1
|
Song R, Lv B, He Z, Li H, Wang H. Rhizosphere metabolite dynamics in continuous cropping of vineyards: Impact on microflora diversity and co-occurrence networks. Microbiol Res 2025; 296:128134. [PMID: 40068342 DOI: 10.1016/j.micres.2025.128134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 02/09/2025] [Accepted: 03/01/2025] [Indexed: 04/10/2025]
Abstract
The metabolism of the crop rhizosphere affects microflora diversity and nutrient cycling. However, understanding rhizosphere metabolism in suitable crops within arid desert environments and its impact on microflora interactions remains limited. Through metagenomic and non-targeted metabolomic sequencing of rhizosphere soils from one uncultivated land and four vineyards with cropping years of 5, 10, 15 and 20 years, the critical importance of rhizosphere metabolites in maintaining bacterial and fungal diversity was elucidated. The results revealed that Nocardioides, Streptomyces, and Solirubrobacter were the relatively abundant bacterial genera in rhizosphere soils, while Rhizophagus, Glomus, and Pseudogymnoascus were the relatively abundant fungal genera. The composition of rhizosphere metabolic changed significantly during the continuous cropping of grapevines. Dimethylglycine, Formononetin, and Dehydroepiandrosterone were the most important metabolites. Enrichment analysis revealed significant involvement of metabolic pathways such as biosynthesis of amino acids, unsaturated fatty acids, and linoleic acid metabolism. Procrustes analysis highlighted stronger correlations between rhizosphere metabolites and bacterial community compared to those of fungal community. This suggests distinct responses of microflora to crop-released chemical elements across different soil habitats. Co-occurrence network analysis demonstrated complex associations between rhizosphere metabolites and soil microflora, the positive correlations between rhizosphere metabolites and microflora networks predominated over negative correlations. Partial least squares path model indicated that the effect of cropping years on rhizosphere metabolites was greater than that on bacterial microflora diversity. Futhermore, pH, total phosphorus, and alkali-hydrolyzed nitrogen were the key environmental factors affecting rhizosphere metabolites and microbial diversity. These results deepen our valuable insights into the complex biological processes that rhizosphere metabolites influence on microorganisms, and provide strong support for maintaining microbial diversity in farmland soils in arid regions.
Collapse
Affiliation(s)
- Rui Song
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Bihan Lv
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Zhouyang He
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Hua Li
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, China; Shanxi Engineering Research Center for Viti-Viniculture, Yangling, Shanxi 712100, China.
| | - Hua Wang
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, China; Shanxi Engineering Research Center for Viti-Viniculture, Yangling, Shanxi 712100, China.
| |
Collapse
|
2
|
Robert CAM, Himmighofen P, McLaughlin S, Cofer TM, Khan SA, Siffert A, Sasse J. Environmental and Biological Drivers of Root Exudation. ANNUAL REVIEW OF PLANT BIOLOGY 2025; 76:317-339. [PMID: 40063678 DOI: 10.1146/annurev-arplant-083123-082752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
Root exudation is the process by which plants release organic and inorganic metabolites from their roots into the surrounding soil. Root exudation is a dynamic process and shapes plant-environment interactions at the root-soil interface. Little is known about the biological and environmental factors that shape the exuded metabolome, hereafter referred to as the exudome, despite its importance in structuring soil processes. Here, we emphasize plant physiological and morphological traits that modulate the exudome in a species- and developmental stage-specific manner. We further discuss how environmental factors drive exudation processes. We highlight evidence of a potential circadian exudation rhythm and further illustrate how the physical (temperature, structure), chemical (moisture, pH, nutrients, pollutants), and biological (micro- and macrofauna) properties of soil alter the root exudome composition and release patterns. Exploring the factors that directly or indirectly modulate exudation will enhance our understanding of how this dynamic process mediates plant-environment interactions.
Collapse
Affiliation(s)
| | - Paul Himmighofen
- Institute of Plant Sciences, University of Bern, Bern, Switzerland;
| | - Sarah McLaughlin
- Institute of Plant and Microbial Biology, University of Zürich, Zürich, Switzerland;
| | - Tristan M Cofer
- Institute of Plant Sciences, University of Bern, Bern, Switzerland;
| | | | - Alexandra Siffert
- Institute of Plant and Microbial Biology, University of Zürich, Zürich, Switzerland;
| | - Joëlle Sasse
- Institute of Plant and Microbial Biology, University of Zürich, Zürich, Switzerland;
| |
Collapse
|
3
|
Sugiyama Y, Matsuoka S, Ishizuka W, Sugai T. Reduction of the α and β diversity of ectomycorrhizal fungal community under snowmelt: highlights from a common garden trial using Abies sachalinensis with differing host origins and light condition. MYCORRHIZA 2025; 35:27. [PMID: 40178662 DOI: 10.1007/s00572-025-01201-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 03/18/2025] [Indexed: 04/05/2025]
Abstract
The community structure of ectomycorrhizal (ECM) fungi typically displays temporal dynamics. However, heavy snow cover hinders belowground investigations in temperate-to-boreal forests where ECM trees dominate, and the dynamics of the ECM fungal community structure during winter have not been fully elucidated. Given that boreal conifer species start root production in response to snowmelt, studies on the response of the ECM fungal community to snowmelt are needed. In the present study, to infer the community dynamics during the snowmelt season and their susceptibility to host tree conditions, we investigated ECM fungi associated with saplings of the evergreen conifer Abies sachalinensis immediately after the start and end of snowmelt in a common garden experiment. Saplings derived from two sources of contrasting snowfall conditions (heavy vs. little) were grown under two different light conditions (open vs. shaded), and the ECM fungal community dynamics patterns were compared across these combinations. The response of the ECM fungal community structure varied across treatments; although significant loss of ECM fungal operational taxonomic units (OTUs) was observed when saplings from the heavy snowfall region were grown under shade conditions, no change in community structure across the snowmelt season was observed for the other combinations. The stability of community composition despite the change in abiotic conditions with snowmelt, together with the effects of host origin and light conditions on community dynamics patterns, would imply the importance of host-mediated community dynamics of ECM fungi during the snowmelt season.
Collapse
Affiliation(s)
- Yoriko Sugiyama
- Field Science Education and Research Center, Kyoto University, Kyoto, Japan.
| | - Shunsuke Matsuoka
- Field Science Education and Research Center, Kyoto University, Kyoto, Japan
| | | | - Tetsuto Sugai
- Forestry and Forest Products Research Institute, Hokkaido Research Center, Sapporo, Japan
| |
Collapse
|
4
|
Brunn M, Mueller CW, Chari NR, Meier IC, Obersteiner S, Phillips RP, Taylor B, Tumber-Dávila SJ, Ullah S, Klein T. Tree carbon allocation to root exudates: implications for carbon budgets, soil sequestration and drought response. TREE PHYSIOLOGY 2025; 45:tpaf026. [PMID: 40037284 DOI: 10.1093/treephys/tpaf026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/07/2025] [Accepted: 02/23/2025] [Indexed: 03/06/2025]
Abstract
Root carbon (C) exudation plays a central role in nutrient acquisition, microbially mediated organic matter decomposition and many other critical ecosystem processes. While it is well known that roots respond strongly to belowground resources, we have a limited quantitative understanding about C allocation to exudates and its fate in soil under changing water availability. This review synthesizes the importance of exudate C fluxes, summarizes studies quantifying mass-specific exudation rate (SER), total exudation rate (TER) and root exudate fraction (REF; the proportion of TER in a plant's C allocation), examines drought effects and highlights key research priorities to advance the understanding of C allocation to exudates in forest ecosystems. On average, SER is often <1 mg C gdry root-1 day-1, TER is 3.8 Pg C year-1 and REF varies between 1 and 17% of net primary production. Spatiotemporal variations in exudation, including seasonal and daily patterns and subsoil exudation, remain critical knowledge gaps. We show that many studies report a 1.2- to 11-fold increase in SER and REF in response to drought. However, TER often remains unchanged, suggesting that absolute exudate C inputs to the soil may stay constant under drought conditions. Disentangling the individual impacts of soil and air drought as well as drought legacy impacts on ecosystem C dynamics are overlooked aspects. By estimating the differences in rhizosphere formation and exudation across various forest biomes, we find that exudate-affected soil volumes are highest in tropical forests and lowest in boreal forests. While current research emphasizes significant C allocation from the canopy to soil via exudates, understanding exudation dynamics and biome-specific responses to drought by using standardized protocols is essential. Expanding these insights is critical for comprehending the role of root exudates in soil organic matter formation, ecosystem resilience and adaptation to climate change.
Collapse
Affiliation(s)
- Melanie Brunn
- IES, Institute for Environmental Sciences, University of Kaiserslautern-Landau (RPTU), Fortstraße 7, 76829 Landau, Germany
- IfIN, Institute for Integrated Natural Sciences, Universität Koblenz, Universitätsstraße 1, 56070 Koblenz, Germany
| | - Carsten W Mueller
- Institute of Ecology, Chair of Soil Science, Technische Universität Berlin, Ernst-Reuter-Platz 1, 10587 Berlin, Germany
- Department for Geosciences and Natural Resource Management, University of Copenhagen, Øster Voldgade 10, 1350 København K, Copenhagen, Denmark
| | - Nikhil R Chari
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford St., Cambridge, MA, USA
| | - Ina C Meier
- Functional Forest Ecology, Universität Hamburg, Ohnhorststraße 18, 22609 Hamburg, Hamburg, Germany
| | - Sophie Obersteiner
- Department of Plant and Environmental Sciences, Nella and Leon Benoziyo Building for Biological Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Richard P Phillips
- Department of Biology, Indiana University, 1001 E. Third St., Bloomington, IN 47405, USA
| | - Benton Taylor
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford St., Cambridge, MA, USA
| | - Shersingh Joseph Tumber-Dávila
- Department of Environmental Studies, Dartmouth College, 38 College St, Hanover, NH 03755, USA
- Harvard Forest, Harvard University, 324 North Main Street, Petersham, MA 01366-9504, USA
| | - Sami Ullah
- School of Geography, Earth and Environmental Sciences & Birmingham Institute of Forest Research, University of Birmingham, Edgbaston, B15 2TT, Birmingham, UK
| | - Tamir Klein
- Department of Plant and Environmental Sciences, Nella and Leon Benoziyo Building for Biological Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
5
|
Zhang H, Liu Z, Zheng C, Ma H, Zeng M, Yang X. Root system architecture plasticity with beneficial rhizosphere microbes: Current findings and future perspectives. Microbiol Res 2025; 292:128028. [PMID: 39740636 DOI: 10.1016/j.micres.2024.128028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 12/02/2024] [Accepted: 12/16/2024] [Indexed: 01/02/2025]
Abstract
The rhizosphere microbiota, often referred to as the plant's "second genome" plays a critical role in modulating root system architecture (RSA). Despite this, existing methods to analyze root phenotypes in the context of root-microbe interactions remain limited, and the precise mechanisms affecting RSA by microbes are still not fully understood. This review comprehensively evaluates current root phenotyping techniques relevant to plant-microbe interactions, discusses their limitations, and explores future directions for integrating advanced technologies to elucidate microbial roles in altering RSA. Here, we summarized that microbial metabolite, primarily through auxin signaling pathways, drive root development changes. By harnessing advanced phenotyping tools, we aim to uncover more detailed mechanisms by which microbes modify RSA, providing valuable insights into strategies for optimizing nutrient uptake, bolstering food security, and enhancing resilience against climate-induced environmental stresses.
Collapse
Affiliation(s)
- Hualiang Zhang
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Zilin Liu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | | | - Huimin Ma
- Faculty of Agronomy, Jilin Agricultural University, Chang Chun 130118, China
| | - Ming Zeng
- Université de Bordeaux, INRAE, BFP, UMR 1332, Villenave d'Ornon 33140, France
| | - Xuechen Yang
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang 830011, China.
| |
Collapse
|
6
|
Liu L, Chen Z, Gou X, Hou L, Liang C, Jiao H, Kong W, Qiu L, Wang X, Wei X. Legumes reduce the effects of salt stress on co-existing grass. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 375:124162. [PMID: 39854895 DOI: 10.1016/j.jenvman.2025.124162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 12/04/2024] [Accepted: 01/14/2025] [Indexed: 01/27/2025]
Abstract
Nitrogen (N) fixing legumes typically enhance the ability of coexisting non-N-fixing species to resist disease and drought, but whether legumes enhance their ability to resist salt stress remains unknown, restricting our ability to explore the potential of legumes to rehabilitate salt-affected ecosystems. We conducted a simulation experiment to examine whether and how legumes influence the response of coexisting grass to salt stress. We compared the effects of salt stress on the plant biomass, root cell viability, antioxidant enzyme activities, soil extracellular enzyme activities and microbial functional gene abundances associated with N and phosphorus (P) cycling between pure grass communities and legume-grass mixtures. We found that salt stress decreased grass biomass and the abundance of most N and P cycling genes in rhizosphere soils. However, these negative effects were smaller in legume-grass mixtures than in pure grass community. Additionally, salt stress increased the activities of soil N and P cycling enzymes, with greater positive effects observed in legume-grass mixtures than in the pure grass community. The structural equation modelling results showed that the most direct and indirect path coefficients of salt stress effects on biomass were smaller in legume-grass mixtures than in the pure grass community. Our findings provide direct evidence that legumes can reduce the negative impact of salt stress on co-existing grass community, highlighting the potential of including legumes with high N fixation abilities to restore salt-affected ecosystems.
Collapse
Affiliation(s)
- Liling Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China; State Key Laboratory of Soil Erosion and Dryland Agriculture on the Loess Plateau, Northwest A&F University, Yangling, 712100, China
| | - Ziyan Chen
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China; State Key Laboratory of Soil Erosion and Dryland Agriculture on the Loess Plateau, Northwest A&F University, Yangling, 712100, China
| | - Xiaomei Gou
- State Key Laboratory of Soil Erosion and Dryland Agriculture on the Loess Plateau, Northwest A&F University, Yangling, 712100, China
| | - Lingcao Hou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Chenglong Liang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Huan Jiao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Weibo Kong
- State Key Laboratory of Soil Erosion and Dryland Agriculture on the Loess Plateau, Northwest A&F University, Yangling, 712100, China; College of Soil and Water Conservation Science and Engineering (Institute of Soil and Water Conservation), Northwest A&F University, Yangling, 712100, China
| | - Liping Qiu
- State Key Laboratory of Soil Erosion and Dryland Agriculture on the Loess Plateau, Northwest A&F University, Yangling, 712100, China; College of Soil and Water Conservation Science and Engineering (Institute of Soil and Water Conservation), Northwest A&F University, Yangling, 712100, China
| | - Xiang Wang
- College of Land Science and Technology, China Agricultural University, Beijing, 100084, China.
| | - Xiaorong Wei
- State Key Laboratory of Soil Erosion and Dryland Agriculture on the Loess Plateau, Northwest A&F University, Yangling, 712100, China; College of Soil and Water Conservation Science and Engineering (Institute of Soil and Water Conservation), Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
7
|
Staszel-Szlachta K, Błońska E, Lasota J. Stabilization of soil organic matter in Luvisols under the influence of various tree species in temperate forests. Sci Rep 2025; 15:1286. [PMID: 39779833 PMCID: PMC11711181 DOI: 10.1038/s41598-025-85883-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 01/07/2025] [Indexed: 01/11/2025] Open
Abstract
Tree species through aboveground biomass and roots are a key factors influencing the quality and quantity of soil organic matter. Our study aimed to determine the stability of soil organic matter in Luvisols under the influence of five different tree species. The study areas were located 25 km north of Krakow, in southern Poland. The study included five tree species - Scots pine (Pinus sylvestris L.), European larch (Larix decidua Mill.), pedunculate oak (Quercus robur L.), beech (Fagus sylvatica L.) and hornbeam (Carpinus betulus L.). Forest stands growing in the same soil conditions (Luvisols) with similar geological material (loess) and grain size were selected for the study. We evaluated labile and heavy fractions of soil organic matter (SOM). Additionally, basic physicochemical properties (pH, carbon and nitrogen content, base cation content) were determined in soil samples. The results of our study showed that soils under the influence of coniferous species were characterized by a higher content of carbon of free light fraction (CfLF) and carbon of occluded light fraction (CoLF) compared to deciduous species. Similar relationships were found with the nitrogen content of the free light fraction (NfLF) and nitrogen of occluded light fraction (NoLF). Higher CMAF and NMAF contents were recorded in soils influenced by deciduous species. The carbon, nitrogen and base cations content positively correlated with the C and N of free light fraction and occluded light fraction. PCA analysis confirmed the connection of C and N of heavy fractions (CMAF and NMAF) with deciduous species. Our research shows that avoiding single-species conifer stands and introducing admixtures of deciduous species, which increase SOM, is justified in forest management. The selection of suitable species will provide greater stand stability and contribute more to the carbon accumulation in the soil.
Collapse
Affiliation(s)
- Karolina Staszel-Szlachta
- Department of Ecology and Silviculture, Faculty of Forestry, University of Agriculture in Krakow, 29 Listopada 46 Str, Krakow, 31-425, Poland.
| | - Ewa Błońska
- Department of Ecology and Silviculture, Faculty of Forestry, University of Agriculture in Krakow, 29 Listopada 46 Str, Krakow, 31-425, Poland
| | - Jarosław Lasota
- Department of Ecology and Silviculture, Faculty of Forestry, University of Agriculture in Krakow, 29 Listopada 46 Str, Krakow, 31-425, Poland
| |
Collapse
|
8
|
Jia R, Zhou J, Yang L, Blagodatskaya E, Jones DL, Razavi BS, Yang Y, Kuzyakov Y, Zeng Z, Zang H. Trade-off between soil enzyme activities and hotspots area depends on long-term fertilization: In situ field zymography. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176386. [PMID: 39304160 DOI: 10.1016/j.scitotenv.2024.176386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/26/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
Mineral fertilizers and livestock manure have been found to impact soil enzyme activities and distributions, but their trade-off and subsequent effects on soil functioning related to nutrient cycling are rarely evaluated. Here, we investigated the long-term effects of manure and mineral fertilization on the spatial distribution of enzyme activities related to carbon, nitrogen, and phosphorus cycling under field-grown maize. We found that the legacy of mineral fertilizers increased the rhizosphere extension for β-glucosidase and N-acetylglucosaminidase by 16-170 %, and the hotspots area by 37-151 %, compared to manure. The legacy of manure, especially combined with mineral fertilizers, increased enzyme activities and formed non-rhizosphere hotspots. Furthermore, we found a trade-off between hotspots area and enzyme activities under the legacy effect of long-term fertilization. This suggested that plants and microorganisms regulate nutrient investments by altering spatial distribution of enzyme activities. The positive correlation between hotspots area and nutrient contents highlights the importance of non-rhizosphere hotspots induced by manure in maintaining soil fertility. Compared to mineral fertilization, the legacy effect of manure expanded the soil functions for nutrient cycling in both rhizosphere and non-rhizosphere by >1.7 times. In conclusion, the legacy of manure expands non-rhizosphere hotspots and enhances soil functioning, while mineral fertilization expands rhizosphere extension and intensifies hotspots area for nutrient exploitation.
Collapse
Affiliation(s)
- Rong Jia
- State Key Laboratory of Maize Bio-Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Jie Zhou
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Lei Yang
- State Key Laboratory of Maize Bio-Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Evgenia Blagodatskaya
- Department of Soil Ecology, Helmholtz Centre for Environmental Research - UFZ, Halle (Saale), Germany
| | - Davey L Jones
- School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK; Centre for Sustainable Farming Systems, Food Futures Institute, 90 South St, Murdoch, WA 6150, Australia
| | - Bahar S Razavi
- Dept. Soil and Plant Microbiome, Institute of Phytopathology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Yadong Yang
- State Key Laboratory of Maize Bio-Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Yakov Kuzyakov
- Department of Soil Science of Temperate Ecosystems, Department of Agricultural Soil Science, Georg August University of Göttingen, Göttingen, Germany; Peoples' Friendship University of Russia, RUDN University, 117198 Moscow, Russia; Institute of Environmental Sciences, Kazan Federal University, 420049 Kazan, Russia
| | - Zhaohai Zeng
- State Key Laboratory of Maize Bio-Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Huadong Zang
- State Key Laboratory of Maize Bio-Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; Scientific Observing and Experimental Station of Crop High Efficient Use of Water in Wuqiao, the Ministry of Agriculture and Rural Affairs, Wuqiao 061802, China.
| |
Collapse
|
9
|
Wu D, He X, Jiang L, Li W, Wang H, Lv G. Root exudates facilitate the regulation of soil microbial community function in the genus Haloxylon. FRONTIERS IN PLANT SCIENCE 2024; 15:1461893. [PMID: 39363923 PMCID: PMC11446799 DOI: 10.3389/fpls.2024.1461893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/02/2024] [Indexed: 10/05/2024]
Abstract
Introduction Root exudates act as the "language" of plant-soil communication, facilitating crucial interactions, information exchange, and energy transfer between plants and soil. The interactions facilitated by root exudates between plants and microorganisms in the rhizosphere are crucial for nutrient uptake and stress resilience in plants. However, the mechanism underlying the interaction between root exudates and rhizosphere microorganisms in desert plants under drought conditions remains unclear, especially among closely related species. Methods To reveal the ecological strategies employed by the genus Haloxylon in different habitats. Using DNA extraction and sequencing and UPLC-Q-Tof/MS methods, we studied root exudates and soil microorganisms from two closely related species, Haloxylon ammodendron (HA) and Haloxylon persicum (HP), to assess differences in their root exudates, soil microbial composition, and interactions. Results Significant differences were found in soil properties and root traits between the two species, among which soil water content (SWC) and soil organic carbon (SOC) in rhizosphere and bulk soils (P < 0.05). While the metabolite classification of root exudates was similar, their components varied, with terpenoids being the main differential metabolites. Soil microbial structure and diversity also exhibited significant differences, with distinct key species in the network and differential functional processes mainly related to nitrogen and carbon cycles. Strong correlations were observed between root exudate-mediated root traits, soil microorganisms, and soil properties, although the complex interactions differed between the two closely relative species. The primary metabolites found in the network of HA include sugars and fatty acids, while HP relies on secondary metabolites, steroids and terpenoids. Discussion These findings suggest that root exudates are key in shaping rhizosphere microbial communities, increasing microbial functionality, fostering symbiotic relationships with hosts, and bolstering the resilience of plants to environmental stress.
Collapse
Affiliation(s)
- Deyan Wu
- College of Ecology and Environment, Xinjiang University, Urumqi, Xinjiang, China
- Key Laboratory of Oasis Ecology of Ministry of Education, Xinjiang University, Urumqi, Xinjiang, China
| | - Xuemin He
- College of Ecology and Environment, Xinjiang University, Urumqi, Xinjiang, China
- Key Laboratory of Oasis Ecology of Ministry of Education, Xinjiang University, Urumqi, Xinjiang, China
| | - Lamei Jiang
- College of Life Science, Xinjiang Agricultural University, Urumqi, Xinjiang, China
- Key Laboratory for Ecological Adaptation and Evolution of Extreme Environment Biology, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Wenjing Li
- College of Ecology and Environment, Xinjiang University, Urumqi, Xinjiang, China
- Key Laboratory of Oasis Ecology of Ministry of Education, Xinjiang University, Urumqi, Xinjiang, China
| | - Hengfang Wang
- College of Ecology and Environment, Xinjiang University, Urumqi, Xinjiang, China
- Key Laboratory of Oasis Ecology of Ministry of Education, Xinjiang University, Urumqi, Xinjiang, China
| | - Guanghui Lv
- College of Ecology and Environment, Xinjiang University, Urumqi, Xinjiang, China
- Key Laboratory of Oasis Ecology of Ministry of Education, Xinjiang University, Urumqi, Xinjiang, China
| |
Collapse
|
10
|
Tischer M, Bleidorn C. Further evidence of low infection frequencies of Wolbachia in soil arthropod communities. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 123:105641. [PMID: 39004260 DOI: 10.1016/j.meegid.2024.105641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/22/2024] [Accepted: 07/11/2024] [Indexed: 07/16/2024]
Abstract
Endosymbiotic Alphaproteobacteria of the genus Wolbachia are exclusively transferred maternally from mother to offspring, but horizontal transfer across species boundaries seems to be frequent as well. However, the (ecological) mechanisms of how these bacteria are transferred between distantly related arthropod hosts remain unclear. Based on the observation that species that are part of the same ecological community often also share similar Wolbachia strains, host ecology has been hypothesized as an important factor enabling transmission and a key factor in explaining the global distribution of Wolbachia lineages. In this study, we focus on the diversity and abundance of Wolbachia strains in soil arthropods, a so far rather neglected community. We screened 82 arthropod morphotypes collected in the beech forest (dominated by Fagus sp.) soil in the area of Göttingen in central Germany for the presence of Wolbachia. By performing a PCR screen with Wolbachia-MLST markers (coxA, dnaA, fbpA, ftsZ, gatB, and hcpA), we found a rather low infection frequency of 12,2%. Additionally, we performed metagenomic screening of pooled individuals from the same sampling site and could not find evidence that this low infection frequency is an artefact due to PCR-primer bias. Phylogenetic analyses of the recovered Wolbachia strains grouped them in three known supergroups (A, B, and E), with the first report of Wolbachia in Protura (Hexapoda). Moreover, Wolbachia sequences from the pseudoscorpion Neobisium carcinoides cluster outside the currently known supergroup diversity. Our screening supports results from previous studies that the prevalence of Wolbachia infections seems to be lower in soil habitats than in above-ground terrestrial habitats. The reasons for this pattern are not completely understood but might stem from the low opportunity of physical contact and the prevalence of supergroups that are less suited for horizontal transfer.
Collapse
Affiliation(s)
- Marta Tischer
- Department for Animal Evolution and Biodiversity, Johann-Friedrich-Blumenbach-Institut für Zoologie und Anthropologie, Georg-August-Universität Göttingen, Untere Karspüle 2, 37073 Göttingen, Germany.
| | - Christoph Bleidorn
- Department for Animal Evolution and Biodiversity, Johann-Friedrich-Blumenbach-Institut für Zoologie und Anthropologie, Georg-August-Universität Göttingen, Untere Karspüle 2, 37073 Göttingen, Germany.
| |
Collapse
|
11
|
Zhang C, Cai Y, Zhao Q, He T, Mao T, Zhang T, Zhang L, Su W. The quantification of root exudation by an in-situ method based on root morphology over three incubation periods. FRONTIERS IN PLANT SCIENCE 2024; 15:1423703. [PMID: 39220007 PMCID: PMC11361950 DOI: 10.3389/fpls.2024.1423703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024]
Abstract
Investigating the quantity and spatiotemporal dynamics of metabolite release from plant roots is essential if we are to understand the ecological significance of root exudates in the rhizosphere; however, this is difficult to quantify. In the present study, we quantified in situ root exudation rates during three incubation periods (0-24, 24-48, and 48-72 h) and fine roots within four diameter ranges (<0.8, 0.8-1.0, 1.0-1.2, and 1.2-2.0 mm), and also measured nine morphological traits in the fine roots of Pinus massoniana. Higher root carbon (C) exudation rates were detected during the 0-24 h period. During the 0-24 h and 24-48 h periods, nitrogen (N) uptake rates were higher than N exudation rates, while during the 48-72 h period, N exudation rates exceeded uptake rates. As C exudation increased during 0-48h incubation period, the uptake of N tended to level out. We concluded that the 24-48 h incubation period was the most suitable for capturing root exudates from P. massoniana. The exudation of C from the roots was positively associated with root mass, length, surface area, volume, the number of root tips, and the root tissue density, when incubated for 0-24 h and 24-48 h. Furthermore, length-specific C exudation rates, along with N exudation and uptake rates, all increased as the diameter of the fine roots increased. The release of root exudates could be efficiently predicted by the fine root morphological traits, although the accuracy of prediction depended on the incubation period. Higher values for fine root morphological traits were generally indicative of higher nutrient requirements and tissue investment, as well as higher C exudation rates.
Collapse
Affiliation(s)
- Chengfu Zhang
- Guizhou Institute of Mountain Resources, Guizhou Academy of Sciences, Guiyang, Guizhou, China
| | - Yinmei Cai
- College of Agriculture, Guizhou University, Guiyang, Guizhou, China
| | - Qingxia Zhao
- Institute of New Rural Development, Guizhou University, Guiyang, Guizhou, China
| | - Tengbing He
- College of Agriculture, Guizhou University, Guiyang, Guizhou, China
| | - Tianxu Mao
- College of Forestry, Guizhou University, Guiyang, Guizhou, China
| | - Tao Zhang
- Institute of New Rural Development, Guizhou University, Guiyang, Guizhou, China
| | - Limin Zhang
- Guizhou Academy of Testing and Analysis, Guizhou Academy of Sciences, Guiyang, Guizhou, China
| | - Weici Su
- Guizhou Institute of Mountain Resources, Guizhou Academy of Sciences, Guiyang, Guizhou, China
| |
Collapse
|
12
|
E. M, S. U, R. K, M.W. R, J. P, F. A, J. H. J. L. Draft genome sequence of Collimonas sp. strain H4R21, an effective mineral-weathering bacterial strain isolated from the beech rhizosphere. Microbiol Resour Announc 2024; 13:e0030824. [PMID: 39037313 PMCID: PMC11320959 DOI: 10.1128/mra.00308-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/20/2024] [Indexed: 07/23/2024] Open
Abstract
We present the draft genome sequence of Collimonas sp. strain H4R21, isolated from the rhizosphere of Fagus sylvatica in the forest experimental site of Montiers (France). This genome features coding capacity for plant growth promotion, such as the ability to solubilize minerals, to produce siderophores and antifungal secondary metabolites.
Collapse
Affiliation(s)
- Morin E.
- Université de Lorraine, INRAE, UMR1136 « Interactions Arbres-Microorganismes », Champenoux, France
| | - Uroz S.
- Université de Lorraine, INRAE, UMR1136 « Interactions Arbres-Microorganismes », Champenoux, France
- INRAE, UR1138 « Biogéochimie des Ecosystèmes Forestiers », Champenoux, France
| | - Kumar R.
- Novozymes Inc., Davis, California, USA
| | - Rey M.W.
- Novozymes Inc., Davis, California, USA
| | - Pham J.
- Novozymes Inc., Davis, California, USA
| | - Akum F.
- Department of Plant Pathology, University of California, Davis, California, USA
| | - Leveau J. H. J.
- Department of Plant Pathology, University of California, Davis, California, USA
| |
Collapse
|
13
|
Li H, Chang L, Liu H, Li Y. Diverse factors influence the amounts of carbon input to soils via rhizodeposition in plants: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174858. [PMID: 39034011 DOI: 10.1016/j.scitotenv.2024.174858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
Rhizodeposition encompasses the intricate processes through which plants generate organic compounds via photosynthesis, store these compounds within aboveground biomass and roots through top-down transport, and subsequently release this organic matter into the soil. Rhizodeposition represents one of the carbon (C) cycle in soils that can achieve long-term organic C sequestration. This function holds significant implications for mitigating the climate change that partly stems from the greenhouse effect associated with increased atmospheric carbon dioxide levels. Therefore, it is essential to further understand how the process of rhizodeposition allocates the photosynthetic C that plants create via photosynthesis. While many studies have explored the basic principles of rhizodeposition, along with the associated impact on soil C storage, there is a palpable absence of comprehensive reviews that summarize the various factors influencing this process. This paper compiles and analyzes the literature on plant rhizodeposition to describe how rhizodeposition influences soil C storage. Moreover, the review summarizes the impacts of soil physicochemical, microbial, and environmental characteristics on plant rhizodeposition and priming effects, and concludes with recommendations for future research.
Collapse
Affiliation(s)
- Haoye Li
- College of Earth Sciences, Jilin University, Changchun 130061, China
| | - Lei Chang
- College of Earth Sciences, Jilin University, Changchun 130061, China
| | - Huijia Liu
- College of Earth Sciences, Jilin University, Changchun 130061, China
| | - Yuefen Li
- College of Earth Sciences, Jilin University, Changchun 130061, China.
| |
Collapse
|
14
|
Sell M, Rohula-Okunev G, Kupper P, Ostonen I. Adapting to climate change: responses of fine root traits and C exudation in five tree species with different light-use strategy. FRONTIERS IN PLANT SCIENCE 2024; 15:1389569. [PMID: 39086915 PMCID: PMC11289846 DOI: 10.3389/fpls.2024.1389569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024]
Abstract
Trees that are categorised by their light requirements have similarities in their growth strategies and adaptation mechanisms. We aimed to understand the complex responses of elevated air humidity on whole tree fine root carbon (C) exudation (ExC) and respiration rate, morphology, and functional distribution in species with different light requirements. Three light-demanding (LD) species, Populus × wettsteinii, Betula pendula, and Pinus sylvestris, and two shade-tolerant species, Picea abies and Tilia cordata saplings were grown in growth chambers under moderate and elevated air relative humidity (eRH) at two different inorganic nitrogen sources with constant air temperature and light availability. The proportion of assimilated carbon released by ExC, and respiration decreased at eRH; up to about 3 and 27%, respectively. There was an indication of a trade-off between fine root released C and biomass allocation. The elevated air humidity changed the tree biomass allocation and fine root morphology, and the responses were species-specific. The specific fine root area and absorptive root proportion were positively related to canopy net photosynthesis and leaf nitrogen concentration across tree species. The variation in ExC was explained by the trees' light-use strategy (p < 0.05), showing higher exudation rates in LD species. The LD species had a higher proportion of pioneer root tips, which related to the enhanced ExC. Our findings highlight the significant role of fine root functional distribution and morphological adaptation in determining rhizosphere C fluxes in changing environmental conditions such as the predicted increase of air humidity in higher latitudes.
Collapse
Affiliation(s)
- Marili Sell
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | | | | | | |
Collapse
|
15
|
Brindhadevi K, Chinnathambi A, Al Obaid S. An investigation on the conversion of infertile soil into fertile soil using crop waste as a remedial (compost) approach and its influence on Vigna mungo biometric and biomolecule profile. ENVIRONMENTAL RESEARCH 2024; 258:119351. [PMID: 38844030 DOI: 10.1016/j.envres.2024.119351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 05/30/2024] [Accepted: 06/04/2024] [Indexed: 06/17/2024]
Abstract
The sustainable management of huge volume of agricultural waste in India can be resolved through composting and used as soil amendment. Agriculture waste compost amendments can optimistically alter the physicochemical (pH, C, N, & P) as well as biological nature (microbial activity/biomass and enzymatic activity) of infertile soil. Hence this study, the agriculture wastes such as sugarcane trash, corn stover, and pearl millet stalks were converted to composite through decomposition pit. Interestingly, test crops residues individual composites and their mixed form contained considerable quantity of vital elements like TC, TN, TP, TK, and C:N ratio and can effectively convert infertile soil to fertile soil. These test crop composites also had a significant impact on MBN (42.3 μg g-1), MBC (198.4 μg g-1), and MBP (196.4 μg g-1) in test soil, as well as dehydrogenase and alkaline phosphatase enzyme activity. However, the mixed composite effects are significantly greater than the individual test crop composite effects. Furthermore, it effectively remediates/converts infertile soil to fertile soil, and it ultimately demonstrated positive effects on Vigna mungo biometric (SH, RH, WB, and DB) and biomolecule (total chlorophyll, total carbohydrate, and total proteins) profiles, followed by individual test crop composites. According to the findings of this study, the incorporation of crop residue-based mixed composite significantly transforms infertile soil into fertile soil and promotes the growth of V. mungo.
Collapse
Affiliation(s)
- Kathirvel Brindhadevi
- University Centre for Research & Development, Department of Chemistry, Chandigarh University, Mohali, 140103, India.
| | - Arunachalam Chinnathambi
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Sami Al Obaid
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
16
|
Gholizadeh S, Nemati I, Vestergård M, Barnes CJ, Kudjordjie EN, Nicolaisen M. Harnessing root-soil-microbiota interactions for drought-resilient cereals. Microbiol Res 2024; 283:127698. [PMID: 38537330 DOI: 10.1016/j.micres.2024.127698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/14/2024] [Accepted: 03/17/2024] [Indexed: 04/17/2024]
Abstract
Cereal plants form complex networks with their associated microbiome in the soil environment. A complex system including variations of numerous parameters of soil properties and host traits shapes the dynamics of cereal microbiota under drought. These multifaceted interactions can greatly affect carbon and nutrient cycling in soil and offer the potential to increase plant growth and fitness under drought conditions. Despite growing recognition of the importance of plant microbiota to agroecosystem functioning, harnessing the cereal root microbiota remains a significant challenge due to interacting and synergistic effects between root traits, soil properties, agricultural practices, and drought-related features. A better mechanistic understanding of root-soil-microbiota associations could lead to the development of novel strategies to improve cereal production under drought. In this review, we discuss the root-soil-microbiota interactions for improving the soil environment and host fitness under drought and suggest a roadmap for harnessing the benefits of these interactions for drought-resilient cereals. These methods include conservative trait-based approaches for the selection and breeding of plant genetic resources and manipulation of the soil environments.
Collapse
Affiliation(s)
- Somayeh Gholizadeh
- Faculty of Technical Sciences, Department of Agroecology, Aarhus University, Forsøgsvej 1, Slagelse 4200, Denmark
| | - Iman Nemati
- Department of Plant Production and Genetics Engineering, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Mette Vestergård
- Faculty of Technical Sciences, Department of Agroecology, Aarhus University, Forsøgsvej 1, Slagelse 4200, Denmark
| | - Christopher James Barnes
- Faculty of Technical Sciences, Department of Agroecology, Aarhus University, Forsøgsvej 1, Slagelse 4200, Denmark
| | - Enoch Narh Kudjordjie
- Faculty of Technical Sciences, Department of Agroecology, Aarhus University, Forsøgsvej 1, Slagelse 4200, Denmark
| | - Mogens Nicolaisen
- Faculty of Technical Sciences, Department of Agroecology, Aarhus University, Forsøgsvej 1, Slagelse 4200, Denmark.
| |
Collapse
|
17
|
Wang L, Zhang B, Fang Y, Yin H, Fu S, Chang SX, Cai Y. Distinct effects of canopy vs understory and organic vs inorganic N deposition on root resource acquisition strategies of subtropical Moso bamboo plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172424. [PMID: 38614348 DOI: 10.1016/j.scitotenv.2024.172424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/07/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
Atmospheric nitrogen (N) deposition inevitably alters soil nutrient status, subsequently prompting plants to modify their root morphology (i.e., adopting a do-it-yourself strategy), mycorrhizal symbioses (i.e., outsourcing strategy), and root exudation (i.e., nutrient-mining strategy) linking with resource acquisition. However, how N deposition influences the integrated pattern of these resource-acquisition strategies remains unclear. Furthermore, most studies in forest ecosystems have focused on understory N and inorganic N deposition, neglecting canopy-associated processes (e.g., N interception and assimilation) and the impacts of organic N on root functional traits. In this study, we compared the effects of canopy vs understory, organic vs inorganic N deposition on eight root functional traits of Moso bamboo plants. Our results showed that N deposition significantly decreased arbuscular mycorrhizal fungi (AMF) colonization, altered root exudation rate and root foraging traits (branching intensity, specific root area, and length), but did not influence root tissue density and N concentration. Moreover, the impacts of N deposition on root functional traits varied significantly with deposition approach (canopy vs. understory), form (organic vs. inorganic), and their interaction, showing variations in both intensity and direction (positive/negative). Furthermore, specific root area and length were positively correlated with AMF colonization under canopy N deposition and root exudation rate in understory N deposition. Root trait variation under understory N deposition, but not under canopy N deposition, was classified into the collaboration gradient and the conservation gradient. These findings imply that coordination of nutrient-acquisition strategies dependent on N deposition approach. Overall, this study provides a holistic understanding of the impacts of N deposition on root resource-acquisition strategies. Our results indicate that the evaluation of N deposition on fine roots in forest ecosystems might be biased if N is added understory.
Collapse
Affiliation(s)
- Lin Wang
- State Key Laboratory of Subtropical Silviculture, College of Environment and Resources, College of Carbon Neutrality, Zhejiang A&F University, Hangzhou 311300, China
| | - Baogang Zhang
- State Key Laboratory of Subtropical Silviculture, College of Environment and Resources, College of Carbon Neutrality, Zhejiang A&F University, Hangzhou 311300, China.
| | - Yunying Fang
- Australian Rivers Institute and School of Environment and Science, Griffith University, Nathan Campus, 4111, Queensland, Australia
| | - Huajun Yin
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province & China-Croatia "Belt and Road" Joint Laboratory on Biodiversity and Ecosystem Services, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Shenglei Fu
- College of Environment and Planning, Henan University, Kaifeng 475004, China
| | - Scott X Chang
- Department of Renewable Resources, University of Alberta, Edmonton T6G 2E3, Canada
| | - Yanjiang Cai
- State Key Laboratory of Subtropical Silviculture, College of Environment and Resources, College of Carbon Neutrality, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
18
|
Dong X, Chen M, Chen Q, Liu K, Long J, Li Y, Ren Y, Yang T, Zhou J, Herath S, Peng X. Rare microbial taxa as the major drivers of nutrient acquisition under moss biocrusts in karst area. Front Microbiol 2024; 15:1384367. [PMID: 38751717 PMCID: PMC11094542 DOI: 10.3389/fmicb.2024.1384367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/08/2024] [Indexed: 05/18/2024] Open
Abstract
Karst rocky desertification refers to the process of land degradation caused by various factors such as climate change and human activities including deforestation and agriculture on a fragile karst substrate. Nutrient limitation is common in karst areas. Moss crust grows widely in karst areas. The microorganisms associated with bryophytes are vital to maintaining ecological functions, including climate regulation and nutrient circulation. The synergistic effect of moss crusts and microorganisms may hold great potential for restoring degraded karst ecosystems. However, our understanding of the responses of microbial communities, especially abundant and rare taxa, to nutrient limitations and acquisition in the presence of moss crusts is limited. Different moss habitats exhibit varying patterns of nutrient availability, which also affect microbial diversity and composition. Therefore, in this study, we investigated three habitats of mosses: autochthonal bryophytes under forest, lithophytic bryophytes under forest and on cliff rock. We measured soil physicochemical properties and enzymatic activities. We conducted high-throughput sequencing and analysis of soil microorganisms. Our finding revealed that autochthonal moss crusts under forest had higher nutrient availability and a higher proportion of copiotrophic microbial communities compared to lithophytic moss crusts under forest or on cliff rock. However, enzyme activities were lower in autochthonal moss crusts under forest. Additionally, rare taxa exhibited distinct structures in all three habitats. Analysis of co-occurrence network showed that rare taxa had a relatively high proportion in the main modules. Furthermore, we found that both abundant and rare taxa were primarily assembled by stochastic processes. Soil properties significantly affected the community assembly of the rare taxa, indirectly affecting microbial diversity and complexity and finally nutrient acquisition. These findings highlight the importance of rare taxa under moss crusts for nutrient acquisition. Addressing this knowledge gap is essential for guiding ongoing ecological restoration projects in karst rocky desertification regions.
Collapse
Affiliation(s)
- Xintong Dong
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Man Chen
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Qi Chen
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Kangfei Liu
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Jie Long
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yunzhou Li
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yinuo Ren
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Tao Yang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Jinxing Zhou
- Jianshui Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing, China
| | - Saman Herath
- Department of Export Agriculture, Faculty of Animal Science and Export Agriculture, Uva Wellassa University, Badulla, Sri Lanka
| | - Xiawei Peng
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Beijing Key Laboratory of Food Processing and Safety in Forestry, Beijing Forestry University, Beijing, China
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, China
| |
Collapse
|
19
|
Cantarel AAM, Signoret A, Gervaix J, Beligon C, Béraud C, Boisselet C, Creuzé des Châtelliers C, Defour P, Delort A, Lacroix E, Lobreau C, Louvez E, Marais C, Simonin M, Piola F. Biological inhibition of denitrification (BDI): an early plant strategy for Fallopia × bohemica seedling development. ANNALS OF BOTANY 2024; 133:533-546. [PMID: 37970962 PMCID: PMC11037488 DOI: 10.1093/aob/mcad174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND AND AIMS The successful plant Fallopia × bohemica presents interesting capacities for control of the soil nitrogen cycle at the adult stage, termed biological inhibition of denitrification (BDI). The BDI strategy allows the plant, via the production of secondary metabolites (procyanidins), to compete with the denitrifying microbial community and to divert nitrate from the soil for its benefit. In this study, we analysed whether seedlings of F. × bohemica can implement BDI at the seedling stage. We also determined whether soil nitrogen availability influences the implementation of BDI and seedling growth. METHODS We sowed achenes of F. × bohemica in soils representing a nitrogen gradient (six treatments) and harvested seedlings after 20 or 40 days of growth. The denitrification and related microbial communities (i.e. functional gene abundances of nirK and nirS), soil parameters (nitrate content and humidity) and plant performance (biomass, growth and root morphology) were determined. KEY RESULTS On soil without addition of nitrogen, BDI was observed after 20 days of growth, whereas a stimulation of denitrification was found after 40 days. The increase of soil N content had few effects on the activity and structure of the soil denitrifying community and on the plant biomasses or the relative growth rates. Correlations between plant and microbial parameters were observed after 20 days of growth, reflecting early and strong chemical interactions between plants and the denitrifying community, which decreased with plant growth after 40 days. CONCLUSIONS This study shows that an early BDI enhances the efficiency of nitrogen acquisition in the first weeks of growth, allowing for a conservative root strategy after 40 days. This switch to a conservative strategy involved resource storage, an altered allocation to above- and below-ground parts and an investment in fine roots. It now seems clear that this storage strategy starts at a very young age with early establishment of BDI, giving this clonal plant exceptional capacities for storage and multiplication.
Collapse
Affiliation(s)
- Amélie A M Cantarel
- Université Claude Bernard Lyon 1, Laboratoire d’Ecologie Microbienne LEM, UMR 5557 CNRS, UMR 1418 INRAE, VetAgro Sup, 69622 Villeurbanne, France
| | - Aymeric Signoret
- Université Claude Bernard Lyon 1, Laboratoire d’Ecologie Microbienne LEM, UMR 5557 CNRS, UMR 1418 INRAE, VetAgro Sup, 69622 Villeurbanne, France
- Université Claude Bernard Lyon 1, Laboratoire des Ecosystèmes et Hydosystèmes Naturels et Anthropisés LEHNA, ENTPE, UMR 5023 CNRS, 69622 Villeurbanne, France
| | - Jonathan Gervaix
- Université Claude Bernard Lyon 1, Laboratoire d’Ecologie Microbienne LEM, UMR 5557 CNRS, UMR 1418 INRAE, VetAgro Sup, 69622 Villeurbanne, France
| | - Chiquitta Beligon
- Université Claude Bernard Lyon 1, Laboratoire des Ecosystèmes et Hydosystèmes Naturels et Anthropisés LEHNA, ENTPE, UMR 5023 CNRS, 69622 Villeurbanne, France
| | - Cédric Béraud
- Université Claude Bernard Lyon 1, Laboratoire d’Ecologie Microbienne LEM, UMR 5557 CNRS, UMR 1418 INRAE, VetAgro Sup, 69622 Villeurbanne, France
- Université Claude Bernard Lyon 1, Laboratoire des Ecosystèmes et Hydosystèmes Naturels et Anthropisés LEHNA, ENTPE, UMR 5023 CNRS, 69622 Villeurbanne, France
| | - Christelle Boisselet
- Université Claude Bernard Lyon 1, Laboratoire des Ecosystèmes et Hydosystèmes Naturels et Anthropisés LEHNA, ENTPE, UMR 5023 CNRS, 69622 Villeurbanne, France
| | - Charline Creuzé des Châtelliers
- Université Claude Bernard Lyon 1, Laboratoire d’Ecologie Microbienne LEM, UMR 5557 CNRS, UMR 1418 INRAE, VetAgro Sup, 69622 Villeurbanne, France
| | - Pauline Defour
- Université Claude Bernard Lyon 1, Laboratoire d’Ecologie Microbienne LEM, UMR 5557 CNRS, UMR 1418 INRAE, VetAgro Sup, 69622 Villeurbanne, France
| | - Abigaïl Delort
- Université Claude Bernard Lyon 1, Laboratoire d’Ecologie Microbienne LEM, UMR 5557 CNRS, UMR 1418 INRAE, VetAgro Sup, 69622 Villeurbanne, France
| | - Elise Lacroix
- Université Claude Bernard Lyon 1, Plateforme ‘Serre et Chambres Climatiques’, FR BioEEnVis, Domaine scientifique de la DOUA, 69622 Villeurbanne, France
| | - Clément Lobreau
- Université Claude Bernard Lyon 1, Laboratoire d’Ecologie Microbienne LEM, UMR 5557 CNRS, UMR 1418 INRAE, VetAgro Sup, 69622 Villeurbanne, France
- Université Claude Bernard Lyon 1, Laboratoire des Ecosystèmes et Hydosystèmes Naturels et Anthropisés LEHNA, ENTPE, UMR 5023 CNRS, 69622 Villeurbanne, France
| | - Enzo Louvez
- Université Claude Bernard Lyon 1, Laboratoire d’Ecologie Microbienne LEM, UMR 5557 CNRS, UMR 1418 INRAE, VetAgro Sup, 69622 Villeurbanne, France
| | - Coralie Marais
- University of Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, Angers, France
| | - Marie Simonin
- University of Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, Angers, France
| | - Florence Piola
- Université Claude Bernard Lyon 1, Laboratoire des Ecosystèmes et Hydosystèmes Naturels et Anthropisés LEHNA, ENTPE, UMR 5023 CNRS, 69622 Villeurbanne, France
| |
Collapse
|
20
|
Maitra P, Hrynkiewicz K, Szuba A, Jagodziński AM, Al-Rashid J, Mandal D, Mucha J. Metabolic niches in the rhizosphere microbiome: dependence on soil horizons, root traits and climate variables in forest ecosystems. FRONTIERS IN PLANT SCIENCE 2024; 15:1344205. [PMID: 38645395 PMCID: PMC11026606 DOI: 10.3389/fpls.2024.1344205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 03/18/2024] [Indexed: 04/23/2024]
Abstract
Understanding belowground plant-microbial interactions is important for biodiversity maintenance, community assembly and ecosystem functioning of forest ecosystems. Consequently, a large number of studies were conducted on root and microbial interactions, especially in the context of precipitation and temperature gradients under global climate change scenarios. Forests ecosystems have high biodiversity of plants and associated microbes, and contribute to major primary productivity of terrestrial ecosystems. However, the impact of root metabolites/exudates and root traits on soil microbial functional groups along these climate gradients is poorly described in these forest ecosystems. The plant root system exhibits differentiated exudation profiles and considerable trait plasticity in terms of root morphological/phenotypic traits, which can cause shifts in microbial abundance and diversity. The root metabolites composed of primary and secondary metabolites and volatile organic compounds that have diverse roles in appealing to and preventing distinct microbial strains, thus benefit plant fitness and growth, and tolerance to abiotic stresses such as drought. Climatic factors significantly alter the quantity and quality of metabolites that forest trees secrete into the soil. Thus, the heterogeneities in the rhizosphere due to different climate drivers generate ecological niches for various microbial assemblages to foster beneficial rhizospheric interactions in the forest ecosystems. However, the root exudations and microbial diversity in forest trees vary across different soil layers due to alterations in root system architecture, soil moisture, temperature, and nutrient stoichiometry. Changes in root system architecture or traits, e.g. root tissue density (RTD), specific root length (SRL), and specific root area (SRA), impact the root exudation profile and amount released into the soil and thus influence the abundance and diversity of different functional guilds of microbes. Here, we review the current knowledge about root morphological and functional (root exudation) trait changes that affect microbial interactions along drought and temperature gradients. This review aims to clarify how forest trees adapt to challenging environments by leveraging their root traits to interact beneficially with microbes. Understanding these strategies is vital for comprehending plant adaptation under global climate change, with significant implications for future research in plant biodiversity conservation, particularly within forest ecosystems.
Collapse
Affiliation(s)
- Pulak Maitra
- Institute of Dendrology, Polish Academy of Sciences, Kórnik, Poland
| | - Katarzyna Hrynkiewicz
- Department of Microbiology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Toruń, Poland
| | - Agnieszka Szuba
- Institute of Dendrology, Polish Academy of Sciences, Kórnik, Poland
| | - Andrzej M. Jagodziński
- Institute of Dendrology, Polish Academy of Sciences, Kórnik, Poland
- Department of Game Management and Forest Protection, Faculty of Forestry and Wood Technology, Poznań University of Life Sciences, Poznań, Poland
| | - Jubair Al-Rashid
- Tianjin Institute of Industrial Biotechnology, University of Chinese Academy of Sciences, Tianjin, China
| | - Dipa Mandal
- Institute of Microbiology, University of Chinese Academy of Sciences, Beijing, China
| | - Joanna Mucha
- Institute of Dendrology, Polish Academy of Sciences, Kórnik, Poland
- Department of Forest Entomology and Pathology, Faculty of Forestry and Wood Technology, Poznań University of Life Sciences, Poznań, Poland
| |
Collapse
|
21
|
Qiao M, Lv S, Qiao Y, Lin W, Gao Z, Tang X, Yang Z, Chen J. Exogenous Streptomyces spp. enhance the drought resistance of naked oat ( Avena nuda) seedlings by augmenting both the osmoregulation mechanisms and antioxidant capacities. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP23312. [PMID: 38588711 DOI: 10.1071/fp23312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/22/2024] [Indexed: 04/10/2024]
Abstract
Drought is a major obstacle to the development of naked oat industry. This work investigated mechanisms by which exogenous Streptomyces albidoflavus T4 and Streptomyces rochei D74 improved drought tolerance in naked oat (Avena nuda ) seedlings. Results showed that in the seed germination experiment, germination rate, radicle and hypocotyl length of naked oat seeds treated with the fermentation filtrate of T4 or D74 under PEG induced drought stress increased significantly. In the hydroponic experiment, the shoot and root dry weights of oat seedlings increased significantly when treated with the T4 or D74 fermentation filtrate under the 15% PEG induced drought stress (S15). Simultaneously, the T4 treatment also significantly increased the surface area, volume, the number of tips and the root activity of oat seedlings. Both T4 and D74 treatments elicited significant increases in proline and soluble sugar contents, as well as the catalase and peroxidase activities in oat seedlings. The results of comprehensive drought resistance capacity (CDRC) calculation of oat plants showed that the drought resistance of oat seedlings under the T4 treatment was better than that under the D74 treatment, and the effect was better under higher drought stress (S15). Findings of this study may provide a novel and effective approach for enhancing plant defenses against drought stress.
Collapse
Affiliation(s)
- Meixia Qiao
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Siyuan Lv
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Yuejing Qiao
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi 030801, China; and Ministerial and Provincial Co-Innovation Centre for Endemic Crops Production with High-quality and Efficiency in Loess Plateau, Taigu, Shanxi 030801, China
| | - Wen Lin
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi 030801, China; and Ministerial and Provincial Co-Innovation Centre for Endemic Crops Production with High-quality and Efficiency in Loess Plateau, Taigu, Shanxi 030801, China
| | - Zhiqiang Gao
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi 030801, China; and Ministerial and Provincial Co-Innovation Centre for Endemic Crops Production with High-quality and Efficiency in Loess Plateau, Taigu, Shanxi 030801, China
| | - Xiwang Tang
- Hebei Key Laboratory of Agroecological Safety, Hebei University of Environmental Engineering, Qinhuangdao, Hebei 066102, China
| | - Zhenping Yang
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi 030801, China; and Ministerial and Provincial Co-Innovation Centre for Endemic Crops Production with High-quality and Efficiency in Loess Plateau, Taigu, Shanxi 030801, China
| | - Jie Chen
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi 030801, China; and Ministerial and Provincial Co-Innovation Centre for Endemic Crops Production with High-quality and Efficiency in Loess Plateau, Taigu, Shanxi 030801, China
| |
Collapse
|
22
|
Delory BM, Callaway RM, Semchenko M. A trait-based framework linking the soil metabolome to plant-soil feedbacks. THE NEW PHYTOLOGIST 2024; 241:1910-1921. [PMID: 38124274 DOI: 10.1111/nph.19490] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023]
Abstract
By modifying the biotic and abiotic properties of the soil, plants create soil legacies that can affect vegetation dynamics through plant-soil feedbacks (PSF). PSF are generally attributed to reciprocal effects of plants and soil biota, but these interactions can also drive changes in the identity, diversity and abundance of soil metabolites, leading to more or less persistent soil chemical legacies whose role in mediating PSF has rarely been considered. These chemical legacies may interact with microbial or nutrient legacies to affect species coexistence. Given the ecological importance of chemical interactions between plants and other organisms, a better understanding of soil chemical legacies is needed in community ecology. In this Viewpoint, we aim to: highlight the importance of belowground chemical interactions for PSF; define and integrate soil chemical legacies into PSF research by clarifying how the soil metabolome can contribute to PSF; discuss how functional traits can help predict these plant-soil interactions; propose an experimental approach to quantify plant responses to the soil solution metabolome; and describe a testable framework relying on root economics and seed dispersal traits to predict how plant species affect the soil metabolome and how they could respond to soil chemical legacies.
Collapse
Affiliation(s)
- Benjamin M Delory
- Institute of Ecology, Leuphana University of Lüneburg, Lüneburg, 21335, Germany
- Copernicus Institute of Sustainable Development, Utrecht University, Utrecht, 3584 CB, the Netherlands
| | - Ragan M Callaway
- Division of Biological Sciences and Institute on Ecosystems, University of Montana, Missoula, MT, 59812, USA
| | - Marina Semchenko
- Institute of Ecology and Earth Sciences, University of Tartu, Liivi 2, 50409, Tartu, Estonia
| |
Collapse
|
23
|
Gong J, Song L, Zhang Z, Dong J, Zhang S, Zhang W, Dong X, Hu Y, Liu Y. Correlations between root phosphorus acquisition and foliar phosphorus allocation reveal how grazing promotes plant phosphorus utilization. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 208:108467. [PMID: 38412704 DOI: 10.1016/j.plaphy.2024.108467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/17/2024] [Accepted: 02/22/2024] [Indexed: 02/29/2024]
Abstract
Overgrazing and phosphorus (P) deficiency are two major factors limiting the sustainable development of grassland ecosystems. Exploring plant P utilization and acquisition strategies under grazing can provide a solid basis for determining a reasonable grazing intensity. Both foliar P allocation and root P acquisition are crucial mechanisms for plants to adapt to environmental P availability; however, their changing characteristics and correlation under grazing remain unknown. Here, we investigated foliar P fractions, root P-acquisition traits and gene expression, as well as rhizosphere and bulk soil properties of two dominant plant species, Leymus chinensis (a rhizomatous grass) and Stipa grandis (a bunchgrass), in a field grazing intensity gradient site in Inner Mongolia. Grazing induced different degrees of compensatory growth in the two dominant plant species, increased rhizosphere P availability, and alleviated plant P limitation. Under grazing, the foliar metabolite P of L. chinensis increased, whereas the nucleic acid P of S. grandis increased. Increased P fractions in L. chinensis were positively correlated with increased root exudates and rapid inorganic P absorption. For S. grandis, increased foliar P fractions were positively correlated with more fine roots, more root exudates, and up-regulated expression of genes involved in defense and P metabolism. Overall, efficient root P mobilization and uptake traits, as well as increases in leaf metabolic activity-related P fractions, supported plant compensatory growth under grazing, a process that differed between tiller types. The highest plant productivity and leaf metabolic activity-related P concentrations under medium grazing intensity clarify the underlying basis for sustainable livestock production.
Collapse
Affiliation(s)
- Jirui Gong
- State Key Laboratory of Earth Surface Processes and Resource Ecology, MOE Engineering Research Center of Desertification and Blown-sand Control, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| | - Liangyuan Song
- Institute of Land and Urban-Rural Development, Zhejiang University of Finance & Economics, Hangzhou, 310018, China.
| | - Zihe Zhang
- State Key Laboratory of Earth Surface Processes and Resource Ecology, MOE Engineering Research Center of Desertification and Blown-sand Control, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| | - Jiaojiao Dong
- State Key Laboratory of Earth Surface Processes and Resource Ecology, MOE Engineering Research Center of Desertification and Blown-sand Control, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| | - Siqi Zhang
- State Key Laboratory of Earth Surface Processes and Resource Ecology, MOE Engineering Research Center of Desertification and Blown-sand Control, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| | - Weiyuan Zhang
- State Key Laboratory of Earth Surface Processes and Resource Ecology, MOE Engineering Research Center of Desertification and Blown-sand Control, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| | - Xuede Dong
- State Key Laboratory of Earth Surface Processes and Resource Ecology, MOE Engineering Research Center of Desertification and Blown-sand Control, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| | - Yuxia Hu
- State Key Laboratory of Earth Surface Processes and Resource Ecology, MOE Engineering Research Center of Desertification and Blown-sand Control, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| | - Yingying Liu
- State Key Laboratory of Earth Surface Processes and Resource Ecology, MOE Engineering Research Center of Desertification and Blown-sand Control, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
24
|
Gao Y, Wang H, Yang F, Dai X, Meng S, Hu M, Kou L, Fu X. Relationships between root exudation and root morphological and architectural traits vary with growing season. TREE PHYSIOLOGY 2024; 44:tpad118. [PMID: 37738586 PMCID: PMC10849755 DOI: 10.1093/treephys/tpad118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 09/07/2023] [Accepted: 09/18/2023] [Indexed: 09/24/2023]
Abstract
Plants allocate a substantial amount of C belowground for root exudates and for the construction and adjustment of root morphological and architectural traits. What relationships exist between root exudates and other root traits and these relationships change with growing season, however, remain unclear. We quantified the root exudation rate and root morphological traits, including total root length (RL), total root surface area (RS), root diameter (RD), specific root length (SRL), specific root area (SRA) and root tissue density (RTD), and architectural traits, such as branching intensity (BI), and investigated their associations during the rapidly growing season (April and August) and the slowly growing season (December) of three common native tree species, Liquidambar formosana, Michelia maudiae and Schima superba, in subtropical China. We found that the linkages of RD, SRL, SRA, RTD and BI did not change with the growing season, reflecting their highly conservative relationships. The root exudation rate varied significantly with growing season (P < 0.05) and produced various associations with other root traits at different growing seasons. During the rapidly growing season (i.e., April), the exudation rate was the highest and was positively correlated with RL. The exudation rate was the lowest during the slowly growing season (i.e., December) and was negatively associated with RL, RS and RTD. Our findings demonstrate the seasonality of the linkages of root exudation rate with other root traits, which highlights the highly plastic and complex associations of belowground root traits. These findings help to deepen our understanding of plant nutrient acquisition strategies.
Collapse
Affiliation(s)
- Yuqiu Gao
- Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A, Datun Road, Chaoyang District, Beijing 100101, China
- School of Water Conservancy and Environment, University of Jinan, No. 336 West Nanxinzhuang Road, Shizhong District, Jinan 250022, China
| | - Huimin Wang
- Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A, Datun Road, Chaoyang District, Beijing 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, No. 80 Zhongguancun East Road, Haidian District, Beijing 100190, China
| | - Fengting Yang
- Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A, Datun Road, Chaoyang District, Beijing 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, No. 80 Zhongguancun East Road, Haidian District, Beijing 100190, China
| | - Xiaoqin Dai
- Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A, Datun Road, Chaoyang District, Beijing 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, No. 80 Zhongguancun East Road, Haidian District, Beijing 100190, China
| | - Shengwang Meng
- Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A, Datun Road, Chaoyang District, Beijing 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, No. 80 Zhongguancun East Road, Haidian District, Beijing 100190, China
| | - Mingyuan Hu
- Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A, Datun Road, Chaoyang District, Beijing 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, No. 80 Zhongguancun East Road, Haidian District, Beijing 100190, China
| | - Liang Kou
- Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A, Datun Road, Chaoyang District, Beijing 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, No. 80 Zhongguancun East Road, Haidian District, Beijing 100190, China
| | - Xiaoli Fu
- Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A, Datun Road, Chaoyang District, Beijing 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, No. 80 Zhongguancun East Road, Haidian District, Beijing 100190, China
| |
Collapse
|
25
|
Fontaine S, Abbadie L, Aubert M, Barot S, Bloor JMG, Derrien D, Duchene O, Gross N, Henneron L, Le Roux X, Loeuille N, Michel J, Recous S, Wipf D, Alvarez G. Plant-soil synchrony in nutrient cycles: Learning from ecosystems to design sustainable agrosystems. GLOBAL CHANGE BIOLOGY 2024; 30:e17034. [PMID: 38273527 DOI: 10.1111/gcb.17034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 10/14/2023] [Indexed: 01/27/2024]
Abstract
Redesigning agrosystems to include more ecological regulations can help feed a growing human population, preserve soils for future productivity, limit dependency on synthetic fertilizers, and reduce agriculture contribution to global changes such as eutrophication and warming. However, guidelines for redesigning cropping systems from natural systems to make them more sustainable remain limited. Synthetizing the knowledge on biogeochemical cycles in natural ecosystems, we outline four ecological systems that synchronize the supply of soluble nutrients by soil biota with the fluctuating nutrient demand of plants. This synchrony limits deficiencies and excesses of soluble nutrients, which usually penalize both production and regulating services of agrosystems such as nutrient retention and soil carbon storage. In the ecological systems outlined, synchrony emerges from plant-soil and plant-plant interactions, eco-physiological processes, soil physicochemical processes, and the dynamics of various nutrient reservoirs, including soil organic matter, soil minerals, atmosphere, and a common market. We discuss the relative importance of these ecological systems in regulating nutrient cycles depending on the pedoclimatic context and on the functional diversity of plants and microbes. We offer ideas about how these systems could be stimulated within agrosystems to improve their sustainability. A review of the latest advances in agronomy shows that some of the practices suggested to promote synchrony (e.g., reduced tillage, rotation with perennial plant cover, crop diversification) have already been tested and shown to be effective in reducing nutrient losses, fertilizer use, and N2 O emissions and/or improving biomass production and soil carbon storage. Our framework also highlights new management strategies and defines the conditions for the success of these nature-based practices allowing for site-specific modifications. This new synthetized knowledge should help practitioners to improve the long-term productivity of agrosystems while reducing the negative impact of agriculture on the environment and the climate.
Collapse
Affiliation(s)
- Sébastien Fontaine
- INRAE, VetAgro Sup, Université Clermont Auvergne, UMR Ecosystème Prairial, Clermont-Ferrand, France
| | - Luc Abbadie
- UPEC, CNRS, IRD, INRAE, Institut d'écologie et des sciences de l'environnement, IEES, Sorbonne Université, Paris, France
| | - Michaël Aubert
- UNIROUEN, INRAE, ECODIV-Rouen, Normandie Univ, Rouen, France
| | - Sébastien Barot
- UPEC, CNRS, IRD, INRAE, Institut d'écologie et des sciences de l'environnement, IEES, Sorbonne Université, Paris, France
| | - Juliette M G Bloor
- INRAE, VetAgro Sup, Université Clermont Auvergne, UMR Ecosystème Prairial, Clermont-Ferrand, France
| | | | - Olivier Duchene
- ISARA, Research Unit Agroecology and Environment, Lyon, France
| | - Nicolas Gross
- INRAE, VetAgro Sup, Université Clermont Auvergne, UMR Ecosystème Prairial, Clermont-Ferrand, France
| | | | - Xavier Le Roux
- INRAE UMR 1418, CNRS UMR 5557, VetAgroSup, Microbial Ecology Centre LEM, Université de Lyon, Villeurbanne, France
| | - Nicolas Loeuille
- UPEC, CNRS, IRD, INRAE, Institut d'écologie et des sciences de l'environnement, IEES, Sorbonne Université, Paris, France
| | - Jennifer Michel
- Plant Sciences, TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Sylvie Recous
- INRAE, FARE, Université de Reims Champagne-Ardenne, Reims, France
| | - Daniel Wipf
- Agroécologie, AgroSup Dijon, CNRS, Université de Bourgogne, INRAE, Université de Bourgogne Franche-Comté, Dijon, France
| | - Gaël Alvarez
- INRAE, VetAgro Sup, Université Clermont Auvergne, UMR Ecosystème Prairial, Clermont-Ferrand, France
| |
Collapse
|
26
|
Santangeli M, Steininger-Mairinger T, Vetterlein D, Hann S, Oburger E. Maize (Zea mays L.) root exudation profiles change in quality and quantity during plant development - A field study. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 338:111896. [PMID: 37838155 DOI: 10.1016/j.plantsci.2023.111896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/02/2023] [Accepted: 10/10/2023] [Indexed: 10/16/2023]
Abstract
Deciphering root exudate composition of soil-grown plants is considered a crucial step to better understand plant-soil-microbe interactions affecting plant growth performance. In this study, two genotypes of Zea mays L. (WT, rth3) differing in root hair elongation were grown in the field in two substrates (sand, loam) in custom-made, perforated columns inserted into the field plots. Root exudates were collected at different plant developmental stages (BBCH 14, 19, 59, 83) using a soil-hydroponic-hybrid exudation sampling approach. Exudates were characterized by LC-MS based non-targeted metabolomics, as well as by photometric assays targeting total dissolved organic carbon, soluble carbohydrates, proteins, amino acids, and phenolics. Results showed that plant developmental stage was the main driver shaping both the composition and quantity of exuded compounds. Carbon (C) exudation per plant increased with increasing biomass production over time, while C exudation rate per cm² root surface area h-1 decreased with plant maturity. Furthermore, exudation rates were higher in the substrate with lower nutrient mobility (i.e., loam). Surprisingly, we observed higher exudation rates in the root hairless rth3 mutant compared to the root hair-forming WT sibling, though exudate metabolite composition remained similar. Our results highlight the impact of plant developmental stage on the plant-soil-microbe interplay.
Collapse
Affiliation(s)
- Michael Santangeli
- University of Natural Resources and Life Sciences, Vienna, Department of Forest and Soil Science, Institute of Soil Research, 3430 Tulln an der Donau, Austria; University of Natural Resources and Life Sciences, Vienna, Department of Chemistry, Institute of Analytical Chemistry, 1190 Vienna, Austria
| | - Teresa Steininger-Mairinger
- University of Natural Resources and Life Sciences, Vienna, Department of Chemistry, Institute of Analytical Chemistry, 1190 Vienna, Austria
| | - Doris Vetterlein
- Department of Soil System Science, UFZ, 06120 Halle/Saale, Germany; Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, 06120 Halle/Saale, Germany
| | - Stephan Hann
- University of Natural Resources and Life Sciences, Vienna, Department of Chemistry, Institute of Analytical Chemistry, 1190 Vienna, Austria
| | - Eva Oburger
- University of Natural Resources and Life Sciences, Vienna, Department of Forest and Soil Science, Institute of Soil Research, 3430 Tulln an der Donau, Austria.
| |
Collapse
|
27
|
Hennecke J, Bassi L, Mommer L, Albracht C, Bergmann J, Eisenhauer N, Guerra CA, Heintz-Buschart A, Kuyper TW, Lange M, Solbach MD, Weigelt A. Responses of rhizosphere fungi to the root economics space in grassland monocultures of different age. THE NEW PHYTOLOGIST 2023; 240:2035-2049. [PMID: 37691273 DOI: 10.1111/nph.19261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/21/2023] [Indexed: 09/12/2023]
Abstract
Recent studies on root traits have shown that there are two axes explaining trait variation belowground: the collaboration axis with mycorrhizal partners and the conservation ('fast - slow') axis. However, it is yet unknown whether these trait axes affect the assembly of soilborne fungi. We expect saprotrophic fungi to link to the conservation axis of root traits, whereas pathogenic and arbuscular mycorrhizal fungi link to the collaboration axis, but in opposite directions, as arbuscular mycorrhizal fungi might provide pathogen protection. To test these hypotheses, we sequenced rhizosphere fungal communities and measured root traits in monocultures of 25 grassland plant species, differing in age. Within the fungal guilds, we evaluated fungal species richness, relative abundance and community composition. Contrary to our hypotheses, fungal diversity and relative abundance were not strongly related to the root trait axes. However, saprotrophic fungal community composition was affected by the conservation gradient and pathogenic community composition by the collaboration gradient. The rhizosphere AMF community composition did not change along the collaboration gradient, even though the root trait axis was in line with the root mycorrhizal colonization rate. Overall, our results indicate that in the long term, the root trait axes are linked with fungal community composition.
Collapse
Affiliation(s)
- Justus Hennecke
- Systematic Botany and Functional Biodiversity, Institute of Biology, Leipzig University, 04103, Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103, Leipzig, Germany
| | - Leonardo Bassi
- Systematic Botany and Functional Biodiversity, Institute of Biology, Leipzig University, 04103, Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103, Leipzig, Germany
| | - Liesje Mommer
- Forest Ecology and Forest Management Group, Wageningen University, 6708 PB, Wageningen, the Netherlands
| | - Cynthia Albracht
- Department of Soil Ecology, Helmholtz Centre for Environmental Research - UFZ, 06120, Halle, Germany
- Biosystems Data Analysis, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH, Amsterdam, the Netherlands
| | - Joana Bergmann
- Sustainable Grassland Systems, Leibniz Centre for Agricultural Landscape Research (ZALF), 14641, Paulinenaue, Germany
| | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103, Leipzig, Germany
- Institute of Biology, Leipzig University, 04103, Leipzig, Germany
| | - Carlos A Guerra
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103, Leipzig, Germany
- Institute of Biology, Martin Luther University Halle-Wittenberg, 06108, Halle (Saale), Germany
| | - Anna Heintz-Buschart
- Biosystems Data Analysis, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH, Amsterdam, the Netherlands
| | - Thomas W Kuyper
- Soil Biology Group, Wageningen University, 6708 PB, Wageningen, the Netherlands
| | - Markus Lange
- Department of Biogeochemical Processes, Max Planck Institute for Biogeochemistry, 07745, Jena, Germany
| | - Marcel Dominik Solbach
- Terrestrial Ecology Group, Institute of Zoology, University of Cologne, 50674, Cologne, Germany
| | - Alexandra Weigelt
- Systematic Botany and Functional Biodiversity, Institute of Biology, Leipzig University, 04103, Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103, Leipzig, Germany
| |
Collapse
|
28
|
Yang H, Zhang P, Wang Q, Deng S, He X, Zhang X, Wang R, Feng Q, Yin H. Temperature rather than N availability determines root exudation of alpine coniferous forests on the eastern Tibetan Plateau along elevation gradients. TREE PHYSIOLOGY 2023; 43:1479-1492. [PMID: 37209171 DOI: 10.1093/treephys/tpad067] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/22/2023]
Abstract
Root exudation fulfills fundamental roles in regulating carbon (C)-nutrient cycling in forest ecosystems, yet the main ecological drivers of root exudation and underlying mechanisms in forests under natural gradients remain poorly understood. Here, we investigated the intraspecific variation of root exudation rates in two alpine coniferous forests (Abies faxoniana Rehder et Wilson and Abies georgei Orr) along two elevation gradients on the eastern Tibetan Plateau. Meanwhile, the fine root traits and associated climate and soil parameters were assessed to examine the effects of elevation-dependent changes in climatic and soil nutrient conditions on root exudation. Results showed that root exudation rates decreased with increasing elevation and were positively correlated with mean air temperature. However, the relationships of root exudation with soil moisture and soil nitrogen availability were not significant. The structural equation model (SEM) further revealed that air temperature affected root exudation both directly and indirectly through the effects on fine root morphology and biomass, implying that the adaption of root C allocation and fine root morphological traits to low temperatures primarily resulted in declined root exudation at higher elevations. These results highlight the perceived importance of temperature in determining the elevational variation of root exudation in alpine coniferous forests, which has foreseeably great implications for the exudate-mediated ecosystem C and nutrient processes in the face of drastic warming on the eastern Tibetan Plateau.
Collapse
Affiliation(s)
- Han Yang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province & China-Croatia "Belt and Road" Joint Laboratory on Biodiversity and Ecosystem Services, Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9 Section 4 South Renmin Road, Wuhou District, Chengdu, Sichuan 610041, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Peipei Zhang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province & China-Croatia "Belt and Road" Joint Laboratory on Biodiversity and Ecosystem Services, Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9 Section 4 South Renmin Road, Wuhou District, Chengdu, Sichuan 610041, China
| | - Qitong Wang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province & China-Croatia "Belt and Road" Joint Laboratory on Biodiversity and Ecosystem Services, Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9 Section 4 South Renmin Road, Wuhou District, Chengdu, Sichuan 610041, China
| | - Shaojun Deng
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province & China-Croatia "Belt and Road" Joint Laboratory on Biodiversity and Ecosystem Services, Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9 Section 4 South Renmin Road, Wuhou District, Chengdu, Sichuan 610041, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Xi He
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province & China-Croatia "Belt and Road" Joint Laboratory on Biodiversity and Ecosystem Services, Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9 Section 4 South Renmin Road, Wuhou District, Chengdu, Sichuan 610041, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Xinjun Zhang
- Institute of Tibet Plateau Ecology & Key Laboratory of Forest Ecology in Tibet Plateau, Tibet Agriculture & Animal Husbandry University, No. 8 Xueyuan Road, Bayi District, Nyingchi, Tibet 860000, China
| | - Ruihong Wang
- Institute of Tibet Plateau Ecology & Key Laboratory of Forest Ecology in Tibet Plateau, Tibet Agriculture & Animal Husbandry University, No. 8 Xueyuan Road, Bayi District, Nyingchi, Tibet 860000, China
| | - Qiuhong Feng
- Sichuan Wolong Forest Ecosystem Research Station, Sichuan Academy of Forestry, No. 18 Xinghui West Road, Jinniu District, Chengdu, Sichuan 610081, China
| | - Huajun Yin
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province & China-Croatia "Belt and Road" Joint Laboratory on Biodiversity and Ecosystem Services, Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9 Section 4 South Renmin Road, Wuhou District, Chengdu, Sichuan 610041, China
| |
Collapse
|
29
|
Zhu F, Zhang X, Guo X, Yang X, Xue S. Root architectures differentiate the composition of organic carbon in bauxite residue during natural vegetation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 883:163588. [PMID: 37105477 DOI: 10.1016/j.scitotenv.2023.163588] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 04/13/2023] [Accepted: 04/15/2023] [Indexed: 06/03/2023]
Abstract
Understanding plant root architectures induced changes in organic carbon accumulation and conversion is critical to predicting carbon cycling and screening appropriate plant species for ecological restoration on bauxite residue disposal areas. According to the ecological investigation of a weathered bauxite residue disposal area, three plants with different root architectures including Artemisia lavandulaefolia (A. lavandulaefolia), moss, and Zanthoxylum simulans (Z. simulans) were selected to investigate the rhizosphere effects on the composition and structure of organic carbon in bauxite residue. The physic-chemical properties, the contents and structure of different organic carbon fractions, and microbial communities of bauxite residue from rhizosphere and non-rhizosphere were analyzed. Plant growth decreased the saline-alkalinity, increased the contents of total organic carbon, particulate organic carbon and dissolved organic carbon, whilst enhancing the enzymatic activities of bauxite residue. Meanwhile, the rhizosphere effects had significant effects on the accumulation and stabilization of organic carbon in bauxite residue. A. lavandulaefolia had the strongest rhizosphere effects on the composition and structure of total organic carbon and dissolved organic carbon, whilst moss was more effective on the accumulation of particulate organic carbon in bauxite residue. Plant growth and root architecture changed the abundance of specific functional microorganisms and the complexity of microbial co-occurrence networks, thus elevating organic carbon levels in bauxite residue. During natural vegetation encroachment, rhizosphere exciting effects of the salt-tolerated plants could change the composition and structure of organic carbon fractions due to the comprehensive effectiveness of the improvement of physic-chemical properties and microbial communities. The findings improve our understanding of the responses of sequestration and stabilization of organic carbon pools to ecological restoration on bauxite residue disposal areas.
Collapse
Affiliation(s)
- Feng Zhu
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China; Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, Central South University, Changsha, PR China
| | - Xianchao Zhang
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Xuyao Guo
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Xingwang Yang
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Shengguo Xue
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China; Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, Central South University, Changsha, PR China.
| |
Collapse
|
30
|
Rathore N, Hanzelková V, Dostálek T, Semerád J, Schnablová R, Cajthaml T, Münzbergová Z. Species phylogeny, ecology, and root traits as predictors of root exudate composition. THE NEW PHYTOLOGIST 2023. [PMID: 37421208 DOI: 10.1111/nph.19060] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/04/2023] [Indexed: 07/10/2023]
Abstract
Root traits including root exudates are key factors affecting plant interactions with soil and thus play an important role in determining ecosystem processes. The drivers of their variation, however, remain poorly understood. We determined the relative importance of phylogeny and species ecology in determining root traits and analyzed the extent to which root exudate composition can be predicted by other root traits. We measured different root morphological and biochemical traits (including exudate profiles) of 65 plant species grown in a controlled system. We tested phylogenetic conservatism in traits and disentangled the individual and overlapping effects of phylogeny and species ecology on traits. We also predicted root exudate composition using other root traits. Phylogenetic signal differed greatly among root traits, with the strongest signal in phenol content in plant tissues. Interspecific variation in root traits was partly explained by species ecology, but phylogeny was more important in most cases. Species exudate composition could be partly predicted by specific root length, root dry matter content, root biomass, and root diameter, but a large part of variation remained unexplained. In conclusion, root exudation cannot be easily predicted based on other root traits and more comparative data on root exudation are needed to understand their diversity.
Collapse
Affiliation(s)
- Nikita Rathore
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, 252 43, Průhonice, Czech Republic
| | - Věra Hanzelková
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, 252 43, Průhonice, Czech Republic
- Department of Botany, Faculty of Science, Charles University, Albertov 6, 128 00, Prague, Czech Republic
| | - Tomáš Dostálek
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, 252 43, Průhonice, Czech Republic
- Department of Botany, Faculty of Science, Charles University, Albertov 6, 128 00, Prague, Czech Republic
| | - Jaroslav Semerád
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague, Czech Republic
| | - Renáta Schnablová
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, 252 43, Průhonice, Czech Republic
| | - Tomáš Cajthaml
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague, Czech Republic
| | - Zuzana Münzbergová
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, 252 43, Průhonice, Czech Republic
- Department of Botany, Faculty of Science, Charles University, Albertov 6, 128 00, Prague, Czech Republic
| |
Collapse
|
31
|
Jiang Z, Fu Y, Zhou L, He Y, Zhou G, Dietrich P, Long J, Wang X, Jia S, Ji Y, Jia Z, Song B, Liu R, Zhou X. Plant growth strategy determines the magnitude and direction of drought-induced changes in root exudates in subtropical forests. GLOBAL CHANGE BIOLOGY 2023; 29:3476-3488. [PMID: 36931867 DOI: 10.1111/gcb.16685] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 02/27/2023] [Accepted: 03/08/2023] [Indexed: 05/16/2023]
Abstract
Root exudates are an important pathway for plant-microbial interactions and are highly sensitive to climate change. However, how extreme drought affects root exudates and the main components, as well as species-specific differences in response magnitude and direction, are poorly understood. In this study, root exudation rates of total carbon (C) and its components (e.g., sugar, organic acid, and amino acid) were measured under the control and extreme drought treatments (i.e., 70% throughfall reduction) by in situ collection of four tree species with different growth rates in a subtropical forest. We also quantified soil properties, root morphological traits, and mycorrhizal infection rates to examine the driving factors underlying variations in root exudation. Our results showed that extreme drought significantly decreased root exudation rates of total C, sugar, and amino acid by 17.8%, 30.8%, and 35.0%, respectively, but increased root exudation rate of organic acid by 38.6%, which were largely associated with drought-induced changes in tree growth rates, root morphological traits, and mycorrhizal infection rates. Specifically, trees with relatively high growth rates were more responsive to drought for root exudation rates compared with those with relatively low growth rates, which were closely related to root morphological traits and mycorrhizal infection rates. These findings highlight the importance of plant growth strategy in mediating drought-induced changes in root exudation rates. The coordinations among root exudation rates, root morphological traits, and mycorrhizal symbioses in response to drought could be incorporated into land surface models to improve the prediction of climate change impacts on rhizosphere C dynamics in forest ecosystems.
Collapse
Affiliation(s)
- Zheng Jiang
- Center for Global Change and Ecological Forecasting, Tiantong National Field Station for Forest Ecosystem, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Yuling Fu
- Center for Global Change and Ecological Forecasting, Tiantong National Field Station for Forest Ecosystem, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Lingyan Zhou
- Center for Global Change and Ecological Forecasting, Tiantong National Field Station for Forest Ecosystem, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Yanghui He
- Northeast Asia Ecosystem Carbon Sink Research Center (NACC), Center for Ecological Research, Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin, China
| | - Guiyao Zhou
- Center for Global Change and Ecological Forecasting, Tiantong National Field Station for Forest Ecosystem, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Peter Dietrich
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Jilan Long
- Center for Global Change and Ecological Forecasting, Tiantong National Field Station for Forest Ecosystem, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Xinxin Wang
- Center for Global Change and Ecological Forecasting, Tiantong National Field Station for Forest Ecosystem, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Shuxian Jia
- Center for Global Change and Ecological Forecasting, Tiantong National Field Station for Forest Ecosystem, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Yuhuang Ji
- Center for Global Change and Ecological Forecasting, Tiantong National Field Station for Forest Ecosystem, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Zhen Jia
- Center for Global Change and Ecological Forecasting, Tiantong National Field Station for Forest Ecosystem, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Bingqian Song
- Center for Global Change and Ecological Forecasting, Tiantong National Field Station for Forest Ecosystem, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Ruiqiang Liu
- Northeast Asia Ecosystem Carbon Sink Research Center (NACC), Center for Ecological Research, Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin, China
| | - Xuhui Zhou
- Center for Global Change and Ecological Forecasting, Tiantong National Field Station for Forest Ecosystem, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
- Northeast Asia Ecosystem Carbon Sink Research Center (NACC), Center for Ecological Research, Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin, China
| |
Collapse
|
32
|
Chao L, Liu Y, Zhang W, Wang Q, Guan X, Yang Q, Chen L, Zhang J, Hu B, Liu Z, Wang S, Freschet GT. Root functional traits determine the magnitude of the rhizosphere priming effect among eight tree species. OIKOS 2023. [DOI: 10.1111/oik.09638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Affiliation(s)
- Lin Chao
- Inst. of Applied Ecology, Chinese Academy of Sciences, Key Laboratory of Forest Ecology and Management Shenyang China
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education, Nanning Normal Univ. Nanning China
- Univ. of Chinese Academy of Sciences Beijing China
| | - Yanyan Liu
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education, Nanning Normal Univ. Nanning China
| | - Weidong Zhang
- Inst. of Applied Ecology, Chinese Academy of Sciences, Key Laboratory of Forest Ecology and Management Shenyang China
- Huitong Experimental Station of Forest Ecology, Chinese Academy of Sciences Huitong China
| | - Qingkui Wang
- Inst. of Applied Ecology, Chinese Academy of Sciences, Key Laboratory of Forest Ecology and Management Shenyang China
- Huitong Experimental Station of Forest Ecology, Chinese Academy of Sciences Huitong China
| | - Xin Guan
- Inst. of Applied Ecology, Chinese Academy of Sciences, Key Laboratory of Forest Ecology and Management Shenyang China
- Huitong Experimental Station of Forest Ecology, Chinese Academy of Sciences Huitong China
| | - Qingpeng Yang
- Inst. of Applied Ecology, Chinese Academy of Sciences, Key Laboratory of Forest Ecology and Management Shenyang China
- Huitong Experimental Station of Forest Ecology, Chinese Academy of Sciences Huitong China
| | - Longchi Chen
- Inst. of Applied Ecology, Chinese Academy of Sciences, Key Laboratory of Forest Ecology and Management Shenyang China
- Huitong Experimental Station of Forest Ecology, Chinese Academy of Sciences Huitong China
| | - Jianbing Zhang
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education, Nanning Normal Univ. Nanning China
| | - Baoqing Hu
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education, Nanning Normal Univ. Nanning China
| | - Zhanfeng Liu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems and CAS Engineering Laboratory for Vegetation Ecosystem Restoration on Islands Coastal Zones, South China Botanical Garden, Chinese Academy of Sciences Guangzhou China
| | - Silong Wang
- Inst. of Applied Ecology, Chinese Academy of Sciences, Key Laboratory of Forest Ecology and Management Shenyang China
- Huitong Experimental Station of Forest Ecology, Chinese Academy of Sciences Huitong China
| | | |
Collapse
|
33
|
Song B, Razavi BS, Pena R. Contrasting distribution of enzyme activities in the rhizosphere of European beech and Norway spruce. FRONTIERS IN PLANT SCIENCE 2022; 13:987112. [PMID: 36466222 PMCID: PMC9709443 DOI: 10.3389/fpls.2022.987112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/26/2022] [Indexed: 06/17/2023]
Abstract
Recent policies and silvicultural management call for forest regeneration that involve the selection of tree species able to cope with low soil nutrient availability in forest ecosystems. Understanding the impact of different tree species on the rhizosphere processes (e.g., enzyme activities) involved in nutrient mobilisation is critical in selecting suitable species to adapt forests to environmental change. Here, we visualised and investigated the rhizosphere distribution of enzyme activities (cellobiohydrolase, leucine-aminopeptidase, and acid phosphomonoesterase) using zymography. We related the distribution of enzyme activities to the seedling root morphological traits of European beech (Fagus sylvatica) and Norway spruce (Picea abies), the two most cultivated temperate tree species that employ contrasting strategies in soil nutrient acquisition. We found that spruce showed a higher morphological heterogeneity along the roots than beech, resulting in a more robust relationship between rhizoplane-associated enzyme activities and the longitudinal distance from the root apex. The rhizoplane enzyme activities decreased in spruce and increased in beech with the distance from the root apex over a power-law equation. Spruce revealed broader rhizosphere extents of all three enzymes, but only acid phosphomonoesterase activity was higher compared with beech. This latter result was determined by a larger root system found in beech compared with spruce that enhanced cellobiohydrolase and leucine-aminopeptidase activities. The root hair zone and hair lengths were significant variables determining the distribution of enzyme activities in the rhizosphere. Our findings indicate that spruce has a more substantial influence on rhizosphere enzyme production and diffusion than beech, enabling spruce to better mobilise nutrients from organic sources in heterogeneous forest soils.
Collapse
Affiliation(s)
- Bin Song
- School of Geography and Ocean Science, Nanjing University, Nanjing, China
- Forest Botany and Tree Physiology, University of Göttingen, Göttingen, Germany
| | - Bahar S. Razavi
- Department of Soil and Plant Microbiome, Institute of Phytopathology, University of Kiel, Kiel, Germany
- Department of Agriculture Soil Science, University of Göttingen, Göttingen, Germany
| | - Rodica Pena
- Forest Botany and Tree Physiology, University of Göttingen, Göttingen, Germany
- Department of Sustainable Land Management, School of Agriculture, Policy and Development, University of Reading, Reading, United Kingdom
| |
Collapse
|
34
|
Sallaku G, Rewald B, Sandén H, Balliu A. Scions impact biomass allocation and root enzymatic activity of rootstocks in grafted melon and watermelon plants. FRONTIERS IN PLANT SCIENCE 2022; 13:949086. [PMID: 36247619 PMCID: PMC9558002 DOI: 10.3389/fpls.2022.949086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Vegetable grafting is increasingly recognized as an effective and sustainable plant production alternative. Grafted plants usually show increased uptake of water and minerals compared with self-rooted plants, mostly thought a consequence of the vigorous rootstocks selected. However, while studies frequently addressed the effects of rootstocks on the performance of scions, knowledge on the influences of scions on biomass allocation, morphology, and metabolic activity of roots is rare. In particular, the plasticity of root traits affecting resource acquisition and its efficiency remains poorly understood. Two different rootstock species, Cucurbita maxima × Cucurbita moschata and Lagenaria siceraria, were grafted in combination with melon (Cucumis melo) and watermelon (Citrullus lanatus). Self-grafted rootstocks were used as control. Plant biomass and root traits were determined after destructive harvesting 30 and/or 60 days after grafting. Traits included biomass allocation, leaf and root morphology, potential activities of four extracellular enzymes on root tips and basal root segments, and root respiration. Successfully grafted scions increase the ratio of root to whole plant dry matter (RMF), and increased ratios of root length to whole plant dry matter (RLR) and to plant leaf area (RL : LA). In contrast, morphological root traits such as diameter, tissue density, and specific root length remain surprisingly stable, and thus scion-induced changes of those traits may only play a minor role for the beneficial effects of grafting in Cucurbitaceae. Incompatibility in melon/L. siceraria grafts, however, was likely responsible for the reduced root growth in combination with clear changes in root morphological traits. Reduced root respiration rates seem to be the effects of a non-compatible rootstock-scion combination rather than an active, C-efficiency increasing acclimation. In contrast, heterografts with melon and watermelon frequently resulted in root-stock-specific, often enhanced potential enzymatic activities of acid phosphatase, β-glucosidase, leucine-amino-peptidase, and N-acetyl-glucosaminidase both at root tips and basal parts of lateral roots-presenting a potential and complementary mechanism of grafted plants to enhance nutrient foraging. The studied melon and watermelon scions may thus increase the nutrient foraging capacity of grafted plants by fostering the relative allocation of C to the root system, and enhancing the extracellular enzymatic activities governed by roots or their rhizobiome.
Collapse
Affiliation(s)
- Glenda Sallaku
- Faculty of Agriculture and Environment, Agricultural University of Tirana, Tirana, Albania
| | - Boris Rewald
- Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences, Vienna (BOKU), Vienna, Austria
| | - Hans Sandén
- Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences, Vienna (BOKU), Vienna, Austria
| | - Astrit Balliu
- Faculty of Agriculture and Environment, Agricultural University of Tirana, Tirana, Albania
| |
Collapse
|
35
|
Garcia J, Gannett M, Wei L, Cheng L, Hu S, Sparks J, Giovannoni J, Kao-Kniffin J. Selection pressure on the rhizosphere microbiome can alter nitrogen use efficiency and seed yield in Brassica rapa. Commun Biol 2022; 5:959. [PMID: 36104398 PMCID: PMC9474469 DOI: 10.1038/s42003-022-03860-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 08/18/2022] [Indexed: 01/03/2023] Open
Abstract
Microbial experimental systems provide a platform to observe how networks of groups emerge to impact plant development. We applied selection pressure for microbiome enhancement of Brassica rapa biomass to examine adaptive bacterial group dynamics under soil nitrogen limitation. In the 9th and final generation of the experiment, selection pressure enhanced B. rapa seed yield and nitrogen use efficiency compared to our control treatment, with no effect between the random selection and control treatments. Aboveground biomass increased for both the high biomass selection and random selection plants. Soil bacterial diversity declined under high B. rapa biomass selection, suggesting a possible ecological filtering mechanism to remove bacterial taxa. Distinct sub-groups of interactions emerged among bacterial phyla such as Proteobacteria and Bacteroidetes in response to selection. Extended Local Similarity Analysis and NetShift indicated greater connectivity of the bacterial community, with more edges, shorter path lengths, and altered modularity through the course of selection for enhanced plant biomass. In contrast, bacterial communities under random selection and no selection showed less complex interaction profiles of bacterial taxa. These results suggest that group-level bacterial interactions could be modified to collectively shift microbiome functions impacting the growth of the host plant under soil nitrogen limitation.
Collapse
Affiliation(s)
- Joshua Garcia
- School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Maria Gannett
- School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - LiPing Wei
- School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Liang Cheng
- School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Shengyuan Hu
- Machine Learning Department, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Jed Sparks
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| | | | - Jenny Kao-Kniffin
- School of Integrative Plant Science, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
36
|
Wang B, Huang S, Li Z, Zhou Z, Huang J, Yu H, Peng T, Song Y, Na X. Factors driving the assembly of prokaryotic communities in bulk soil and rhizosphere of Torreya grandis along a 900-year age gradient. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 837:155573. [PMID: 35504392 DOI: 10.1016/j.scitotenv.2022.155573] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/24/2022] [Accepted: 04/24/2022] [Indexed: 06/14/2023]
Abstract
Excessive nutrient inputs imperil the stability of forest ecosystems via modifying the interactions among soil properties, microbes, and plants, particularly in forests composed of cash crops that are under intensive disturbances of agricultural activities, such as Torreya grandis. Understanding the potential drivers of soil microbial community helps scientists develop effective strategies for balancing the protection and productivity of the ancient Torreya forest. Here, we assayed the link between plant and soil parameters and prokaryote communities in bulk soil and T. grandis rhizosphere in 900-year-old stands by detecting plant and soil properties in two independent sites in southeastern China. Our results showed no apparent influence of stand age on the compositions of prokaryote communities in bulk soil and T. grandis rhizosphere. In contrast, soil abiotic factors (i.e., soil pH) overwhelm plant characteristics (i.e., height, plant tissue carbon, nitrogen, and phosphorus content) and contribute most to the shift in prokaryote communities in bulk soil and T. grandis rhizosphere. Soil pH leads to an increase in microbiota alpha diversity in both compartments. With the help of a random forest, we found a critical transition point of pH (pH = 4.9) for the dominance of acidic and near-neutral bacterial groups. Co-occurrence network analysis further revealed a substantially simplified network in plots with a pH of <4.9 versus samples with a pH of ≥4.9, indicating that soil acidification induces biodiversity loss and disrupts potential interactions among soil microbes. Our findings provide empirical evidence that soil abiotic properties nearly completely offset the roles of host plants in the assembly and potential interactions of rhizosphere microorganisms. Hence, reduction in inorganic fertilization and proper liming protocols should be seriously considered by local farmers to protect ancient Torreya forests.
Collapse
Affiliation(s)
- Bin Wang
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang, Zhejiang 311400, China
| | - Shengyi Huang
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang, Zhejiang 311400, China
| | - Zhengcai Li
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang, Zhejiang 311400, China
| | - Zhichun Zhou
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang, Zhejiang 311400, China
| | - Juying Huang
- School of Life Science, Ningxia University, Yinchuan 750021, China
| | - Hailong Yu
- School of Life Science, Ningxia University, Yinchuan 750021, China
| | - Tong Peng
- School of Life Science, Lanzhou University, Lanzhou 730000, China; Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, Lanzhou 730000, China
| | - Yanfang Song
- School of Life Science, Lanzhou University, Lanzhou 730000, China; Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, Lanzhou 730000, China
| | - Xiaofan Na
- School of Life Science, Lanzhou University, Lanzhou 730000, China; Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, Lanzhou 730000, China.
| |
Collapse
|
37
|
Brunn M, Hafner BD, Zwetsloot MJ, Weikl F, Pritsch K, Hikino K, Ruehr NK, Sayer EJ, Bauerle TL. Carbon allocation to root exudates is maintained in mature temperate tree species under drought. THE NEW PHYTOLOGIST 2022; 235:965-977. [PMID: 35403713 DOI: 10.1111/nph.18157] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 04/04/2022] [Indexed: 06/14/2023]
Abstract
Carbon (C) exuded via roots is proposed to increase under drought and facilitate important ecosystem functions. However, it is unknown how exudate quantities relate to the total C budget of a drought-stressed tree, that is, how much of net-C assimilation is allocated to exudation at the tree level. We calculated the proportion of daily C assimilation allocated to root exudation during early summer by collecting root exudates from mature Fagus sylvatica and Picea abies exposed to experimental drought, and combining above- and belowground C fluxes with leaf, stem and fine-root surface area. Exudation from individual roots increased exponentially with decreasing soil moisture, with the highest increase at the wilting point. Despite c. 50% reduced C assimilation under drought, exudation from fine-root systems was maintained and trees exuded 1.0% (F. sylvatica) to 2.5% (P. abies) of net C into the rhizosphere, increasing the proportion of C allocation to exudates two- to three-fold. Water-limited P. abies released two-thirds of its exudate C into the surface soil, whereas in droughted F. sylvatica it was only one-third. Across the entire root system, droughted trees maintained exudation similar to controls, suggesting drought-imposed belowground C investment, which could be beneficial for ecosystem resilience.
Collapse
Affiliation(s)
- Melanie Brunn
- iES Landau, Institute for Environmental Sciences, University of Koblenz-Landau, 76829, Landau, Germany
| | - Benjamin D Hafner
- School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Marie J Zwetsloot
- Soil Biology Group, Wageningen University, 6708 PB, Wageningen, the Netherlands
| | - Fabian Weikl
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München GmbH - German Research Center for Environmental Health, 85764, Neuherberg, Germany
- TUM School of Life Sciences, Land Surface-Atmosphere Interactions, Ecophysiology of Plants, Technical University of Munich, 85354, Freising, Germany
| | - Karin Pritsch
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München GmbH - German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Kyohsuke Hikino
- TUM School of Life Sciences, Land Surface-Atmosphere Interactions, Ecophysiology of Plants, Technical University of Munich, 85354, Freising, Germany
| | - Nadine K Ruehr
- Institute of Meteorology and Climate Research - Atmospheric Environmental Research (IMK-IFU), Karlsruhe Institute of Technology (KIT), 82467, Garmisch-Partenkirchen, Germany
| | - Emma J Sayer
- Lancaster Environment Centre, Lancaster University, LA1 4YQ, Lancaster, UK
| | - Taryn L Bauerle
- School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
38
|
Staszel K, Lasota J, Błońska E. Effect of drought on root exudates from Quercus petraea and enzymatic activity of soil. Sci Rep 2022; 12:7635. [PMID: 35538167 PMCID: PMC9090927 DOI: 10.1038/s41598-022-11754-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 04/27/2022] [Indexed: 11/09/2022] Open
Abstract
Root exudation is a key process that determines rhizosphere functions and plant-soil relationships. The present study was conducted with the objectives to (1) determine the root morphology of sessile oak seedlings in relation to drought, (2) assess root exudation and its response to drought, and (3) detect possible changes in the activity of soil enzymes in response to drought enhancement. In the experiment, sessile oak seedlings (Quercus petraea Matt.) were used, and two variants of substrate moisture (25% humidity-dry variant and 55% humidity-fresh variant) on which oaks grew were considered. Exudates were collected using a culture-based cuvette system. Results confirmed the importance of drought in shaping the morphology of roots and root carbon exudation of sessile oak. The oak roots in the dry variant responded with a higher increment in length. In the case of roots growing in higher humidity, a higher specific root area and specific root length were determined. Experimental evidence has demonstrated decreased root exudation under dry conditions, which can lead to a change in enzyme activity. In the study, enzyme activity decreased by 90% for β-D-cellobiosidase (CB), 50% for β-glucosidase (BG) and N-acetyl-β-D-glucosaminidase (NAG), 20% for β-xylosidase (XYL) decreased by, and the activity of arylsulphatase (SP) and phosphatase (PH) decreased by 10%.
Collapse
Affiliation(s)
- Karolina Staszel
- Department of Ecology and Silviculture, Faculty of Forestry, University of Agriculture in Krakow, 29 Listopada 46 Str., 31-425, Kraków, Poland.
| | - Jarosław Lasota
- Department of Ecology and Silviculture, Faculty of Forestry, University of Agriculture in Krakow, 29 Listopada 46 Str., 31-425, Kraków, Poland
| | - Ewa Błońska
- Department of Ecology and Silviculture, Faculty of Forestry, University of Agriculture in Krakow, 29 Listopada 46 Str., 31-425, Kraków, Poland
| |
Collapse
|
39
|
Kawakami E, Ataka M, Kume T, Shimono K, Harada M, Hishi T, Katayama A. Root exudation in a sloping Moso bamboo forest in relation to fine root biomass and traits. PLoS One 2022; 17:e0266131. [PMID: 35324979 PMCID: PMC8947071 DOI: 10.1371/journal.pone.0266131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 03/14/2022] [Indexed: 11/18/2022] Open
Abstract
Exudation by fine roots generally varies with their morphological traits, but the effect of belowground resource availability on the root exudation via root morphological traits and biomass remains unknown. We aimed to determine the effects of morphological and physiological traits on root exudation rates and to estimate stand-scale exudation (Estand) by measuring the mass, length, and surface area of fine roots in a Moso bamboo forest. We measured root exudation as well as morphological and physiological traits in upper and lower plots on a slope with different belowground resource availability. The mean (± S.D.) root exudation rates per mass in the upper and lower slope were 0.049 ± 0.047 and 0.040 ± 0.059 mg C g-1 h-1, respectively, which were in the range of exudation found in woody forest ecosystems. We observed significant relationships between root exudation per mass and root respiration, as well as specific root length and surface area. In contrast, exudation per length and area did not correlate with morphological traits. The morphological traits did not differ between slope positions, resulting in no significant difference in root exudation per mass. Fine root biomass, length, and surface area on a unit ground basis were much higher in the lower than those in the upper slope positions. Estand was higher when estimated by mass than by length and area because the morphological effect on exudation was ignored when scaled using mass. Estand was 1.4–2.0-fold higher in the lower than that in upper slope positions, suggesting that the scaling parameters of mass, length, and area determined the Estand estimate more than the exudation rate per mass, length, and area. Regardless of scaling, Estand was much higher in the Moso bamboo forest than in other forest ecosystems because of a large fine-root biomass.
Collapse
Affiliation(s)
- Erika Kawakami
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Nishiku, Fukuoka, Japan
| | - Mioko Ataka
- Research Institute for Sustainable Humanosphere, Uji, Kyoto, Japan
| | - Tomonori Kume
- Shiiba Research Forest, Kyushu University, Shiiba, Miyazaki, Japan
| | - Kohei Shimono
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Nishiku, Fukuoka, Japan
| | - Masayoshi Harada
- Faculty of Agriculture, Kyushu University, Nishiku, Fukuoka, Japan
| | - Takuo Hishi
- Kasuya Research Forest, Kyushu University, Sasaguri, Fukuoka, Japan
| | - Ayumi Katayama
- Shiiba Research Forest, Kyushu University, Shiiba, Miyazaki, Japan
- * E-mail:
| |
Collapse
|
40
|
Sell M, Ostonen I, Rohula-Okunev G, Rusalepp L, Rezapour A, Kupper P. Responses of fine root exudation, respiration and morphology in three early successional tree species to increased air humidity and different soil nitrogen sources. TREE PHYSIOLOGY 2022; 42:557-569. [PMID: 34505158 DOI: 10.1093/treephys/tpab118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 08/16/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
Global climate change scenarios predict an increase in air temperature, precipitation and air humidity for northern latitudes. Elevated air humidity may significantly reduce the water flux through forest canopies and affect interactions between water and nutrient uptake. However, we have limited understanding of how altered transpiration would affect root respiration and carbon (C) exudation as fine root morphology acclimates to different water flux. We investigated the effects of elevated air relative humidity (eRH) and different inorganic nitrogen sources (NO3- and NH4+) on above and belowground traits in hybrid aspen (Populus × wettsteinii Hämet-Ahti), silver birch (Betula pendula Roth.) and Scots pine (Pinus sylvestris L.) grown under controlled climate chamber conditions. The eRH significantly decreased the transpiration flux in all species, decreased root mass-specific exudation in pine, and increased root respiration in aspen. eRH also affected fine root morphology, with specific root area increasing for birch but decreasing in pine. The species comparison revealed that pine had the highest C exudation, whereas birch had the highest root respiration rate. Both humidity and nitrogen treatments affected the share of absorptive and pioneer roots within fine roots; however, the response was species-specific. The proportion of absorptive roots was highest in birch and aspen, the share of pioneer roots was greatest in aspen and the share of transport roots was greatest in pine. Fine roots with lower root tissue density were associated with pioneer root tips and had a higher C exudation rate. Our findings underline the importance of considering species-specific differences in relation to air humidity and soil nitrogen availability that interactively affect the C input-output balance. We highlight the role of changes in the fine root functional distribution as an important acclimation mechanism of trees in response to environmental change.
Collapse
Affiliation(s)
- Marili Sell
- University of Tartu, Institute of Ecology and Earth Sciences, Vanemuise 46, 51003, Tartu, Estonia
| | - Ivika Ostonen
- University of Tartu, Institute of Ecology and Earth Sciences, Vanemuise 46, 51003, Tartu, Estonia
| | - Gristin Rohula-Okunev
- University of Tartu, Institute of Ecology and Earth Sciences, Vanemuise 46, 51003, Tartu, Estonia
| | - Linda Rusalepp
- University of Tartu, Institute of Ecology and Earth Sciences, Vanemuise 46, 51003, Tartu, Estonia
| | - Azadeh Rezapour
- University of Tartu, Institute of Ecology and Earth Sciences, Vanemuise 46, 51003, Tartu, Estonia
| | - Priit Kupper
- University of Tartu, Institute of Ecology and Earth Sciences, Vanemuise 46, 51003, Tartu, Estonia
| |
Collapse
|
41
|
Dallstream C, Weemstra M, Soper FM. A framework for fine‐root trait syndromes: syndrome coexistence may support phosphorus partitioning in tropical forests. OIKOS 2022. [DOI: 10.1111/oik.08908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Monique Weemstra
- Ecology and Evolutionary Biology, Univ. of Michigan Ann Arbor MI USA
| | | |
Collapse
|
42
|
Uroz S, Picard L, Turpault MP. Recent progress in understanding the ecology and molecular genetics of soil mineral weathering bacteria. Trends Microbiol 2022; 30:882-897. [PMID: 35181182 DOI: 10.1016/j.tim.2022.01.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 12/31/2022]
Abstract
Mineral weathering bacteria play essential roles in nutrient cycling and plant nutrition. However, we are far from having a comprehensive view of the factors regulating their distribution and the molecular mechanisms involved. In this review, we highlight the extrinsic factors (i.e., nutrient availability, carbon source) and the intrinsic properties of minerals explaining the distribution and functioning of these functional communities. We also present and discuss the progress made in understanding the molecular mechanisms and genes that are used by bacteria during the mineral weathering process, or regulated during their interaction with minerals, that have been recently unraveled by omics approaches.
Collapse
Affiliation(s)
- Stephane Uroz
- Université de Lorraine, INRAE, UMR1136 'Interactions Arbres-Microorganismes', F-54280 Champenoux, France; INRAE, UR1138 'Biogéochimie des Ecosystèmes Forestiers', F-54280 Champenoux, France.
| | - Laura Picard
- Université de Lorraine, INRAE, UMR1136 'Interactions Arbres-Microorganismes', F-54280 Champenoux, France; INRAE, UR1138 'Biogéochimie des Ecosystèmes Forestiers', F-54280 Champenoux, France
| | | |
Collapse
|
43
|
Wen Z, White PJ, Shen J, Lambers H. Linking root exudation to belowground economic traits for resource acquisition. THE NEW PHYTOLOGIST 2022; 233:1620-1635. [PMID: 34761404 DOI: 10.1111/nph.17854] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 11/04/2021] [Indexed: 06/13/2023]
Abstract
The concept of a root economics space (RES) is increasingly adopted to explore root trait variation and belowground resource-acquisition strategies. Much progress has been made on interactions of root morphology and mycorrhizal symbioses. However, root exudation, with a significant carbon (C) cost (c. 5-21% of total photosynthetically fixed C) to enhance resource acquisition, remains a missing link in this RES. Here, we argue that incorporating root exudation into the structure of RES is key to a holistic understanding of soil nutrient acquisition. We highlight the different functional roles of root exudates in soil phosphorus (P) and nitrogen (N) acquisition. Thereafter, we synthesize emerging evidence that illustrates how root exudation interacts with root morphology and mycorrhizal symbioses at the level of species and individual plant and argue contrasting patterns in species evolved in P-impoverished vs N-limited environments. Finally, we propose a new conceptual framework, integrating three groups of root functional traits to better capture the complexity of belowground resource-acquisition strategies. Such a deeper understanding of the integrated and dynamic interactions of root morphology, root exudation, and mycorrhizal symbioses will provide valuable insights into the mechanisms underlying species coexistence and how to explore belowground interactions for sustainable managed systems.
Collapse
Affiliation(s)
- Zhihui Wen
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, 100193, Beijing, China
| | - Philip J White
- Ecological Science Group, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Jianbo Shen
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, 100193, Beijing, China
| | - Hans Lambers
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, 100193, Beijing, China
- School of Biological Sciences and Institute of Agriculture, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, WA, 6009, Australia
| |
Collapse
|
44
|
Herms CH, Hennessy RC, Bak F, Dresbøll DB, Nicolaisen MH. Back to our roots: exploring the role of root morphology as a mediator of beneficial plant-microbe interactions. Environ Microbiol 2022; 24:3264-3272. [PMID: 35106901 PMCID: PMC9543362 DOI: 10.1111/1462-2920.15926] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 11/27/2022]
Abstract
Plant breeding for belowground traits that have a positive impact on the rhizosphere microbiome is a promising strategy to sustainably improve crop yields. Root architecture and morphology are understudied plant breeding targets despite their potential to significantly shape microbial community structure and function in the rhizosphere. In this review, we explore the relationship between various root architectural and morphological traits and rhizosphere interactions, focusing on the potential of root diameter to impact the rhizosphere microbiome structure and function while discussing the potential biological and ecological mechanisms underpinning this process. In addition, we propose three future research avenues to drive this research area in an effort to unravel the effect of belowground traits on rhizosphere microbiology. This knowledge will pave the way for new plant breeding strategies that can be exploited for sustainable and high‐yielding crop cultivars.
Collapse
Affiliation(s)
- Courtney Horn Herms
- Section for Microbial Ecology and Biotechnology, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, 1871, Denmark
| | - Rosanna Catherine Hennessy
- Section for Microbial Ecology and Biotechnology, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, 1871, Denmark
| | - Frederik Bak
- Section for Microbial Ecology and Biotechnology, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, 1871, Denmark
| | - Dorte Bodin Dresbøll
- Section for Crop Sciences, Department of Plant and Environmental Sciences, University of Copenhagen, Højbakkegård Allé 30, Taastrup, 2630, Denmark
| | - Mette Haubjerg Nicolaisen
- Section for Microbial Ecology and Biotechnology, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, 1871, Denmark
| |
Collapse
|
45
|
Huang J, Liu W, Pan S, Wang Z, Yang S, Jia Z, Wang Z, Deng M, Yang L, Liu C, Chang P, Liu L. Divergent contributions of living roots to turnover of different soil organic carbon pools and their links to plant traits. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Junsheng Huang
- State Key Laboratory of Vegetation and Environmental Change Institute of Botany Chinese Academy of Sciences Beijing China
| | - Weixing Liu
- State Key Laboratory of Vegetation and Environmental Change Institute of Botany Chinese Academy of Sciences Beijing China
| | - Shengnan Pan
- State Key Laboratory of Vegetation and Environmental Change Institute of Botany Chinese Academy of Sciences Beijing China
- University of Chinese Academy of Sciences Beijing China
| | - Zhe Wang
- College of Life Sciences Shanghai Normal University Shanghai China
| | - Sen Yang
- State Key Laboratory of Vegetation and Environmental Change Institute of Botany Chinese Academy of Sciences Beijing China
- University of Chinese Academy of Sciences Beijing China
| | - Zhou Jia
- State Key Laboratory of Vegetation and Environmental Change Institute of Botany Chinese Academy of Sciences Beijing China
- University of Chinese Academy of Sciences Beijing China
| | - Zhenhua Wang
- State Key Laboratory of Vegetation and Environmental Change Institute of Botany Chinese Academy of Sciences Beijing China
- University of Chinese Academy of Sciences Beijing China
| | - Meifeng Deng
- State Key Laboratory of Vegetation and Environmental Change Institute of Botany Chinese Academy of Sciences Beijing China
- University of Chinese Academy of Sciences Beijing China
| | - Lu Yang
- State Key Laboratory of Vegetation and Environmental Change Institute of Botany Chinese Academy of Sciences Beijing China
- University of Chinese Academy of Sciences Beijing China
| | - Chao Liu
- State Key Laboratory of Vegetation and Environmental Change Institute of Botany Chinese Academy of Sciences Beijing China
- University of Chinese Academy of Sciences Beijing China
| | - Pengfei Chang
- State Key Laboratory of Vegetation and Environmental Change Institute of Botany Chinese Academy of Sciences Beijing China
- University of Chinese Academy of Sciences Beijing China
| | - Lingli Liu
- State Key Laboratory of Vegetation and Environmental Change Institute of Botany Chinese Academy of Sciences Beijing China
- University of Chinese Academy of Sciences Beijing China
| |
Collapse
|
46
|
Tullus A, Rusalepp L, Lutter R, Rosenvald K, Kaasik A, Rytter L, Kontunen-Soppela S, Oksanen E. Climate and Competitive Status Modulate the Variation in Secondary Metabolites More in Leaves Than in Fine Roots of Betula pendula. FRONTIERS IN PLANT SCIENCE 2021; 12:746165. [PMID: 34899775 PMCID: PMC8655902 DOI: 10.3389/fpls.2021.746165] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 11/04/2021] [Indexed: 06/01/2023]
Abstract
Plant secondary metabolites have many important functions; they also determine the productivity and resilience of trees under climate change. The effects of environmental factors on secondary metabolites are much better understood in above-ground than in below-ground part of the tree. Competition is a crucial biotic stress factor, but little is known about the interaction effect of climate and competition on the secondary chemistry of trees. Moreover, competition effect is usually overlooked when analyzing the sources of variation in the secondary chemistry. Our aim was to clarify the effects of competitive status, within-crown light environment, and climate on the secondary chemistry of silver birch (Betula pendula Roth). We sampled leaves (from upper and lower crown) and fine roots from competitively dominant and suppressed B. pendula trees in plantations along a latitudinal gradient (56-67° N) in Fennoscandia, with mean annual temperature (MAT) range: -1 to 8°C. Secondary metabolites in leaves (SML) and fine roots (SMFR) were determined with an HPLC-qTOF mass spectrometer. We found that SML content increased significantly with MAT. The effect of competitive stress on SML strengthened in colder climates (MAT<4°C). Competition and shade initiated a few similar responses in SML. SMFR varied less with MAT. Suppressed trees allocated relatively more resources to SML in warmer climates and to SMFR in colder ones. Our study revealed that the content and profile of secondary metabolites (mostly phenolic defense compounds and growth regulators) in leaves of B. pendula varied with climate and reflected the trees' defense requirements against herbivory, exposure to irradiance, and competitive status (resource supply). The metabolic profile of fine roots reflected, besides defense requirements, also different below-ground competition strategies in warmer and colder climates. An increase in carbon assimilation to secondary compounds can be expected at northern latitudes due to climate change.
Collapse
Affiliation(s)
- Arvo Tullus
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Linda Rusalepp
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | - Reimo Lutter
- Institute of Forestry and Rural Engineering, Estonian University of Life Sciences, Tartu, Estonia
| | - Katrin Rosenvald
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Ants Kaasik
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | | | - Sari Kontunen-Soppela
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| | - Elina Oksanen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| |
Collapse
|
47
|
Iversen CM, McCormack ML. Filling gaps in our understanding of belowground plant traits across the world: an introduction to a Virtual Issue. THE NEW PHYTOLOGIST 2021; 231:2097-2103. [PMID: 34405907 DOI: 10.1111/nph.17326] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 02/16/2021] [Indexed: 06/13/2023]
Affiliation(s)
- Colleen M Iversen
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, 37830-6301, USA
| | - M Luke McCormack
- Center for Tree Science, The Morton Arboretum, Liesle, IL, 60515, USA
| |
Collapse
|
48
|
Clausing S, Pena R, Song B, Müller K, Mayer-Gruner P, Marhan S, Grafe M, Schulz S, Krüger J, Lang F, Schloter M, Kandeler E, Polle A. Carbohydrate depletion in roots impedes phosphorus nutrition in young forest trees. THE NEW PHYTOLOGIST 2021; 229:2611-2624. [PMID: 33128821 DOI: 10.1111/nph.17058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/26/2020] [Indexed: 06/11/2023]
Abstract
Nutrient imbalances cause the deterioration of tree health in European forests, but the underlying physiological mechanisms are unknown. Here, we investigated the consequences of decreasing root carbohydrate reserves for phosphorus (P) mobilisation and uptake by forest trees. In P-rich and P-poor beech (Fagus sylvatica) forests, naturally grown, young trees were girdled and used to determine root, ectomycorrhizal and microbial activities related to P mobilisation in the organic layer and mineral topsoil in comparison with those in nongirdled trees. After girdling, root carbohydrate reserves decreased. Root phosphoenolpyruvate carboxylase activities linking carbon and P metabolism increased. Root and ectomycorrhizal phosphatase activities and the abundances of bacterial genes catalysing major steps in P turnover increased, but soil enzymes involved in P mobilisation were unaffected. The physiological responses to girdling were stronger in P-poor than in P-rich forests. P uptake was decreased after girdling. The soluble and total P concentrations in roots were stable, but fine root biomass declined after girdling. Our results support that carbohydrate depletion results in reduced P uptake, enhanced internal P remobilisation and root biomass trade-off to compensate for the P shortage. As reductions in root biomass render trees more susceptible to drought, our results link tree deterioration with disturbances in the P supply as a consequence of decreased belowground carbohydrate allocation.
Collapse
Affiliation(s)
- Simon Clausing
- Forest Botany and Tree Physiology, University of Goettingen, Büsgenweg 2, Göttingen, 37077, Germany
| | - Rodica Pena
- Forest Botany and Tree Physiology, University of Goettingen, Büsgenweg 2, Göttingen, 37077, Germany
| | - Bin Song
- Forest Botany and Tree Physiology, University of Goettingen, Büsgenweg 2, Göttingen, 37077, Germany
| | - Karolin Müller
- Soil Biology Department, Institute of Soil Science and Land Evaluation, University of Hohenheim, Emil-Wolff-Straße 27, Stuttgart, 70593, Germany
| | - Paula Mayer-Gruner
- Soil Biology Department, Institute of Soil Science and Land Evaluation, University of Hohenheim, Emil-Wolff-Straße 27, Stuttgart, 70593, Germany
| | - Sven Marhan
- Soil Biology Department, Institute of Soil Science and Land Evaluation, University of Hohenheim, Emil-Wolff-Straße 27, Stuttgart, 70593, Germany
| | - Martin Grafe
- Research Unit for Comparative Microbiome Analyses, Helmholtz Zentrum München, Ingolstädter Landstraße 1, Neuherberg, 85764, Germany
| | - Stefanie Schulz
- Research Unit for Comparative Microbiome Analyses, Helmholtz Zentrum München, Ingolstädter Landstraße 1, Neuherberg, 85764, Germany
| | - Jaane Krüger
- Soil Ecology, University of Freiburg, Bertoldstraße 17, Freiburg (i. Br.), 79085, Germany
| | - Friederike Lang
- Soil Ecology, University of Freiburg, Bertoldstraße 17, Freiburg (i. Br.), 79085, Germany
| | - Michael Schloter
- Research Unit for Comparative Microbiome Analyses, Helmholtz Zentrum München, Ingolstädter Landstraße 1, Neuherberg, 85764, Germany
| | - Ellen Kandeler
- Soil Biology Department, Institute of Soil Science and Land Evaluation, University of Hohenheim, Emil-Wolff-Straße 27, Stuttgart, 70593, Germany
| | - Andrea Polle
- Forest Botany and Tree Physiology, University of Goettingen, Büsgenweg 2, Göttingen, 37077, Germany
| |
Collapse
|
49
|
Małek S, Ważny R, Błońska E, Jasik M, Lasota J. Soil fungal diversity and biological activity as indicators of fertilization strategies in a forest ecosystem after spruce disintegration in the Karpaty Mountains. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 751:142335. [PMID: 33181979 DOI: 10.1016/j.scitotenv.2020.142335] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 06/11/2023]
Abstract
Forest soils are being exposed to nutrient deficiency and acidification at increasing rates as a result of intensive management. Mineral fertilization, however, provides a way to improve soil nutrient balance. The aim of this study is to present the effects of mineral fertilization on the properties of forest soil 11 years after fertilization. Our research investigated the effects of dolomite, magnesite and serpentinite fertilization on the physicochemical properties of the soil, soil biological activity, and fungal diversity. We also determined the condition of a new generation of fir trees after mineral fertilization. In autumn, 2008, fertilizers (dolomite, magnesite and serpentinite, specifically) in the amount of 4000 kg.ha-1 were added to plots in the Wisła Forest District in Poland; one area was left unfertilized to act as the control area for this research. Our results reveal that all fertilization improved the selected soil's physicochemical properties (pH, Ca and Mg content) and accordingly, its biochemical activity; in particular, we found that dolomite (4000 kg.ha-1) contributed heavily to soil improvement. The findings also showed that soil pH and calcium content were strongly dependent on enzymatic activity, while dolomite fertilization resulted in a significant increase in biomass size in the fir trees included in this study. In addition to being associated with the highest plant biomass and amounts of enzymatic activity, dolomite-fertilized soil also had the highest number of fungal operational taxonomic units (OTUs): 403, compared to 322 OTUs in the control soil. Finally, the fungal communities in the control soil varied significantly from the fungal communities in soils fertilized with dolomite and serpentinite. The results of this research support mineral fertilization, and in particular, fertilization using dolomite in amounts of 4000 kg.ha-1, to improve soil nutrient supply and to shape the biological activity expressed by the enzymatic activity of forest soils.
Collapse
Affiliation(s)
- Stanisław Małek
- Department of Ecology and Silviculture, Faculty of Forestry, University of Agriculture, Al. 29 Listopada 46, Krakow, Poland
| | - Rafał Ważny
- Małopolska Centre of Biotechnology, Jagiellonian University in Kraków, Gronostajowa 7a, 30-387 Kraków, Poland
| | - Ewa Błońska
- Department of Ecology and Silviculture, Faculty of Forestry, University of Agriculture, Al. 29 Listopada 46, Krakow, Poland.
| | - Michał Jasik
- Department of Ecology and Silviculture, Faculty of Forestry, University of Agriculture, Al. 29 Listopada 46, Krakow, Poland
| | - Jarosław Lasota
- Department of Ecology and Silviculture, Faculty of Forestry, University of Agriculture, Al. 29 Listopada 46, Krakow, Poland
| |
Collapse
|
50
|
Sun L, Ataka M, Han M, Han Y, Gan D, Xu T, Guo Y, Zhu B. Root exudation as a major competitive fine-root functional trait of 18 coexisting species in a subtropical forest. THE NEW PHYTOLOGIST 2021; 229:259-271. [PMID: 32772392 DOI: 10.1111/nph.16865] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 08/03/2020] [Indexed: 06/11/2023]
Abstract
Root exudation stimulates microbial decomposition and enhances nutrient availability to plants. It remains difficult to measure and predict this carbon flux in natural conditions, especially for mature woody plants. Based on a known conceptual framework of root functional traits coordination, we proposed that root functional traits may predict root exudation. We measured root exudation and other seven root morphological/chemical/physiological traits for 18 coexisting woody species in a deciduous-evergreen mixed forest in subtropical China. Root exudation, respiration, diameter and nitrogen (N) concentration all exhibited significant phylogenetic signals. We found that root exudation positively correlated with competitive traits (root respiration, N concentration) and negatively with a conservative trait (root tissue density). Furthermore, these relationships were independent of phylogenetic signals. A principal component analysis showed that root exudation and morphological traits loaded on two perpendicular axes. Root exudation is a competitive trait in a multidimensional fine-root functional coordination. The metabolic dimension on which root exudation loaded was relatively independent of the morphological dimension, indicating that increasing nutrient availability by root exudation might be a complementary strategy for plant nutrient acquisition. The positive relationship between root exudation and root respiration and N concentration is a promising approach for the future prediction of root exudation.
Collapse
Affiliation(s)
- Lijuan Sun
- Key Laboratory for Earth Surface Processes of the Ministry of Education, Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Mioko Ataka
- Graduate School of Agriculture, Kyoto University, Kyoto, 6068502, Japan
| | - Mengguang Han
- Key Laboratory for Earth Surface Processes of the Ministry of Education, Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Yunfeng Han
- Key Laboratory for Earth Surface Processes of the Ministry of Education, Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Dayong Gan
- Key Laboratory for Earth Surface Processes of the Ministry of Education, Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Tianle Xu
- Key Laboratory for Earth Surface Processes of the Ministry of Education, Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Yanpei Guo
- Key Laboratory for Earth Surface Processes of the Ministry of Education, Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Biao Zhu
- Key Laboratory for Earth Surface Processes of the Ministry of Education, Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| |
Collapse
|