1
|
Didion-Gency M, Deluigi J, Gisler J, Juillard T, Schaub M, Tuñas-Corzon A, Grossiord C. Reduced soil moisture drives leaf anatomical shifts more than chronically elevated temperatures in European temperate trees. PLANT BIOLOGY (STUTTGART, GERMANY) 2024. [PMID: 39541145 DOI: 10.1111/plb.13745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
Chronic reductions in soil moisture combined with high air temperatures can modify tree carbon and water relations. However, little is known about how trees acclimate their foliar structure to the individual and combined effects of these two climate drivers. We used open-top chambers to determine the multi-year effects of chronic air warming (+5 °C) and soil moisture reduction (-50%) alone and in combination on the foliar anatomy of two European tree species. We further investigated how these climate drivers affected the relationship between foliar anatomy and physiology/chemistry in young downy oak and European beech trees. After 4 years, reduced soil moisture led to development of thinner leaves with a narrower epidermis and lower gas exchange for oak and beech, but to a lesser extent in the latter. In contrast, prolonged warming did not affect the anatomical and physiological/chemical traits in either species. Warming also did not exacerbate the impacts of dry soils, highlighting soil moisture as the key driver in leaf anatomical shifts. While soil moisture altered oak foliar anatomy, and the physiology and chemistry of both species, our work revealed a limited acclimation potential towards more drought- and heat-tolerant leaves as conditions become drier and warmer, suggesting potentially high vulnerability of both species to future climate predictions.
Collapse
Affiliation(s)
- M Didion-Gency
- Ecological and Forestry Applications Research Center CREAF, Cerdanyola-del-Vallès, Spain
- Plant Ecology Research Laboratory PERL, School of Architecture, Civil and Environmental Engineering, EPFL, Lausanne, Switzerland
- Community Ecology Unit, Swiss Federal Institute for Forest, Snow and Landscape WSL, Lausanne, Switzerland
| | - J Deluigi
- Plant Ecology Research Laboratory PERL, School of Architecture, Civil and Environmental Engineering, EPFL, Lausanne, Switzerland
- Community Ecology Unit, Swiss Federal Institute for Forest, Snow and Landscape WSL, Lausanne, Switzerland
| | - J Gisler
- Forest Dynamics Research Unit, Swiss Federal Institute for Forest, Snow and Landscape WSL, Birmensdorf, Switzerland
| | - T Juillard
- Plant Ecology Research Laboratory PERL, School of Architecture, Civil and Environmental Engineering, EPFL, Lausanne, Switzerland
- Community Ecology Unit, Swiss Federal Institute for Forest, Snow and Landscape WSL, Lausanne, Switzerland
| | - M Schaub
- Forest Dynamics Research Unit, Swiss Federal Institute for Forest, Snow and Landscape WSL, Birmensdorf, Switzerland
| | - A Tuñas-Corzon
- Department of Ecology, University of Innsbruck, Innsbruck, Austria
| | - C Grossiord
- Plant Ecology Research Laboratory PERL, School of Architecture, Civil and Environmental Engineering, EPFL, Lausanne, Switzerland
- Community Ecology Unit, Swiss Federal Institute for Forest, Snow and Landscape WSL, Lausanne, Switzerland
| |
Collapse
|
2
|
Laoué J, Havaux M, Ksas B, Orts JP, Reiter IM, Fernandez C, Ormeno E. A decade of rain exclusion in a Mediterranean forest reveals trade-offs of leaf chemical defenses and drought legacy effects. Sci Rep 2024; 14:24119. [PMID: 39406765 PMCID: PMC11480208 DOI: 10.1038/s41598-024-71417-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 08/27/2024] [Indexed: 10/19/2024] Open
Abstract
Increasing aridity in the Mediterranean region will result in longer and recurrent drought. These changes could strongly modify plant defenses, endangering tree survival. We investigate the response of chemical defenses from central and specialized metabolism in Quercus pubescens Willd. to future Mediterranean drought using a long-term drought experiment in natura where trees have been submitted to amplified drought (~ -30% annual precipitation) since April 2012. We focused on leaf metabolites including chlorophylls and carotenoids (central metabolism) and flavonols (specialized metabolism). Measurements were performed in summer from 2016 to 2022. Amplified drought led to higher concentrations of total photosynthetic pigments over the 2016-2022 period. However, it also led to lower AZ/VAZ and flavonol concentrations. Additionally, chemical defenses of Q. pubescens responded to previous precipitation where low precipitation 1 year and/or 2 years preceding sampling was associated to low concentrations of VAZ, flavonol and high neoxanthin concentrations. Our study indicates that the decline of flavonol concentration under long-term drought is counterbalanced by a higher production of several central metabolites. Such results are potentially due to an adjustment in tree metabolism, highlighting the importance of performing long-term experimental studies in natura for assessing drought legacy effects and thus forest adaptation to climate change.
Collapse
Affiliation(s)
- Justine Laoué
- CNRS UMR 7263, Aix-Marseille University, Avignon University, IRD, IMBE, Marseille, France.
| | - Michel Havaux
- Aix-Marseille Université, CEA, CNRS UMR7265, Institut de Bioscience et de Biotechnologie d'Aix-Marseille, CEA/Cadarache, Saint-Paul-lès-Durance, France
| | - Brigitte Ksas
- Aix-Marseille Université, CEA, CNRS UMR7265, Institut de Bioscience et de Biotechnologie d'Aix-Marseille, CEA/Cadarache, Saint-Paul-lès-Durance, France
| | - Jean-Philippe Orts
- CNRS UMR 7263, Aix-Marseille University, Avignon University, IRD, IMBE, Marseille, France
| | | | - Catherine Fernandez
- CNRS UMR 7263, Aix-Marseille University, Avignon University, IRD, IMBE, Marseille, France
| | - Elena Ormeno
- CNRS UMR 7263, Aix-Marseille University, Avignon University, IRD, IMBE, Marseille, France.
| |
Collapse
|
3
|
Eisenring M, Gessler A, Frei ER, Glauser G, Kammerer B, Moor M, Perret-Gentil A, Wohlgemuth T, Gossner MM. Legacy effects of premature defoliation in response to an extreme drought event modulate phytochemical profiles with subtle consequences for leaf herbivory in European beech. THE NEW PHYTOLOGIST 2024; 242:2495-2509. [PMID: 38641748 DOI: 10.1111/nph.19721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 03/13/2024] [Indexed: 04/21/2024]
Abstract
Extreme droughts can have long-lasting effects on forest community dynamics and species interactions. Yet, our understanding of how drought legacy modulates ecological relationships is just unfolding. We tested the hypothesis that leaf chemistry and herbivory show long-term responses to premature defoliation caused by an extreme drought event in European beech (Fagus sylvatica L.). For two consecutive years after the extreme European summer drought in 2018, we collected leaves from the upper and lower canopy of adjacently growing drought-stressed and unstressed trees. Leaf chemistry was analyzed and leaf damage by different herbivore-feeding guilds was quantified. We found that drought had lasting impacts on leaf nutrients and on specialized metabolomic profiles. However, drought did not affect the primary metabolome. Drought-related phytochemical changes affected damage of leaf-chewing herbivores whereas damage caused by other herbivore-feeding guilds was largely unaffected. Drought legacy effects on phytochemistry and herbivory were often weaker than between-year or between-canopy strata variability. Our findings suggest that a single extreme drought event bears the potential to long-lastingly affect tree-herbivore interactions. Drought legacy effects likely become more important in modulating tree-herbivore interactions since drought frequency and severity are projected to globally increase in the coming decades.
Collapse
Affiliation(s)
- Michael Eisenring
- Forest Health & Biotic Interactions, Swiss Federal Research Institute WSL, Birmensdorf, 8903, Switzerland
| | - Arthur Gessler
- Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, ETH Zurich, Zürich, 8092, Switzerland
- Forest Dynamics, Swiss Federal Research Institute WSL, Birmensdorf, 8903, Switzerland
| | - Esther R Frei
- Forest Dynamics, Swiss Federal Research Institute WSL, Birmensdorf, 8903, Switzerland
- WSL Institute for Snow and Avalanche Research SLF, Flüelastrasse 11, Davos, 7260, Switzerland
- Climate Change and Extremes in Alpine Regions Research Centre CERC, Davos, 7260, Switzerland
| | - Gaétan Glauser
- Neuchâtel Platform of Analytical Chemistry, University of Neuchâtel, Neuchâtel, 2000, Switzerland
| | - Bernd Kammerer
- Core Facility Metabolomics, Albert-Ludwigs-University Freiburg, Freiburg, 79014, Germany
| | - Maurice Moor
- Forest Health & Biotic Interactions, Swiss Federal Research Institute WSL, Birmensdorf, 8903, Switzerland
| | - Anouchka Perret-Gentil
- Forest Health & Biotic Interactions, Swiss Federal Research Institute WSL, Birmensdorf, 8903, Switzerland
| | - Thomas Wohlgemuth
- Forest Dynamics, Swiss Federal Research Institute WSL, Birmensdorf, 8903, Switzerland
| | - Martin M Gossner
- Forest Health & Biotic Interactions, Swiss Federal Research Institute WSL, Birmensdorf, 8903, Switzerland
- Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, ETH Zurich, Zürich, 8092, Switzerland
| |
Collapse
|
4
|
Laoué J, Havaux M, Ksas B, Tuccio B, Lecareux C, Fernandez C, Ormeño E. Long-term rain exclusion in a Mediterranean forest: response of physiological and physico-chemical traits of Quercus pubescens across seasons. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:1293-1308. [PMID: 37596909 DOI: 10.1111/tpj.16424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/21/2023] [Accepted: 08/04/2023] [Indexed: 08/21/2023]
Abstract
With climate change, an aggravation in summer drought is expected in the Mediterranean region. To assess the impact of such a future scenario, we compared the response of Quercus pubescens, a drought-resistant deciduous oak species, to long-term amplified drought (AD) (partial rain exclusion in natura for 10 years) and natural drought (ND). We studied leaf physiological and physico-chemical trait responses to ND and AD over the seasonal cycle, with a focus on chemical traits including major groups of central (photosynthetic pigments and plastoquinones) and specialized (tocochromanols, phenolic compounds, and cuticular waxes) metabolites. Seasonality was the main driver of all leaf traits, including cuticular triterpenoids, which were highly concentrated in summer, suggesting their importance to cope with drought and thermal stress periods. Under AD, trees not only reduced CO2 assimilation (-42%) in summer and leaf concentrations of some phenolic compounds and photosynthetic pigments (carotenoids from the xanthophyll cycle) but also enhanced the levels of other photosynthetic pigments (chlorophylls, lutein, and neoxanthin) and plastochromanol-8, an antioxidant located in chloroplasts. Overall, the metabolomic adjustments across seasons and drought conditions reinforce the idea that Q. pubescens is highly resistant to drought although significant losses of antioxidant defenses and photoprotection were identified under AD.
Collapse
Affiliation(s)
- Justine Laoué
- Aix Marseille Univ., Univ Avignon, CNRS, IRD, IMBE, Marseille, France
| | - Michel Havaux
- Aix Marseille Univ., CEA, CNRS UMR 7265 BIAM, CEA/Cadarache, Saint-Paul-lès-Durance, France
| | - Brigitte Ksas
- Aix Marseille Univ., CEA, CNRS UMR 7265 BIAM, CEA/Cadarache, Saint-Paul-lès-Durance, France
| | | | - Caroline Lecareux
- Aix Marseille Univ., Univ Avignon, CNRS, IRD, IMBE, Marseille, France
| | | | - Elena Ormeño
- Aix Marseille Univ., Univ Avignon, CNRS, IRD, IMBE, Marseille, France
| |
Collapse
|
5
|
Alderotti F, Verdiani E. God save the queen! How and why the dominant evergreen species of the Mediterranean Basin is declining? AOB PLANTS 2023; 15:plad051. [PMID: 37899973 PMCID: PMC10601391 DOI: 10.1093/aobpla/plad051] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 07/28/2023] [Indexed: 10/31/2023]
Abstract
Quercus ilex may be considered the queen tree of the Mediterranean Basin, dominating coastal forest areas up to 2000 m above sea level at some sites. However, an increase in holm oak decline has been observed in the last decade. In this review, we analysed the current literature to answer the following questions: what are the traits that allow holm oak to thrive in the Mediterranean environment, and what are the main factors that are currently weakening this species? In this framework, we attempt to answer these questions by proposing a triangle as a graphical summary. The first vertex focuses on the main morpho-anatomical, biochemical and physiological traits that allow holm oak to dominate Mediterranean forests. The other two vertices consider abiotic and biotic stressors that are closely related to holm oak decline. Here, we discuss the current evidence of holm oak responses to abiotic and biotic stresses and propose a possible solution to its decline through adequate forest management choices, thus allowing the species to maintain its ecological domain.
Collapse
Affiliation(s)
- Francesca Alderotti
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Sesto Fiorentino, Florence 50019, Italy
| | - Erika Verdiani
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Sesto Fiorentino, Florence 50019, Italy
| |
Collapse
|
6
|
Zhao Y, Tu J, Wang H, Xu Y, Wu F. Transcriptomic and targeted metabolomic unravelling the molecular mechanism of sugar metabolism regulating heteroblastic changes in Pinus massoniana seedlings. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:108029. [PMID: 37722284 DOI: 10.1016/j.plaphy.2023.108029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/01/2023] [Accepted: 09/08/2023] [Indexed: 09/20/2023]
Abstract
Pine seedling leaf characteristics show a distinct transition from primary to secondary needles, known as heteroblastic change. However, the underlying regulatory mechanism is poorly understood. The molecular mechanism of sugar metabolism involved in regulating heteroblastic changes in Pinus massoniana seedlings was investigated via transcriptomics and targeted metabolomics. The results identified 12 kinds of sugar metabolites in the foliage. Three types of sugar accumulated at the highest levels: sucrose, glucose and fructose. Compared to seedlings with only primary needles (PN), the contents of these soluble sugars were lower in seedlings with developing secondary needle buds (SNB). RNA-seq analysis highlighted 1086 DEGs between PN and SNB seedlings, revealing significant enrichment in KEGG pathways including starch and sucrose metabolism, plant hormone signal transduction and amino sugar and nucleic acid sugar metabolism. Combined transcriptomic and metabolomic analysis revealed that HK, MDH, and ATPase could potentially enhance sugar availability by stimulating the glycolytic/TCA cycle and oxidative phosphorylation. These processes may lead to a reduced sugar content in the foliage of SNB seedlings. We also identified 72 transcription factors, among which the expression levels of MYB, WRKY, NAC and C2H2 family genes were closely related to those of DEGs in the sugar metabolism pathway. In addition, we identified alternative splicing (AS) events in one NAC gene leading to two isoforms, PmNAC5L and PmNAC5S. PmNAC5L was significantly upregulated, while PmNAC5S was significantly downregulated in SNB seedlings. Overall, our results provide new insights into how sugar metabolism is involved in regulating heteroblastic changes in pine seedlings.
Collapse
Affiliation(s)
- Yuanxiang Zhao
- Institute for Forest Resources and Environment of Guizhou, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, Guiyang, 550025, China; College of Forestry, Guizhou University, Guiyang, 550025, China
| | - Jingjing Tu
- Institute for Forest Resources and Environment of Guizhou, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, Guiyang, 550025, China; College of Forestry, Guizhou University, Guiyang, 550025, China
| | - Haoyun Wang
- Institute for Forest Resources and Environment of Guizhou, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, Guiyang, 550025, China; College of Forestry, Guizhou University, Guiyang, 550025, China
| | - Yingying Xu
- Institute for Forest Resources and Environment of Guizhou, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, Guiyang, 550025, China; College of Forestry, Guizhou University, Guiyang, 550025, China
| | - Feng Wu
- Institute for Forest Resources and Environment of Guizhou, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, Guiyang, 550025, China; College of Forestry, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
7
|
Atoum D, Fernandez-Pastor I, Young L, Edrada-Ebel R. Use of Multivariate Analysis to Unravel the Differences between Two Chamomile Varieties and Their Anticancer and Antioxidant Activities. PLANTS (BASEL, SWITZERLAND) 2023; 12:2297. [PMID: 37375922 DOI: 10.3390/plants12122297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/30/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023]
Abstract
BACKGROUND Plants from the Asteraceae family were commonly used to treat various diseases. The metabolomic profile of this family consisted of bioactive flavonoids and other phenolics. Chamomile is a member of the Asteraceae family. Jordanian and European chamomile are two varieties of Matricaria chamomilla (German chamomile), which were grown under different environmental conditions, were studied. Many examples of plant varieties with significant distinction in the secondary metabolite they afford have been described in the literature. Multivariate statistical analysis was employed to measure the depth of this variation in two chamomile varieties. METHODS From both types, crude extracts were prepared using solvents of different polarities and tested for their biological activity. The semipolar fraction of the European variety showed anticancer and antioxidant activity. Meanwhile, the semipolar fraction of the Jordanian type exhibited only antioxidant activity. Both extracts were fractionated, and then the biological activity was again assayed. RESULTS European and Jordanian chamomile fractions produced dicaffeoylquinic acid isomers exhibiting antioxidant capability. Additionally, Z-glucoferulic acid was produced from the European chamomile, demonstrating antioxidant activity. The European samples afforded two major compounds, chrysosplenetin and apigenin, that displayed anticancer activity. CONCLUSIONS Different environmental conditions between Jordanian and European chamomile affected the type of isolated compounds. Structure elucidation was performed with HPLC-MS coupled with dereplication techniques and 2D NMR experiments.
Collapse
Affiliation(s)
- Dana Atoum
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, The Hashemite University, Zarqa 13133, Jordan
| | - Ignacio Fernandez-Pastor
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores de Andalucía, Parque Tecnológico de Ciencias de la Salud, Avda. del Conocimiento 34, 18016 Granada, Spain
| | - Louise Young
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK
| | - RuAngelie Edrada-Ebel
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK
| |
Collapse
|
8
|
Carluccio G, Greco D, Sabella E, Vergine M, De Bellis L, Luvisi A. Xylem Embolism and Pathogens: Can the Vessel Anatomy of Woody Plants Contribute to X. fastidiosa Resistance? Pathogens 2023; 12:825. [PMID: 37375515 DOI: 10.3390/pathogens12060825] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/07/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
The maintenance of an intact water column in the xylem lumen several meters above the ground is essential for woody plant viability. In fact, abiotic and biotic factors can lead to the formation of emboli in the xylem, interrupting sap flow and causing consequences on the health status of the plant. Anyway, the tendency of plants to develop emboli depends on the intrinsic features of the xylem, while the cyto-histological structure of the xylem plays a role in resistance to vascular pathogens, as in the case of the pathogenic bacterium Xylella fastidiosa. Analysis of the scientific literature suggests that on grapevine and olive, some xylem features can determine plant tolerance to vascular pathogens. However, the same trend was not reported in citrus, indicating that X. fastidiosa interactions with host plants differ by species. Unfortunately, studies in this area are still limited, with few explaining inter-cultivar insights. Thus, in a global context seriously threatened by X. fastidiosa, a deeper understanding of the relationship between the physical and mechanical characteristics of the xylem and resistance to stresses can be useful for selecting cultivars that may be more resistant to environmental changes, such as drought and vascular pathogens, as a way to preserve agricultural productions and ecosystems.
Collapse
Affiliation(s)
- Giambattista Carluccio
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Davide Greco
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Erika Sabella
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Marzia Vergine
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Luigi De Bellis
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Andrea Luvisi
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| |
Collapse
|
9
|
Wang P, Lu S, Cao X, Ma Z, Chen B, Mao J. Physiological and transcriptome analyses of the effects of excessive water deficit on malic acid accumulation in apple. TREE PHYSIOLOGY 2023; 43:851-866. [PMID: 36579825 DOI: 10.1093/treephys/tpac149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/21/2022] [Indexed: 05/13/2023]
Abstract
Acidity is a determinant of the organoleptic quality of apple, whereas its regulatory mechanism under water stress remains obscure. Fruit from apple 'Yanfu 3' of Fuji trees grown under normal water irrigation (CK), excessive water deficit treatment (DRT) and excessive water irrigation treatment (WAT) were sampled at 85, 100, 115, 130, 145, 160 and 175 days after full bloom designated stages S1, S2, S3, S4, S5, S6 and S7, respectively. DRT treatment reduced the individual fruit weight and fruit moisture content, and increased fruit firmness. The malate content of DRT treatment was higher than that of CK and WAT from stages S1 to S7. RNA sequencing (RNA-seq) analysis of the transcriptome at stages S4, S6 and S7 indicated that malate anabolism was associated with cysteine and methionine, auxin signaling, glyoxylate and dicarboxylate and pyruvate metabolism. Overexpression of MdPEPC4 increased the malate content in apple calli induced by 4% PEG. Our study provides novel insights into the effects of water stress on the molecular mechanism underlying apple fruit acidity.
Collapse
Affiliation(s)
- Ping Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Shixiong Lu
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Xuejing Cao
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Zonghuan Ma
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Baihong Chen
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Juan Mao
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
10
|
Lin PA, Kansman J, Chuang WP, Robert C, Erb M, Felton GW. Water availability and plant-herbivore interactions. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:2811-2828. [PMID: 36477789 DOI: 10.1093/jxb/erac481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 12/04/2022] [Indexed: 06/06/2023]
Abstract
Water is essential to plant growth and drives plant evolution and interactions with other organisms such as herbivores. However, water availability fluctuates, and these fluctuations are intensified by climate change. How plant water availability influences plant-herbivore interactions in the future is an important question in basic and applied ecology. Here we summarize and synthesize the recent discoveries on the impact of water availability on plant antiherbivore defense ecology and the underlying physiological processes. Water deficit tends to enhance plant resistance and escape traits (i.e. early phenology) against herbivory but negatively affects other defense strategies, including indirect defense and tolerance. However, exceptions are sometimes observed in specific plant-herbivore species pairs. We discuss the effect of water availability on species interactions associated with plants and herbivores from individual to community levels and how these interactions drive plant evolution. Although water stress and many other abiotic stresses are predicted to increase in intensity and frequency due to climate change, we identify a significant lack of study on the interactive impact of additional abiotic stressors on water-plant-herbivore interactions. This review summarizes critical knowledge gaps and informs possible future research directions in water-plant-herbivore interactions.
Collapse
Affiliation(s)
- Po-An Lin
- Department of Entomology, National Taiwan University, Taipei, Taiwan
| | - Jessica Kansman
- Department of Entomology, the Pennsylvania State University, University Park, PA, USA
| | - Wen-Po Chuang
- Department of Agronomy, National Taiwan University, Taipei, Taiwan
| | | | - Matthias Erb
- Institute of Plant Science, University of Bern, Bern, Switzerland
| | - Gary W Felton
- Department of Entomology, the Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
11
|
Quer E, Pereira S, Michel T, Santonja M, Gauquelin T, Simioni G, Ourcival JM, Joffre R, Limousin JM, Aupic-Samain A, Lecareux C, Dupouyet S, Orts JP, Bousquet-Mélou A, Gros R, Sagova-Mareckova M, Kopecky J, Fernandez C, Baldy V. Amplified Drought Alters Leaf Litter Metabolome, Slows Down Litter Decomposition, and Modifies Home Field (Dis)Advantage in Three Mediterranean Forests. PLANTS (BASEL, SWITZERLAND) 2022; 11:2582. [PMID: 36235447 PMCID: PMC9571106 DOI: 10.3390/plants11192582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/26/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
In Mediterranean ecosystems, the projected rainfall reduction of up to 30% may alter plant-soil interactions, particularly litter decomposition and Home Field Advantage (HFA). We set up a litter transplant experiment in the three main forests encountered in the northern part of the Medi-terranean Basin (dominated by either Quercus ilex, Quercus pubescens, or Pinus halepensis) equipped with a rain exclusion device, allowing an increase in drought either throughout the year or concentrated in spring and summer. Senescent leaves and needles were collected under two precipitation treatments (natural and amplified drought plots) at their "home" forest and were left to decompose in the forest of origin and in other forests under both drought conditions. MS-based metabolomic analysis of litter extracts combined with multivariate data analysis enabled us to detect modifications in the composition of litter specialized metabolites, following amplified drought treatment. Amplified drought altered litter quality and metabolomes, directly slowed down litter decomposition, and induced a loss of home field (dis)advantage. No indirect effect mediated by a change in litter quality on decomposition was observed. These results may suggest major alterations of plant-soil interactions in Mediterranean forests under amplified drought conditions.
Collapse
Affiliation(s)
- Elodie Quer
- Aix Marseille University, Avignon University, CNRS, IRD, IMBE, 13397 Marseille, France
| | - Susana Pereira
- Aix Marseille University, Avignon University, CNRS, IRD, IMBE, 13397 Marseille, France
| | - Thomas Michel
- CNRS, Nice Institute of Chemistry, UMR 7272, Parc Valrose, University of Côte d’Azur, 06108 Nice, France
| | - Mathieu Santonja
- Aix Marseille University, Avignon University, CNRS, IRD, IMBE, 13397 Marseille, France
| | - Thierry Gauquelin
- Aix Marseille University, Avignon University, CNRS, IRD, IMBE, 13397 Marseille, France
| | - Guillaume Simioni
- INRAE, Ecologie des Forêts Méditerranéennes (UR629) Domaine Saint Paul, Site Agroparc, 84914 Avignon, France
| | - Jean-Marc Ourcival
- CNRS, EPHE, IRD, CEFE, University Paul Valéry Montpellier, 34090 Montpellier, France
| | - Richard Joffre
- CNRS, EPHE, IRD, CEFE, University Paul Valéry Montpellier, 34090 Montpellier, France
| | - Jean-Marc Limousin
- CNRS, EPHE, IRD, CEFE, University Paul Valéry Montpellier, 34090 Montpellier, France
| | - Adriane Aupic-Samain
- Aix Marseille University, Avignon University, CNRS, IRD, IMBE, 13397 Marseille, France
| | - Caroline Lecareux
- Aix Marseille University, Avignon University, CNRS, IRD, IMBE, 13397 Marseille, France
| | - Sylvie Dupouyet
- Aix Marseille University, Avignon University, CNRS, IRD, IMBE, 13397 Marseille, France
| | - Jean-Philippe Orts
- Aix Marseille University, Avignon University, CNRS, IRD, IMBE, 13397 Marseille, France
| | - Anne Bousquet-Mélou
- Aix Marseille University, Avignon University, CNRS, IRD, IMBE, 13397 Marseille, France
| | - Raphaël Gros
- Aix Marseille University, Avignon University, CNRS, IRD, IMBE, 13397 Marseille, France
| | - Marketa Sagova-Mareckova
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Kamýcká 129, 165 00 Praha, Czech Republic
- Crop Research Institute, Drnovska 507, 16106 Praha, Czech Republic
| | - Jan Kopecky
- Crop Research Institute, Drnovska 507, 16106 Praha, Czech Republic
| | - Catherine Fernandez
- Aix Marseille University, Avignon University, CNRS, IRD, IMBE, 13397 Marseille, France
| | - Virginie Baldy
- Aix Marseille University, Avignon University, CNRS, IRD, IMBE, 13397 Marseille, France
| |
Collapse
|
12
|
Maldonado-Alconada AM, Castillejo MÁ, Rey MD, Labella-Ortega M, Tienda-Parrilla M, Hernández-Lao T, Honrubia-Gómez I, Ramírez-García J, Guerrero-Sanchez VM, López-Hidalgo C, Valledor L, Navarro-Cerrillo RM, Jorrin-Novo JV. Multiomics Molecular Research into the Recalcitrant and Orphan Quercus ilex Tree Species: Why, What for, and How. Int J Mol Sci 2022; 23:9980. [PMID: 36077370 PMCID: PMC9456323 DOI: 10.3390/ijms23179980] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
The holm oak (Quercus ilex L.) is the dominant tree species of the Mediterranean forest and the Spanish agrosilvopastoral ecosystem, "dehesa." It has been, since the prehistoric period, an important part of the Iberian population from a social, cultural, and religious point of view, providing an ample variety of goods and services, and forming the basis of the economy in rural areas. Currently, there is renewed interest in its use for dietary diversification and sustainable food production. It is part of cultural richness, both economically (tangible) and environmentally (intangible), and must be preserved for future generations. However, a worrisome degradation of the species and associated ecosystems is occurring, observed in an increase in tree decline and mortality, which requires urgent action. Breeding programs based on the selection of elite genotypes by molecular markers is the only plausible biotechnological approach. To this end, the authors' group started, in 2004, a research line aimed at characterizing the molecular biology of Q. ilex. It has been a challenging task due to its biological characteristics (long life cycle, allogamous, high phenotypic variability) and recalcitrant nature. The biology of this species has been characterized following the central dogma of molecular biology using the omics cascade. Molecular responses to biotic and abiotic stresses, as well as seed maturation and germination, are the two main objectives of our research. The contributions of the group to the knowledge of the species at the level of DNA-based markers, genomics, epigenomics, transcriptomics, proteomics, and metabolomics are discussed here. Moreover, data are compared with those reported for Quercus spp. All omics data generated, and the genome of Q. ilex available, will be integrated with morphological and physiological data in the systems biology direction. Thus, we will propose possible molecular markers related to resilient and productive genotypes to be used in reforestation programs. In addition, possible markers related to the nutritional value of acorn and derivate products, as well as bioactive compounds (peptides and phenolics) and allergens, will be suggested. Subsequently, the selected molecular markers will be validated by both genome-wide association and functional genomic analyses.
Collapse
Affiliation(s)
- Ana María Maldonado-Alconada
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, 14014 Cordoba, Spain
| | - María Ángeles Castillejo
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, 14014 Cordoba, Spain
| | - María-Dolores Rey
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, 14014 Cordoba, Spain
| | - Mónica Labella-Ortega
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, 14014 Cordoba, Spain
| | - Marta Tienda-Parrilla
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, 14014 Cordoba, Spain
| | - Tamara Hernández-Lao
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, 14014 Cordoba, Spain
| | - Irene Honrubia-Gómez
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, 14014 Cordoba, Spain
| | - Javier Ramírez-García
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, 14014 Cordoba, Spain
| | - Víctor M. Guerrero-Sanchez
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, 14014 Cordoba, Spain
- Cardiovascular Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - Cristina López-Hidalgo
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, 14014 Cordoba, Spain
- Plant Physiology, Department of Organisms and Systems Biology, University Institute of Biotechnology of Asturias (IUBA), University of Oviedo, 33006 Asturias, Spain
| | - Luis Valledor
- Plant Physiology, Department of Organisms and Systems Biology, University Institute of Biotechnology of Asturias (IUBA), University of Oviedo, 33006 Asturias, Spain
| | - Rafael M. Navarro-Cerrillo
- Evaluation and Restoration of Agronomic and Forest Systems ERSAF, Department of Forest Engineering, University of Córdoba, 14014 Cordoba, Spain
| | - Jesús V. Jorrin-Novo
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, 14014 Cordoba, Spain
| |
Collapse
|
13
|
Proteomic Investigation of Molecular Mechanisms in Response to PEG-Induced Drought Stress in Soybean Roots. PLANTS 2022; 11:plants11091173. [PMID: 35567174 PMCID: PMC9100407 DOI: 10.3390/plants11091173] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/20/2022] [Accepted: 04/25/2022] [Indexed: 11/25/2022]
Abstract
Roots are generally the critical drought sensors, but little is known about their molecular response to drought stress. We used the drought-tolerant soybean variety ‘Jiyu 47’ to investigate the differentially expressed proteins (DEPs) in soybean roots during the seedling stage based on the tandem mass tag (TMT) proteomics analysis. Various expression patterns were observed in a total of six physiological parameters. A total of 468 DEPs (144 up-regulated and 324 down-regulated) among a total of 8687 proteins were identified in response to drought stress in 24 h. The expression of DEPs was further validated based on quantitative real-time PCR of a total of five genes (i.e., GmGSH, GmGST1, GmGST2 k GmCAT, and Gm6PGD) involved in the glutathione biosynthesis. Results of enrichment analyses revealed a coordinated expression pattern of proteins involved in various cellular metabolisms responding to drought stress in soybean roots. Our results showed that drought stress caused significant alterations in the expression of proteins involved in several metabolic pathways in soybean roots, including carbohydrate metabolism, metabolism of the osmotic regulation substances, and antioxidant defense system (i.e., the glutathione metabolism). Increased production of reduced glutathione (GSH) enhanced the prevention of the damage caused by reactive oxygen species and the tolerance of the abiotic stress. The glutathione metabolism played a key role in modifying the antioxidant defense system in response to drought stress in soybean roots. Our proteomic study suggested that the soybean plants responded to drought stress by coordinating their protein expression during the vegetative stage, providing novel insights into the molecular mechanisms regulating the response to abiotic stress in plants.
Collapse
|
14
|
Morrison JA, Roche B, Veatch‐Blohm M. Woody plant secondary chemicals increase in response to abundant deer and arrival of invasive plants in suburban forests. Ecol Evol 2022; 12:e8814. [PMID: 35432930 PMCID: PMC9006230 DOI: 10.1002/ece3.8814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 03/11/2022] [Accepted: 03/20/2022] [Indexed: 12/03/2022] Open
Abstract
Plants in suburban forests of eastern North America face the dual stressors of high white-tailed deer density and invasion by nonindigenous plants. Chronic deer herbivory combined with strong competition from invasive plants could alter a plant's stress- and defense-related secondary chemistry, especially for long-lived juvenile trees in the understory, but this has not been studied. We measured foliar total antioxidants, phenolics, and flavonoids in juveniles of two native trees, Fraxinus pennsylvanica (green ash) and Fagus grandifolia (American beech), growing in six forests in the suburban landscape of central New Jersey, USA. The trees grew in experimental plots subjected for 2.5 years to factorial treatments of deer access/exclosure × addition/no addition of the nonindigenous invasive grass Microstegium vimineum (Japanese stiltgrass). As other hypothesized drivers of plant secondary chemistry, we also measured nonstiltgrass herb layer cover, light levels, and water availability. Univariate mixed model analysis of the deer and stiltgrass effects and multivariate structural equation modeling (SEM) of all variables showed that both greater stiltgrass cover and greater deer pressure induced antioxidants, phenolics, and flavonoids, with some variation between species. Deer were generally the stronger factor, and stiltgrass effects were most apparent at high stiltgrass density. SEM also revealed that soil dryness directly increased the chemicals; deer had additional positive, but indirect, effects via influence on the soil; in beech photosynthetically active radiation (PAR) positively affected flavonoids; and herb layer cover had no effect. Juvenile trees' chemical defense/stress responses to deer and invasive plants can be protective, but also could have a physiological cost, with negative consequences for recruitment to the canopy. Ecological implications for species and their communities will depend on costs and benefits of stress/defense chemistry in the specific environmental context, particularly with respect to invasive plant competitiveness, extent of invasion, local deer density, and deer browse preferences.
Collapse
Affiliation(s)
| | - Bernadette Roche
- Department of BiologyLoyola University MarylandBaltimoreMarylandUSA
| | | |
Collapse
|
15
|
Amplified Drought and Seasonal Cycle Modulate Quercus pubescens Leaf Metabolome. Metabolites 2022; 12:metabo12040307. [PMID: 35448494 PMCID: PMC9026387 DOI: 10.3390/metabo12040307] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 02/04/2023] Open
Abstract
The intensification of summer drought expected with climate change can induce metabolism modifications in plants to face such constraints. In this experiment, we used both a targeted approach focused on flavonoids, as well as an untargeted approach, to study a broader fraction of the leaf metabolome of Quercus pubescens exposed to amplified drought. A forest site equipped with a rainfall exclusion device allowed reduction of natural rainfall by ~30% over the tree canopy. Leaves of natural drought (ND) and amplified drought (AD) plots were collected over three seasonal cycles (spring, summer, and autumn) in 2013 (the second year of rain exclusion), 2014, and 2015. As expected, Q. pubescens metabolome followed a seasonal course. In the summer of 2015, the leaf metabolome presented a shifted and early autumnal pattern because of harsher conditions during this year. Despite low metabolic modification at the global scale, our results demonstrated that 75% of Quercus metabolites were upregulated in springs when trees were exposed to AD, whereas 60 to 73% of metabolites (93% in summer 2015), such as kaempferols and quercetins, were downregulated in summers/autumns. Juglanin, a kaempferol pentoside, as well as rhododendrin derivatives, were upregulated throughout the year, suggesting an antioxidant ability of these metabolites. Those changes in terms of phenology and leaf chemistry could, in the end, affect the ecosystem functioning.
Collapse
|
16
|
Laoué J, Fernandez C, Ormeño E. Plant Flavonoids in Mediterranean Species: A Focus on Flavonols as Protective Metabolites under Climate Stress. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11020172. [PMID: 35050060 PMCID: PMC8781291 DOI: 10.3390/plants11020172] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/27/2021] [Accepted: 01/05/2022] [Indexed: 05/03/2023]
Abstract
Flavonoids are specialized metabolites largely widespread in plants where they play numerous roles including defense and signaling under stress conditions. These compounds encompass several chemical subgroups such as flavonols which are one the most represented classes. The most studied flavonols are kaempferol, quercetin and myricetin to which research attributes antioxidative properties and a potential role in UV-defense through UV-screening mechanisms making them critical for plant adaptation to climate change. Despite the great interest in flavonol functions in the last decades, some functional aspects remain under debate. This review summarizes the importance of flavonoids in plant defense against climate stressors and as signal molecules with a focus on flavonols in Mediterranean plant species. The review emphasizes the relationship between flavonol location (at the organ, tissue and cellular scales) and their function as defense metabolites against climate-related stresses. It also provides evidence that biosynthesis of flavonols, or flavonoids as a whole, could be a crucial process allowing plants to adapt to climate change, especially in the Mediterranean area which is considered as one of the most sensitive regions to climate change over the globe.
Collapse
|
17
|
Martins J, Pétriacq P, Flandin A, Gómez-Cadenas A, Monteiro P, Pinto G, Canhoto J. Genotype determines Arbutus unedo L. physiological and metabolomic responses to drought and recovery. FRONTIERS IN PLANT SCIENCE 2022; 13:1011542. [PMID: 36483964 PMCID: PMC9723149 DOI: 10.3389/fpls.2022.1011542] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/24/2022] [Indexed: 05/13/2023]
Abstract
Strawberry tree (Arbutus unedo) is a small resilient species with a circum-Mediterranean distribution, high ecological relevance in southern European forests and with several economical applications. As most orchards are usually installed on marginal lands where plants usually face severe drought, selecting plants that can better cope with water restriction is critical, and a better understanding of the tolerance mechanisms is required. Strawberry tree plants under drought follow a typical isohydric strategy, by limiting transpiration through stomata closure. However, the contribution of genotype and its bio-geographic origin on plant performance needs clarification, as well as the involvement of a specific metabolic reactions associated with the mechanical response. To test this hypothesis, several eco-physiological and biochemical parameters were assessed on different genotypes, and the metabolic profiles studied, including important stress-related phytohormones, on plants under different water regimes (plants watered to 70% and 18% field capacity) and a recovery assay. A contrasting drought tolerance was found in plants from different genotypes, associated with physiological and metabolic responses. Metabolomics revealed more than 500 metabolic features were differentially accumulated, including abscisic and salicylic acids, for the genotype with better performance under drought (A4). This genotype also recovered faster when the imposed stress was interrupted, thus indicating the relevance of metabolic adaptation under water deficit conditions. By correlating carbon assimilation with identified metabolites, some proved to be satisfactory predictors of plant performance under drought and might be used for marker assisted breeding. Therefore, our study proves the importance of genotype as a major selection criterion of resistant plants to drought and provides empirical knowledge of the metabolic response involved. We also hypothesized the involvement of phenolics on response mechanisms under drought, which is worth to be explored to shed light on the metabolic pathways involved in plant response to water stress.
Collapse
Affiliation(s)
- João Martins
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, Coimbra, Portugal
- *Correspondence: João Martins,
| | - Pierre Pétriacq
- UMR BFP, University Bordeaux, INRAE, Villenave d’Ornon, France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, Villenave d’Ornon, France
| | - Amélie Flandin
- UMR BFP, University Bordeaux, INRAE, Villenave d’Ornon, France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, Villenave d’Ornon, France
| | - Aurelio Gómez-Cadenas
- Departamento de Ciencias Agrarias y del Medio Natural, Universitat Jaume I, Castelló, Spain
| | - Pedro Monteiro
- Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Glória Pinto
- Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Jorge Canhoto
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, Coimbra, Portugal
| |
Collapse
|
18
|
Du B, Kruse J, Winkler JB, Alfarraj S, Albasher G, Schnitzler JP, Ache P, Hedrich R, Rennenberg H. Metabolic responses of date palm (Phoenix dactylifera L.) leaves to drought differ in summer and winter climate. TREE PHYSIOLOGY 2021; 41:1685-1700. [PMID: 33607652 DOI: 10.1093/treephys/tpab027] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 01/11/2021] [Accepted: 02/04/2021] [Indexed: 06/12/2023]
Abstract
Drought negatively impacts growth and productivity of plants, particularly in arid and semi-arid regions. Although drought events can take place in summer and winter, differences in the impact of drought on physiological processes between seasons are largely unknown. The aim of this study was to elucidate metabolic strategies of date palms in response to drought in summer and winter season. To identify such differences, we exposed date palm seedlings to a drought-recovery regime, both in simulated summer and winter climate. Leaf hydration, carbon discrimination (${\Delta}$13C), and primary and secondary metabolite composition and contents were analyzed. Depending on season, drought differently affected physiological and biochemical traits of the leaves. In summer, drought induced significantly decreased leaf hydration, concentrations of ascorbate, most sugars, primary and secondary organic acids, as well as phenolic compounds, while thiol, amino acid, raffinose and individual fatty acid contents were increased compared with well-watered plants. In winter, drought had no effect on leaf hydration, ascorbate and fatty acids contents, but resulted in increased foliar thiol and amino acid levels as observed in summer. Compared with winter, foliar traits of plants exposed to drought in summer only partly recovered after re-watering. Memory effects on water relations, and primary and secondary metabolites seem to prepare foliar traits of date palms for repeated drought events in summer. Apparently, a well-orchestrated metabolic network, including the anti-oxidative system, compatible solutes accumulation and osmotic adjustment, and maintenance of cell-membrane stability strongly reduces the susceptibility of date palms to drought. These mechanisms of drought compensation may be more frequently required in summer.
Collapse
Affiliation(s)
- Baoguo Du
- College of Life Science and Biotechnology, Mianyang Normal University, Mianxing Road West 166, 621000 Mianyang, China
- Chair of Tree Physiology, Institute of Forest Sciences, Albert-Ludwigs-Universität Freiburg, Georges-Koehler-Allee 53, 79110 Freiburg, Germany
| | - Joerg Kruse
- Chair of Tree Physiology, Institute of Forest Sciences, Albert-Ludwigs-Universität Freiburg, Georges-Koehler-Allee 53, 79110 Freiburg, Germany
| | - Jana Barbro Winkler
- Helmholtz Zentrum München, Research Unit Environmental Simulation (EUS), Institute of Biochemical Plant Pathology, Ingolstädter, Landstraße 1, 85764 Neuherberg, Germany
| | - Saleh Alfarraj
- King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Gadah Albasher
- King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Joerg-Peter Schnitzler
- Helmholtz Zentrum München, Research Unit Environmental Simulation (EUS), Institute of Biochemical Plant Pathology, Ingolstädter, Landstraße 1, 85764 Neuherberg, Germany
| | - Peter Ache
- Institute for Molecular Plant Physiology and Biophysics, Biocenter, University of Würzburg, 97082 Würzburg, Germany
| | - Rainer Hedrich
- Institute for Molecular Plant Physiology and Biophysics, Biocenter, University of Würzburg, 97082 Würzburg, Germany
| | - Heinz Rennenberg
- Chair of Tree Physiology, Institute of Forest Sciences, Albert-Ludwigs-Universität Freiburg, Georges-Koehler-Allee 53, 79110 Freiburg, Germany
- King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University No. 2, Tiansheng Road, Beibei District, 400715 Chongqing,China
| |
Collapse
|
19
|
Liu C, Huang Y, Wu F, Liu W, Ning Y, Huang Z, Tang S, Liang Y. Plant adaptability in karst regions. JOURNAL OF PLANT RESEARCH 2021; 134:889-906. [PMID: 34258691 DOI: 10.1007/s10265-021-01330-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
Karst ecosystems are formed by dissolution of soluble rocks, usually with conspicuous landscape features, such as sharp peaks, steep slopes and deep valleys. The plants in karst regions develop special adaptability. Here, we reviewed the research progresses on plant adaptability in karst regions, including drought, high temperature and light, high-calcium stresses responses and the strategies of water utilization for plants, soil nutrients impact, human interference and geographical traits on karst plants. Drought, high temperature and light change their physiological and morphological structures to adapt to karst environments. High-calcium and soil nutrients can transfer surplus nutrients to special parts of plants to avoid damage of high nutrient concentration. Therefore, karst plants can make better use of limited water. Human interference also affects geographical distribution of karst plants and their growing environment. All of these aspects may be analyzed to provide guidance and suggestions for related research on plant adaptability mechanisms.
Collapse
Affiliation(s)
- Chunni Liu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, College of Life Science, Guangxi Normal University, Ministry of Education, Guilin, China
| | - Yang Huang
- School of Mechanical and Electrical Engineering, Guilin University of Electronic Technology, Guilin, China
| | - Feng Wu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, College of Life Science, Guangxi Normal University, Ministry of Education, Guilin, China
| | - Wenjing Liu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, College of Life Science, Guangxi Normal University, Ministry of Education, Guilin, China
| | - Yiqiu Ning
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, College of Life Science, Guangxi Normal University, Ministry of Education, Guilin, China
| | - Zhenrong Huang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, College of Life Science, Guangxi Normal University, Ministry of Education, Guilin, China
| | - Shaoqing Tang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, College of Life Science, Guangxi Normal University, Ministry of Education, Guilin, China
| | - Yu Liang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, College of Life Science, Guangxi Normal University, Ministry of Education, Guilin, China.
| |
Collapse
|
20
|
Dell'Orso A, Kuzminsky E, Bermejo-Bermejo V, Ruiz-Checa R, Amo RAD, Meschini R. DNA integrity and ecophysiological responses of Spanish populations of Ulmus glabra to increasing ozone levels. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:1098-1107. [PMID: 34110543 DOI: 10.1007/s10646-021-02436-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/28/2021] [Indexed: 06/12/2023]
Abstract
Ulmus glabra is a deciduous tree with a wide distribution in the Eurosiberian region. The southernmost populations, in the Mediterranean area, are fragmented in mountain areas which act as a refugium. These small relict populations can act as sentinel of global change, including climate change and impacts of human activities such as air pollution. Besides, tropospheric ozone (O3) is an additional stress factor in the Mediterranean region affecting plant physiology and health. Moreover, oxidative stress caused by O3 could increase DNA damage in plants cells. U. glabra 4-year-old seedlings originated from a natural population growing in the Guadarrama mountain range (central Spain), were exposed in Open Top Chambers to four O3 treatments: charcoal filtered air, non-filtered air reproducing ambient levels, non-filtered air supplemented with 15 nl l-1 O3 and non- filtered air supplemented with 30 nl l-1 O3. Ozone effects on the DNA integrity through Comet assay were evaluated and eco-physiological responses were explored as well as. Comet assay showed a significant increase of DNA damage with increasing levels of O3 after only one-month exposure, when no eco-physiological symptoms of damage could be detected. Comet assay could thus be suggested as a predictive test to detect DNA damage induced in plants by other abiotic stresses as well as to identify tolerant and sensitive species or in preservation strategies of small relict populations. The discovery of a test for an early identification of stressed plants could be important to speed the selection of tolerant individuals for breeding programmes.
Collapse
Affiliation(s)
| | | | | | - Raquel Ruiz-Checa
- Área de Biodiversidad y Conservación, Dpto. de Biología, Geología, Física y Química Inorgánica, ESCET, Universidad Rey Juan Carlos, Móstoles, Spain
| | | | | |
Collapse
|
21
|
Aranda I, Cadahía E, Fernández de Simón B. Specific leaf metabolic changes that underlie adjustment of osmotic potential in response to drought by four Quercus species. TREE PHYSIOLOGY 2021; 41:728-743. [PMID: 33231684 DOI: 10.1093/treephys/tpaa157] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 11/11/2020] [Indexed: 05/14/2023]
Abstract
Osmotic adjustment is almost ubiquitous as a mechanism of response to drought in many forest species. Recognized as an important mechanism of increasing turgor under water stress, the metabolic basis for osmotic adjustment has been described in only a few species. We set an experiment with four species of the genus Quercus ranked according to drought tolerance and leaf habit from evergreen to broad-leaved deciduous. A cycle of watering deprivation was imposed on seedlings, resulting in well-watered (WW) and water-stressed (WS) treatments, and their water relations were assessed from pressure-volume curves. Leaf predawn water potential (Ψpd) significantly decreased in WS seedlings, which was followed by a drop in leaf osmotic potential at full turgor (Ψπ100). The lowest values of Ψπ100 followed the ranking of decreasing drought tolerance: Quercus ilex L. < Quercus faginea Lam. < Quercus pyrenaica Willd. < Quercus petraea Matt. Liebl. The leaf osmotic potential at the turgor loss point (ΨTLP) followed the same pattern as Ψπ100 across species and treatments. The pool of carbohydrates, some organic acids and cyclitols were the main osmolytes explaining osmotic potential across species, likewise to the osmotic adjustment assessed from the decrease in leaf Ψπ100 between WW and WS seedlings. Amino acids were very responsive to WS, particularly γ-aminobutyric acid in Q. pyrenaica, but made a relatively minor contribution to osmotic potential compared with other groups of compounds. In contrast, the cyclitol proto-quercitol made a prominent contribution to the changes in osmotic potential regardless of watering treatment or species. However, different metabolites, such as quinic acid, played a more important role in osmotic adjustment in Q. ilex, distinguishing it from the other species studied. In conclusion, while osmotic adjustment was present in all four Quercus species, the molecular processes underpinning this response differed according to their phylogenetic history and specific ecology.
Collapse
Affiliation(s)
- Ismael Aranda
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Centro de Investigación Forestal, Carretera Coruña Km 7.5, E-28040 Madrid, Spain
- INAGEA, Instituto de Investigaciones Agroambientales y de Economía del Agua, 07122 Palma de Mallorca, Spain
| | - Estrella Cadahía
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Centro de Investigación Forestal, Carretera Coruña Km 7.5, E-28040 Madrid, Spain
| | - Brígida Fernández de Simón
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Centro de Investigación Forestal, Carretera Coruña Km 7.5, E-28040 Madrid, Spain
| |
Collapse
|
22
|
Molecular Research on Stress Responses in Quercus spp.: From Classical Biochemistry to Systems Biology through Omics Analysis. FORESTS 2021. [DOI: 10.3390/f12030364] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The genus Quercus (oak), family Fagaceae, comprises around 500 species, being one of the most important and dominant woody angiosperms in the Northern Hemisphere. Nowadays, it is threatened by environmental cues, which are either of biotic or abiotic origin. This causes tree decline, dieback, and deforestation, which can worsen in a climate change scenario. In the 21st century, biotechnology should take a pivotal role in facing this problem and proposing sustainable management and conservation strategies for forests. As a non-domesticated, long-lived species, the only plausible approach for tree breeding is exploiting the natural diversity present in this species and the selection of elite, more resilient genotypes, based on molecular markers. In this direction, it is important to investigate the molecular mechanisms of the tolerance or resistance to stresses, and the identification of genes, gene products, and metabolites related to this phenotype. This research is being performed by using classical biochemistry or the most recent omics (genomics, epigenomics, transcriptomics, proteomics, and metabolomics) approaches, which should be integrated with other physiological and morphological techniques in the Systems Biology direction. This review is focused on the current state-of-the-art of such approaches for describing and integrating the latest knowledge on biotic and abiotic stress responses in Quercus spp., with special reference to Quercus ilex, the system on which the authors have been working for the last 15 years. While biotic stress factors mainly include fungi and insects such as Phytophthora cinnamomi, Cerambyx welensii, and Operophtera brumata, abiotic stress factors include salinity, drought, waterlogging, soil pollutants, cold, heat, carbon dioxide, ozone, and ultraviolet radiation. The review is structured following the Central Dogma of Molecular Biology and the omic cascade, from DNA (genomics, epigenomics, and DNA-based markers) to metabolites (metabolomics), through mRNA (transcriptomics) and proteins (proteomics). An integrated view of the different approaches, challenges, and future directions is critically discussed.
Collapse
|
23
|
Climate Change Effects in a Mediterranean Forest Following 21 Consecutive Years of Experimental Drought. FORESTS 2021. [DOI: 10.3390/f12030306] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Research Highlights: A small, long-term decrease in the water availability in a Mediterranean holm oak forest elicited strong effects on tree stem growth, mortality, and species composition, which led to changes in the ecosystem function and service provision. Background and Objectives: Many forest ecosystems are increasingly challenged by stress conditions under climate change. These new environmental constraints may drive changes in species distribution and ecosystem function. Materials and Methods: An evergreen Mediterranean holm oak (Quercus ilex L.) forest was subjected to 21 consecutive years of experimental drought (performing 30% of rainfall exclusion resulted in a 15% decrease in soil moisture). The effects of the annual climatic conditions and the experimental drought on a tree and shrub basal area increment were studied, with a focus on the two most dominant species (Q. ilex and the tall shrub Phillyrea latifolia L.). Results: Stem growth decreased and tree mortality increased under the experimental drought conditions and in hot and dry years. These effects differed between the two dominant species: the basal area of Q. ilex (the current, supradominant species) was dependent on water availability and climatic conditions, whereas P. latifolia was more tolerant to drought and experienced increased growth rates in plots where Q. ilex decay rates were high. Conclusions: Our findings reveal that small changes in water availability drive changes in species growth, composition, and distribution, as demonstrated by the continuous and ongoing replacement of the current supradominant Q. ilex by the subdominant P. latifolia, which is better adapted to tolerate hot and dry environments. The consequences of these ecological transformations for ecosystem function and service provision to human society are discussed.
Collapse
|
24
|
Sardans J, Peñuelas J. Potassium Control of Plant Functions: Ecological and Agricultural Implications. PLANTS (BASEL, SWITZERLAND) 2021; 10:419. [PMID: 33672415 PMCID: PMC7927068 DOI: 10.3390/plants10020419] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/18/2021] [Accepted: 02/21/2021] [Indexed: 02/06/2023]
Abstract
Potassium, mostly as a cation (K+), together with calcium (Ca2+) are the most abundant inorganic chemicals in plant cellular media, but they are rarely discussed. K+ is not a component of molecular or macromolecular plant structures, thus it is more difficult to link it to concrete metabolic pathways than nitrogen or phosphorus. Over the last two decades, many studies have reported on the role of K+ in several physiological functions, including controlling cellular growth and wood formation, xylem-phloem water content and movement, nutrient and metabolite transport, and stress responses. In this paper, we present an overview of contemporary findings associating K+ with various plant functions, emphasizing plant-mediated responses to environmental abiotic and biotic shifts and stresses by controlling transmembrane potentials and water, nutrient, and metabolite transport. These essential roles of K+ account for its high concentrations in the most active plant organs, such as leaves, and are consistent with the increasing number of ecological and agricultural studies that report K+ as a key element in the function and structure of terrestrial ecosystems, crop production, and global food security. We synthesized these roles from an integrated perspective, considering the metabolic and physiological functions of individual plants and their complex roles in terrestrial ecosystem functions and food security within the current context of ongoing global change. Thus, we provide a bridge between studies of K+ at the plant and ecological levels to ultimately claim that K+ should be considered at least at a level similar to N and P in terrestrial ecological studies.
Collapse
Affiliation(s)
- Jordi Sardans
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, 08913 Bellaterra, Catalonia, Spain;
- CREAF, 08913 Cerdanyola del Vallès, Catalonia, Spain
| | - Josep Peñuelas
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, 08913 Bellaterra, Catalonia, Spain;
- CREAF, 08913 Cerdanyola del Vallès, Catalonia, Spain
| |
Collapse
|
25
|
Wood vs. Canopy Allocation of Aboveground Net Primary Productivity in a Mediterranean Forest during 21 Years of Experimental Rainfall Exclusion. FORESTS 2020. [DOI: 10.3390/f11101094] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A Mediterranean holm oak forest was subjected to experimental partial rainfall exclusion during 21 consecutive years to study the effects of the expected decrease in water availability for Mediterranean vegetation in the coming decades. Allocation in woody structures and total aboveground allocation were correlated with annual rainfall, whereas canopy allocation and the ratio of wood/canopy allocation were not dependent on rainfall. Fruit productivity was also correlated with annual rainfall, but only in Quercus ilex. In the studied site, there were two types of forest structure: high canopy stand clearly dominated by Quercus ilex, and low canopy stand with more abundance of a tall shrub species, Phillyrea latifolia. In the tall canopy stand, the allocation to woody structures decreased in the experimental rainfall exclusion, but not the allocation to canopy. In the low canopy stand, wood allocation in Quercus ilex was very small in both control and plots with rainfall exclusion, but wood allocation in Phillyrea latifolia was even higher than that obtained in tall canopy plots, especially in the plots receiving the experimental rainfall exclusion. These results highlight likely future changes in the structure and functioning of this ecosystem induced by the decrease in water availability. A serious drop in the capacity to mitigate climate change for this Mediterranean forest can be expected, and the ability of Phillyrea latifolia to take advantage of the limited capacity to cope with drought conditions detected in Quercus ilex makes likely a forthcoming change in species dominance, especially in the low canopy stands.
Collapse
|
26
|
Responses and Differences in Tolerance to Water Shortage under Climatic Dryness Conditions in Seedlings from Quercus spp. and Andalusian Q. ilex Populations. FORESTS 2020. [DOI: 10.3390/f11060707] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Analyzing differences in tolerance to drought in Quercus spp., and the characterization of these responses at the species and individual population level, are imperative for the selection of resilient elite genotypes in reforestation programs. The main objective of this work was to evaluate differences in the response and tolerance to water shortage under in five Quercus spp. and five Andalusian Q. ilex populations at the inter- and intraspecies level. Six-month-old seedlings grown in perlite were subjected to drought treatments by withholding water for 28 days under mean 37 °C temperature, 28 W m−2 solar irradiance, and 41% humidity. The use of perlite as the substrate enabled the establishment of severe drought stress with reduction in water availability from 73% (field capacity) to 28% (dryness), corresponding to matric potentials of 0 and −30 kPa. Damage symptoms, mortality rate, leaf water content, photosynthetic, and biochemical parameters (amino acids, sugars, phenolics, and pigments) were determined. At the phenotypic level, based on damage symptoms and mortality, Q. ilex behaved as the most drought tolerant species. Drought caused a significant decrease in leaf fluorescence, photosynthesis rate, and stomatal conductance in all Quercus spp. analyzed, being less pronounced in Q. ilex. There were not differences between irrigated and non-irrigated Q. ilex seedlings in the content of sugar and photosynthetic pigments, while the total amino acid and phenolic content significantly increased under drought conditions. As a response to drought, living Q. ilex seedlings adjust stomata opening and gas exchange, and keep hydrated, photosynthetically active, and metabolically competent. At the population level, based on damage symptoms, mortality, and physiological parameters, the eastern Andalusian populations were more tolerant than the western ones. These observations inform the basis for the selection of resilient genotypes to be used in breeding and reforestation programs.
Collapse
|
27
|
Tong R, Zhou B, Cao Y, Ge X, Jiang L. Metabolic profiles of moso bamboo in response to drought stress in a field investigation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 720:137722. [PMID: 32325609 DOI: 10.1016/j.scitotenv.2020.137722] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 03/02/2020] [Accepted: 03/02/2020] [Indexed: 05/28/2023]
Abstract
An increasing number of moso bamboo habitats are suffering severe drought events. The improvement in our understanding of the mechanisms of drought-resistance in moso bamboo benefits their genetic improvement and maintenance of forest sustainability. Here, we investigated the metabolic changes across the annual growth cycle of moso bamboo in the field under drought stress using liquid chromatography coupled to mass spectrometry (LC-MS) based on untargeted metabolomic profiling. Our results showed that the metabolic profiles induced by drought stress were relatively consistent among the three growth stages. Specifically, most responsive metabolites exhibited enhanced accumulation under drought stress, including anthocyanins, glycosides, organic acids, amino acids, and sugars and sugar alcohols. The potential metabolism pathways involved in the response to drought stress were mainly included into amino acid metabolism and sugar metabolism pathways. Five common responsive metabolic pathways were found among three growth stages, including linoleic acid metabolism, ubiquinone and other terpenoid-quinone biosynthesis, tyrosine metabolism, starch and sucrose metabolism and isoquinoline alkaloid biosynthesis. Overall, our findings provide new insights into the responsive mechanisms of the moso bamboo under drought stress in terms of metabolic profiles.
Collapse
Affiliation(s)
- Ran Tong
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China; Qiangjiangyuan Forest Ecosystem Research Station, State Forestry Administration, Hangzhou, China
| | - Benzhi Zhou
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China; Qiangjiangyuan Forest Ecosystem Research Station, State Forestry Administration, Hangzhou, China.
| | - Yonghui Cao
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China; Qiangjiangyuan Forest Ecosystem Research Station, State Forestry Administration, Hangzhou, China
| | - Xiaogai Ge
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China; Qiangjiangyuan Forest Ecosystem Research Station, State Forestry Administration, Hangzhou, China
| | - Lina Jiang
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| |
Collapse
|
28
|
Sardans J, Gargallo-Garriga A, Urban O, Klem K, Walker TW, Holub P, Janssens IA, Peñuelas J. Ecometabolomics for a Better Understanding of Plant Responses and Acclimation to Abiotic Factors Linked to Global Change. Metabolites 2020; 10:E239. [PMID: 32527044 PMCID: PMC7345909 DOI: 10.3390/metabo10060239] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 05/25/2020] [Accepted: 06/02/2020] [Indexed: 12/19/2022] Open
Abstract
The number of ecometabolomic studies, which use metabolomic analyses to disentangle organisms' metabolic responses and acclimation to a changing environment, has grown exponentially in recent years. Here, we review the results and conclusions of ecometabolomic studies on the impacts of four main drivers of global change (increasing frequencies of drought episodes, heat stress, increasing atmospheric carbon dioxide (CO2) concentrations and increasing nitrogen (N) loads) on plant metabolism. Ecometabolomic studies of drought effects confirmed findings of previous target studies, in which most changes in metabolism are characterized by increased concentrations of soluble sugars and carbohydrate derivatives and frequently also by elevated concentrations of free amino acids. Secondary metabolites, especially flavonoids and terpenes, also commonly exhibited increased concentrations when drought intensified. Under heat and increasing N loads, soluble amino acids derived from glutamate and glutamine were the most responsive metabolites. Foliar metabolic responses to elevated atmospheric CO2 concentrations were dominated by greater production of monosaccharides and associated synthesis of secondary metabolites, such as terpenes, rather than secondary metabolites synthesized along longer sugar pathways involving N-rich precursor molecules, such as those formed from cyclic amino acids and along the shikimate pathway. We suggest that breeding for crop genotypes tolerant to drought and heat stress should be based on their capacity to increase the concentrations of C-rich compounds more than the concentrations of smaller N-rich molecules, such as amino acids. This could facilitate rapid and efficient stress response by reducing protein catabolism without compromising enzymatic capacity or increasing the requirement for re-transcription and de novo biosynthesis of proteins.
Collapse
Affiliation(s)
- Jordi Sardans
- Spain National Research Council (CSIC), Global Ecology Unit CREAF-CSIC-UAB, 08193 Bellaterra, Spain; (A.G.-G.); (J.P.)
- Centre de Recerca Ecològica i Aplicacions Forestals (CREAF) Institute, 08193 Cerdanyola del vallès, Spain
- Global Change Research Institute, Czech Academy of Sciences, Bělidla 986/4a, CZ-60300 Brno, Czech Republic; (O.U.); (K.K.); (P.H.)
| | - Albert Gargallo-Garriga
- Spain National Research Council (CSIC), Global Ecology Unit CREAF-CSIC-UAB, 08193 Bellaterra, Spain; (A.G.-G.); (J.P.)
- Centre de Recerca Ecològica i Aplicacions Forestals (CREAF) Institute, 08193 Cerdanyola del vallès, Spain
- Global Change Research Institute, Czech Academy of Sciences, Bělidla 986/4a, CZ-60300 Brno, Czech Republic; (O.U.); (K.K.); (P.H.)
| | - Otmar Urban
- Global Change Research Institute, Czech Academy of Sciences, Bělidla 986/4a, CZ-60300 Brno, Czech Republic; (O.U.); (K.K.); (P.H.)
| | - Karel Klem
- Global Change Research Institute, Czech Academy of Sciences, Bělidla 986/4a, CZ-60300 Brno, Czech Republic; (O.U.); (K.K.); (P.H.)
| | - Tom W.N. Walker
- Department of Environmental Systems Science, Eidgenössische Technische Hochschule (ETH) Zürich, 8092 Zürich, Switzerland;
| | - Petr Holub
- Global Change Research Institute, Czech Academy of Sciences, Bělidla 986/4a, CZ-60300 Brno, Czech Republic; (O.U.); (K.K.); (P.H.)
| | - Ivan A. Janssens
- Department of Biology, University of Antwerp, 2610 Wilrijk, Belgium;
| | - Josep Peñuelas
- Spain National Research Council (CSIC), Global Ecology Unit CREAF-CSIC-UAB, 08193 Bellaterra, Spain; (A.G.-G.); (J.P.)
- Centre de Recerca Ecològica i Aplicacions Forestals (CREAF) Institute, 08193 Cerdanyola del vallès, Spain
- Global Change Research Institute, Czech Academy of Sciences, Bělidla 986/4a, CZ-60300 Brno, Czech Republic; (O.U.); (K.K.); (P.H.)
| |
Collapse
|
29
|
Li T, Tiiva P, Rinnan Å, Julkunen-Tiitto R, Michelsen A, Rinnan R. Long-term effects of elevated CO2, nighttime warming and drought on plant secondary metabolites in a temperate heath ecosystem. ANNALS OF BOTANY 2020; 125:1065-1075. [PMID: 32157285 PMCID: PMC7262464 DOI: 10.1093/aob/mcaa037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 03/06/2020] [Indexed: 05/30/2023]
Abstract
BACKGROUND AND AIMS Plant secondary metabolites play critical roles in plant stress tolerance and adaptation, and are known to be influenced by the environment and climate changes, yet the impacts and interactions of multiple climate change components are poorly understood, particularly under natural conditions. METHODS Accumulation of phenolics and emissions of volatile organic compounds (VOCs) were assessed on heather, Calluna vulgaris, an abundant evergreen dwarf shrub in European heathlands, after 6 years of exposure to elevated CO2, summer drought and nighttime warming. KEY RESULTS Drought alone had the strongest effects on phenolic concentrations and compositions, with moderate effects of elevated CO2 and temperature. Elevated CO2 exerted the greatest impact on VOC emissions, mainly by increasing monoterpene emissions. The response magnitudes varied among plant tissue types and chemical constituents, and across time. With respect to interactive effects of the studied climate change components, the interaction between drought and elevated CO2 was most apparent. Drought mainly reduced phenolic accumulation and VOC emissions, while elevated CO2 mitigated such effects. CONCLUSIONS In natural ecosystems, co-occurring climate factors can exert complex impacts on plant secondary metabolite profiles, which may in turn alter ecosystem processes.
Collapse
Affiliation(s)
- Tao Li
- Terrestrial Ecology Section, Department of Biology, University of Copenhagen, Universitetsparken 15, Copenhagen Ø, Denmark
| | - Päivi Tiiva
- Department of Biological and Environmental Sciences, University of Eastern Finland, Kuopio Campus, Kuopio, Finland
| | - Åsmund Rinnan
- Chemometrics and Analytical Technology, Department of Food Science, University of Copenhagen, Rolighedsvej 26, Frederiksberg C, Denmark
| | - Riitta Julkunen-Tiitto
- Department of Biological and Environmental Sciences, University of Eastern Finland, Joensuu Campus, Joensuu, Finland
| | - Anders Michelsen
- Terrestrial Ecology Section, Department of Biology, University of Copenhagen, Universitetsparken 15, Copenhagen Ø, Denmark
| | - Riikka Rinnan
- Terrestrial Ecology Section, Department of Biology, University of Copenhagen, Universitetsparken 15, Copenhagen Ø, Denmark
| |
Collapse
|
30
|
Adamczyk B, Heinonsalo J, Simon J. Mechanisms of Carbon Sequestration in Highly Organic Ecosystems - Importance of Chemical Ecology. ChemistryOpen 2020; 9:464-469. [PMID: 32313786 PMCID: PMC7155778 DOI: 10.1002/open.202000015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/10/2020] [Indexed: 11/16/2022] Open
Abstract
Organic matter decomposition plays a major role in the cycling of carbon (C) and nutrients in terrestrial ecosystems across the globe. Climate change accelerates the decomposition rate to potentially increase the release of greenhouse gases and further enhance global warming in the future. However, fractions of organic matter vary in turnover times and parts are stabilized in soils for longer time periods (C sequestration). Overall, a better understanding of the mechanisms underlying C sequestration is needed for the development of effective mitigation policies to reduce land-based production of greenhouse gases. Known mechanisms of C sequestration include the recalcitrance of C input, interactions with soil minerals, aggregate formation, as well as its regulation via abiotic factors. In this Minireview, we discuss the mechanisms behind C sequestration including the recently emerging significance of biochemical interactions between organic matter inputs that lead to C stabilization.
Collapse
Affiliation(s)
| | - Jussi Heinonsalo
- Institute for Atmospheric and Earth System Research (INAR)University of HelsinkiPO Box 2700790HelsinkiFinland
- Department of MicrobiologyUniversity of HelsinkiPO Box 5600790HelsinikiFinland
- Finnish Meteorological InstituteClimate System ResearchPO Box 50300101HelsinkiFinland
| | - Judy Simon
- Plant Interactions Ecophysiology Group, Department of BiologyUniversity of KonstanzUniversitätsstrasse 1078457KonstanzGermany
| |
Collapse
|
31
|
Umair M, Sun N, Du H, Chen K, Tao H, Yuan J, Abbasi AM, Liu C. Differential stoichiometric responses of shrubs and grasses to increased precipitation in a degraded karst ecosystem in Southwestern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 700:134421. [PMID: 31693953 DOI: 10.1016/j.scitotenv.2019.134421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/10/2019] [Accepted: 09/11/2019] [Indexed: 06/10/2023]
Abstract
The elemental concentrations of both plants and soils are sensitive to variations in precipitation due to the limiting roles of water on soil processes and plant growth in karst ecosystems of Southwestern China; however, precipitation is predicted to increase in this region. Nevertheless, it is unclear how the elemental composition of soils and plants might respond to such increases in moisture. Particularly, how potassium (K) may behave as a key mediator in the regulation of the water potential of plants. For this study, the responses of the elemental composition of both soils and plants to the variable addition of water were investigated. Two grasses (Cymbopogon distans and Arundinella setosa) and two shrubs (Carissa spinarum and Bauhinia brachycarpa) were investigated under four levels of watering treatments 0%, +20%, +40%, and +60%, relative to the annual rainfall, respectively. Compared to the control (CK), the soil water content (SWC) increased to 3.75, 3.86, and 4.34 mg g-1 in T1, T2, and T3 groups, respectively (p < 0.05). Non-metal elements (C, H, N, S, and P, except for Si) in the soil were relatively stable with water addition; however, metal elements (Al, Na, Mg, Fe, and K, along with Si) increased significantly, whereas Zn and Ca decreased (p < 0.05). With water addition, leaf N and P remained unchanged in all four species, while K, Mg, and S decreased in both shrubs (higher C:K, N:K, and P:K). Increases in Fe, Si, and K were observed in both grasses (lower C:K, N:K, and P:K), which suggested that K played distinct roles for water regulation in shrubs and grasses. These findings implied that the elemental compositions of both soils and plants might be altered with increasing precipitation in the future, where different plant types may adopt distinct K-regulation strategies to cope with variable soil moisture.
Collapse
Affiliation(s)
- Muhammad Umair
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Urban Forest Research Station, State Forestry and Grassland Administration, China
| | - Ningxiao Sun
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Urban Forest Research Station, State Forestry and Grassland Administration, China; Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, China
| | - Hongmei Du
- School of Design, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kehao Chen
- School of Design, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Huimin Tao
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jun Yuan
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Arshad Mehmood Abbasi
- Department of Environment Sciences, COMSATS University Islamabad, Abbottabad Campus, 22060, Pakistan
| | - Chunjiang Liu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Urban Forest Research Station, State Forestry and Grassland Administration, China; Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, China.
| |
Collapse
|
32
|
Aranda I, Cadahía E, Fernández de Simón B. Leaf ecophysiological and metabolic response in Quercus pyrenaica Willd seedlings to moderate drought under enriched CO 2 atmosphere. JOURNAL OF PLANT PHYSIOLOGY 2020; 244:153083. [PMID: 31812028 DOI: 10.1016/j.jplph.2019.153083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 07/01/2019] [Accepted: 10/11/2019] [Indexed: 06/10/2023]
Abstract
Impact of drought under enriched CO2 atmosphere on ecophysiological and leaf metabolic response of the sub-mediterranean Q. pyrenaica oak was studied. Seedlings growing in climate chamber were submitted to moderate drought (WS) and well-watered (WW) under ambient ([CO2]amb =400 ppm) or CO2 enriched atmosphere ([CO2]enr =800 ppm). The moderate drought endured by seedlings brought about a decrease in leaf gas exchange. However, net photosynthesis (Anet) was highly stimulated for plants at [CO2]enr. There was a decrease of the stomatal conductance to water vapour (gwv) in response to drought, and a subtle trend to be lower under [CO2]enr. The consequence of these changes was an important increase in the intrinsic leaf water use efficiency (WUEi). The electron transport rate (ETR) was almost a 20 percent higher in plants at [CO2]enr regardless drought endured by seedlings. The ETR/Anet was lower under [CO2]enr, pointing to a high capacity to maintain sinks for the uptake of extra carbon in the atmosphere. Impact of drought on the leaf metabolome, as a whole, was more evident than that from [CO2] enrichment of the atmosphere. Changes in pool of non-structural carbohydrates were observed mainly as a consequence of water deficit including increases of fructose, glucose, and proto-quercitol. Most of the metabolites affected by drought back up to levels of non-stressed seedlings after rewetting (recovery phase). It can be concluded that carbon uptake was stimulated by [CO2]enr, even under the stomatal closure that accompanied moderate drought. In the last, there was a positive effect in intrinsic water use efficiency (WUEi), which was much more improved under [CO2]enr. Leaf metabolome was little responsible and some few metabolites changed mainly in response to drought, with little differences between [CO2] growth conditions.
Collapse
Affiliation(s)
- Ismael Aranda
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, O.A., M.P. (INIA), Centro de Investigación Forestal, Carretera de A Coruña Km 7.5, 28040, Madrid, Spain; Instituto de Investigaciones Agroambientales y de Economía del Agua (INAGEA), Palma de Mallorca, Islas Baleares, Spain.
| | - Estrella Cadahía
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, O.A., M.P. (INIA), Centro de Investigación Forestal, Carretera de A Coruña Km 7.5, 28040, Madrid, Spain
| | - Brígida Fernández de Simón
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, O.A., M.P. (INIA), Centro de Investigación Forestal, Carretera de A Coruña Km 7.5, 28040, Madrid, Spain
| |
Collapse
|
33
|
Elucidating Drought Stress Tolerance in European Oaks Through Cross-Species Transcriptomics. G3-GENES GENOMES GENETICS 2019; 9:3181-3199. [PMID: 31395652 PMCID: PMC6778798 DOI: 10.1534/g3.119.400456] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The impact of climate change that comes with a dramatic increase of long periods of extreme summer drought associated with heat is a fundamental challenge for European forests. As a result, forests are expected to shift their distribution patterns toward north-east, which may lead to a dramatic loss in value of European forest land. Consequently, unraveling key processes that underlie drought stress tolerance is not only of great scientific but also of utmost economic importance for forests to withstand future heat and drought wave scenarios. To reveal drought stress-related molecular patterns we applied cross-species comparative transcriptomics of three major European oak species: the less tolerant deciduous pedunculate oak (Quercus robur), the deciduous but quite tolerant pubescent oak (Q. pubescens), and the very tolerant evergreen holm oak (Q. ilex). We found 415, 79, and 222 differentially expressed genes during drought stress in Q. robur, Q. pubescens, and Q. ilex, respectively, indicating species-specific response mechanisms. Further, by comparative orthologous gene family analysis, 517 orthologous genes could be characterized that may play an important role in drought stress adaptation on the genus level. New regulatory candidate pathways and genes in the context of drought stress response were identified, highlighting the importance of the antioxidant capacity, the mitochondrial respiration machinery, the lignification of the water transport system, and the suppression of drought-induced senescence - providing a valuable knowledge base that could be integrated in breeding programs in the face of climate change.
Collapse
|
34
|
Umair M, Sun N, Du H, Yuan J, Abbasi AM, Wen J, Yu W, Zhou J, Liu C. Differential metabolic responses of shrubs and grasses to water additions in arid karst region, southwestern China. Sci Rep 2019; 9:9613. [PMID: 31270427 PMCID: PMC6610130 DOI: 10.1038/s41598-019-46083-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 06/20/2019] [Indexed: 01/13/2023] Open
Abstract
Increasing precipitation has been predicted to occur in the karst areas in southwestern regions of China. However, it is little known how various plants respond to increasing precipitation in this region. Here we determined the impacts of water addition on leaf metabolites of grasses (Cymbopogon distans and Arundinella sitosa) and shrubs (Carissa spinarum and Bauhinia brachycarpa) in this area. Four levels of water additions (CK, T1, T2 and T3 indicating 0%, +20%, +40% and +60% relative to the current monthly precipitation, respectively) were designed. Sphingolipids substantially increased in the leaves of all four species with increasing water supply which suggests that these plants adopted biochemical strategy to tolerate the wet stress. However, both shrubs showed decreases in valine and threonine (amino acids), threonate, succinate and ascorbic acid (organic acids), galactose and rhamnose (sugars) and epicatchin and oleamides (secondary metabolites) with increasing water supply. Both grasses increased in the total metabolites at T1, but the total metabolites in A. sitosa significantly decreased at T2 and T3 while remains unchanged in C. distans. Tri-carboxylic acid cycle and amino acid metabolism in shrubs and shikimate pathway in grasses were strongly affected with water supply. Overall, shrubs and grasses respond differentially to variation in water addition in terms of metabolomics, which is helpful in understanding how plants respond to climate change.
Collapse
Affiliation(s)
- Muhammad Umair
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ningxiao Sun
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hongmei Du
- Design School, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jun Yuan
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Arshad Mehmood Abbasi
- Department of Environment Sciences, COMSATS University, Islamabad, Abbottabad Campus, Pakistan
| | - Jiahao Wen
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wenjuan Yu
- Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai, China
| | - Jinxing Zhou
- Yunnan Karst Ecosystem Research Station, School of Water and Soil Conservation, Beijing Forestry University, Beijing, China
| | - Chunjiang Liu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China. .,Shanghai Urban Forest Research Station, State Forestry Administration, Shanghai, China. .,Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Shanghai, 22060, China.
| |
Collapse
|
35
|
Cui G, Zhao Y, Zhang J, Chao M, Xie K, Zhang C, Sun F, Liu S, Xi Y. Proteomic analysis of the similarities and differences of soil drought and polyethylene glycol stress responses in wheat (Triticum aestivum L.). PLANT MOLECULAR BIOLOGY 2019; 100:391-410. [PMID: 30953278 DOI: 10.1007/s11103-019-00866-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 03/29/2019] [Indexed: 05/02/2023]
Abstract
Our results reveal both soil drought and PEG can enhance malate, glutathione and ascorbate metabolism, and proline biosynthesis, whereas soil drought induced these metabolic pathways to a greater degree than PEG. Polyethylene glycol (PEG) is widely used to simulate osmotic stress, but little is known about the different responses of wheat to PEG stress and soil drought. In this study, isobaric tags for relative quantification (iTRAQ)-based proteomic techniques were used to determine both the proteomic and physiological responses of wheat seedlings to soil drought and PEG. The results showed that photosynthetic rate, stomatal conductance, intercellular CO2 concentration, transpiration rate, maximum potential efficiency of PS II, leaf water content, relative electrolyte leakage, MDA content, and free proline content exhibited similar responses to soil drought and PEG. Approximately 15.8% of differential proteins were induced both by soil drought and PEG. Moreover, both soil drought and PEG inhibited carbon metabolism and the biosynthesis of some amino acids by altering the accumulation of glyceraldehyde-3-phosphate dehydrogenase, ribulose-bisphosphate carboxylase, and phosphoglycerate kinase, but they both enhanced the metabolism of malate, proline, glutathione, and ascorbate by increasing the accumulation of key enzymes including malate dehydrogenase, monodehydroascorbate reductase, pyrroline-5-carboxylate dehydrogenase, pyrroline-5-carboxylate synthetase, ascorbate peroxidase, glutathione peroxidase, and glutathione S-transferase. Notably, the latter five of these enzymes were found to be more sensitive to soil drought. In addition, polyamine biosynthesis was specifically induced by increased gene expression and protein accumulation of polyamine oxidase and spermidine synthase under PEG stress, whereas fructose-bisphosphate aldolase and arginase were induced by soil drought. Therefore, present results suggest that PEG is an effective method to simulate drought stress, but the key proteins related to the metabolism of malate, glutathione, ascorbate, proline, and polyamine need to be confirmed under soil drought.
Collapse
Affiliation(s)
- Guibin Cui
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yanfeng Zhao
- Seed Management Center of Shaanxi Province, Xian, 710021, China
| | - Jialing Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Manning Chao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Kunliang Xie
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Chao Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Fengli Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Shudong Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yajun Xi
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
36
|
Rivas-Ubach A, Liu Y, Steiner AL, Sardans J, Tfaily MM, Kulkarni G, Kim YM, Bourrianne E, Paša-Tolić L, Peñuelas J, Guenther A. Atmo-ecometabolomics: a novel atmospheric particle chemical characterization methodology for ecological research. ENVIRONMENTAL MONITORING AND ASSESSMENT 2019; 191:78. [PMID: 30649631 DOI: 10.1007/s10661-019-7205-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 01/04/2019] [Indexed: 06/09/2023]
Abstract
Aerosol particles play important roles in processes controlling the composition of the atmosphere and function of ecosystems. A better understanding of the composition of aerosol particles is beginning to be recognized as critical for ecological research to further comprehend the link between aerosols and ecosystems. While chemical characterization of aerosols has been practiced in the atmospheric science community, detailed methodology tailored to the needs of ecological research does not exist yet. In this study, we describe an efficient methodology (atmo-ecometabolomics), in step-by-step details, from the sampling to the data analyses, to characterize the chemical composition of aerosol particles, namely atmo-metabolome. This method employs mass spectrometry platforms such as liquid and gas chromatography mass spectrometries (MS) and Fourier transform ion cyclotron resonance MS (FT-ICR-MS). For methodology evaluation, we analyzed aerosol particles collected during two different seasons (spring and summer) in a low-biological-activity ecosystem. Additionally, to further validate our methodology, we analyzed aerosol particles collected in a more biologically active ecosystem during the pollination peaks of three different representative tree species. Our statistical results showed that our sampling and extraction methods are suitable for characterizing the atmo-ecometabolomes in these two distinct ecosystems with any of the analytical platforms. Datasets obtained from each mass spectrometry instrument showed overall significant differences of the atmo-ecometabolomes between spring and summer as well as between the three pollination peak periods. Furthermore, we have identified several metabolites that can be attributed to pollen and other plant-related aerosol particles. We additionally provide a basic guide of the potential use ecometabolomic techniques on different mass spectrometry platforms to accurately analyze the atmo-ecometabolomes for ecological studies. Our method represents an advanced novel approach for future studies in the impact of aerosol particle chemical compositions on ecosystem structure and function and biogeochemistry.
Collapse
Affiliation(s)
- Albert Rivas-Ubach
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, USA.
| | - Yina Liu
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
- Geochemical and Environmental Research Group, Texas A&M University, College Station, TX, 77845, USA
| | - Allison L Steiner
- Department of Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jordi Sardans
- CREAF, Campus UAB, 08913, Cerdanyola del Vallès, Catalonia, Spain
- Global Ecology Unit CREAF-CSIC, Campus UAB, 08913, Cerdanyola del Vallès, Catalonia, Spain
| | - Malak M Tfaily
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Gourihar Kulkarni
- Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Young-Mo Kim
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Eric Bourrianne
- Faculté des Sicences et d'Ingénierie, Université de Toulouse III Paul Sabatier, 31400, Toulouse, France
| | - Ljiljana Paša-Tolić
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Josep Peñuelas
- CREAF, Campus UAB, 08913, Cerdanyola del Vallès, Catalonia, Spain
- Global Ecology Unit CREAF-CSIC, Campus UAB, 08913, Cerdanyola del Vallès, Catalonia, Spain
| | - Alex Guenther
- Department of Earth System Science, University of California, Irvine, Irvine, CA, 92697, USA
| |
Collapse
|
37
|
Rivas-Ubach A, Peñuelas J, Hódar JA, Oravec M, Paša-Tolić L, Urban O, Sardans J. We Are What We Eat: A Stoichiometric and Ecometabolomic Study of Caterpillars Feeding on Two Pine Subspecies of Pinus sylvestris. Int J Mol Sci 2018; 20:E59. [PMID: 30586850 PMCID: PMC6337320 DOI: 10.3390/ijms20010059] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 12/17/2018] [Accepted: 12/20/2018] [Indexed: 11/28/2022] Open
Abstract
Many studies have addressed several plant-insect interaction topics at nutritional, molecular, physiological, and evolutionary levels. However, it is still unknown how flexible the metabolism and the nutritional content of specialist insect herbivores feeding on different closely related plants can be. We performed elemental, stoichiometric, and metabolomics analyses on leaves of two coexisting Pinus sylvestris subspecies and on their main insect herbivore; the caterpillar of the processionary moth (Thaumetopoea pityocampa). Caterpillars feeding on different pine subspecies had distinct overall metabolome structure, accounting for over 10% of the total variability. Although plants and insects have very divergent metabolomes, caterpillars showed certain resemblance to their plant-host metabolome. In addition, few plant-related secondary metabolites were found accumulated in caterpillar tissues which could potentially be used for self-defense. Caterpillars feeding on N and P richer needles had lower N and P tissue concentration and higher C:N and C:P ratios, suggesting that nutrient transfer is not necessarily linear through trophic levels and other plant-metabolic factors could be interfering. This exploratory study showed that little chemical differences between plant food sources can impact the overall metabolome of specialist insect herbivores. Significant nutritional shifts in herbivore tissues could lead to larger changes of the trophic web structure.
Collapse
Affiliation(s)
- Albert Rivas-Ubach
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, USA.
- CREAF, Center for Ecological and Forestry Applications, Cerdanyola del Vallès, 08913 Catalonia, Spain.
| | - Josep Peñuelas
- CREAF, Center for Ecological and Forestry Applications, Cerdanyola del Vallès, 08913 Catalonia, Spain.
- CSIC, Global Ecology Unit CREAF-CEAB-CSIC-UAB, Cerdanyola del Vallès, 08913 Catalonia, Spain.
| | - José Antonio Hódar
- Grupo de Ecología Terrestre, Departamento de Biología Animal y Ecología, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain.
| | - Michal Oravec
- Global Change Research Institute, Czech Academy of Sciences, Bĕlidla 4a, CZ-603 00 Brno, Czech Republic.
| | - Ljiljana Paša-Tolić
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, USA.
| | - Otmar Urban
- Global Change Research Institute, Czech Academy of Sciences, Bĕlidla 4a, CZ-603 00 Brno, Czech Republic.
| | - Jordi Sardans
- CREAF, Center for Ecological and Forestry Applications, Cerdanyola del Vallès, 08913 Catalonia, Spain.
- CSIC, Global Ecology Unit CREAF-CEAB-CSIC-UAB, Cerdanyola del Vallès, 08913 Catalonia, Spain.
| |
Collapse
|
38
|
Nguyen D, Poeschl Y, Lortzing T, Hoogveld R, Gogol-Döring A, Cristescu SM, Steppuhn A, Mariani C, Rieu I, van Dam NM. Interactive Responses of Solanum Dulcamara to Drought and Insect Feeding are Herbivore Species-Specific. Int J Mol Sci 2018; 19:ijms19123845. [PMID: 30513878 PMCID: PMC6321310 DOI: 10.3390/ijms19123845] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/27/2018] [Accepted: 11/30/2018] [Indexed: 12/04/2022] Open
Abstract
In nature, plants are frequently subjected to multiple biotic and abiotic stresses, resulting in a convergence of adaptive responses. We hypothesised that hormonal signalling regulating defences to different herbivores may interact with drought responses, causing distinct resistance phenotypes. To test this, we studied the hormonal and transcriptomic responses of Solanum dulcamara subjected to drought and herbivory by the generalist Spodoptera exigua (beet armyworm; BAW) or the specialist Leptinotarsa decemlineata (Colorado potato beetle; CPB). Bioassays showed that the performance of BAW, but not CPB, decreased on plants under drought compared to controls. While drought did not alter BAW-induced hormonal responses, it enhanced the CPB-induced accumulation of jasmonic acid and salicylic acid (SA), and suppressed ethylene (ET) emission. Microarray analyses showed that under drought, BAW herbivory enhanced several herbivore-induced responses, including cell-wall remodelling and the metabolism of carbohydrates, lipids, and secondary metabolites. In contrast, CPB herbivory enhanced several photosynthesis-related and pathogen responses in drought-stressed plants. This may divert resources away from defence production and increase leaf nutritive value. In conclusion, while BAW suffers from the drought-enhanced defences, CPB may benefit from the effects of enhanced SA and reduced ET signalling. This suggests that the fine-tuned interaction between the plant and its specialist herbivore is sustained under drought.
Collapse
Affiliation(s)
- Duy Nguyen
- Molecular Interaction Ecology, Institute of Water and Wetland Research, Radboud University, P.O. Box 9010, 6500 GL Nijmegen, The Netherlands.
- Molecular Plant Physiology, Institute for Water and Wetland Research, Radboud University, PO Box 9010, 6500 GL Nijmegen, The Netherlands.
| | - Yvonne Poeschl
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany.
- Institute of Computer Science, Martin Luther University Halle-Wittenberg, Von-Seckendorff-Platz 1, 06108 Halle, Germany.
| | - Tobias Lortzing
- Molecular Ecology, Institute of Biology, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Albrecht-Thaer-Weg 6, 14195 Berlin, Germany.
| | - Rick Hoogveld
- Molecular Interaction Ecology, Institute of Water and Wetland Research, Radboud University, P.O. Box 9010, 6500 GL Nijmegen, The Netherlands.
| | - Andreas Gogol-Döring
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany.
- Institute of Computer Science, Martin Luther University Halle-Wittenberg, Von-Seckendorff-Platz 1, 06108 Halle, Germany.
| | - Simona M Cristescu
- Molecular and Laser Physics, Institute for Molecules and Materials, Radboud University, PO Box 9010, 6500 GL Nijmegen, The Netherlands.
| | - Anke Steppuhn
- Molecular Ecology, Institute of Biology, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Albrecht-Thaer-Weg 6, 14195 Berlin, Germany.
| | - Celestina Mariani
- Molecular Plant Physiology, Institute for Water and Wetland Research, Radboud University, PO Box 9010, 6500 GL Nijmegen, The Netherlands.
| | - Ivo Rieu
- Molecular Plant Physiology, Institute for Water and Wetland Research, Radboud University, PO Box 9010, 6500 GL Nijmegen, The Netherlands.
| | - Nicole M van Dam
- Molecular Interaction Ecology, Institute of Water and Wetland Research, Radboud University, P.O. Box 9010, 6500 GL Nijmegen, The Netherlands.
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany.
- Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger-Str. 159, 07743 Jena, Germany.
| |
Collapse
|
39
|
Metabolite profiling and molecular responses in a drought-tolerant savory, Satureja rechingeri exposed to water deficit. 3 Biotech 2018; 8:477. [PMID: 30456011 DOI: 10.1007/s13205-018-1491-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 10/24/2018] [Indexed: 10/27/2022] Open
Abstract
This study aimed to determine the response of Satureja rechingeri to water deficit by quantifying the expression of three targeted genes and four traditional reference genes using quantitative real-time PCR analysis (RT-qPCR). Drought stress was imposed by withholding water 4 months after planting. Profiling of volatile and non-volatile compounds using gas chromatography/mass spectrometry (GC/MS) and high-performance thin layer chromatography (HPTLC) showed an increasing-decreasing trend of major phenolic and terpenoid compounds such as rosmarinic and caffeic acids, carvacrole, thymol and p-Cymene. Drought stress also lead to significant increases in oil yield, soluble sugars and proline as well as significant reductions in leaf water potential (LWP), relative water content (RWC), and pigments. Metabolite profiling revealed the strategies savory employed to generate different biochemical phenotypes. RT-qPCR analysis showed that up-regulation of the three genes [1-deoxy-d-xylulose 5-phosphate reductoisomerase (DXR), 3-hydroxy-3-methylglutaryl-coenzyme. A reductase (HMGR) and rosmarinic acid synthase: 4-coumaroyl-CoA (RAS)] selected from the phenylpropanoid and terpenoid biosynthesis pathways were markedly enhanced at the transcript levels of the regulatory steps and directly increased the production of secondary metabolites, including phenolic and terpenoid compounds. Actin protein (ACT), elongation factor 1-α (EF1α), glyceraldehyde-3-phosphate dehydrogenase cytosolic (GAPC) and ubiquitin-conjugating enzyme (UBC) were used as traditional reference genes. UBC's suitability as the reference genes were verified in S. rechingeri. The study's results provide the foundation for gene expression analysis of savory and other species of Lamiaceae. Thus, the effective application of drought stress before harvesting can increase the quantity and quality of raw material.
Collapse
|
40
|
Holopainen JK, Virjamo V, Ghimire RP, Blande JD, Julkunen-Tiitto R, Kivimäenpää M. Climate Change Effects on Secondary Compounds of Forest Trees in the Northern Hemisphere. FRONTIERS IN PLANT SCIENCE 2018; 9:1445. [PMID: 30333846 PMCID: PMC6176061 DOI: 10.3389/fpls.2018.01445] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 09/12/2018] [Indexed: 05/09/2023]
Abstract
Plant secondary compounds (PSCs), also called secondary metabolites, have high chemical and structural diversity and appear as non-volatile or volatile compounds. These compounds may have evolved to have specific physiological and ecological functions in the adaptation of plants to their growth environment. PSCs are produced by several metabolic pathways and many PSCs are specific for a few plant genera or families. In forest ecosystems, full-grown trees constitute the majority of plant biomass and are thus capable of producing significant amounts of PSCs. We summarize older literature and review recent progress in understanding the effects of abiotic and biotic factors on PSC production of forest trees and PSC behavior in forest ecosystems. The roles of different PSCs under stress and their important role in protecting plants against abiotic and biotic factors are also discussed. There was strong evidence that major climate change factors, CO2 and warming, have contradictory effects on the main PSC groups. CO2 increases phenolic compounds in foliage, but limits terpenoids in foliage and emissions. Warming decreases phenolic compounds in foliage but increases terpenoids in foliage and emissions. Other abiotic stresses have more variable effects. PSCs may help trees to adapt to a changing climate and to pressure from current and invasive pests and pathogens. Indirect adaptation comes via the effects of PSCs on soil chemistry and nutrient cycling, the formation of cloud condensation nuclei from tree volatiles and by CO2 sequestration into PSCs in the wood of living and dead forest trees.
Collapse
Affiliation(s)
- Jarmo K. Holopainen
- Department of Environmental and Biological Sciences, Kuopio Campus, University of Eastern Finland, Kuopio, Finland
| | - Virpi Virjamo
- Department of Environmental and Biological Sciences, Joensuu Campus, University of Eastern Finland, Joensuu, Finland
| | - Rajendra P. Ghimire
- Department of Environmental and Biological Sciences, Kuopio Campus, University of Eastern Finland, Kuopio, Finland
| | - James D. Blande
- Department of Environmental and Biological Sciences, Kuopio Campus, University of Eastern Finland, Kuopio, Finland
| | - Riitta Julkunen-Tiitto
- Department of Environmental and Biological Sciences, Joensuu Campus, University of Eastern Finland, Joensuu, Finland
| | - Minna Kivimäenpää
- Department of Environmental and Biological Sciences, Kuopio Campus, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
41
|
Gargallo-Garriga A, Preece C, Sardans J, Oravec M, Urban O, Peñuelas J. Root exudate metabolomes change under drought and show limited capacity for recovery. Sci Rep 2018; 8:12696. [PMID: 30140025 PMCID: PMC6107494 DOI: 10.1038/s41598-018-30150-0] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 07/10/2018] [Indexed: 11/10/2022] Open
Abstract
Root exudates comprise a large variety of compounds released by plants into the rhizosphere, including low-molecular-weight primary metabolites (particularly saccharides, amino acids and organic acids) and secondary metabolites (phenolics, flavonoids and terpenoids). Changes in exudate composition could have impacts on the plant itself, on other plants, on soil properties (e.g. amount of soil organic matter), and on soil organisms. The effects of drought on the composition of root exudates, however, have been rarely studied. We used an ecometabolomics approach to identify the compounds in the exudates of Quercus ilex (holm oak) under an experimental drought gradient and subsequent recovery. Increasing drought stress strongly affected the composition of the exudate metabolome. Plant exudates under drought consisted mainly of secondary metabolites (71% of total metabolites) associated with plant responses to drought stress, whereas the metabolite composition under recovery shifted towards a dominance of primary metabolites (81% of total metabolites). These results strongly suggested that roots exude the most abundant root metabolites. The exudates were changed irreversibly by the lack of water under extreme drought conditions, and the plants could not recover.
Collapse
Affiliation(s)
- Albert Gargallo-Garriga
- CSIC, Global Ecology Unit CREAF- CSIC-UAB, Bellaterra, 08193, Catalonia, Spain.
- CREAF, Cerdanyola del Vallès, 08193, Catalonia, Spain.
- Global Change Research Institute, The Czech Academy of Sciences, Belidla 986/4a, CZ-60300, Brno, Czech Republic.
| | - Catherine Preece
- CSIC, Global Ecology Unit CREAF- CSIC-UAB, Bellaterra, 08193, Catalonia, Spain
- CREAF, Cerdanyola del Vallès, 08193, Catalonia, Spain
| | - Jordi Sardans
- CSIC, Global Ecology Unit CREAF- CSIC-UAB, Bellaterra, 08193, Catalonia, Spain
- CREAF, Cerdanyola del Vallès, 08193, Catalonia, Spain
| | - Michal Oravec
- Global Change Research Institute, The Czech Academy of Sciences, Belidla 986/4a, CZ-60300, Brno, Czech Republic
| | - Otmar Urban
- Global Change Research Institute, The Czech Academy of Sciences, Belidla 986/4a, CZ-60300, Brno, Czech Republic
| | - Josep Peñuelas
- CSIC, Global Ecology Unit CREAF- CSIC-UAB, Bellaterra, 08193, Catalonia, Spain
- CREAF, Cerdanyola del Vallès, 08193, Catalonia, Spain
| |
Collapse
|
42
|
Pais AL, Li X, (Jenny) Xiang Q. Discovering variation of secondary metabolite diversity and its relationship with disease resistance in Cornus florida L. Ecol Evol 2018; 8:5619-5636. [PMID: 29938079 PMCID: PMC6010843 DOI: 10.1002/ece3.4090] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 03/05/2018] [Accepted: 03/13/2018] [Indexed: 12/31/2022] Open
Abstract
Understanding intraspecific relationships between genetic and functional diversity is a major goal in the field of evolutionary biology and is important for conserving biodiversity. Linking intraspecific molecular patterns of plants to ecological pressures and trait variation remains difficult due to environment-driven plasticity. Next-generation sequencing, untargeted liquid chromatography-mass spectrometry (LC-MS) profiling, and interdisciplinary approaches integrating population genomics, metabolomics, and community ecology permit novel strategies to tackle this problem. We analyzed six natural populations of the disease-threatened Cornus florida L. from distinct ecological regions using genotype-by-sequencing markers and LC-MS-based untargeted metabolite profiling. We tested the hypothesis that higher genetic diversity in C. florida yielded higher chemical diversity and less disease susceptibility (screening hypothesis), and we also determined whether genetically similar subpopulations were similar in chemical composition. Most importantly, we identified metabolites that were associated with candidate loci or were predictive biomarkers of healthy or diseased plants after controlling for environment. Subpopulation clustering patterns based on genetic or chemical distances were largely congruent. While differences in genetic diversity were small among subpopulations, we did observe notable similarities in patterns between subpopulation averages of rarefied-allelic and chemical richness. More specifically, we found that the most abundant compound of a correlated group of putative terpenoid glycosides and derivatives was correlated with tree health when considering chemodiversity. Random forest biomarker and genomewide association tests suggested that this putative iridoid glucoside and other closely associated chemical features were correlated to SNPs under selection.
Collapse
Affiliation(s)
- Andrew L. Pais
- Department of Plant and Microbial BiologyNorth Carolina State UniversityRaleighNorth Carolina
| | - Xu Li
- Department of Plant and Microbial BiologyNorth Carolina State UniversityRaleighNorth Carolina
- Plants for Human Health InstituteNorth Carolina State UniversityKannapolisNorth Carolina
| | - Qiu‐Yun (Jenny) Xiang
- Department of Plant and Microbial BiologyNorth Carolina State UniversityRaleighNorth Carolina
| |
Collapse
|
43
|
Peters K, Worrich A, Weinhold A, Alka O, Balcke G, Birkemeyer C, Bruelheide H, Calf OW, Dietz S, Dührkop K, Gaquerel E, Heinig U, Kücklich M, Macel M, Müller C, Poeschl Y, Pohnert G, Ristok C, Rodríguez VM, Ruttkies C, Schuman M, Schweiger R, Shahaf N, Steinbeck C, Tortosa M, Treutler H, Ueberschaar N, Velasco P, Weiß BM, Widdig A, Neumann S, Dam NMV. Current Challenges in Plant Eco-Metabolomics. Int J Mol Sci 2018; 19:E1385. [PMID: 29734799 PMCID: PMC5983679 DOI: 10.3390/ijms19051385] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/24/2018] [Accepted: 04/25/2018] [Indexed: 12/22/2022] Open
Abstract
The relatively new research discipline of Eco-Metabolomics is the application of metabolomics techniques to ecology with the aim to characterise biochemical interactions of organisms across different spatial and temporal scales. Metabolomics is an untargeted biochemical approach to measure many thousands of metabolites in different species, including plants and animals. Changes in metabolite concentrations can provide mechanistic evidence for biochemical processes that are relevant at ecological scales. These include physiological, phenotypic and morphological responses of plants and communities to environmental changes and also interactions with other organisms. Traditionally, research in biochemistry and ecology comes from two different directions and is performed at distinct spatiotemporal scales. Biochemical studies most often focus on intrinsic processes in individuals at physiological and cellular scales. Generally, they take a bottom-up approach scaling up cellular processes from spatiotemporally fine to coarser scales. Ecological studies usually focus on extrinsic processes acting upon organisms at population and community scales and typically study top-down and bottom-up processes in combination. Eco-Metabolomics is a transdisciplinary research discipline that links biochemistry and ecology and connects the distinct spatiotemporal scales. In this review, we focus on approaches to study chemical and biochemical interactions of plants at various ecological levels, mainly plant⁻organismal interactions, and discuss related examples from other domains. We present recent developments and highlight advancements in Eco-Metabolomics over the last decade from various angles. We further address the five key challenges: (1) complex experimental designs and large variation of metabolite profiles; (2) feature extraction; (3) metabolite identification; (4) statistical analyses; and (5) bioinformatics software tools and workflows. The presented solutions to these challenges will advance connecting the distinct spatiotemporal scales and bridging biochemistry and ecology.
Collapse
Affiliation(s)
- Kristian Peters
- Leibniz Institute of Plant Biochemistry, Stress and Developmental Biology, Weinberg 3, 06120 Halle (Saale), Germany.
| | - Anja Worrich
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany.
- Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger-Str. 159, 07743 Jena, Germany.
- UFZ-Helmholtz-Centre for Environmental Research, Department Environmental Microbiology, Permoserstraße 15, 04318 Leipzig, Germany.
| | - Alexander Weinhold
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany.
- Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger-Str. 159, 07743 Jena, Germany.
| | - Oliver Alka
- Applied Bioinformatics Group, Center for Bioinformatics, University of Tübingen, Sand 14, 72076 Tübingen, Germany.
| | - Gerd Balcke
- Leibniz Institute of Plant Biochemistry, Cell and Metabolic Biology, Weinberg 3, 06120 Halle (Saale), Germany.
| | - Claudia Birkemeyer
- Institute of Analytical Chemistry, University of Leipzig, Linnéstr. 3, 04103 Leipzig, Germany.
| | - Helge Bruelheide
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany.
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Am Kirchtor 1, 06108 Halle (Saale), Germany.
| | - Onno W Calf
- Molecular Interaction Ecology, Institute for Water and Wetland Research (IWWR), Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| | - Sophie Dietz
- Leibniz Institute of Plant Biochemistry, Stress and Developmental Biology, Weinberg 3, 06120 Halle (Saale), Germany.
| | - Kai Dührkop
- Department of Bioinformatics, Friedrich Schiller University Jena, Ernst-Abbe-Platz 2, 07743 Jena, Germany.
| | - Emmanuel Gaquerel
- Centre for Organismal Studies, Heidelberg University, Im Neuenheimer Feld 360, 69120 Heidelberg, Germany.
| | - Uwe Heinig
- Weizmann Institute of Science, Faculty of Biochemistry, Department of Plant Sciences, 234 Herzl St., P.O. Box 26, Rehovot 7610001, Israel.
| | - Marlen Kücklich
- Institute of Biology, University of Leipzig, Talstraße 33, 04109 Leipzig, Germany.
| | - Mirka Macel
- Molecular Interaction Ecology, Institute for Water and Wetland Research (IWWR), Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| | - Caroline Müller
- Chemical Ecology, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany.
| | - Yvonne Poeschl
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany.
- Institute of Informatics, Martin Luther University Halle-Wittenberg, Von-Seckendorff-Platz 1, 06120 Halle (Saale), Germany.
| | - Georg Pohnert
- Institute of Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Lessingstr. 8, 07743 Jena, Germany.
| | - Christian Ristok
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany.
| | - Victor Manuel Rodríguez
- Group of Genetics, Breeding and Biochemistry of Brassica, Misión Biológica de Galicia (CSIC), Apartado 28, 36080 Pontevedra, Spain.
| | - Christoph Ruttkies
- Leibniz Institute of Plant Biochemistry, Stress and Developmental Biology, Weinberg 3, 06120 Halle (Saale), Germany.
| | - Meredith Schuman
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany.
| | - Rabea Schweiger
- Chemical Ecology, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany.
| | - Nir Shahaf
- Weizmann Institute of Science, Faculty of Biochemistry, Department of Plant Sciences, 234 Herzl St., P.O. Box 26, Rehovot 7610001, Israel.
| | - Christoph Steinbeck
- Institute of Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Lessingstr. 8, 07743 Jena, Germany.
| | - Maria Tortosa
- Group of Genetics, Breeding and Biochemistry of Brassica, Misión Biológica de Galicia (CSIC), Apartado 28, 36080 Pontevedra, Spain.
| | - Hendrik Treutler
- Leibniz Institute of Plant Biochemistry, Stress and Developmental Biology, Weinberg 3, 06120 Halle (Saale), Germany.
| | - Nico Ueberschaar
- Institute of Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Lessingstr. 8, 07743 Jena, Germany.
| | - Pablo Velasco
- Group of Genetics, Breeding and Biochemistry of Brassica, Misión Biológica de Galicia (CSIC), Apartado 28, 36080 Pontevedra, Spain.
| | - Brigitte M Weiß
- Institute of Biology, University of Leipzig, Talstraße 33, 04109 Leipzig, Germany.
| | - Anja Widdig
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany.
- Institute of Biology, University of Leipzig, Talstraße 33, 04109 Leipzig, Germany.
- Research Group of Primate Kin Selection, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany.
| | - Steffen Neumann
- Leibniz Institute of Plant Biochemistry, Stress and Developmental Biology, Weinberg 3, 06120 Halle (Saale), Germany.
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany.
| | - Nicole M van Dam
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany.
- Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger-Str. 159, 07743 Jena, Germany.
| |
Collapse
|
44
|
Rivas-Ubach A, Liu Y, Bianchi TS, Tolić N, Jansson C, Paša-Tolić L. Moving beyond the van Krevelen Diagram: A New Stoichiometric Approach for Compound Classification in Organisms. Anal Chem 2018; 90:6152-6160. [PMID: 29671593 DOI: 10.1021/acs.analchem.8b00529] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
van Krevelen diagrams (O/C vs H/C ratios of elemental formulas) have been widely used in studies to obtain an estimation of the main compound categories present in environmental samples. However, the limits defining a specific compound category based solely on O/C and H/C ratios of elemental formulas have never been accurately listed or proposed to classify metabolites in biological samples. Furthermore, while O/C vs H/C ratios of elemental formulas can provide an overview of the compound categories, such classification is inefficient because of the large overlap among different compound categories along both axes. We propose a more accurate compound classification for biological samples analyzed by high-resolution mass spectrometry based on an assessment of the C/H/O/N/P stoichiometric ratios of over 130 000 elemental formulas of compounds classified in 6 main categories: lipids, peptides, amino sugars, carbohydrates, nucleotides, and phytochemical compounds (oxy-aromatic compounds). Our multidimensional stoichiometric compound classification (MSCC) constraints showed a highly accurate categorization of elemental formulas to the main compound categories in biological samples with over 98% of accuracy representing a substantial improvement over any classification based on the classic van Krevelen diagram. This method represents a signficant step forward in environmental research, especially ecological stoichiometry and eco-metabolomics studies, by providing a novel and robust tool to improve our understanding of the ecosystem structure and function through the chemical characterization of biological samples.
Collapse
Affiliation(s)
- Albert Rivas-Ubach
- Environmental Molecular Sciences Division , Pacific Northwest National Laboratory , Richland , Washington 99354 , United States
| | - Yina Liu
- Environmental Molecular Sciences Division , Pacific Northwest National Laboratory , Richland , Washington 99354 , United States.,Geochemical and Environmental Research Group , Texas A&M University , College Station , Texas 77845 , United States
| | - Thomas S Bianchi
- Department of Geological Sciences , University of Florida , Gainesville , Florida 32611-2120 , United States
| | - Nikola Tolić
- Environmental Molecular Sciences Division , Pacific Northwest National Laboratory , Richland , Washington 99354 , United States
| | - Christer Jansson
- Environmental Molecular Sciences Division , Pacific Northwest National Laboratory , Richland , Washington 99354 , United States
| | - Ljiljana Paša-Tolić
- Environmental Molecular Sciences Division , Pacific Northwest National Laboratory , Richland , Washington 99354 , United States
| |
Collapse
|
45
|
Rodríguez-Calcerrada J, Rodrigues AM, Perdiguero P, António C, Atkin OK, Li M, Collada C, Gil L. A molecular approach to drought-induced reduction in leaf CO 2 exchange in drought-resistant Quercus ilex. PHYSIOLOGIA PLANTARUM 2018; 162:394-408. [PMID: 28984911 DOI: 10.1111/ppl.12649] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 09/20/2017] [Accepted: 10/03/2017] [Indexed: 06/07/2023]
Abstract
Drought-induced reduction of leaf gas exchange entails a complex regulation of the plant leaf metabolism. We used a combined molecular and physiological approach to understand leaf photosynthetic and respiratory responses of 2-year-old Quercus ilex seedlings to drought. Mild drought stress resulted in glucose accumulation while net photosynthetic CO2 uptake (Pn ) remained unchanged, suggesting a role of glucose in stress signaling and/or osmoregulation. Simple sugars and sugar alcohols increased throughout moderate-to-very severe drought stress conditions, in parallel to a progressive decline in Pn and the quantum efficiency of photosystem II; by contrast, minor changes occurred in respiration rates until drought stress was very severe. At very severe drought stress, 2-oxoglutarate dehydrogenase complex gene expression significantly decreased, and the abundance of most amino acids dramatically increased, especially that of proline and γ-aminobutyric acid (GABA) suggesting enhanced protection against oxidative damage and a reorganization of the tricarboxylic cycle acid cycle via the GABA shunt. Altogether, our results point to Q. ilex drought tolerance being linked to signaling and osmoregulation by hexoses during early stages of drought stress, and enhanced protection against oxidative damage by polyols and amino acids under severe drought stress.
Collapse
Affiliation(s)
- Jesús Rodríguez-Calcerrada
- Forest History, Physiology and Genetics Research Group, School of Forestry Engineering, Technical University of Madrid, Madrid 28040, Spain
| | - Ana M Rodrigues
- Plant Metabolomics Laboratory, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), 2780-157 Oeiras, Portugal
| | - Pedro Perdiguero
- Forest History, Physiology and Genetics Research Group, School of Forestry Engineering, Technical University of Madrid, Madrid 28040, Spain
- Forest Biotech Laboratory, Instituto de Biologia Experimental e Tecnológica, iBET, 2781-901 Oeiras, Portugal
| | - Carla António
- Plant Metabolomics Laboratory, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), 2780-157 Oeiras, Portugal
| | - Owen K Atkin
- ARC Centre of Excellence in Plant Energy Biology, Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, 2601, Australia
| | - Meng Li
- Forest History, Physiology and Genetics Research Group, School of Forestry Engineering, Technical University of Madrid, Madrid 28040, Spain
| | - Carmen Collada
- Forest History, Physiology and Genetics Research Group, School of Forestry Engineering, Technical University of Madrid, Madrid 28040, Spain
| | - Luis Gil
- Forest History, Physiology and Genetics Research Group, School of Forestry Engineering, Technical University of Madrid, Madrid 28040, Spain
| |
Collapse
|
46
|
|
47
|
Rivas-Ubach A, Sardans J, Hódar JA, Garcia-Porta J, Guenther A, Paša-Tolić L, Oravec M, Urban O, Peñuelas J. Close and distant: Contrasting the metabolism of two closely related subspecies of Scots pine under the effects of folivory and summer drought. Ecol Evol 2017; 7:8976-8988. [PMID: 29152192 PMCID: PMC5677489 DOI: 10.1002/ece3.3343] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 07/10/2017] [Accepted: 08/03/2017] [Indexed: 01/03/2023] Open
Abstract
Metabolomes, as chemical phenotypes of organisms, are likely not only shaped by the environment but also by common ancestry. If this is the case, we expect that closely related species of pines will tend to reach similar metabolomic solutions to the same environmental stressors. We examined the metabolomes of two sympatric subspecies of Pinus sylvestris in Sierra Nevada (southern Iberian Peninsula), in summer and winter and exposed to folivory by the pine processionary moth. The overall metabolomes differed between the subspecies but both tended to respond more similarly to folivory. The metabolomes of the subspecies were more dissimilar in summer than in winter, and iberica trees had higher concentrations of metabolites directly related to drought stress. Our results are consistent with the notion that certain plant metabolic responses associated with folivory have been phylogenetically conserved. The larger divergence between subspecies metabolomes in summer is likely due to the warmer and drier conditions that the northern iberica subspecies experience in Sierra Nevada. Our results provide crucial insights into how iberica populations would respond to the predicted conditions of climate change under an increased defoliation in the Mediterranean Basin.
Collapse
Affiliation(s)
- Albert Rivas-Ubach
- Environmental Molecular Sciences Division Pacific Northwest National Laboratory Richland WA USA.,CREAF Bellaterra, Barcelona Spain
| | - Jordi Sardans
- CREAF Bellaterra, Barcelona Spain.,CSIC Global Ecology Unit CREAF- CSIC-UAB Bellaterra, Barcelona Spain
| | - José Antonio Hódar
- Grupo de Ecología Terrestre Departamento de Biología Animal y Ecología Facultad de Ciencias Universidad de Granada Granada Spain
| | | | - Alex Guenther
- Department of Earth System Science University of California Irvine CA USA
| | - Ljiljana Paša-Tolić
- Environmental Molecular Sciences Division Pacific Northwest National Laboratory Richland WA USA
| | - Michal Oravec
- Global Change Research Institute Czech Academy of Sciences Bělidla 986/4a 603 00 Brno Czech Republic
| | - Otmar Urban
- Global Change Research Institute Czech Academy of Sciences Bělidla 986/4a 603 00 Brno Czech Republic
| | - Josep Peñuelas
- CREAF Bellaterra, Barcelona Spain.,CSIC Global Ecology Unit CREAF- CSIC-UAB Bellaterra, Barcelona Spain
| |
Collapse
|
48
|
Bonnet C, Lassueur S, Ponzio C, Gols R, Dicke M, Reymond P. Combined biotic stresses trigger similar transcriptomic responses but contrasting resistance against a chewing herbivore in Brassica nigra. BMC PLANT BIOLOGY 2017; 17:127. [PMID: 28716054 PMCID: PMC5513356 DOI: 10.1186/s12870-017-1074-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 07/10/2017] [Indexed: 05/06/2023]
Abstract
BACKGROUND In nature, plants are frequently exposed to simultaneous biotic stresses that activate distinct and often antagonistic defense signaling pathways. How plants integrate this information and whether they prioritize one stress over the other is not well understood. RESULTS We investigated the transcriptome signature of the wild annual crucifer, Brassica nigra, in response to eggs and caterpillars of Pieris brassicae butterflies, Brevicoryne brassicae aphids and the bacterial phytopathogen Xanthomonas campestris pv. raphani (Xcr). Pretreatment with egg extract, aphids, or Xcr had a weak impact on the subsequent transcriptome profile of plants challenged with caterpillars, suggesting that the second stress dominates the transcriptional response. Nevertheless, P. brassicae larval performance was strongly affected by egg extract or Xcr pretreatment and depended on the site where the initial stress was applied. Although egg extract and Xcr pretreatments inhibited insect-induced defense gene expression, suggesting salicylic acid (SA)/jasmonic acid (JA) pathway cross talk, this was not strictly correlated with larval performance. CONCLUSION These results emphasize the need to better integrate plant responses at different levels of biological organization and to consider localized effects in order to predict the consequence of multiple stresses on plant resistance.
Collapse
Affiliation(s)
- Christelle Bonnet
- Department of Plant Molecular Biology, University of Lausanne, Biophore Building, 1015, Lausanne, Switzerland
| | - Steve Lassueur
- Department of Plant Molecular Biology, University of Lausanne, Biophore Building, 1015, Lausanne, Switzerland
| | - Camille Ponzio
- Laboratory of Entomology, Wageningen University, P.O. Box 16, 6700 AA, Wageningen, The Netherlands
| | - Rieta Gols
- Laboratory of Entomology, Wageningen University, P.O. Box 16, 6700 AA, Wageningen, The Netherlands
| | - Marcel Dicke
- Laboratory of Entomology, Wageningen University, P.O. Box 16, 6700 AA, Wageningen, The Netherlands
| | - Philippe Reymond
- Department of Plant Molecular Biology, University of Lausanne, Biophore Building, 1015, Lausanne, Switzerland.
| |
Collapse
|
49
|
Aranda I, Sánchez-Gómez D, de Miguel M, Mancha JA, Guevara MA, Cadahía E, Fernández de Simón MB. Fagus sylvatica L. provenances maintain different leaf metabolic profiles and functional response. ACTA OECOLOGICA-INTERNATIONAL JOURNAL OF ECOLOGY 2017. [DOI: 10.1016/j.actao.2017.05.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
50
|
Kuzminsky E, Meschini R, Terzoli S, Pavani L, Silvestri C, Choury Z, Scarascia-Mugnozza G. Isolation of Mesophyll Protoplasts from Mediterranean Woody Plants for the Study of DNA Integrity under Abiotic Stress. FRONTIERS IN PLANT SCIENCE 2016; 7:1168. [PMID: 27574524 PMCID: PMC4983556 DOI: 10.3389/fpls.2016.01168] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 07/20/2016] [Indexed: 05/24/2023]
Abstract
Abiotic stresses have considerable negative impact on Mediterranean plant ecosystems and better comprehension of the genetic control of response and adaptation of trees to global changes is urgently needed. The single cell gel electrophoresis (SCGE) assay could be considered a good estimator of DNA damage in an individual eukaryotic cell. This method has been mainly employed in animal tissues, because the plant cell wall represents an obstacle for the extraction of nuclei; moreover, in Mediterranean woody species, especially in the sclerophyll plants, this procedure can be quite difficult because of the presence of sclerenchyma and hardened cells. On the other hand, these plants represent an interesting material to be studied because of the ability of these plants to tolerate abiotic stress. For instance, holm oak (Quercus ilex L.) has been selected as the model plant to identify critical levels of O3 for Southern European forests. Consequently, a quantitative method for the evaluation of cell injury of leaf tissues of this species is required. Optimal conditions for high-yield nuclei isolation were obtained by using protoplast technology and a detailed description of the method is provided and discussed. White poplar (Populus alba L.) was used as an internal control for protoplast isolation. Such a method has not been previously reported in newly fully developed leaves of holm oak. This method combined with SCGE assay represents a new tool for testing the DNA integrity of leaf tissues in higher plants under stress conditions.
Collapse
Affiliation(s)
- Elena Kuzminsky
- Laboratory of Forest Biotechnology, Department for Innovation in Biological, Agro-food and Forest systems, University of TusciaViterbo, Italy
| | - Roberta Meschini
- Laboratory of Molecular Cytogenetic and Mutagenesis, Department of Ecological and Biological Science, University of TusciaViterbo, Italy
| | - Serena Terzoli
- Laboratory of Forest Biotechnology, Department for Innovation in Biological, Agro-food and Forest systems, University of TusciaViterbo, Italy
| | - Liliana Pavani
- Laboratory of Forest Biotechnology, Department for Innovation in Biological, Agro-food and Forest systems, University of TusciaViterbo, Italy
| | - Cristian Silvestri
- Laboratory of Tissue Culture and Biotechnology of Woody Plants, Department of Agricultural and Forestry Sciences, University of TusciaViterbo, Italy
| | - Zineb Choury
- Laboratory of Forest Biotechnology, Department for Innovation in Biological, Agro-food and Forest systems, University of TusciaViterbo, Italy
| | - Giuseppe Scarascia-Mugnozza
- Laboratory of Forest Biotechnology, Department for Innovation in Biological, Agro-food and Forest systems, University of TusciaViterbo, Italy
| |
Collapse
|