment of the evolutionary processes that have shaped Arctic diversity and the traditional view of this region as an evolutionary freezer. Our study highlights the value of indigenous knowledge in guiding science and calls for efforts to identify distinct populations or ecotypes to understand how these might respond differently to environmental change.
Collapse
Affiliation(s)
| | - Ari Löytynoja
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Paolo Momigliano
- Department of Biochemistry, Genetics, and Immunology, Universidade de Vigo, Vigo, Spain
- Area of Ecology and Biodiversity, School of Biological Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | | | | | - Mia Valtonen
- Wildlife Ecology Group, Natural Resources Institute Finland, Helsinki, Finland
| | - Juhana Kammonen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Rune Dietz
- Department of Ecoscience, Aarhus University, Roskilde, Denmark
| | | | | | | | - Kit M Kovacs
- Norwegian Polar Institute, Fram Centre, Tromsø, Norway
| | - David M Holland
- Mathematics and Atmosphere/Ocean Science, Courant Institute of Mathematical Sciences, New York University, New York City, New York, USA
| | - Jukka Jernvall
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Petri Auvinen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Morten Tange Olsen
- Section for Molecular Ecology and Evolution, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
33
|
Kirschner P, Záveská E, Hülber K, Wessely J, Willner W, Schönswetter P, Frajman B. Evolutionary dynamics of Euphorbia carniolica suggest a complex Plio-Pleistocene history of understorey species of deciduous forest in southeastern Europe. Mol Ecol 2023; 32:5350-5368. [PMID: 37632417 PMCID: PMC10946815 DOI: 10.1111/mec.17102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/22/2023] [Accepted: 07/19/2023] [Indexed: 08/28/2023]
Abstract
Deciduous forests form the dominant natural vegetation of Europe today, but were restricted to small refugia during Pleistocene cold stages, implying an evolutionary past shaped by recurrent range contractions and expansions. Cold-stage forest refugia were probably widespread in southern and central Europe, with the northwestern Balkan Peninsula being of particular importance. However, the actual number and location of deciduous forest refugia, as well as the connections between them, remain disputed. Here, we address the evolutionary dynamics of the deciduous forest understorey species Euphorbia carniolica as a proxy for past forest dynamics. To do so, we obtained genomic and morphometric data from populations representing the species' entire range, investigated phylogenetic position and intraspecific genetic variation, tested explicit demographic scenarios and applied species distribution models. Our data support two disjoint groups linked to separate refugia on the northwestern and central Balkan Peninsula. We find that genetic differentiation between groups started in the early Pleistocene via vicariance, suggesting a larger distribution in the past. Both refugia acted as sources for founder events to the southeastern Alps and the Carpathians; the latter were likely colonised before the last cold stage. In line with traditional views on the pre-Pleistocene origin of many southeastern European deciduous forest species, the origin of E. carniolica was dated to the late Pliocene. The fact that E. carniolica evolved at a time when a period of continuous forestation was ending in much of Eurasia provides an interesting biogeographical perspective on the past links between Eurasian deciduous forests and their biota.
Collapse
Affiliation(s)
- Philipp Kirschner
- Department of BotanyUniversity of InnsbruckInnsbruckAustria
- Faculty of Agricultural, Environmental and Food SciencesFree University of Bozen‐BolzanoBolzanoItaly
| | - Eliška Záveská
- Department of BotanyUniversity of InnsbruckInnsbruckAustria
- Institute of Botany of the Czech Academy of SciencesPrůhoniceCzechia
| | - Karl Hülber
- Department of Botany and Biodiversity ResearchUniversity of ViennaViennaAustria
| | - Johannes Wessely
- Department of Botany and Biodiversity ResearchUniversity of ViennaViennaAustria
| | - Wolfgang Willner
- Department of Botany and Biodiversity ResearchUniversity of ViennaViennaAustria
| | | | - Božo Frajman
- Department of BotanyUniversity of InnsbruckInnsbruckAustria
| |
Collapse
|
34
|
Zhang W, Hu Y, Zhang S, Shao J. Integrative taxonomy in a rapid speciation group associated with mating system transition: A case study in the Primula cicutariifolia complex. Mol Phylogenet Evol 2023:107840. [PMID: 37279815 DOI: 10.1016/j.ympev.2023.107840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/30/2023] [Accepted: 06/02/2023] [Indexed: 06/08/2023]
Abstract
Accurate species delimitation is the key to biodiversity conservation and is fundamental to most branches of biology. However, species delimitation remains challenging in those evolutionary radiations associated with mating system transition from outcrossing to self-fertilization, which have frequently occurred in angiosperms and are usually accompanied by rapid speciation. Here, using the Primula cicutariifolia complex as a case, we integrated molecular, morphological and reproductive isolation evidence to test and verify whether its outcrossing (distylous) and selfing (homostylous) populations have developed into independent evolutionary lineages. Phylogenetic trees based on whole plastomes and SNPs of the nuclear genome both indicated that the distylous and homostylous populations grouped into two different clades. Multispecies coalescent, gene flow and genetic structure analyses all supported such two clades as two different genetic entities. In morphology, as expected changes in selfing syndrome, homostylous populations have significantly fewer umbel layers and smaller flower and leaf sizes compared to distylous populations, and the variation range of some floral traits, such as corolla diameter and umbel layers, show obvious discontinuity. Furthermore, hand-pollinated hybridization between the two clades produced almost no seeds, indicating that well post-pollination reproductive isolation has been established between them. Therefore, the distylous and homostylous populations in this studied complex are two independent evolutionary lineages, and thus these distylous populations should be treated as a distinct species, here named Primula qiandaoensis W. Zhang & J.W. Shao sp. nov.. Our empirical study of the P. cicutariifolia complex highlights the importance of applying multiple lines of evidence, in particular genomic data, to delimit species in pervasive evolutionary plant radiations associated with mating system transition.
Collapse
Affiliation(s)
- Wei Zhang
- College of Life Sciences, Anhui Normal University, Wuhu 241000, Anhui, China; College of Life Sciences, Anqing Normal University, Anqing 246011, Anhui, China
| | - Yingfeng Hu
- College of Life Sciences, Anhui Normal University, Wuhu 241000, Anhui, China
| | - Siyu Zhang
- College of Life Sciences, Anhui Normal University, Wuhu 241000, Anhui, China
| | - Jianwen Shao
- College of Life Sciences, Anhui Normal University, Wuhu 241000, Anhui, China; Provincial Key Laboratory of Conservation and Utilization of Biological Resources, Wuhu 241000, Anhui, China.
| |
Collapse
|
35
|
Rogério F, Van Oosterhout C, Ciampi-Guillardi M, Correr FH, Hosaka GK, Cros-Arteil S, Rodrigues Alves Margarido G, Massola Júnior NS, Gladieux P. Means, motive and opportunity for biological invasions: Genetic introgression in a fungal pathogen. Mol Ecol 2023; 32:2428-2442. [PMID: 35076152 DOI: 10.1111/mec.16366] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/07/2022] [Accepted: 01/13/2022] [Indexed: 11/28/2022]
Abstract
Invasions by fungal plant pathogens pose a significant threat to the health of agricultural ecosystems. Despite limited standing genetic variation, many invasive fungal species can adapt and spread rapidly, resulting in significant losses to crop yields. Here, we report on the population genomics of Colletotrichum truncatum, a polyphagous pathogen that can infect more than 460 plant species, and an invasive pathogen of soybean in Brazil. We study the whole-genome sequences of 18 isolates representing 10 fields from two major regions of soybean production. We show that Brazilian C. truncatum is subdivided into three phylogenetically distinct lineages that exchange genetic variation through hybridization. Introgression affects 2%-30% of the nucleotides of genomes and varies widely between the lineages. We find that introgressed regions comprise secreted protein-encoding genes, suggesting possible co-evolutionary targets for selection in those regions. We highlight the inherent vulnerability of genetically uniform crops in the agro-ecological environment, particularly when faced with pathogens that can take full advantage of the opportunities offered by an increasingly globalized world. Finally, we discuss "the means, motive and opportunity" of fungal pathogens and how they can become invasive species of crops. We call for more population genomic studies because such analyses can help identify geographical areas and pathogens that pose a risk, thereby helping to inform control strategies to better protect crops in the future.
Collapse
Affiliation(s)
- Flávia Rogério
- Department of Plant Pathology and Nematology, University of São Paulo, Piracicaba, SP, Brazil
- Institute for Agribiotechnology Research (CIALE), University of Salamanca, Salamanca, Spain
| | | | - Maisa Ciampi-Guillardi
- Department of Plant Pathology and Nematology, University of São Paulo, Piracicaba, SP, Brazil
| | | | | | | | | | - Nelson S Massola Júnior
- Department of Plant Pathology and Nematology, University of São Paulo, Piracicaba, SP, Brazil
| | - Pierre Gladieux
- UMR PHIM, University of Montpellier, INRAE, CIRAD, Montpellier, France
| |
Collapse
|
36
|
Freedman AH, Harrigan RJ, Zhen Y, Hamilton AM, Smith TB. Evidence for ecotone speciation across an African rainforest-savanna gradient. Mol Ecol 2023; 32:2287-2300. [PMID: 36718952 DOI: 10.1111/mec.16867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 11/07/2022] [Accepted: 01/16/2023] [Indexed: 02/01/2023]
Abstract
Accelerating climate change and habitat loss make it imperative that plans to conserve biodiversity consider species' ability to adapt to changing environments. However, in biomes where biodiversity is highest, the evolutionary mechanisms responsible for generating adaptative variation and, ultimately, new species are frequently poorly understood. African rainforests represent one such biome, as decadal debates continue concerning the mechanisms generating African rainforest biodiversity. These debates hinge on the relative importance of geographic isolation versus divergent natural selection across environmental gradients. Hindering progress is a lack of robust tests of these competing hypotheses. Because African rainforests are severely at-risk due to climate change and other anthropogenic activities, addressing this long-standing debate is critical for making informed conservation decisions. We use demographic inference and allele frequency-environment relationships to investigate mechanisms of diversification in an African rainforest skink, Trachylepis affinis, a species inhabiting the gradient between rainforest and rainforest-savanna mosaic (ecotone). We provide compelling evidence of ecotone speciation, in which gene flow has all but ceased between rainforest and ecotone populations, at a level consistent with infrequent hybridization between sister species. Parallel patterns of genomic, morphological, and physiological divergence across this environmental gradient and pronounced allele frequency-environment correlation indicate speciation is mostly probably driven by ecological divergence, supporting a central role for divergent natural selection. Our results provide strong evidence for the importance of ecological gradients in African rainforest speciation and inform conservation strategies that preserve the processes that produce and maintain biodiversity.
Collapse
Affiliation(s)
- Adam H Freedman
- Faculty of Arts and Sciences Informatics Group, Harvard University, Cambridge, Massachusetts, USA
| | - Ryan J Harrigan
- Centre for Tropical Research and Institute of the Environment and Sustainability, University of California, Los Angeles, California, USA
| | - Ying Zhen
- Centre for Tropical Research and Institute of the Environment and Sustainability, University of California, Los Angeles, California, USA
- School of Life Sciences, Westlake University, Hangzhou, China
| | - Alison M Hamilton
- Department of Biological Sciences, University of Massachusetts-Lowell, Lowell, Massachusetts, USA
| | - Thomas B Smith
- Centre for Tropical Research and Institute of the Environment and Sustainability, University of California, Los Angeles, California, USA
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California, USA
| |
Collapse
|
37
|
Li C, Xiao H, Zhang X, Lin H, Elmer KR, Zhao J. Deep genome-wide divergences among species in White Cloud Mountain minnow Tanichthys albonubes (Cypriniformes: Tanichthyidae) complex: Conservation and species management implications. Mol Phylogenet Evol 2023; 182:107734. [PMID: 36804428 DOI: 10.1016/j.ympev.2023.107734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023]
Abstract
Identifying cryptic species is important for the assessments of biodiversity. Further, untangling mechanisms underlying the origins of cryptic species can facilitate our understanding of evolutionary processes. Advancements in genomic approaches for non-model systems have offered unprecedented opportunities to investigate these areas. The White Cloud Mountain minnow (Tanichthys albonubes) is a popular freshwater pet fish worldwide but its wild populations in China are critically endangered. Recent research based on a few molecular markers suggested that this species in fact comprised seven cryptic species, of which six were previously unknown. Here, we tested six of these cryptic species and quantified genomic interspecific divergences between species in the T. albonubes complex by analyzing genome-wide restriction site-associated DNA sequencing (RADseq) data generated from 189 individuals sampled from seven populations (including an outgroup congeneric species, T. micagemmae). We found that six cryptic species previously suggested were well supported by RADseq data. The genetic diversity of each species in the T. albonubes complex was low compared with T. micagemmae and the contemporary effective population sizes (Ne) of each cryptic species were small. Phylogenetic analysis showed seven clades with high support values confirmed with Neighbor-Net trees. The pairwise divergences between species in T. albonubes complex were deep and the highly differentiated loci were evenly distributed across the genome. We proposed that the divergence level of T. albonubes complex is at a late stage of cryptic speciation and lacking gene flow. Our findings provide new insights into cryptic speciation and have important implications for conservation and species management of T. albonubes complex.
Collapse
Affiliation(s)
- Chao Li
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally Friendly Aquaculture, School of Life Sciences, South China Normal University, Guangzhou, China; Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Han Xiao
- Institute of Life and Environmental Sciences, University of Iceland, Reykjavík, Iceland
| | - Xiuxia Zhang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally Friendly Aquaculture, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Hungdu Lin
- The Affiliated School of National Tainan First Senior High School, Tainan, Taiwan
| | - Kathryn R Elmer
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Jun Zhao
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally Friendly Aquaculture, School of Life Sciences, South China Normal University, Guangzhou, China.
| |
Collapse
|
38
|
Bendif EM, Probert I, Archontikis OA, Young JR, Beaufort L, Rickaby RE, Filatov D. Rapid diversification underlying the global dominance of a cosmopolitan phytoplankton. THE ISME JOURNAL 2023; 17:630-640. [PMID: 36747097 PMCID: PMC10030636 DOI: 10.1038/s41396-023-01365-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 02/08/2023]
Abstract
Marine phytoplankton play important roles in the global ecosystem, with a limited number of cosmopolitan keystone species driving their biomass. Recent studies have revealed that many of these phytoplankton are complexes composed of sibling species, but little is known about the evolutionary processes underlying their formation. Gephyrocapsa huxleyi, a widely distributed and abundant unicellular marine planktonic algae, produces calcified scales (coccoliths), thereby significantly affects global biogeochemical cycles via sequestration of inorganic carbon. This species is composed of morphotypes defined by differing degrees of coccolith calcification, the evolutionary ecology of which remains unclear. Here, we report an integrated morphological, ecological and genomic survey across globally distributed G. huxleyi strains to reconstruct evolutionary relationships between morphotypes in relation to their habitats. While G. huxleyi has been considered a single cosmopolitan species, our analyses demonstrate that it has evolved to comprise at least three distinct species, which led us to formally revise the taxonomy of the G. huxleyi complex. Moreover, the first speciation event occurred before the onset of the last interglacial period (~140 ka), while the second followed during this interglacial. Then, further rapid diversifications occurred during the most recent ice-sheet expansion of the last glacial period and established morphotypes as dominant populations across environmental clines. These results suggest that glacial-cycle dynamics contributed to the isolation of ocean basins and the segregations of oceans fronts as extrinsic drivers of micro-evolutionary radiations in extant marine phytoplankton.
Collapse
Affiliation(s)
- El Mahdi Bendif
- Department of Earth Sciences, University of Oxford, Oxford, UK.
- Department of Plant Sciences, University of Oxford, Oxford, UK.
- Institut des sciences de la mer de Rimouski (ISMER), Université du Québec à Rimouski, Rimouski, Canada.
| | - Ian Probert
- Sorbonne Université - CNRS, Roscoff Culture Collection, FR2424 Station Biologique de Roscoff, Roscoff, France
| | - Odysseas A Archontikis
- Department of Earth Sciences, University of Oxford, Oxford, UK
- Department of Earth Sciences, The Natural History Museum, London, UK
| | - Jeremy R Young
- Department of Earth Sciences, University College London, London, UK
| | - Luc Beaufort
- Aix Marseille Université, CNRS, IRD, INRAE, CEREGE, Aix-en-Provence, France
| | | | - Dmitry Filatov
- Department of Plant Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
39
|
Fonteyn D, Vermeulen C, Gorel A, Silva de Miranda PL, Lhoest S, Fayolle A. Biogeography of central African forests: Determinants, ongoing threats and conservation priorities of mammal assemblages. DIVERS DISTRIB 2023. [DOI: 10.1111/ddi.13677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
|
40
|
Schleimer A, Frantz AC, Richart L, Mehnert J, Semiadi G, Rode‐Margono J, Mittelbronn M, Young S, Drygala F. Conservation prioritisation through genomic reconstruction of demographic histories applied to two endangered suids in the Malay Archipelago. DIVERS DISTRIB 2023. [DOI: 10.1111/ddi.13689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Affiliation(s)
- Anna Schleimer
- Musée National d'Histoire Naturelle Luxembourg Luxembourg
| | | | - Lorraine Richart
- National Center of Pathology (NCP) Laboratoire National de Santé (LNS) Dudelange Luxembourg
- Luxembourg Center of Neuropathology (LCNP) Dudelange Luxembourg
- Department of Oncology (DONC) Luxembourg Institute of Health (LIH) Luxembourg Luxembourg
- Doctoral School in Science and Engineering (DSSE) 25 University of Luxembourg (UL) Esch‐sur‐Alzette Luxembourg
| | - Jörg Mehnert
- Association for Nature and Biodiversity (ANB) Frankfurt am Main Germany
| | - Gono Semiadi
- Research Centre for Applied Zoology National Research and Innovation Agency Cibinong Indonesia
| | | | - Michel Mittelbronn
- National Center of Pathology (NCP) Laboratoire National de Santé (LNS) Dudelange Luxembourg
- Luxembourg Center of Neuropathology (LCNP) Dudelange Luxembourg
- Department of Oncology (DONC) Luxembourg Institute of Health (LIH) Luxembourg Luxembourg
- Faculty of Science, Technology and Medicine University of Luxembourg Esch‐sur‐Alzette Luxembourg
- Department of Life Sciences and Medicine (DLSM) University of Luxembourg Esch‐sur‐Alzette Luxembourg
| | - Stuart Young
- The North of England Zoological Society/Chester Zoo Upton‐by‐Chester Chester UK
| | - Frank Drygala
- Musée National d'Histoire Naturelle Luxembourg Luxembourg
- Association for Nature and Biodiversity (ANB) Frankfurt am Main Germany
| | | |
Collapse
|
41
|
Kirschner P, Seifert B, Kröll J, Schlick‐Steiner BC, Steiner FM. Phylogenomic inference and demographic model selection suggest peripatric separation of the cryptic steppe ant species Plagiolepis pyrenaica stat. rev. Mol Ecol 2023; 32:1149-1168. [PMID: 36530155 PMCID: PMC10946478 DOI: 10.1111/mec.16828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022]
Abstract
The ant Plagiolepis taurica Santschi, 1920 (Hymenoptera, Formicidae) is a typical species of the Eurasian steppes, a large grassland dominated biome that stretches continuously from Central Asia to Eastern Europe and is represented by disjunct outposts also in Central and Western Europe. The extent of this biome has been influenced by the Pleistocene climate, and steppes expanded recurrently during cold stages and contracted in warm stages. Consequently, stenotopic steppe species such as P. taurica repeatedly went through periods of demographic expansion and severe isolation. Here, we explore the impact of these dynamics on the genetic diversification within P. taurica. Delimitation of P. taurica from other Plagiolepis species has been unclear since its initial description, which raised questions on both its classification and its spatiotemporal diversification early on. We re-evaluate species limits and explore underlying mechanisms driving speciation by using an integrative approach based on genomic and morphometric data. We found large intraspecific divergence within P. taurica and resolved geographically coherent western and eastern genetic groups, which likewise differed morphologically. A morphometric survey of type material showed that Plagiolepis from the western group were more similar to P. barbara pyrenaica Emery, 1921 than to P. taurica; we thus lift the former from synonymy and establish it as separate species, P. pyrenaica stat. rev. Explicit evolutionary model testing based on genomic data supported a peripatric speciation for the species pair, probably as a consequence of steppe contraction and isolation during the mid-Pleistocene. We speculate that this scenario could be exemplary for many stenotopic steppe species, given the emphasized dynamics of Eurasian steppes.
Collapse
Affiliation(s)
- Philipp Kirschner
- Department of EcologyUniversity of InnsbruckInnsbruckAustria
- Department of BotanyUniversity of InnsbruckInnsbruckAustria
| | | | - Joelle Kröll
- Department of EcologyUniversity of InnsbruckInnsbruckAustria
| | | | | | | |
Collapse
|
42
|
Luqman H, Wegmann D, Fior S, Widmer A. Climate-induced range shifts drive adaptive response via spatio-temporal sieving of alleles. Nat Commun 2023; 14:1080. [PMID: 36841810 PMCID: PMC9968346 DOI: 10.1038/s41467-023-36631-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 02/09/2023] [Indexed: 02/27/2023] Open
Abstract
Quaternary climate fluctuations drove many species to shift their geographic ranges, in turn shaping their genetic structures. Recently, it has been argued that adaptation may have accompanied species range shifts via the "sieving" of genotypes during colonisation and establishment. However, this has not been directly demonstrated, and knowledge remains limited on how different evolutionary forces, which are typically investigated separately, interacted to jointly mediate species responses to past climatic change. Here, through whole-genome re-sequencing of over 1200 individuals of the carnation Dianthus sylvestris coupled with integrated population genomic and gene-environment models, we reconstruct the past neutral and adaptive landscape of this species as it was shaped by the Quaternary glacial cycles. We show that adaptive responses emerged concomitantly with the post-glacial range shifts and expansions of this species in the last 20 thousand years. This was due to the heterogenous sieving of adaptive alleles across space and time, as populations expanded out of restrictive glacial refugia into the broader and more heterogeneous range of habitats available in the present-day inter-glacial. Our findings reveal a tightly-linked interplay of migration and adaptation under past climate-induced range shifts, which we show is key to understanding the spatial patterns of adaptive variation we see in species today.
Collapse
Affiliation(s)
- Hirzi Luqman
- Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland. .,McDonald Institute for Archaeological Research, University of Cambridge, Cambridge, UK.
| | - Daniel Wegmann
- Department of Biology, University of Fribourg, Fribourg, Switzerland.,Swiss Institute of Bioinformatics, Fribourg, Switzerland
| | - Simone Fior
- Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland.
| | - Alex Widmer
- Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
43
|
Li J, Fu C, Ai Q, Xie S, Huang C, Zhao M, Fu J, Wu H. Whole-genome resequencing reveals complex effects of geographical-palaeoclimatic interactions on diversification of moustache toads in East Asia. Mol Ecol 2023; 32:644-659. [PMID: 36380736 DOI: 10.1111/mec.16781] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/17/2022]
Abstract
Geographical features and palaeoclimatic fluctuations are two classical evolutionary forces that shape genetic diversification within species. Fine-grained analysis of the mechanisms involved through population demographic processes, however, remains limited. Taking advantage of two recently published reference genomes, we resequenced the genomes and examined the evolutionary history of the moustache toads, a group endemic to East Asia where complex topography and fluctuating palaeoclimate are known to have had profound impacts on organisms. Moustache toads probably originated in southeast Yunnan, China, and diversified towards the northwestern of Yunnan, as well as central and eastern China. Further exploration based on three widespread species (Leptobrachium ailaonicum, L. boringii and L. liui) using demographic modelling and species distribution models revealed that mountains and river valleys in East Asia not only functioned as geographical barriers, but also provided dispersal corridors and facilitated continuous migration or post-glacial secondary contact among moustache toad populations. Furthermore, periodic oscillation of effective population sizes accompanying fluctuations of historical temperature and population contraction at the Last Glacial Maximum support the widespread impact of climatic changes of the Pleistocene on species diversification in East Asia. This impact was moderate for populations of L. ailaonicum and L. boringii in the southwestern mountains but severe for populations of L. liui in the eastern lowland regions of continental East Asia, which is supported by different degrees of change of their effective population sizes. Our findings reveal mechanisms underlying genetic diversification among moustache toads, and highlight the power of genomic data and demographic modelling for examining complex historical population-level processes and for understanding how geographical and palaeoclimatic factors interactively shape current intraspecific diversity.
Collapse
Affiliation(s)
- Jun Li
- Institute of Evolution and Ecology, International Research Centre of Ecology and Environment, School of Life Sciences, Central China Normal University, Wuhan, Hubei, China
| | - Chao Fu
- Institute of Evolution and Ecology, International Research Centre of Ecology and Environment, School of Life Sciences, Central China Normal University, Wuhan, Hubei, China
| | - Qingbo Ai
- Institute of Evolution and Ecology, International Research Centre of Ecology and Environment, School of Life Sciences, Central China Normal University, Wuhan, Hubei, China
| | - Siyu Xie
- Institute of Evolution and Ecology, International Research Centre of Ecology and Environment, School of Life Sciences, Central China Normal University, Wuhan, Hubei, China
| | - Chunhua Huang
- Institute of Evolution and Ecology, International Research Centre of Ecology and Environment, School of Life Sciences, Central China Normal University, Wuhan, Hubei, China
| | - Mian Zhao
- Institute of Evolution and Ecology, International Research Centre of Ecology and Environment, School of Life Sciences, Central China Normal University, Wuhan, Hubei, China
| | - Jinzhong Fu
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - Hua Wu
- Institute of Evolution and Ecology, International Research Centre of Ecology and Environment, School of Life Sciences, Central China Normal University, Wuhan, Hubei, China
| |
Collapse
|
44
|
Matias AMA, Popovic I, Thia JA, Cooke IR, Torda G, Lukoschek V, Bay LK, Kim SW, Riginos C. Cryptic diversity and spatial genetic variation in the coral Acropora tenuis and its endosymbionts across the Great Barrier Reef. Evol Appl 2023; 16:293-310. [PMID: 36793689 PMCID: PMC9923489 DOI: 10.1111/eva.13435] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 05/20/2022] [Accepted: 05/29/2022] [Indexed: 11/26/2022] Open
Abstract
Genomic studies are uncovering extensive cryptic diversity within reef-building corals, suggesting that evolutionarily and ecologically relevant diversity is highly underestimated in the very organisms that structure coral reefs. Furthermore, endosymbiotic algae within coral host species can confer adaptive responses to environmental stress and may represent additional axes of coral genetic variation that are not constrained by taxonomic divergence of the cnidarian host. Here, we examine genetic variation in a common and widespread, reef-building coral, Acropora tenuis, and its associated endosymbiotic algae along the entire expanse of the Great Barrier Reef (GBR). We use SNPs derived from genome-wide sequencing to characterize the cnidarian coral host and organelles from zooxanthellate endosymbionts (genus Cladocopium). We discover three distinct and sympatric genetic clusters of coral hosts, whose distributions appear associated with latitude and inshore-offshore reef position. Demographic modelling suggests that the divergence history of the three distinct host taxa ranges from 0.5 to 1.5 million years ago, preceding the GBR's formation, and has been characterized by low-to-moderate ongoing inter-taxon gene flow, consistent with occasional hybridization and introgression typifying coral evolution. Despite this differentiation in the cnidarian host, A. tenuis taxa share a common symbiont pool, dominated by the genus Cladocopium (Clade C). Cladocopium plastid diversity is not strongly associated with host identity but varies with reef location relative to shore: inshore colonies contain lower symbiont diversity on average but have greater differences between colonies as compared with symbiont communities from offshore colonies. Spatial genetic patterns of symbiont communities could reflect local selective pressures maintaining coral holobiont differentiation across an inshore-offshore environmental gradient. The strong influence of environment (but not host identity) on symbiont community composition supports the notion that symbiont community composition responds to habitat and may assist in the adaptation of corals to future environmental change.
Collapse
Affiliation(s)
- Ambrocio Melvin A. Matias
- Institute of BiologyUniversity of the Philippines DilimanQuezon CityPhilippines
- School of Biological SciencesThe University of QueenslandSt. LuciaQueenslandAustralia
| | - Iva Popovic
- School of Biological SciencesThe University of QueenslandSt. LuciaQueenslandAustralia
| | - Joshua A. Thia
- Bio21 Institute, School of BioSciencesThe University of MelbourneParkevilleVictoriaAustralia
| | - Ira R. Cooke
- College of Public Health, Medical and Veterinary SciencesJames Cook UniversityTownsvilleQueenslandAustralia
| | - Gergely Torda
- ARC Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleQueenslandAustralia
| | - Vimoksalehi Lukoschek
- ARC Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleQueenslandAustralia
- Gold Coast University HospitalQLD HealthSouthportQueenslandAustralia
| | - Line K. Bay
- Australian Institute of Marine ScienceTownsvilleQueenslandAustralia
| | - Sun W. Kim
- School of Biological SciencesThe University of QueenslandSt. LuciaQueenslandAustralia
| | - Cynthia Riginos
- School of Biological SciencesThe University of QueenslandSt. LuciaQueenslandAustralia
| |
Collapse
|
45
|
Rivera D, Prates I, Caldwell JP, Rodrigues MT, Fujita MK. Testing assertions of widespread introgressive hybridization in a clade of neotropical toads with low mate selectivity (Rhinella granulosa species group). Heredity (Edinb) 2023; 130:14-21. [PMID: 36333595 DOI: 10.1038/s41437-022-00571-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022] Open
Abstract
Discordance between different genomic regions, often identified through multilocus sequencing of selected markers, presents particular difficulties in identifying historical processes which drive species diversity and boundaries. Mechanisms causing discordance, such as incomplete lineage sorting or introgression due to interspecific hybridization, are better identified based on population-level genomic datasets. In the toads of the Rhinella granulosa species group, patterns of mito-nuclear discordance and potential hybridization have been reported by several studies. However, these patterns were proposed based on few loci, such that alternative mechanisms behind gene-tree heterogeneity cannot be ruled out. Using genome-wide ddRADseq loci from a subset of species within this clade, we found only partial concordance between currently recognized species-level taxon boundaries and patterns of genetic structure. While most taxa within the R. granulosa group correspond to clades, genetic clustering analyses sometimes grouped distinct taxonomic units into a single cluster. Moreover, levels of admixture between inferred clusters were limited and restricted to a single taxon pair which is best explained by incomplete lineage sorting as opposed to introgressive hybridization, according to D-statistics results. These findings contradict previous assertions of widespread cryptic diversity and gene flow within the R. granulosa clade. Lastly, our analyses suggest that diversification events within the Rhinella granulosa group mostly dated back to the early Pliocene, being generally younger than species divergences in other closely related clades that present high levels of cross-species gene flow. This finding uniquely contradicts common assertions that this young clade of toads exhibits interspecific hybridization.
Collapse
Affiliation(s)
- Danielle Rivera
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, USA.
- Amphibian and Reptile Diversity Research Center, University of Texas at Arlington, Arlington, TX, USA.
| | - Ivan Prates
- Department of Ecology and Evolutionary Biology and Museum of Zoology, University of Michigan, Ann Arbor, MI, USA
| | - Janalee P Caldwell
- Sam Noble Museum and Department of Biology, University of Oklahoma, Norman, OK, USA
| | - Miguel Trefaut Rodrigues
- Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Matthew K Fujita
- Amphibian and Reptile Diversity Research Center, University of Texas at Arlington, Arlington, TX, USA
- Department of Biology and Amphibian and Reptile Diversity Research Center, University of Texas at Arlington, Arlington, TX, USA
| |
Collapse
|
46
|
Tapondjou Nkonmeneck WP, Allen KE, Hime PM, Knipp KN, Kameni MM, Tchassem AM, Gonwouo LN, Brown RM. Diversification and historical demography of Rhampholeon spectrum in West-Central Africa. PLoS One 2022; 17:e0277107. [PMID: 36525408 PMCID: PMC9757597 DOI: 10.1371/journal.pone.0277107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 10/19/2022] [Indexed: 12/23/2022] Open
Abstract
Pygmy Chameleons of the genus Rhampholeon represent a moderately diverse, geographically circumscribed radiation, with most species (18 out of 19 extant taxa) limited to East Africa. The one exception is Rhampholeon spectrum, a species restricted to West-Central African rainforests. We set out to characterize the geographic basis of genetic variation in this disjunctly distributed Rhampholeon species using a combination of multilocus Sanger data and genomic sequences to explore population structure and range-wide phylogeographic patterns. We also employed demographic analyses and niche modeling to distinguish between alternate explanations to contextualize the impact of past geological and climatic events on the present-day distribution of intraspecific genetic variation. Phylogenetic analyses suggest that R. spectrum is a complex of five geographically delimited populations grouped into two major clades (montane vs. lowland). We found pronounced population structure suggesting that divergence and, potentially, speciation began between the late Miocene and the Pleistocene. Sea level changes during the Pleistocene climatic oscillations resulted in allopatric divergence associated with dispersal over an ocean channel barrier and colonization of Bioko Island. Demographic inferences and range stability mapping each support diversification models with secondary contact due to population contraction in lowland and montane refugia during the interglacial period. Allopatric divergence, congruent with isolation caused by geologic uplift of the East African rift system, the "descent into the Icehouse," and aridification of sub-Saharan Africa during the Eocene-Oligocene are identified as the key events explaining the population divergence between R. spectrum and its closely related sister clade from the Eastern Arc Mountains. Our results unveil cryptic genetic diversity in R. spectrum, suggesting the possibility of a species complex distributed across the Lower Guinean Forest and the Island of Bioko. We highlight the major element of species diversification that modelled today's diversity and distributions in most West-Central African vertebrates.
Collapse
Affiliation(s)
- Walter Paulin Tapondjou Nkonmeneck
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas, United States of America
- Biodiversity Institute, University of Kansas, Lawrence, Kansas, United States of America
| | - Kaitlin E. Allen
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas, United States of America
- Biodiversity Institute, University of Kansas, Lawrence, Kansas, United States of America
| | - Paul M. Hime
- Biodiversity Institute, University of Kansas, Lawrence, Kansas, United States of America
| | - Kristen N. Knipp
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas, United States of America
- Biodiversity Institute, University of Kansas, Lawrence, Kansas, United States of America
| | - Marina M. Kameni
- Laboratory of Zoology, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| | - Arnaud M. Tchassem
- Laboratory of Zoology, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| | - LeGrand N. Gonwouo
- Laboratory of Zoology, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| | - Rafe M. Brown
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas, United States of America
- Biodiversity Institute, University of Kansas, Lawrence, Kansas, United States of America
| |
Collapse
|
47
|
Rasmussen MS, Garcia-Erill G, Korneliussen TS, Wiuf C, Albrechtsen A. Estimation of site frequency spectra from low-coverage sequencing data using stochastic EM reduces overfitting, runtime, and memory usage. Genetics 2022; 222:iyac148. [PMID: 36173322 PMCID: PMC9713400 DOI: 10.1093/genetics/iyac148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 09/14/2022] [Indexed: 12/13/2022] Open
Abstract
The site frequency spectrum is an important summary statistic in population genetics used for inference on demographic history and selection. However, estimation of the site frequency spectrum from called genotypes introduces bias when working with low-coverage sequencing data. Methods exist for addressing this issue but sometimes suffer from 2 problems. First, they can have very high computational demands, to the point that it may not be possible to run estimation for genome-scale data. Second, existing methods are prone to overfitting, especially for multidimensional site frequency spectrum estimation. In this article, we present a stochastic expectation-maximization algorithm for inferring the site frequency spectrum from NGS data that address these challenges. We show that this algorithm greatly reduces runtime and enables estimation with constant, trivial RAM usage. Furthermore, the algorithm reduces overfitting and thereby improves downstream inference. An implementation is available at github.com/malthesr/winsfs.
Collapse
Affiliation(s)
| | - Genís Garcia-Erill
- Department of Biology, University of Copenhagen, 2200 København N, Denmark
| | | | - Carsten Wiuf
- Department of Mathematical Sciences, University of Copenhagen, 2100 København Ø, Denmark
| | - Anders Albrechtsen
- Department of Biology, University of Copenhagen, 2200 København N, Denmark
| |
Collapse
|
48
|
Farhadi A, Jeffs AG, Lavery SD. Genome-wide SNPs in the spiny lobster Panulirus homarus reveal a hybrid origin for its subspecies. BMC Genomics 2022; 23:750. [DOI: 10.1186/s12864-022-08984-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/01/2022] [Indexed: 11/13/2022] Open
Abstract
Abstract
Background
Evolutionary divergence and speciation often occur at a slower rate in the marine realm due to the higher potential for long-distance reproductive interaction through larval dispersal. One common evolutionary pattern in the Indo-Pacific, is divergence of populations and species at the peripheries of widely-distributed organisms. However, the evolutionary and demographic histories of such divergence are yet to be well understood. Here we address these issues by coupling genome-wide SNP data with mitochondrial DNA sequences to test the patterns of genetic divergence and possible secondary contact among geographically distant populations of the highly valuable spiny lobster Panulirus homarus species complex, distributed widely through the Indo-Pacific, from South Africa to the Marquesas Islands.
Result
After stringent filtering, 2020 SNPs were used for population genetic and demographic analyses, revealing strong regional structure (FST = 0.148, P < 0001), superficially in accordance with previous analyses. However, detailed demographic analyses supported a much more complex evolutionary history of these populations, including a hybrid origin of a North-West Indian Ocean (NWIO) population, which has previously been discriminated morphologically, but not genetically. The best-supported demographic models suggested that the current genetic relationships among populations were due to a complex series of past divergences followed by asymmetric migration in more recent times.
Conclusion
Overall, this study suggests that alternating periods of marine divergence and gene flow have driven the current genetic patterns observed in this lobster and may help explain the observed wider patterns of marine species diversity in the Indo-Pacific.
Collapse
|
49
|
Huanel OR, Quesada-Calderón S, Ríos Molina C, Morales-González S, Saenz-Agudelo P, Nelson WA, Arakaki N, Mauger S, Faugeron S, Guillemin ML. Pre-domestication bottlenecks of the cultivated seaweed Gracilaria chilensis. Mol Ecol 2022; 31:5506-5523. [PMID: 36029170 DOI: 10.1111/mec.16672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 08/02/2022] [Accepted: 08/09/2022] [Indexed: 12/24/2022]
Abstract
Gracilaria chilensis is the main cultivated seaweed in Chile. The low genetic diversity observed in the Chilean populations has been associated with the over-exploitation of natural beds and/or the founder effect that occurred during post-glacial colonization from New Zealand. How these processes have affected its evolutionary trajectory before farming and incipient domestication is poorly understood. In this study, we used 2232 single nucleotide polymorphisms (SNPs) to assess how the species' evolutionary history in New Zealand (its region of origin), the founder effect linked to transoceanic dispersion and colonization of South America, and the recent over-exploitation of natural populations have influenced the genetic architecture of G. chilensis in Chile. The contrasting patterns of genetic diversity and structure observed between the two main islands in New Zealand attest to the important effects of Quaternary glacial cycles on G. chilensis. Approximate Bayesian Computation (ABC) analyses indicated that Chatham Island and South America were colonized independently near the end of the Last Glacial Maximum and emphasized the importance of coastal and oceanic currents during that period. Furthermore, ABC analyses inferred the existence of a recent and strong genetic bottleneck in Chile, matching the period of over-exploitation of the natural beds during the 1970s, followed by rapid demographic expansion linked to active clonal propagation used in farming. Recurrent genetic bottlenecks strongly eroded the genetic diversity of G. chilensis prior to its cultivation, raising important challenges for the management of genetic resources in this incipiently domesticated species.
Collapse
Affiliation(s)
- Oscar R Huanel
- Núcleo Milenio MASH, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,IRL 3614 Evolutionary Biology and Ecology of Algae, CNRS, Sorbonne Université, Pontificia Universidad Católica de Chile, Universidad Austral de Chile, Roscoff, France
| | - Suany Quesada-Calderón
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile.,AUSTRAL-omics, Vicerrectoría de Investigación, Desarrollo y Creación Artística, Universidad Austral de Chile, Valdivia, Chile
| | - Cristian Ríos Molina
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Sarai Morales-González
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Pablo Saenz-Agudelo
- IRL 3614 Evolutionary Biology and Ecology of Algae, CNRS, Sorbonne Université, Pontificia Universidad Católica de Chile, Universidad Austral de Chile, Roscoff, France.,Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile.,ANID- Millennium Science Initiative Nucleus (NUTME), Las Cruces, Chile
| | - Wendy A Nelson
- National Institute of Water and Atmospheric Research, Wellington, New Zealand.,School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Natalia Arakaki
- Instituto del Mar del Perú, Banco de Germoplasma de Organismos Acuáticos, Chucuito, Callao, Peru
| | - Stéphane Mauger
- IRL 3614 Evolutionary Biology and Ecology of Algae, CNRS, Sorbonne Université, Pontificia Universidad Católica de Chile, Universidad Austral de Chile, Roscoff, France
| | - Sylvain Faugeron
- Núcleo Milenio MASH, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,IRL 3614 Evolutionary Biology and Ecology of Algae, CNRS, Sorbonne Université, Pontificia Universidad Católica de Chile, Universidad Austral de Chile, Roscoff, France
| | - Marie-Laure Guillemin
- IRL 3614 Evolutionary Biology and Ecology of Algae, CNRS, Sorbonne Université, Pontificia Universidad Católica de Chile, Universidad Austral de Chile, Roscoff, France.,Núcleo Milenio MASH, Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
50
|
Gunn JC, Berkman LK, Koppelman J, Taylor AT, Brewer SK, Long JM, Eggert LS. Genomic divergence, local adaptation, and complex demographic history may inform management of a popular sportfish species complex. Ecol Evol 2022; 12:e9370. [PMID: 36225830 PMCID: PMC9534746 DOI: 10.1002/ece3.9370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/29/2022] [Accepted: 09/05/2022] [Indexed: 11/05/2022] Open
Abstract
The Neosho Bass (Micropterus velox), a former subspecies of the keystone top-predator and globally popular Smallmouth Bass (M. dolomieu), is endemic and narrowly restricted to small, clear streams of the Arkansas River Basin in the Central Interior Highlands (CIH) ecoregion, USA. Previous studies have detected some morphological, genetic, and genomic differentiation between the Neosho and Smallmouth Basses; however, the extent of neutral and adaptive divergence and patterns of intraspecific diversity are poorly understood. Furthermore, lineage diversification has likely been impacted by gene flow in some Neosho populations, which may be due to a combination of natural biogeographic processes and anthropogenic introductions. We assessed: (1) lineage divergence, (2) local directional selection (adaptive divergence), and (3) demographic history among Smallmouth Bass populations in the CIH using population genomic analyses of 50,828 single-nucleotide polymorphisms (SNPs) obtained through ddRAD-seq. Neosho and Smallmouth Bass formed monophyletic clades with 100% bootstrap support. We identified two major lineages within each species. We discovered six Neosho Bass populations (two nonadmixed and four admixed) and three nonadmixed Smallmouth Bass populations. We detected 29 SNPs putatively under directional selection in the Neosho range, suggesting populations may be locally adapted. Two populations were admixed via recent asymmetric secondary contact, perhaps after anthropogenic introduction. Two other populations were likely admixed via combinations of ancient and recent processes. These species comprise independently evolving lineages, some having experienced historical and natural admixture. These results may be critical for management of Neosho Bass as a distinct species and may aid in the conservation of other species with complex biogeographic histories.
Collapse
Affiliation(s)
- Joe C. Gunn
- Division of Biological SciencesUniversity of MissouriColumbiaMissouriUSA
| | | | | | - Andrew T. Taylor
- Department of BiologyUniversity of Central OklahomaEdmondOklahomaUSA
- Department of BiologyUniversity of North GeorgiaDahlonegaGeorgiaUSA
| | - Shannon K. Brewer
- U.S. Geological Survey, Alabama Cooperative Fish and Wildlife Research Unit, School of Fisheries, Aquaculture, and Aquatic SciencesAuburn UniversityAuburnAlabamaUSA
| | - James M. Long
- U.S. Geological Survey, Oklahoma Cooperative Fish and Wildlife Research Unit, Department of Natural Resource Ecology and ManagementOklahoma State UniversityStillwaterOklahomaUSA
| | - Lori S. Eggert
- Division of Biological SciencesUniversity of MissouriColumbiaMissouriUSA
| |
Collapse
|