1
|
Deluigi J, Bachofen C, Didion-Gency M, Gisler J, Mas E, Mekarni L, Poretti A, Schaub M, Vitasse Y, Grossiord C. Prolonged warming and drought reduce canopy-level net carbon uptake in beech and oak saplings despite photosynthetic and respiratory acclimation. THE NEW PHYTOLOGIST 2025; 246:2015-2028. [PMID: 40178032 DOI: 10.1111/nph.70111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 03/12/2025] [Indexed: 04/05/2025]
Abstract
Tree net carbon (C) uptake may decrease under global warming, as higher temperatures constrain photosynthesis while simultaneously increasing respiration. Thermal acclimation might mitigate this negative effect, but its capacity to do so under concurrent soil drought remains uncertain. Using a 5-yr open-top chamber experiment, we determined acclimation of leaf-level photosynthesis (thermal optimum Topt and rate Aopt) and respiration (rate at 25°C R25 and thermal sensitivity Q10) to chronic +5°C warming, soil drought, and their combination in beech (Fagus sylvatica L.) and oak (Quercus pubescens Willd.) saplings. Process-based modeling was used to evaluate acclimation impacts on canopy-level net C uptake (Atot). Prolonged warming increased Topt by 3.03-2.66°C, but only by 1.58-0.31°C when combined with soil drought, and slightly reduced R25 and Q10. By contrast, drought reduced Topt (-1.93°C in oak), Aopt (c. 50%), and slightly reduced R25 and Q10 (in beech). Mainly because of reduced leaf area, Atot decreased by 47-84% with warming (in beech) and drought, but without additive effects when combined. Our results suggest that, despite photosynthetic and respiratory acclimation to warming and soil drought, canopy-level net C uptake will decline in a persistently hotter and drier climate, primarily due to the prevalent impact of leaf area reduction.
Collapse
Affiliation(s)
- Janisse Deluigi
- Plant Ecology Research Laboratory PERL, School of Architecture, Civil and Environmental Engineering, EPFL, CH-1015, Lausanne, Switzerland
- Community Ecology Unit, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, CH-1015, Lausanne, Switzerland
| | - Christoph Bachofen
- Plant Ecology Research Laboratory PERL, School of Architecture, Civil and Environmental Engineering, EPFL, CH-1015, Lausanne, Switzerland
- Community Ecology Unit, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, CH-1015, Lausanne, Switzerland
| | - Margaux Didion-Gency
- Plant Ecology Research Laboratory PERL, School of Architecture, Civil and Environmental Engineering, EPFL, CH-1015, Lausanne, Switzerland
- Community Ecology Unit, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, CH-1015, Lausanne, Switzerland
- Ecological and Forestry Applications Research Center CREAF, E-08193, Cerdanyola-del-Vallès, Spain
| | - Jonas Gisler
- Forest Dynamics Research Unit, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, CH-8903, Birmensdorf, Switzerland
| | - Eugénie Mas
- Plant Ecology Research Laboratory PERL, School of Architecture, Civil and Environmental Engineering, EPFL, CH-1015, Lausanne, Switzerland
- Community Ecology Unit, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, CH-1015, Lausanne, Switzerland
- Forest Global Earth Observatory (ForestGEO), Smithsonian Tropical Research Institute (STRI), DC-20560, Washington, DC, USA
| | - Laura Mekarni
- Plant Ecology Research Laboratory PERL, School of Architecture, Civil and Environmental Engineering, EPFL, CH-1015, Lausanne, Switzerland
- Community Ecology Unit, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, CH-1015, Lausanne, Switzerland
| | - Alvaro Poretti
- Plant Ecology Research Laboratory PERL, School of Architecture, Civil and Environmental Engineering, EPFL, CH-1015, Lausanne, Switzerland
- Community Ecology Unit, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, CH-1015, Lausanne, Switzerland
| | - Marcus Schaub
- Forest Dynamics Research Unit, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, CH-8903, Birmensdorf, Switzerland
| | - Yann Vitasse
- Forest Dynamics Research Unit, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, CH-8903, Birmensdorf, Switzerland
| | - Charlotte Grossiord
- Plant Ecology Research Laboratory PERL, School of Architecture, Civil and Environmental Engineering, EPFL, CH-1015, Lausanne, Switzerland
- Community Ecology Unit, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, CH-1015, Lausanne, Switzerland
| |
Collapse
|
2
|
Vleminckx J, Hogan JA, Metz MR, Comita LS, Queenborough SA, Wright SJ, Valencia R, Zambrano M, Garwood NC. Seed Production and 22 Years of Climatic Changes in an Everwet Neotropical Forest. Ecol Lett 2025; 28:e70019. [PMID: 40172570 DOI: 10.1111/ele.70019] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 09/24/2024] [Accepted: 10/07/2024] [Indexed: 04/04/2025]
Abstract
Examining the cues and drivers influencing seed production is crucial to better understand forest resilience to climate change. We explored the effects of five climatic variables on seed production over 22 years in an everwet Amazonian forest, by separating direct effects of these variables from indirect effects mediated through flower production. We observed a decline in seed production over the study period, which was primarily explained by direct effects of rising nighttime temperatures and declining average vapour pressure deficits. Higher daytime temperatures were positively related to seed output, mainly through a flower-mediated effect, while rainfall effects on seed production were more nuanced, showing either positive or negative relationships depending on the seasonal timing of rains. If these trends continue, they are likely to lead to significant changes in forest dynamics, potentially impacting both forest structure and species composition.
Collapse
Affiliation(s)
| | - J Aaron Hogan
- USDA Forest Service, International Institute of Tropical Forestry, San Juan, Puerto Rico, USA
| | | | - Liza S Comita
- School of the Environment, Yale University, New Haven, Connecticut, USA
- Smithsonian Tropical Research Institute, Balboa, Republic of Panama
| | | | - S Joseph Wright
- Smithsonian Tropical Research Institute, Balboa, Republic of Panama
| | - Renato Valencia
- Escuela de Ciencias Biológicas, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Milton Zambrano
- Lewis & Clark College, Portland, Oregon, USA
- Escuela de Ciencias Biológicas, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Nancy C Garwood
- School of Biological Sciences, Southern Illinois University, Carbondale, Illinois, USA
| |
Collapse
|
3
|
Xu Y, Li M, Jia Z, Gong Y, Li X, Fu YH. Incorporating Drought Thresholds Improves Model Predictions of Autumn Phenology in Tropical and Subtropical Forests. GLOBAL CHANGE BIOLOGY 2025; 31:e70177. [PMID: 40237248 DOI: 10.1111/gcb.70177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 03/10/2025] [Accepted: 03/22/2025] [Indexed: 04/18/2025]
Abstract
Drought dramatically influences vegetation phenology, thereby impacting terrestrial carbon and water cycles. However, the mechanisms by which drought drives changes in autumn phenology remain unclear, hindering the accurate simulation of these processes in phenology models. In this study, we employed ridge regression analysis to quantify the dynamic effects of intensifying drought on the end-of-photosynthetic-growing-season (EOPS) and identified the drought threshold at which the vegetation's response to drought shifts. We demonstrate that the response of EOPS in tropical and subtropical forests reverses from a delay to an advancement as drought intensity surpasses specific thresholds, with the average drought threshold across the study area corresponding to a standardized precipitation evapotranspiration index (SPEI) value of -0.9. Drought thresholds, however, vary geographically, increasing along the precipitation gradient, potentially due to variations in drought stress-related gene expression and tolerance strategies across different humidity environments. Therefore, we developed a new autumn phenology model (DMPD) by incorporating a drought threshold parameter that distinguishes contrasting drought effects and predicts future EOPS under two scenarios (SSP245 and SSP585). The DMPD model substantially enhanced the representation of EOPS, as evidenced by a lower root mean square error (RMSE), higher correlation, and a greater proportion of significant correlations with EOPS derived from GOSIF. By the end of the century, EOPS is projected to be consistently delayed under both moderate (SSP245) and high (SSP585) warming scenarios, with the rate of delay decelerating under SSP245 after 2066. Our study confirms that increasing drought intensity leads to contrasting shifts in the autumnal photosynthetic phenology of tropical and subtropical forests and highlights the potential of integrating these contrasting drought effects into phenology models to improve the accuracy of vegetation phenology predictions under future climate change scenarios.
Collapse
Affiliation(s)
- Yue Xu
- College of Urban and Environmental Sciences, Central China Normal University, Wuhan, China
| | - Mingwei Li
- College of Water Sciences, Beijing Normal University, Beijing, China
| | - Zitong Jia
- College of Water Sciences, Beijing Normal University, Beijing, China
| | - Yufeng Gong
- College of Urban and Environmental Sciences, Central China Normal University, Wuhan, China
| | - Xiran Li
- College of Urban and Environmental Sciences, Central China Normal University, Wuhan, China
| | - Yongshuo H Fu
- College of Urban and Environmental Sciences, Central China Normal University, Wuhan, China
- College of Water Sciences, Beijing Normal University, Beijing, China
- Department of Biology, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
4
|
Momayyezi M, Williams T, Tolentino P, Hammermeister A, Kluepfel DA, Forrestel EJ, McElrone AJ. Some Like It Hot: Differential Photosynthetic Performance and Recovery of English Walnut Accessions Under Emerging California Heat Waves. PLANT, CELL & ENVIRONMENT 2025; 48:2099-2110. [PMID: 39552502 DOI: 10.1111/pce.15273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/04/2024] [Accepted: 10/26/2024] [Indexed: 11/19/2024]
Abstract
Heat waves (HWs) pose a significant threat to California agriculture, with potential adverse effects on crop photosynthetic capacity, quality and yield, all of which contribute to significant economic loss. Lack of heat-resilient cultivars puts perennial crop production under severe threat due to increasing HW frequency, duration and intensity. Currently, available walnut cultivars are highly sensitive to abiotic stress, and germplasm collections provide potential solutions via genotypes native to varied climates. We screened nine English walnut accessions (Juglans regia) for physiological heat stress resilience and recovery in the USDA-ARS National Clonal Germplasm over 2-years, and identified accessions with superior resilience to heat stress. Heat stress impacted photosynthetic capacity in most accessions, as evidenced by reductions in net (An) and maximum (Amax) assimilation rates, quantum efficiency of PSII, and changes in stomatal conductance (gs). However, two accessions exhibited either higher or complete recovery post-irrigation. This aligns with the established practice of using irrigation to mitigate heat stress, as it improved recovery for several accessions, with A3 and A5 demonstrating the most resilience. One of these two superior accessions is native to one of the hottest and driest habitats of all studied accessions. These same accessions exhibited the highest An under non-stressed conditions and at higher temperatures of 35° to 45°C. Higher performance for A3 and A5 under HWs was associated with greater carboxylation rates, electron transport rates, and Amax. All accessions suffered significant declines in photosynthetic performance at 45°C, which were the ambient leaf temperatures approached during record-setting heat waves in California during September 2022.
Collapse
Affiliation(s)
- Mina Momayyezi
- Department of Viticulture and Enology, University of California, Davis, California, USA
| | - Troy Williams
- Department of Viticulture and Enology, University of California, Davis, California, USA
| | - Peter Tolentino
- Department of Viticulture and Enology, University of California, Davis, California, USA
| | - Abby Hammermeister
- Department of Viticulture and Enology, University of California, Davis, California, USA
| | - Daniel A Kluepfel
- USDA-ARS, Crops Pathology and Genetics Research Unit, Davis, California, USA
| | - Elisabeth J Forrestel
- Department of Viticulture and Enology, University of California, Davis, California, USA
| | - Andrew J McElrone
- Department of Viticulture and Enology, University of California, Davis, California, USA
- USDA-ARS, Crops Pathology and Genetics Research Unit, Davis, California, USA
| |
Collapse
|
5
|
Ren Y, Li J, Zhang S, Shao J, Li X, Zhong Q, Hu D, Cheng D. Leaf trait networks of subtropical woody plants weaken along an elevation gradient. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 352:112340. [PMID: 39645041 DOI: 10.1016/j.plantsci.2024.112340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/25/2024] [Accepted: 11/27/2024] [Indexed: 12/09/2024]
Abstract
The leaf economic spectrum (LES) captures key leaf functional trait relationships, defining a conservative-acquisitive axis of plant resource utilization strategies. Examining the leaf trait network (LTN) is useful for understanding resource utilization strategies but also more broadly, the ecological strategies of plants. However, the relationship between the LES conservation-acquisition axis and LTN correlations across environmental gradients is unclear. To address this knowledge gap, we measured physiological, chemical, and structural traits in 52 broad-leaved tree species spanning an elevation gradient (1400 m, 1600 m, 1800 m) in Wuyi Mountain, China. A total of 12 leaf traits were selected, including: photosynthetic rate (A25), respiration rate (R25), optimum photosynthetic temperature (Topt), rate of photosynthesis at optimum temperature (Aopt), mean temperature at which 90 % of Aopt is reached (T90), temperature sensitivity of respiration (Q10), N and P content, N/P, leaf mass per area (LMA), photosynthetic nitrogen use efficiency (PNUE) and photosynthetic phosphorus use efficiency (PPUE). We found that leaf physiological traits exhibited signs of thermal acclimation along the elevation gradient. We also observed significant changes in leaf N and P content, N/P, photosynthetic phosphorus utilization efficiency (PPUE) and LMA with elevation. The resource utilization strategies of plants changed from conservative to acquisitive as elevation increased. The LTN analysis showed that as elevation increased, the links among traits weakened and modularity (modularity is used to describe the degree of separation between networks) increased. Collectively, our results indicate that elevation changes can trigger moderate shifts in the resource utilization and ecological strategies of plants via leaf functional traits.
Collapse
Affiliation(s)
- Yiwei Ren
- Institute of Geography, Fujian Normal University, Fuzhou, Fujian Province, China.
| | - Jinlong Li
- Institute of Geography, Fujian Normal University, Fuzhou, Fujian Province, China.
| | - Shudong Zhang
- Institute of Ecology and Ministry of Education Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Jing Shao
- Institute of Geography, Fujian Normal University, Fuzhou, Fujian Province, China
| | - Xueqin Li
- Institute of Geography, Fujian Normal University, Fuzhou, Fujian Province, China
| | - Quanlin Zhong
- Institute of Geography, Fujian Normal University, Fuzhou, Fujian Province, China
| | - Dandan Hu
- Institute of Geography, Fujian Normal University, Fuzhou, Fujian Province, China.
| | - Dongliang Cheng
- Institute of Geography, Fujian Normal University, Fuzhou, Fujian Province, China; Fujian Provincial Key Laboratory of Plant Ecophysiology, Fujian Normal University, Fuzhou, Fujian Province, China.
| |
Collapse
|
6
|
de Sousa Oliveira TC, Veenendaal E, Domingues TF. The thermal optimum of photosynthetic parameters is regulated by leaf nutrients in neotropical savannas. TREE PHYSIOLOGY 2025; 45:tpae163. [PMID: 39673198 DOI: 10.1093/treephys/tpae163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 12/04/2024] [Accepted: 12/10/2024] [Indexed: 12/16/2024]
Abstract
Global warming significantly threatens species in the Cerrado, the world's largest savannah. Therefore, understanding how plants respond to temperature change, particularly in relation to leaf-level photosynthetic capacity, is crucial to understanding the future of Cerrado vegetation. Here, we determined the optimum temperature of the maximum rate of RuBP-carboxylation and maximum electron transport rate (TOptV and TOptJ, respectively) of 12 tree species in two opposite borders (northeastern and southeastern) of the Cerrado with distinct temperature regimes. We focused on four widespread species found in both sites, four restricted to the northeast, and four to the southeast. We compared TOptV and TOptJ between regions and between widespread species (co-occurring in both sites) and species restricted to each ecoregion. Additionally, we also explored the relationship between TOptV and TOptJ with leaf nitrogen (N), phosphorus (P) and potassium (K). As a result, we found that TOptV and TOptJ values were similar across species, regardless of the study region or species distribution range. The similarity of TOpt values among species suggests that photosynthetic performance is optimized to current temperatures. Additionally, we also observed that the TOptV and TOptJ were similar to the local maximum ambient temperatures. Therefore, if these species do not have enough plasticity, the increasing temperature predicted for this region may reduce their photosynthetic performance. Finally, the studied species exhibited general relationships between the TOptV and TOptJ and foliar key nutrients, particularly with P, suggesting the nutrient availability has an important role in the thermal acclimation of leaves. These findings offer valuable insights into physiological and ecological mechanisms in photosynthesis performance present in the Cerrado species.
Collapse
Affiliation(s)
- Tony César de Sousa Oliveira
- Plant Ecology and Nature Conservation Group, Wageningen University (WU), Droevendaalsesteeg 36708PB, Wageningen, The Netherlands
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, 3900, Monte Alegre, Ribeirão Preto, SP 14040-901, Brazil
- Institute of Biogeosciences, Forschungszentrum Jülich, Wilhelm-Johnen Strasse, Jülich, 52428, Germany
- Faculty of Communication and Environment, Hochschule Rhein-Waal, Südstr. 8 Kamp-lintfort, 47475, Germany
| | - Elmar Veenendaal
- Plant Ecology and Nature Conservation Group, Wageningen University (WU), Droevendaalsesteeg 36708PB, Wageningen, The Netherlands
| | - Tomas Ferreira Domingues
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, 3900, Monte Alegre, Ribeirão Preto, SP 14040-901, Brazil
| |
Collapse
|
7
|
Wu T, Tissue DT, Jiang M, Slot M, Crous KY, Yuan J, Liu J, Jin S, Wu C, Deng Y, Huang C, Shi F, Fang X, Li R, Mao R. Leaf Photosynthetic and Respiratory Thermal Acclimation in Terrestrial Plants in Response to Warming: A Global Synthesis. GLOBAL CHANGE BIOLOGY 2025; 31:e70026. [PMID: 39825386 DOI: 10.1111/gcb.70026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 01/20/2025]
Abstract
Leaf photosynthesis and respiration are two of the largest carbon fluxes between the atmosphere and biosphere. Although experiments examining the warming effects on photosynthetic and respiratory thermal acclimation have been widely conducted, the sensitivity of various ecosystem and vegetation types to warming remains uncertain. Here we conducted a meta-analysis on experimental observations of thermal acclimation worldwide. We found that the optimum temperature for photosynthetic rate (Topt) and the maximum rate of carboxylation of Rubisco (ToptV) in tropical forest plants increased by 0.51°C and 2.12°C per 1°C of warming, respectively. Similarly, Topt and the optimum temperature for maximum electron transport rate for RuBP regeneration (ToptJ) in temperate forest plants increased by 0.91°C and 0.15°C per 1°C of warming, respectively. However, reduced photosynthetic rates at optimum temperature (Aopt) were observed in tropical forest (17.2%) and grassland (16.5%) plants, indicating that they exhibited limited photosynthetic thermal acclimation to warming. Warming reduced respiration rate (R25) in boreal forest plants by 6.2%, suggesting that respiration can acclimate to warming. Photosynthesis and respiration of broadleaved deciduous trees may adapt to warming, as indicated by higher Aopt (7.5%) and Topt (1.08°C per 1°C of warming), but lower R25 (7.7%). We found limited photosynthetic thermal acclimation in needleleaved evergreen trees (-14.1%) and herbs (-16.3%), both associated with reduced Aopt. Respiration of needleleaved deciduous trees acclimated to warming (reduced R25 and temperature sensitivity of respiration (Q10)); however, broadleaved evergreen trees did not acclimate (increased R25). Plants in grasslands and herbaceous species displayed the weakest photosynthetic acclimation to warming, primarily due to the significant reductions in Aopt. Our global synthesis provides a comprehensive analysis of the divergent effects of warming on thermal acclimation across ecosystem and vegetation types, and provides a framework for modeling responses of vegetation carbon cycling to warming.
Collapse
Affiliation(s)
- Ting Wu
- Key Laboratory of National Forestry and Grassland Administration on Forest Ecosystem Protection and Restoration of Poyang Lake Watershed, College of Forestry, Jiangxi Agricultural University, Nanchang, China
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
- Global Centre for Land-Based Innovation, Western Sydney University, Richmond, New South Wales, Australia
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - David T Tissue
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
- Global Centre for Land-Based Innovation, Western Sydney University, Richmond, New South Wales, Australia
| | - Mingkai Jiang
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Martijn Slot
- Smithsonian Tropical Research Institute, Panama City, Panama
| | - Kristine Y Crous
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
- School of Science, Western Sydney University, Penrith, New South Wales, Australia
| | - Junfeng Yuan
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Juxiu Liu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Shaofei Jin
- Department of Geography, Minjiang University, Fuzhou, China
| | - Chenxi Wu
- Key Laboratory of National Forestry and Grassland Administration on Forest Ecosystem Protection and Restoration of Poyang Lake Watershed, College of Forestry, Jiangxi Agricultural University, Nanchang, China
| | - Yan Deng
- Key Laboratory of National Forestry and Grassland Administration on Forest Ecosystem Protection and Restoration of Poyang Lake Watershed, College of Forestry, Jiangxi Agricultural University, Nanchang, China
| | - Chao Huang
- Key Laboratory of National Forestry and Grassland Administration on Forest Ecosystem Protection and Restoration of Poyang Lake Watershed, College of Forestry, Jiangxi Agricultural University, Nanchang, China
| | - Fuxi Shi
- Key Laboratory of National Forestry and Grassland Administration on Forest Ecosystem Protection and Restoration of Poyang Lake Watershed, College of Forestry, Jiangxi Agricultural University, Nanchang, China
| | - Xiong Fang
- College of Land Resources and Environment, Jiangxi Agricultural University, Nanchang, China
| | - Rui Li
- Key Laboratory of National Forestry and Grassland Administration on Forest Ecosystem Protection and Restoration of Poyang Lake Watershed, College of Forestry, Jiangxi Agricultural University, Nanchang, China
| | - Rong Mao
- Key Laboratory of National Forestry and Grassland Administration on Forest Ecosystem Protection and Restoration of Poyang Lake Watershed, College of Forestry, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
8
|
Martínez-Villa JA, Paquette A, Feeley KJ, Morales-Morales PA, Messier C, Durán SM. Changes in morphological and physiological traits of urban trees in response to elevated temperatures within an Urban Heat Island. TREE PHYSIOLOGY 2024; 44:tpae145. [PMID: 39541501 DOI: 10.1093/treephys/tpae145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 10/18/2024] [Accepted: 11/13/2024] [Indexed: 11/16/2024]
Abstract
Urban heat islands (UHIs) are a common phenomenon in metropolitan areas worldwide where the air temperature is significantly higher in urban areas than in surrounding suburban, rural or natural areas. Mitigation strategies to counteract UHI effects include increasing tree cover and green spaces to reduce heat. The successful application of these approaches necessitates a deep understanding of the thermal tolerances in urban trees and their susceptibility to elevated urban temperatures. We evaluated how the photosynthetic thermal optimum (Topt), photosynthetic heat tolerance (T50) and key leaf thermoregulatory morphological traits (leaf area [LA], specific leaf area, leaf width, thickness and leaf dry matter content) differ between conspecific trees growing in 'hot' (UHI) vs 'cool' parts of Montreal, Canada (with a difference of 3.4 °C in air temperature), to assess the ability of seven common tree species to acclimation to higher temperatures. We hypothesized that individuals with hotter growing temperatures would exhibit higher Topt and T50, as well as leaf thermoregulatory morphological traits aligned with conservative strategies (e.g., reduced LA and increased leaf mass) compared with their counterparts in the cooler parts of the city. Contrary to our a priori hypotheses, LA increased with growing temperatures and only four of the seven species had higher T50 and only three had higher Topt values in the hotter area. These results suggest that many tree species cannot acclimate to elevated temperatures and that the important services they provide, such as carbon capture, can be negatively affected by high temperatures caused by climate change and/or the UHI effect. The ability vs inability of tree species to acclimate to high temperatures should be considered when implementing long term tree planting programs in urban areas.
Collapse
Affiliation(s)
- Johanna Andrea Martínez-Villa
- Département des sciences biologiques, Centre for Forest Research, Université du Québec à Montréal, Montréal, Québec, 141 Av. du Président-Kennedy, Montréal, QC H2X 1Y4, Canada
| | - Alain Paquette
- Département des sciences biologiques, Centre for Forest Research, Université du Québec à Montréal, Montréal, Québec, 141 Av. du Président-Kennedy, Montréal, QC H2X 1Y4, Canada
| | - Kenneth J Feeley
- Biology Department, University of Miami, 1301 Memorial Dr #215, Coral Gables, FL 33146, United States
| | - Paula Andrea Morales-Morales
- Departamento de Ciencias Forestales, Universidad Nacional de Colombia - Sede Medellín, Medellin, Antioquia, Cra. 65 #59a-110, Medellín, Antioquia, Colombia
| | - Christian Messier
- Département des sciences biologiques, Centre for Forest Research, Université du Québec à Montréal, Montréal, Québec, 141 Av. du Président-Kennedy, Montréal, QC H2X 1Y4, Canada
| | - Sandra M Durán
- Department of Forest and Rangeland Stewardship, Colorado State University, 1472 Campus DeliveryFort Collins, CO 80523-1472, United States
| |
Collapse
|
9
|
Slot M, Rifai SW, Eze CE, Winter K. The stomatal response to vapor pressure deficit drives the apparent temperature response of photosynthesis in tropical forests. THE NEW PHYTOLOGIST 2024; 244:1238-1249. [PMID: 38736030 DOI: 10.1111/nph.19806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 04/18/2024] [Indexed: 05/14/2024]
Abstract
As temperature rises, net carbon uptake in tropical forests decreases, but the underlying mechanisms are not well understood. High temperatures can limit photosynthesis directly, for example by reducing biochemical capacity, or indirectly through rising vapor pressure deficit (VPD) causing stomatal closure. To explore the independent effects of temperature and VPD on photosynthesis we analyzed photosynthesis data from the upper canopies of two tropical forests in Panama with Generalized Additive Models. Stomatal conductance and photosynthesis consistently decreased with increasing VPD, and statistically accounting for VPD increased the optimum temperature of photosynthesis (Topt) of trees from a VPD-confounded apparent Topt of c. 30-31°C to a VPD-independent Topt of c. 33-36°C, while for lianas no VPD-independent Topt was reached within the measured temperature range. Trees and lianas exhibited similar temperature and VPD responses in both forests, despite 1500 mm difference in mean annual rainfall. Over ecologically relevant temperature ranges, photosynthesis in tropical forests is largely limited by indirect effects of warming, through changes in VPD, not by direct warming effects of photosynthetic biochemistry. Failing to account for VPD when determining Topt misattributes the underlying causal mechanism and thereby hinders the advancement of mechanistic understanding of global warming effects on tropical forest carbon dynamics.
Collapse
Affiliation(s)
- Martijn Slot
- Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancón, Panama
| | - Sami W Rifai
- School of Biological Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Chinedu E Eze
- Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancón, Panama
- Department of Agronomy, Michael Okpara University of Agriculture, Umudike, Abia State, 440109, Nigeria
| | - Klaus Winter
- Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancón, Panama
| |
Collapse
|
10
|
Eze C, Winter K, Slot M. Vapor-pressure-deficit-controlled temperature response of photosynthesis in tropical trees. PHOTOSYNTHETICA 2024; 62:318-325. [PMID: 39649359 PMCID: PMC11622557 DOI: 10.32615/ps.2024.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 09/06/2024] [Indexed: 12/10/2024]
Abstract
Rising temperatures can affect stomatal and nonstomatal control over photosynthesis, through stomatal closure in response to increasing vapor pressure deficit (VPD), and biochemical limitations, respectively. To explore the independent effects of temperature and VPD, we conducted leaf-level temperature-response measurements while controlling VPD on three tropical tree species. Photosynthesis and stomatal conductance consistently decreased with increasing VPD, whereas photosynthesis typically responded weakly to changes in temperature when a stable VPD was maintained during measurements, resulting in wide parabolic temperature-response curves. We have shown that the negative effect of temperature on photosynthesis in tropical forests across ecologically important temperature ranges does not stem from direct warming effects on biochemical processes but from the indirect effect of warming, through changes in VPD. Understanding the acclimation potential of tropical trees to elevated VPD will be critical to anticipate the consequences of global warming for tropical forests.
Collapse
Affiliation(s)
- C.E. Eze
- Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancón, Republic of Panama
- Department of Agronomy, Michael Okpara University of Agriculture Umudike, Abia State 440109, Nigeria
| | - K. Winter
- Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancón, Republic of Panama
| | - M. Slot
- Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancón, Republic of Panama
| |
Collapse
|
11
|
Zarakas CM, Swann ALS, Koven CD, Smith MN, Taylor TC. Different model assumptions about plant hydraulics and photosynthetic temperature acclimation yield diverging implications for tropical forest gross primary production under warming. GLOBAL CHANGE BIOLOGY 2024; 30:e17449. [PMID: 39301722 DOI: 10.1111/gcb.17449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/13/2024] [Accepted: 06/03/2024] [Indexed: 09/22/2024]
Abstract
Tropical forest photosynthesis can decline at high temperatures due to (1) biochemical responses to increasing temperature and (2) stomatal responses to increasing vapor pressure deficit (VPD), which is associated with increasing temperature. It is challenging to disentangle the influence of these two mechanisms on photosynthesis in observations, because temperature and VPD are tightly correlated in tropical forests. Nonetheless, quantifying the relative strength of these two mechanisms is essential for understanding how tropical gross primary production (GPP) will respond to climate change, because increasing atmospheric CO2 concentration may partially offset VPD-driven stomatal responses, but is not expected to mitigate the effects of temperature-driven biochemical responses. We used two terrestrial biosphere models to quantify how physiological process assumptions (photosynthetic temperature acclimation and plant hydraulic stress) and functional traits (e.g., maximum xylem conductivity) influence the relative strength of modeled temperature versus VPD effects on light-saturated GPP at an Amazonian forest site, a seasonally dry tropical forest site, and an experimental tropical forest mesocosm. By simulating idealized climate change scenarios, we quantified the divergence in GPP predictions under model configurations with stronger VPD effects compared with stronger direct temperature effects. Assumptions consistent with stronger direct temperature effects resulted in larger GPP declines under warming, while assumptions consistent with stronger VPD effects resulted in more resilient GPP under warming. Our findings underscore the importance of quantifying the role of direct temperature and indirect VPD effects for projecting the resilience of tropical forests in the future, and demonstrate that the relative strength of temperature versus VPD effects in models is highly sensitive to plant functional parameters and structural assumptions about photosynthetic temperature acclimation and plant hydraulics.
Collapse
Affiliation(s)
- Claire M Zarakas
- Department of Atmospheric Sciences, University of Washington, Seattle, Washington, USA
| | - Abigail L S Swann
- Department of Atmospheric Sciences, University of Washington, Seattle, Washington, USA
- Department of Biology, University of Washington, Seattle, Washington, USA
| | - Charles D Koven
- Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Marielle N Smith
- Department of Forestry, Michigan State University, East Lansing, Michigan, USA
- School of Environmental and Natural Sciences, College of Environmental Sciences and Engineering, Bangor University, Bangor, UK
| | - Tyeen C Taylor
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
12
|
De Deurwaerder HPT, Detto M, Visser MD, Schnitzer S, Pacala SW. Linking physiology, epidemiology, and demography: Understanding how lianas outcompete trees in a changing world. Proc Natl Acad Sci U S A 2024; 121:e2319487121. [PMID: 39133847 PMCID: PMC11348021 DOI: 10.1073/pnas.2319487121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 06/24/2024] [Indexed: 08/29/2024] Open
Abstract
Extending and safeguarding tropical forest ecosystems is critical for combating climate change and biodiversity loss. One of its constituents, lianas, is spreading and increasing in abundance on a global scale. This is particularly concerning as lianas negatively impact forests' carbon fluxes, dynamics, and overall resilience, potentially exacerbating both crises. While possibly linked to climate-change-induced atmospheric CO2 elevation and drought intensification, the reasons behind their increasing abundance remain elusive. Prior research shows distinct physiological differences between lianas and trees, but it is unclear whether these differences confer a demographic advantage to lianas with climate change. Guided by extensive datasets collected in Panamanian tropical forests, we developed a tractable model integrating physiology, demography, and epidemiology. Our findings suggest that CO2 fertilization, a climate change factor promoting forest productivity, gives lianas a demographic advantage. Conversely, factors such as extreme drought generally cause a decrease in liana prevalence. Such a decline in liana prevalence is expected from a physiological point of view because lianas have drought-sensitive traits. However, our analysis underscores the importance of not exclusively relying on physiological processes, as interactions with demographic mechanisms (i.e., the forest structure) can contrast these expectations, causing an increase in lianas with drought. Similarly, our results emphasize that identical physiological responses between lianas and trees still lead to liana increase. Even if lianas exhibit collinear but weaker responses in their performance compared to trees, a temporary liana prevalence increase might manifest driven by the faster response time of lianas imposed by their distinct life-history strategies than trees.
Collapse
Affiliation(s)
| | - Matteo Detto
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ08544
- Smithsonian Tropical Research Institute, Balboa0843-03092, Panama
| | - Marco D. Visser
- Institute of Environmental Sciences (CML), Leiden University, LeidenCC 2333, The Netherlands
| | - Stefan Schnitzer
- Smithsonian Tropical Research Institute, Balboa0843-03092, Panama
- Department of Biological Sciences, Marquette University, Milwaukee, WI53201
| | - Stephen W. Pacala
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ08544
| |
Collapse
|
13
|
McFarlane KJ, Cusack DF, Dietterich LH, Hedgpeth AL, Finstad KM, Nottingham AT. Experimental warming and drying increase older carbon contributions to soil respiration in lowland tropical forests. Nat Commun 2024; 15:7084. [PMID: 39154003 PMCID: PMC11330460 DOI: 10.1038/s41467-024-51422-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 08/07/2024] [Indexed: 08/19/2024] Open
Abstract
Tropical forests account for over 50% of the global terrestrial carbon sink, but climate change threatens to alter the carbon balance of these ecosystems. We show that warming and drying of tropical forest soils may increase soil carbon vulnerability, by increasing degradation of older carbon. In situ whole-profile heating by 4 °C and 50% throughfall exclusion each increased the average radiocarbon age of soil CO2 efflux by ~2-3 years, but the mechanisms underlying this shift differed. Warming accelerated decomposition of older carbon as increased CO2 emissions depleted newer carbon. Drying suppressed decomposition of newer carbon inputs and decreased soil CO2 emissions, thereby increasing contributions of older carbon to CO2 efflux. These findings imply that both warming and drying, by accelerating the loss of older soil carbon or reducing the incorporation of fresh carbon inputs, will exacerbate soil carbon losses and negatively impact carbon storage in tropical forests under climate change.
Collapse
Affiliation(s)
- Karis J McFarlane
- Center for Accelerator Mass Spectrometry, Lawrence Livermore National Laboratory, Livermore, CA, USA.
| | - Daniela F Cusack
- Department of Ecosystem Science and Sustainability, Colorado State University, Fort Collins, CO, USA
- Department of Geography, University of California - Los Angeles, Los Angeles, CA, USA
- Smithsonian Tropical Research Institute, Panama City, Panama, Republic of Panama
| | - Lee H Dietterich
- Department of Ecosystem Science and Sustainability, Colorado State University, Fort Collins, CO, USA
- Department of Biology, Haverford College, Philadelphia, PA, USA
- Environmental Laboratory, U.S. Army Engineer Research and Development Center, Vicksburg, MS, USA
| | - Alexandra L Hedgpeth
- Center for Accelerator Mass Spectrometry, Lawrence Livermore National Laboratory, Livermore, CA, USA
- Department of Geography, University of California - Los Angeles, Los Angeles, CA, USA
| | - Kari M Finstad
- Center for Accelerator Mass Spectrometry, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Andrew T Nottingham
- Smithsonian Tropical Research Institute, Panama City, Panama, Republic of Panama
- School of Geography, University of Leeds, Leeds, UK
| |
Collapse
|
14
|
Gauthey A, Kahmen A, Limousin JM, Vilagrosa A, Didion-Gency M, Mas E, Milano A, Tunas A, Grossiord C. High heat tolerance, evaporative cooling, and stomatal decoupling regulate canopy temperature and their safety margins in three European oak species. GLOBAL CHANGE BIOLOGY 2024; 30:e17439. [PMID: 39092538 DOI: 10.1111/gcb.17439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/03/2024] [Accepted: 07/08/2024] [Indexed: 08/04/2024]
Abstract
Heatwaves and soil droughts are increasing in frequency and intensity, leading many tree species to exceed their thermal thresholds, and driving wide-scale forest mortality. Therefore, investigating heat tolerance and canopy temperature regulation mechanisms is essential to understanding and predicting tree vulnerability to hot droughts. We measured the diurnal and seasonal variation in leaf water potential (Ψ), gas exchange (photosynthesis Anet and stomatal conductance gs), canopy temperature (Tcan), and heat tolerance (leaf critical temperature Tcrit and thermal safety margins TSM, i.e., the difference between maximum Tcan and Tcrit) in three oak species in forests along a latitudinal gradient (Quercus petraea in Switzerland, Quercus ilex in France, and Quercus coccifera in Spain) throughout the growing season. Gas exchange and Ψ of all species were strongly reduced by increased air temperature (Tair) and soil drying, resulting in stomatal closure and inhibition of photosynthesis in Q. ilex and Q. coccifera when Tair surpassed 30°C and soil moisture dropped below 14%. Across all seasons, Tcan was mainly above Tair but increased strongly (up to 10°C > Tair) when Anet was null or negative. Although trees endured extreme Tair (up to 42°C), positive TSM were maintained during the growing season due to high Tcrit in all species (average Tcrit of 54.7°C) and possibly stomatal decoupling (i.e., Anet ≤0 while gs >0). Indeed, Q. ilex and Q. coccifera trees maintained low but positive gs (despite null Anet), decreasing Ψ passed embolism thresholds. This may have prevented Tcan from rising above Tcrit during extreme heat. Overall, our work highlighted that the mechanisms behind heat tolerance and leaf temperature regulation in oak trees include a combination of high evaporative cooling, large heat tolerance limits, and stomatal decoupling. These processes must be considered to accurately predict plant damages, survival, and mortality during extreme heatwaves.
Collapse
Affiliation(s)
- Alice Gauthey
- Plant Ecology Research Laboratory PERL, School of Architecture, Civil and Environmental Engineering, EPFL, Lausanne, Switzerland
- Community Ecology Unit, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
- Birmingham Institute of Forest Research, University of Birmingham, Birmingham, UK
| | - Ansgar Kahmen
- Physiological Plant Ecology, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Jean-Marc Limousin
- Centre d'Ecologie Fonctionnelle et Evolutive, CNRS, EPHE, IRD, Université de Montpellier, Montpellier, France
| | - Alberto Vilagrosa
- CEAM Foundation, Joint Research Unit University of Alicante-CEAM, Department Ecology, University of Alicante, Alicante, Spain
| | - Margaux Didion-Gency
- Forest Dynamics Unit, Swiss Federal Institute for Forest, Snow and Landscape WSL, Birmensdorf, Switzerland
| | - Eugénie Mas
- Plant Ecology Research Laboratory PERL, School of Architecture, Civil and Environmental Engineering, EPFL, Lausanne, Switzerland
- Community Ecology Unit, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
- Forest Global Earth Observatory, Smithsonian Tropical Research Institute, Washington, District of Columbia, USA
| | - Arianna Milano
- Plant Ecology Research Laboratory PERL, School of Architecture, Civil and Environmental Engineering, EPFL, Lausanne, Switzerland
- Community Ecology Unit, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Alex Tunas
- Plant Ecology Research Laboratory PERL, School of Architecture, Civil and Environmental Engineering, EPFL, Lausanne, Switzerland
- Community Ecology Unit, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
- Department of Ecology, University of Innsbruck, Innsbruck, Austria
| | - Charlotte Grossiord
- Plant Ecology Research Laboratory PERL, School of Architecture, Civil and Environmental Engineering, EPFL, Lausanne, Switzerland
- Community Ecology Unit, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| |
Collapse
|
15
|
Winter K. Are tropical forests approaching critical temperature thresholds? PLANT BIOLOGY (STUTTGART, GERMANY) 2024; 26:495-498. [PMID: 38477075 DOI: 10.1111/plb.13638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 02/08/2024] [Indexed: 03/14/2024]
Abstract
There is growing concern about the fate of tropical forests in the face of rising global temperatures. Doughty et al. (2023) suggest that an increase in air temperature beyond ∼4 °C will result in massive death of tropical forest leaves and potentially tree death. However, this prediction relies on assumptions that likely underestimate the heat tolerance of tropical leaves.
Collapse
Affiliation(s)
- K Winter
- Smithsonian Tropical Research Institute, Panama City, Republic of Panama
| |
Collapse
|
16
|
Sun W, Maseyk K, Lett C, Seibt U. Restricted internal diffusion weakens transpiration-photosynthesis coupling during heatwaves: Evidence from leaf carbonyl sulphide exchange. PLANT, CELL & ENVIRONMENT 2024; 47:1813-1833. [PMID: 38321806 DOI: 10.1111/pce.14840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 11/13/2023] [Accepted: 01/22/2024] [Indexed: 02/08/2024]
Abstract
Increasingly frequent and intense heatwaves threaten ecosystem health in a warming climate. However, plant responses to heatwaves are poorly understood. A key uncertainty concerns the intensification of transpiration when heatwaves suppress photosynthesis, known as transpiration-photosynthesis decoupling. Field observations of such decoupling are scarce, and the underlying physiological mechanisms remain elusive. Here, we use carbonyl sulphide (COS) as a leaf gas exchange tracer to examine potential mechanisms leading to transpiration-photosynthesis decoupling on a coast live oak in a southern California woodland in spring 2013. We found that heatwaves suppressed both photosynthesis and leaf COS uptake but increased transpiration or sustained it at non-heatwave levels throughout the day. Despite statistically significant decoupling between transpiration and photosynthesis, stomatal sensitivity to environmental factors did not change during heatwaves. Instead, midday photosynthesis during heatwaves was restricted by internal diffusion, as indicated by the lower internal conductance to COS. Thus, increased evaporative demand and nonstomatal limitation to photosynthesis act jointly to decouple transpiration from photosynthesis without altering stomatal sensitivity. Decoupling offered limited potential cooling benefits, questioning its effectiveness for leaf thermoregulation in xeric ecosystems. We suggest that adding COS to leaf and ecosystem flux measurements helps elucidate diverse physiological mechanisms underlying transpiration-photosynthesis decoupling.
Collapse
Affiliation(s)
- Wu Sun
- Department of Global Ecology, Carnegie Institution for Science, Stanford, California, USA
| | - Kadmiel Maseyk
- School of Environment, Earth and Ecosystem Sciences, The Open University, Milton Keynes, UK
| | - Céline Lett
- Department of Environmental Research and Innovation, Luxembourg Institute of Science and Technology, Belvaux, Luxembourg
| | - Ulli Seibt
- Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, California, USA
| |
Collapse
|
17
|
Wittemann M, Mujawamariya M, Ntirugulirwa B, Uwizeye FK, Zibera E, Manzi OJL, Nsabimana D, Wallin G, Uddling J. Plasticity and implications of water-use traits in contrasting tropical tree species under climate change. PHYSIOLOGIA PLANTARUM 2024; 176:e14326. [PMID: 38708565 DOI: 10.1111/ppl.14326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/12/2024] [Indexed: 05/07/2024]
Abstract
Plants face a trade-off between hydraulic safety and growth, leading to a range of water-use strategies in different species. However, little is known about such strategies in tropical trees and whether different water-use traits can acclimate to warming. We studied five water-use traits in 20 tropical tree species grown at three different altitudes in Rwanda (RwandaTREE): stomatal conductance (gs), leaf minimum conductance (gmin), plant hydraulic conductance (Kplant), leaf osmotic potential (ψo) and net defoliation during drought. We also explored the links between these traits and growth and mortality data. Late successional (LS) species had low Kplant, gs and gmin and, thus, low water loss, while low ψo helped improve leaf water status during drought. Early successional (ES) species, on the contrary, used more water during both moist and dry conditions and exhibited pronounced drought defoliation. The ES strategy was associated with lower mortality and more pronounced growth enhancement at the warmer sites compared to LS species. While Kplant and gmin showed downward acclimation in warmer climates, ψo did not acclimate and gs measured at prevailing temperature did not change. Due to distinctly different water use strategies between successional groups, ES species may be better equipped for a warmer climate as long as defoliation can bridge drought periods.
Collapse
Affiliation(s)
- Maria Wittemann
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Myriam Mujawamariya
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Department of Biology, College of Science and Technology, University of Rwanda, Kigali, Rwanda
| | - Bonaventure Ntirugulirwa
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Department of Biology, College of Science and Technology, University of Rwanda, Kigali, Rwanda
- Rwanda Agriculture and Animal Resources Development Board (RAB), Kigali, Rwanda
- Rwanda Forestry Authority, Muhanga, Rwanda
| | - Felicien K Uwizeye
- School of Forestry and Biodiversity and Biological Sciences, College of Agriculture, Animal Sciences and Veterinary Medicine, University of Rwanda, Musanze, Rwanda
| | - Etienne Zibera
- School of Forestry and Biodiversity and Biological Sciences, College of Agriculture, Animal Sciences and Veterinary Medicine, University of Rwanda, Musanze, Rwanda
| | - Olivier Jean Leonce Manzi
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Integrated Polytechnic Regional College-Kitabi, Rwanda Polytechnic, Huye, Rwanda
| | - Donat Nsabimana
- School of Forestry and Biodiversity and Biological Sciences, College of Agriculture, Animal Sciences and Veterinary Medicine, University of Rwanda, Musanze, Rwanda
| | - Göran Wallin
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Johan Uddling
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
18
|
Everingham SE, Offord CA, Sabot MEB, Moles AT. Leaf morphological traits show greater responses to changes in climate than leaf physiological traits and gas exchange variables. Ecol Evol 2024; 14:e10941. [PMID: 38510539 PMCID: PMC10951557 DOI: 10.1002/ece3.10941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/04/2023] [Accepted: 12/08/2023] [Indexed: 03/22/2024] Open
Abstract
Adaptation to changing conditions is one of the strategies plants may use to survive in the face of climate change. We aimed to determine whether plants' leaf morphological and physiological traits/gas exchange variables have changed in response to recent, anthropogenic climate change. We grew seedlings from resurrected historic seeds from ex-situ seed banks and paired modern seeds in a common-garden experiment. Species pairs were collected from regions that had undergone differing levels of climate change using an emerging framework-Climate Contrast Resurrection Ecology, allowing us to hypothesise that regions with greater changes in climate (including temperature, precipitation, climate variability and climatic extremes) would be greater trait responses in leaf morphology and physiology over time. Our study found that in regions where there were greater changes in climate, there were greater changes in average leaf area, leaf margin complexity, leaf thickness and leaf intrinsic water use efficiency. Changes in leaf roundness, photosynthetic rate, stomatal density and the leaf economic strategy of our species were not correlated with changes in climate. Our results show that leaves do have the ability to respond to changes in climate, however, there are greater inherited responses in morphological leaf traits than in physiological traits/variables and greater responses to extreme measures of climate than gradual changes in climatic means. It is vital for accurate predictions of species' responses to impending climate change to ensure that future climate change ecology studies utilise knowledge about the difference in both leaf trait and gas exchange responses and the climate variables that they respond to.
Collapse
Affiliation(s)
- Susan E. Everingham
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental SciencesUNSWSydneyNew South WalesAustralia
- The Australian Institute of Botanical Science, The Australian PlantBank, Royal Botanic Gardens and Domain Trust, Australian Botanic Garden Mount AnnanMount AnnanNew South WalesAustralia
- Institute of Plant SciencesUniversity of BernBernSwitzerland
- Oeschger Centre for Climate Change ResearchUniversity of BernBernSwitzerland
| | - Catherine A. Offord
- The Australian Institute of Botanical Science, The Australian PlantBank, Royal Botanic Gardens and Domain Trust, Australian Botanic Garden Mount AnnanMount AnnanNew South WalesAustralia
| | - Manon E. B. Sabot
- Climate Change Research CentreUNSWSydneyNew South WalesAustralia
- Australian Research Council Centre of Excellence for Climate ExtremesUNSWSydneyNew South WalesAustralia
| | - Angela T. Moles
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental SciencesUNSWSydneyNew South WalesAustralia
| |
Collapse
|
19
|
Chen X, Li J, Peñuelas J, Li X, Hu D, Wang M, Zhong Q, Cheng D. Temperature dependence of carbon metabolism in the leaves in sun and shade in a subtropical forest. Oecologia 2024; 204:59-69. [PMID: 38091103 DOI: 10.1007/s00442-023-05487-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 11/15/2023] [Indexed: 02/02/2024]
Abstract
Rising temperatures pose a threat to the stability of climate regulation by carbon metabolism in subtropical forests. Although the effects of temperature on leaf carbon metabolism traits in sun-exposed leaves are well understood, there is limited knowledge about its impacts on shade leaves and the implications for ecosystem-climate feedbacks. In this study, we measured temperature response curves of photosynthesis and respiration for 62 woody species in summer (including both evergreen and deciduous species) and 20 evergreen species in winter. The aim was to uncover the temperature dependence of carbon metabolism in both sun and shade leaves in subtropical forests. Our findings reveal that shade had no significant effects on the mean optimum photosynthetic temperatures (TOpt) or temperature range (T90). However, there were decreases observed in mean stomatal conductance, mean area-based photosynthetic rates at TOpt and 25 °C, as well as mean area-based dark respiration rates at 25 °C in both evergreen and deciduous species. Moreover, the respiration-temperature sensitivity (Q10) of sun leaves was higher than that of shade leaves in winter, with the reverse being true in summer. Leaf economics spectrum traits, such as leaf mass per area, and leaf concentration of nitrogen and phosphorus across species, proved to be good predictors of TOpt, T90, mass-based photosynthetic rate at TOpt, and mass-based photosynthetic and respiration rate at 25 °C. However, Q10 was poorly predicted by these leaf economics spectrum traits except for shade leaves in winter. Our results suggest that model estimates of carbon metabolism in multilayered subtropical forest canopies do not necessitate independent parameterization of T90 and TOpt temperature responses in sun and shade leaves. Nevertheless, a deeper understanding and quantification of canopy variations in Q10 responses to temperature are necessary to confirm the generality of temperature-carbon metabolism trait responses and enhance ecosystem model estimates of carbon dynamics under future climate warming.
Collapse
Affiliation(s)
- Xiaoping Chen
- Key Laboratory of Humid Subtropical Eco-Geographical Process (Ministry of Education), College of Geographical Sciences, Fujian Normal University, Fuzhou, China
- College of Tourism, Resources and Environment, Zaozhuang University, Zaozhuang, Shandong, China
- Fujian Provincial Key Laboratory of Plant Ecophysiology, College of Geographical Sciences, Fujian Normal University, Fuzhou, China
| | - Jinlong Li
- Key Laboratory of Humid Subtropical Eco-Geographical Process (Ministry of Education), College of Geographical Sciences, Fujian Normal University, Fuzhou, China
- Fujian Provincial Key Laboratory of Plant Ecophysiology, College of Geographical Sciences, Fujian Normal University, Fuzhou, China
| | - Josep Peñuelas
- Global Ecology Unit, CSIC, CREAF-CSIC-UAB, 08193, Bellaterra, Catalonia, Spain
- CREAF, 08193, Cerdanyola del Vallès, Catalonia, Spain
| | - Xueqin Li
- Key Laboratory of Humid Subtropical Eco-Geographical Process (Ministry of Education), College of Geographical Sciences, Fujian Normal University, Fuzhou, China
- Fujian Provincial Key Laboratory of Plant Ecophysiology, College of Geographical Sciences, Fujian Normal University, Fuzhou, China
| | - Dandan Hu
- Key Laboratory of Humid Subtropical Eco-Geographical Process (Ministry of Education), College of Geographical Sciences, Fujian Normal University, Fuzhou, China
- Fujian Provincial Key Laboratory of Plant Ecophysiology, College of Geographical Sciences, Fujian Normal University, Fuzhou, China
| | - Mantang Wang
- College of Tourism, Resources and Environment, Zaozhuang University, Zaozhuang, Shandong, China
| | - Quanlin Zhong
- Key Laboratory of Humid Subtropical Eco-Geographical Process (Ministry of Education), College of Geographical Sciences, Fujian Normal University, Fuzhou, China
- Fujian Provincial Key Laboratory of Plant Ecophysiology, College of Geographical Sciences, Fujian Normal University, Fuzhou, China
| | - Dongliang Cheng
- Key Laboratory of Humid Subtropical Eco-Geographical Process (Ministry of Education), College of Geographical Sciences, Fujian Normal University, Fuzhou, China.
- Fujian Provincial Key Laboratory of Plant Ecophysiology, College of Geographical Sciences, Fujian Normal University, Fuzhou, China.
| |
Collapse
|
20
|
Jensen AM. Pushing the thermal limit for cacao-will we have chocolate also in a warmer future? TREE PHYSIOLOGY 2023; 43:2047-2049. [PMID: 37694840 DOI: 10.1093/treephys/tpad112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/05/2023] [Indexed: 09/12/2023]
Affiliation(s)
- Anna Monrad Jensen
- Department of Forestry and Wood Technology, Linnaeus University, Lückligs 1351 95 Växjö, Sweden
| |
Collapse
|
21
|
Gauthey A, Bachofen C, Deluigi J, Didion-Gency M, D'Odorico P, Gisler J, Mas E, Schaub M, Schuler P, Still CJ, Tunas A, Grossiord C. Absence of canopy temperature variation despite stomatal adjustment in Pinus sylvestris under multidecadal soil moisture manipulation. THE NEW PHYTOLOGIST 2023; 240:127-137. [PMID: 37483100 DOI: 10.1111/nph.19136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/23/2023] [Indexed: 07/25/2023]
Abstract
Global warming and droughts push forests closer to their thermal limits, altering tree carbon uptake and growth. To prevent critical overheating, trees can adjust their thermotolerance (Tcrit ), temperature and photosynthetic optima (Topt and Aopt ), and canopy temperature (Tcan ) to stay below damaging thresholds. However, we lack an understanding of how soil droughts affect photosynthetic thermal plasticity and Tcan regulation. In this study, we measured the effect of soil moisture on the seasonal and diurnal dynamics of net photosynthesis (A), stomatal conductance (gs ), and Tcan , as well as the thermal plasticity of photosynthesis (Tcrit , Topt , and Aopt ), over the course of 1 yr using a long-term irrigation experiment in a drought-prone Pinus sylvestris forest in Switzerland. Irrigation resulted in higher needle-level A, gs , Topt , and Aopt compared with naturally drought-exposed trees. No daily or seasonal differences in Tcan were observed between treatments. Trees operated below their thermal thresholds (Tcrit ), independently of soil moisture content. Despite strong Tcan and Tair coupling, we provide evidence that drought reduces trees' temperature optimum due to a substantial reduction of gs during warm and dry periods of the year. These findings provide important insights regarding the effects of soil drought on the thermal tolerance of P. sylvestris.
Collapse
Affiliation(s)
- Alice Gauthey
- Plant Ecology Research Laboratory PERL, School of Architecture, Civil and Environmental Engineering, EPFL, Lausanne, CH-1015, Switzerland
- Community Ecology Unit, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, CH-8903, Switzerland
| | - Christoph Bachofen
- Plant Ecology Research Laboratory PERL, School of Architecture, Civil and Environmental Engineering, EPFL, Lausanne, CH-1015, Switzerland
- Community Ecology Unit, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, CH-8903, Switzerland
| | - Janisse Deluigi
- Plant Ecology Research Laboratory PERL, School of Architecture, Civil and Environmental Engineering, EPFL, Lausanne, CH-1015, Switzerland
- Community Ecology Unit, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, CH-8903, Switzerland
| | - Margaux Didion-Gency
- Forest Dynamics Unit, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, CH-8903, Switzerland
| | - Petra D'Odorico
- Land Change Science Unit, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, CH-8903, Switzerland
| | - Jonas Gisler
- Forest Dynamics Unit, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, CH-8903, Switzerland
| | - Eugénie Mas
- Plant Ecology Research Laboratory PERL, School of Architecture, Civil and Environmental Engineering, EPFL, Lausanne, CH-1015, Switzerland
- Community Ecology Unit, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, CH-8903, Switzerland
| | - Marcus Schaub
- Forest Dynamics Unit, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, CH-8903, Switzerland
| | - Philipp Schuler
- Forest Dynamics Unit, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, CH-8903, Switzerland
| | - Christopher J Still
- Forest Ecosystems and Society, Oregon State University, Corvallis, 97331, OR, USA
| | - Alex Tunas
- Plant Ecology Research Laboratory PERL, School of Architecture, Civil and Environmental Engineering, EPFL, Lausanne, CH-1015, Switzerland
- Community Ecology Unit, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, CH-8903, Switzerland
| | - Charlotte Grossiord
- Plant Ecology Research Laboratory PERL, School of Architecture, Civil and Environmental Engineering, EPFL, Lausanne, CH-1015, Switzerland
- Community Ecology Unit, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, CH-8903, Switzerland
| |
Collapse
|
22
|
Schönbeck L, Arteaga M, Mirza H, Coleman M, Mitchell D, Huang X, Ortiz H, Santiago LS. Plant physiological indicators for optimizing conservation outcomes. CONSERVATION PHYSIOLOGY 2023; 11:coad073. [PMID: 37711583 PMCID: PMC10498484 DOI: 10.1093/conphys/coad073] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 07/20/2023] [Accepted: 08/22/2023] [Indexed: 09/16/2023]
Abstract
Plant species of concern often occupy narrow habitat ranges, making climate change an outsized potential threat to their conservation and restoration. Understanding the physiological status of a species during stress has the potential to elucidate current risk and provide an outlook on population maintenance. However, the physiological status of a plant can be difficult to interpret without a reference point, such as the capacity to tolerate stress before loss of function, or mortality. We address the application of plant physiology to conservation biology by distinguishing between two physiological approaches that together determine plant status in relation to environmental conditions and evaluate the capacity to avoid stress-induced loss of function. Plant physiological status indices, such as instantaneous rates of photosynthetic gas exchange, describe the level of physiological activity in the plant and are indicative of physiological health. When such measurements are combined with a reference point that reflects the maximum value or environmental limits of a parameter, such as the temperature at which photosynthesis begins to decline due to high temperature stress, we can better diagnose the proximity to potentially damaging thresholds. Here, we review a collection of useful plant status and reference point measurements related to photosynthesis, water relations and mineral nutrition, which can contribute to plant conservation physiology. We propose that these measurements can serve as important additional information to more commonly used phenological and morphological parameters, as the proposed parameters will reveal early warning signals before they are visible. We discuss their implications in the context of changing temperature, water and nutrient supply.
Collapse
Affiliation(s)
- Leonie Schönbeck
- Department of Botany & Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Marc Arteaga
- Department of Botany & Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Humera Mirza
- Department of Botany & Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Mitchell Coleman
- Department of Botany & Plant Sciences, University of California, Riverside, CA 92521, USA
- Tejon Ranch Conservancy, Frazier Park, CA 93225, USA
| | - Denise Mitchell
- Department of Botany & Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Xinyi Huang
- Department of Botany & Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Haile Ortiz
- Department of Botany & Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Louis S Santiago
- Department of Botany & Plant Sciences, University of California, Riverside, CA 92521, USA
- Smithsonian Tropical Research Institute, Apartado 0843-03092. Balboa, Ancon, Panama, Republic of Panama
| |
Collapse
|
23
|
Kueneman JG, Bonadies E, Thomas D, Roubik DW, Wcislo WT. Neotropical bee microbiomes point to a fragmented social core and strong species-level effects. MICROBIOME 2023; 11:150. [PMID: 37452376 PMCID: PMC10347802 DOI: 10.1186/s40168-023-01593-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/05/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND Individuals that band together create new ecological opportunities for microorganisms. In vertical transmission, theory predicts a conserved microbiota within lineages, especially social bees. Bees exhibit solitary to social behavior among and/or within species, while life cycles can be annual or perennial. Bee nests may be used over generations or only once, and foraging ecology varies widely. To assess which traits are associated with bee microbiomes, we analyzed microbial diversity within solitary and social bees of Apidae, Colletidae, and Halictidae, three bee families in Panama's tropical forests. Our analysis considered the microbiome of adult gut contents replicated through time, localities, and seasons (wet and dry) and included bee morphology and comparison to abdominal (dissected) microbiota. Diversity and distribution of tropical bee microbes (TBM) within the corbiculate bee clade were emphasized. RESULTS We found the eusocial corbiculate bees tended to possess a more conserved gut microbiome, attributable to vertical transmission, but microbial composition varied among closely related species. Euglossine bees (or orchid bees), corbiculates with mainly solitary behavior, had more variable gut microbiomes. Their shorter-tongued and highly seasonal species displayed greater diversity, attributable to flower-visiting habits. Surprisingly, many stingless bees, the oldest corbiculate clade, lacked bacterial genera thought to predate eusociality, while several facultatively social, and solitary bee species possessed those bacterial taxa. Indeed, nearly all bee species displayed a range of affinities for single or multiple variants of the "socially associated" bacterial taxa, which unexpectedly demonstrated high sequence variation. CONCLUSIONS Taken together, these results call into question whether specific bacterial associates facilitate eusocial behavior, or are subsequently adopted, or indicate frequent horizontal transmission between perennial eusocial colonies and other social, facultatively social, and solitary bees. Video Abstract.
Collapse
Affiliation(s)
- Jordan G Kueneman
- Smithsonian Tropical Research Institute, Panama City, Panama.
- Department of Entomology, Cornell University, Comstock Hall, 2126, Ithaca, NY, 14853, Czech Republic.
| | - Ernesto Bonadies
- Smithsonian Tropical Research Institute, Panama City, Panama
- Biology Centre of the Czech Academy of Sciences, Branisovska, České Budějovice, Czech Republic
| | | | - David W Roubik
- Smithsonian Tropical Research Institute, Panama City, Panama
| | | |
Collapse
|
24
|
Zhang Z, Cescatti A, Wang YP, Gentine P, Xiao J, Guanter L, Huete AR, Wu J, Chen JM, Ju W, Peñuelas J, Zhang Y. Large diurnal compensatory effects mitigate the response of Amazonian forests to atmospheric warming and drying. SCIENCE ADVANCES 2023; 9:eabq4974. [PMID: 37235657 DOI: 10.1126/sciadv.abq4974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 04/25/2023] [Indexed: 05/28/2023]
Abstract
Photosynthesis and evapotranspiration in Amazonian forests are major contributors to the global carbon and water cycles. However, their diurnal patterns and responses to atmospheric warming and drying at regional scale remain unclear, hindering the understanding of global carbon and water cycles. Here, we used proxies of photosynthesis and evapotranspiration from the International Space Station to reveal a strong depression of dry season afternoon photosynthesis (by 6.7 ± 2.4%) and evapotranspiration (by 6.1 ± 3.1%). Photosynthesis positively responds to vapor pressure deficit (VPD) in the morning, but negatively in the afternoon. Furthermore, we projected that the regionally depressed afternoon photosynthesis will be compensated by their increases in the morning in future dry seasons. These results shed new light on the complex interplay of climate with carbon and water fluxes in Amazonian forests and provide evidence on the emerging environmental constraints of primary productivity that may improve the robustness of future projections.
Collapse
Affiliation(s)
- Zhaoying Zhang
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, International Institute for Earth System Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
- Yuxiu Postdoctoral Institute, Nanjing University, Nanjing, Jiangsu 210023, China
- Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, Key Laboratory for Land Satellite Remote Sensing Applications of Ministry of Natural Resources, School of Geography and Ocean Science, Nanjing University, Nanjing, Jiangsu 210023, China
| | | | - Ying-Ping Wang
- CSIRO, Oceans and Atmosphere, Private Bag 1, Aspendale, Victoria 3195, Australia
| | - Pierre Gentine
- Department of Earth and Environmental Engineering, Columbia University, New York, NY, USA
| | - Jingfeng Xiao
- Earth Systems Research Center, Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, NH, USA
| | - Luis Guanter
- Research Institute of Water and Environmental Engineering (IIAMA), Department of Applied Physics, Polytechnic University of Valencia, Valencia, Spain
| | - Alfredo R Huete
- School of Life Sciences, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Jin Wu
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Jing M Chen
- Department of Geography and Planning, University of Toronto, Toronto, Ontario, Canada
| | - Weimin Ju
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, International Institute for Earth System Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
- Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, Key Laboratory for Land Satellite Remote Sensing Applications of Ministry of Natural Resources, School of Geography and Ocean Science, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Josep Peñuelas
- CSIC, Global ecology Unit CREAF-CSIC-UAB, Bellaterra 08193, Catalonia, Spain
- CREAF, Cerdanyola del Vallès 08193, Catalonia, Spain
| | - Yongguang Zhang
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, International Institute for Earth System Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
- Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, Key Laboratory for Land Satellite Remote Sensing Applications of Ministry of Natural Resources, School of Geography and Ocean Science, Nanjing University, Nanjing, Jiangsu 210023, China
- International Joint Carbon Neutrality Laboratory, Nanjing University, Nanjing, Jiangsu 210023 China
| |
Collapse
|
25
|
Scafaro AP, Posch BC, Evans JR, Farquhar GD, Atkin OK. Rubisco deactivation and chloroplast electron transport rates co-limit photosynthesis above optimal leaf temperature in terrestrial plants. Nat Commun 2023; 14:2820. [PMID: 37198175 DOI: 10.1038/s41467-023-38496-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 05/03/2023] [Indexed: 05/19/2023] Open
Abstract
Net photosynthetic CO2 assimilation rate (An) decreases at leaf temperatures above a relatively mild optimum (Topt) in most higher plants. This decline is often attributed to reduced CO2 conductance, increased CO2 loss from photorespiration and respiration, reduced chloroplast electron transport rate (J), or deactivation of Ribulose-1,5-bisphosphate Carboxylase Oxygenase (Rubisco). However, it is unclear which of these factors can best predict species independent declines in An at high temperature. We show that independent of species, and on a global scale, the observed decline in An with rising temperatures can be effectively accounted for by Rubisco deactivation and declines in J. Our finding that An declines with Rubisco deactivation and J supports a coordinated down-regulation of Rubisco and chloroplast electron transport rates to heat stress. We provide a model that, in the absence of CO2 supply limitations, can predict the response of photosynthesis to short-term increases in leaf temperature.
Collapse
Affiliation(s)
- Andrew P Scafaro
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia.
- Centre for Entrepreneurial Agri-Technology, Gould Building, Australian National University, Canberra, 2601, Australia.
| | - Bradley C Posch
- Department of Research, Collections and Conservation, Desert Botanical Garden, Phoenix, AZ, USA
| | - John R Evans
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Graham D Farquhar
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Owen K Atkin
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
- Centre for Entrepreneurial Agri-Technology, Gould Building, Australian National University, Canberra, 2601, Australia
| |
Collapse
|
26
|
Spiers JA, Oatham MP, Rostant LV, Farrell AD. Determining the ecophysiological limits of a narrow niche tropical conifer tree (Podocarpus trinitensis). TREE PHYSIOLOGY 2023; 43:781-793. [PMID: 36585840 DOI: 10.1093/treephys/tpac151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 12/06/2022] [Accepted: 12/23/2022] [Indexed: 05/13/2023]
Abstract
Many tropical species live close to their thermal limits within a narrow niche. Here, we investigate the ecophysiological limits of the tropical tree Podocarpus trinitensis, which is endemic to Trinidad and Tobago where most populations exist as isolated stands on hilltops. Five wild stands from a range of elevations were compared in the field with measurements of leaf temperature, canopy cover, stomatal conductance (gs), chlorophyll content and several chlorophyll fluorescence parameters. A parallel greenhouse experiment was used to acclimate seedlings to 'CONTROL' and 'HEAT' treatments (with mid-day air temperatures of 34.5 and 37 °C respectively), after which the above parameters were measured along with photosynthetic light and temperature response curves, leaf morphology and in vitro Fv/Fm thermostability. There was a positive association between improved physiological performance and elevation. In the high elevation sites, leaf temperatures were significantly lower while most of the physiological parameters were higher (gs, chlorophyll content, ɸ PSII, ETRmax and Isat90). In the greenhouse, HEAT and CONTROL plants were similar for most parameters, except leaf temperature (which was coupled with air temperature) and leaf mass per unit area (which was higher in HEAT plants). Temperature response curves showed an optimum temperature for photosynthesis of 30 ± 0.5 °C (TOpt) and in vitro Fv/Fm indicated a critical temperature of 47.4 ± 0.38 °C for HEAT and 48.2 ± 0.24 °C for CONTROL (T50), with no indication of heat acclimation. Podocarpus trinitensis was found to be shade tolerant. In the field, seedlings established under a close canopy (>95% canopy cover) and had a low light saturation point (LCP). In the greenhouse, where more light was available, seedlings retained a low light compensation point, light saturation point (LSP) and maximum photosynthetic rate (Amax). The results suggest that P. trinitensis is moderately heat tolerant with the higher elevation sites being more habitable, but stands are also able to survive near sea level under a closed canopy. The narrow niche, along with the 30 ± 0.5 °C optimum temperature for photosynthesis and the lack of thermal plasticity in critical temperature, suggests that P. trinitensis has little room to acclimate to temperatures higher than those currently experienced.
Collapse
Affiliation(s)
- Joshua A Spiers
- Department of Life Sciences, University of the West Indies, St. Augustine Campus, St. Augustine, Trinidad and Tobago
| | - Michael P Oatham
- Department of Life Sciences, University of the West Indies, St. Augustine Campus, St. Augustine, Trinidad and Tobago
| | - Luke V Rostant
- Department of Life Sciences, University of the West Indies, St. Augustine Campus, St. Augustine, Trinidad and Tobago
| | - Aidan D Farrell
- Department of Life Sciences, University of the West Indies, St. Augustine Campus, St. Augustine, Trinidad and Tobago
| |
Collapse
|
27
|
Guo Z, Still CJ, Lee CKF, Ryu Y, Blonder B, Wang J, Bonebrake TC, Hughes A, Li Y, Yeung HCH, Zhang K, Law YK, Lin Z, Wu J. Does plant ecosystem thermoregulation occur? An extratropical assessment at different spatial and temporal scales. THE NEW PHYTOLOGIST 2023; 238:1004-1018. [PMID: 36495263 DOI: 10.1111/nph.18632] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/11/2022] [Indexed: 06/17/2023]
Abstract
To what degree plant ecosystems thermoregulate their canopy temperature (Tc ) is critical to assess ecosystems' metabolisms and resilience with climate change, but remains controversial, with opinions from no to moderate thermoregulation capability. With global datasets of Tc , air temperature (Ta ), and other environmental and biotic variables from FLUXNET and satellites, we tested the 'limited homeothermy' hypothesis (indicated by Tc & Ta regression slope < 1 or Tc < Ta around midday) across global extratropics, including temporal and spatial dimensions. Across daily to weekly and monthly timescales, over 80% of sites/ecosystems have slopes ≥1 or Tc > Ta around midday, rejecting the above hypothesis. For those sites unsupporting the hypothesis, their Tc -Ta difference (ΔT) exhibits considerable seasonality that shows negative, partial correlations with leaf area index, implying a certain degree of thermoregulation capability. Spatially, site-mean ΔT exhibits larger variations than the slope indicator, suggesting ΔT is a more sensitive indicator for detecting thermoregulatory differences across biomes. Furthermore, this large spatial-wide ΔT variation (0-6°C) is primarily explained by environmental variables (38%) and secondarily by biotic factors (15%). These results demonstrate diverse thermoregulation patterns across global extratropics, with most ecosystems negating the 'limited homeothermy' hypothesis, but their thermoregulation still occurs, implying that slope < 1 or Tc < Ta are not necessary conditions for plant thermoregulation.
Collapse
Affiliation(s)
- Zhengfei Guo
- School for Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Christopher J Still
- Forest Ecosystems and Society, Oregon State University, Corvallis, OR, 97331, USA
| | - Calvin K F Lee
- School for Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Youngryel Ryu
- Department of Landscape Architecture and Rural Systems Engineering, College of Agriculture and Life Sciences, Seoul National University, Gwanak-gu, Seoul, South Korea
| | - Benjamin Blonder
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA, 94720, USA
| | - Jing Wang
- School for Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Timothy C Bonebrake
- School for Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
- Institute for Climate and Carbon Neutrality, The University of Hong Kong, Hong Kong, China
| | - Alice Hughes
- School for Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
- Institute for Climate and Carbon Neutrality, The University of Hong Kong, Hong Kong, China
| | - Yan Li
- State Key Laboratory of Earth Surface Processes and Resources Ecology, Beijing Normal University, Beijing, 100875, China
| | - Henry C H Yeung
- School for Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Kun Zhang
- School for Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
- Department of Mathematics, The University of Hong Kong, Hong Kong, China
| | - Ying Ki Law
- School for Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Ziyu Lin
- School for Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Jin Wu
- School for Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
- Institute for Climate and Carbon Neutrality, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| |
Collapse
|
28
|
Mujawamariya M, Wittemann M, Dusenge ME, Manishimwe A, Ntirugulirwa B, Zibera E, Nsabimana D, Wallin G, Uddling J. Contrasting warming responses of photosynthesis in early- and late-successional tropical trees. TREE PHYSIOLOGY 2023:tpad035. [PMID: 36971469 DOI: 10.1093/treephys/tpad035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 02/01/2023] [Indexed: 06/18/2023]
Abstract
The productivity and climate feedbacks of tropical forests depend on tree physiological responses to warmer and, over large areas, seasonally drier conditions. However, knowledge regarding such responses is limited due to data scarcity. We studied the impact of growth temperature on net photosynthesis (An), maximum rates of Rubisco carboxylation at 25°C (Vcmax25), stomatal conductance (gs) and the slope parameter of the stomatal conductance-photosynthesis model (g1), in ten early- (ES) and eight late-successional (LS) tropical tree species grown at three sites along an elevation gradient in Rwanda, differing by 6.8°C in daytime ambient air temperature. The effect of seasonal drought on An was also investigated. We found that warm climate decreased wet-season An in LS species, but not in ES species. Values of Vcmax25 were lower at the warmest site across both successional groups, and An and Vcmax25 were higher in ES compared to LS species. Stomatal conductance exhibited no significant site differences and g1 was similar across both sites and successional groups. Drought strongly reduced An at warmer sites but not at the coolest montane site and this response was similar in both ES and LS species. Our results suggest that warming has negative effects on leaf-level photosynthesis in LS species, while both LS and ES species suffer photosynthesis declines in a warmer climate with more pronounced droughts. The contrasting responses of An between successional groups may lead to shifts in species' competitive balance in a warmer world, to the disadvantage of LS trees.
Collapse
Affiliation(s)
- Myriam Mujawamariya
- Department of Biology, College of Science and Technology, University of Rwanda, Avenue de l'Armée, Kigali P.O.Box 3900, Rwanda
- Center of Excellence in Biodiversity Conservation and Natural Resources Management, College of Science and Technology, University of Rwanda, Avenue de l'Armée, Kigali P.O.Box 3900, Rwanda
- Department of Biological and Environmental Sciences, University of Gothenburg, P.O. Box 461, SE-405 30 Gothenburg, Sweden
| | - Maria Wittemann
- Department of Biological and Environmental Sciences, University of Gothenburg, P.O. Box 461, SE-405 30 Gothenburg, Sweden
| | - Mirindi Eric Dusenge
- Western Center for Climate Change, Sustainable Livelihoods and Health, Department of Geography, The University of Western Ontario, London, Ontario, Canada
- College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4RJ, United Kingdom
| | - Aloysie Manishimwe
- Department of Biology, College of Science and Technology, University of Rwanda, Avenue de l'Armée, Kigali P.O.Box 3900, Rwanda
- Center of Excellence in Biodiversity Conservation and Natural Resources Management, College of Science and Technology, University of Rwanda, Avenue de l'Armée, Kigali P.O.Box 3900, Rwanda
- Department of Biological and Environmental Sciences, University of Gothenburg, P.O. Box 461, SE-405 30 Gothenburg, Sweden
| | - Bonaventure Ntirugulirwa
- Department of Biology, College of Science and Technology, University of Rwanda, Avenue de l'Armée, Kigali P.O.Box 3900, Rwanda
- Department of Biological and Environmental Sciences, University of Gothenburg, P.O. Box 461, SE-405 30 Gothenburg, Sweden
- Rwanda Forestry Authority, Muhanga P.O. Box 46, Rwanda
| | - Etienne Zibera
- School of Forestry and Biodiversity, College of Agriculture, Animal Sciences and Veterinary Medicine, University of Rwanda, Musanze P.O. Box 210, Rwanda
| | - Donat Nsabimana
- Center of Excellence in Biodiversity Conservation and Natural Resources Management, College of Science and Technology, University of Rwanda, Avenue de l'Armée, Kigali P.O.Box 3900, Rwanda
- School of Forestry and Biodiversity, College of Agriculture, Animal Sciences and Veterinary Medicine, University of Rwanda, Musanze P.O. Box 210, Rwanda
| | - Göran Wallin
- Department of Biological and Environmental Sciences, University of Gothenburg, P.O. Box 461, SE-405 30 Gothenburg, Sweden
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, OX1 3QY, United Kingdom
| | - Johan Uddling
- Department of Biological and Environmental Sciences, University of Gothenburg, P.O. Box 461, SE-405 30 Gothenburg, Sweden
| |
Collapse
|
29
|
Weygint WA, Eitel JUH, Maguire AJ, Vierling LA, Johnson DM, Campbell CS, Griffin KL. Leaf temperatures and environmental conditions predict daily stem radial variations in a temperate coniferous forest. Ecosphere 2023. [DOI: 10.1002/ecs2.4465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023] Open
Affiliation(s)
- William A. Weygint
- McCall Field Campus University of Idaho McCall Idaho USA
- Department of Natural Resources and Society University of Idaho Moscow Idaho USA
| | - Jan U. H. Eitel
- McCall Field Campus University of Idaho McCall Idaho USA
- Department of Natural Resources and Society University of Idaho Moscow Idaho USA
| | - Andrew J. Maguire
- Jet Propulsion Laboratory California Institute of Technology Pasadena California USA
- Conservation Science Partners, Inc. Truckee California USA
| | - Lee A. Vierling
- Department of Natural Resources and Society University of Idaho Moscow Idaho USA
| | - Daniel M. Johnson
- Warnell School of Forestry and Natural Resources University of Georgia Athens Georgia USA
| | | | - Kevin L. Griffin
- Department of Ecology, Evolution, and Environmental Biology Columbia University New York New York USA
- Department of Earth and Environmental Sciences Columbia University Palisades New York USA
- Lamont‐Doherty Earth Observatory Columbia University Palisades New York USA
| |
Collapse
|
30
|
Kullberg AT, Slot M, Feeley KJ. Thermal optimum of photosynthesis is controlled by stomatal conductance and does not acclimate across an urban thermal gradient in six subtropical tree species. PLANT, CELL & ENVIRONMENT 2023; 46:831-849. [PMID: 36597283 DOI: 10.1111/pce.14533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Modelling the response of plants to climate change is limited by our incomplete understanding of the component processes of photosynthesis and their temperature responses within and among species. For ≥20 individuals, each of six common subtropical tree species occurring across steep urban thermal gradients in Miami, Florida, USA, we determined rates of net photosynthesis (Anet ), maximum RuBP carboxylation, maximum RuBP regeneration and stomatal conductance, and modelled the optimum temperature (Topt ) and process rate of each parameter to address two questions: (1) Do the Topt of Anet (ToptA ) and the maximum Anet (Aopt ) of subtropical trees reflect acclimation to elevated growth temperatures? And (2) What limits Anet in subtropical trees? Against expectations, we did not find significant acclimation of ToptA , Aopt or the Topt of any of the underlying photosynthetic parameters to growth temperature in any of the focal species. Model selection for the single best predictor of Anet both across leaf temperatures and at ToptA revealed that the Anet of most trees was best predicted by stomatal conductance. Our findings are in accord with those of previous studies, especially in the tropics, that have identified stomatal conductance to be the most important factor limiting Anet , rather than biochemical thermal responses.
Collapse
Affiliation(s)
- Alyssa T Kullberg
- Department of Biology, University of Miami, Coral Gables, Florida, USA
| | - Martijn Slot
- Smithsonian Tropical Research Institute, Panama, Republic of Panama
| | - Kenneth J Feeley
- Department of Biology, University of Miami, Coral Gables, Florida, USA
- Fairchild Tropical Botanic Garden, Coral Gables, Florida, USA
| |
Collapse
|
31
|
Zhu LW, Zhao P. Climate-driven sapwood-specific hydraulic conductivity and the Huber value but not leaf-specific hydraulic conductivity on a global scale. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159334. [PMID: 36220474 DOI: 10.1016/j.scitotenv.2022.159334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/27/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Efficient water transport is crucial for plant growth and survival. Plant hydraulic conductivity varies between functional groups and biomes and is strongly influenced by changing environmental conditions. However, correlations of conductivity-related hydraulic traits with climatic variables are not fully understood, preventing clarification of plant form and function under climate change scenarios. By compiling leaf-specific hydraulic conductivity (KL), sapwood-specific hydraulic conductivity (Ks), and Huber values (Hv, sapwood area to leaf area ratio) along with climatic variables including mean annual temperature (MAT), mean annual precipitation (MAP) and aridity index (AI) for 428 species across a wide range of plant functional types (PFTs) and biomes at a global scale, we found greater variability of KL within PFTs and biomes than across PFTs and biomes. Interaction effects between PFTs and biomes on KL and Ks were found. The interaction between MAT and MAP played a significant role in Ks and Hv (t = 3.89, P < 0.001 for Ks and t = -5.77, P < 0.001 for Hv). With increasing AI, Ks increased and Hv decreased. KL was not influenced by the investigated climatic variables. Our study provides a better understanding of the dynamics of hydraulic structure and function across functional groups and biomes and of the abiotic drivers of their large-scale variations.
Collapse
Affiliation(s)
- Li-Wei Zhu
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Ping Zhao
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
32
|
Vinod N, Slot M, McGregor IR, Ordway EM, Smith MN, Taylor TC, Sack L, Buckley TN, Anderson-Teixeira KJ. Thermal sensitivity across forest vertical profiles: patterns, mechanisms, and ecological implications. THE NEW PHYTOLOGIST 2023; 237:22-47. [PMID: 36239086 DOI: 10.1111/nph.18539] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 07/31/2022] [Indexed: 06/16/2023]
Abstract
Rising temperatures are influencing forests on many scales, with potentially strong variation vertically across forest strata. Using published research and new analyses, we evaluate how microclimate and leaf temperatures, traits, and gas exchange vary vertically in forests, shaping tree, and ecosystem ecology. In closed-canopy forests, upper canopy leaves are exposed to the highest solar radiation and evaporative demand, which can elevate leaf temperature (Tleaf ), particularly when transpirational cooling is curtailed by limited stomatal conductance. However, foliar traits also vary across height or light gradients, partially mitigating and protecting against the elevation of upper canopy Tleaf . Leaf metabolism generally increases with height across the vertical gradient, yet differences in thermal sensitivity across the gradient appear modest. Scaling from leaves to trees, canopy trees have higher absolute metabolic capacity and growth, yet are more vulnerable to drought and damaging Tleaf than their smaller counterparts, particularly under climate change. By contrast, understory trees experience fewer extreme high Tleaf 's but have fewer cooling mechanisms and thus may be strongly impacted by warming under some conditions, particularly when exposed to a harsher microenvironment through canopy disturbance. As the climate changes, integrating the patterns and mechanisms reviewed here into models will be critical to forecasting forest-climate feedback.
Collapse
Affiliation(s)
- Nidhi Vinod
- Conservation Ecology Center, Smithsonian's National Zoo & Conservation Biology Institute, Front Royal, VA, 22630, USA
- Department of Ecology and Evolutionary Biology, UCLA, Los Angeles, CA, 90039, USA
| | - Martijn Slot
- Smithsonian Tropical Research Institute, Apartado Postal 0843-03092, Panama City, Panama
| | - Ian R McGregor
- Center for Geospatial Analytics, North Carolina State University, Raleigh, NC, 27607, USA
| | - Elsa M Ordway
- Department of Ecology and Evolutionary Biology, UCLA, Los Angeles, CA, 90039, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Marielle N Smith
- Department of Forestry, Michigan State University, East Lansing, MI, 48824, USA
- School of Natural Sciences, College of Environmental Sciences and Engineering, Bangor University, Bangor, LL57 2DG, UK
| | - Tyeen C Taylor
- Department of Civil & Environmental Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Lawren Sack
- Department of Ecology and Evolutionary Biology, UCLA, Los Angeles, CA, 90039, USA
| | - Thomas N Buckley
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Kristina J Anderson-Teixeira
- Conservation Ecology Center, Smithsonian's National Zoo & Conservation Biology Institute, Front Royal, VA, 22630, USA
- Smithsonian Tropical Research Institute, Apartado Postal 0843-03092, Panama City, Panama
| |
Collapse
|
33
|
Docherty EM, Gloor E, Sponchiado D, Gilpin M, Pinto CAD, Junior HM, Coughlin I, Ferreira L, Junior JAS, da Costa ACL, Meir P, Galbraith D. Long-term drought effects on the thermal sensitivity of Amazon forest trees. PLANT, CELL & ENVIRONMENT 2023; 46:185-198. [PMID: 36230004 PMCID: PMC10092618 DOI: 10.1111/pce.14465] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 10/07/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
The continued functioning of tropical forests under climate change depends on their resilience to drought and heat. However, there is little understanding of how tropical forests will respond to combinations of these stresses, and no field studies to date have explicitly evaluated whether sustained drought alters sensitivity to temperature. We measured the temperature response of net photosynthesis, foliar respiration and the maximum quantum efficiency of photosystem II (Fv /Fm ) of eight hyper-dominant Amazonian tree species at the world's longest-running tropical forest drought experiment, to investigate the effect of drought on forest thermal sensitivity. Despite a 0.6°C-2°C increase in canopy air temperatures following long-term drought, no change in overall thermal sensitivity of net photosynthesis or respiration was observed. However, photosystem II tolerance to extreme-heat damage (T50 ) was reduced from 50.0 ± 0.3°C to 48.5 ± 0.3°C under drought. Our results suggest that long-term reductions in precipitation, as projected across much of Amazonia by climate models, are unlikely to greatly alter the response of tropical forests to rising mean temperatures but may increase the risk of leaf thermal damage during heatwaves.
Collapse
Affiliation(s)
- Emma M. Docherty
- Department of Earth and Environment, School of GeographyUniversity of LeedsLeedsUK
| | - Emanuel Gloor
- Department of Earth and Environment, School of GeographyUniversity of LeedsLeedsUK
| | - Daniela Sponchiado
- Departamento de Ciências Biológicas, Laboratório de Ecologia VegetalUniversidade do Estado de Mato GrossoNova XavantinaMato GrossoBrasil
| | - Martin Gilpin
- Department of Earth and Environment, School of GeographyUniversity of LeedsLeedsUK
| | | | | | - Ingrid Coughlin
- Departamento de Biologia, FFCLRPUniversidade de São PauloRibeirao PretoSão PauloBrasil
- College of Science, Research School of BiologyAustralian National UniversityCanberraAustralian Capital TerritorAustralia
| | | | | | - Antonio C. L. da Costa
- Instituto de GeosciênciasUniversidade Federaldo ParáBelémParáBrasil
- Museu Paraense Emílio GoeldiBelémParáBrasil
| | - Patrick Meir
- College of Science, Research School of BiologyAustralian National UniversityCanberraAustralian Capital TerritorAustralia
- College of Science and Engineering, School of GeoSciencesUniversity of EdinburghEdinburghUK
| | - David Galbraith
- Department of Earth and Environment, School of GeographyUniversity of LeedsLeedsUK
| |
Collapse
|
34
|
Wang Z, Wang C, Wang X, Wang B, Wu J, Liu L. Aerosol pollution alters the diurnal dynamics of sun and shade leaf photosynthesis through different mechanisms. PLANT, CELL & ENVIRONMENT 2022; 45:2943-2953. [PMID: 35906794 DOI: 10.1111/pce.14411] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 07/16/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
Anthropogenic aerosols have been shown to perturb CO2 exchange between the vegetation and the atmosphere. However, the climate effects of aerosols through carbon cycle feedback still have significant uncertainties. Taking advantage of the periodic fluctuations of aerosol loading in Beijing, we intensively measured the diurnal course of leaf microclimates and photosynthesis under different aerosol conditions during the growing season in 2014 and 2015. We found that increasing aerosol loadings altered the diurnal course of microclimates and thus sun and shade leaf photosynthesis. Our mechanistic photosynthesis model experiments further showed that aerosol-induced increase in sun leaf photosynthesis occurred around noon and afternoon, mainly by alleviating the depression of photosynthesis caused by high leaf temperature and leaf-air vapour pressure deficit. Meanwhile, aerosols enhanced shade leaf photosynthesis throughout the day by mitigating the light limitation within the canopy, with the highest increase occurring around noon. Overall, our study suggested that aerosol's diffuse fertilization effect, cooling effect and the accompanying low leaf-air vapour pressure deficit collectively drove the changes in the diurnal courses of sun and shade leaf photosynthesis. Our results provided an important benchmark for assessing how anthropogenic aerosols regulate ecosystem C balance under different meteorological conditions.
Collapse
Affiliation(s)
- Zhenhua Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- The Engineering Technology Research Center of Characteristic Medicinal Plants of Fujian, School of Life Sciences, Ningde Normal University, Ningde, Fujian, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chengzhang Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xin Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bin Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jin Wu
- School of Biological Sciences, University of Hong Kong, Hong Kong, China
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Lingli Liu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
35
|
Garen JC, Branch HA, Borrego I, Blonder B, Stinziano JR, Michaletz ST. Gas exchange analysers exhibit large measurement error driven by internal thermal gradients. THE NEW PHYTOLOGIST 2022; 236:369-384. [PMID: 35762843 DOI: 10.1111/nph.18347] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
Portable gas exchange analysers provide critical data for understanding plant-atmosphere carbon and water fluxes, and for parameterising Earth system models that forecast climate change effects and feedbacks. We characterised temperature measurement errors in the Li-Cor LI-6400XT and LI-6800, and estimated downstream errors in derived quantities, including stomatal conductance (gsw ) and leaf intercellular CO2 concentration (Ci ). The LI-6400XT exhibited air temperature errors (differences between reported air temperature and air temperature measured near the leaf) up to 7.2°C, leaf temperature errors up to 5.3°C, and relative errors in gsw and Ci that increased as temperatures departed from ambient. This caused errors in leaf-to-air temperature relationships, assimilation-temperature curves and CO2 response curves. Temperature dependencies of maximum Rubisco carboxylation rate (Vcmax ) and maximum RuBP regeneration rate (Jmax ) showed errors of 12% and 35%, respectively. These errors are likely to be idiosyncratic and may differ among machines and environmental conditions. The LI-6800 exhibited much smaller errors. Earth system model predictions may be erroneous, as much of their parametrisation data were measured on the LI-6400XT system, depending on the methods used. We make recommendations for minimising errors and correcting data in the LI-6400XT. We also recommend transitioning to the LI-6800 for future data collection.
Collapse
Affiliation(s)
- Josef C Garen
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Haley A Branch
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Isaac Borrego
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Benjamin Blonder
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA, 94720, USA
| | | | - Sean T Michaletz
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
36
|
No evidence of canopy-scale leaf thermoregulation to cool leaves below air temperature across a range of forest ecosystems. Proc Natl Acad Sci U S A 2022; 119:e2205682119. [PMID: 36095211 PMCID: PMC9499539 DOI: 10.1073/pnas.2205682119] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Understanding and predicting the relationship between leaf temperature (Tleaf) and air temperature (Tair) is essential for projecting responses to a warming climate, as studies suggest that many forests are near thermal thresholds for carbon uptake. Based on leaf measurements, the limited leaf homeothermy hypothesis argues that daytime Tleaf is maintained near photosynthetic temperature optima and below damaging temperature thresholds. Specifically, leaves should cool below Tair at higher temperatures (i.e., > ∼25-30°C) leading to slopes <1 in Tleaf/Tair relationships and substantial carbon uptake when leaves are cooler than air. This hypothesis implies that climate warming will be mitigated by a compensatory leaf cooling response. A key uncertainty is understanding whether such thermoregulatory behavior occurs in natural forest canopies. We present an unprecedented set of growing season canopy-level leaf temperature (Tcan) data measured with thermal imaging at multiple well-instrumented forest sites in North and Central America. Our data do not support the limited homeothermy hypothesis: canopy leaves are warmer than air during most of the day and only cool below air in mid to late afternoon, leading to Tcan/Tair slopes >1 and hysteretic behavior. We find that the majority of ecosystem photosynthesis occurs when canopy leaves are warmer than air. Using energy balance and physiological modeling, we show that key leaf traits influence leaf-air coupling and ultimately the Tcan/Tair relationship. Canopy structure also plays an important role in Tcan dynamics. Future climate warming is likely to lead to even greater Tcan, with attendant impacts on forest carbon cycling and mortality risk.
Collapse
|
37
|
Werkmeister GA, Galbraith D, Docherty E, Borges CS, da Rocha JM, da Silva PA, Marimon BS, Marimon-Junior BH, Phillips OL, Gloor E. A novel in situ passive heating method for evaluating whole-tree responses to daytime warming in remote environments. PLANT METHODS 2022; 18:78. [PMID: 35689241 PMCID: PMC9188097 DOI: 10.1186/s13007-022-00904-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Many significant ecosystems, including important non-forest woody ecosystems such as the Cerrado (Brazilian savannah), are under threat from climate change, yet our understanding of how increasing temperatures will impact native vegetation remains limited. Temperature manipulation experiments are important tools for investigating such impacts, but are often constrained by access to power supply and limited to low-stature species, juvenile individuals, or heating of target organs, perhaps not fully revealing how entire or mature individuals and ecosystems will react to higher temperatures. RESULTS We present a novel, modified open top chamber design for in situ passive heating of whole individuals up to 2.5 m tall (but easily expandable) in remote field environments with strong solar irradiance. We built multiple whole-tree heating structures (WTHSs) in an area of Cerrado around native woody species Davilla elliptica and Erythroxylum suberosum to test the design and its effects on air temperature and humidity, while also studying the physiological responses of E. suberosum to short-term heating. The WTHSs raised internal air temperature by approximately 2.5 °C above ambient during the daytime. This increased to 3.4 °C between 09:00 and 17:00 local time when thermal impact was greatest, and during which time mean internal temperatures corresponded closely with maximum ambient temperatures. Heating was consistent over time and across WTHSs of variable size and shape, and they had minimal effect on humidity. E. suberosum showed no detectable response of photosynthesis or respiration to short-term experimental heating, but some indication of acclimation to natural temperature changes. CONCLUSIONS Our WTHSs produced a consistent and reproducible level of daytime heating in line with mid-range climate predictions for the Cerrado biome by the end of the century. The whole-tree in situ passive heating design is flexible, low-cost, simple to build using commonly available materials, and minimises negative impacts associated with passive chambers. It could be employed to investigate the high temperature responses of many understudied species in a range of complex non-forest environments with sufficient solar irradiance, providing new and important insights into the possible impacts of our changing climate.
Collapse
Affiliation(s)
| | | | | | - Camilla Silva Borges
- Laboratório de Ecologia Vegetal, Campus de Nova Xavantina, Universidade do Estado de Mato Grosso, Nova Xavantina, Brazil
| | - Jairo Matos da Rocha
- Laboratório de Ecologia Vegetal, Campus de Nova Xavantina, Universidade do Estado de Mato Grosso, Nova Xavantina, Brazil
| | - Paulo Alves da Silva
- Laboratório de Ecologia Vegetal, Campus de Nova Xavantina, Universidade do Estado de Mato Grosso, Nova Xavantina, Brazil
| | - Beatriz Schwantes Marimon
- Laboratório de Ecologia Vegetal, Campus de Nova Xavantina, Universidade do Estado de Mato Grosso, Nova Xavantina, Brazil
| | - Ben Hur Marimon-Junior
- Laboratório de Ecologia Vegetal, Campus de Nova Xavantina, Universidade do Estado de Mato Grosso, Nova Xavantina, Brazil
| | | | | |
Collapse
|
38
|
Wittemann M, Andersson MX, Ntirugulirwa B, Tarvainen L, Wallin G, Uddling J. Temperature acclimation of net photosynthesis and its underlying component processes in four tropical tree species. TREE PHYSIOLOGY 2022; 42:1188-1202. [PMID: 35038330 PMCID: PMC9190752 DOI: 10.1093/treephys/tpac002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 01/11/2022] [Indexed: 05/26/2023]
Abstract
The effect of temperature change on leaf physiology has been extensively studied in temperate trees and to some extent in boreal and tropical tree species. While increased temperature typically stimulates leaf CO2 assimilation and tree growth in high-altitude ecosystems, tropical species are often negatively affected. These trees may operate close to their temperature optima and have a limited thermal acclimation capacity due to low seasonal and historical variation in temperature. To test this hypothesis, we studied the extent to which the temperature sensitivities of leaf photosynthesis and respiration acclimate to growth temperature in four common African tropical tree species. Tree seedlings native to different altitudes and therefore adapted to different growth temperatures were cultivated at three different temperatures in climate-controlled chambers. We estimated the acclimation capacity of the temperature sensitivities of light-saturated net photosynthesis, the maximum rates of Rubisco carboxylation (Vcmax) and thylakoid electron transport (J), and dark respiration. Leaf thylakoid membrane lipid composition, nitrogen content and leaf mass per area were also analyzed. Our results showed that photosynthesis in tropical tree species acclimated to higher growth temperatures, but that this was weakest in the species originating from the coolest climate. The temperature optimum of J acclimated significantly in three species and variation in J was linked to changes in the thylakoid membrane lipid composition. For Vcmax, there was only evidence of significant acclimation of optimal temperature in the lowest elevation species. Respiration acclimated to maintain homeostasis at growth temperature in all four species. Our results suggest that the lowest elevation species is better physiologically adapted to acclimate to high growth temperatures than the highest elevation species, indicating a potential shift in competitive balance and tree community composition to the disadvantage of montane tree species in a warmer world.
Collapse
Affiliation(s)
- Maria Wittemann
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 461, Gothenburg SE-405 30, Sweden
- Gothenburg Global Biodiversity Centre (GGBC), University of Gothenburg, PO Box 461, Gothenburg SE-405 30, Sweden
- Department of Biology, College of Science and Technology, University of Rwanda, University Avenue, PO Box 117, Huye, Rwanda
| | - Mats X Andersson
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 461, Gothenburg SE-405 30, Sweden
| | - Bonaventure Ntirugulirwa
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 461, Gothenburg SE-405 30, Sweden
- Department of Biology, College of Science and Technology, University of Rwanda, University Avenue, PO Box 117, Huye, Rwanda
- Rwanda Agriculture and Resources Development Board (RAB), PO Box 5016, Kigali, Rwanda
| | - Lasse Tarvainen
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 461, Gothenburg SE-405 30, Sweden
| | - Göran Wallin
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 461, Gothenburg SE-405 30, Sweden
| | - Johan Uddling
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 461, Gothenburg SE-405 30, Sweden
- Gothenburg Global Biodiversity Centre (GGBC), University of Gothenburg, PO Box 461, Gothenburg SE-405 30, Sweden
| |
Collapse
|
39
|
Willson AM, Trugman AT, Powers JS, Smith-Martin CM, Medvigy D. Climate and hydraulic traits interact to set thresholds for liana viability. Nat Commun 2022; 13:3332. [PMID: 35680917 PMCID: PMC9184652 DOI: 10.1038/s41467-022-30993-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 05/25/2022] [Indexed: 11/09/2022] Open
Abstract
Lianas, or woody vines, and trees dominate the canopy of tropical forests and comprise the majority of tropical aboveground carbon storage. These growth forms respond differently to contemporary variation in climate and resource availability, but their responses to future climate change are poorly understood because there are very few predictive ecosystem models representing lianas. We compile a database of liana functional traits (846 species) and use it to parameterize a mechanistic model of liana-tree competition. The substantial difference between liana and tree hydraulic conductivity represents a critical source of inter-growth form variation. Here, we show that lianas are many times more sensitive to drying atmospheric conditions than trees as a result of this trait difference. Further, we use our competition model and projections of tropical hydroclimate based on Representative Concentration Pathway 4.5 to show that lianas are more susceptible to reaching a hydraulic threshold for viability by 2100.
Collapse
Affiliation(s)
- Alyssa M Willson
- Department of Biological Sciences, University of Notre Dame, 100 Galvin Life Sciences, Notre Dame, IN, 46556, USA
| | - Anna T Trugman
- Department of Geography, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Jennifer S Powers
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN, 55108, USA.,Department of Plant and Microbial Ecology, University of Minnesota, St. Paul, MN, 55108, USA
| | - Chris M Smith-Martin
- Department of Ecology, Evolution and Evolutionary Biology, Columbia University, New York, NY, 10027, USA
| | - David Medvigy
- Department of Biological Sciences, University of Notre Dame, 100 Galvin Life Sciences, Notre Dame, IN, 46556, USA.
| |
Collapse
|
40
|
Lamour J, Davidson KJ, Ely KS, Le Moguédec G, Leakey ADB, Li Q, Serbin SP, Rogers A. An improved representation of the relationship between photosynthesis and stomatal conductance leads to more stable estimation of conductance parameters and improves the goodness-of-fit across diverse data sets. GLOBAL CHANGE BIOLOGY 2022; 28:3537-3556. [PMID: 35090072 DOI: 10.1111/gcb.16103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 01/17/2022] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
Stomata play a central role in surface-atmosphere exchange by controlling the flux of water and CO2 between the leaf and the atmosphere. Representation of stomatal conductance (gsw ) is therefore an essential component of models that seek to simulate water and CO2 exchange in plants and ecosystems. For given environmental conditions at the leaf surface (CO2 concentration and vapor pressure deficit or relative humidity), models typically assume a linear relationship between gsw and photosynthetic CO2 assimilation (A). However, measurement of leaf-level gsw response curves to changes in A are rare, particularly in the tropics, resulting in only limited data to evaluate this key assumption. Here, we measured the response of gsw and A to irradiance in six tropical species at different leaf phenological stages. We showed that the relationship between gsw and A was not linear, challenging the key assumption upon which optimality theory is based-that the marginal cost of water gain is constant. Our data showed that increasing A resulted in a small increase in gsw at low irradiance, but a much larger increase at high irradiance. We reformulated the popular Unified Stomatal Optimization (USO) model to account for this phenomenon and to enable consistent estimation of the key conductance parameters g0 and g1 . Our modification of the USO model improved the goodness-of-fit and reduced bias, enabling robust estimation of conductance parameters at any irradiance. In addition, our modification revealed previously undetectable relationships between the stomatal slope parameter g1 and other leaf traits. We also observed nonlinear behavior between A and gsw in independent data sets that included data collected from attached and detached leaves, and from plants grown at elevated CO2 concentration. We propose that this empirical modification of the USO model can improve the measurement of gsw parameters and the estimation of plant and ecosystem-scale water and CO2 fluxes.
Collapse
Affiliation(s)
- Julien Lamour
- Environmental & Climate Sciences Department, Brookhaven National Laboratory, Upton, New York, USA
| | - Kenneth J Davidson
- Environmental & Climate Sciences Department, Brookhaven National Laboratory, Upton, New York, USA
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, New York, USA
| | - Kim S Ely
- Environmental & Climate Sciences Department, Brookhaven National Laboratory, Upton, New York, USA
| | - Gilles Le Moguédec
- AMAP, Université Montpellier, INRAE, Cirad CNRS, IRD, Montpellier, France
| | - Andrew D B Leakey
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Qianyu Li
- Environmental & Climate Sciences Department, Brookhaven National Laboratory, Upton, New York, USA
| | - Shawn P Serbin
- Environmental & Climate Sciences Department, Brookhaven National Laboratory, Upton, New York, USA
| | - Alistair Rogers
- Environmental & Climate Sciences Department, Brookhaven National Laboratory, Upton, New York, USA
| |
Collapse
|
41
|
Crous KY, Uddling J, De Kauwe MG. Temperature responses of photosynthesis and respiration in evergreen trees from boreal to tropical latitudes. THE NEW PHYTOLOGIST 2022; 234:353-374. [PMID: 35007351 PMCID: PMC9994441 DOI: 10.1111/nph.17951] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 12/03/2021] [Indexed: 05/29/2023]
Abstract
Evergreen species are widespread across the globe, representing two major plant functional forms in terrestrial models. We reviewed and analysed the responses of photosynthesis and respiration to warming in 101 evergreen species from boreal to tropical biomes. Summertime temperatures affected both latitudinal gas exchange rates and the degree of responsiveness to experimental warming. The decrease in net photosynthesis at 25°C (Anet25 ) was larger with warming in tropical climates than cooler ones. Respiration at 25°C (R25 ) was reduced by 14% in response to warming across species and biomes. Gymnosperms were more sensitive to greater amounts of warming than broadleaved evergreens, with Anet25 and R25 reduced c. 30-40% with > 10°C warming. While standardised rates of carboxylation (Vcmax25 ) and electron transport (Jmax25 ) adjusted to warming, the magnitude of this adjustment was not related to warming amount (range 0.6-16°C). The temperature optimum of photosynthesis (ToptA ) increased on average 0.34°C per °C warming. The combination of more constrained acclimation of photosynthesis and increasing respiration rates with warming could possibly result in a reduced carbon sink in future warmer climates. The predictable patterns of thermal acclimation across biomes provide a strong basis to improve modelling predictions of the future terrestrial carbon sink with warming.
Collapse
Affiliation(s)
- Kristine Y. Crous
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityLocked Bag 1797PenrithNSW2751Australia
| | - Johan Uddling
- Department of Biological and Environmental SciencesUniversity of GothenburgPO Box 461GothenburgSE‐405 30Sweden
| | | |
Collapse
|
42
|
Zhang C, Niu D, Zhang L, Li X, Fu H. Plant functional traits shape growth rate for xerophytic shrubs. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:205-214. [PMID: 34693599 DOI: 10.1111/plb.13317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
Trade-offs exist for xerophytic shrubs between functional traits, involving in water loss and assimilate accumulation, can contribute to its survival and growth rate regulation in arid environments. However, growth analysis based on plant functional traits has been focused on the study of herbs and woody species. It is still unclear how the functional traits of xerophytic shrubs regulate their growth rate. In this study, we selectedeight xerophytic shrubs as samples to analyze the regulation process of the functional traits of shrubs on growth rate. Plants were cultivated for three years, and three harvests (every one year) were carried out. Factors explaining between-species differences in relative growth rate (RGR) varied, depending on whether different ages were considered. The results showed that RGR was positively correlated with net assimilation rate, but there was a significant negative correlation with leaf area ration (LAR), specific leaf area (SLA), and leaf biomass ratio in the age 1. However, in the age 2, RGR showed a significant positive correlation with the morphological traits (i.e., leaf area ration and specific leaf area), but not with physiological traits (i.e., net assimilation rate) and leaf biomass allocation. Our results suggested that the fluctuation of environmental factors affects the regulation path of the plant functional traits on RGR of xerophytic shrubs. However, the analysis of causality model showed that no matter in which age, net assimilation rate and leaf area ration principally drive the variation in RGR among xerophytic shrubs.
Collapse
Affiliation(s)
- C Zhang
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, PR China
| | - D Niu
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, PR China
| | - L Zhang
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, PR China
| | - X Li
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, PR China
| | - H Fu
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, PR China
| |
Collapse
|
43
|
Guha A, Vharachumu T, Khalid MF, Keeley M, Avenson TJ, Vincent C. Short-term warming does not affect intrinsic thermotolerance but induces strong sustaining photoprotection in tropical evergreen citrus genotypes. PLANT, CELL & ENVIRONMENT 2022; 45:105-120. [PMID: 34723384 DOI: 10.1111/pce.14215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/04/2021] [Accepted: 10/13/2021] [Indexed: 05/27/2023]
Abstract
Consequences of warming and postwarming events on photosynthetic thermotolerance (PT ) and photoprotective responses in tropical evergreen species remain elusive. We chose Citrus to answer some of the emerging questions related to tropical evergreen species' PT behaviour including (i) how wide is the genotypic variation in PT ? (ii) how does PT respond to short-term warming and (iii) how do photosynthesis and photoprotective functions respond over short-term warming and postwarming events? A study on 21 genotypes revealed significant genotypic differences in PT , though these were not large. We selected five genotypes with divergent PT and simulated warming events: Tmax 26/20°C (day-time highest maximum/night-time lowest maximum) (Week 1) < Tmax 33/30°C (Week 2) < Tmax 36/32°C (Week 3) followed by Tmax 26/16°C (Week 4, recovery). The PT of all genotypes remained unaltered despite strong leaf megathermy (leaf temperature > air temperature) during warming events. Though moderate warming showed genotype-specific stimulation in photosynthesis, higher warming unequivocally led to severe loss in net photosynthesis and induced higher nonphotochemical quenching. Even after a week of postwarming, photoprotective mechanisms strongly persisted. Our study points towards a conservative PT in evergreen citrus genotypes and their need for sustaining higher photoprotection during warming as well as postwarming recovery conditions.
Collapse
Affiliation(s)
- Anirban Guha
- Department of Horticultural Sciences, Citrus Research and Education Center, University of Florida, Lake Alfred, Florida, USA
| | - Talent Vharachumu
- Department of Horticultural Sciences, Citrus Research and Education Center, University of Florida, Lake Alfred, Florida, USA
- Earth University, San José, Mercedes, Costa Rica
| | - Muhammad F Khalid
- Department of Horticultural Sciences, Citrus Research and Education Center, University of Florida, Lake Alfred, Florida, USA
- Department of Horticulture, Bahauddin Zakariya University, Multan, Punjab, Pakistan
| | - Mark Keeley
- Department of Horticultural Sciences, Citrus Research and Education Center, University of Florida, Lake Alfred, Florida, USA
- Agronomy and Regulatory (GLP) Services, Florida Ag Research, Thonotosassa, Florida, USA
| | - Thomas J Avenson
- Environmental Division, LI-COR Biosciences, Lincoln, Nebraska, USA
| | - Christopher Vincent
- Department of Horticultural Sciences, Citrus Research and Education Center, University of Florida, Lake Alfred, Florida, USA
| |
Collapse
|
44
|
Slot M, Nardwattanawong T, Hernández GG, Bueno A, Riederer M, Winter K. Large differences in leaf cuticle conductance and its temperature response among 24 tropical tree species from across a rainfall gradient. THE NEW PHYTOLOGIST 2021; 232:1618-1631. [PMID: 34270792 PMCID: PMC9290923 DOI: 10.1111/nph.17626] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/12/2021] [Indexed: 05/09/2023]
Abstract
More frequent droughts and rising temperatures pose serious threats to tropical forests. When stomata are closed under dry and hot conditions, plants lose water through leaf cuticles, but little is known about cuticle conductance (gmin ) of tropical trees, how it varies among species and environments, and how it is affected by temperature. We determined gmin in relation to temperature for 24 tropical tree species across a steep rainfall gradient in Panama, by recording leaf drying curves at different temperatures in the laboratory. In contrast with our hypotheses, gmin did not differ systematically across the rainfall gradient; species differences did not reflect phylogenetic patterns; and in most species gmin did not significantly increase between 25 and 50°C. gmin was higher in deciduous than in evergreen species, in species with leaf trichomes than in species without, in sun leaves than in shade leaves, and tended to decrease with increasing leaf mass per area across species. There was no relationship between stomatal and cuticle conductance. Large species differences in gmin and its temperature response suggest that more frequent hot droughts may lead to differential survival among tropical tree species, regardless of species' position on the rainfall gradient.
Collapse
Affiliation(s)
- Martijn Slot
- Smithsonian Tropical Research InstituteApartado 0843‐03092BalboaAncónRepublic of Panama
| | - Tantawat Nardwattanawong
- Smithsonian Tropical Research InstituteApartado 0843‐03092BalboaAncónRepublic of Panama
- University of East AngliaNorwichNR4 7TJUK
| | - Georgia G. Hernández
- Smithsonian Tropical Research InstituteApartado 0843‐03092BalboaAncónRepublic of Panama
| | - Amauri Bueno
- Julius‐von Sachs‐Institute for BiosciencesBotany IIUniversity of WürzburgJulius‐von‐Sachs‐Platz 3WürzburgD‐97082Germany
| | - Markus Riederer
- Julius‐von Sachs‐Institute for BiosciencesBotany IIUniversity of WürzburgJulius‐von‐Sachs‐Platz 3WürzburgD‐97082Germany
| | - Klaus Winter
- Smithsonian Tropical Research InstituteApartado 0843‐03092BalboaAncónRepublic of Panama
| |
Collapse
|
45
|
Larjavaara M, Lu X, Chen X, Vastaranta M. Impact of rising temperatures on the biomass of humid old-growth forests of the world. CARBON BALANCE AND MANAGEMENT 2021; 16:31. [PMID: 34642849 PMCID: PMC8513374 DOI: 10.1186/s13021-021-00194-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 10/06/2021] [Indexed: 05/11/2023]
Abstract
BACKGROUND Understanding how warming influence above-ground biomass in the world's forests is necessary for quantifying future global carbon budgets. A climate-driven decrease in future carbon stocks could dangerously strengthen climate change. Empirical methods for studying the temperature response of forests have important limitations, and modelling is needed to provide another perspective. Here we evaluate the impact of rising air temperature on the future above-ground biomass of old-growth forests using a model that explains well the observed current variation in the above-ground biomass over the humid lowland areas of the world based on monthly air temperature. RESULTS Applying this model to the monthly air temperature data for 1970-2000 and monthly air temperature projections for 2081-2100, we found that the above-ground biomass of old-growth forests is expected to decrease everywhere in the humid lowland areas except boreal regions. The temperature-driven decrease is estimated at 41% in the tropics and at 29% globally. CONCLUSIONS Our findings suggest that rising temperatures impact the above-ground biomass of old-growth forests dramatically. However, this impact could be mitigated by fertilization effects of increasing carbon dioxide concentration in the atmosphere and nitrogen deposition.
Collapse
Affiliation(s)
- Markku Larjavaara
- Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, China.
| | - Xiancheng Lu
- Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Xia Chen
- Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Mikko Vastaranta
- School of Forest Sciences, University of Eastern Finland, P.O. Box 111, 80101, Joensuu, Finland
| |
Collapse
|
46
|
Dusenge ME, Wittemann M, Mujawamariya M, Ntawuhiganayo EB, Zibera E, Ntirugulirwa B, Way DA, Nsabimana D, Uddling J, Wallin G. Limited thermal acclimation of photosynthesis in tropical montane tree species. GLOBAL CHANGE BIOLOGY 2021; 27:4860-4878. [PMID: 34233063 DOI: 10.1111/gcb.15790] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/21/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
The temperature sensitivity of physiological processes and growth of tropical trees remains a key uncertainty in predicting how tropical forests will adjust to future climates. In particular, our knowledge regarding warming responses of photosynthesis, and its underlying biochemical mechanisms, is very limited. We grew seedlings of two tropical montane rainforest tree species, the early-successional species Harungana montana and the late-successional species Syzygium guineense, at three different sites along an elevation gradient, differing by 6.8℃ in daytime ambient air temperature. Their physiological and growth performance was investigated at each site. The optimum temperature of net photosynthesis (ToptA ) did not significantly increase in warm-grown trees in either species. Similarly, the thermal optima (ToptV and ToptJ ) and activation energies (EaV and EaJ ) of maximum Rubisco carboxylation capacity (Vcmax ) and maximum electron transport rate (Jmax ) were largely unaffected by warming. However, Vcmax , Jmax and foliar dark respiration (Rd ) at 25℃ were significantly reduced by warming in both species, and this decline was partly associated with concomitant reduction in total leaf nitrogen content. The ratio of Jmax /Vcmax decreased with increasing leaf temperature for both species, but the ratio at 25℃ was constant across sites. Furthermore, in H. montana, stomatal conductance at 25℃ remained constant across the different temperature treatments, while in S. guineense it increased with warming. Total dry biomass increased with warming in H. montana but remained constant in S. guineense. The biomass allocated to roots, stem and leaves was not affected by warming in H. montana, whereas the biomass allocated to roots significantly increased in S. guineense. Overall, our findings show that in these two tropical montane rainforest tree species, the capacity to acclimate the thermal optimum of photosynthesis is limited while warming-induced reductions in respiration and photosynthetic capacity rates are tightly coupled and linked to responses of leaf nitrogen.
Collapse
Affiliation(s)
- Mirindi Eric Dusenge
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- School of Forestry, Biodiversity and Biological Sciences, College of Agriculture, Animal Sciences and Veterinary Medicine, University of Rwanda, Musanze, Rwanda
- Department of Biology, The University of Western Ontario, London, ON, Canada
- Gothenburg Global Biodiversity Centre (GGBC), University of Gothenburg, Gothenburg, Sweden
| | - Maria Wittemann
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre (GGBC), University of Gothenburg, Gothenburg, Sweden
- Department of Biology, College of Science and Technology, University of Rwanda, Huye, Rwanda
| | - Myriam Mujawamariya
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Department of Biology, College of Science and Technology, University of Rwanda, Huye, Rwanda
| | - Elisée B Ntawuhiganayo
- Department of Biology, College of Science and Technology, University of Rwanda, Huye, Rwanda
- World Agroforestry (ICRAF), Huye, Rwanda
| | - Etienne Zibera
- School of Forestry, Biodiversity and Biological Sciences, College of Agriculture, Animal Sciences and Veterinary Medicine, University of Rwanda, Musanze, Rwanda
| | - Bonaventure Ntirugulirwa
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Department of Biology, College of Science and Technology, University of Rwanda, Huye, Rwanda
- Rwanda Agriculture and Animal Resources Development Board, Kigali, Rwanda
| | - Danielle A Way
- Department of Biology, The University of Western Ontario, London, ON, Canada
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT, Australia
- Environmental and Climate Sciences Department, Brookhaven National Laboratory, Upton, NY, USA
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - Donat Nsabimana
- School of Forestry, Biodiversity and Biological Sciences, College of Agriculture, Animal Sciences and Veterinary Medicine, University of Rwanda, Musanze, Rwanda
| | - Johan Uddling
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre (GGBC), University of Gothenburg, Gothenburg, Sweden
| | - Göran Wallin
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
47
|
Slot M, Cala D, Aranda J, Virgo A, Michaletz ST, Winter K. Leaf heat tolerance of 147 tropical forest species varies with elevation and leaf functional traits, but not with phylogeny. PLANT, CELL & ENVIRONMENT 2021; 44:2414-2427. [PMID: 33817813 DOI: 10.1111/pce.14060] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 03/29/2021] [Indexed: 06/12/2023]
Abstract
Exceeding thermal thresholds causes irreversible damage and ultimately loss of leaves. The lowland tropics are among the warmest forested biomes, but little is known about heat tolerance of tropical forest plants. We surveyed leaf heat tolerance of sun-exposed leaves from 147 tropical lowland and pre-montane forest species by determining the temperatures at which potential photosystem II efficiency based on chlorophyll a fluorescence started to decrease (TCrit ) and had decreased by 50% (T50 ). TCrit averaged 46.7°C (5th-95th percentile: 43.5°C-49.7°C) and T50 averaged 49.9°C (47.8°C-52.5°C). Heat tolerance partially adjusted to site temperature; TCrit and T50 decreased with elevation by 0.40°C and 0.26°C per 100 m, respectively, while mean annual temperature decreased by 0.63°C per 100 m. The phylogenetic signal in heat tolerance was weak, suggesting that heat tolerance is more strongly controlled by environment than by evolutionary legacies. TCrit increased with the estimated thermal time constant of the leaves, indicating that species with thermally buffered leaves maintain higher heat tolerance. Among lowland species, T50 increased with leaf mass per area, suggesting that in species with structurally more costly leaves the risk of leaf loss during hot spells is reduced. These results provide insight in variation in heat tolerance at local and regional scales.
Collapse
Affiliation(s)
- Martijn Slot
- Smithsonian Tropical Research Institute, Panama City, Republic of Panama
| | - Daniela Cala
- Smithsonian Tropical Research Institute, Panama City, Republic of Panama
- Paul H. O'Neill School of Public and Environmental Affairs, Indiana University, Bloomington, Indiana, USA
| | - Jorge Aranda
- Smithsonian Tropical Research Institute, Panama City, Republic of Panama
| | - Aurelio Virgo
- Smithsonian Tropical Research Institute, Panama City, Republic of Panama
| | - Sean T Michaletz
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Klaus Winter
- Smithsonian Tropical Research Institute, Panama City, Republic of Panama
| |
Collapse
|
48
|
Perez TM, Socha A, Tserej O, Feeley KJ. Photosystem II heat tolerances characterize thermal generalists and the upper limit of carbon assimilation. PLANT, CELL & ENVIRONMENT 2021; 44:2321-2330. [PMID: 33378078 DOI: 10.1111/pce.13990] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/04/2020] [Accepted: 12/28/2020] [Indexed: 06/12/2023]
Abstract
The heat tolerance of photosystem II (PSII) may promote carbon assimilation at higher temperatures and help explain plant responses to climate change. Higher PSII heat tolerance could lead to (a) increases in the high-temperature compensation point (Tmax ); (b) increases in the thermal breadth of photosynthesis (i.e. the photosynthetic parameter Ω) to promote a thermal generalist strategy of carbon assimilation; (c) increases in the optimum rate of carbon assimilation Popt and faster carbon assimilation and/or (d) increases in the optimum temperature for photosynthesis (Topt ). To address these hypotheses, we tested if the Tcrit , T50 and T95 PSII heat tolerances were correlated with carbon assimilation parameters for 21 plant species. Our results did not support Hypothesis 1, but we observed that T50 may be used to estimate the upper thermal limit for Tmax at the species level, and that community mean Tcrit may be useful for approximating Tmax . The T50 and T95 heat tolerance metrics were positively correlated with Ω in support of Hypothesis 2. We found no support for Hypotheses 3 or 4. Our study shows that high PSII heat tolerance is unlikely to improve carbon assimilation at higher temperatures but may characterize thermal generalists with slow resource acquisition strategies.
Collapse
Affiliation(s)
- Timothy M Perez
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Annika Socha
- Nicholas School of the Environment, Duke University, Durham, North Carolina, USA
| | - Olga Tserej
- Department of Biology, University of Miami, Coral Gables, Florida, USA
- Fairchild Tropical Botanic Garden, Coral Gables, Florida, USA
| | - Kenneth J Feeley
- Department of Biology, University of Miami, Coral Gables, Florida, USA
- Fairchild Tropical Botanic Garden, Coral Gables, Florida, USA
| |
Collapse
|
49
|
Slot M, Rifai SW, Winter K. Photosynthetic plasticity of a tropical tree species, Tabebuia rosea, in response to elevated temperature and [CO 2 ]. PLANT, CELL & ENVIRONMENT 2021; 44:2347-2364. [PMID: 33759203 DOI: 10.1111/pce.14049] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
Atmospheric and climate change will expose tropical forests to conditions they have not experienced in millions of years. To better understand the consequences of this change, we studied photosynthetic acclimation of the neotropical tree species Tabebuia rosea to combined 4°C warming and twice-ambient (800 ppm) CO2 . We measured temperature responses of the maximum rates of ribulose 1,5-bisphosphate carboxylation (VCMax ), photosynthetic electron transport (JMax ), net photosynthesis (PNet ), and stomatal conductance (gs ), and fitted the data using a probabilistic Bayesian approach. To evaluate short-term acclimation plants were then switched between treatment and control conditions and re-measured after 1-2 weeks. Consistent with acclimation, the optimum temperatures (TOpt ) for VCMax , JMax and PNet were 1-5°C higher in treatment than in control plants, while photosynthetic capacity (VCMax , JMax , and PNet at TOpt ) was 8-25% lower. Likewise, moving control plants to treatment conditions moderately increased temperature optima and decreased photosynthetic capacity. Stomatal density and sensitivity to leaf-to-air vapour pressure deficit were not affected by growth conditions, and treatment plants did not exhibit stronger stomatal limitations. Collectively, these results illustrate the strong photosynthetic plasticity of this tropical tree species as even fully developed leaves of saplings transferred to extreme conditions partially acclimated.
Collapse
Affiliation(s)
- Martijn Slot
- Smithsonian Tropical Research Institute, Ancón, Republic of Panama
| | - Sami W Rifai
- School of Geography and the Environment, Environmental Change Institute, University of Oxford, Oxford, Oxon, UK
- ARC Centre of Excellence for Climate Extremes, University of New South Wales, Sydney, New South Wales, Australia
| | - Klaus Winter
- Smithsonian Tropical Research Institute, Ancón, Republic of Panama
| |
Collapse
|
50
|
Tserej O, Feeley KJ. Variation in leaf temperatures of tropical and subtropical trees are related to leaf thermoregulatory traits and not geographic distributions. Biotropica 2021. [DOI: 10.1111/btp.12919] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Olga Tserej
- Biology Department University of Miami Coral Gables FL USA
- Fairchild Tropical Botanic Garden Coral Gables FL USA
| | - Kenneth J. Feeley
- Biology Department University of Miami Coral Gables FL USA
- Fairchild Tropical Botanic Garden Coral Gables FL USA
| |
Collapse
|