1
|
Xie D, Zhang R, Huang J, Fei Z, Wang L, Zhao J, Si J, Jin P. Efficient production, structural characterization and bioactivity of an extracellular polysaccharide from Grifola frondosa endophytic Burkholderia sp. Int J Biol Macromol 2025; 309:143090. [PMID: 40222514 DOI: 10.1016/j.ijbiomac.2025.143090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 03/18/2025] [Accepted: 04/10/2025] [Indexed: 04/15/2025]
Abstract
Endophytic bacteria Burkholderia sp. (GFB) was firstly identified and isolated from Grifola frondosa. An exopolysaccharide (GFB-MP) of GFB strain was obtained following fermentation optimization, resulting in a maximum yield of 11.36 g/L in 5 L fed-batch fermentation. GFB-MP (MW 432.05 kDa) comprised mainly galactose, glucose, and mannose with a ratio of 39.52:14.22:46.26, indicating a mannose-enriched polysaccharide. Methylation and NMR analysis revealed that GFB-MP consisted of the main chain that was repeat units →4)-α-D-Glcp-(1 → bonded →6)-β-D-Galp-1 → repeat units and three O-6-linked branched chains. Antibacterial activity suggested that GFB-MP can effectively inhibit food pathogen bacteria Listeria and Escherichia coli with inhibition ratios of 73.4 % and 81.6 %, respectively. In addition, GFB-MP exhibited remarkable growth-promoting activity on probiotics with >50 % increments of cell growth. This study demonstrates that GFB-MP has the potential for health-beneficial food. Knowledge of endophyte polysaccharides in G. frondosa is important to understand their physiological activities and symbiotic interactions.
Collapse
Affiliation(s)
- Dongchao Xie
- National Key Laboratory for Development and Utilization of Forest Food Resources, Zhejiang A&F University, China
| | - Ruixue Zhang
- National Key Laboratory for Development and Utilization of Forest Food Resources, Zhejiang A&F University, China
| | - Jiajun Huang
- National Key Laboratory for Development and Utilization of Forest Food Resources, Zhejiang A&F University, China
| | - Zuqi Fei
- National Key Laboratory for Development and Utilization of Forest Food Resources, Zhejiang A&F University, China
| | - Lu Wang
- National Key Laboratory for Development and Utilization of Forest Food Resources, Zhejiang A&F University, China
| | - Jinsong Zhao
- National Key Laboratory for Development and Utilization of Forest Food Resources, Zhejiang A&F University, China
| | - Jinping Si
- National Key Laboratory for Development and Utilization of Forest Food Resources, Zhejiang A&F University, China
| | - Peng Jin
- National Key Laboratory for Development and Utilization of Forest Food Resources, Zhejiang A&F University, China.
| |
Collapse
|
2
|
Gutierrez A, Rébufa C, Farnet Da Silva AM, Davidson S, Foli L, Combet-Blanc Y, Martinez M, Christen P. Biochemical and microbial characterization of a forest litter-based bio-fertilizer produced in batch culture by fermentation under different initial oxygen concentrations. World J Microbiol Biotechnol 2024; 40:353. [PMID: 39419849 DOI: 10.1007/s11274-024-04155-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024]
Abstract
This work focused on the physico-chemical, biochemical and microbiological characterization of a new organic fertilizer based on fermented forest litter (FFL) mixed with agro-industrial by-products, on the culture realized in airtight glass bottle. Under strict anaerobiosis (0% initial oxygen concentration (IOC)), after a 16-day batch culture, the bottle-headspace analysis showed that the specific CO2 production rate was low (0.014 mL/h.g dry matter) compared to those reached under aerobic conditions (e.g. 0.464 mL/h.g dm at 21% IOC). Moreover, the culture displayed a slight fermented fruity odour, mainly due to ethanol and ethyl acetate detected in the headspace (335 µL and 58.6 µL accumulated, respectively). The FFL organic matter degradation followed by infrared spectroscopy and catabolic potential and diversity characterized by BIOLOG® EcoPlates were poor and pH dropped to 4.54. The microbiome's metabolism was oriented toward lactic fermentation with medium acidification, enrichment in lactic acid bacteria (LAB), depletion in fungi and absence of pathogens. By increasing IOC from 0 to 21%, the respirometric activity, and the catabolic potential and diversity increased. However, some enterobacteria were detected above 5% IOC. Ethanol and ethyl acetate decreased strongly with IOC, and aromatics and proteins contained in the solid matrix remained in the culture. This study showed the importance of oxygen on the final product. A 2% IOC was found to ensure an optimal balance between LAB development, preservation of functional catabolic diversity and bio-product free of microbial pathogens.
Collapse
Affiliation(s)
| | - Catherine Rébufa
- IMBE, Aix Marseille Univ, Avignon Univ, CNRS, IRD, Marseille, France
| | | | - Sylvain Davidson
- MIO, Aix Marseille Univ, Univ Toulon, CNRS, IRD, Marseille, France
| | - Lisa Foli
- IMBE, Aix Marseille Univ, Avignon Univ, CNRS, IRD, Marseille, France
| | | | - Martine Martinez
- IMBE, Aix Marseille Univ, Avignon Univ, CNRS, IRD, Marseille, France
| | - Pierre Christen
- IMBE, Aix Marseille Univ, Avignon Univ, CNRS, IRD, Marseille, France.
| |
Collapse
|
3
|
Kang L, Han X, Chang X, Su Z, Fu F, Shan Y, Guo J, Li G. Redox-sensitive self-assembling polymer micelles based on oleanolic modified hydroxyethyl starch: Synthesis, characterisation, and oleanolic release. Int J Biol Macromol 2024; 266:131211. [PMID: 38552688 DOI: 10.1016/j.ijbiomac.2024.131211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 03/12/2024] [Accepted: 03/26/2024] [Indexed: 04/05/2024]
Abstract
Our study aimed at developing polymer micelles that possess redox sensitivity and excellent controlled release properties. 3,3'-dithiodipropionic acid (DTDPA, Abbreviation in synthetic polymers: SS) was introduced as ROS (Reactive oxygen species)response bond and connecting arm to couple hydroxyethyl starch (HES) with oleanolic acid (OA), resulting in the synthesis of four distinct grafting ratios of HES-SS-OA. FTIR (Fourier Transform infrared spectroscopy) and 1H NMR (1H Nuclear magnetic resonance spectra) were used to verify the triumphant combination of HES-SS-OA. Polymer micelles were found to encapsulate OA in an amorphous form, as indicated by the results of XRD (X-ray diffraction) and DSC (Differential scanning calorimetry). When the OA grafting rate on HES increased from 7.72 % to 11.75 %, the particle size decreased from 297.79 nm to 201.39 nm as the polymer micelles became compact due to enhanced hydrophobicity. In addition, the zeta potential changed from -16.42 mv to -25.78 mv, the PDI (polydispersity index) decreased from 0.3649 to 0.2435, and the critical micelle concentration (CMC) decreased from 0.0955 mg/mL to 0.0123 mg/mL. Results of erythrocyte hemolysis, cytotoxicity and cellular uptake illustrated that HES-SS-OA had excellent biocompatibility and minimal cytotoxicity for AML-12 cells. Disulfide bond breakage of HES-SS-OA in the presence of H2O2 and GSH confirmed the redox sensitivity of the HES-SS-OA micelles and their excellent controlled release properties for OA. These findings suggest that HES-SS-OA can be potentially used in the future as a healthcare drug and medicine for the prevention or adjuvant treatment of inflammation.
Collapse
Affiliation(s)
- Lingtao Kang
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha 410125, China
| | - Xiaolei Han
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Xia Chang
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha 410125, China
| | - Zhipeng Su
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha 410125, China
| | - Fuhua Fu
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha 410125, China
| | - Yang Shan
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha 410125, China
| | - Jiajing Guo
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha 410125, China.
| | - Gaoyang Li
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha 410125, China.
| |
Collapse
|
4
|
Sénéchal F, Robinson S, Van Schaik E, Trévisan M, Saxena P, Reinhardt D, Fankhauser C. Pectin methylesterification state and cell wall mechanical properties contribute to neighbor proximity-induced hypocotyl growth in Arabidopsis. PLANT DIRECT 2024; 8:e584. [PMID: 38646567 PMCID: PMC11033045 DOI: 10.1002/pld3.584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/25/2024] [Accepted: 03/24/2024] [Indexed: 04/23/2024]
Abstract
Plants growing with neighbors compete for light and consequently increase the growth of their vegetative organs to enhance access to sunlight. This response, called shade avoidance syndrome (SAS), involves photoreceptors such as phytochromes as well as phytochrome interacting factors (PIFs), which regulate the expression of growth-mediating genes. Numerous cell wall-related genes belong to the putative targets of PIFs, and the importance of cell wall modifications for enabling growth was extensively shown in developmental models such as dark-grown hypocotyl. However, the contribution of the cell wall in the growth of de-etiolated seedlings regulated by shade cues remains poorly established. Through analyses of mechanical and biochemical properties of the cell wall coupled with transcriptomic analysis of cell wall-related genes from previously published data, we provide evidence suggesting that cell wall modifications are important for neighbor proximity-induced elongation. Further analysis using loss-of-function mutants impaired in the synthesis and remodeling of the main cell wall polymers corroborated this. We focused on the cgr2cgr3 double mutant that is defective in methylesterification of homogalacturonan (HG)-type pectins. By following hypocotyl growth kinetically and spatially and analyzing the mechanical and biochemical properties of cell walls, we found that methylesterification of HG-type pectins was required to enable global cell wall modifications underlying neighbor proximity-induced hypocotyl growth. Collectively, our work suggests that plant competition for light induces changes in the expression of numerous cell wall genes to enable modifications in biochemical and mechanical properties of cell walls that contribute to neighbor proximity-induced growth.
Collapse
Affiliation(s)
- Fabien Sénéchal
- Centre for Integrative Genomics, Faculty of Biology and Medicine, Génopode BuildingUniversity of LausanneLausanneSwitzerland
- Present address:
UMR INRAE 1158 BioEcoAgro, Plant Biology and InnovationUniversity of Picardie Jules VerneAmiensFrance
| | - Sarah Robinson
- Institute of Plant SciencesUniversity of BernBernSwitzerland
- Present address:
The Sainsbury LaboratoryUniversity of CambridgeCambridgeUK
| | - Evert Van Schaik
- Department of BiologyUniversity of FribourgFribourgSwitzerland
- Present address:
University of Applied Sciences LeidenLeidenNetherlands
| | - Martine Trévisan
- Centre for Integrative Genomics, Faculty of Biology and Medicine, Génopode BuildingUniversity of LausanneLausanneSwitzerland
| | - Prashant Saxena
- Centre for Integrative Genomics, Faculty of Biology and Medicine, Génopode BuildingUniversity of LausanneLausanneSwitzerland
- Present address:
James Watt School of EngineeringUniversity of GlasgowGlasgowUK
| | | | - Christian Fankhauser
- Centre for Integrative Genomics, Faculty of Biology and Medicine, Génopode BuildingUniversity of LausanneLausanneSwitzerland
| |
Collapse
|
5
|
Rosenberg A, Solomonov A, Cohen H, Eliaz D, Kellersztein I, Brookstein O, Kozell A, Wang L, Wagner HD, Daraio C, Shimanovich U. From Basic Principles of Protein-Polysaccharide Association to the Rational Design of Thermally Sensitive Materials. ACS APPLIED MATERIALS & INTERFACES 2024; 16:9210-9223. [PMID: 38330192 PMCID: PMC10895586 DOI: 10.1021/acsami.3c12926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/10/2024]
Abstract
Biology resolves design requirements toward functional materials by creating nanostructured composites, where individual components are combined to maximize the macroscale material performance. A major challenge in utilizing such design principles is the trade-off between the preservation of individual component properties and emerging composite functionalities. Here, polysaccharide pectin and silk fibroin were investigated in their composite form with pectin as a thermal-responsive ion conductor and fibroin with exceptional mechanical strength. We show that segregative phase separation occurs upon mixing, and within a limited compositional range, domains ∼50 nm in size are formed and distributed homogeneously so that decent matrix collective properties are established. The composite is characterized by slight conformational changes in the silk domains, sequestering the hydrogen-bonded β-sheets as well as the emergence of randomized pectin orientations. However, most dominant in the composite's properties is the introduction of dense domain interfaces, leading to increased hydration, surface hydrophilicity, and increased strain of the composite material. Using controlled surface charging in X-ray photoelectron spectroscopy, we further demonstrate Ca ions (Ca2+) diffusion in the pectin domains, with which the fingerprints of interactions at domain interfaces are revealed. Both the thermal response and the electrical conductance were found to be strongly dependent on the degree of composite hydration. Our results provide a fundamental understanding of the role of interfacial interactions and their potential applications in the design of material properties, polysaccharide-protein composites in particular.
Collapse
Affiliation(s)
- Asaf Rosenberg
- Department of Molecular Chemistry and Materials Science, Faculty of Chemistry, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Aleksei Solomonov
- Department of Molecular Chemistry and Materials Science, Faculty of Chemistry, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Hagai Cohen
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Dror Eliaz
- Department of Molecular Chemistry and Materials Science, Faculty of Chemistry, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Israel Kellersztein
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Ori Brookstein
- Department of Molecular Chemistry and Materials Science, Faculty of Chemistry, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Anna Kozell
- Department of Molecular Chemistry and Materials Science, Faculty of Chemistry, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Linghui Wang
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Hanoch Daniel Wagner
- Department of Molecular Chemistry and Materials Science, Faculty of Chemistry, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Chiara Daraio
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Ulyana Shimanovich
- Department of Molecular Chemistry and Materials Science, Faculty of Chemistry, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
6
|
Oriyomi VO, Fagbohun OF, Akinola FT, Adekola MB, Oyedeji TT. Assessment of Colocasia esculenta leaf extract as a natural alternative for Sitophilus zeamais control: Toxicological, biochemical, and mechanistic insights. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 195:105545. [PMID: 37666616 DOI: 10.1016/j.pestbp.2023.105545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/09/2023] [Accepted: 07/19/2023] [Indexed: 09/06/2023]
Abstract
The present study assessed the toxicological, biochemical, and mechanism of action of Colocasia esculenta leaf extract (CELE) on Wistar albino rat and on cholinergic, antioxidant, and antiinflammatory enzymes in Sitophilus zeamais. This was with a view to assessing the potential benefits and safety profile of CELE as a natural alternative for insect control. The bioactivity of the fraction was evaluated using insecticidal and repellent activities against colonies of Sitophilus zeamais to obtain a VLC-chromatographed fraction which was spectroscopically characterized and investigated for enzyme inhibition. The results revealed the ethyl acetate fraction (EAF) as the most potent one with LC50 6.198 μg/ml and 6.6 ± 0.5 repellency. The EAF had an LD50 > 5000 mg/kg but repeated dose >800 mg/kgbw po administration caused significant (p < 0.05) increase in liver and kidney function biomarkers accompanied with elevated atherogenic and coronary indices. Also, renal and hepatomorphological lesions increased in a dose-dependent manner. The High-Performance Liquid Chromatography analysis profiled 7 unknown compounds while the GC-qMS revealed 103 compounds in the CC6 fraction allowing for their identification, quantification, and providing insights into the biological activities and its potentials application. The CC6 fraction inhibited glutathione S-transferase (IC50 = 2265.260.60 mg/ml), superoxide dismutase (IC50 = 1485.300.78 mg/ml), catalase (IC50 = 574.471.57 mg/ml), acetyl cholinesterase (IC50 = 838.280.51 mg/ml), butyryl cholinesterase (IC50 = 1641.76 ± 1.14 mg/ml) and upregulated cyclooxygenase-2 (IC50 = 37.89 ± 0.15 mg/ml). Based on the result of the study, it could be inferred that the unidentified compounds present in the EAF exhibit strong insecticidal properties. The study concluded that the acute toxicity of the potent fraction showed no abnormal clinical toxic symptoms while a repeated dose of the extract in sub-acute studies showed a toxic effect that is dose-dependent. The mechanism of action of the purified fraction could be said to be by inhibition of cholinergic and antioxidant enzymes. However, the potent fraction also upregulated the activity of anti-inflammatory enzymes. Hence, regulated amount of CELE at a repeated dose <800 mg/kgbw could be considered for use as an anti-pest agent in Integrated Pest Management of Sitophilus zeamais.
Collapse
Affiliation(s)
- V O Oriyomi
- Department of Biochemistry and Forensic Science, First Technical University, Ibadan, Oyo State, Nigeria.
| | - O F Fagbohun
- Department of Biology, Wilmington College, 1870 Quaker Way, Wilmington, OH 45177, USA.
| | - F T Akinola
- Department of Biochemistry and Molecular Biology, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - M B Adekola
- Department of Environmental Management and Toxicology, Federal University of Agriculture, Abeokuta Nigeria.
| | - T T Oyedeji
- National Biotechnology Development Agency, Department of Cell Tissue and Culture, National Center for Genetics Resources and Biotechnology, Moor Plantation, Ibadan, Nigeria
| |
Collapse
|
7
|
Nagaraj A, Rekha PD. Development of a bioink using exopolysaccharide from Rhizobium sp. PRIM17. Int J Biol Macromol 2023; 234:123608. [PMID: 36773865 DOI: 10.1016/j.ijbiomac.2023.123608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 01/16/2023] [Accepted: 02/05/2023] [Indexed: 02/11/2023]
Abstract
Biopolymers play a significant role in tissue engineering, including in the formulation of bioinks that require careful selection of the biopolymers having properties ideal for printability and supporting biological entities such as cells. Alginate is one of the most widely explored natural biopolymers for tissue engineering applications due to its biocompatibility, cross-linking ability, hydrophilic nature, and easy incorporation with other polymers. Here, a succinoglycan-like exopolysaccharide (EPS-R17) produced by a bacterial strain Rhizobium sp. PRIM17 was incorporated with alginate for the development of a bioink. The physicochemical characterization of EPS-R17 was performed before formulating the bioink with alginate. The bioink formulation was prepared by mixing different concentrations of EPS with an alginate solution at room temperature under sterile atmosphere. The prepared bioink was characterized for rheological properties, biocompatibility, and a bioplotting experiment was also conducted to mimick the extrusion bioprinting. The EPS-R17 was composed of glucose, galactose, and rhamnose with a molecular weight of 69.98 kDa. It was thermally stable up to 260 °C and showed characteristic FT-IR peaks (1723.3 cm-1) for succinyl groups. The EPS-R17 showed biocompatibility with keratinocytes (HaCaT), and fibroblasts (HDF) in vitro. The rheological properties of EPS-R17-alginate bioink at different combinations showed shear thinning behavior at 25 and 37 °C. Amplitude sweep measurements showed the gel-like nature of the polymer combinations in the solution system superior to alginate or EPS-R17 alone. The combination of 1 % EPS-R17 and 1.5 % alginate showed good compressive strength and swelling behavior. Extrusion bioprinting mimicked using a bioplotting experiment showed the sustained cell viability in the polymer matrix of EPS-R17-alginate bioink. The results indicate that the EPS-R17 can be used in combination with alginate for bioinks for bioprinting applications for providing physical properties and favorable bioactivities.
Collapse
Affiliation(s)
- Athmika Nagaraj
- Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore 575018, India
| | - Punchappady Devasya Rekha
- Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore 575018, India.
| |
Collapse
|
8
|
Mitchell SM, Pajovich HT, Broas SM, Hugo MM, Banerjee IA. Molecular dynamics simulations and in vitro studies of hybrid decellularized leaf-peptide-polypyrrole composites for potential tissue engineering applications. J Biomol Struct Dyn 2023; 41:1665-1680. [PMID: 34990308 DOI: 10.1080/07391102.2021.2023643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Tissue engineering (TE) aims to repair and regenerate damaged tissue by an assimilation of optimal combination of cells specific to the tissue with an appropriate biomaterial. In this work, a new biomaterial for potential cardiac TE applications was developed by utilizing a combination of in silico studies and in vitro experiments. Molecular dynamics (MD) simulations for the formation of the novel composite prepared from the decellularized leaf components cellulose and pectin along with the VEGF derived peptide (NYLTHRQ) and polypyrrole (PPy) was carried out to assess self-assembly, mechanical properties, and interactions with integrin and NPR-C receptors which are commonly found in cells of cardiac tissue. Results of molecular dynamics simulations indicated the successful formation of stable assemblies. MD simulations also revealed that the scaffold successfully interacted with integrin and NPR-C receptors. As a proof of concept, beet leaves were decellularized (DC) and cross-linked with NYLTHRQ and PPy using layer-by-layer assembly. Decellularization (DC) was confirmed by DNA and protein quantification. Incorporation of the NYLTHRQ peptide and polypyrrole was confirmed by FTIR spectroscopy and SEM imaging. The DC-NYLTHRQ-PPy scaffold was seeded with co-cultured cardiomyocytes and vascular smooth muscle cells. The scaffold promoted cell proliferation and adhesion. Actin and Troponin T immunofluorescence staining showed the presence of these critical cardiomyocyte markers. Thus, for the first time we have developed a decellularized leaf-peptide-PPy composite scaffold by a combination of in silico studies and laboratory analyses that may have potential applications in cardiac TE.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | | | - Sarah M Broas
- Department of Chemistry, Fordham University, Bronx, NY, USA
| | - Mindy M Hugo
- Department of Chemistry, Fordham University, Bronx, NY, USA
| | | |
Collapse
|
9
|
González Moreno A, Domínguez E, Mayer K, Xiao N, Bock P, Heredia A, Gierlinger N. 3D (x-y-t) Raman imaging of tomato fruit cuticle: Microchemistry during development. PLANT PHYSIOLOGY 2023; 191:219-232. [PMID: 35972400 PMCID: PMC9806558 DOI: 10.1093/plphys/kiac369] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/15/2022] [Indexed: 05/20/2023]
Abstract
The cuticle is a protective extracellular matrix that covers the above-ground epidermis of land plants. Here, we studied the cuticle of tomato (Solanum lycopersicum L.) fruits in situ using confocal Raman microscopy. Microsections from cuticles isolated at different developmental stages were scanned to visualize cuticle components with a spatial resolution of 342 nm by univariate and multivariate data analysis. Three main components, cutin, polysaccharides, and aromatics, were identified, with the latter exhibiting the strongest Raman scattering intensity. Phenolic acids and flavonoids were differentiated within the cuticle, and three schematic cuticle models were identified during development. Phenolic acids were found across the entire cuticle at the earliest stage of development, i.e. during the formation of the procuticle layer. Based on a mixture analysis with reference component spectra, the phenolic acids were identified as mainly esterified p-coumaric acid together with free p-hydroxybenzoic acid. During the cell expansion period of growth, phenolic acids accumulated in an outermost layer of the cuticle and in the middle region of the pegs. In these stages of development, cellulose and pectin were detected next to the inner cuticle region, close to the epidermal cell where flavonoid impregnation started during ripening. In the first ripening stage, chalconaringenin was observed, while methoxylated chalcones were chosen by the algorithm to fit the mature cuticle spectra. The colocation of carbohydrates, esterified p-coumaric acid, and methoxylated chalconaringenin suggests that the latter two link polysaccharide and cutin domains. Elucidating the different distribution of aromatics within the cuticle, suggests important functions: (1) overall impregnation conferring mechanical and thermal functions (2) the outermost phenolic acid layer displaying UV-B protection of the plant tissue.
Collapse
Affiliation(s)
- Ana González Moreno
- IHSM-UMA-CSIC La Mayora, Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, 29071, Málaga, Spain
| | - Eva Domínguez
- IHSM-UMA-CSIC La Mayora, Plant breeding and Biotechnology, CSIC, 29750 Algarrobo-Costa, Málaga, Spain
| | - Konrad Mayer
- Department of Nanobiotechnology, BOKU-University of Natural Resources and Life Science, Vienna, Muthgasse 11, 1190 Vienna, Austria
| | - Nannan Xiao
- Department of Nanobiotechnology, BOKU-University of Natural Resources and Life Science, Vienna, Muthgasse 11, 1190 Vienna, Austria
| | - Peter Bock
- Department of Nanobiotechnology, BOKU-University of Natural Resources and Life Science, Vienna, Muthgasse 11, 1190 Vienna, Austria
| | - Antonio Heredia
- IHSM-UMA-CSIC La Mayora, Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, 29071, Málaga, Spain
| | - Notburga Gierlinger
- Department of Nanobiotechnology, BOKU-University of Natural Resources and Life Science, Vienna, Muthgasse 11, 1190 Vienna, Austria
| |
Collapse
|
10
|
Li Z, Huang F, Shen Y, Ling S. Functional groups on wheat (Triticum aestivum) root surface affect aluminium transverse accumulation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 246:114178. [PMID: 36244168 DOI: 10.1016/j.ecoenv.2022.114178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 09/21/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
Plant root growth is inhibited markedly by aluminium (Al) even at micromolar concentration and Al is mainly accumulated in plant roots outer layer cell walls. But the underlying reason for this asymmetric transverse distribution is unknown. In this study, two wheat (Triticum aestivum L.) genotypes ET8 and ES8 differing in Al resistance were investigated by hydroculture. The Al-tolerant ET8 expressed a higher root elongation rate (RER) than Al-sensitive ES8 under Al stress. Morphological examination showed symptoms such as root surface ruptures were observed in ET8 and ES8, with ES8 being more obvious. The cation exchange capacity (CEC) values of root tips of ES8 under different Al concentrations are higher than those of ET8. The sensitive genotype ES8 accumulated more Al than ET8 in plant apical root tips as well as cell walls. Under 48 h Al exposure, the root cell wall pectin concentration was increased with a higher magnitude in ES8 than in ET8. The functional groups on ET8 and ES8 roots outer layer and inner cells were investigated by Fourier transform infrared spectrometry (FTIR) under Al stress. The FTIR spectra of selected examined areas showed that the characteristic absorption peaks were located at 1692, 2920, and 3380 cm-1. The outer layer cells had stronger peaks than inner cells at wavenumber 1680-1740 cm-1, indicating root outer layer cells contain more carboxyls in both ET8 and ES8. The results demonstrate that Al transverse distribution on plants apical root cross section is likely influenced by functional groups such as negatively charged carboxylic acid.
Collapse
Affiliation(s)
- Zhigen Li
- School of Life Science, Shaoxing University, Shaoxing 312000, China; College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Fan Huang
- Tea Research Institute of Sichuan Academy of Agricultural Science, Chengdu 610066, China
| | - Yixia Shen
- School of Life Science, Shaoxing University, Shaoxing 312000, China
| | - Sihao Ling
- School of Life Science, Shaoxing University, Shaoxing 312000, China
| |
Collapse
|
11
|
Reynoud N, Geneix N, Petit J, D’Orlando A, Fanuel M, Marion D, Rothan C, Lahaye M, Bakan B. The cutin polymer matrix undergoes a fine architectural tuning from early tomato fruit development to ripening. PLANT PHYSIOLOGY 2022; 190:1821-1840. [PMID: 36018278 PMCID: PMC9614491 DOI: 10.1093/plphys/kiac392] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/21/2022] [Indexed: 05/20/2023]
Abstract
The cuticle is a complex polymer matrix that protects all aerial organs of plants, fulfills multiple roles in plant-environment interactions, and is critical for plant development. These functions are associated with the structural features of cuticles, and the architectural modeling of cuticles during plant development is crucial for understanding their physical properties and biological functions. In this work, the in-depth architecture of the cutin polymer matrix during fruit development was investigated. Using cherry tomato fruit (Solanum lycopersicum) as a model from the beginning of the cell expansion phase to the red ripe stage, we designed an experimental scheme combining sample pretreatment, Raman mapping, multivariate data analyses, and biochemical analyses. These approaches revealed clear chemical areas with different contributions of cutin, polysaccharides, and phenolics within the cutin polymer matrix. Besides, we demonstrated that these areas are finely tuned during fruit development, including compositional and macromolecular rearrangements. The specific spatiotemporal accumulation of phenolic compounds (p-coumaric acid and flavonoids) suggests that they fulfill distinct functions during fruit development. In addition, we highlighted an unexpected dynamic remodeling of the cutin-embedded polysaccharides pectin, cellulose, and hemicellulose. Such structural tuning enables consistent adaption of the cutin-polysaccharide continuum and the functional performance of the fruit cuticle at the different developmental stages. This study provides insights into the plant cuticle architecture and in particular into the organization of the epidermal cell wall-cuticle.
Collapse
Affiliation(s)
- Nicolas Reynoud
- INRAE, Unité Biopolymères, Interactions, Assemblages, BP71627 44316, Nantes Cedex3, France
| | - Nathalie Geneix
- INRAE, Unité Biopolymères, Interactions, Assemblages, BP71627 44316, Nantes Cedex3, France
| | - Johann Petit
- INRAE, Univ. Bordeaux, UMR BFP, F-33140, Villenave d’Ornon, France
| | - Angelina D’Orlando
- INRAE, Unité Biopolymères, Interactions, Assemblages, BP71627 44316, Nantes Cedex3, France
- INRAE PROBE research infrastructure, BIBS Facility, F- 44300, Nantes, France
| | - Mathieu Fanuel
- INRAE, Unité Biopolymères, Interactions, Assemblages, BP71627 44316, Nantes Cedex3, France
- INRAE PROBE research infrastructure, BIBS Facility, F- 44300, Nantes, France
| | - Didier Marion
- INRAE, Unité Biopolymères, Interactions, Assemblages, BP71627 44316, Nantes Cedex3, France
| | | | - Marc Lahaye
- INRAE, Unité Biopolymères, Interactions, Assemblages, BP71627 44316, Nantes Cedex3, France
| | - Bénédicte Bakan
- INRAE, Unité Biopolymères, Interactions, Assemblages, BP71627 44316, Nantes Cedex3, France
| |
Collapse
|
12
|
Kawasaki T, Yamaguchi Y, Kitahara H, Irizawa A, Tani M. Exploring Biomolecular Self-Assembly with Far-Infrared Radiation. Biomolecules 2022; 12:biom12091326. [PMID: 36139165 PMCID: PMC9496551 DOI: 10.3390/biom12091326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/13/2022] [Accepted: 09/17/2022] [Indexed: 11/29/2022] Open
Abstract
Physical engineering technology using far-infrared radiation has been gathering attention in chemical, biological, and material research fields. In particular, the high-power radiation at the terahertz region can give remarkable effects on biological materials distinct from a simple thermal treatment. Self-assembly of biological molecules such as amyloid proteins and cellulose fiber plays various roles in medical and biomaterials fields. A common characteristic of those biomolecular aggregates is a sheet-like fibrous structure that is rigid and insoluble in water, and it is often hard to manipulate the stacking conformation without heating, organic solvents, or chemical reagents. We discovered that those fibrous formats can be conformationally regulated by means of intense far-infrared radiations from a free-electron laser and gyrotron. In this review, we would like to show the latest and the past studies on the effects of far-infrared radiation on the fibrous biomaterials and to suggest the potential use of the far-infrared radiation for regulation of the biomolecular self-assembly.
Collapse
Affiliation(s)
- Takayasu Kawasaki
- Accelerator Laboratory, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba 305-0801, Ibaraki, Japan
- Correspondence:
| | - Yuusuke Yamaguchi
- Research Center for Development of Far-Infrared Region, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Fukui, Japan
| | - Hideaki Kitahara
- Research Center for Development of Far-Infrared Region, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Fukui, Japan
| | - Akinori Irizawa
- SR Center, Research Organization of Science and Technology, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu 525-8577, Shiga, Japan
| | - Masahiko Tani
- Research Center for Development of Far-Infrared Region, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Fukui, Japan
| |
Collapse
|
13
|
Discrimination and Prediction of Lonicerae japonicae Flos and Lonicerae Flos and Their Related Prescriptions by Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy Combined with Multivariate Statistical Analysis. Molecules 2022; 27:molecules27144640. [PMID: 35889512 PMCID: PMC9322902 DOI: 10.3390/molecules27144640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/10/2022] [Accepted: 07/14/2022] [Indexed: 12/03/2022] Open
Abstract
LJF and LF are commonly used in Chinese patent drugs. In the Chinese Pharmacopoeia, LJF and LF once belonged to the same source. However, since 2005, the two species have been listed separately. Therefore, they are often misused, and medicinal materials are indiscriminately put in their related prescriptions in China. In this work, firstly, we established a model for discriminating LJF and LF using ATR-FTIR combined with multivariate statistical analysis. The spectra data were further preprocessed and combined with spectral filter transformations and normalization methods. These pretreated data were used to establish pattern recognition models with PLS-DA, RF, and SVM. Results demonstrated that the RF model was the optimal model, and the overall classification accuracy for LJF and LF samples reached 98.86%. Then, the established model was applied in the discrimination of their related prescriptions. Interestingly, the results show good accuracy and applicability. The RF model for discriminating the related prescriptions containing LJF or LF had an accuracy of 100%. Our results suggest that this method is a rapid and effective tool for the successful discrimination of LJF and LF and their related prescriptions.
Collapse
|
14
|
KhaliliJafarabad N, Behnamghader A, Khorasani MT, Mozafari M. Synthesis and characterization of an engineered dual crosslinked hydrogel system based on hyaluronic acid, chondroitin sulfate, and carboxymethyl chitosan with platelet‐rich plasma. POLYM ADVAN TECHNOL 2022; 33:2325-2335. [DOI: 10.1002/pat.5686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 03/12/2022] [Indexed: 03/07/2025]
Abstract
AbstractHydrogels play a key role in cartilage tissue engineering (CTE) and cell transplantation. Idealy, the hydrogels designed for CTE should facilitate the formation of cartilage ECM, cilinically. However, challenges remain to engineer hydrogels with controllable responses, fast‐self recovery, and high stability. In the present study, a dual crosslinked hydrogel system based on the electrostatic and ionic bonds by mixing polymers composed of hyaluronic acid (HA), chondroitin sulfate (CS), and carboxymethyl chitosan (CMC) combined with platelet‐rich plasma (PRP) was successfully prepared. To increase the stability of hydrogel, 1‐Ethyl‐3‐(3‐dimethylamino propyl‐carbodiimide hydrochloride (EDC)/N‐hydroxy‐succinimide (NHS) was used as the crosslinking agent. The results revealed more stability of dual crosslinking hydrogel (HC54) due to proper stoichiometric ratio between polymers components and the crosslinking agent. According to the rheology results, a non‐Newtonian and viscoelastic behavior was recognized for all hydrogels and the highest mechanical property (modulus) of HC54 hydrogel was confirmed. Based on the SEM micrographs and weight loss analysis, the lowest degradation rate was observed for the HC54 hydrogel after immersion in phosphate buffered saline solution. PRP release from the hydrogel was analyzed with the Bradford assay method and a cumulative release of 50 percent during 15 days was found. Finally, the MTT assay conducted on dual crosslinked HA/CS/CMC hydrogel with and without PRP both demonstrated cytocompatibility of hydrogel while the presence of PRP enhanced the cell viability.
Collapse
Affiliation(s)
- Nadieh KhaliliJafarabad
- Department of Biomedical Engineering, Science and Research Branch Islamic Azad University Tehran Iran
| | - Aliasghar Behnamghader
- Department of Nanotechnology and Advanced Materials Materials and Energy Research Center Tehran Iran
| | | | - Masoud Mozafari
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine Iran University of Medical Sciences Tehran Iran
| |
Collapse
|
15
|
Khoshravesh R, Hoffmann N, Hanson DT. Leaf microscopy applications in photosynthesis research: identifying the gaps. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1868-1893. [PMID: 34986250 DOI: 10.1093/jxb/erab548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
Leaf imaging via microscopy has provided critical insights into research on photosynthesis at multiple junctures, from the early understanding of the role of stomata, through elucidating C4 photosynthesis via Kranz anatomy and chloroplast arrangement in single cells, to detailed explorations of diffusion pathways and light utilization gradients within leaves. In recent decades, the original two-dimensional (2D) explorations have begun to be visualized in three-dimensional (3D) space, revising our understanding of structure-function relationships between internal leaf anatomy and photosynthesis. In particular, advancing new technologies and analyses are providing fresh insight into the relationship between leaf cellular components and improving the ability to model net carbon fixation, water use efficiency, and metabolite turnover rate in leaves. While ground-breaking developments in imaging tools and techniques have expanded our knowledge of leaf 3D structure via high-resolution 3D and time-series images, there is a growing need for more in vivo imaging as well as metabolite imaging. However, these advances necessitate further improvement in microscopy sciences to overcome the unique challenges a green leaf poses. In this review, we discuss the available tools, techniques, challenges, and gaps for efficient in vivo leaf 3D imaging, as well as innovations to overcome these difficulties.
Collapse
Affiliation(s)
| | - Natalie Hoffmann
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - David T Hanson
- Department of Biology, University of New Mexico, Albuquerque, NM, USA
| |
Collapse
|
16
|
Gollakota AR, Subbaiah Munagapati V, Shu CM, Wen JC. Adsorption of Cr (VI), and Pb (II) from aqueous solution by 1-Butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide functionalized biomass Hazel Sterculia (Sterculia Foetida L.). J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118534] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
17
|
Acemi A. Monitoring the effects of chitosan on the profile of certain cell wall and membrane biomolecules in the leaves of Eruca vesicaria ssp. sativa through FT-IR spectroscopy. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 173:25-32. [PMID: 35092928 DOI: 10.1016/j.plaphy.2022.01.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 12/27/2021] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
The present study aimed to investigate the effects of chitosan at different molecular weights on the biomolecule profile of cell walls and membranes in Eruca vesicaria ssp. sativa leaves through FT-IR spectroscopy. It was demonstrated that the chitosan treatments could increase membrane destabilization through the elevation of lipid peroxidation and/or membrane fluidity. However, 10 kDa chitosan at 5 mg L-1 treatment was estimated to increase membrane lipid production. The 10 and 100 kDa chitosan treatments at 20 mg L-1 suggested higher protein contents than the other treatments. Chitosan's molecular weight and concentration influenced the relative ratios of functional groups in cell wall lignin. Ten kDa chitosan treatments triggered lignin production better than the other chitosan variants. The results showed that its molecular weight plays a role in the differentiation of chitosan's effects on the biomolecule pattern of E. vesicaria ssp. sativa leaves. However, none of the treatments induced significant changes in the peak positions, indicating that ex vitro chitosan treatment did not induce structural changes in the monitored biomolecules. The results also suggested that 10 kDa chitosan at 5 mg L-1 could be a better option than the other treatments tested, considering reducing the chemical use and cost in the cultivation process of the plant.
Collapse
Affiliation(s)
- Arda Acemi
- Department of Biology, Faculty of Arts and Sciences, Kocaeli University, 41001, İzmit, Kocaeli, Turkey.
| |
Collapse
|
18
|
Macchioni V, Picchi V, Carbone K. Hop Leaves as an Alternative Source of Health-Active Compounds: Effect of Genotype and Drying Conditions. PLANTS 2021; 11:plants11010099. [PMID: 35009102 PMCID: PMC8747731 DOI: 10.3390/plants11010099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 11/30/2021] [Accepted: 12/22/2021] [Indexed: 01/15/2023]
Abstract
In hop cultivation, one-third of the crop is a valuable product (hop cones), and two-thirds is unexploited biomass, consisting mainly of leaves and stems, which, in a circular economy approach, can be recovered and, once stabilized, supplied to industrial sectors, such as cosmetics, pharmaceuticals and phytotherapy, with high added value. In this regard, this study aimed to investigate the effects of two different drying methods: oven drying (OD) at 45 °C and freeze-drying (FD), on the overall nutraceutical profile (i.e., total phenols, total flavans and total thiols), pigment content (i.e., carotenoids and chlorophylls) and the antioxidant potential of leaves from five different Humulus lupulus varieties grown in central Italy. Moreover, attenuated total reflectance infrared (ATR-FTIR) spectroscopy was applied to dried leaf powders to study the influence of both the variety and treatment on their molecular fingerprints. The spectral data were then analyzed by principal component analysis (PCA), which was able to group the samples mainly based on the applied treatment. Considering the overall phytochemical profile, FD appeared to be the most suitable drying method, while OD provided higher carotenoid retention, depending on the genotype considered. Finally, unsupervised chemometric tools (i.e., PCA and hierarchical clustering) revealed that the two main clusters contained subclusters based on the drying treatment applied; these subgroups were related to the susceptibility of the variety to the drying conditions studied.
Collapse
Affiliation(s)
- Valentina Macchioni
- CREA-Research Centre for Olive, Fruit and Citrus Crops, Via di Fioranello 52, 00134 Rome, Italy;
| | - Valentina Picchi
- CREA-Research Centre for Engineering and Agro-Food Processing, Via G. Venezian 26, 20133 Milan, Italy;
| | - Katya Carbone
- CREA-Research Centre for Olive, Fruit and Citrus Crops, Via di Fioranello 52, 00134 Rome, Italy;
- Correspondence:
| |
Collapse
|
19
|
Zarebkohan A, Ghafoori A, Bani F, Rasta SH, Abbasi E, Salehi R, Milani M. Photothermal ablation of pathogenic bacteria by chensinin-1b modified gold nanoparticles. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
20
|
Khambatta K, Hollings A, Sauzier G, Sanglard LMVP, Klein AR, Tobin MJ, Vongsvivut J, Gibberd MR, Payne AD, Naim F, Hackett MJ. "Wax On, Wax Off": In Vivo Imaging of Plant Physiology and Disease with Fourier Transform Infrared Reflectance Microspectroscopy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101902. [PMID: 34338438 PMCID: PMC8498906 DOI: 10.1002/advs.202101902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/25/2021] [Indexed: 06/13/2023]
Abstract
Analysis of the epicuticular wax layer on the surface of plant leaves can provide a unique window into plant physiology and responses to environmental stimuli. Well-established analytical methodologies can quantify epicuticular wax composition, yet few methods are capable of imaging wax distribution in situ or in vivo. Here, the first report of Fourier transform infrared (FTIR) reflectance spectroscopic imaging as a non-destructive, in situ, method to investigate variation in epicuticular wax distribution at 25 µm spatial resolution is presented. The authors demonstrate in vivo imaging of alterations in epicuticular waxes during leaf development and in situ imaging during plant disease or exposure to environmental stressors. It is envisaged that this new analytical capability will enable in vivo studies of plants to provide insights into how the physiology of plants and crops respond to environmental stresses such as disease, soil contamination, drought, soil acidity, and climate change.
Collapse
Affiliation(s)
- Karina Khambatta
- School of Molecular and Life SciencesCurtin UniversityBentleyWestern Australia6102Australia
| | - Ashley Hollings
- School of Molecular and Life SciencesCurtin UniversityBentleyWestern Australia6102Australia
| | - Georgina Sauzier
- School of Molecular and Life SciencesCurtin UniversityBentleyWestern Australia6102Australia
| | - Lilian M. V. P. Sanglard
- Centre for Crop and Disease ManagementSchool of Molecular and Life SciencesCurtin UniversityBentleyWestern Australia6102Australia
| | - Annaleise R. Klein
- Infrared Microspectroscopy (IRM) BeamlineANSTO – Australian Synchrotron800 Blackburn RoadClaytonVictoria3168Australia
| | - Mark J. Tobin
- Infrared Microspectroscopy (IRM) BeamlineANSTO – Australian Synchrotron800 Blackburn RoadClaytonVictoria3168Australia
| | - Jitraporn Vongsvivut
- Infrared Microspectroscopy (IRM) BeamlineANSTO – Australian Synchrotron800 Blackburn RoadClaytonVictoria3168Australia
| | - Mark R. Gibberd
- Centre for Crop and Disease ManagementSchool of Molecular and Life SciencesCurtin UniversityBentleyWestern Australia6102Australia
| | - Alan D. Payne
- School of Molecular and Life SciencesCurtin UniversityBentleyWestern Australia6102Australia
| | - Fatima Naim
- Centre for Crop and Disease ManagementSchool of Molecular and Life SciencesCurtin UniversityBentleyWestern Australia6102Australia
| | - Mark J. Hackett
- School of Molecular and Life SciencesCurtin UniversityBentleyWestern Australia6102Australia
| |
Collapse
|
21
|
Kanwar S, Ali U, Mazumder K. Effect of cellulose and starch fatty acid esters addition on microstructure and physical properties of arabinoxylan films. Carbohydr Polym 2021; 270:118317. [PMID: 34364590 DOI: 10.1016/j.carbpol.2021.118317] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 04/20/2021] [Accepted: 06/05/2021] [Indexed: 11/26/2022]
Abstract
Arabinoxylan (AX) and cellulose were extracted from wheat straw, whereas starch was extracted from potato peel. Thereafter, cellulose and starch were esterified with lauric, myristic, palmitic and stearic acids to prepare corresponding cellulose (CFAs) and starch fatty acid esters (SFAs) with DS 2.1-2.8. XRD study revealed remarkable loss of crystallinity in cellulose and starch due to fatty acid esterification. The addition of palmitate and stearate esters of cellulose and starch to AX formed laminar film microstructures which limited water vapor permeability whereas films prepared by blending AX with laurate and myristate esters of starch and cellulose were less effective as water vapor barrier due to their non-layer microstructures. The laminar structures also resulted significant reduction in mechanical strength of the composite films. Furthermore, all AX-CFAs and AX-SFAs films were thermally more stable than native composite films. These films might be used to produce industrially useful coating material for food products.
Collapse
Affiliation(s)
- Swati Kanwar
- National Agri-Food Biotechnology Institute (NABI), Sector-81 (Knowledge City), S.A.S. Nagar, Mohali 140306, Punjab, India; Department of Biotechnology, Panjab University, Sector-25, Chandigarh, India
| | - Usman Ali
- National Agri-Food Biotechnology Institute (NABI), Sector-81 (Knowledge City), S.A.S. Nagar, Mohali 140306, Punjab, India
| | - Koushik Mazumder
- National Agri-Food Biotechnology Institute (NABI), Sector-81 (Knowledge City), S.A.S. Nagar, Mohali 140306, Punjab, India.
| |
Collapse
|
22
|
Structure, Assembly and Function of Cuticle from Mechanical Perspective with Special Focus on Perianth. Int J Mol Sci 2021; 22:ijms22084160. [PMID: 33923850 PMCID: PMC8072621 DOI: 10.3390/ijms22084160] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 01/05/2023] Open
Abstract
This review is devoted to the structure, assembly and function of cuticle. The topics are discussed from the mechanical perspective and whenever the data are available a special attention is paid to the cuticle of perianth organs, i.e., sepals, petals or tepals. The cuticle covering these organs is special in both its structure and function and some of these peculiarities are related to the cuticle mechanics. In particular, strengthening of the perianth surface is often provided by a folded cuticle that functionally resembles profiled plates, while on the surface of the petal epidermis of some plants, the cuticle is the only integral continuous layer. The perianth cuticle is distinguished also by those aspects of its mechanics and development that need further studies. In particular, more investigations are needed to explain the formation and maintenance of cuticle folding, which is typical for the perianth epidermis, and also to elucidate the mechanical properties and behavior of the perianth cuticle in situ. Gaps in our knowledge are partly due to technical problems caused by very small thicknesses of the perianth cuticle but modern tools may help to overcome these obstacles.
Collapse
|
23
|
Łupina K, Kowalczyk D, Kazimierczak W. Gum Arabic/Gelatin and Water-Soluble Soy Polysaccharides/Gelatin Blend Films as Carriers of Astaxanthin-A Comparative Study of the Kinetics of Release and Antioxidant Properties. Polymers (Basel) 2021; 13:polym13071062. [PMID: 33800579 PMCID: PMC8036643 DOI: 10.3390/polym13071062] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/18/2021] [Accepted: 03/25/2021] [Indexed: 12/15/2022] Open
Abstract
Polymer blending and incorporation of active substances offer a possibility of generation of novel packaging materials with interesting features. Astaxanthin is one of the most powerful antioxidants. Hence, in this study, water-soluble AstaSana astaxanthin (AST) was incorporated into 75/25 gum arabic/gelatin (GAR75/GEL25) and water-soluble soy polysaccharides/gelatin (WSSP75/GEL25) blend films in different concentrations (0, 0.25%, 0.5%, 1%). Microscope images showed good compatibility between the polysaccharides and GEL. Basing on time required for 50% release, the WSSP-based film exhibited an approximately four-fold slower release rate (t50% = 65.16–142.80 min) than the GAR-based film (t50% = 14.64–34.02 min). This result was mainly ascribed to the slower dissolution of the WSSP-based carrier. The faster release rate of the GAR-based films resulted in stronger antioxidant activity (quarter-scavenging time (t25%ABTS) = 0.22–7.51 min) in comparison to the WSSP-based films (t25%ABTS = 0.91–12.94 min). The increase in the AST concentration was accompanied by gradually reduced solubility and the release rate. It is possible that the increasing number of starch granules (from the AST formulation) acted as a dissolution blocking agent. In general, the WSSP75/GEL25 film displayed the most linear (the Zero-order similar) release profile. So, this carrier has potential for release of AST at a quasi-constant speed.
Collapse
Affiliation(s)
- Katarzyna Łupina
- Department of Biochemistry and Food Chemistry, Faculty of Food Sciences and Biotechnology, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland;
| | - Dariusz Kowalczyk
- Department of Biochemistry and Food Chemistry, Faculty of Food Sciences and Biotechnology, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland;
- Correspondence:
| | - Waldemar Kazimierczak
- Laboratory of Biocontrol, Application and Production of EPN, Faculty of Natural Sciences and Health, Center for Interdisciplinary Research, John Paul II Catholic University of Lublin, Konstantynów 1J, 20-708 Lublin, Poland;
| |
Collapse
|
24
|
Sasani N, Bock P, Felhofer M, Gierlinger N. Raman imaging reveals in-situ microchemistry of cuticle and epidermis of spruce needles. PLANT METHODS 2021; 17:17. [PMID: 33557869 PMCID: PMC7871409 DOI: 10.1186/s13007-021-00717-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 01/28/2021] [Indexed: 05/26/2023]
Abstract
BACKGROUND The cuticle is a protective layer playing an important role in plant defense against biotic and abiotic stresses. So far cuticle structure and chemistry was mainly studied by electron microscopy and chemical extraction. Thus, analysing composition involved sample destruction and the link between chemistry and microstructure remained unclear. In the last decade, Raman imaging showed high potential to link plant anatomical structure with microchemistry and to give insights into orientation of molecules. In this study, we use Raman imaging and polarization experiments to study the native cuticle and epidermal layer of needles of Norway spruce, one of the economically most important trees in Europe. The acquired hyperspectral dataset is the basis to image the chemical heterogeneity using univariate (band integration) as well as multivariate data analysis (cluster analysis and non-negative matrix factorization). RESULTS Confocal Raman microscopy probes the cuticle together with the underlying epidermis in the native state and tracks aromatics, lipids, carbohydrates and minerals with a spatial resolution of 300 nm. All three data analysis approaches distinguish a waxy, crystalline layer on top, in which aliphatic chains and coumaric acid are aligned perpendicular to the surface. Also in the lipidic amorphous cuticle beneath, strong signals of coumaric acid and flavonoids are detected. Even the unmixing algorithm results in mixed endmember spectra and confirms that lipids co-locate with aromatics. The underlying epidermal cell walls are devoid of lipids but show strong aromatic Raman bands. Especially the upper periclinal thicker cell wall is impregnated with aromatics. At the interface between epidermis and cuticle Calcium oxalate crystals are detected in a layer-like fashion. Non-negative matrix factorization gives the purest component spectra, thus the best match with reference spectra and by this promotes band assignments and interpretation of the visualized chemical heterogeneity. CONCLUSIONS Results sharpen our view about the cuticle as the outermost layer of plants and highlight the aromatic impregnation throughout. In the future, developmental studies tracking lipid and aromatic pathways might give new insights into cuticle formation and comparative studies might deepen our understanding why some trees and their needle and leaf surfaces are more resistant to biotic and abiotic stresses than others.
Collapse
Affiliation(s)
- Nadia Sasani
- Department of Nanobiotechnology (DNBT), Institute for Biophysics, University of Natural Resources and Life Sciences (BOKU), Muthgasse 11-II, 1190, Vienna, Austria
| | - Peter Bock
- Department of Nanobiotechnology (DNBT), Institute for Biophysics, University of Natural Resources and Life Sciences (BOKU), Muthgasse 11-II, 1190, Vienna, Austria
| | - Martin Felhofer
- Department of Nanobiotechnology (DNBT), Institute for Biophysics, University of Natural Resources and Life Sciences (BOKU), Muthgasse 11-II, 1190, Vienna, Austria
| | - Notburga Gierlinger
- Department of Nanobiotechnology (DNBT), Institute for Biophysics, University of Natural Resources and Life Sciences (BOKU), Muthgasse 11-II, 1190, Vienna, Austria.
| |
Collapse
|
25
|
Osman MJ, Wan Yunus WMZ, Ong KK, Chieng BW, Mohd Kassim NA, Mohd Noor SA, Feizal Knight V, Abd Rashid JI, Teoh CC. Image Digitization of Colorimetric Detection of Acephate Based on Its Complexation with Citrate-Capped Gold Nanoparticles. J CHEM-NY 2020; 2020:1-10. [DOI: 10.1155/2020/8872048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023] Open
Abstract
Acephate (Ac), an organophosphate (OP) insecticide, is very harmful to human and the environment. Conventional techniques of detection are sensitive and selective but relatively time-consuming, expensive, and require trained personnel. This paper describes the use of an image processing technique to digitize the red values (RVs) of the colour image of Ac-capped gold nanoparticles (Ac-Cit-AuNPs) complex captured using a digital microscope to improve the detection accuracy and precision. The formation of the suspension was characterised using laser test, ultraviolet-visible spectrophotometer (UV-Vis), high-resolution transmission electron microscope (HRTEM), and Fourier Transform infrared spectroscope (FTIR). The linear regression analysis revealed that the detection sensitivity improved as the smaller gold nanoparticles were used. For quantitative measurement using image processing, a good linear relationship (R2 = 0.9905 and 0.9924) for Cit-HAuNPs and Cit-MAuNPs, respectively, between the concentration of Ac and average red values was obtained in the range of 0–8 mM. The limit of detection (LOD) for Ac was found to be 0.3 mM and 0.4 mM for Cit-MAuNPs and Cit-HAuNPs, respectively.
Collapse
Affiliation(s)
- Mohd Junaedy Osman
- Centre for Defence Foundation Studies, Universiti Pertahanan Nasional Malaysia, Kem Sg Besi, Kuala Lumpur 57000, Malaysia
| | - Wan Md Zin Wan Yunus
- Centre for Tropicalisation, Universiti Pertahanan Nasional Malaysia, Kem Sg Besi, Kuala Lumpur 57000, Malaysia
| | - Keat Khim Ong
- Centre for Defence Foundation Studies, Universiti Pertahanan Nasional Malaysia, Kem Sg Besi, Kuala Lumpur 57000, Malaysia
- Centre for Chemical Defence, Universiti Pertahanan Nasional Malaysia, Kem Sg Besi, Kuala Lumpur 57000, Malaysia
| | - Buong Woei Chieng
- Centre for Chemical Defence, Universiti Pertahanan Nasional Malaysia, Kem Sg Besi, Kuala Lumpur 57000, Malaysia
| | - Noor Azilah Mohd Kassim
- Centre for Defence Foundation Studies, Universiti Pertahanan Nasional Malaysia, Kem Sg Besi, Kuala Lumpur 57000, Malaysia
- Centre for Chemical Defence, Universiti Pertahanan Nasional Malaysia, Kem Sg Besi, Kuala Lumpur 57000, Malaysia
| | - Siti Aminah Mohd Noor
- Centre for Defence Foundation Studies, Universiti Pertahanan Nasional Malaysia, Kem Sg Besi, Kuala Lumpur 57000, Malaysia
| | - Victor Feizal Knight
- Centre for Chemical Defence, Universiti Pertahanan Nasional Malaysia, Kem Sg Besi, Kuala Lumpur 57000, Malaysia
| | - Jahwarhar Izuan Abd Rashid
- Centre for Defence Foundation Studies, Universiti Pertahanan Nasional Malaysia, Kem Sg Besi, Kuala Lumpur 57000, Malaysia
| | - Chin Chuang Teoh
- Engineering Research Centre, MARDI Headquarter Serdang, Serdang 43400, Selangor, Malaysia
| |
Collapse
|
26
|
One-pot synthesized citric acid-modified bimetallic PtNi hollow nanospheres as peroxidase mimics for colorimetric detection of human serum albumin. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 116:111231. [DOI: 10.1016/j.msec.2020.111231] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 06/10/2020] [Accepted: 06/21/2020] [Indexed: 12/13/2022]
|
27
|
Matschi S, Vasquez MF, Bourgault R, Steinbach P, Chamness J, Kaczmar N, Gore MA, Molina I, Smith LG. Structure-function analysis of the maize bulliform cell cuticle and its potential role in dehydration and leaf rolling. PLANT DIRECT 2020; 4:e00282. [PMID: 33163853 PMCID: PMC7598327 DOI: 10.1002/pld3.282] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/15/2020] [Accepted: 10/01/2020] [Indexed: 05/03/2023]
Abstract
The hydrophobic cuticle of plant shoots serves as an important interaction interface with the environment. It consists of the lipid polymer cutin, embedded with and covered by waxes, and provides protection against stresses including desiccation, UV radiation, and pathogen attack. Bulliform cells form in longitudinal strips on the adaxial leaf surface, and have been implicated in the leaf rolling response observed in drought-stressed grass leaves. In this study, we show that bulliform cells of the adult maize leaf epidermis have a specialized cuticle, and we investigate its function along with that of bulliform cells themselves. Bulliform cells displayed increased shrinkage compared to other epidermal cell types during dehydration of the leaf, providing a potential mechanism to facilitate leaf rolling. Analysis of natural variation was used to relate bulliform strip patterning to leaf rolling rate, providing further evidence of a role for bulliform cells in leaf rolling. Bulliform cell cuticles showed a distinct ultrastructure with increased cuticle thickness compared to other leaf epidermal cells. Comparisons of cuticular conductance between adaxial and abaxial leaf surfaces, and between bulliform-enriched mutants versus wild-type siblings, showed a correlation between elevated water loss rates and presence or increased density of bulliform cells, suggesting that bulliform cuticles are more water-permeable. Biochemical analysis revealed altered cutin composition and increased cutin monomer content in bulliform-enriched tissues. In particular, our findings suggest that an increase in 9,10-epoxy-18-hydroxyoctadecanoic acid content, and a lower proportion of ferulate, are characteristics of bulliform cuticles. We hypothesize that elevated water permeability of the bulliform cell cuticle contributes to the differential shrinkage of these cells during leaf dehydration, thereby facilitating the function of bulliform cells in stress-induced leaf rolling observed in grasses.
Collapse
Affiliation(s)
- Susanne Matschi
- Section of Cell and Developmental BiologyUniversity of California San DiegoLa JollaCAUSA
- Present address:
Department Biochemistry of Plant InteractionsLeibniz Institute of Plant BiochemistryWeinberg 3Halle (Saale)Germany
| | - Miguel F. Vasquez
- Section of Cell and Developmental BiologyUniversity of California San DiegoLa JollaCAUSA
| | | | - Paul Steinbach
- Howard Hughes Medical InstituteUniversity of California San DiegoLa JollaCAUSA
| | - James Chamness
- Plant Breeding and Genetics SectionSchool of Integrative Plant ScienceCornell UniversityIthacaNYUSA
- Present address:
Department of Genetics, Cell Biology, and DevelopmentUniversity of MinnesotaSaint PaulMN55108USA
| | - Nicholas Kaczmar
- Plant Breeding and Genetics SectionSchool of Integrative Plant ScienceCornell UniversityIthacaNYUSA
| | - Michael A. Gore
- Plant Breeding and Genetics SectionSchool of Integrative Plant ScienceCornell UniversityIthacaNYUSA
| | - Isabel Molina
- Department of BiologyAlgoma UniversitySault Ste. MarieONCanada
| | - Laurie G. Smith
- Section of Cell and Developmental BiologyUniversity of California San DiegoLa JollaCAUSA
| |
Collapse
|
28
|
Sharma S, Uttam KN. Non-Destructive Assessment of the Impact of Selenium Treatment on the Biochemical Profile of the Leaves of Wheat Seedlings by Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy. ANAL LETT 2020. [DOI: 10.1080/00032719.2020.1719127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Sweta Sharma
- Shah’s Spectroscopy Laboratory, Department of Physics, University of Allahabad, Prayagraj, India
| | - K. N. Uttam
- Shah’s Spectroscopy Laboratory, Department of Physics, University of Allahabad, Prayagraj, India
| |
Collapse
|
29
|
Xiao N, Bock P, Antreich SJ, Staedler YM, Schönenberger J, Gierlinger N. From the Soft to the Hard: Changes in Microchemistry During Cell Wall Maturation of Walnut Shells. FRONTIERS IN PLANT SCIENCE 2020; 11:466. [PMID: 32431720 PMCID: PMC7216782 DOI: 10.3389/fpls.2020.00466] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 03/30/2020] [Indexed: 05/20/2023]
Abstract
The walnut shell is a hard and protective layer that provides an essential barrier between the seed and its environment. The shell is based on only one unit cell type: the polylobate sclerenchyma cell. For a better understanding of the interlocked walnut shell tissue, we investigate the structural and compositional changes during the development of the shell from the soft to the hard state. Structural changes at the macro level are explored by X-ray tomography and on the cell and cell wall level various microscopic techniques are applied. Walnut shell development takes place beneath the outer green husk, which protects and delivers components during the development of the walnut. The cells toward this outer green husk have the thickest and most lignified cell walls. With maturation secondary cell wall thickening takes place and the amount of all cell wall components (cellulose, hemicelluloses and especially lignin) is increased as revealed by FTIR microscopy. Focusing on the cell wall level, Raman imaging showed that lignin is deposited first into the pectin network between the cells and cell corners, at the very beginning of secondary cell wall formation. Furthermore, Raman imaging of fluorescence visualized numerous pits as a network of channels, connecting all the interlocked polylobate walnut shells. In the final mature stage, fluorescence increased throughout the cell wall and a fluorescent layer was detected toward the lumen in the inner part. This accumulation of aromatic components is reminiscent of heartwood formation of trees and is suggested to improve protection properties of the mature walnut shell. Understanding the walnut shell and its development will inspire biomimetic material design and packaging concepts, but is also important for waste valorization, considering that walnuts are the most widespread tree nuts in the world.
Collapse
Affiliation(s)
- Nannan Xiao
- Institute of Biophysics, Department of Nanobiotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Peter Bock
- Institute of Biophysics, Department of Nanobiotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Sebastian J. Antreich
- Institute of Biophysics, Department of Nanobiotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Yannick Marc Staedler
- Division of Structural and Functional Botany, Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Jürg Schönenberger
- Division of Structural and Functional Botany, Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Notburga Gierlinger
- Institute of Biophysics, Department of Nanobiotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
30
|
Hybrid Label-Free Molecular Microscopies for Simultaneous Visualization of Changes in Cell Wall Polysaccharides of Peach at Single- and Multiple-Cell Levels during Postharvest Storage. Cells 2020; 9:cells9030761. [PMID: 32244921 PMCID: PMC7140658 DOI: 10.3390/cells9030761] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/11/2020] [Accepted: 03/18/2020] [Indexed: 12/26/2022] Open
Abstract
Softening of fruit during the postharvest storage, which is mainly associated with both compositional and spatial changes of polysaccharides within cell wall, affects the texture and quality of fruit. Current research on the fruit softening mechanism lacks an understanding of the overall softening at the cell level. The objective of this work was to investigate the change in the spatial distribution of cell wall polysaccharides in peach flesh cells at both single- and multiple-cell levels in a label-free way during the postharvest storage. Nonmelting peaches (Prunus persica L. Batsch cv."Zhonghuashoutao") at commercial maturity were stored at 0 °C and 20 °C. Firmness measurement and chemical analysis were performed at each storage time. In addition, three molecular imaging techniques, namely confocal Raman microspectroscopy (CRM), Fourier transform infrared microspectroscopy (FTIRM), and stimulated Raman scattering microscopy (SRS) were used to visualize changes in the spatial distribution of cell wall polysaccharides of peach fruit in a label-free way during the postharvest storage. The combination of CRM and FTIRM provided complementary spectral information to visualize the spatial changes of cellulose, hemicellulose, and pectin in the cell wall of peach flesh during softening at the single-cell level, and found that the cell wall polysaccharides tended to be concentrated in the cell corner of parenchymal cells at the late stage. Furthermore, SRS, which is an ultrafast Raman imaging technique (approximately three or four orders of magnitude faster than CRM), was used for high-throughput cell wall phenotypes measurement. Different degradation degrees of parenchymal cells during fruit softening were found based on the gray-scale statistical analysis of SRS data. In general, cell wall polysaccharides decreased during softening and tended to be concentrated in the cell corner for most parenchymal cells at the late stage, but there were also some cells not in line with the whole softening trends. The results show that there were differences in the content and spatial changes of cell wall polysaccharides among parenchymal cells of peach fruit during the softening process, and the hybrid use of CRM, FTIRM, and SRS is a promising method for simultaneous visualization of changes in cell wall polysaccharides of peach.
Collapse
|
31
|
Beratto-Ramos A, Agurto-Muñoz C, Pablo Vargas-Montalba J, Castillo RDP. Fourier-transform infrared imaging and multivariate analysis for direct identification of principal polysaccharides in brown seaweeds. Carbohydr Polym 2020; 230:115561. [PMID: 31887876 DOI: 10.1016/j.carbpol.2019.115561] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/06/2019] [Accepted: 10/30/2019] [Indexed: 01/09/2023]
Abstract
The current hydrocolloid industry requires new techniques for biomass characterization, which can quickly and ecologically characterize contained sugars. This work proposes the use of Fourier Transform Infrared microspectroscopy in combination with multivariate methods, to localize and identify the main carbohydrates and other components present in fresh brown seaweeds, avoiding time-consuming samples pre-treatments. Infrared images of Macrocystis pyrifera samples were analyzed by Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS) and Principal Component Analysis (PCA) as chemometrics techniques to identify the compounds. MCR-ALS was the best strategy, delivering pure spectra of chemical compound that PCA did not. The carbohydrates identified by this method were 1-3-β-glucans divided into endofibers and laminarin; two types of fucoidans (rich in fucose or mannuronic acid), alginate and mannitol, besides other compounds such as proteins. This technique represents an opportunity for the hydrocolloid industry for a modern, rapid and environmentally-friendly characterization of macroalgal biomass to enhance its use.
Collapse
Affiliation(s)
- Angelo Beratto-Ramos
- GIBMAR, Grupo Interdisciplinario de Biotecnología Marina, Centro de Biotecnología, Universidad de Concepción, Concepción, Chile; Departamento de Ingeniería Química, Facultad de Ingeniería, Universidad de Concepción, Chile.
| | - Cristian Agurto-Muñoz
- GIBMAR, Grupo Interdisciplinario de Biotecnología Marina, Centro de Biotecnología, Universidad de Concepción, Concepción, Chile; Departamento de Ciencias y Tecnología de los Alimentos, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile.
| | - Juan Pablo Vargas-Montalba
- GIBMAR, Grupo Interdisciplinario de Biotecnología Marina, Centro de Biotecnología, Universidad de Concepción, Concepción, Chile
| | - Rosario Del P Castillo
- Departamento de Análisis Instrumental, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile; Laboratorio de Recursos Renovables, Centro de Biotecnología, Universidad de Concepción, Concepción, Chile.
| |
Collapse
|
32
|
Parvin S, Biswas BK, Rahman MA, Rahman MH, Anik MS, Uddin MR. Study on adsorption of Congo red onto chemically modified egg shell membrane. CHEMOSPHERE 2019; 236:124326. [PMID: 31545218 DOI: 10.1016/j.chemosphere.2019.07.057] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 06/27/2019] [Accepted: 07/08/2019] [Indexed: 06/10/2023]
Abstract
Consumption of eggs leads to generation of huge amount of waste in the form of egg shell, which consists of calcined shell and fibrous membrane. In this study, egg shell membrane (ESM) were chemically modified and used to adsorb congo red from its synthetic aqueous solution. Fourier Transform Infra-red (FTIR) spectra confirmed the presence of hydroxyl, carbonyl and methylene groups in egg shell membrane. Scanning Electron Micrographs (SEM) were also performed to characterize the modified egg shell membrane. Concentration of congo red was measured by using UV spectrophotometer. Effects of various parameters such as initial pH, ESM dosage, contact time and initial congo red concentration were investigated. Highest percentage of adsorption (98%) was obtained at pH 4.5 at a solid to liquid ratio of 1 g-100 ml of congo red solution of concentration of 100 mg/l. Pseudo-second order kinetic model was the best fitted model for this study. The reaction rate constant was found to be 58.04 × 10-3 g mg-1·min-1. The adsorption mechanism was supposed to happen via film diffusion as well as via intraparticle diffusion. Langmuir isotherm gave a better fit for the adsorption compared to the Freundlich isotherm. The maximum monolayer adsorption capacity was determined to be 117.65 mg/g. Thermodynamic parameters (ΔG, ΔH and ΔS) were also studied in this work. The change in enthalpy and change in entropy was found to be 29.217 kJ/mol and 0.124 kJ/mol·K, respectively. The values of ΔG were found to become more negative with increasing temperature.
Collapse
Affiliation(s)
- Shahanaz Parvin
- Department of Chemical Engineering, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Biplob Kumar Biswas
- Department of Chemical Engineering, Jashore University of Science and Technology, Jashore 7408, Bangladesh.
| | - Md Asadur Rahman
- Department of Chemical Engineering, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Md Hafizur Rahman
- Department of Chemical Engineering, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Md Shahyaz Anik
- Department of Chemical Engineering, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Md Raes Uddin
- Department of Chemical Engineering, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| |
Collapse
|
33
|
Sharma S, Singh AK, Tiwari MK, Uttam KN. Prompt Screening of the Alterations in Biochemical and Mineral Profile of Wheat Plants Treated with Chromium Using Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy and X-ray Fluorescence Excited by Synchrotron Radiation. ANAL LETT 2019. [DOI: 10.1080/00032719.2019.1656729] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Sweta Sharma
- Department of Botany, University of Allahabad, Allahabad, India
| | - A. K. Singh
- Synchrotron Utilization Section, Raja Ramanna Centre for Advanced Technology, Indore, India
| | - M. K. Tiwari
- Synchrotron Utilization Section, Raja Ramanna Centre for Advanced Technology, Indore, India
| | - K. N. Uttam
- Saha’s Spectroscopy Laboratory, Department of Physics, University of Allahabad, Allahabad, India
| |
Collapse
|
34
|
Zhang Y, Li D, Zhang D, Zhao X, Cao X, Dong L, Liu J, Chen K, Zhang H, Gao C, Wang D. Analysis of the functions of TaGW2 homoeologs in wheat grain weight and protein content traits. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 94:857-866. [PMID: 29570880 DOI: 10.1111/tpj.13903] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 03/02/2018] [Accepted: 03/06/2018] [Indexed: 05/18/2023]
Abstract
GW2 is emerging as a key genetic determinant of grain weight in cereal crops; it has three homoeologs (TaGW2-A1, -B1 and -D1) in hexaploid common wheat (Triticum aestivum L.). Here, by analyzing the gene editing mutants that lack one (B1 or D1), two (B1 and D1) or all three (A1, B1 and D1) homoeologs of TaGW2, several insights are gained into the functions of TaGW2-B1 and -D1 in common wheat grain traits. First, both TaGW2-B1 and -D1 affect thousand-grain weight (TGW) by influencing grain width and length, but the effect conferred by TaGW2-B1 is stronger than that of TaGW2-D1. Second, there exists functional interaction between TaGW2 homoeologs because the TGW increase shown by a double mutant (lacking B1 and D1) was substantially larger than that of their single mutants. Third, both TaGW2-B1 and -D1 modulate cell number and length in the outer pericarp of developing grains, with TaGW2-B1 being more potent. Finally, TaGW2 homoeologs also affect grain protein content as this parameter was generally increased in the mutants, especially in the lines lacking two or three homoeologs. Consistent with this finding, two wheat end-use quality-related parameters, flour protein content and gluten strength, were considerably elevated in the mutants. Collectively, our data shed light on functional difference between and additive interaction of TaGW2 homoeologs in the genetic control of grain weight and protein content traits in common wheat, which may accelerate further research on this important gene and its application in wheat improvement.
Collapse
Affiliation(s)
- Yi Zhang
- The State Key Laboratory of Plant Cell and Chromosome Engineering, and Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, 250014, China
| | - Da Li
- The State Key Laboratory of Plant Cell and Chromosome Engineering, and Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dingbo Zhang
- The State Key Laboratory of Plant Cell and Chromosome Engineering, and Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoge Zhao
- The State Key Laboratory of Plant Cell and Chromosome Engineering, and Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuemin Cao
- The State Key Laboratory of Plant Cell and Chromosome Engineering, and Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lingli Dong
- The State Key Laboratory of Plant Cell and Chromosome Engineering, and Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jinxing Liu
- The State Key Laboratory of Plant Cell and Chromosome Engineering, and Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Kunling Chen
- The State Key Laboratory of Plant Cell and Chromosome Engineering, and Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Huawei Zhang
- The State Key Laboratory of Plant Cell and Chromosome Engineering, and Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Caixia Gao
- The State Key Laboratory of Plant Cell and Chromosome Engineering, and Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Daowen Wang
- The State Key Laboratory of Plant Cell and Chromosome Engineering, and Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
35
|
Petit J, Bres C, Mauxion JP, Bakan B, Rothan C. Breeding for cuticle-associated traits in crop species: traits, targets, and strategies. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:5369-5387. [PMID: 29036305 DOI: 10.1093/jxb/erx341] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 09/14/2017] [Indexed: 05/18/2023]
Abstract
Improving crop productivity and quality while promoting sustainable agriculture have become major goals in plant breeding. The cuticle is a natural film covering the aerial organs of plants and consists of lipid polyesters covered and embedded with wax. The cuticle protects plants against water loss and pathogens and affects traits with strong impacts on crop quality such as, for horticultural crops, fruit brightness, cracking, russeting, netting, and shelf life. Here we provide an overview of the most important cuticle-associated traits that can be targeted for crop improvement. To date, most studies on cuticle-associated traits aimed at crop breeding have been done on fleshy fruits. Less information is available for staple crops such as rice, wheat or maize. Here we present new insights into cuticle formation and properties resulting from the study of genetic resources available for the various crop species. Our review also covers the current strategies and tools aimed at exploiting available natural and artificially induced genetic diversity and the technologies used to transfer the beneficial alleles affecting cuticle-associated traits to commercial varieties.
Collapse
Affiliation(s)
- Johann Petit
- UMR 1332 BFP, INRA, Univ. Bordeaux, F-33140 Villenave d'Ornon, France
| | - Cécile Bres
- UMR 1332 BFP, INRA, Univ. Bordeaux, F-33140 Villenave d'Ornon, France
| | | | | | - Christophe Rothan
- UMR 1332 BFP, INRA, Univ. Bordeaux, F-33140 Villenave d'Ornon, France
| |
Collapse
|
36
|
Cohen H, Szymanski J, Aharoni A, Dominguez E. Assimilation of 'omics' strategies to study the cuticle layer and suberin lamellae in plants. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:5389-5400. [PMID: 29040673 DOI: 10.1093/jxb/erx348] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The assembly of the lipophilic cuticle layer and suberin lamellae, approximately 450 million years ago, was a major evolutionary development that enabled plants to colonize terrestrial habitats. The cuticle layer is composed of cutin polyester and embedded cuticular waxes, whereas the suberin lamellae consist of very long chain fatty acid derivatives, glycerol, and phenolics cross-linked with alkyl ferulate-embedded waxes. Due to their substantial biological roles in plant life, the mechanisms underlying the assembly of these structures have been extensively investigated. In the last decade, the introduction of 'omics' approaches, including genomics, transcriptomics, proteomics, and metabolomics, have been key in the identification of novel genetic and chemical elements involved in the formation and function of the cuticle layer and suberin lamellae. This review summarizes contemporary studies that utilized various large-scale, 'omics' strategies in combination with novel technologies to unravel how building blocks and polymers of these lipophilic barriers are made, and moreover linking structure to function along developmental programs and stress responses. We anticipate that the studies discussed here will inspire scientists studying lipophilic barriers to integrate complementary 'omics' approaches in their efforts to tackle as yet unresolved questions and engage the main challenges of the field to date.
Collapse
Affiliation(s)
- Hagai Cohen
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Jedrzej Szymanski
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Asaph Aharoni
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | | |
Collapse
|
37
|
Lahlali R, Song T, Chu M, Yu F, Kumar S, Karunakaran C, Peng G. Evaluating Changes in Cell-Wall Components Associated with Clubroot Resistance Using Fourier Transform Infrared Spectroscopy and RT-PCR. Int J Mol Sci 2017; 18:E2058. [PMID: 28954397 PMCID: PMC5666740 DOI: 10.3390/ijms18102058] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 09/21/2017] [Accepted: 09/22/2017] [Indexed: 12/04/2022] Open
Abstract
Clubroot disease is a serious threat to canola production in western Canada and many parts of the world. Rcr1 is a clubroot resistance (CR) gene identified recently and its molecular mechanisms in mediating CR have been studied using several omics approaches. The current study aimed to characterize the biochemical changes in the cell wall of canola roots connecting to key molecular mechanisms of this CR gene identified in prior studies using Fourier transform infrared (FTIR) spectroscopy. The expression of nine genes involved in phenylpropanoid metabolism was also studied using qPCR. Between susceptible (S) and resistance (R) samples, the most notable biochemical changes were related to an increased biosynthesis of lignin and phenolics. These results were supported by the transcription data on higher expression of BrPAL1. The up-regulation of PAL is indicative of an inducible defence response conferred by Rcr1; the activation of this basal defence gene via the phenylpropanoid pathway may contribute to clubroot resistance conferred by Rcr1. The data indicate that several cell-wall components, including lignin and pectin, may play a role in defence responses against clubroot. Principal components analysis of FTIR data separated non-inoculated samples from inoculated samples, but not so much between inoculated S and inoculated R samples. It is also shown that FTIR spectroscopy can be a useful tool in studying plant-pathogen interaction at cellular levels.
Collapse
Affiliation(s)
- Rachid Lahlali
- Canadian Light Source, 44 Innovation Blvd, Saskatoon, SK S7N 2V3, Canada.
- Currently Department of Crop Protection, Phytopathology Unit, Ecole Nationale d'Agriculture de Meknès, BP/S 40, Meknès 50001, Morocco.
| | - Tao Song
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada 107 Science Place, Saskatoon, SK S7N 0X2, Canada.
| | - Mingguang Chu
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada 107 Science Place, Saskatoon, SK S7N 0X2, Canada.
| | - Fengqun Yu
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada 107 Science Place, Saskatoon, SK S7N 0X2, Canada.
| | - Saroj Kumar
- Canadian Light Source, 44 Innovation Blvd, Saskatoon, SK S7N 2V3, Canada.
- Currently Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India.
| | | | - Gary Peng
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada 107 Science Place, Saskatoon, SK S7N 0X2, Canada.
| |
Collapse
|
38
|
Žuža MG, Milašinović NZ, Jonović MM, Jovanović JR, Kalagasidis Krušić MT, Bugarski BM, Knežević-Jugović ZD. Design and characterization of alcalase–chitosan conjugates as potential biocatalysts. Bioprocess Biosyst Eng 2017; 40:1713-1723. [DOI: 10.1007/s00449-017-1826-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 08/02/2017] [Indexed: 11/30/2022]
|
39
|
Chen J, Guo B, Yan R, Sun S, Zhou Q. Rapid and automatic chemical identification of the medicinal flower buds of Lonicera plants by the benchtop and hand-held Fourier transform infrared spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 182:81-86. [PMID: 28399501 DOI: 10.1016/j.saa.2017.03.070] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 03/21/2017] [Accepted: 03/30/2017] [Indexed: 06/07/2023]
Abstract
With the utilization of the hand-held equipment, Fourier transform infrared (FT-IR) spectroscopy is a promising analytical technique to minimize the time cost for the chemical identification of herbal materials. This research examines the feasibility of the hand-held FT-IR spectrometer for the on-site testing of herbal materials, using Lonicerae Japonicae Flos (LJF) and Lonicerae Flos (LF) as examples. Correlation-based linear discriminant models for LJF and LF are established based on the benchtop and hand-held FT-IR instruments. The benchtop FT-IR models can exactly recognize all articles of LJF and LF. Although a few LF articles are misjudged at the sub-class level, the hand-held FT-IR models are able to exactly discriminate LJF and LF. As a direct and label-free analytical technique, FT-IR spectroscopy has great potential in the rapid and automatic chemical identification of herbal materials either in laboratories or in fields. This is helpful to prevent the spread and use of adulterated herbal materials in time.
Collapse
Affiliation(s)
- Jianbo Chen
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Baolin Guo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China.
| | - Rui Yan
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Suqin Sun
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Qun Zhou
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
40
|
Monitoring Chemical Changes on the Surface of Kenaf Fiber during Degumming Process Using Infrared Microspectroscopy. Sci Rep 2017; 7:1240. [PMID: 28450712 PMCID: PMC5430656 DOI: 10.1038/s41598-017-01388-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 03/27/2017] [Indexed: 11/25/2022] Open
Abstract
Degumming is the dominant method to obtain lignocellulosic fibers in the textile industry. Traditionally, wet chemistry methods are used to monitor the evolution of major chemical components during the degumming process. However, these methods lack the ability to provide spatial information for these heterogeneous materials. In this study, besides wet chemistry and scanning electron microscopy (SEM) analysis, a Fourier-transform infrared microspectroscopy (FTIRM) method was employed to monitor the changes in spatial distribution of the main chemical components on the kenaf surface during a steam explosion followed by chemical degum process. The results showed that hemicellulose and lignin were degummed at different rates, and the mechanisms of their degumming are different. The infrared microspectral images revealed the distribution changes of chemical components on the fiber bundle surface during the process, indicating that FTIRM is an effective tool to analyze the degumming process and improve degumming methods.
Collapse
|
41
|
Vega-Figueroa K, Santillán J, García C, González-Feliciano JA, Bello SA, Rodríguez YG, Ortiz-Quiles E, Nicolau E. Assessing the Suitability of Cellulose-Nanodiamond Composite As a Multifunctional Biointerface Material for Bone Tissue Regeneration. ACS Biomater Sci Eng 2017; 3:960-968. [DOI: 10.1021/acsbiomaterials.7b00026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Karlene Vega-Figueroa
- Molecular
Science Research Center, University of Puerto Rico, 1390 Ponce De León
Avenue, Suite 2, San Juan, Puerto Rico 00926, United States
| | - Jaime Santillán
- Molecular
Science Research Center, University of Puerto Rico, 1390 Ponce De León
Avenue, Suite 2, San Juan, Puerto Rico 00926, United States
| | - Carlos García
- Molecular
Science Research Center, University of Puerto Rico, 1390 Ponce De León
Avenue, Suite 2, San Juan, Puerto Rico 00926, United States
| | - José A. González-Feliciano
- Molecular
Science Research Center, University of Puerto Rico, 1390 Ponce De León
Avenue, Suite 2, San Juan, Puerto Rico 00926, United States
| | | | - Yaiel G. Rodríguez
- Molecular
Science Research Center, University of Puerto Rico, 1390 Ponce De León
Avenue, Suite 2, San Juan, Puerto Rico 00926, United States
| | - Edwin Ortiz-Quiles
- Molecular
Science Research Center, University of Puerto Rico, 1390 Ponce De León
Avenue, Suite 2, San Juan, Puerto Rico 00926, United States
| | - Eduardo Nicolau
- Molecular
Science Research Center, University of Puerto Rico, 1390 Ponce De León
Avenue, Suite 2, San Juan, Puerto Rico 00926, United States
| |
Collapse
|
42
|
Türker-Kaya S, Huck CW. A Review of Mid-Infrared and Near-Infrared Imaging: Principles, Concepts and Applications in Plant Tissue Analysis. Molecules 2017; 22:E168. [PMID: 28117673 PMCID: PMC6155813 DOI: 10.3390/molecules22010168] [Citation(s) in RCA: 169] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 01/15/2017] [Accepted: 01/16/2017] [Indexed: 11/16/2022] Open
Abstract
Plant cells, tissues and organs are composed of various biomolecules arranged as structurally diverse units, which represent heterogeneity at microscopic levels. Molecular knowledge about those constituents with their localization in such complexity is very crucial for both basic and applied plant sciences. In this context, infrared imaging techniques have advantages over conventional methods to investigate heterogeneous plant structures in providing quantitative and qualitative analyses with spatial distribution of the components. Thus, particularly, with the use of proper analytical approaches and sampling methods, these technologies offer significant information for the studies on plant classification, physiology, ecology, genetics, pathology and other related disciplines. This review aims to present a general perspective about near-infrared and mid-infrared imaging/microspectroscopy in plant research. It is addressed to compare potentialities of these methodologies with their advantages and limitations. With regard to the organization of the document, the first section will introduce the respective underlying principles followed by instrumentation, sampling techniques, sample preparations, measurement, and an overview of spectral pre-processing and multivariate analysis. The last section will review selected applications in the literature.
Collapse
Affiliation(s)
- Sevgi Türker-Kaya
- Department of Biology, Faculty of Arts and Sciences, Kocaeli University, 41380 Kocaeli, Turkey.
| | - Christian W Huck
- Institute of Analytical Chemistry and Radiochemistry, CCB-Center for Chemistry and Biomedicine, Leopold-Franzens University, Innrain 80-82, 6020 Innsbruck, Austria.
| |
Collapse
|
43
|
Kumari R, Singh JS, Singh DP. Biogenic synthesis and spatial distribution of silver nanoparticles in the legume mungbean plant (Vigna radiata L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 110:158-166. [PMID: 27291836 DOI: 10.1016/j.plaphy.2016.06.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 05/30/2016] [Accepted: 06/01/2016] [Indexed: 06/06/2023]
Abstract
The present investigation aimed to study the in vivo synthesis of silver nanoparticles (AgNPs) in the legume Vigna radiata. The level of plant metabolites such as total phenolics, lipid, terpenoids, alkaloids and amino acid increased by 65%, 133%, 19%, 67% and 35%, respectively, in AgNO3 (100 mg L-1) treated plants compared to control. Whereas protein and sugar contents in the treated plants were reduced by 38% and 27%, respectively. FTIR analysis of AgNO3 (20-100 mg L-1) treated plants exhibited changes in the IR regions between 3297 and 3363 cm-1, 1635-1619 cm-1, 1249-1266 cm-1 and that corresponded to alterations in OH groups of carbohydrates, OH and NH groups of amide I and II regions of protein, when compared with the control. Transmission electron micrographs showed the spatial distribution of AgNPs in the chloroplast, cytoplasmic spaces, vacuolar and nucleolar plant regions. Metal quantification in different tissues of plants exposed to 20-100 mg L-1 AgNO3 showed about a 22 fold accumulation of Ag in roots as compared to shoots. The phytotoxic parameters such as percent seed germination and shoot elongation remained almost unaltered at low AgNO3 doses (20-50 mg L-1). However, at higher levels of exposure (100 mg L-1), the percent seed germination as well as root and shoot elongation exhibited concentration dependent decline. In conclusion, synthesis of AgNPs in V. radiata particularly at lower doses of AgNO3, could be used as a sustainable and environmentally safe technology for large scale production of metal nanoparticles.
Collapse
Affiliation(s)
- Rima Kumari
- Department of Environmental Science, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025, India
| | - Jay Shankar Singh
- Department of Environmental Microbiology, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025, India
| | - Devendra Pratap Singh
- Department of Environmental Science, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025, India.
| |
Collapse
|
44
|
Chen JB, Zhou Q, Sun SQ. Direct chemical characterization of natural wood resins by temperature-resolved and space-resolved Fourier transform infrared spectroscopy. J Mol Struct 2016. [DOI: 10.1016/j.molstruc.2016.02.079] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
45
|
Chemical morphology of Areca nut characterized directly by Fourier transform near-infrared and mid-infrared microspectroscopic imaging in reflection modes. Food Chem 2016; 212:469-75. [PMID: 27374557 DOI: 10.1016/j.foodchem.2016.05.168] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 05/13/2016] [Accepted: 05/26/2016] [Indexed: 11/20/2022]
Abstract
Fourier transform near-infrared (NIR) and mid-infrared (MIR) imaging techniques are essential tools to characterize the chemical morphology of plant. The transmission imaging mode is mostly used to obtain easy-to-interpret spectra with high signal-to-noise ratio. However, the native chemical compositions and physical structures of plant samples may be altered when they are microtomed for the transmission tests. For the direct characterization of thick plant samples, the combination of the reflection NIR imaging and the attenuated total reflection (ATR) MIR imaging is proposed in this research. First, the reflection NIR imaging method can explore the whole sample quickly to find out typical regions in small sizes. Next, each small typical region can be measured by the ATR-MIR imaging method to reveal the molecular structures and spatial distributions of compounds of interest. As an example, the chemical morphology of Areca nut section is characterized directly by the above approach.
Collapse
|
46
|
Garroum I, Bidzinski P, Daraspe J, Mucciolo A, Humbel BM, Morel JB, Nawrath C. Cuticular Defects in Oryza sativa ATP-binding Cassette Transporter G31 Mutant Plants Cause Dwarfism, Elevated Defense Responses and Pathogen Resistance. PLANT & CELL PHYSIOLOGY 2016; 57:1179-88. [PMID: 27121976 DOI: 10.1093/pcp/pcw066] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 03/23/2016] [Indexed: 05/23/2023]
Abstract
The cuticle covers the surface of the polysaccharide cell wall of leaf epidermal cells and forms an essential diffusion barrier between plant and environment. Homologs of the ATP-binding cassette (ABC) transporter AtABCG32/HvABCG31 clade are necessary for the formation of a functional cuticle in both monocots and dicots. Here we characterize the osabcg31 knockout mutant and hairpin RNA interference (RNAi)-down-regulated OsABCG31 plant lines having reduced plant growth and a permeable cuticle. The reduced content of cutin in leaves and structural alterations in the cuticle and at the cuticle-cell wall interface in plants compromised in OsABCG31 expression explain the cuticle permeability. Effects of modifications of the cuticle on plant-microbe interactions were evaluated. The cuticular alterations in OsABCG31-compromised plants did not cause deficiencies in germination of the spores or the formation of appressoria of Magnaporthe oryzae on the leaf surface, but a strong reduction of infection structures inside the plant. Genes involved in pathogen resistance were constitutively up-regulated in OsABCG31-compromised plants, thus being a possible cause of the resistance to M. oryzae and the dwarf growth phenotype. The findings show that in rice an abnormal cuticle formation may affect the signaling of plant growth and defense.
Collapse
Affiliation(s)
- Imène Garroum
- University of Lausanne, Department of Plant Molecular Biology, Biophore Building, CH-1015 Lausanne, Switzerland
| | - Przemyslaw Bidzinski
- INRA, UMR-BGPI TA A-54/K, Campus International de Baillarguet, 34398 Montpellier Cedex 5, France Present address: INRA, SupAgro, UMR-BPMP, Bat. 7, 2 place Pierre Viala, 34060 Montpellier, Cedex 2, France
| | - Jean Daraspe
- University of Lausanne, Electron Microscopy Facility, Biophore Building, CH-1015 Lausanne, Switzerland
| | - Antonio Mucciolo
- University of Lausanne, Electron Microscopy Facility, Biophore Building, CH-1015 Lausanne, Switzerland
| | - Bruno M Humbel
- University of Lausanne, Electron Microscopy Facility, Biophore Building, CH-1015 Lausanne, Switzerland
| | - Jean-Benoit Morel
- INRA, UMR-BGPI TA A-54/K, Campus International de Baillarguet, 34398 Montpellier Cedex 5, France
| | - Christiane Nawrath
- University of Lausanne, Department of Plant Molecular Biology, Biophore Building, CH-1015 Lausanne, Switzerland
| |
Collapse
|
47
|
Fasoli M, Dell'Anna R, Dal Santo S, Balestrini R, Sanson A, Pezzotti M, Monti F, Zenoni S. Pectins, Hemicelluloses and Celluloses Show Specific Dynamics in the Internal and External Surfaces of Grape Berry Skin During Ripening. PLANT & CELL PHYSIOLOGY 2016; 57:1332-49. [PMID: 27095736 DOI: 10.1093/pcp/pcw080] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 04/12/2016] [Indexed: 05/06/2023]
Abstract
Grapevine berry skin is a complex structure that contributes to the final size and shape of the fruit and affects its quality traits. The organization of cell wall polysaccharides in situ and their modification during ripening are largely uncharacterized. The polymer structure of Corvina berry skin, its evolution during ripening and related modifying genes were determined by combing mid-infrared micro-spectroscopy and multivariate statistical analysis with transcript profiling and immunohistochemistry. Spectra were acquired in situ using a surface-sensitive technique on internal and external sides of the skin without previous sample pre-treatment, allowing comparison of the related cell wall polymer dynamics. The external surface featured cuticle-related bands; the internal surface showed more adsorbed water. Application of surface-specific normalization revealed the major molecular changes related to hemicelluloses and pectins in the internal surface and to cellulose and pectins in the external surface and that they occur between mid-ripening and full ripening in both sides of the skin. Transcript profiling of cell wall-modifying genes indicated a general suppression of cell wall metabolism during ripening. Genes related to pectin metabolism-a β-galactosidase, a pectin(methyl)esterase and a pectate lyase-and a xyloglucan endotransglucosylase/hydrolase, involved in hemicellulose modification, showed enhanced expression. In agreement with Fourier transform infrared spectroscopy, patterns due to pectin methyl esterification provided new insights into the relationship between pectin modifications and the associated transcript profile during skin ripening. This study proposes an original description of polymer dynamics in grape berries during ripening, highlighting differences between the internal and external sides of the skin.
Collapse
Affiliation(s)
- Marianna Fasoli
- Department of Biotechnology, University of Verona, 37134 Verona, Italy These authors contributed equally to this work
| | - Rossana Dell'Anna
- Micro Nano Facility, Fondazione Bruno Kessler, 38123 Trento, Italy These authors contributed equally to this work
| | - Silvia Dal Santo
- Department of Biotechnology, University of Verona, 37134 Verona, Italy
| | | | - Andrea Sanson
- Department of Computer Science, University of Verona, 37134 Verona, Italy Present address: Department of Physics and Astronomy, University of Padova, 35131 Padova, Italy
| | - Mario Pezzotti
- Department of Biotechnology, University of Verona, 37134 Verona, Italy
| | - Francesca Monti
- Department of Computer Science, University of Verona, 37134 Verona, Italy
| | - Sara Zenoni
- Department of Biotechnology, University of Verona, 37134 Verona, Italy
| |
Collapse
|
48
|
Fernández V, Guzmán-Delgado P, Graça J, Santos S, Gil L. Cuticle Structure in Relation to Chemical Composition: Re-assessing the Prevailing Model. FRONTIERS IN PLANT SCIENCE 2016; 7:427. [PMID: 27066059 PMCID: PMC4814898 DOI: 10.3389/fpls.2016.00427] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 03/18/2016] [Indexed: 05/18/2023]
Abstract
The surface of most aerial plant organs is covered with a cuticle that provides protection against multiple stress factors including dehydration. Interest on the nature of this external layer dates back to the beginning of the 19th century and since then, several studies facilitated a better understanding of cuticular chemical composition and structure. The prevailing undertanding of the cuticle as a lipidic, hydrophobic layer which is independent from the epidermal cell wall underneath stems from the concept developed by Brongniart and von Mohl during the first half of the 19th century. Such early investigations on plant cuticles attempted to link chemical composition and structure with the existing technologies, and have not been directly challenged for decades. Beginning with a historical overview about the development of cuticular studies, this review is aimed at critically assessing the information available on cuticle chemical composition and structure, considering studies performed with cuticles and isolated cuticular chemical components. The concept of the cuticle as a lipid layer independent from the cell wall is subsequently challenged, based on the existing literature, and on new findings pointing toward the cell wall nature of this layer, also providing examples of different leaf cuticle structures. Finally, the need for a re-assessment of the chemical and structural nature of the plant cuticle is highlighted, considering its cell wall nature and variability among organs, species, developmental stages, and biotic and abiotic factors during plant growth.
Collapse
Affiliation(s)
- Victoria Fernández
- Forest Genetics and Ecophysiology Research Group, Plant Physiology and Anatomy Unit, School of Forest Engineering, Technical University of MadridMadrid, Spain
| | - Paula Guzmán-Delgado
- Forest Genetics and Ecophysiology Research Group, Plant Physiology and Anatomy Unit, School of Forest Engineering, Technical University of MadridMadrid, Spain
- Department of Plant Sciences, University of California, Davis, DavisCA, USA
| | - José Graça
- Centro de Estudos Florestais, Instituto Superior de Agronomia, Universidade de LisboaLisboa, Portugal
| | - Sara Santos
- Centro de Estudos Florestais, Instituto Superior de Agronomia, Universidade de LisboaLisboa, Portugal
| | - Luis Gil
- Forest Genetics and Ecophysiology Research Group, Plant Physiology and Anatomy Unit, School of Forest Engineering, Technical University of MadridMadrid, Spain
| |
Collapse
|
49
|
Fabre G, Garroum I, Mazurek S, Daraspe J, Mucciolo A, Sankar M, Humbel BM, Nawrath C. The ABCG transporter PEC1/ABCG32 is required for the formation of the developing leaf cuticle in Arabidopsis. THE NEW PHYTOLOGIST 2016; 209:192-201. [PMID: 26406899 DOI: 10.1111/nph.13608] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 07/10/2015] [Indexed: 05/02/2023]
Abstract
The cuticle is an essential diffusion barrier on aerial surfaces of land plants whose structural component is the polyester cutin. The PERMEABLE CUTICLE1/ABCG32 (PEC1) transporter is involved in plant cuticle formation in Arabidopsis. The gpat6 pec1 and gpat4 gapt8 pec1 double and triple mutants are characterized. Their PEC1-specific contributions to aliphatic cutin composition and cuticle formation during plant development are revealed by gas chromatography/mass spectrometry and Fourier-transform infrared spectroscopy. The composition of cutin changes during rosette leaf expansion in Arabidopsis. C16:0 monomers are in higher abundance in expanding than in fully expanded leaves. The atypical cutin monomer C18:2 dicarboxylic acid is more prominent in fully expanded leaves. Findings point to differences in the regulation of several pathways of cutin precursor synthesis. PEC1 plays an essential role during expansion of the rosette leaf cuticle. The reduction of C16 monomers in the pec1 mutant during leaf expansion is unlikely to cause permeability of the leaf cuticle because the gpat6 mutant with even fewer C16:0 monomers forms a functional rosette leaf cuticle at all stages of development. PEC1/ABCG32 transport activity affects cutin composition and cuticle structure in a specific and non-redundant fashion.
Collapse
Affiliation(s)
- Guillaume Fabre
- Department of Plant Molecular Biology, University of Lausanne, Biophore Building, CH-1015, Lausanne, Switzerland
| | - Imène Garroum
- Department of Plant Molecular Biology, University of Lausanne, Biophore Building, CH-1015, Lausanne, Switzerland
| | - Sylwester Mazurek
- Department of Plant Molecular Biology, University of Lausanne, Biophore Building, CH-1015, Lausanne, Switzerland
- Department of Chemistry, University of Wroclaw, 14 F. Joliot-Curie, 50-383, Wroclaw, Poland
| | - Jean Daraspe
- Electron Microscopy Facility, University of Lausanne, Biophore Building, CH-1015, Lausanne, Switzerland
| | - Antonio Mucciolo
- Electron Microscopy Facility, University of Lausanne, Biophore Building, CH-1015, Lausanne, Switzerland
| | - Martial Sankar
- Department of Plant Molecular Biology, University of Lausanne, Biophore Building, CH-1015, Lausanne, Switzerland
| | - Bruno M Humbel
- Electron Microscopy Facility, University of Lausanne, Biophore Building, CH-1015, Lausanne, Switzerland
| | - Christiane Nawrath
- Department of Plant Molecular Biology, University of Lausanne, Biophore Building, CH-1015, Lausanne, Switzerland
| |
Collapse
|
50
|
Warren FJ, Perston BB, Galindez-Najera SP, Edwards CH, Powell PO, Mandalari G, Campbell GM, Butterworth PJ, Ellis PR. Infrared microspectroscopic imaging of plant tissues: spectral visualization of Triticum aestivum kernel and Arabidopsis leaf microstructure. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 84:634-46. [PMID: 26400058 PMCID: PMC4620737 DOI: 10.1111/tpj.13031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 08/28/2015] [Accepted: 09/08/2015] [Indexed: 05/24/2023]
Abstract
Infrared microspectroscopy is a tool with potential for studies of the microstructure, chemical composition and functionality of plants at a subcellular level. Here we present the use of high-resolution bench top-based infrared microspectroscopy to investigate the microstructure of Triticum aestivum L. (wheat) kernels and Arabidopsis leaves. Images of isolated wheat kernel tissues and whole wheat kernels following hydrothermal processing and simulated gastric and duodenal digestion were generated, as well as images of Arabidopsis leaves at different points during a diurnal cycle. Individual cells and cell walls were resolved, and large structures within cells, such as starch granules and protein bodies, were clearly identified. Contrast was provided by converting the hyperspectral image cubes into false-colour images using either principal component analysis (PCA) overlays or by correlation analysis. The unsupervised PCA approach provided a clear view of the sample microstructure, whereas the correlation analysis was used to confirm the identity of different anatomical structures using the spectra from isolated components. It was then demonstrated that gelatinized and native starch within cells could be distinguished, and that the loss of starch during wheat digestion could be observed, as well as the accumulation of starch in leaves during a diurnal period.
Collapse
Affiliation(s)
- Frederick J Warren
- King's College London, Faculty of Life Sciences and Medicine, Diabetes and Nutritional Sciences Division, Biopolymers Group, LondonFranklin-Wilkins Building, 150, Stamford Street, London, SE1 9NH, United Kingdom
- ARC Centre of Excellence in Plant Cell Walls, Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of QueenslandSt. Lucia, Brisbane, Queensland, 4072, Australia
| | - Benjamin B Perston
- PerkinElmerChalfont Road, Seer Green, Buckinghamshire, HP9 2FX, United Kingdom
| | - Silvia P Galindez-Najera
- Satake Centre for Grain Process Engineering, School of Chemical Engineering and Analytical Science, The University of ManchesterM13 9PL, Manchester, United Kingdom
| | - Cathrina H Edwards
- King's College London, Faculty of Life Sciences and Medicine, Diabetes and Nutritional Sciences Division, Biopolymers Group, LondonFranklin-Wilkins Building, 150, Stamford Street, London, SE1 9NH, United Kingdom
| | - Prudence O Powell
- ARC Centre of Excellence in Plant Cell Walls, Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of QueenslandSt. Lucia, Brisbane, Queensland, 4072, Australia
| | - Giusy Mandalari
- The Model Gut, Institute of Food Research, Norwich Research ParkColney Lane, NR4 7UA, Norwich, United Kingdom
- Department of Drug Science and Products for Health, University of MessinaVill. SS. Annunziata, 98168, Messina, Italy
| | - Grant M Campbell
- Satake Centre for Grain Process Engineering, School of Chemical Engineering and Analytical Science, The University of ManchesterM13 9PL, Manchester, United Kingdom
| | - Peter J Butterworth
- King's College London, Faculty of Life Sciences and Medicine, Diabetes and Nutritional Sciences Division, Biopolymers Group, LondonFranklin-Wilkins Building, 150, Stamford Street, London, SE1 9NH, United Kingdom
| | - Peter R Ellis
- King's College London, Faculty of Life Sciences and Medicine, Diabetes and Nutritional Sciences Division, Biopolymers Group, LondonFranklin-Wilkins Building, 150, Stamford Street, London, SE1 9NH, United Kingdom
| |
Collapse
|