1
|
Smith-Martin CM, Johnson KM, Urquhart S, Carins-Murphy MR, Rodriguez-Dominguez CM, Lucani C, Corso D, Choat B, Gauthey A, Perez-Martinez LV, McAdam SAM, Werden LK, Brodribb TJ. Increasing air-filled vessels has little influence on vulnerability to drought-induced embolism in two species with long maximum xylem vessel length but low vessel connectivity. TREE PHYSIOLOGY 2025; 45:tpaf041. [PMID: 40188479 DOI: 10.1093/treephys/tpaf041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 02/18/2025] [Accepted: 03/19/2025] [Indexed: 04/08/2025]
Abstract
Perennial woody plants accumulate native xylem embolisms over time. However, whether this makes the water transport system more vulnerable to drought-induced dysfunction as the percentage of gas-filled vessels increases is unclear. We tested whether increasing the proportion of open (air-filled) vessels changes the overall embolism vulnerability in stems of angiosperm species with long maximum vessel lengths but relatively low vessel connectivity. Using optical vulnerability curves, we measured xylem vulnerability of 57 branches ranging in length from ~ 10 to over 300 cm, from two adult trees (Acacia mearnsii De Wild. and Eucalyptus globulus Labill.) known to have long maximum vessel length (>75 cm) but low vessel connectivity. The fraction of open vessels at different branch lengths was estimated by staining open vessels under suction and with X-ray micro-computed tomography (μCT). To relate this to native field conditions, the percentage of pre-existing native embolisms was measured with μCT on a different set of branches. Our results show that even when a large proportion (> 25%) of open (air-filled) vessels are present, the xylem-embolism thresholds (water potential at 12% (P12), 50% (P50) and 88% (P88) embolized xylem area) resemble those of branches with no open vessels. Scanning of native embolism with μCT revealed 10% (E. globulus) and 20% (A. mearnsii) native embolism under natural conditions. We conclude that even when approximately one-quarter of vessels are air-filled, there is no discernable effect on the overall xylem vulnerability of stem segments with long vessels and low vessel connectivity. Xylem vulnerability to embolism among all the branches measured from each of the two trees was relatively homogeneous with a ~10-20% variation. Our findings also suggest that the presence of pre-existing native embolisms, at the percentages observed in the field (<25%), would not increase vulnerability to xylem embolism in these species with largely isolated individual xylem vessels.
Collapse
Affiliation(s)
- Chris M Smith-Martin
- Department of Plant and Microbial Biology, University of Minnesota, 1475 Gortner Ave. St Paul, MN 55108, USA
| | - Kate M Johnson
- Ecological and Forestry Applications Research Centre (CREAF), Campus de Bellaterra, Cerdanyola del Vallès, 08193, Spain
| | - Shelley Urquhart
- School of Natural Sciences, University of Tasmania, Private Bag 55, Tas, Hobart 7001 Tasmania, Australia
| | - Madeline R Carins-Murphy
- School of Natural Sciences, University of Tasmania, Private Bag 55, Tas, Hobart 7001 Tasmania, Australia
| | - Celia M Rodriguez-Dominguez
- Plant Ecophysiology and Irrigation (ECOVER) Group, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS, CSIC), Avenida Reina Mercedes, 10, 41012 Sevilla, Spain
| | - Christopher Lucani
- School of Natural Sciences, University of Tasmania, Private Bag 55, Tas, Hobart 7001 Tasmania, Australia
| | - Déborah Corso
- School of Natural Sciences, University of Tasmania, Private Bag 55, Tas, Hobart 7001 Tasmania, Australia
| | - Brendan Choat
- Hawkesbury Institute for the Environment, Western Sydney University, Bourke St, Richmond, NSW 2753, Australia
| | - Alice Gauthey
- The Birmingham Institute of Forest Research (BIFoR), University of Birmingham, Edgbaston Birmingham, B15 2TT, UK
| | | | - Scott A M McAdam
- Department of Botany and Plant Pathology, Purdue Center for Plant Biology, Purdue University, 610 Purdue Mall, West Lafayette, IN 47907, USA
| | - Leland K Werden
- Institute of Integrative Biology, ETH Zürich (Swiss Federal Institute of Technology), Universitätstrasse 16, 8092 Zürich, Switzerland
| | - Timothy J Brodribb
- School of Natural Sciences, University of Tasmania, Private Bag 55, Tas, Hobart 7001 Tasmania, Australia
| |
Collapse
|
2
|
Gama G, Martin KC, Drew DM. Wood formation of drought-resistant Eucalyptus cladocalyx under cyclical drought treatment. QUANTITATIVE PLANT BIOLOGY 2025; 6:e12. [PMID: 40297242 PMCID: PMC12035783 DOI: 10.1017/qpb.2025.7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 02/11/2025] [Accepted: 02/14/2025] [Indexed: 04/30/2025]
Abstract
Eucalyptus cladocalyx, known for its drought tolerance, has complex wood anatomy influenced by environmental conditions. This study investigated the xylem response of E. cladocalyx seedlings to cyclic drought stress compared to continuous irrigation. Seedlings were subjected to alternating drought and watering cycles, and their growth, xylem traits and cambial activity were monitored. Continuously irrigated seedlings exhibited greater height and stem diameter growth than periodically irrigated ones. Xylem response between the periodic and continuous irrigations showed no significant differences. Vessel and fibre features showed significant temporal variation, with substantial interaction between treatment and time for vessel area, fibre area and fibre thickness and not for vessel frequency. The cambium remained active under drought conditions, indicating resilience. Overall, anatomical properties varied complexly and inconsistently across drought cycles, likely due to differences in drought intensity, strategies and genetic factors.
Collapse
Affiliation(s)
- Gugu Gama
- Department of Forest and Wood Science, Stellenbosch University, Stellenbosch, South Africa
| | - Kim C. Martin
- Department of Forest and Wood Science, Stellenbosch University, Stellenbosch, South Africa
| | - David M. Drew
- Department of Forest and Wood Science, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
3
|
Li Q, Wang N, Liu X, Sun X, Li X, Du N, Wang H, Wang R. Coupled hydraulic and whole-plant economic strategies in twenty warm-temperate woody species. PLANT BIOLOGY (STUTTGART, GERMANY) 2025; 27:426-433. [PMID: 39945113 DOI: 10.1111/plb.13772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 01/09/2025] [Indexed: 03/29/2025]
Abstract
The iso- to anisohydric continuum describes how plant regulate water potential and has been used to classify species hydraulic strategies. The slow to fast continuum is a whole-plant strategy for resource acquisition and utilization. The relationship between hydraulic and whole-plant economic strategy could provide a comprehensive method for assessing plants performance. We quantified the degree of isohydricity of 20 woody species in a warm temperate forest. We also measured other functional traits associated with hydraulic and economic strategies (leaf gas exchange, pressure-volume traits, predawn and midday water potential, native and maximum stem hydraulic conductivity, Huber value, and wood density), then explored the underlying trade-offs. Pearson correlations and PCA were performed to assess relationships between isohydricity and other functional traits. We found a coordinated series of iso- anisohydric and slow-fast spectra, where species percentage loss of hydraulic conductivity (PLC) and wood density (WD) were the two most powerful proxies. Along the coordinated continuum, the anisohydric species had higher leaf gas exchange, PLC, and water potential at the turgor loss point, and lower WD than the isohydrics. We found that isohydric species have high drought tolerance, giving them a greater chance of survival than the anisohydric species as drought events are anticipated to be more frequent and severe under global climate change. Identification of associated spectra among plant ecological strategies may increase understanding of how woody plants in temperate forests will respond to climate changes.
Collapse
Affiliation(s)
- Q Li
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, Qingdao, China
- School of Tropical Medicine, Hainan Medical University, Haikou, China
| | - N Wang
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, Qingdao, China
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Qingdao, China
- Qingdao Key Laboratory of Forest and Wetland Ecology, Shandong University, Qingdao, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Qingdao, China
| | - X Liu
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, Qingdao, China
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Qingdao, China
- Qingdao Key Laboratory of Forest and Wetland Ecology, Shandong University, Qingdao, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Qingdao, China
| | - X Sun
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, Qingdao, China
| | - X Li
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, Qingdao, China
| | - N Du
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, Qingdao, China
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Qingdao, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Qingdao, China
| | - H Wang
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, Qingdao, China
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Qingdao, China
- Qingdao Key Laboratory of Forest and Wetland Ecology, Shandong University, Qingdao, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Qingdao, China
| | - R Wang
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, Qingdao, China
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Qingdao, China
- Qingdao Key Laboratory of Forest and Wetland Ecology, Shandong University, Qingdao, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Qingdao, China
| |
Collapse
|
4
|
Groover A, Holbrook NM, Polle A, Sala A, Medlyn B, Brodersen C, Pittermann J, Gersony J, Sokołowska K, Bogar L, McDowell N, Spicer R, David-Schwartz R, Keller S, Tschaplinski TJ, Preisler Y. Tree drought physiology: critical research questions and strategies for mitigating climate change effects on forests. THE NEW PHYTOLOGIST 2025; 245:1817-1832. [PMID: 39690524 DOI: 10.1111/nph.20326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 11/18/2024] [Indexed: 12/19/2024]
Abstract
Droughts of increasing severity and frequency are a primary cause of forest mortality associated with climate change. Yet, fundamental knowledge gaps regarding the complex physiology of trees limit the development of more effective management strategies to mitigate drought effects on forests. Here, we highlight some of the basic research needed to better understand tree drought physiology and how new technologies and interdisciplinary approaches can be used to address them. Our discussion focuses on how trees change wood development to mitigate water stress, hormonal responses to drought, genetic variation underlying adaptive drought phenotypes, how trees 'remember' prior stress exposure, and how symbiotic soil microbes affect drought response. Next, we identify opportunities for using research findings to enhance or develop new strategies for managing drought effects on forests, ranging from matching genotypes to environments, to enhancing seedling resilience through nursery treatments, to landscape-scale monitoring and predictions. We conclude with a discussion of the need for co-producing research with land managers and extending research to forests in critical ecological regions beyond the temperate zone.
Collapse
Affiliation(s)
- Andrew Groover
- USDA Forest Service Northern Research Station, Burlington, VT, 05446, USA
- Institute of Forest Genetics, USDA Forest Service Pacific Southwest Research Station, Placerville, CA, 95667, USA
| | - N Michele Holbrook
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Andrea Polle
- Forest Botany and Tree Physiology, University of Göttingen, Büsgenweg 2, 37077, Göttingen, Germany
| | - Anna Sala
- Division of Biological Sciences, University of Montana, Missoula, MT, 59812, USA
| | - Belinda Medlyn
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Craig Brodersen
- School of the Environment, Yale University, New Haven, CT, 06511, USA
| | - Jarmila Pittermann
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, 95060, USA
| | - Jessica Gersony
- Department of Biological Sciences, Smith College, Northampton, MA, 01060, USA
| | - Katarzyna Sokołowska
- Department of Plant Developmental Biology, Faculty of Biological Sciences, University of Wrocław, Kanonia 6/8, 50-328, Wrocław, Poland
| | - Laura Bogar
- Department of Plant Biology, University of California Davis, Davis, CA, 95616, USA
| | - Nate McDowell
- Atmospheric, Climate, and Earth Sciences, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
- School of Biological Sciences, Washington State University, Pullman, WA, 99164-4236, USA
| | - Rachel Spicer
- Department of Botany, Connecticut College, New London, CT, 06320, USA
| | - Rakefet David-Schwartz
- Institute of Plant Sciences, Agricultural Research Organization - Volcani Institute, 68 HaMaccabim Road, Rishon Lezion, 7505101, Israel
| | - Stephen Keller
- Department of Plant Biology, University of Vermont, Burlington, VT, 05405, USA
| | | | - Yakir Preisler
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
- Agriculture Research Organization - Volcani Institute, 68 HaMaccabim Road, Rishon Lezion, 7505101, Israel
| |
Collapse
|
5
|
Rissanen K, Vitali V, Kneeshaw D, Paquette A. Vessel anatomy of urban Celtis occidentalis trees varies to favour safety or efficiency depending on site conditions. TREES (BERLIN, GERMANY : WEST) 2025; 39:29. [PMID: 39949646 PMCID: PMC11813969 DOI: 10.1007/s00468-025-02603-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 01/15/2025] [Indexed: 02/16/2025]
Abstract
Key message Urban trees can acclimate to their growth environment through changes in vessel anatomy. Vessel lumen area and vessel frequency following a gradient from park trees to inner-city street trees. Abstract Urban trees stand in potentially stressful growth environments occurring along gradients of urban heat and impermeable surface cover and, to survive, can adjust their function and structure. The consequent tree-to-tree variations in hydraulic xylem traits can shed light on tree hydraulics and capacity to acclimate to diverse conditions, as well as identify limitations to tree growth and survival. Using microscopic analysis of increment cores, we compared early wood vessel traits of the ring-porous angiosperm Celtis occidentalis in three urban site types: central streets, residential streets and parks, within the city of Montreal. We explored differences in vessel traits (mean vessel lumen area, vessel frequency, vessel grouping index and derived variables) between site types, vessel trait intercorrelations and correlations with monthly temperature, precipitation and heat-moisture index over 10 years. The vessel traits significantly differed between site types. Park trees had the largest and central street trees had the smallest vessel lumen area and theoretical hydraulic conductivity; traits supporting efficient water transport. Central street trees had the largest vessel frequency and smallest theoretical vulnerability to cavitation; traits connected to hydraulic safety. Residential street tree traits were in between. Among central and residential street trees, water transport efficiency traits correlated positively with cool springs or arid summers, whereas among park trees, mainly vessel frequency and grouping index responded to climate variations. These results highlight the capacity of C. occidentalis to acclimate to urban environments and the potential of anatomical traits for quantifying the effects of urban environments on tree functioning. Graphical Abstract Supplementary Information The online version contains supplementary material available at 10.1007/s00468-025-02603-3.
Collapse
Affiliation(s)
- Kaisa Rissanen
- Département Des Sciences Biologiques, Centre for Forest Research, Université du Québec À Montréal, C.P. 8888, Succursale Centre-Ville, Montréal, QC H3C 3P8 Canada
- Present Address: Institute for Atmospheric and Earth System Research, Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Latokartanonkaari 7, Helsinki, Finland
| | - Valentina Vitali
- Institute of Terrestrial Ecosystems, ETH Zurich, Universitätsstrasse 16, 8092 Zurich, Switzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, CH-8903 Birmensdorf, Switzerland
| | - Daniel Kneeshaw
- Département Des Sciences Biologiques, Centre for Forest Research, Université du Québec À Montréal, C.P. 8888, Succursale Centre-Ville, Montréal, QC H3C 3P8 Canada
| | - Alain Paquette
- Département Des Sciences Biologiques, Centre for Forest Research, Université du Québec À Montréal, C.P. 8888, Succursale Centre-Ville, Montréal, QC H3C 3P8 Canada
| |
Collapse
|
6
|
Chen YP, Sunojkumar P, Spicer RA, Hodel RGJ, Soltis DE, Soltis PS, Paton AJ, Sun M, Drew BT, Xiang CL. Rapid Radiation of a Plant Lineage Sheds Light on the Assembly of Dry Valley Biomes. Mol Biol Evol 2025; 42:msaf011. [PMID: 39823311 PMCID: PMC11817785 DOI: 10.1093/molbev/msaf011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 12/31/2024] [Accepted: 01/03/2025] [Indexed: 01/19/2025] Open
Abstract
Southwest China is characterized by high plateaus, large mountain systems, and deeply incised dry valleys formed by major rivers and their tributaries. Despite the considerable attention given to alpine plant radiations in this region, the timing and mode of diversification of the numerous dry valley plant lineages remain unknown. To address this knowledge gap, we investigated the macroevolution of Isodon (Lamiaceae), a lineage commonly distributed in the dry valleys in southwest China and wetter areas of Asia and Africa. We reconstructed a robust phylogeny encompassing nearly 90% of the approximately 140 extant Isodon species using transcriptome and genome-resequencing data. Our results suggest a rapid radiation of Isodon during the Pliocene that coincided with a habit shift from herbs to shrubs and a habitat shift from humid areas to dry valleys. The shrubby growth form likely acted as a preadaptation allowing for the movement of Isodon species into these dry valleys. Ecological analyses highlight drought-related factors as key drivers influencing the niche preferences of different growth forms and species richness of Isodon. The interplay between topography and the development of the East Asian monsoon since the middle Miocene likely contributed to the formation of the dry valley biome in southwest China. This study enhances our understanding of evolutionary dynamics and ecological drivers shaping the distinctive flora of southwest China and reveals the strategies employed by montane plants in response to climate change and dryland expansion, thus facilitating conservation efforts globally.
Collapse
Affiliation(s)
- Ya-Ping Chen
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | | | - Robert A Spicer
- School of Environment, Earth and Ecosystem Sciences, The Open University, Milton Keynes MK7 6AA, UK
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, China
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Richard G J Hodel
- Department of Botany, National Museum of Natural History, MRC 166, Smithsonian Institution, Washington, DC 20013, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Douglas E Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Pamela S Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| | - Alan J Paton
- Royal Botanic Gardens, Kew, Richmond TW9 3AE, UK
| | - Miao Sun
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Bryan T Drew
- Department of Biology, University of Nebraska-Kearney, Kearney, NE 68849, USA
| | - Chun-Lei Xiang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- State Key Laboratory of Phytochemistry and Natural Medicines, Kunming 650201, China
| |
Collapse
|
7
|
Zhao H, Huang X, Ma B, Jiang B, Jiang Z, Cai J. Productive Poplar Genotypes Exhibited Temporally Stable Low Stem Embolism Resistance and Hydraulic Resistance Segmentation at the Stem-Leaf Transition. PLANT, CELL & ENVIRONMENT 2025; 48:992-1004. [PMID: 39390757 DOI: 10.1111/pce.15197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/12/2024]
Abstract
Breeding tree genotypes that are both productive and drought-resistant is a primary goal in forestry. However, the relationships between plant hydraulics and yield at the genotype level, and their temporal stabilities, remain unclear. We selected six poplar genotypes from I-101 (Populus alba) × 84 K (P. alba × Popolus tremula var. glandulosa) for experiments in the first and fourth years after planting in a common garden. Measurements included stem embolism resistance, shoot hydraulic resistance and its partitioning between stems and leaves, vessel- and pit-level anatomy, leaf carbon acquisition capacity, carbon allocation to leaves, and aboveground biomass (yield proxy). Significant genetic variations in hydraulic properties and yield were found among genotypes in both years. Productive genotypes had wide vessels, large thin pit membranes, small pit apertures, and shallow pit chambers. Hydraulic resistance was negatively correlated with yield, enabling high stomatal conductance and assimilation rates. Productive genotypes allocated less aboveground carbon and hydraulic resistance to leaves. Temporally stable trade-offs between stem embolism resistance and yield, and between hydraulic segmentation and yield, were identified. These findings highlight the tight link between hydraulic function and yield and suggest that stable trade-offs may challenge breeding poplar genotypes that are both productive and drought-resistant.
Collapse
Affiliation(s)
- Han Zhao
- College of Forestry, Northwest A&F University, Yangling, China
| | - Xin Huang
- College of Forestry, Northwest A&F University, Yangling, China
| | - Bolong Ma
- College of Forestry, Northwest A&F University, Yangling, China
| | - Bo Jiang
- School of Information Science & Technology, Northwest University, Xi'an, China
| | - Zaimin Jiang
- College of Life Sciences, Northwest A&F University, Yangling, China
- Qinling National Forest Ecosystem Research Station, Northwest A&F University, Yangling, China
| | - Jing Cai
- College of Forestry, Northwest A&F University, Yangling, China
- Qinling National Forest Ecosystem Research Station, Northwest A&F University, Yangling, China
| |
Collapse
|
8
|
Suissa JS, Niklas KJ, Tomescu AMF, Friedman WE. Ontogenetic correlates, not direct adaptation, explain the evolution of stelar morphology. THE NEW PHYTOLOGIST 2025; 245:465-479. [PMID: 39456128 DOI: 10.1111/nph.20185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/23/2024] [Indexed: 10/28/2024]
Abstract
The primary vascular system of plants (the stele) has attracted interest from paleobotanists, developmental biologists, systematists, and physiologists for nearly two centuries. Ferns, with their diverse stelar morphology, deep evolutionary history, and prominent fossil record, have been a major focus in studies of the stele. To explain the diversity of stelar morphology, past adaptive hypotheses have invoked biomechanics, hydraulics, and drought tolerance as key selection pressures in the evolution of stelar complexity; but, these hypotheses often isolate the stele from a whole-plant developmental context, ignoring potential covariation between vascular patterning and shoot morphology. Furthermore, incongruence between expected patterns and observed data challenge adaptive hypotheses, precluding a comprehensive explanation of stelar evolution. While ontogeny has been previously recognized as a factor in stelar diversification, it has not been fully integrated into a comprehensive framework. Here we synthesize 150-years of research on stelar morphology, incorporating developmental, physiological, and phylogenetic data to present the ontogenetic hypothesis of stelar evolution. This hypothesis posits that stelar morphology is an integrated feature of whole-plant ontogeny, not a trait shaped by direct selection for adaptive patterns. This shift in perspective provides an updated framework for understanding the determinants of stelar morphology and focusses future efforts to ask more incisive questions about the evolution and function of primary vascular architecture.
Collapse
Affiliation(s)
- Jacob S Suissa
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, 37996, USA
- The Arnold Arboretum of Harvard University, Boston, MA, 02130, USA
| | - Karl J Niklas
- School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Alexandru M F Tomescu
- Department of Biological Sciences, California Polytechnic State University Humboldt, Arcata, CA, 95521, USA
| | - William E Friedman
- The Arnold Arboretum of Harvard University, Boston, MA, 02130, USA
- The Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| |
Collapse
|
9
|
González‐Melo A, Salgado‐Negret B, Norden N, González‐M R, Benavides JP, Cely JM, Abad Ferrer J, Idárraga Á, Moreno E, Pizano C, Puentes‐Marín J, Pulido N, Rivera K, Rojas‐Bautista F, Solorzano JF, Umaña MN. Linking seedling wood anatomical trade-offs with drought and seedling growth and survival in tropical dry forests. THE NEW PHYTOLOGIST 2025; 245:117-129. [PMID: 39473120 PMCID: PMC11617663 DOI: 10.1111/nph.20222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 10/02/2024] [Indexed: 12/06/2024]
Abstract
Wood anatomy plays a key role in plants' ability to persist under drought and should therefore predict demography. Plants balance their resource allocation among wood cell types responsible for different functions. However, it remains unclear how these anatomical trade-offs vary with water availability, and the extent to which they influence demographic rates. We investigated how wood anatomical trade-offs were related to drought and demographic rates, for seedling communities in four tropical dry forests differing in their aridity indexes (AIs). We measured wood density, as well as vessel, fiber and parenchyma traits of 65 species, and we monitored growth and survival for a 1-yr period. Two axes defined wood anatomical structure: a fiber-parenchyma axis and a vessel-wood density axis. Seedlings in drier sites had larger fiber but lower parenchyma fractions, while in less dry forests, seedlings had the opposite allocation pattern. The fiber-parenchyma trade-off was unrelated to growth but was positively related to survival, and this later relationship was mediated by the AI. These findings expand our knowledge about the wood anatomical trade-offs that mediate responses to drought conditions and influence demographic rates, in the seedling layer. This information is needed to anticipate future responses of forests to changing drought conditions.
Collapse
Affiliation(s)
- Andrés González‐Melo
- Department of Ecology and Evolutionary BiologyUniversity of MichiganAnn ArborMI48104USA
| | | | - Natalia Norden
- Instituto de Investigación de Recursos Biológicos Alexander von HumboldtBogotá111061Colombia
| | - Roy González‐M
- Departamento de Ciencias ForestalesUniversidad del TolimaIbagué730010Colombia
| | | | - Juan Manuel Cely
- Departamento de BiologíaUniversidad NacionalBogotá111321Colombia
| | - Julio Abad Ferrer
- Dirección Territorial Caribe, Parques Nacionales Naturales de ColombiaSanta Marta110221Colombia
| | - Álvaro Idárraga
- Fundación Jardín Botánico de MedellínHerbario “Joaquín Antonio Uribe” (JAUM)Medellín050010Colombia
| | - Esteban Moreno
- Facultad del Medio Ambiente y Recursos NaturalesUniversidad Distrital Francisco José de CaldasBogotá111611Colombia
| | - Camila Pizano
- Departamento de BiologíaUniversidad IcesiCali760031Colombia
| | | | - Nancy Pulido
- Facultad del Medio Ambiente y Recursos NaturalesUniversidad Distrital Francisco José de CaldasBogotá111611Colombia
| | - Katherine Rivera
- Facultad del Medio Ambiente y Recursos NaturalesUniversidad Distrital Francisco José de CaldasBogotá111611Colombia
| | | | - Juan Felipe Solorzano
- Facultad del Medio Ambiente y Recursos NaturalesUniversidad Distrital Francisco José de CaldasBogotá111611Colombia
| | - María Natalia Umaña
- Department of Ecology and Evolutionary BiologyUniversity of MichiganAnn ArborMI48104USA
| |
Collapse
|
10
|
Khan A, Gong XW, Zhang C, Liu SS, Hao GY. Contrasts in hydraulics underlie the divergent performances of Populus and native tree species in water-limited sandy land environments. PHYSIOLOGIA PLANTARUM 2025; 177:e70075. [PMID: 39853759 DOI: 10.1111/ppl.70075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/26/2024] [Accepted: 12/03/2024] [Indexed: 01/26/2025]
Abstract
Populus tree species are commonly used for creating shelter forests in vast areas of northern China, at least partially due to their fast growth. However, they are facing severe problems of decline and mortality caused by drought. In contrast, tree species native to water-limited environments usually have slow growth and are currently not commonly used in afforestation, while these species are gaining more attention in forestry for their greater resilience to drought. In Horqin Sandy Land, we conducted a comparative analysis of xylem hydraulics and associated physiological traits between six Populus tree species and six tree species native to drought-prone areas. Compared to the native species, the Populus species exhibited significantly higher stem hydraulic conductivity but lower resistance to drought-induced xylem embolism than the native tree species. The observed interspecific variations and contrasts in xylem hydraulics between the two species groups were predominantly attributed to xylem anatomical characteristics at the pit level rather than at the tissue level. In line with the divergences in hydraulics, we found significantly lower intrinsic water use efficiency (WUEi) in Populus than in the native species, suggesting that the two groups adopted relatively acquisitive and conservative water use strategies, respectively. The trade-off between hydraulic efficiency and safety, as well as that between hydraulic efficiency and WUEi, underlies the contrasts in performance between Populus species and the native tree species, that is, fast growth of Populus species but high risk of hydraulic dysfunction when facing drought, and vice versa.
Collapse
Affiliation(s)
- Attaullah Khan
- CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, People's Republic of China
- Key Laboratory of Terrestrial Ecosystem Carbon Neutrality, Liaoning Province, Shenyang, People's Republic of China
- Daqinggou Ecological Research Station, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, People's Republic of China
| | - Xue-Wei Gong
- CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, People's Republic of China
- Key Laboratory of Terrestrial Ecosystem Carbon Neutrality, Liaoning Province, Shenyang, People's Republic of China
- Daqinggou Ecological Research Station, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, People's Republic of China
| | - Chi Zhang
- CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, People's Republic of China
- Key Laboratory of Terrestrial Ecosystem Carbon Neutrality, Liaoning Province, Shenyang, People's Republic of China
- Daqinggou Ecological Research Station, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, People's Republic of China
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, People's Republic of China
| | - Shen-Si Liu
- CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, People's Republic of China
- Key Laboratory of Terrestrial Ecosystem Carbon Neutrality, Liaoning Province, Shenyang, People's Republic of China
- Daqinggou Ecological Research Station, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, People's Republic of China
| | - Guang-You Hao
- CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, People's Republic of China
- Key Laboratory of Terrestrial Ecosystem Carbon Neutrality, Liaoning Province, Shenyang, People's Republic of China
- Daqinggou Ecological Research Station, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, People's Republic of China
| |
Collapse
|
11
|
Zhang YB, Huang XY, Corrêa Scalon M, Ke Y, Liu JX, Wang Q, Li WH, Yang D, Ellsworth DS, Zhang YJ, Zhang JL. Mistletoes have higher hydraulic safety but lower efficiency in xylem traits than their hosts. THE NEW PHYTOLOGIST 2025; 245:607-624. [PMID: 39538365 DOI: 10.1111/nph.20257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024]
Abstract
Both mistletoes and their hosts are challenged by increasing drought, highlighting the necessity of understanding their comparative hydraulic properties. The high transpiration of mistletoes requires efficient water transport, while high xylem tensions demand strong embolism resistance, representing a hydraulic paradox. This study, conducted across four environments with different aridity indices in Yunnan, China, examined the xylem traits of 119 mistletoe-host species pairs. Mistletoes showed lower water use efficiency, indicating a more aggressive water use. They also showed lower hydraulic efficiency (lower vessel diameter and theoretical hydraulic conductivity) but higher safety (lower vulnerability index and higher conduit wall reinforcement, vessel grouping index, and wood density) compared with their hosts, supporting the trade-off between efficiency and safety. Environmental variation across sites significantly affected xylem trait comparisons between mistletoes and hosts. Additionally, the xylem traits of mistletoes were strongly influenced by host water supply efficiency. The overall xylem trait relationships in mistletoes and hosts were different. These findings stress the impact of host and site on the hydraulic traits of mistletoes, and suggest that mistletoes may achieve high transpiration by maintaining high stomatal conductance under low water potentials. This study illuminates the distinctive adaptation strategies of mistletoes due to their parasitic lifestyle.
Collapse
Affiliation(s)
- Yun-Bing Zhang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China
| | - Xian-Yan Huang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China
- School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China
| | - Marina Corrêa Scalon
- Programa de Pós-graduação em Ecologia e Conservação, Universidade Federal do Paraná, Curitiba, PR, 81531-990, Brazil
| | - Yan Ke
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing-Xin Liu
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China
| | - Qin Wang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wen-Hua Li
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China
| | - Da Yang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China
| | - David S Ellsworth
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Yong-Jiang Zhang
- School of Biology and Ecology, University of Maine, Orono, ME, 04469, USA
- Climate Change Institute, University of Maine, Orono, ME, 04469, USA
| | - Jiao-Lin Zhang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China
| |
Collapse
|
12
|
Jin Y, Ye Q, Liu X, Liu H, Gleason SM, He P, Liang X, Wu G. Precipitation, solar radiation, and their interaction modify leaf hydraulic efficiency-safety trade-off across angiosperms at the global scale. THE NEW PHYTOLOGIST 2024; 244:2267-2277. [PMID: 39425251 DOI: 10.1111/nph.20213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/28/2024] [Indexed: 10/21/2024]
Abstract
In theory, there is a trade-off between hydraulic efficiency and safety. However, the strength and direction of this trade-off at the leaf level are not consistent across studies, and habitat climate may impact this trade-off. We compiled a leaf hydraulic efficiency and safety dataset for 362 species from 81 sites world-wide, with 280 paired observations of both traits, and tested whether climate was associated with departure from the proposed trade-off. The leaf hydraulic efficiency-safety trade-off was weak (R2 = 0.144) at the global scale. Mean annual precipitation and solar radiation (SR) modified the trade-off. Species from dry and high SR habitats (e.g. desert and tropical savanna) were generally located above the trade-off line, indicating that these species tended to have higher leaf hydraulic safety and efficiency than species from wet habitats with low SR (e.g. subtropical monsoon forest and montane rainforest), which were located below the trade-off line. Leaves with high vein density, dry leaf mass per area, and osmotic regulation enhanced safety without compromising hydraulic efficiency. Variation in the hydraulic efficiency-safety trade-off at the leaf level likely facilitates plant survival in specific habitats and allows for a more nuanced view of leaf hydraulic adaption strategies at the global scale.
Collapse
Affiliation(s)
- Yi Jin
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- Jiangxi Provincial Key Laboratory of Carbon Neutrality and Ecosystem Carbon Sink, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, 332900, China
| | - Qing Ye
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Xiaorong Liu
- The Research Center for the Development of Sichuan Old Revolutionary Area, Sichuan University of Arts and Science, Dazhou, 635000, China
| | - Hui Liu
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- Jiangxi Provincial Key Laboratory of Carbon Neutrality and Ecosystem Carbon Sink, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, 332900, China
| | - Sean M Gleason
- Water Management and Systems Research Unit, USDA-ARS, Fort Collins, CO, 80526, USA
| | - Pengcheng He
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Xingyun Liang
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Guilin Wu
- Hainan Jianfengling Forest Ecosystem National Field Science Observation and Research Station, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, 510520, China
| |
Collapse
|
13
|
Spitzer DB, Ocheltree TW, Gleason SM. Some unique anatomical scaling relationships among genera in the grass subfamily Pooideae. AOB PLANTS 2024; 16:plae059. [PMID: 39512791 PMCID: PMC11538577 DOI: 10.1093/aobpla/plae059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 10/19/2024] [Indexed: 11/15/2024]
Abstract
Members of the grass family Poaceae have adapted to a wide range of habitats and disturbance regimes globally. The cellular structure and arrangements of leaves can help explain how plants survive in different climates, but these traits are rarely measured in grasses. Most studies are focussed on individual species or distantly related species within Poaceae. While this focus can reveal broad adaptations, it is also likely to overlook subtle adaptations within more closely related groups (subfamilies, tribes). This study, therefore, investigated the scaling relationships between leaf size, vein length area (VLA) and vessel size in five genera within the subfamily Pooideae. The scaling exponent of the relationship between leaf area and VLA was -0.46 (±0.21), which is consistent with previous studies. In Poa and Elymus, however, minor vein number and leaf length were uncorrelated, whereas in Festuca these traits were positively correlated (slope = 0.82 ± 0.8). These findings suggest there are broad-scale and fine-scale variations in leaf hydraulic traits among grasses. Future studies should consider both narrow and broad phylogenetic gradients.
Collapse
Affiliation(s)
- Daniel B Spitzer
- Graduate Degree Program in Ecology, Colorado State University, 102 Johnson Hall, Fort Collins, CO 80523-1021, USA
| | - Troy W Ocheltree
- Graduate Degree Program in Ecology, Colorado State University, 102 Johnson Hall, Fort Collins, CO 80523-1021, USA
- Department of Forest and Rangeland Stewardship, Colorado State University, 1472 Campus Delivery, Fort Collins, CO 80523-1472, USA
| | - Sean M Gleason
- Department of Biological Sciences, Macquarie University, Building E8B, Eastern Road, North Ryde, NSW 2109, Australia
- Water Management and Systems Research Unit, United States Department of Agriculture, Agricultural Research Service, 2150 Center Ave, Build D, Suite 320, Fort Collins, CO 80526, USA
| |
Collapse
|
14
|
Silva LM, Pereira L, Kaack L, Guan X, Pfaff J, Trabi CL, Jansen S. The potential link between gas diffusion and embolism spread in angiosperm xylem: Evidence from flow-centrifuge experiments and modelling. PLANT, CELL & ENVIRONMENT 2024; 47:4977-4991. [PMID: 39119783 DOI: 10.1111/pce.15084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/19/2024] [Accepted: 07/27/2024] [Indexed: 08/10/2024]
Abstract
Understanding xylem embolism formation is challenging due to dynamic changes and multiphase interactions in conduits. Here, we hypothesise that embolism spread involves gas diffusion in xylem, and is affected by time. We measured hydraulic conductivity (Kh) in flow-centrifuge experiments over 1 h at a given pressure and temperature for stem samples of three angiosperm species. Temporal changes in Kh at 5, 22, and 35°C, and at various pressures were compared to modelled gas concentration changes in a recently embolised vessel in the centre of a centrifuge sample. Temporal changes in Kh were logarithmic and species-specific. Maximum relative increases of Kh between 6% and 40% happened at 22°C for low centrifugal speed (<3250 RPM), while maximum decreases between 41% and 61% occurred at higher speeds. These reductions in Kh were experimentally shown to be associated with a temporal increase of embolism at the centre of centrifuge samples, which was likely associated with gas concentration increases in recently embolized vessels. Although embolism is mostly pressure-driven, our experimental and modelled data indicate that time, conduit characteristics, and temperature are involved due to their potential role in gas diffusion. Gas diffusion, however, does not seem to cover the entire process of embolism spread.
Collapse
Affiliation(s)
| | | | - Lucian Kaack
- Institute of Botany, Ulm University, Ulm, Germany
- Botanical Garden of Ulm University, Hans-Krebs-Weg, Ulm, Germany
| | - Xinyi Guan
- Institute of Botany, Ulm University, Ulm, Germany
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, China
| | - Jonas Pfaff
- Institute of Botany, Ulm University, Ulm, Germany
| | - Christophe L Trabi
- Institute of Botany, Ulm University, Ulm, Germany
- Core Facility Confocal and Multiphoton Microscopy, Ulm University, Ulm, Germany
| | | |
Collapse
|
15
|
Rimer IM, McAdam SAM. Within-leaf variation in embolism resistance is not a rule for compound-leaved angiosperms. AMERICAN JOURNAL OF BOTANY 2024; 111:e16447. [PMID: 39686518 DOI: 10.1002/ajb2.16447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 12/18/2024]
Abstract
PREMISE Hydraulic segmentation, caused by the difference in embolism resistance across plant organs, provides a sacrificial layer of cheaper plant organs, like leaves, to protect more costly organs, such as stems, during drought. Within-leaf hydraulic segmentation has been observed in two compound-leaved tree species, with leaflets being more vulnerable than the rachis or petiole. Many herbaceous species have compound leaves, and some species have leaflets that are associated with pulvini at the base of the lamina, which could provide an anatomical means of preventing embolism from spreading within a leaf because of the higher number of vessel endings in the pulvinus. METHODS We used the optical vulnerability method to investigate whether differences in embolism resistance were observed across the leaf tissues of six herbaceous species and one deciduous tree species with compound leaves. Our species selection included both palmately and pinnately-compound leaved species, one of each with a pulvinus at the base of the leaflets. RESULTS We found considerable variation in embolism resistance across the species measured, but no evidence of variation in embolism resistance within the leaf. In two species with pulvini, we observed major embolism events crossing the pulvinus, spreading from the rachis or petiole into the lamina, and embolizing both tissues at the same water potential. CONCLUSIONS We conclude that within-leaf hydraulic segmentation, caused by variation in embolism resistance, is not a universal phenomenon to compound-leaved species and that the presence of a pulvinus does not provide a barrier to embolism spread in compound leaves.
Collapse
Affiliation(s)
- Ian M Rimer
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, USA
| | - Scott A M McAdam
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
16
|
Lin X, Wu C, Zhang K, Dong H, Xiao L, Li F, Huang Y, Li Q. Hydraulic strategy defines contrasting responses to an abrupt precipitation during a successive lethal drought. BMC PLANT BIOLOGY 2024; 24:1143. [PMID: 39609699 PMCID: PMC11606033 DOI: 10.1186/s12870-024-05859-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 11/21/2024] [Indexed: 11/30/2024]
Abstract
BACKGROUND As precipitation patterns are predicted to become more erratic, it's vital to understand how abrupt climate events will affect woody seedlings that develop different hydraulic strategies. We cultivated anisohydric Robinia pseudoacacia L. and isohydric Quercus acutissima Carr. in a greenhouse, and subjected an abrupt precipitation event during a successive drought. Patterns of leaf and root gas exchange, leaf and stem hydraulics, seedlings growth, and non-structural carbohydrate (NSC) patterns were determined. RESULTS We found that as an anisohydric species, R. pseudoacacia seedlings adopted a strategy of sacrificing leaves in response to stress, resulting in the lowered photosynthesis and ultimately leading to a decrease in NSC accumulation. In contrast, isohydric Q. acutissima maintained the integrity of leaves by reducing respiratory consumption in response to drought stress, thereby ensured the stability of NSC pool. CONCLUSION R. pseudoacacia exhibited an extravagant strategy with efficient water transport, photosynthetic assimilation, and growth capabilities, but its resistance to embolism was relatively weak, while Q. acutissima adopted a resource-saving strategy with higher hydraulic safety. We also found that Q. acutissima seedlings were prone to allocate carbohydrates to maintain growth, while R. pseudoacacia preferred to sacrifice growth and aboveground NSC limitation only happened when precipitation was subjected after total stomatal closure. We thus believe that hydraulic strategy could define seedlings responses to drought and recovery, and further may adversely affect their re-sprouting capacity after drought stress relief.
Collapse
Affiliation(s)
- Xiaoying Lin
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, 571199, China
| | - Caixiao Wu
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, 571199, China
| | - Kaikai Zhang
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, 571199, China
| | - Haoran Dong
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, 571199, China
| | - Ling Xiao
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, 571199, China
| | - Fan Li
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, 571199, China
| | - Yao Huang
- Ministry of Education Key Laboratory for Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Hainan University, Haikou, 570228, China
| | - Qiang Li
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, 571199, China.
| |
Collapse
|
17
|
Bortolami G, de Werk TA, Larter M, Thonglim A, Mueller-Roeber B, Balazadeh S, Lens F. Integrating gene expression analysis and ecophysiological responses to water deficit in leaves of tomato plants. Sci Rep 2024; 14:29024. [PMID: 39578554 PMCID: PMC11584733 DOI: 10.1038/s41598-024-80261-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 11/18/2024] [Indexed: 11/24/2024] Open
Abstract
Soil water deficit (WD) significantly impacts plant survival and crop yields. Many gaps remain in our understanding of the synergistic coordination between molecular and ecophysiological responses delaying substantial drought-induced effects on plant growth. To investigate this synergism in tomato leaves, we combined molecular, ecophysiological, and anatomical methods to examine gene expression patterns and physio-anatomical characteristics during a progressing WD experiment. Four sampling points were selected for transcriptomic analysis based on the key ecophysiological responses of the tomato leaves: 4 and 5 days after WD (d-WD), corresponding to 10% and 90% decrease in leaf stomatal conductance; 8 d-WD, the leaf wilting point; and 10 d-WD, when air embolism blocks 12% of the leaf xylem water transport. At 4 d-WD, upregulated genes were mostly linked to ABA-independent responses, with larger-scale ABA-dependent responses occurring at 5 d-WD. At 8 d-WD, we observed an upregulation of heat shock transcription factors, and two days later (10 d-WD), we found a strong upregulation of oxidative stress transcription factors. Finally, we found that young leaves present a stronger dehydration tolerance than mature leaves at the same drought intensity level, presumably because young leaves upregulate genes related to increased callose deposition resulting in limiting water loss to the phloem, and related to increased cell rigidity by modifying cell wall structures. This combined dataset will serve as a framework for future studies that aim to obtain a more holistic WD plant response at the molecular, ecophysiological and anatomical level.
Collapse
Affiliation(s)
- G Bortolami
- Naturalis Biodiversity Center, Research Group Functional Traits, PO Box 9517, 2300 RA, Leiden, The Netherlands
- Plant Ecology Research Laboratory, School of Architecture, Civil and Environmental Engineering, 1015, Lausanne, Switzerland
| | - T A de Werk
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Straße 24-25, Haus 20, 14476, Potsdam, Germany
- Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - M Larter
- Naturalis Biodiversity Center, Research Group Functional Traits, PO Box 9517, 2300 RA, Leiden, The Netherlands
- BIOGECO, INRAE, Université de Bordeaux, 33615, Pessac, France
| | - A Thonglim
- Naturalis Biodiversity Center, Research Group Functional Traits, PO Box 9517, 2300 RA, Leiden, The Netherlands
| | - B Mueller-Roeber
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Straße 24-25, Haus 20, 14476, Potsdam, Germany
- Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - S Balazadeh
- Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany.
- Institute Biology Leiden, Sylvius Laboratory, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands.
| | - F Lens
- Naturalis Biodiversity Center, Research Group Functional Traits, PO Box 9517, 2300 RA, Leiden, The Netherlands.
- Institute Biology Leiden, Sylvius Laboratory, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands.
| |
Collapse
|
18
|
Harrison Day BL, Brodersen CR, Brodribb TJ. Weak link or strong foundation? Vulnerability of fine root networks and stems to xylem embolism. THE NEW PHYTOLOGIST 2024; 244:1288-1302. [PMID: 39267263 DOI: 10.1111/nph.20115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/21/2024] [Indexed: 09/17/2024]
Abstract
Resolving the position of roots in the whole-plant hierarchy of drought-induced xylem embolism resistance is fundamental for predicting when species become isolated from soil water resources. Published research generally suggests that roots are the most vulnerable organ of the plant vascular system, although estimates vary significantly. However, our knowledge of root embolism excludes the fine roots (< 2 mm diameter) that form the bulk of total absorptive surface area of the root network for water and nutrient uptake. We measured fine root and stem xylem vulnerability in 10 vascular plant species from the major land plant clades (five angiosperms, three conifers, a fern and lycophyte), using standardised in situ methods (Optical Methods and MicroCT). Mean fine root embolism resistance across the network matched or exceeded stems in all study species. In six of these species (one fern, one lycophyte, three conifers and one angiosperm), fine roots were significantly more embolism resistant than stems. No clear relationship was found between root xylem conduit diameter and vulnerability. These results provide insight into the resistance of the plant hydraulic pathway at the site of water and nutrient uptake, and challenge the long-standing assumption that fine roots are more vulnerable than stems.
Collapse
Affiliation(s)
- Beatrice L Harrison Day
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS, 7001, Australia
- School of the Environment, Yale University, New Haven, CT, 06520, USA
| | - Craig R Brodersen
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS, 7001, Australia
- School of the Environment, Yale University, New Haven, CT, 06520, USA
| | - Timothy J Brodribb
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS, 7001, Australia
| |
Collapse
|
19
|
Parri S, Faleri C, Romi M, del Río JC, Rencoret J, Dias MCP, Anichini S, Cantini C, Cai G. Unravelling Different Water Management Strategies in Three Olive Cultivars: The Role of Osmoprotectants, Proteins, and Wood Properties. Int J Mol Sci 2024; 25:11059. [PMID: 39456839 PMCID: PMC11507519 DOI: 10.3390/ijms252011059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/09/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Understanding the responses of olive trees to drought stress is crucial for improving cultivation and developing drought-tolerant varieties. Water transport and storage within the plant is a key factor in drought-tolerance strategies. Water management can be based on a variety of factors such as stomatal control, osmoprotectant molecules, proteins and wood properties. The aim of the study was to evaluate the water management strategy under drought stress from an anatomical and biochemical point of view in three young Italian olive cultivars (Giarraffa, Leccino and Maurino) previously distinguished for their physiological and metabolomic responses. For each cultivar, 15 individuals in pots were exposed or not to 28 days of water withholding. Every 7 days, the content of sugars (including mannitol), proline, aquaporins, osmotins, and dehydrins, in leaves and stems, as well as the chemical and anatomical characteristics of the wood of the three cultivars, were analyzed. 'Giarraffa' reduced glucose levels and increased mannitol production, while 'Leccino' accumulated more proline. Both 'Leccino' and 'Maurino' increased sucrose and aquaporin levels, possibly due to their ability to remove embolisms. 'Maurino' and 'Leccino' accumulated more dehydrins and osmotins. While neither genotype nor stress affected wood chemistry, 'Maurino' had a higher vessel-to-xylem area ratio and a larger hydraulic diameter, which allows it to maintain a high transpiration rate but may make it more susceptible to cavitation. The results emphasized the need for an integrated approach, highlighting the importance of the relative timing and sequence of each parameter analyzed, allowing, overall, to define a "strategy" rather than a "response" to drought of each cultivar.
Collapse
Affiliation(s)
- Sara Parri
- Department of Life Sciences, University of Siena, Via Mattioli 4, 53100 Siena, Italy; (S.P.); (C.F.); (M.R.); (S.A.)
| | - Claudia Faleri
- Department of Life Sciences, University of Siena, Via Mattioli 4, 53100 Siena, Italy; (S.P.); (C.F.); (M.R.); (S.A.)
| | - Marco Romi
- Department of Life Sciences, University of Siena, Via Mattioli 4, 53100 Siena, Italy; (S.P.); (C.F.); (M.R.); (S.A.)
| | - José C. del Río
- Instituto de Recursos Naturales y Agrobiología de Sevilla, CSIC, Reina Mercedes 10, E-41012 Seville, Spain; (J.C.d.R.); (J.R.)
| | - Jorge Rencoret
- Instituto de Recursos Naturales y Agrobiología de Sevilla, CSIC, Reina Mercedes 10, E-41012 Seville, Spain; (J.C.d.R.); (J.R.)
| | - Maria Celeste Pereira Dias
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal;
| | - Sara Anichini
- Department of Life Sciences, University of Siena, Via Mattioli 4, 53100 Siena, Italy; (S.P.); (C.F.); (M.R.); (S.A.)
- Department of Agriculture, Food, Environment and Forestry, University of Florence, Piazzale delle Cascine, 18, 50144 Firenze, Italy
| | - Claudio Cantini
- Institute for BioEconomy (IBE), National Research Council (CNR), Strada Provinciale Aurelia Vecchia 49, 58022 Follonica, Italy;
| | - Giampiero Cai
- Department of Life Sciences, University of Siena, Via Mattioli 4, 53100 Siena, Italy; (S.P.); (C.F.); (M.R.); (S.A.)
| |
Collapse
|
20
|
Appezzato-DA-Glória B, Pace MR, Souza DDS, Silva GSDA, Barbosa LHS. Vessel element morphology of Allagoptera campestris (Mart.) Kuntze (Arecaceae) belowground organs affected by growing conditions. AN ACAD BRAS CIENC 2024; 96:e20240053. [PMID: 39383350 DOI: 10.1590/0001-3765202420240053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/22/2024] [Indexed: 10/11/2024] Open
Abstract
Allagoptera campestris is an acaulescent, rhizomatous palm tree that occurs in grassland and savanna areas (Cerrado). In the Santa Bárbara Ecological Station (Águas de Santa Bárbara, São Paulo, Brazil) the species is found growing in three distinct conditions: 1) in the understory of Pinus species plantations introduced in the 1970s in formerly open savanna, 2) in an area where Pinus species cultivated in the 1970s were later removed and the remaining material burned, and 3) in an open, undisturbed savanna area without the interference of pines. Anatomical studies carried out with A. campestris leaves collected in the same three areas indicated leaf plasticity in response to growth conditions. To verify whether there are differences in vessel element morphology in belowground organs, light, and scanning electron microscopy analyses were conducted on portions just below the crown, in the middle of the rhizome, and the median portions of three longer adventitious roots sampled from three plants in each area. The study reveals significant variations in vessel element characteristics of A. campestris, with roots consistently displaying longer and larger elements than rhizomes, and environmental conditions, especially in pine understory, influence vessel dimensions, and hydraulic conductivity in a negative manner.
Collapse
Affiliation(s)
- Beatriz Appezzato-DA-Glória
- Universidade de São Paulo, Escola Superior de Agricultura Luiz de Queiroz, Departamento de Ciências Biológicas, Laboratório de Anatomia Vegetal, Avenida Pádua Dias, 11, 13418-900 Piracicaba, SP, Brazil
| | - Marcelo Rodrigo Pace
- National Autonomous University of Mexico, Institute of Biology, Department of Botany, Circuito Zona Deportiva, s/n, Ciudad Universitaria, 04510 Mexico City, Mexico
| | - Daiane Dos S Souza
- Universidade de São Paulo, Escola Superior de Agricultura Luiz de Queiroz, Departamento de Ciências Biológicas, Laboratório de Anatomia Vegetal, Avenida Pádua Dias, 11, 13418-900 Piracicaba, SP, Brazil
| | - Gabriela S DA Silva
- Institute of Botany of the Czech Academy of Sciences, Dukelská, 135, 37901 Třeboň, Czech Republic
| | - Lucas Henrique S Barbosa
- Universidade de São Paulo, Escola Superior de Agricultura Luiz de Queiroz, Departamento de Ciências Biológicas, Laboratório de Anatomia Vegetal, Avenida Pádua Dias, 11, 13418-900 Piracicaba, SP, Brazil
| |
Collapse
|
21
|
Matthews A, Katul G, Porporato A. Multiple time scale optimization explains functional trait responses to leaf water potential. THE NEW PHYTOLOGIST 2024; 244:426-435. [PMID: 39160672 DOI: 10.1111/nph.20035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 07/22/2024] [Indexed: 08/21/2024]
Abstract
Plant response to water stress involves multiple timescales. In the short term, stomatal adjustments optimize some fitness function commonly related to carbon uptake, while in the long term, traits including xylem resilience are adjusted. These optimizations are usually considered independently, the former involving stomatal aperture and the latter carbon allocation. However, short- and long-term adjustments are interdependent, as 'optimal' in the short term depends on traits set in the longer term. An economics framework is used to optimize long-term traits that impact short-term stomatal behavior. Two traits analyzed here are the resilience of xylem and the resilience of nonstomatal limitations (NSLs) to photosynthesis at low-water potentials. Results show that optimality requires xylem resilience to increase with climatic aridity. Results also suggest that the point at which xylem reach 50% conductance and the point at which NSLs reach 50% capacity are constrained to approximately a 2 : 1 linear ratio; however, this awaits further experimental verification. The model demonstrates how trait coordination arises mathematically, and it can be extended to many other traits that cross timescales. With further verification, these results could be used in plant modelling when information on plant traits is limited.
Collapse
Affiliation(s)
- Aidan Matthews
- Department of Civil and Environmental Engineering and High Meadows Environmental Institute, Princeton University, Princeton, NJ, 08540, USA
| | - Gabriel Katul
- Department of Civil and Environmental Engineering, Duke University, Durham, NC, 27708, USA
| | - Amilcare Porporato
- Department of Civil and Environmental Engineering and High Meadows Environmental Institute, Princeton University, Princeton, NJ, 08540, USA
| |
Collapse
|
22
|
Alon A, Ginzburg N, Zemach H, Voet H, Cohen S, David-Schwartz R. Growing at the arid edge: Anatomical variations in leaves are more extensive than in stems of five Mediterranean species across contrasting moisture regimes. AMERICAN JOURNAL OF BOTANY 2024; 111:e16407. [PMID: 39305264 DOI: 10.1002/ajb2.16407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 06/10/2024] [Accepted: 06/10/2024] [Indexed: 10/25/2024]
Abstract
PREMISE Increasing aridity in the Mediterranean region affects ecosystems and plant life. Various anatomical changes in plants help them cope with dry conditions. This study focused on anatomical differences in leaves and xylem of five co-occurring Mediterranean plant species namely Quercus calliprinos, Pistacia palaestina, Pistacia lentiscus, Rhamnus lycioides, and Phillyrea latifolia in wet and dry sites. METHODS Stomatal density, stomatal length, leaf mass area, lamina composition, percentage of intercellular air spaces, and mesophyll cell area in leaves of plants in wet and dry sites were analyzed. Xylem anatomy was assessed through vessel length and area in branches. RESULTS In the dry site, three species had increased stomatal density and decreased stomatal length. Four species had increased palisade mesophyll and reduced air space volume. In contrast, phenotypic changes in the xylem were less pronounced; vessel length was unaffected by site conditions, but vessel diameter decreased in two species. Intercellular air spaces proved to be the most dynamic anatomical feature. Quercus calliprinos had the most extensive anatomical changes; Rhamnus lycioides had only minor changes. All these changes were observed in comparison to the species in the wet site. CONCLUSIONS This study elucidated variations in anatomical responses in leaves among co-occurring Mediterranean plant species and identified the most dynamic traits. Understanding these adaptations provides valuable insights into the ability of plants to thrive under changing climate conditions.
Collapse
Affiliation(s)
- Asaf Alon
- Institute of Plant Sciences, Volcani Center, Agricultural Research Organization, Rishon LeZion, Israel
- Institute of Soil, Water and Environmental Sciences, Volcani Center, Agricultural Research Organization, Rishon LeZion, Israel
- Department of Environmental Economics and Management, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Neta Ginzburg
- Institute of Plant Sciences, Volcani Center, Agricultural Research Organization, Rishon LeZion, Israel
| | - Hanita Zemach
- Institute of Plant Sciences, Volcani Center, Agricultural Research Organization, Rishon LeZion, Israel
| | - Hillary Voet
- Department of Environmental Economics and Management, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Shabtai Cohen
- Institute of Soil, Water and Environmental Sciences, Volcani Center, Agricultural Research Organization, Rishon LeZion, Israel
| | - Rakefet David-Schwartz
- Institute of Plant Sciences, Volcani Center, Agricultural Research Organization, Rishon LeZion, Israel
| |
Collapse
|
23
|
Huang X, Hou ZL, Ma BL, Zhao H, Jiang ZM, Cai J. Seasonality in embolism resistance and hydraulic capacitance jointly mediate hydraulic safety in branches and leaves of oriental cork oak (Quercus variabilis Bl.). TREE PHYSIOLOGY 2024; 44:tpae109. [PMID: 39216110 DOI: 10.1093/treephys/tpae109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 05/31/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Seasonality in temperate regions is prominent during the era of increased climatic variability. A hydraulic trait that can adjust to seasonally changing climatic conditions is crucial for tree safety. However, little attention has been paid to the intraspecific seasonality of drought-related traits and hydraulic safety of keystone forest trees. We examined seasonal variations in the key morphological and physiological traits as well as multiple hydraulic safety margins (SMs) at the branch and leaf levels in oriental cork oak (Quercus variabilis Bl.), which is predominant in Chinese temperate forests. Pneumatic measurements indicated that, as seasons progressed, the water potential at which 50% of branch embolisms occur (P50_branch) decreased from -3.34 to -4.23 MPa, with a coefficient of variation (CV) of 9.08%. Sapwood capacitance ranged from 48.19 to 248.08 kg m-3 MPa-1, peaking in autumn and reaching minimum in winter (CV 60.58%). Rehydration kinetics confirmed higher leaf embolism vulnerability (P50_leaf) in spring and autumn than those in summer, with values ranging from -1.06 to -3.02 MPa (CV 39.85%). All leaf pressure-volume (PV) traits shifted with growth, with CVs ranging from 6.95% to 46.69%. Sapwood density had significant negative correlations with P50_branch and hydraulic capacitance for elastic water storage, whereas leaf mass per area was linearly associated with PV traits but not with P50_leaf. Furthermore, the branch typical SMs (difference between branch midday water potential and P50_branch) were consistently >1.84 MPa, and vulnerability segmentation was prevalent throughout, implying a plausible hydraulic foundation for the dominance of Q. variabilis. Diverse hydraulic response patterns existed across seasons, leading to positive SMs mediated by the aforementioned physiological traits. Although Q. variabilis exhibits a high level of hydraulic safety, its susceptibility to sudden summer droughts may increase due to global climate change.
Collapse
Affiliation(s)
- Xin Huang
- College of Forestry, Northwest A&F University, 3 Taicheng Road, Yangling 712100, China
| | - Zhuo-Liang Hou
- College of Forestry, Northwest A&F University, 3 Taicheng Road, Yangling 712100, China
| | - Bo-Long Ma
- College of Forestry, Northwest A&F University, 3 Taicheng Road, Yangling 712100, China
| | - Han Zhao
- College of Forestry, Northwest A&F University, 3 Taicheng Road, Yangling 712100, China
| | - Zai-Min Jiang
- College of Life, Northwest A&F University, 3 Taicheng Road, Yangling 712100, China
- Qinling National Forest Ecosystem Research Station, Northwest A&F University, 3 Taicheng Road, Yangling 712100, China
| | - Jing Cai
- College of Forestry, Northwest A&F University, 3 Taicheng Road, Yangling 712100, China
- Qinling National Forest Ecosystem Research Station, Northwest A&F University, 3 Taicheng Road, Yangling 712100, China
| |
Collapse
|
24
|
Jiang GF, Qin BT, Pang YK, Qin LL, Pereira L, Roddy AB. Limited effects of xylem anatomy on embolism resistance in cycad leaves. THE NEW PHYTOLOGIST 2024; 243:1329-1346. [PMID: 38898642 DOI: 10.1111/nph.19914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 06/01/2024] [Indexed: 06/21/2024]
Abstract
Drought-induced xylem embolism is a primary cause of plant mortality. Although c. 70% of cycads are threatened by extinction and extant cycads diversified during a period of increasing aridification, the vulnerability of cycads to embolism spread has been overlooked. We quantified the vulnerability to drought-induced embolism, pressure-volume curves, in situ water potentials, and a suite of xylem anatomical traits of leaf pinnae and rachises for 20 cycad species. We tested whether anatomical traits were linked to hydraulic safety in cycads. Compared with other major vascular plant clades, cycads exhibited similar embolism resistance to angiosperms and pteridophytes but were more vulnerable to embolism than noncycad gymnosperms. All 20 cycads had both tracheids and vessels, the proportions of which were unrelated to embolism resistance. Only vessel pit membrane fraction was positively correlated to embolism resistance, contrary to angiosperms. Water potential at turgor loss was significantly correlated to embolism resistance among cycads. Our results show that cycads exhibit low resistance to xylem embolism and that xylem anatomical traits - particularly vessels - may influence embolism resistance together with tracheids. This study highlights the importance of understanding the mechanisms of drought resistance in evolutionarily unique and threatened lineages like the cycads.
Collapse
Affiliation(s)
- Guo-Feng Jiang
- Guangxi Key Laboratory of Forest Ecology and Conservation, Guangxi Colleges and Universities Key Laboratory for Cultivation and Utilization of Subtropical Forest Plantation, and State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Daxuedonglu 100, Nanning, Guangxi, 530004, China
| | - Bo-Tao Qin
- Guangxi Key Laboratory of Forest Ecology and Conservation, Guangxi Colleges and Universities Key Laboratory for Cultivation and Utilization of Subtropical Forest Plantation, and State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Daxuedonglu 100, Nanning, Guangxi, 530004, China
| | - Yu-Kun Pang
- Guangxi Key Laboratory of Forest Ecology and Conservation, Guangxi Colleges and Universities Key Laboratory for Cultivation and Utilization of Subtropical Forest Plantation, and State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Daxuedonglu 100, Nanning, Guangxi, 530004, China
| | - Lan-Li Qin
- Guangxi Key Laboratory of Forest Ecology and Conservation, Guangxi Colleges and Universities Key Laboratory for Cultivation and Utilization of Subtropical Forest Plantation, and State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Daxuedonglu 100, Nanning, Guangxi, 530004, China
- College of Chemistry and Bioengineering, Hechi University, Yizhou, Guangxi, 546300, China
| | - Luciano Pereira
- Institute of Botany, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Adam B Roddy
- Department of Biological Sciences, Institute of Environment, Florida International University, Miami, FL, 33199, USA
| |
Collapse
|
25
|
Haverroth EJ, Rimer IM, Oliveira LA, de Lima LGA, Cesarino I, Martins SCV, McAdam SAM, Cardoso AA. Gradients in embolism resistance within stems driven by secondary growth in herbs. PLANT, CELL & ENVIRONMENT 2024; 47:2986-2998. [PMID: 38644584 DOI: 10.1111/pce.14921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/22/2024] [Accepted: 04/08/2024] [Indexed: 04/23/2024]
Abstract
The stems of some herbaceous species can undergo basal secondary growth, leading to a continuum in the degree of woodiness along the stem. Whether the formation of secondary growth in the stem base results in differences in embolism resistance between the base and the upper portions of stems is unknown. We assessed the embolism resistance of leaves and the basal and upper portions of stems simultaneously within the same individuals of two divergent herbaceous species that undergo secondary growth in the mature stem bases. The species were Solanum lycopersicum (tomato) and Senecio minimus (fireweed). Basal stem in mature plants of both species displayed advanced secondary growth and greater resistance to embolism than the upper stem. This also resulted in significant vulnerability segmentation between the basal stem and the leaves in both species. Greater embolism resistance in the woodier stem base was found alongside decreases in the pith-to-xylem ratio, increases in the proportion of secondary xylem, and increases in lignin content. We show that there can be considerable variation in embolism resistance across the stem in herbs and that this variation is linked to the degree of secondary growth present. A gradient in embolism resistance across the stem in herbaceous plants could be an adaptation to ensure reproduction or basal resprouting during episodes of drought late in the lifecycle.
Collapse
Affiliation(s)
- Eduardo J Haverroth
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Ian M Rimer
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, USA
| | - Leonardo A Oliveira
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Leydson G A de Lima
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, São Paulo, Brazil
- Synthetic and Systems Biology Center, InovaUSP, Avenida Professor Lucio Martins Rodrigues, São Paulo, Brazil
| | - Igor Cesarino
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, São Paulo, Brazil
- Synthetic and Systems Biology Center, InovaUSP, Avenida Professor Lucio Martins Rodrigues, São Paulo, Brazil
| | - Samuel C V Martins
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Scott A M McAdam
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, USA
| | - Amanda A Cardoso
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
26
|
Gerolamo CS, Pereira L, Costa FRC, Jansen S, Angyalossy V, Nogueira A. Lianas in tropical dry seasonal forests have a high hydraulic efficiency but not always a higher embolism resistance than lianas in rainforests. ANNALS OF BOTANY 2024; 134:337-350. [PMID: 38721801 PMCID: PMC11232521 DOI: 10.1093/aob/mcae077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 05/07/2024] [Indexed: 07/10/2024]
Abstract
BACKGROUND AND AIMS Lianas have higher relative abundance and biomass in drier seasonal forests than in rainforests, but whether this difference is associated with their hydraulic strategies is unclear. Here, we investigate whether lianas of seasonally dry forests are safer and more efficient in water transport than rainforest lianas, explaining patterns of liana abundance. METHODS We measured hydraulic traits on five pairs of congeneric lianas of the tribe Bignonieae in two contrasting forest sites: the wet 'Dense Ombrophilous Forest' in Central Amazonia (~2 dry months) and the drier 'Semideciduous Seasonal Forest' in the inland Atlantic Forest (~6 dry months). We also gathered a broader database, including 197 trees and 58 liana species from different tropical forests, to compare hydraulic safety between habits and forest types. KEY RESULTS Bignonieae lianas from both forests had high and similar hydraulic efficiency but exhibited variability in resistance to embolism across forest types when phylogenetic relationships were taken into account. Three genera had higher hydraulic safety in the seasonal forest than in the rainforest, but species across both forests had similar positive hydraulic safety margins despite lower predawn water potential values of seasonal forest lianas. We did not find the safety-efficiency trade-off. Merging our results with previously published data revealed a high variability of resistance to embolism in both trees and lianas, independent of forest types. CONCLUSIONS The high hydraulic efficiency of lianas detected here probably favours their rapid growth across tropical forests, but differences in hydraulic safety highlight that some species are highly vulnerable and may rely on other mechanisms to cope with drought. Future research on the lethal dehydration threshold and the connection between hydraulic resistance strategies and liana abundance could offer further insights into tropical forest dynamics under climatic threats.
Collapse
Affiliation(s)
- Caian S Gerolamo
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, 05508-090, Brazil
| | - Luciano Pereira
- Institute of Botany, Ulm University, Albert-Einstein-Allee 11, Ulm D-89081, Germany
| | - Flavia R C Costa
- Instituto Nacional de Pesquisas da Amazônia – INPA, Manaus, AM, 69011-970, Brazil
| | - Steven Jansen
- Institute of Botany, Ulm University, Albert-Einstein-Allee 11, Ulm D-89081, Germany
| | - Veronica Angyalossy
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, 05508-090, Brazil
| | - Anselmo Nogueira
- Centro de Ciências Naturais e Humanas (CCNH), Universidade Federal do ABC, São Bernardo do Campo, SP, 09606-070, Brazil
| |
Collapse
|
27
|
Rodríguez-Ramírez EC, Frei J, Ames-Martínez FN, Guerra A, Andrés-Hernández AR. Ecological stress memory in wood architecture of two Neotropical hickory species from central-eastern Mexico. BMC PLANT BIOLOGY 2024; 24:638. [PMID: 38971728 PMCID: PMC11227188 DOI: 10.1186/s12870-024-05348-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/27/2024] [Indexed: 07/08/2024]
Abstract
BACKGROUND Drought periods are major evolutionary triggers of wood anatomical adaptive variation in Lower Tropical Montane Cloud Forests tree species. We tested the influence of historical drought events on the effects of ecological stress memory on latewood width and xylem vessel traits in two relict hickory species (Carya palmeri and Carya myristiciformis) from central-eastern Mexico. We hypothesized that latewood width would decrease during historical drought years, establishing correlations between growth and water stress conditions, and that moisture deficit during past tree growth between successive drought events, would impact on wood anatomical features. We analyzed latewood anatomical traits that developed during historical drought and pre- and post-drought years in both species. RESULTS We found that repeated periods of hydric stress left climatic signatures for annual latewood growth and xylem vessel traits that are essential for hydric adaptation in tropical montane hickory species. CONCLUSIONS Our results demonstrate the existence of cause‒effect relationships in wood anatomical architecture and highlight the ecological stress memory linked with historical drought events. Thus, combined time-series analysis of latewood width and xylem vessel traits is a powerful tool for understanding the ecological behavior of hickory species.
Collapse
Affiliation(s)
- Ernesto C Rodríguez-Ramírez
- Laboratorio de Dendrocronología, Universidad Continental, Urbanización San Antonio, Avenida San Carlos 1980, Huancayo, Junín, Peru.
| | - Jonas Frei
- Atelier foifacht, Juglandaceae expert, Schaffhausen, Switzerland
| | - Fressia N Ames-Martínez
- Laboratorio de Biotecnología y Biología Molecular, Universidad Continental, Urbanización San Antonio, Huancayo, Peru
- Programa de Investigación de Ecología y Biodiversidad, Asociación ANDINUS, Calle Miguel Grau 370, Sicaya, Junín, Huancayo, Peru
| | - Anthony Guerra
- Programa de Pós-Graduação em Agronomia/Fisiologia Vegetal, Departamento de Biologia- Instituto de Ciências Naturais, Universidade Federal de Lavras, Lavras, Minas Gerais, 7203-202, Brazil
| | | |
Collapse
|
28
|
Suissa JS, Barkoff N, Watkins JE. Extreme functional specialization of fertile leaves in a widespread fern species and its implications on the evolution of reproductive dimorphism. Ecol Evol 2024; 14:e11552. [PMID: 38952657 PMCID: PMC11214101 DOI: 10.1002/ece3.11552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 07/03/2024] Open
Abstract
Resource allocation theory posits that organisms distribute limited resources across functions to maximize their overall fitness. In plants, the allocation of resources among maintenance, reproduction, and growth influences short-term economics and long-term evolutionary processes, especially during resource scarcity. The evolution of specialized structures to divide labor between reproduction and growth can create a feedback loop where selection can act on individual organs, further increasing specializaton and resource allocation. Ferns exhibit diverse reproductive strategies, including dimorphism, where leaves can either be sterile (only for photosynthesis) or fertile (for spore dispersal). This dimorphism is similar to processes in seed plants (e.g., the production of fertile flowers and sterile leaves), and presents an opportunity to investigate divergent resource allocation between reproductive and vegetative functions in specialized organs. Here, we conducted anatomical and hydraulic analyses on Onoclea sensibilis L., a widespread dimorphic fern species, to reveal significant structural and hydraulic divergences between fertile and sterile leaves. Fertile fronds invest less in hydraulic architecture, with nearly 1.5 times fewer water-conducting cells and a nearly 0.5 times less drought-resistant xylem compared to sterile fronds. This comes at the increased relative investment in structural support, which may help facilitate spore dispersal. These findings suggest that specialization in ferns-in the form of reproductive dimorphism-can enable independent selection pressures on each leaf type, potentially optimizing spore dispersal in fertile fronds and photosynthetic efficiency in sterile fronds. Overall, our study sheds light on the evolutionary implications of functional specialization and highlights the importance of reproductive strategies in shaping plant fitness and evolution.
Collapse
Affiliation(s)
- Jacob S. Suissa
- Department of Ecology and Evolutionary BiologyUniversity of Tennessee KnoxvilleKnoxvilleTennesseeUSA
| | - Noah Barkoff
- Department of Biological SciencesUniversity of Notre DameNotre DameIndianaUSA
| | | |
Collapse
|
29
|
D'Incà R, Mattioli R, Tomasella M, Tavazza R, Macone A, Incocciati A, Martignago D, Polticelli F, Fraudentali I, Cona A, Angelini R, Tavazza M, Nardini A, Tavladoraki P. A Solanum lycopersicum polyamine oxidase contributes to the control of plant growth, xylem differentiation, and drought stress tolerance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:960-981. [PMID: 38761363 DOI: 10.1111/tpj.16809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/26/2024] [Accepted: 05/03/2024] [Indexed: 05/20/2024]
Abstract
Polyamines are involved in several plant physiological processes. In Arabidopsis thaliana, five FAD-dependent polyamine oxidases (AtPAO1 to AtPAO5) contribute to polyamine homeostasis. AtPAO5 catalyzes the back-conversion of thermospermine (T-Spm) to spermidine and plays a role in plant development, xylem differentiation, and abiotic stress tolerance. In the present study, to verify whether T-Spm metabolism can be exploited as a new route to improve stress tolerance in crops and to investigate the underlying mechanisms, tomato (Solanum lycopersicum) AtPAO5 homologs were identified (SlPAO2, SlPAO3, and SlPAO4) and CRISPR/Cas9-mediated loss-of-function slpao3 mutants were obtained. Morphological, molecular, and physiological analyses showed that slpao3 mutants display increased T-Spm levels and exhibit changes in growth parameters, number and size of xylem elements, and expression levels of auxin- and gibberellin-related genes compared to wild-type plants. The slpao3 mutants are also characterized by improved tolerance to drought stress, which can be attributed to a diminished xylem hydraulic conductivity that limits water loss, as well as to a reduced vulnerability to embolism. Altogether, this study evidences conservation, though with some significant variations, of the T-Spm-mediated regulatory mechanisms controlling plant growth and differentiation across different plant species and highlights the T-Spm role in improving stress tolerance while not constraining growth.
Collapse
Affiliation(s)
- Riccardo D'Incà
- Department of Science, University Roma Tre, 00146, Rome, Italy
| | | | - Martina Tomasella
- Dipartimento di Scienze della Vita, Università di Trieste, Trieste, Italy
| | - Raffaela Tavazza
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), BIOAG-BIOTEC C.R. Casaccia, Rome, Italy
| | - Alberto Macone
- Department of Biochemical Sciences 'A. Rossi Fanelli', Sapienza University of Rome, Rome, Italy
| | - Alessio Incocciati
- Department of Biochemical Sciences 'A. Rossi Fanelli', Sapienza University of Rome, Rome, Italy
| | | | - Fabio Polticelli
- Department of Science, University Roma Tre, 00146, Rome, Italy
- National Institute of Nuclear Physics, Roma Tre Section, 00146, Rome, Italy
| | | | - Alessandra Cona
- Department of Science, University Roma Tre, 00146, Rome, Italy
- Istituto Nazionale Biostrutture e Biosistemi (INBB), Rome, Italy
| | - Riccardo Angelini
- Department of Science, University Roma Tre, 00146, Rome, Italy
- Istituto Nazionale Biostrutture e Biosistemi (INBB), Rome, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
| | - Mario Tavazza
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), BIOAG-BIOTEC C.R. Casaccia, Rome, Italy
| | - Andrea Nardini
- Dipartimento di Scienze della Vita, Università di Trieste, Trieste, Italy
| | - Paraskevi Tavladoraki
- Department of Science, University Roma Tre, 00146, Rome, Italy
- Istituto Nazionale Biostrutture e Biosistemi (INBB), Rome, Italy
| |
Collapse
|
30
|
Ma BL, Liao SH, Lv QZ, Huang X, Jiang ZM, Cai J. Seasonal plasticity of stem embolism resistance and its potential driving factors in six temperate woody species. PHYSIOLOGIA PLANTARUM 2024; 176:e14421. [PMID: 38956781 DOI: 10.1111/ppl.14421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 05/20/2024] [Accepted: 05/29/2024] [Indexed: 07/04/2024]
Abstract
The seasonal plasticity of resistance to xylem embolism has been demonstrated in leaves of some tree species, but is controversial in stems. In this study, we investigated the seasonality of stem xylem resistance to embolism in six temperate woody species (four deciduous and two evergreen tree species) that were grown at the same site. The xylem conduit anatomy, the concentrations, and ratios of the main cation in the xylem sap, as well as the content of nonstructural carbohydrates (including soluble sugars and starch) were measured in each species under each season to reveal the potential mechanisms of seasonal change in embolism resistance. The stem of all species showed increasing resistance to embolism as seasons progressed, with more vulnerable xylem in spring, but no significant adjustment in the other three seasons. The seasonal plasticity of stem embolism resistance was greater in deciduous species than in evergreen. On a seasonal scale, conduit diameter and conduit implosion resistance, the ratios of K+/Ca2+ and K+/Na+, and starch content were generally not correlated with embolism resistance, suggesting that these are probably not the main drivers of seasonal plasticity of stem embolism resistance. The seasonality of embolism resistance provides critical information for better understanding plant hydraulics in response to seasonal environments, especially under climate change.
Collapse
Affiliation(s)
- Bo-Long Ma
- College of Forestry, Northwest A&F University, Yangling, China
| | - Su-Hui Liao
- College of Forestry, Northwest A&F University, Yangling, China
| | - Qing-Zi Lv
- College of Forestry, Northwest A&F University, Yangling, China
| | - Xin Huang
- College of Forestry, Northwest A&F University, Yangling, China
| | - Zai-Min Jiang
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Jing Cai
- College of Forestry, Northwest A&F University, Yangling, China
- Qinling National Forest Ecosystem Research Station, Northwest A&F University, Yangling, China
| |
Collapse
|
31
|
Zambonini D, Savi T, Rosner S, Petit G. Consistent decrease in conifer embolism resistance from the stem apex to base resulting from axial trends in tracheid and pit traits. FRONTIERS IN PLANT SCIENCE 2024; 15:1414448. [PMID: 38988629 PMCID: PMC11234846 DOI: 10.3389/fpls.2024.1414448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/03/2024] [Indexed: 07/12/2024]
Abstract
Introduction Drought-induced embolism formation in conifers is associated with several tracheid and pit traits, which vary in parallel from stem apex to base. We tested whether this axial anatomical variability is associated with a progressive variation in embolism vulnerability along the stem from apex to base. Methods We assessed the tracheid hydraulic diameter (Dh), mean pit membrane area (PMA) and the xylem pressure at 50% loss of conductivity (P50) on longitudinal stem segments extracted at different distances from the stem apex (DFA) in a Picea abies and an Abies alba tree. Results In both trees, Dh and PMA scaled with DFA 0.2. P50 varied for more than 3 MPa from the treetop to the stem base, according to a scaling of -P50 with DFA-0.2 . The largest Dh, PMA and P50 variation occurred for DFA<1.5 m. PMA and Dh scaled more than isometrically (exponent b=1.2). Pit traits vary proportionally with tracheid lumen diameter. Discussion and conclusions Apex-to-base trends in tracheid and pit traits, along with variations in P50, suggest a strong structure-function relationship that is influenced by DFA. Although the effect of DFA on P50 has not been extensively explored previously, we propose that analyzing the relationship between P50 and DFA could be crucial for a comprehensive assessment of embolism vulnerability at the individual level.
Collapse
Affiliation(s)
- Dario Zambonini
- Dept. Territorio e Sistemi Agro-Forestali, Università degli Studi di Padova, Legnaro (PD), Italy
| | - Tadeja Savi
- Department of Integrative Biology and Biodiversity Research, University of Natural Resources and Life Sciences, Vienna (BOKU), Institute of Botany, Vienna, Austria
| | - Sabine Rosner
- Department of Integrative Biology and Biodiversity Research, University of Natural Resources and Life Sciences, Vienna (BOKU), Institute of Botany, Vienna, Austria
| | - Giai Petit
- Dept. Territorio e Sistemi Agro-Forestali, Università degli Studi di Padova, Legnaro (PD), Italy
| |
Collapse
|
32
|
Dimitrova A, Balzano A, Tsedensodnom E, Byambadorj SO, Nyam-Osor B, Scippa GS, Merela M, Chiatante D, Montagnoli A. The adaptability of Ulmus pumila and the sensitivity of Populus sibirica to semi-arid steppe is reflected in the stem and root vascular cambium and anatomical wood traits. FRONTIERS IN PLANT SCIENCE 2024; 15:1393245. [PMID: 38933456 PMCID: PMC11202817 DOI: 10.3389/fpls.2024.1393245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024]
Abstract
Afforestation success is measured by the tree establishment and growth capacity which contribute to a range of ecosystem services. In the Mongolian steppe, Populus sibirica and Ulmus pumila have been tested as candidate species for large afforestation programs, by analyzing their response to a combination of irrigation and fertilization treatments. While in temperate and Mediterranean forest ecosystems, xylogenetic studies provide insight into the trees' plasticity and adaptability, this type of knowledge is non-existent in semi-arid regions, whose climatic features are expected to become a global issue. Furthermore, in general, a comparison between the stem and root response is scarce or absent. In the present study, we show that the anatomical traits of the vascular cambium and the xylem, from stem and root microcores, reflect the previously noted dependence of P. sibirica from irrigation - as they proportionally increase and the higher adaptability of U. pumila to drought - due to the reduced impact across all five characteristics. As the first wood anatomy study of these species in semiarid areas, future research is urgently needed, as it could be a tool for quicker understanding of species' suitability under expected to be exacerbated semi-arid conditions.
Collapse
Affiliation(s)
- Anastazija Dimitrova
- Department of Bioscience and Territory, University of Molise, Pesche, Italy
- Department of Seed Science and Forest Stands, Hans Em Faculty of Forest Sciences, Landscape Architecture and Environmental Engineering, Ss. Cyril and Methodius University in Skopje, Skopje, North Macedonia
| | - Angela Balzano
- Department of Wood Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Enkhchimeg Tsedensodnom
- Laboratory of Forest Genetics and Ecophysiology, School of Engineering and Applied Sciences, National University of Mongolia, Ulaanbaatar, Mongolia
| | - Ser-Oddamba Byambadorj
- Laboratory of Forest Genetics and Ecophysiology, School of Engineering and Applied Sciences, National University of Mongolia, Ulaanbaatar, Mongolia
- Laboratory of Silviculture, College of Agriculture and Life Science, Chungnam National University, Daejeon, Republic of Korea
| | - Batkhuu Nyam-Osor
- Laboratory of Forest Genetics and Ecophysiology, School of Engineering and Applied Sciences, National University of Mongolia, Ulaanbaatar, Mongolia
| | | | - Maks Merela
- Department of Wood Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Donato Chiatante
- Laboratory of Environmental and Applied Botany, Department of Biotechnology and Life Science, University of Insubria, Varese, Italy
| | - Antonio Montagnoli
- Laboratory of Environmental and Applied Botany, Department of Biotechnology and Life Science, University of Insubria, Varese, Italy
| |
Collapse
|
33
|
Anfodillo T, Olson ME. Stretched sapwood, ultra-widening permeability and ditching da Vinci: revising models of plant form and function. ANNALS OF BOTANY 2024; 134:19-42. [PMID: 38634673 PMCID: PMC11161570 DOI: 10.1093/aob/mcae054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 04/14/2024] [Indexed: 04/19/2024]
Abstract
BACKGROUND The mechanisms leading to dieback and death of trees under drought remain unclear. To gain an understanding of these mechanisms, addressing major empirical gaps regarding tree structure-function relations remains essential. SCOPE We give reasons to think that a central factor shaping plant form and function is selection simultaneously favouring constant leaf-specific conductance with height growth and isometric (1:1) scaling between leaf area and the volume of metabolically active sink tissues ('sapwood'). Sapwood volume-leaf area isometry implies that per-leaf area sapwood volumes become transversely narrower with height growth; we call this 'stretching'. Stretching means that selection must favour increases in permeability above and beyond that afforded by tip-to-base conduit widening ("ultra-widening permeability"), via fewer and wider vessels or tracheids with larger pits or larger margo openings. Leaf area-metabolically active sink tissue isometry would mean that it is unlikely that larger trees die during drought because of carbon starvation due to greater sink-source relationships as compared to shorter plants. Instead, an increase in permeability is most plausibly associated with greater risk of embolism, and this seems a more probable explanation of the preferential vulnerability of larger trees to climate change-induced drought. Other implications of selection favouring constant per-leaf area sapwood construction and maintenance costs are departure from the da Vinci rule expectation of similar sapwood areas across branching orders, and that extensive conduit furcation in the stem seems unlikely. CONCLUSIONS Because all these considerations impact the likelihood of vulnerability to hydraulic failure versus carbon starvation, both implicated as key suspects in forest mortality, we suggest that these predictions represent essential priorities for empirical testing.
Collapse
Affiliation(s)
- Tommaso Anfodillo
- Department Territorio e Sistemi Agro-Forestali, University of Padova, Legnaro (PD) 35020, Italy
| | - Mark E Olson
- Instituto de Biología, Universidad Nacional Autónoma de México, Tercer Circuito sn de Ciudad Universitaria, Ciudad de México 04510, Mexico
| |
Collapse
|
34
|
Li S, Lu S, Wang J, Liu Z, Yuan C, Wang M, Guo J. Divergent effects of single and combined stress of drought and salinity on the physiological traits and soil properties of Platycladus orientalis saplings. FRONTIERS IN PLANT SCIENCE 2024; 15:1351438. [PMID: 38903426 PMCID: PMC11187290 DOI: 10.3389/fpls.2024.1351438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 05/22/2024] [Indexed: 06/22/2024]
Abstract
Drought and salinity are two abiotic stresses that affect plant productivity. We exposed 2-year-old Platycladus orientalis saplings to single and combined stress of drought and salinity. Subsequently, the responses of physiological traits and soil properties were investigated. Biochemical traits such as leaf and root phytohormone content significantly increased under most stress conditions. Single drought stress resulted in significantly decreased nonstructural carbohydrate (NSC) content in stems and roots, while single salt stress and combined stress resulted in diverse response of NSC content. Xylem water potential of P. orientalis decreased significantly under both single drought and single salt stress, as well as the combined stress. Under the combined stress of drought and severe salt, xylem hydraulic conductivity significantly decreased while NSC content was unaffected, demonstrating that the risk of xylem hydraulic failure may be greater than carbon starvation. The tracheid lumen diameter and the tracheid double wall thickness of root and stem xylem was hardly affected by any stress, except for the stem tracheid lumen diameter, which was significantly increased under the combined stress. Soil ammonium nitrogen, nitrate nitrogen and available potassium content was only significantly affected by single salt stress, while soil available phosphorus content was not affected by any stress. Single drought stress had a stronger effect on the alpha diversity of rhizobacteria communities, and single salt stress had a stronger effect on soil nutrient availability, while combined stress showed relatively limited effect on these soil properties. Regarding physiological traits, responses of P. orientalis saplings under single and combined stress of drought and salt were diverse, and effects of combined stress could not be directly extrapolated from any single stress. Compared to single stress, the effect of combined stress on phytohormone content and hydraulic traits was negative to P. orientalis saplings, while the combined stress offset the negative effects of single drought stress on NSC content. Our study provided more comprehensive information on the response of the physiological traits and soil properties of P. orientalis saplings under single and combined stress of drought and salt, which would be helpful to understand the adapting mechanism of woody plants to abiotic stress.
Collapse
Affiliation(s)
- Shan Li
- Department of Environmental Science and Ecology, School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi’an, China
| | | | | | | | | | | | | |
Collapse
|
35
|
Tang W, Liu X, Liang X, Liu H, Yu K, He P, McAdam S, Zhao H, Ye Q. Hydraulic vulnerability difference between branches and roots increases with environmental aridity. Oecologia 2024; 205:177-190. [PMID: 38772916 DOI: 10.1007/s00442-024-05562-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 05/01/2024] [Indexed: 05/23/2024]
Abstract
The vulnerability of plant xylem to embolism can be described as the water potential at which xylem conductivity is lost by 50% (P50). According to the traditional hypothesis of hydraulic vulnerability segmentation, the difference in vulnerability to embolism between branches and roots is positive (P50 root-branch > 0). It is not clear whether this occurs broadly across species or how segmentation might vary across aridity gradients. We compiled hydraulic and anatomical datasets from branches and roots across 104 woody species (including new measurements from 10 species) in four biomes to investigate the relationships between P50 root-branch and environmental factors associated with aridity. We found a positive P50 root-branch relationship across species, and evidence that P50 root-branch increases with aridity. Branch xylem hydraulic conductivity transitioned from more efficient (e.g., wider conduit, higher hydraulic conductivity) to safer (e.g., narrower conduit, more negative P50) in response to the increase of aridity, while root xylem hydraulic conductivity remained unchanged across aridity gradients. Our results demonstrate that the hydraulic vulnerability difference between branches and roots is more positive in species from arid regions, largely driven by modifications to branch traits.
Collapse
Affiliation(s)
- Weize Tang
- Guangdong Provincial Key Laboratory of Applied Botany and Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, No. 723, Xingke Road, Tianhe District, Guangzhou, 510650, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaorong Liu
- Sichuan University of Arts and Science, Tashi Road 519, Dazhou, 635000, China
| | - Xingyun Liang
- Guangdong Provincial Key Laboratory of Applied Botany and Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, No. 723, Xingke Road, Tianhe District, Guangzhou, 510650, China
| | - Hui Liu
- Guangdong Provincial Key Laboratory of Applied Botany and Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, No. 723, Xingke Road, Tianhe District, Guangzhou, 510650, China
| | - Kailiang Yu
- High Meadows Environmental Institute, Princeton University, Princeton, NJ, USA
| | - Pengcheng He
- Guangdong Provincial Key Laboratory of Applied Botany and Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, No. 723, Xingke Road, Tianhe District, Guangzhou, 510650, China
| | - Scott McAdam
- Purdue Center for Plant Biology, Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, USA
| | - Han Zhao
- Guangdong Provincial Key Laboratory of Applied Botany and Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, No. 723, Xingke Road, Tianhe District, Guangzhou, 510650, China
| | - Qing Ye
- Guangdong Provincial Key Laboratory of Applied Botany and Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, No. 723, Xingke Road, Tianhe District, Guangzhou, 510650, China.
- College of Life Sciences, Gannan Normal University, Ganzhou, 341000, China.
| |
Collapse
|
36
|
Tonet V, Brodribb T, Bourbia I. Variation in xylem vulnerability to cavitation shapes the photosynthetic legacy of drought. PLANT, CELL & ENVIRONMENT 2024; 47:1160-1170. [PMID: 38108586 DOI: 10.1111/pce.14788] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 11/08/2023] [Accepted: 12/01/2023] [Indexed: 12/19/2023]
Abstract
Increased drought conditions impact tree health, negatively disrupting plant water transport which, in turn, affects plant growth and survival. Persistent drought legacy effects have been documented in many diverse ecosystems, yet we still lack a mechanistic understanding of the physiological processes limiting tree recovery after drought. Tackling this question, we exposed saplings of a common Australian evergreen tree (Eucalyptus viminalis) to a cycle of drought and rewatering, seeking evidence for a link between the spread of xylem cavitation within the crown and the degree of photosynthetic recovery postdrought. Individual leaves experiencing >35% vein cavitation quickly died but this did not translate to a rapid overall canopy damage. Rather, whole canopies showed a gradual decline in mean postdrought gas exchange rates as water stress increased. This gradual loss of canopy function postdrought was due to a significant variation in cavitation vulnerability of leaves within canopies leading to diversity in the capacity of leaves within a single crown to recover function after drought. These results from the evergreen E. viminalis emphasise the importance of within-crown variation in xylem vulnerability as a central character regulating the dynamics of canopy death and the severity of drought legacy through time.
Collapse
Affiliation(s)
- Vanessa Tonet
- Discipline of Biological Sciences, School of Natural Sciences, University of Tasmania, Hobart, Australia
- School of Forestry & Environmental Studies, Yale University, New Haven, Connecticut, USA
| | - Timothy Brodribb
- Discipline of Biological Sciences, School of Natural Sciences, University of Tasmania, Hobart, Australia
| | - Ibrahim Bourbia
- Discipline of Biological Sciences, School of Natural Sciences, University of Tasmania, Hobart, Australia
| |
Collapse
|
37
|
Andriantelomanana T, Améglio T, Delzon S, Cochard H, Herbette S. Unpacking the point of no return under drought in poplar: insight from stem diameter variation. THE NEW PHYTOLOGIST 2024; 242:466-478. [PMID: 38406847 DOI: 10.1111/nph.19615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/02/2024] [Indexed: 02/27/2024]
Abstract
A specific, robust threshold for drought-induced tree mortality is needed to improve the prediction of forest dieback. Here, we tested the relevance of continuous measurements of stem diameter variations for identifying such a threshold, their relationship with hydraulic and cellular damage mechanisms, and the influence of growth conditions on these relationships. Poplar saplings were grown under well-watered, water-limited, or light-limited conditions and then submitted to a drought followed by rewatering. Stem diameter was continuously measured to investigate two parameters: the percentage loss of diameter (PLD) and the percentage of diameter recovery (DR) following rewatering. Water potentials, stomatal conductance, embolism, and electrolyte leakage were also measured, and light microscopy allowed investigating cell collapse induced by drought. The water release observed through loss of diameter occurred throughout the drought, regardless of growth conditions. Poplars did not recover from drought when PLD reached a threshold and this differed according to growth conditions but remained linked to cell resistance to damage and collapse. Our findings shed new light on the mechanisms of drought-induced tree mortality and indicate that PLD could be a relevant indicator of drought-induced tree mortality, regardless of the growth conditions.
Collapse
Affiliation(s)
| | - Thierry Améglio
- Université Clermont Auvergne, INRAE, PIAF, Clermont-Ferrand, 63000, France
| | - Sylvain Delzon
- Université Bordeaux, INRAE, BIOGECO, Pessac, 33615, France
| | - Hervé Cochard
- Université Clermont Auvergne, INRAE, PIAF, Clermont-Ferrand, 63000, France
| | - Stephane Herbette
- Université Clermont Auvergne, INRAE, PIAF, Clermont-Ferrand, 63000, France
| |
Collapse
|
38
|
Cunha Neto IL, Rossetto EFS, Gerolamo CS, Hernández-Gutiérrez R, Sukhorukov AP, Kushunina M, Melo-de-Pinna GFA, Angyalossy V. Medullary bundles in Caryophyllales: form, function, and evolution. THE NEW PHYTOLOGIST 2024; 241:2589-2605. [PMID: 37882322 DOI: 10.1111/nph.19342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 10/02/2023] [Indexed: 10/27/2023]
Abstract
The occurrence of conducting vascular tissue in the pith (CVTP) of tracheophytes is noteworthy. Medullary bundles, one of the remarkable examples of CVTP, evolved multiple times across angiosperms, notably in the Caryophyllales. Yet, information on the occurrence of medullary bundles is fragmented, hampering our understanding of their structure-function relationships, and evolutionary implications. Using three plastid molecular markers (matK, rbcL, and rps16 intron), a phylogeny is constructed for 561 species of Caryophyllales, and anatomical data are assembled for 856 species across 40 families to investigate the diversity of medullary bundles, their function, evolution, and diversification dynamics. Additionally, correlated evolution between medullary bundles and successive cambia was tested. Medullary bundles are ancestrally absent in Caryophyllales and evolved in core and noncore families. They are structurally diverse (e.g. number, arrangement, and types of bundles) and functionally active throughout the plant's lifespan, providing increased hydraulic conductivity, especially in herbaceous plants. Acquisition of medullary bundles does not explain diversification rate heterogeneity but is correlated to a higher diversification rate. Disparate developmental pathways were found leading to rampant convergent evolution of CVTP in Caryophyllales. These findings indicate the diversification of medullary bundles and vascular tissues as another central theme for functional and comparative molecular studies in Caryophyllales.
Collapse
Affiliation(s)
- Israel L Cunha Neto
- Department of Environmental Studies, New York University, New York, NY, 10012, USA
- Department of Botany, Institute of Biosciences, University of São Paulo, Cidade Universitária, São Paulo, SP, 05508-090, Brazil
| | - Elson Felipe S Rossetto
- Department of Animal and Plant Biology, Center of Biological Sciences, State University of Londrina, Campus Universitário, Londrina, PR, 86057-970, Brazil
| | - Caian S Gerolamo
- Department of Botany, Institute of Biosciences, University of São Paulo, Cidade Universitária, São Paulo, SP, 05508-090, Brazil
| | - Rebeca Hernández-Gutiérrez
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA, 92521, USA
| | - Alexander P Sukhorukov
- Department of Higher Plants, Biological Faculty, M.V. Lomonosov Moscow State University, Moscow, 119234, Russia
- Laboratory Herbarium (TK), Tomsk State University, Tomsk, 634050, Russia
| | - Maria Kushunina
- Laboratory Herbarium (TK), Tomsk State University, Tomsk, 634050, Russia
- Department of Plant Physiology, Biological Faculty, M.V. Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Gladys F A Melo-de-Pinna
- Department of Botany, Institute of Biosciences, University of São Paulo, Cidade Universitária, São Paulo, SP, 05508-090, Brazil
| | - Veronica Angyalossy
- Department of Botany, Institute of Biosciences, University of São Paulo, Cidade Universitária, São Paulo, SP, 05508-090, Brazil
| |
Collapse
|
39
|
Zhang X, Liu H, Rademacher T. Higher latewood to earlywood ratio increases resistance of radial growth to severe droughts in larch. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169165. [PMID: 38101621 DOI: 10.1016/j.scitotenv.2023.169165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/05/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023]
Abstract
As drought has caused great losses of tree growth across the world, the mechanism of how trees adapt to drought has been extensively investigated. However, how trees change their late- to earlywood ratio (LER) to adapt to severe drought events remains poorly understood. We used a network of Larix principis-rupprechtii earlywood and latewood width data from 1979 to 2018, covering most of the distribution of planted larch across North China, to investigate how latewood proportion affected trees' resistance to drought. The interactions among LER, minimum temperature, vapor pressure deficit (VPD), growing season length, and their contributions to drought resistant (Rt) were estimated using structural equation models. The results show a significant increase in LER of the juvenile wood throughout the first 15 growth rings after which it stabilizes. The LER decreased significantly with elevation for the juvenile wood. March-May temperature and VPD were the main determinant in the LER of mature wood. The sensitivity of radial growth to droughts was positively changed with LER when LER was below 0.50, but negatively changed with LER when LER is above 0.50. We confirmed that high LER increases resistance of tree growth to severe droughts in L. principis-rupprechtii. Our results highlight that a higher proportion of latewood is formed in dry years, and this high drought sensitivity of LER in turn led to an increased resistance to drought. This combination of reduced radial growth during dry years, while the latewood proportion remains increases maybe an adaptive strategy of larch trees to cope with severe droughts.
Collapse
Affiliation(s)
- Xianliang Zhang
- College of Forestry, Hebei Agricultural University, Baoding, China; College of Urban and Environmental Sciences, and PKU-Saihanba Station, Peking University, Beijing, China
| | - Hongyan Liu
- College of Urban and Environmental Sciences, and PKU-Saihanba Station, Peking University, Beijing, China.
| | - Tim Rademacher
- Institut des Sciences de la Forêt Tempérée, Université du Québec en Outaouais, J0V 1V0 Ripon, Québec, Canada; Centre ACER, J2S 0B8 Saint-Hyacinthe, Québec, Canada
| |
Collapse
|
40
|
Liu YY, Chao L, Li ZG, Ma L, Hu BQ, Zhu SD, Cao KF. Water storage capacity is inversely associated with xylem embolism resistance in tropical karst tree species. TREE PHYSIOLOGY 2024; 44:tpae017. [PMID: 38281245 DOI: 10.1093/treephys/tpae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 01/21/2024] [Indexed: 01/30/2024]
Abstract
Tropical karst habitats are characterized by limited and patchy soil, large rocky outcrops and porous substrates, resulting in high habitat heterogeneity and soil moisture fluctuations. Xylem hydraulic efficiency and safety can determine the drought adaptation and spatial distribution of woody plants growing in karst environments. In this study, we measured sapwood-specific hydraulic conductivity (Ks), vulnerability to embolism, wood density, saturated water content, and vessel and pit anatomical characteristics in the branch stems of 12 evergreen tree species in a tropical karst seasonal rainforest in southwestern China. We aimed to characterize the effects of structural characteristics on hydraulic efficiency and safety. Our results showed that there was no significant correlation between Ks and hydraulic safety across the tropical karst woody species. Ks was correlated with hydraulic vessel diameter (r = 0.80, P < 0.05) and vessel density (r = -0.60, P < 0.05), while the stem water potential at 50 and 88% loss of hydraulic conductivity (P50 and P88) were both significantly correlated with wood density (P < 0.05) and saturated water content (P = 0.052 and P < 0.05, respectively). High stem water storage capacity was associated with low cavitation resistance possibly because of its buffering the moisture fluctuations in karst environments. However, both Ks and P50/P88 were decoupled from the anatomical traits of pit and pit membranes. This may explain the lack of tradeoff between hydraulic safety and efficiency in tropical karst evergreen tree species. Our results suggest that diverse hydraulic trait combination may facilitate species coexistence in karst environments with high spatial heterogeneity.
Collapse
Affiliation(s)
- Yan-Yan Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, Guangxi, China
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education, Guangxi Key Laboratory of Earth Surface Processes and Intelligent Simulation, Nanning Normal University, Nanning 530001, China
| | - Lin Chao
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education, Guangxi Key Laboratory of Earth Surface Processes and Intelligent Simulation, Nanning Normal University, Nanning 530001, China
| | - Zhong-Guo Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, Guangxi, China
- Experimental Center of Tropical Forestry, Chinese Academy of Forestry, Pingxiang 532600, Guangxi, China
| | - Lin Ma
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education, Guangxi Key Laboratory of Earth Surface Processes and Intelligent Simulation, Nanning Normal University, Nanning 530001, China
| | - Bao-Qing Hu
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education, Guangxi Key Laboratory of Earth Surface Processes and Intelligent Simulation, Nanning Normal University, Nanning 530001, China
| | - Shi-Dan Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, Guangxi, China
| | - Kun-Fang Cao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, Guangxi, China
| |
Collapse
|
41
|
Blackman CJ, Halliwell B, Hartill GE, Brodribb TJ. Petiole XLA (xylem to leaf area ratio) integrates hydraulic safety and efficiency across a diverse group of eucalypt leaves. PLANT, CELL & ENVIRONMENT 2024; 47:49-58. [PMID: 37680088 DOI: 10.1111/pce.14713] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/06/2023] [Accepted: 08/27/2023] [Indexed: 09/09/2023]
Abstract
A theoretical trade-off between the efficiency and safety of water transport systems in plants is used to explain diverse ecological patterns, from tree size to community structure. Despite its pervasive influence, this theory has marginal empirical support. This may be partially due to obfuscation of associations by wide phylogenetic sampling or non-standard sampling between studies. To address this, we examine the coordination of structural and anatomical traits linked to hydraulic safety and efficiency in the leaves of an ecologically diverse group of eucalypts. We introduce a new trait for characterising leaf water transport function measured as the cross-sectional XA at the petiole divided by the downstream leaf area (XLApetiole ). Variation in XLApetiole revealed support for a safety-efficiency trade-off in eucalypt leaves. XLApetiole was negatively correlated with theoretical petiole xylem conductivity (Ks_petiole ) and strongly negatively correlated with leaf cavitation vulnerability (Ψ50leaf ). Species with lower Ψ50leaf exhibited petiole xylem with narrower vessels and greater fibre wall area fractions. Our findings highlight XLApetiole as a novel integrative trait that provides insights into the evolution of leaf form and function in eucalypts and holds promise for wider use among diverse species.
Collapse
Affiliation(s)
- Chris J Blackman
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | - Ben Halliwell
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | - Gabrielle E Hartill
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | - Timothy J Brodribb
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
42
|
Ocheltree TW, Gleason SM. Grass veins are leaky pipes: vessel widening in grass leaves explain variation in stomatal conductance and vessel diameter among species. THE NEW PHYTOLOGIST 2024; 241:243-252. [PMID: 37964665 DOI: 10.1111/nph.19368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 09/26/2023] [Indexed: 11/16/2023]
Abstract
The widening of xylem vessels from tip to base of trees is an adaptation to minimize the hydraulic resistance of a long pathway. Given that parallel veins of monocot leaves do not branch hierarchically, vessels should also widen basipetally but, in addition to minimizing resistance, should also account for water volume lost to transpiration since they supply water to the lamina along their lengths, that is 'leakiness'. We measured photosynthesis, stomatal conductance, and vessel diameter at five locations along each leaf of five perennial grass species. We found that the rate of conduit widening in grass leaves was larger than the widening exponent required to minimize pathlength resistance (0.35 vs c. 0.22). Furthermore, variation in the widening exponent among species was positively correlated with maximal stomatal conductance (r2 = 0.20) and net CO2 assimilation (r2 = 0.45). These results suggest that faster rates of conduit widening (> 0.22) were associated with higher rates of water loss. Taken together, our results show that the widening exponent is linked to plant function in grass leaves and that natural selection has favored parallel vein networks that are constructed to meet transpiration requirements while minimizing hydraulic resistance within grass blades.
Collapse
Affiliation(s)
- Troy W Ocheltree
- Department of Forest and Rangeland Stewardship, Colorado State University, Fort Collins, CO, 80523, USA
| | - Sean M Gleason
- Water Management and Systems Research Unit, United States Department of Agriculture, Agricultural Research Service, Fort Collins, CO, 80526, USA
| |
Collapse
|
43
|
Battisti I, Zambonini D, Ebinezer LB, Trentin AR, Meggio F, Petit G, Masi A. Perfluoroalkyl substances exposure alters stomatal opening and xylem hydraulics in willow plants. CHEMOSPHERE 2023; 344:140380. [PMID: 37813249 DOI: 10.1016/j.chemosphere.2023.140380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 10/11/2023]
Abstract
Climate change and pollution are increasingly important stress factors for life on Earth. Dispersal of poly- and perfluoroalkyl substances (PFAS) are causing worldwide contamination of soils and water tables. PFAS are partially hydrophobic and can easily bioaccumulate in living organisms, causing metabolic alterations. Different plant species can uptake large amounts of PFAS, but little is known about its consequences for the plant water relation and other physiological processes, especially in woody plants. In this study, we investigated the fractionation of PFAS bioaccumulation from roots to leaves and its effects on the conductive elements of willow plants. Additionally, we focused on the stomal opening and the phytohormonal content. For this purpose, willow cuttings were exposed to a mixture of 11 PFAS compounds and the uptake was evaluated by LC-MS/MS. Stomatal conductance was measured and the xylem vulnerability to air embolism was tested and further, the abscisic acid and salicylic acid contents were quantified using LC-MS/MS. PFAS accumulated from roots to leaves based on their chemical structure. PFAS-exposed plants showed reduced stomatal conductance, while no differences were observed in abscisic acid and salicylic acid contents. Interestingly, PFAS exposure caused a higher vulnerability to drought-induced xylem embolism in treated plants. Our study provides novel information about the PFAS effects on the xylem hydraulics, suggesting that the plant water balance may be affected by PFAS exposure. In this perspective, drought events may be more stressful for PFAS-exposed plants, thus reducing their potential for phytoremediation.
Collapse
Affiliation(s)
- Ilaria Battisti
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale dell'Università 16, Legnaro, PD, Italy.
| | - Dario Zambonini
- Department of Land, Environment, Agriculture and Forestry (TESAF), University of Padova, Viale dell'Università 16, Legnaro, PD, Italy
| | - Leonard Barnabas Ebinezer
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale dell'Università 16, Legnaro, PD, Italy
| | - Anna Rita Trentin
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale dell'Università 16, Legnaro, PD, Italy
| | - Franco Meggio
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale dell'Università 16, Legnaro, PD, Italy
| | - Giai Petit
- Department of Land, Environment, Agriculture and Forestry (TESAF), University of Padova, Viale dell'Università 16, Legnaro, PD, Italy
| | - Antonio Masi
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale dell'Università 16, Legnaro, PD, Italy
| |
Collapse
|
44
|
Dutta S, Bieling TJ, Verbiest GJ. Evaporation induced acoustic emissions in microfluidic vessels. ROYAL SOCIETY OPEN SCIENCE 2023; 10:231029. [PMID: 38094272 PMCID: PMC10716658 DOI: 10.1098/rsos.231029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/20/2023] [Indexed: 01/11/2024]
Abstract
Fluid flow processes such as drainage and evaporation in porous media are crucial in geological and biological systems. The motion of the displacement front of a moving fluid through multi-phase interfaces is often associated with abrupt mechanical energy release, detectable as acoustic emissions (AEs). The exact origin of these pulses and their damping mechanisms are still subjects of debate. Here, we study the characteristics of such AEs during evaporation of water from artificial microfluidic vessels, inspired by the physiology of vascular water-transport in plants. From the extracted settling times of the recorded AEs, we identify three pulse types and attribute their origins to bubble formation, snap-off events and rapid pore invasion. We also show that the resonance frequencies between 10 and 70 kHz present in specific pulse types decrease with increasing vessel radius (ranging from 0.25 to 1.0 mm) and length (ranging from 2.5 to 10.0 mm). Our findings provide insight into evaporation-induced AEs from microfluidic systems, and their potential use in non-invasive inspection or vascular health monitoring.
Collapse
Affiliation(s)
- S. Dutta
- Department of Precision and Microsystems Engineering, Faculty of 3ME, TU Delft, Mekelweg 2, Delft 2628CD, The Netherlands
| | - T. J. Bieling
- Department of Precision and Microsystems Engineering, Faculty of 3ME, TU Delft, Mekelweg 2, Delft 2628CD, The Netherlands
| | - G. J. Verbiest
- Department of Precision and Microsystems Engineering, Faculty of 3ME, TU Delft, Mekelweg 2, Delft 2628CD, The Netherlands
| |
Collapse
|
45
|
Pereira L, Kaack L, Guan X, Silva LDM, Miranda MT, Pires GS, Ribeiro RV, Schenk HJ, Jansen S. Angiosperms follow a convex trade-off to optimize hydraulic safety and efficiency. THE NEW PHYTOLOGIST 2023; 240:1788-1801. [PMID: 37691289 DOI: 10.1111/nph.19253] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/11/2023] [Indexed: 09/12/2023]
Abstract
Intervessel pits are considered to function as valves that avoid embolism spreading and optimize efficient transport of xylem sap across neighbouring vessels. Hydraulic transport between vessels would therefore follow a safety-efficiency trade-off, which is directly related to the total intervessel pit area (Ap ), inversely related to the pit membrane thickness (TPM ) and driven by a pressure difference. To test this hypothesis, we modelled the relative transport rate of gas (ka ) and water (Q) at the intervessel pit level for 23 angiosperm species and correlated these parameters with the water potential at which 50% of embolism occurs (Ψ50 ). We also measured ka for 10 species using pneumatic measurements. The pressure difference across adjacent vessels and estimated values of ka and Q were related to Ψ50 , following a convex safety-efficiency trade-off based on modelled and experimental data. Minor changes in TPM and Ap exponentially affected the pressure difference and flow, respectively. Our results provide clear evidence that a xylem safety-efficiency trade-off is not linear, but convex due to flow across intervessel pit membranes, which represent mesoporous media within microporous conduits. Moreover, the convex nature of long-distance xylem transport may contribute to an adjustable fluid balance of plants, depending on environmental conditions.
Collapse
Affiliation(s)
- Luciano Pereira
- Institute of Botany, Ulm University, 89081, Ulm, Albert-Einstein-Allee 11, Germany
| | - Lucian Kaack
- Institute of Botany, Ulm University, 89081, Ulm, Albert-Einstein-Allee 11, Germany
- Botanical Garden of Ulm University, 89081, Ulm, Hans-Krebs-Weg, Germany
| | - Xinyi Guan
- Institute of Botany, Ulm University, 89081, Ulm, Albert-Einstein-Allee 11, Germany
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, 530004, Guangxi, Nanning, China
| | | | - Marcela T Miranda
- Laboratory of Plant Physiology 'Coaracy M. Franco', Center R&D in Ecophysiology and Biophysics, Agronomic Institute (IAC), PO Box 28, Campinas, 13012-970, SP, Brazil
| | - Gabriel S Pires
- Department of Plant Biology, Laboratory of Crop Physiology, Institute of Biology, University of Campinas (UNICAMP), 13083-970, SP, Campinas, PO Box 6109, Brazil
| | - Rafael V Ribeiro
- Department of Plant Biology, Laboratory of Crop Physiology, Institute of Biology, University of Campinas (UNICAMP), 13083-970, SP, Campinas, PO Box 6109, Brazil
| | - H Jochen Schenk
- Department of Biological Science, California State University Fullerton, 800 N. State College Blvd, Fullerton, 92831-3599, CA, USA
| | - Steven Jansen
- Institute of Botany, Ulm University, 89081, Ulm, Albert-Einstein-Allee 11, Germany
| |
Collapse
|
46
|
Sorek Y, Netzer Y, Cohen S, Hochberg U. Rapid leaf xylem acclimation diminishes the chances of embolism in grapevines. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6836-6846. [PMID: 37659088 DOI: 10.1093/jxb/erad351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 09/01/2023] [Indexed: 09/04/2023]
Abstract
Under most conditions tight stomatal regulation in grapevines (Vitis vinifera) avoids xylem embolism. The current study evaluated grapevine responses to challenging scenarios that might lead to leaf embolism and consequential leaf damage. We hypothesized that embolism would occur if the vines experienced low xylem water potential (Ψx) shortly after bud break or later in the season under a combination of extreme drought and heat. We subjected vines to two potentially dangerous environments: (i) withholding irrigation from a vineyard grown in a heatwave-prone environment, and (ii) subjecting potted vines to terminal drought 1 month after bud break. In the field experiment, a heatwave at the beginning of August resulted in leaf temperatures over 45 °C. However, effective stomatal response maintained the xylem water potential (Ψx) well above the embolism threshold, and no leaf desiccation was observed. In the pot experiment, leaves of well-watered vines in May were relatively vulnerable to embolism with 50% embolism (P50) at -1.8 MPa. However, when exposed to drought, these leaves acclimated their leaf P50 by 0.65 MPa in less than a week and before reaching embolism values. When dried to embolizing Ψx, the leaf damage proportion matched (percentage-wise) the leaf embolism level. Our findings indicate that embolism and leaf damage are usually avoided by the grapevines' efficient stomatal regulation and rapid acclimation of their xylem vulnerability.
Collapse
Affiliation(s)
- Yonatan Sorek
- Institute of Soil, Water and Environmental Sciences, Volcani Center, Agricultural Research Organization, Rishon LeZion, Israel
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Yishai Netzer
- Department of Chemical Engineering, Ariel University, Ariel 40700, Israel
- Eastern R and D Center, Ariel 40700, Israel
| | - Shabtai Cohen
- Institute of Soil, Water and Environmental Sciences, Volcani Center, Agricultural Research Organization, Rishon LeZion, Israel
| | - Uri Hochberg
- Institute of Soil, Water and Environmental Sciences, Volcani Center, Agricultural Research Organization, Rishon LeZion, Israel
| |
Collapse
|
47
|
Alvarado MV, Terrazas T. Tree species differ in plant economic spectrum traits in the tropical dry forest of Mexico. PLoS One 2023; 18:e0293430. [PMID: 37943793 PMCID: PMC10635469 DOI: 10.1371/journal.pone.0293430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 10/11/2023] [Indexed: 11/12/2023] Open
Abstract
In tropical dry forests, studies on wood anatomical traits have concentrated mainly on variations in vessel diameter and frequency. Recent research suggests that parenchyma and fibers also play an important role in water conduction and in xylem hydraulic safety. However, these relationships are not fully understood, and wood trait variation among different functional profiles as well as their variation under different water availability scenarios have been little studied. In this work, we aim to (1) characterize a set of wood anatomical traits among six selected tree species that represent the economic spectrum of tropical dry forests, (2) assess the variation in these traits under three different rainfall regimes, and (3) determine the relationships between wood anatomical traits and possible functional trade-offs. Differences among species and sites in wood traits were explored. Linear mixed models were fitted, and model comparison was performed. Most variation occurred among species along the economic spectrum. Obligate deciduous, low wood density species were characterized by wood with wide vessels and low frequency, suggesting high water transport capacity but sensitivity to drought. Moreover, high cell fractions of carbon and water storage were also found in these tree species related to the occurrence of abundant parenchyma or septate fibers. Contrary to what most studies show, Cochlospermum vitifolium, a succulent tree species, presented the greatest variation in wood traits. Facultative deciduous, high wood density species were characterized by a sturdy vascular system that may favor resistance to cavitation and low reserve storage. Contrary to our expectations, variation among the rainfall regimes was generally low in all species and was mostly related to vessel traits, while fiber and parenchyma traits presented little variation among species. Strong functional associations between wood anatomical traits and functional trade-offs were found for the six tree species studied along the economic spectrum of tropical dry forests.
Collapse
Affiliation(s)
- Marco V. Alvarado
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
| | - Teresa Terrazas
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
| |
Collapse
|
48
|
Castelar JVS, Da Cunha M, Simioni PF, Castilhori MF, Lira-Martins D, Giles AL, Costa WS, Alexandrino CR, Callado CH. Functional traits and water-transport strategies of woody species in an insular environment in a tropical forest. AMERICAN JOURNAL OF BOTANY 2023; 110:e16214. [PMID: 37475703 DOI: 10.1002/ajb2.16214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/26/2023] [Accepted: 05/30/2023] [Indexed: 07/22/2023]
Abstract
PREMISE Plants survive in habitats with limited resource availability and contrasting environments by responding to variation in environmental factors through morphophysiological traits related to species performance in different ecosystems. However, how different plant strategies influence the megadiversity of tropical species has remained a knowledge gap. METHODS We analyzed variations in 27 morphophysiological traits of leaves and secondary xylem in Erythroxylum pulchrum and Tapirira guianensis, which have the highest absolute dominance in these physiognomies and occur together in areas of restinga and dense ombrophilous forest to infer water-transport strategies of Atlantic Forest woody plants. RESULTS The two species presented different sets of morphophysiological traits, strategies to avoid embolism and ensure water transport, in different phytophysiognomies. Tapirira guianensis showed possible adaptations influenced by phytophysiognomy, while E. pulchrum showed less variation in the set of characteristics between different phytophysiognomies. CONCLUSIONS Our results provide essential tools to understand how the environment can modulate morphofunctional traits and how each species adjusts differently to adapt to different phytophysiognomies. In this sense, the results for these species reveal new species-specific responses in the tropical forest. Such knowledge is a prerequisite to predict future development of the most vulnerable forests as climate changes.
Collapse
Affiliation(s)
- João Victor S Castelar
- Departamento de Biologia Vegetal, Instituto de Biologia Roberto Alcantara Gomes, Unidade de Desenvolvimento Tecnológico Laboratório de Anatomia Vegetal, Programa de Pós-Graduação em Biologia Vegetal, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - Maura Da Cunha
- Laboratório de Biologia Celular e Tecidual, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brasil
| | - Priscila F Simioni
- Laboratório de Biologia Celular e Tecidual, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brasil
- Programa de Pós-Graduação em Ecologia e Recursos Naturais, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brasil
| | - Marcelo F Castilhori
- Departamento de Biologia Vegetal, Instituto de Biologia Roberto Alcantara Gomes, Unidade de Desenvolvimento Tecnológico Laboratório de Anatomia Vegetal, Programa de Pós-Graduação em Biologia Vegetal, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | | | - André L Giles
- INPA - Instituto Nacional de Pesquisas da Amazônia, AM, Brasil
- Departamento de Fitotecnia, Centro de Ciência Agrárias, Universidade Federal de Santa Catarina, Florianópolis, SC
| | - Warlen S Costa
- Departamento de Biologia Vegetal, Instituto de Biologia Roberto Alcantara Gomes, Unidade de Desenvolvimento Tecnológico Laboratório de Anatomia Vegetal, Programa de Pós-Graduação em Biologia Vegetal, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - Camilla R Alexandrino
- Laboratório de Biologia Celular e Tecidual, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brasil
| | - Cátia H Callado
- Departamento de Biologia Vegetal, Instituto de Biologia Roberto Alcantara Gomes, Unidade de Desenvolvimento Tecnológico Laboratório de Anatomia Vegetal, Programa de Pós-Graduação em Biologia Vegetal, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
49
|
Nadal M, Carriquí M, Badel E, Cochard H, Delzon S, King A, Lamarque LJ, Flexas J, Torres-Ruiz JM. Photosynthesis, leaf hydraulic conductance and embolism dynamics in the resurrection plant Barbacenia purpurea. PHYSIOLOGIA PLANTARUM 2023; 175:e14035. [PMID: 37882305 DOI: 10.1111/ppl.14035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/17/2023] [Accepted: 09/15/2023] [Indexed: 10/27/2023]
Abstract
The main parameters determining photosynthesis are stomatal and mesophyll conductance and electron transport rate, and for hydraulic dynamics they are leaf hydraulic conductance and the spread of embolism. These parameters have scarcely been studied in desiccation-tolerant (resurrection) plants exposed to drought. Here, we characterized photosynthesis and hydraulics during desiccation and rehydration in a poikilochlorophyllous resurrection plant, Barbacenia purpurea (Velloziaceae). Gas exchange, chlorophyll fluorescence, and leaf water status were monitored along the whole dehydration-rehydration cycle. Simultaneously, embolism formation and hydraulic functioning recovery were measured at leaf level using micro-computed tomography imaging. Photosynthesis and leaf hydraulic conductance ceased at relatively high water potential (-1.28 and -1.54 MPa, respectively), whereas the onset of leaf embolism occurred after stomatal closure and photosynthesis cessation (<-1.61 MPa). This sequence of physiological processes during water stress may be associated with the need to delay dehydration, to prepare the molecular changes required in the desiccated state. Complete rehydration occurred rapidly in the mesophyll, whereas partial xylem refilling, and subsequent recovery of photosynthesis, occurred at later stages after rewatering. These results highlight the importance of stomata as safety valves to protect the vascular system from embolism, even in a plant able to fully recover after complete embolism.
Collapse
Affiliation(s)
- Miquel Nadal
- Departamento de Sistemas Agrícolas, Forestales y Medio Ambiente, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Zaragoza, Spain
- Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears (UIB), Institut d'Investigacions Agroambientals i d'Economia de l'Aigua (INAGEA), Palma, Illes Balears, Spain
| | - Marc Carriquí
- Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears (UIB), Institut d'Investigacions Agroambientals i d'Economia de l'Aigua (INAGEA), Palma, Illes Balears, Spain
- Instituto de Ciencias Forestales (ICIFOR-INIA), CSIC, Madrid, Spain
| | - Eric Badel
- Université Clermont-Auvergne, INRAE, PIAF, Clermont-Ferrand, France
| | - Hervé Cochard
- Université Clermont-Auvergne, INRAE, PIAF, Clermont-Ferrand, France
| | | | - Andrew King
- Synchrotron Source Optimisée de Lumière d'Energie Intermédiaire du LURE, L'Orme de Merisiers, France
| | | | - Jaume Flexas
- Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears (UIB), Institut d'Investigacions Agroambientals i d'Economia de l'Aigua (INAGEA), Palma, Illes Balears, Spain
| | | |
Collapse
|
50
|
Franklin O, Fransson P, Hofhansl F, Jansen S, Joshi J. Optimal balancing of xylem efficiency and safety explains plant vulnerability to drought. Ecol Lett 2023; 26:1485-1496. [PMID: 37330625 DOI: 10.1111/ele.14270] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 05/05/2023] [Accepted: 05/05/2023] [Indexed: 06/19/2023]
Abstract
In vast areas of the world, forests and vegetation are water limited and plant survival depends on the ability to avoid catastrophic hydraulic failure. Therefore, it is remarkable that plants take hydraulic risks by operating at water potentials (ψ) that induce partial failure of the water conduits (xylem). Here we present an eco-evolutionary optimality principle for xylem conduit design that explains this phenomenon based on the hypothesis that conductive efficiency and safety are optimally co-adapted to the environment. The model explains the relationship between the tolerance to negative water potential (ψ50 ) and the environmentally dependent minimum ψ (ψmin ) across a large number of species, and along the xylem pathway within individuals of two species studied. The wider hydraulic safety margin in gymnosperms compared to angiosperms can be explained as an adaptation to a higher susceptibility to accumulation of embolism. The model provides a novel optimality-based perspective on the relationship between xylem safety and efficiency.
Collapse
Affiliation(s)
- Oskar Franklin
- International Institute for Applied Systems Analysis, Laxenburg, Austria
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Peter Fransson
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden
- Interdisciplinary Center for Scientific Computing, Heidelberg University, Heidelberg, Germany
| | - Florian Hofhansl
- International Institute for Applied Systems Analysis, Laxenburg, Austria
| | | | - Jaideep Joshi
- International Institute for Applied Systems Analysis, Laxenburg, Austria
- Institute of Geography, University of Bern, Bern, Switzerland
- Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
- Complexity Science and Evolution Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| |
Collapse
|