1
|
Lin CH, Lee BY, Ou YT, Chiang MJ, Chen CY. Salicylic Acid, Hypersensitive Response and RBOHD-Mediated Hydrogen Peroxide Accumulation Play Key Roles in Black Rot Resistance of Crucifers. PLANT, CELL & ENVIRONMENT 2025; 48:4286-4300. [PMID: 39945095 DOI: 10.1111/pce.15423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 12/21/2024] [Accepted: 01/23/2025] [Indexed: 05/06/2025]
Abstract
Black rot caused by hemibiotrophic Xanthomonas campestris pv. campestris (Xcc) is a great problem in crucifer crop production. Various host responses are activated upon Xcc attack; however, their roles in black rot resistance remain ambiguous. In this study, a highly black rot resistance of host plants was achieved by applying a field-screened systemic resistance-eliciting Bacillus velezensis strain 37-1. The contributions of strain 37-1-altered host responses to Xcc resistance were then investigated in Arabidopsis. Hypersensitive response and hydrogen peroxide accumulation were demonstrated beneficial for Xcc infection by using nrg1 and rbohd mutants, histochemical staining against host cell death and reactive oxygen species, detection of antioxidant enzyme activity and RT-qPCR assay. By contrast, salicylic acid was proven essential for black rot suppression by using NahG transformant, mutants impaired in defence hormone synthesis and signalling pathway, and RT-qPCR assay. Additionally, both isochorismate synthase and phenylalanine ammonia-lyase pathways for salicylic acid biosynthesis were found to be involved in resistance to Xcc. These findings improve the knowledge of host defence responses crucial for fighting off hemibiotrophic Xcc.
Collapse
Affiliation(s)
- Chia-Hua Lin
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Bo-Yi Lee
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Yun-Ting Ou
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Min-Jui Chiang
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Chao-Ying Chen
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan, Republic of China
- Master Program for Plant Medicine, National Taiwan University, Taipei, Taiwan, Republic of China
| |
Collapse
|
2
|
Hu X, Cai W, Zhang L, Zhu Z, Okita TW, Tian L. Molecular Dialog of Ralstonia solanacearum and Plant Hosts with Highlights on Type III Effectors. Int J Mol Sci 2025; 26:3686. [PMID: 40332227 PMCID: PMC12027289 DOI: 10.3390/ijms26083686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 04/07/2025] [Accepted: 04/11/2025] [Indexed: 05/08/2025] Open
Abstract
Ralstonia solanacearum is a highly destructive soil-borne bacterium that causes bacterial wilt disease in more than 310 plant species worldwide. The pathogenicity of the bacteria is closely associated with type III effectors (T3Es), a class of virulence factors that are delivered to host plant cells by the type III secretion system. In spite of the complex evolutionary history and genetic diversity of the R. solanacearum species complex (RSSC), more than 100 different T3Es have been identified from the genomes of various strains. Based on the available functional studies, certain T3Es interact with host plant proteins and suppress host cell immunity, whereas other T3Es are recognized by the host plant to trigger specific resistance mechanisms. This review summarizes the mechanisms by which T3Es interfere with plant immune responses and the activation of the plant defense system upon T3E recognition. This in-depth review of the molecular interactions between R. solanacearum and its host plants offers insights into the complexity of plant-pathogen interactions and provides a scientific rationale and theoretical support for the future breeding of resistant crops.
Collapse
Affiliation(s)
- Xinyu Hu
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China; (X.H.); (W.C.); (L.Z.); (Z.Z.)
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou 311300, China
| | - Weiwei Cai
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China; (X.H.); (W.C.); (L.Z.); (Z.Z.)
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou 311300, China
| | - Laining Zhang
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China; (X.H.); (W.C.); (L.Z.); (Z.Z.)
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou 311300, China
| | - Zhujun Zhu
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China; (X.H.); (W.C.); (L.Z.); (Z.Z.)
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou 311300, China
| | - Thomas W. Okita
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164, USA
| | - Li Tian
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China; (X.H.); (W.C.); (L.Z.); (Z.Z.)
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
3
|
Chakraborty J, Sobol G, Xia F, Zhang N, Martin GB, Sessa G. PP2C Phosphatase Pic6 Suppresses MAPK Activation and Disease Resistance in Tomato. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2025; 38:43-49. [PMID: 39549244 DOI: 10.1094/mpmi-10-24-0124-sc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2024]
Abstract
Type 2C protein phosphatases (PP2Cs) are essential for regulating plant immune responses to pathogens. Our study focuses on the tomato PP2C-immunity associated candidate 6 (Pic6), elucidating its role in negatively regulating pattern-triggered immunity (PTI) signaling pathways in tomato. Using reverse-transcription quantitative polymerase chain reaction (RT-qPCR), we observed that treatment with microbe-associated molecular patterns (MAMPs)-flg22 and flgII-28-significantly increased Pic6 mRNA levels in wild-type (RG-PtoR) tomato plants. Pic6 features a conserved N-terminal kinase-interacting motif (KIM) and a C-terminal PP2C domain. We produced variants of Pic6 with mutations in these regions, demonstrating their involvements in negatively regulating tomato immunity. Agrobacterium-mediated transient overexpression of Pic6 resulted in enhanced growth of the bacterial pathogen Pseudomonas syringae pathovar tomato (Pst) strain DC3000ΔhopQ1-1 compared with a yellow fluorescent protein (YFP) control. Additionally, Pic6 overexpression inhibited mitogen-activated protein kinase (MAPK) activation in response to flg22 and flgII-28 treatments. Importantly, Pic6 exhibited phosphatase activity and interacted with tomato Mkk1/Mkk2 proteins and dephosphorylated them in a KIM-dependent manner. Furthermore, we generated RG-pic6 loss-of-function mutants by CRISPR/Cas9, revealing that the absence of Pic6 heightened MAPK activity and increased resistance to Xanthomonas euvesicatoria strain 85-10 (Xe 85-10) when compared with the wild-type (RG-PtoR) plants. Transcript analyses showed that after flg22/flgII-28 treatment, PTI-reporter genes NAC and Osmotin were significantly upregulated in RG-pic6 mutants in comparison to the wild-type (RG-PtoR) plants. Overall, our findings indicate that Pic6 acts as a negative regulator of MAPK signaling and plays a pivotal role in modulating tomato immunity against bacterial pathogens. [Formula: see text] Copyright © 2025 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Joydeep Chakraborty
- School of Plant Sciences and Food Security, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Guy Sobol
- School of Plant Sciences and Food Security, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Fan Xia
- Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, U.S.A
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, U.S.A
| | - Ning Zhang
- Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, U.S.A
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, U.S.A
| | - Gregory B Martin
- Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, U.S.A
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, U.S.A
| | - Guido Sessa
- School of Plant Sciences and Food Security, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel (deceased)
| |
Collapse
|
4
|
Grenz K, Chia KS, Turley EK, Tyszka AS, Atkinson RE, Reeves J, Vickers M, Rejzek M, Walker JF, Carella P. A necrotizing toxin enables Pseudomonas syringae infection across evolutionarily divergent plants. Cell Host Microbe 2025; 33:20-29.e5. [PMID: 39706183 DOI: 10.1016/j.chom.2024.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 11/01/2024] [Accepted: 11/25/2024] [Indexed: 12/23/2024]
Abstract
The Pseudomonas syringae species complex harbors a diverse range of pathogenic bacteria that can infect hosts across the plant kingdom. However, much of our current understanding of P. syringae is centered on its infection of flowering plants. We took a comparative approach to understand how P. syringae infects evolutionarily divergent plants. We identified P. syringae isolates causing disease in the liverwort Marchantia polymorpha, the fern Ceratopteris richardii, and the flowering plant Nicotiana benthamiana, which last shared a common ancestor >500 million years ago. Phytotoxin-enriched phylogroup (PG) 2 isolates of P. syringae are virulent in non-flowering plants, relying on type-3 effectors and the lipopeptide phytotoxin syringomycin. Ectopic syringomycin promotes tissue necrosis, activates conserved stress-related genes, and enhances in planta bacterial growth of toxin-deficient PGs in Marchantia. Collectively, our research reveals a key role for syringomycin in promoting Pseudomonas colonization, which works alongside effectors to antagonize an exceptionally wide spectrum of land plants.
Collapse
Affiliation(s)
- Kristina Grenz
- Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK
| | - Khong-Sam Chia
- Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK
| | - Emma K Turley
- Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK
| | - Alexa S Tyszka
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | | | - Jacob Reeves
- Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK
| | - Martin Vickers
- Computational and Systems Biology, John Innes Centre, Norwich NR4 7UH, UK
| | - Martin Rejzek
- Molecular Microbiology, John Innes Centre, Norwich NR4 7UH, UK
| | - Joseph F Walker
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Philip Carella
- Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK.
| |
Collapse
|
5
|
Rao W, Ma T, Cao J, Zhang Y, Chen S, Lin S, Liu X, He G, Wan L. Recognition of a salivary effector by the TNL protein RCSP promotes effector-triggered immunity and systemic resistance in Nicotiana benthamiana. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:150-168. [PMID: 39474762 DOI: 10.1111/jipb.13800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/16/2024] [Accepted: 10/09/2024] [Indexed: 01/16/2025]
Abstract
Insects secret chemosensory proteins (CSPs) into plant cells as potential effector proteins during feeding. The molecular mechanisms underlying how CSPs activate plant immunity remain largely unknown. We show that CSPs from six distinct insect orders induce dwarfism when overexpressed in Nicotiana benthamiana. Agrobacterium-mediated transient expression of Nilaparvata lugens CSP11 (NlCSP11) triggered cell death and plant dwarfism, both of which were dependent on ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1), N requirement gene 1 (NRG1) and SENESCENCE-ASSOCIATED GENE 101 (SAG101), indicating the activation of effector-triggered immunity (ETI) in N. benthamiana. Overexpression of NlCSP11 led to stronger systemic resistance against Pseudomonas syringae DC3000 lacking effector HopQ1-1 and tobacco mosaic virus, and induced higher accumulation of salicylic acid (SA) in uninfiltrated leaves compared to another effector XopQ that is recognized by a Toll-interleukin-1 receptor (TIR) domain nucleotide-binding leucine-rich repeat receptor (TNL) called ROQ1 in N. benthamiana. Consistently, NlCSP11-induced dwarfism and systemic resistance, but not cell death, were abolished in N. benthamiana transgenic line expressing the SA-degrading enzyme NahG. Through large-scale virus-induced gene silencing screening, we identified a TNL protein that mediates the recognition of CSPs (RCSP), including aphid effector MP10 that triggers resistance against aphids in N. benthamiana. Co-immunoprecipitation, bimolecular fluorescence complementation and AlphaFold2 prediction unveiled an interaction between NlCSP11 and RCSP. Interestingly, RCSP does not contain the conserved catalytic glutamic acid in the TIR domain, which is required for TNL function. Our findings point to enhanced ETI and systemic resistance by a TNL protein via hyperactivation of the SA pathway. Moreover, RCSP is the first TNL identified to recognize an insect effector.
Collapse
Affiliation(s)
- Weiwei Rao
- Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Tingting Ma
- Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Jiayuan Cao
- Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yajun Zhang
- Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Sisi Chen
- Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Shu Lin
- Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Xiaoxiao Liu
- Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Guangcun He
- National Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Li Wan
- Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
6
|
Peng J, Zhang L, Lu K, Chen X, Pang H, Yao X, Li P, Cao P, Li X, Wang Z, Qin L, Zhou M, Wang M, Li Q, Qiu C, Sun M, Li Y, Gong L, Wei X, Wang S, Chen J, Lu C, Zou S, Ding X, Chen L, Zhang M, Dong H. Plant PI4P is required for bacteria to translocate type-3 effectors. THE NEW PHYTOLOGIST 2025; 245:748-766. [PMID: 39568298 DOI: 10.1111/nph.20248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 10/07/2024] [Indexed: 11/22/2024]
Abstract
Type-3 effectors (T3E) of phytopathogenic Gram-negative bacteria fulfill a virulent role, causing disease, or an avirulent role, inducing immunity, following their translocation into plant cells. This study aimed to validate the hypothesis that bacterial T3E translocation requires lipidic compounds in plant cell membranes. Based on genetic, molecular, and biochemical assays, we determined that phosphatidylinositol 4-phosphate (PI4P) associated with plant cell membranes is essential for the translocation of T3E by bacterial pathogens. Replicate experimental data revealed that PI4P cooperates with the type-3 translocase HrpF to facilitate the translocation of effectors TAL and Xop from Xanthomonas oryzae and Hop from Pseudomonas syringae into the cells of Oryza sativa and Nicotiana benthamiana, respectively. Genetic and molecular analyses confirmed that, once translocated into plant cells, the distinct effectors induce disease or immunity. Combined genetic and pharmacological analyses revealed that when PI4P content is suppressed via genetic or pharmacological measures, the T3 effector translocation is considerably suppressed, resulting in serious inhibition of bacterial infection. Overall, these findings demonstrate that cooperative functioning of HrpF-PI4P is conserved in bacterial effectors and plants.
Collapse
Affiliation(s)
- Jinfeng Peng
- College of Plant Protection, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Taian, 271018, China
- College of Landscape Architecture, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, China
| | - Liyuan Zhang
- College of Plant Protection, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Taian, 271018, China
| | - Kai Lu
- College of Plant Protection, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Taian, 271018, China
| | - Xiaochen Chen
- College of Plant Protection, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Taian, 271018, China
| | - Hao Pang
- Hainan Province Sanya City Bureau for Business Environment Construction, Sanya, 572022, China
| | - Xiaohui Yao
- College of Plant Protection, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Taian, 271018, China
| | - Ping Li
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 202100, China
| | - Peng Cao
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710019, China
| | - Xiaoxu Li
- College of Plant Protection, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Taian, 271018, China
| | - Zuodong Wang
- College of Plant Protection, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Taian, 271018, China
| | - Lina Qin
- College of Plant Protection, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Taian, 271018, China
| | - Miao Zhou
- College of Plant Protection, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Taian, 271018, China
| | - Maoling Wang
- College of Plant Protection, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Taian, 271018, China
| | - Qizhen Li
- College of Plant Protection, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Taian, 271018, China
| | - Chunyu Qiu
- College of Plant Protection, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Taian, 271018, China
| | - Mingxin Sun
- College of Plant Protection, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Taian, 271018, China
| | - Yufen Li
- College of Plant Protection, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Taian, 271018, China
| | - Liping Gong
- College of Plant Protection, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Taian, 271018, China
| | - Xinlin Wei
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710019, China
| | - Siyi Wang
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 202100, China
| | - Jiajia Chen
- College of Landscape Architecture, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, China
| | - Chongchong Lu
- College of Plant Protection, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Taian, 271018, China
| | - Shenshen Zou
- College of Plant Protection, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Taian, 271018, China
| | - Xinhua Ding
- College of Plant Protection, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Taian, 271018, China
| | - Lei Chen
- College of Plant Protection, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Taian, 271018, China
| | - Meixiang Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710019, China
| | - Hansong Dong
- College of Plant Protection, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Taian, 271018, China
| |
Collapse
|
7
|
Lu J, Cao P, Zhang S, Wang Q, Xiao Z, Meng H, Sun Z, Bai B, Cheng L, Yang A, An Y, Zhang M. RIN4 immunity regulators mediate recognition of the core effector RipE1 of Ralstonia solanacearum by the receptor Ptr1. PLANT PHYSIOLOGY 2024; 197:kiae514. [PMID: 39325738 DOI: 10.1093/plphys/kiae514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/06/2024] [Accepted: 09/06/2024] [Indexed: 09/28/2024]
Abstract
Ralstonia solanacearum causes lethal bacterial wilt diseases in numerous crops, resulting in considerable yield losses. Harnessing genetic resistance is desirable for safeguarding plants against phytopathogens. However, genetic resources resistant to bacterial wilt are limited in crops. RipE1, a conserved type Ⅲ effector with cysteine protease activity, is recognized in Nicotiana benthamiana and Arabidopsis (Arabidopsis thaliana). Here, using a virus-induced gene silencing approach, we identified the gene encoding N. benthamiana homolog of Ptr1 (NbPtr1a), a coiled-coil nucleotide-binding leucine-rich repeat receptor (NLR) recognizing RipE1. Silencing or editing NbPtr1a completely abolished RipE1-induced cell death, indicating recognition of RipE1 by NbPtr1a. Genetic complementation confirmed this recognition, which is conserved across multiple solanaceous plants. Expression of RipE1 in planta or within pathogenic bacteria promoted pathogen colonization of Nbptr1a mutant plants, demonstrating its virulence function independent of NLR recognition. Silencing NbRIN4 enhanced RipE1-induced cell death, while expressing NbRIN4 inhibited it, suggesting that NbRIN4 is involved in recognition of NbPtr1a-RipE1. Furthermore, RipE1 associated with and cleaved NbRIN4, AtRIN4, and tomato (Solanum lycopersicum) SlRIN4 proteins through its cysteine protease activity. Silencing NbRIN4 in Nbptr1a mutants did not prevent RipE1 from promoting pathogen colonization, suggesting that NbRIN4 is not the primary target for RipE1-mediated virulence. Additionally, NbRIN4 suppressed self-association of the coiled-coil domain of NbPtr1a, which is critical for NbPtr1a-mediated cell death and resistance. Finally, we demonstrated that activation of NbPtr1a requires RipE1-mediated elimination of NbRIN4. Given the conserved nature of RipE1, Ptr1 holds great potential for protecting crops from diverse R. solanacearum strains and other distinct pathogens.
Collapse
Affiliation(s)
- Jingwei Lu
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Peng Cao
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Shuangxi Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Qinhu Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Zhiliang Xiao
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - He Meng
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Zhimao Sun
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Bixin Bai
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Lirui Cheng
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Aiguo Yang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Yuyan An
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Meixiang Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
8
|
Kim J, Kaleku J, Kim H, Kang M, Kang HJ, Woo J, Jin H, Jung S, Segonzac C, Park E, Choi D. An RXLR effector disrupts vesicle trafficking at ER-Golgi interface for Phytophthora capsici pathogenicity. Mol Cells 2024; 47:100158. [PMID: 39577746 DOI: 10.1016/j.mocell.2024.100158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 11/15/2024] [Accepted: 11/15/2024] [Indexed: 11/24/2024] Open
Abstract
Phytophthora species, an oomycete plant pathogen, secrete effectors into plant cells throughout their life cycle for manipulating host immunity to achieve successful colonization. However, the molecular mechanisms underlying effector-triggered necrotic cell death remain elusive. In this study, we identified an RXLR (amino acid residue; Arginine-Any amino acid-Leucine-Arginine motif) effector (Pc12) from Phytophthora capsici, which contributes to virulence and induces necrosis by triggering a distinct endoplasmic reticulum (ER) stress response through its interaction with Rab13-2. The necrotic cell death induced by Pc12 did not exhibit conventional effector-triggered immunity-mediated hypersensitive cell death, including the involvement of nucleotide-binding site leucine-rich repeat downstream signaling components and transcriptional reprogramming of defense-related genes. Instead, it alters the localization of ER-resident proteins and confines secretory proteins within the ER. Pc12 directly interacts with Rab13-2, which is primarily localized to the ER and Golgi apparatus, resulting in a diminished Rab13-2 signal on the Golgi apparatus. Furthermore, Rab13-2 exhibits increased affinity for its interactor, Rab escort protein 1, in the presence of Pc12. Structural predictions revealed that a specific residue of Rab13-2 is crucial for binding to the C-terminus of Pc12. Substitution of this residue reduced its interaction with Pc12 and impaired P. capsici infection while maintaining its interaction with Rab escort protein 1 and prenylated Rab acceptor 1. These findings provide insight into how a pathogen effector induces a distinct form of necrotic cell death to facilitate colonization of the host plant by disrupting the recycling of Rab13-2, a protein involved in vesicle trafficking at the ER-Golgi interface.
Collapse
Affiliation(s)
- Jihyun Kim
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, College of Agriculture and Life Science, Seoul National University, Seoul 08826, Republic of Korea; Plant Immunity Research Center, College of Agriculture and Life Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Jesse Kaleku
- Department of Molecular Biology, College of Agricultural, Life Sciences and Natural Resources, University of Wyoming, WY 82071, USA
| | - Haeun Kim
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, College of Agriculture and Life Science, Seoul National University, Seoul 08826, Republic of Korea; Plant Immunity Research Center, College of Agriculture and Life Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Minji Kang
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, College of Agriculture and Life Science, Seoul National University, Seoul 08826, Republic of Korea; Plant Immunity Research Center, College of Agriculture and Life Science, Seoul National University, Seoul 08826, Republic of Korea
| | | | - Jongchan Woo
- Department of Molecular Biology, College of Agricultural, Life Sciences and Natural Resources, University of Wyoming, WY 82071, USA
| | - Hongshi Jin
- Department of Molecular Biology, College of Agricultural, Life Sciences and Natural Resources, University of Wyoming, WY 82071, USA
| | - Seungmee Jung
- Department of Molecular Biology, College of Agricultural, Life Sciences and Natural Resources, University of Wyoming, WY 82071, USA
| | - Cécile Segonzac
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, College of Agriculture and Life Science, Seoul National University, Seoul 08826, Republic of Korea; Plant Immunity Research Center, College of Agriculture and Life Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Eunsook Park
- Department of Molecular Biology, College of Agricultural, Life Sciences and Natural Resources, University of Wyoming, WY 82071, USA.
| | - Doil Choi
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, College of Agriculture and Life Science, Seoul National University, Seoul 08826, Republic of Korea; Plant Immunity Research Center, College of Agriculture and Life Science, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
9
|
Brinkmann C, Bortlik J, Raffeiner M, González‐Fuente M, Börnke LF, Üstün S, Börnke F. XopM, An FFAT Motif-Containing Type III Effector Protein From Xanthomonas, Suppresses MTI Responses at the Plant Plasma Membrane. MOLECULAR PLANT PATHOLOGY 2024; 25:e70038. [PMID: 39658824 PMCID: PMC11631713 DOI: 10.1111/mpp.70038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 11/20/2024] [Indexed: 12/12/2024]
Abstract
Many gram-negative pathogenic bacteria use type III effector proteins (T3Es) as essential virulence factors to suppress host immunity and to cause disease. However, in many cases the molecular function of T3Es remains unknown. The plant pathogen Xanthomonas campestris pv. vesicatoria (Xcv) is the causal agent of bacterial spot disease on tomato and pepper plants and is known to translocate around 36 T3Es into its host cell, which collectively suppress plant defence and promote infection. XopM is an Xcv core T3E with unknown function that has no similarity to any other known protein. We found that XopM interacts with vesicle-associated membrane protein (VAMP)-associated proteins (VAPs) in an isoform-specific manner. The endoplasmic reticulum (ER) integral membrane protein VAP is a common component of membrane contact sites involved in both tethering and lipid transfer by binding directly to proteins containing an FFAT (two phenylalanines [FF] in an acidic tract [AT]) motif. Sequence analyses revealed that XopM displays two FFAT motifs that cooperatively mediated the interaction of XopM with VAP. When expressed in plants, XopM supported growth of a nonpathogenic bacterial strain and dampened the production of reactive oxygen species, indicating its ability to suppress plant immunity. Further analyses revealed that the interaction with VAP and the ability to suppress microbe-associated molecular pattern-triggered immunity (MTI) are structurally and functionally separable, although XopM requires localisation to the host membrane system for full MTI suppression activity. We discuss a working model in which XopM uses FFAT motifs to target the membrane to interfere with early MTI responses.
Collapse
Affiliation(s)
- Charlotte Brinkmann
- Plant Metabolism GroupLeibniz‐Institute of Vegetable and Ornamental Crops (IGZ)GroßbeerenGermany
| | - Jennifer Bortlik
- Plant Metabolism GroupLeibniz‐Institute of Vegetable and Ornamental Crops (IGZ)GroßbeerenGermany
| | - Margot Raffeiner
- Plant Metabolism GroupLeibniz‐Institute of Vegetable and Ornamental Crops (IGZ)GroßbeerenGermany
- Faculty of Biology & BiotechnologyRuhr‐University of BochumBochumGermany
| | | | - Linus F. Börnke
- Faculty of Mathematics and Natural SciencesHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Suayib Üstün
- Faculty of Biology & BiotechnologyRuhr‐University of BochumBochumGermany
| | - Frederik Börnke
- Plant Metabolism GroupLeibniz‐Institute of Vegetable and Ornamental Crops (IGZ)GroßbeerenGermany
| |
Collapse
|
10
|
Sharma D, Avni R, Gutierrez-Gonzalez J, Kumar R, Sela H, Prusty MR, Shatil-Cohen A, Molnár I, Holušová K, Said M, Doležel J, Millet E, Khazan-Kost S, Landau U, Bethke G, Sharon O, Ezrati S, Ronen M, Maatuk O, Eilam T, Manisterski J, Ben-Yehuda P, Anikster Y, Matny O, Steffenson BJ, Mascher M, Brabham HJ, Moscou MJ, Liang Y, Yu G, Wulff BBH, Muehlbauer G, Minz-Dub A, Sharon A. A single NLR gene confers resistance to leaf and stripe rust in wheat. Nat Commun 2024; 15:9925. [PMID: 39548072 PMCID: PMC11568145 DOI: 10.1038/s41467-024-54068-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 10/31/2024] [Indexed: 11/17/2024] Open
Abstract
Nucleotide-binding leucine-rich repeat (NLR) disease resistance genes typically confer resistance against races of a single pathogen. Here, we report that Yr87/Lr85, an NLR gene from Aegilops sharonensis and Aegilops longissima, confers resistance against both P. striiformis tritici (Pst) and Puccinia triticina (Pt) that cause stripe and leaf rust, respectively. Yr87/Lr85 confers resistance against Pst and Pt in wheat introgression as well as transgenic lines. Comparative analysis of Yr87/Lr85 and the cloned Triticeae NLR disease resistance genes shows that Yr87/Lr85 contains two distinct LRR domains and that the gene is only found in Ae. sharonensis and Ae. longissima. Allele mining and phylogenetic analysis indicate multiple events of Yr87/Lr85 gene flow between the two species and presence/absence variation explaining the majority of resistance to wheat leaf rust in both species. The confinement of Yr87/Lr85 to Ae. sharonensis and Ae. longissima and the resistance in wheat against Pst and Pt highlight the potential of these species as valuable sources of disease resistance genes for wheat improvement.
Collapse
Affiliation(s)
- Davinder Sharma
- The Institute for Cereal Crops Research, Tel Aviv University, Tel Aviv, Israel
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Raz Avni
- The Institute for Cereal Crops Research, Tel Aviv University, Tel Aviv, Israel
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Juan Gutierrez-Gonzalez
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, USA
- Departamento de Biología Molecular, Universidad de León, León, Spain
| | - Rakesh Kumar
- The Institute for Cereal Crops Research, Tel Aviv University, Tel Aviv, Israel
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
- USDA-ARS, Western Regional Research Center, Crop Improvement and Genetics Research Unit, Albany, CA, USA
| | - Hanan Sela
- The Institute for Cereal Crops Research, Tel Aviv University, Tel Aviv, Israel
- Institute of Evolution, University of Haifa, Haifa, Israel
| | - Manas Ranjan Prusty
- The Institute for Cereal Crops Research, Tel Aviv University, Tel Aviv, Israel
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Arava Shatil-Cohen
- The Institute for Cereal Crops Research, Tel Aviv University, Tel Aviv, Israel
| | - István Molnár
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Olomouc, Czechia
- Agricultural Institute, Centre for Agricultural Research, ELKH, Martonvásár, Hungary
| | - Kateřina Holušová
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Olomouc, Czechia
| | - Mahmoud Said
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Olomouc, Czechia
- Field Crops Research Institute, Agricultural Research Centre, Cairo, Egypt
| | - Jaroslav Doležel
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Olomouc, Czechia
| | - Eitan Millet
- The Institute for Cereal Crops Research, Tel Aviv University, Tel Aviv, Israel
| | - Sofia Khazan-Kost
- The Institute for Cereal Crops Research, Tel Aviv University, Tel Aviv, Israel
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Udi Landau
- The Institute for Cereal Crops Research, Tel Aviv University, Tel Aviv, Israel
| | - Gerit Bethke
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, USA
| | - Or Sharon
- The Institute for Cereal Crops Research, Tel Aviv University, Tel Aviv, Israel
| | - Smadar Ezrati
- The Institute for Cereal Crops Research, Tel Aviv University, Tel Aviv, Israel
| | - Moshe Ronen
- The Institute for Cereal Crops Research, Tel Aviv University, Tel Aviv, Israel
| | - Oxana Maatuk
- The Institute for Cereal Crops Research, Tel Aviv University, Tel Aviv, Israel
| | - Tamar Eilam
- The Institute for Cereal Crops Research, Tel Aviv University, Tel Aviv, Israel
| | - Jacob Manisterski
- The Institute for Cereal Crops Research, Tel Aviv University, Tel Aviv, Israel
| | - Pnina Ben-Yehuda
- The Institute for Cereal Crops Research, Tel Aviv University, Tel Aviv, Israel
| | - Yehoshua Anikster
- The Institute for Cereal Crops Research, Tel Aviv University, Tel Aviv, Israel
| | - Oadi Matny
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, USA
| | - Brian J Steffenson
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, USA
| | - Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Helen J Brabham
- The Sainsbury Laboratory, Norwich Research Park, Norwich, UK
- 2Blades, Evanston, IL, USA
| | - Matthew J Moscou
- USDA-ARS, Cereal Disease Laboratory, University of Minnesota, St. Paul, MN, USA
| | - Yong Liang
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Guotai Yu
- John Innes Centre, Norwich Research Park, Norwich, UK
- Plant Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Brande B H Wulff
- John Innes Centre, Norwich Research Park, Norwich, UK
- Plant Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Gary Muehlbauer
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, USA.
| | - Anna Minz-Dub
- The Institute for Cereal Crops Research, Tel Aviv University, Tel Aviv, Israel.
| | - Amir Sharon
- The Institute for Cereal Crops Research, Tel Aviv University, Tel Aviv, Israel.
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
11
|
Xia F, Zhang N, Smith RE, Chakraborty J, Sobol G, Tang X, Fei Z, Sessa G, Martin GB. Related type 2C protein phosphatases Pic3 and Pic12 negatively regulate immunity in tomato to Pseudomonas syringae. PLANT PHYSIOLOGY 2024; 196:1997-2013. [PMID: 39074178 DOI: 10.1093/plphys/kiae401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/31/2024]
Abstract
Type 2C protein phosphatases (PP2Cs) constitute a large family in most plant species, but relatively few of them have been implicated in immunity. To identify and characterize PP2C phosphatases that affect tomato (Solanum lycopersicum) immunity, we generated loss-of-function mutations in 11 PP2C-encoding genes whose expression is altered in response to immune elicitors or pathogens. We report that 2 closely related PP2C phosphatases, PP2C immunity-associated candidate 3 (Pic3) and Pic12, are involved in regulating resistance to the bacterial pathogen Pseudomonas syringae pv. tomato (Pst). Loss-of-function mutations in Pic3 led to enhanced resistance to Pst in older but not younger leaves, whereas such mutations in Pic12 resulted in enhanced resistance in both older and younger leaves. Overexpression of Pic3 and Pic12 proteins in leaves of Nicotiana benthamiana inhibited resistance to Pst, and this effect was dependent on Pic3/12 phosphatase activity and an N-terminal palmitoylation motif associated with localization to the cell periphery. Pic3, but not Pic12, had a slight negative effect on flagellin-associated reactive oxygen species generation, although their involvement in the response to Pst appeared independent of flagellin. RNA-sequencing analysis of Rio Grande (RG)-PtoR wild-type plants and 2 independent RG-pic3 mutants revealed that the enhanced disease resistance in RG-pic3 older leaves is associated with increased transcript abundance of multiple defense-related genes. RG-pic3/RG-pic12 double-mutant plants exhibited stronger disease resistance than RG-pic3 or RG-pic12 single mutants. Together, our results reveal that Pic3 and Pic12 negatively regulate tomato immunity in an additive manner through flagellin-independent pathways.
Collapse
Affiliation(s)
- Fan Xia
- Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, USA
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Ning Zhang
- Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, USA
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Renee E Smith
- Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, USA
| | - Joydeep Chakraborty
- The George S. Wise Faculty of Life Sciences, School of Plant Sciences and Food Security, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Guy Sobol
- The George S. Wise Faculty of Life Sciences, School of Plant Sciences and Food Security, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Xuemei Tang
- Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, USA
| | - Zhangjun Fei
- Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, USA
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
- USDA-ARS Robert W. Holley Center for Agriculture and Health, Ithaca, NY 14853, USA
| | - Guido Sessa
- The George S. Wise Faculty of Life Sciences, School of Plant Sciences and Food Security, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Gregory B Martin
- Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, USA
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
12
|
Mascarenhas MS, Nascimento FDS, Rocha ADJ, Ferreira MDS, Oliveira WDDS, Morais Lino LS, Mendes TADO, Ferreira CF, dos Santos-Serejo JA, Amorim EP. Use of CRISPR Technology in Gene Editing for Tolerance to Biotic Factors in Plants: A Systematic Review. Curr Issues Mol Biol 2024; 46:11086-11123. [PMID: 39451539 PMCID: PMC11505962 DOI: 10.3390/cimb46100659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/24/2024] [Accepted: 09/30/2024] [Indexed: 10/26/2024] Open
Abstract
The objective of this systematic review (SR) was to select studies on the use of gene editing by CRISPR technology related to plant resistance to biotic stresses. We sought to evaluate articles deposited in six electronic databases, using pre-defined inclusion and exclusion criteria. This SR demonstrates that countries such as China and the United States of America stand out in studies with CRISPR/Cas. Among the most studied crops are rice, tomatoes and the model plant Arabidopsis thaliana. The most cited biotic agents include the genera, Xanthomonas, Manaporthe, Pseudomonas and Phytophthora. This SR also identifies several CRISPR/Cas-edited genes and demonstrates that plant responses to stressors are mediated by many complex signaling pathways. The Cas9 enzyme is used in most articles and Cas12 and 13 are used as additional editing tools. Furthermore, the quality of the articles included in this SR was validated by a risk of bias analysis. The information collected in this SR helps to understand the state of the art of CRISPR/Cas aimed at improving resistance to diseases and pests to understand the mechanisms involved in most host-pathogen relationships. This SR shows that the CRISPR/Cas system provides a straightforward method for rapid gene targeting, providing useful information for plant breeding programs.
Collapse
Affiliation(s)
- Marcelly Santana Mascarenhas
- Department of Biological Sciences, Feira de Santana State University, Feira de Santana 44036-900, BA, Brazil; (M.S.M.); (W.D.d.S.O.)
| | - Fernanda dos Santos Nascimento
- Embrapa Mandioca e Fruticultura, Cruz das Almas 44380-000, BA, Brazil; (F.d.S.N.); (A.d.J.R.); (M.d.S.F.); (L.S.M.L.); (C.F.F.); (J.A.d.S.-S.)
| | - Anelita de Jesus Rocha
- Embrapa Mandioca e Fruticultura, Cruz das Almas 44380-000, BA, Brazil; (F.d.S.N.); (A.d.J.R.); (M.d.S.F.); (L.S.M.L.); (C.F.F.); (J.A.d.S.-S.)
| | - Mileide dos Santos Ferreira
- Embrapa Mandioca e Fruticultura, Cruz das Almas 44380-000, BA, Brazil; (F.d.S.N.); (A.d.J.R.); (M.d.S.F.); (L.S.M.L.); (C.F.F.); (J.A.d.S.-S.)
| | | | - Lucymeire Souza Morais Lino
- Embrapa Mandioca e Fruticultura, Cruz das Almas 44380-000, BA, Brazil; (F.d.S.N.); (A.d.J.R.); (M.d.S.F.); (L.S.M.L.); (C.F.F.); (J.A.d.S.-S.)
| | | | - Claudia Fortes Ferreira
- Embrapa Mandioca e Fruticultura, Cruz das Almas 44380-000, BA, Brazil; (F.d.S.N.); (A.d.J.R.); (M.d.S.F.); (L.S.M.L.); (C.F.F.); (J.A.d.S.-S.)
| | - Janay Almeida dos Santos-Serejo
- Embrapa Mandioca e Fruticultura, Cruz das Almas 44380-000, BA, Brazil; (F.d.S.N.); (A.d.J.R.); (M.d.S.F.); (L.S.M.L.); (C.F.F.); (J.A.d.S.-S.)
| | - Edson Perito Amorim
- Embrapa Mandioca e Fruticultura, Cruz das Almas 44380-000, BA, Brazil; (F.d.S.N.); (A.d.J.R.); (M.d.S.F.); (L.S.M.L.); (C.F.F.); (J.A.d.S.-S.)
| |
Collapse
|
13
|
Sunil S, Beeh S, Stöbbe E, Fischer K, Wilhelm F, Meral A, Paris C, Teasdale L, Jiang Z, Zhang L, Urban M, Aguilar Parras E, Nürnberger T, Weigel D, Lozano-Duran R, El Kasmi F. Activation of an atypical plant NLR with an N-terminal deletion initiates cell death at the vacuole. EMBO Rep 2024; 25:4358-4386. [PMID: 39242777 PMCID: PMC11467418 DOI: 10.1038/s44319-024-00240-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 07/26/2024] [Accepted: 08/12/2024] [Indexed: 09/09/2024] Open
Abstract
Plants evolve nucleotide-binding leucine-rich repeat receptors (NLRs) to induce immunity. Activated coiled-coil (CC) domain containing NLRs (CNLs) oligomerize and form apparent cation channels promoting calcium influx and cell death, with the alpha-1 helix of the individual CC domains penetrating the plasma membranes. Some CNLs are characterized by putative N-myristoylation and S-acylation sites in their CC domain, potentially mediating permanent membrane association. Whether activated Potentially Membrane Localized NLRs (PMLs) mediate cell death and calcium influx in a similar way is unknown. We uncovered the cell-death function at the vacuole of an atypical but conserved Arabidopsis PML, PML5, which has a significant deletion in its CCG10/GA domain. Active PML5 oligomers localize in Golgi membranes and the tonoplast, alter vacuolar morphology, and induce cell death, with the short N-terminus being sufficient. Mutant analysis supports a potential role of PMLs in plant immunity. PML5-like deletions are found in several Brassicales paralogs, pointing to the evolutionary importance of this innovation. PML5, with its minimal CC domain, represents the first identified CNL utilizing vacuolar-stored calcium for cell death induction.
Collapse
Affiliation(s)
- Sruthi Sunil
- Centre for Plant Molecular Biology, University of Tübingen, 72076, Tübingen, Germany
| | - Simon Beeh
- Centre for Plant Molecular Biology, University of Tübingen, 72076, Tübingen, Germany
| | - Eva Stöbbe
- Centre for Plant Molecular Biology, University of Tübingen, 72076, Tübingen, Germany
| | - Kathrin Fischer
- Centre for Plant Molecular Biology, University of Tübingen, 72076, Tübingen, Germany
| | - Franziska Wilhelm
- Centre for Plant Molecular Biology, University of Tübingen, 72076, Tübingen, Germany
| | - Aron Meral
- Centre for Plant Molecular Biology, University of Tübingen, 72076, Tübingen, Germany
| | - Celia Paris
- Centre for Plant Molecular Biology, University of Tübingen, 72076, Tübingen, Germany
| | - Luisa Teasdale
- Max Planck Institute for Biology Tübingen, 72076, Tübingen, Germany
| | - Zhihao Jiang
- Centre for Plant Molecular Biology, University of Tübingen, 72076, Tübingen, Germany
| | - Lisha Zhang
- Centre for Plant Molecular Biology, University of Tübingen, 72076, Tübingen, Germany
| | - Moritz Urban
- Centre for Plant Molecular Biology, University of Tübingen, 72076, Tübingen, Germany
| | - Emmanuel Aguilar Parras
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora', Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Depto. Biología Celular, Genética y Fisiología, 29010, Málaga, Spain
| | - Thorsten Nürnberger
- Centre for Plant Molecular Biology, University of Tübingen, 72076, Tübingen, Germany
| | - Detlef Weigel
- Max Planck Institute for Biology Tübingen, 72076, Tübingen, Germany
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, 72076, Tübingen, Germany
| | - Rosa Lozano-Duran
- Centre for Plant Molecular Biology, University of Tübingen, 72076, Tübingen, Germany
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Farid El Kasmi
- Centre for Plant Molecular Biology, University of Tübingen, 72076, Tübingen, Germany.
| |
Collapse
|
14
|
Chakraborty J, Sobol G, Xia F, Zhang N, Martin GB, Sessa G. PP2C phosphatase Pic14 negatively regulates tomato Pto/Prf-triggered immunity by inhibiting MAPK activation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:2622-2637. [PMID: 39032095 DOI: 10.1111/tpj.16937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/28/2024] [Accepted: 07/09/2024] [Indexed: 07/22/2024]
Abstract
Type 2C protein phosphatases (PP2Cs) are emerging as important regulators of plant immune responses, although little is known about how they might impact nucleotide-binding, leucine-rich repeat (NLR)-triggered immunity (NTI). We discovered that expression of the PP2C immunity-associated candidate 14 gene (Pic14) is induced upon activation of the Pto/Prf-mediated NTI response in tomato. Pto/Prf recognizes the effector AvrPto translocated into plant cells by the pathogen Pseudomonas syringae pv. tomato (Pst) and activate a MAPK cascade and other responses which together confer resistance to bacterial speck disease. Pic14 encodes a PP2C with an N-terminal kinase-interacting motif (KIM) and a C-terminal phosphatase domain. Upon inoculation with Pst-AvrPto, Pto/Prf-expressing tomato plants with loss-of-function mutations in Pic14 developed less speck disease, specifically in older leaves, compared to wild-type plants. Transient expression of Pic14 in leaves of Nicotiana benthamiana and tomato inhibited cell death typically induced by Pto/Prf and the MAPK cascade members M3Kα and Mkk2. The cell death-suppressing activity of Pic14 was dependent on the KIM and the catalytic phosphatase domain. Pic14 inhibited M3Kα- and Mkk2-mediated activation of immunity-associated MAPKs and Pic14 was shown to be an active phosphatase that physically interacts with and dephosphorylates Mkk2 in a KIM-dependent manner. Together, our results reveal Pic14 as an important negative regulator of Pto/Prf-triggered immunity by interacting with and dephosphorylating Mkk2.
Collapse
Affiliation(s)
- Joydeep Chakraborty
- School of Plant Sciences and Food Security, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, 69978, Israel
| | - Guy Sobol
- School of Plant Sciences and Food Security, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, 69978, Israel
| | - Fan Xia
- Boyce Thompson Institute for Plant Research, Ithaca, New York, 14853, USA
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York, 14853, USA
| | - Ning Zhang
- Boyce Thompson Institute for Plant Research, Ithaca, New York, 14853, USA
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York, 14853, USA
| | - Gregory B Martin
- Boyce Thompson Institute for Plant Research, Ithaca, New York, 14853, USA
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York, 14853, USA
| | - Guido Sessa
- School of Plant Sciences and Food Security, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, 69978, Israel
| |
Collapse
|
15
|
Wang C, Han M, Min Y, Hu J, Pan Y, Huang L, Nie J. Colletotrichum fructicola co-opts cytotoxic ribonucleases that antagonize host competitive microorganisms to promote infection. mBio 2024; 15:e0105324. [PMID: 38953357 PMCID: PMC11323725 DOI: 10.1128/mbio.01053-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 06/13/2024] [Indexed: 07/04/2024] Open
Abstract
Phytopathogens secrete numerous molecules into the environment to establish a microbial niche and facilitate host infection. The phytopathogenic fungus Colletotrichum fructicola, which causes pear anthracnose, can colonize different plant tissues like leaves and fruits, which are occupied by a diversity of microbes. We speculate that this fungus produces antimicrobial effectors to outcompete host-associated competitive microorganisms. Herein, we identified two secreted ribonucleases, CfRibo1 and CfRibo2, from the C. fructicola secretome. The two ribonucleases both possess ribonuclease activity and showed cytotoxicity in Nicotianan benthamiana without triggering immunity in an enzymatic activity-dependent manner. CfRibo1 and CfRibo2 recombinant proteins exhibited toxicity against Escherichia coli, Saccharomyces cerevisiae, and, importantly, the phyllosphere microorganisms isolated from the pear host. Among these isolated microbial strains, Bacillus altitudinis is a pathogenic bacterium causing pear soft rot. Strikingly, CfRibo1 and CfRibo2 were found to directly antagonize B. altitudinis to facilitate C. fructicola infection. More importantly, CfRibo1 and CfRibo2 functioned as essential virulence factors of C. fructicola in the presence of host-associated microorganisms. Further analysis revealed these two ribonucleases are widely distributed in fungi and are undergoing purifying selection. Our results provide the first evidence of antimicrobial effectors in Colletotrichum fungi and extend the functional diversity of fungal ribonucleases in plant-pest-environment interactions. IMPORTANCE Colletotrichum fructicola is emerging as a devastating pathogenic fungus causing anthracnose in various crops in agriculture, and understanding how this fungus establishes successful infection is of great significance for anthracnose disease management. Fungi are known to produce secreted effectors as weapons to promote virulence. Considerable progress has been made in elucidating how effectors manipulate plant immunity; however, their importance in modulating environmental microbes is frequently neglected. The present study identified two secreted ribonucleases, CfRibo1 and CfRibo2, as antimicrobial effectors of C. fructicola. These two proteins both possess toxicity to pear phyllosphere microorganisms, and they efficiently antagonize competitive microbes to facilitate the infection of pear hosts. This study represents the first evidence of antimicrobial effectors in Colletotrichum fungi, and we consider that CfRibo1 and CfRibo2 could be targeted for anthracnose disease management in diverse crops in the future.
Collapse
Affiliation(s)
- Chunhao Wang
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei, China
| | - Mengqing Han
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei, China
| | - Yanyan Min
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei, China
| | - Jiayi Hu
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei, China
| | - Yuemin Pan
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei, China
| | - Lili Huang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, Shaanxi, China
| | - Jiajun Nie
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei, China
| |
Collapse
|
16
|
Nguyen QM, Iswanto ABB, Kang H, Moon J, Phan KAT, Son GH, Suh MC, Chung EH, Gassmann W, Kim SH. The processed C-terminus of AvrRps4 effector suppresses plant immunity via targeting multiple WRKYs. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:1769-1787. [PMID: 38869289 DOI: 10.1111/jipb.13710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 05/03/2024] [Accepted: 05/04/2024] [Indexed: 06/14/2024]
Abstract
Pathogens generate and secrete effector proteins to the host plant cells during pathogenesis to promote virulence and colonization. If the plant carries resistance (R) proteins that recognize pathogen effectors, effector-triggered immunity (ETI) is activated, resulting in a robust immune response and hypersensitive response (HR). The bipartite effector AvrRps4 from Pseudomonas syringae pv. pisi has been well studied in terms of avirulence function. In planta, AvrRps4 is processed into two parts. The C-terminal fragment of AvrRps4 (AvrRps4C) induces HR in turnip and is recognized by the paired resistance proteins AtRRS1/AtRPS4 in Arabidopsis. Here, we show that AvrRps4C targets a group of Arabidopsis WRKY, including WRKY46, WRKY53, WRKY54, and WRKY70, to induce its virulence function. Indeed, AvrRps4C suppresses the general binding and transcriptional activities of immune-positive regulator WRKY54 and WRKY54-mediated resistance. AvrRps4C interferes with WRKY54's binding activity to target gene SARD1 in vitro, suggesting WRKY54 is sequestered from the SARD1 promoter by AvrRps4C. Through the interaction of AvrRps4C with four WRKYs, AvrRps4 enhances the formation of homo-/heterotypic complexes of four WRKYs and sequesters them in the cytoplasm, thus inhibiting their function in plant immunity. Together, our results provide a detailed virulence mechanism of AvrRps4 through its C-terminus.
Collapse
Affiliation(s)
- Quang-Minh Nguyen
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Korea
| | - Arya Bagus Boedi Iswanto
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Korea
| | - Hobin Kang
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Korea
| | - Jiyun Moon
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Korea
| | - Kieu Anh Thi Phan
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Korea
| | - Geon Hui Son
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Korea
| | - Mi Chung Suh
- Department of Life Science, Sogang University, Seoul, 04107, Korea
| | - Eui-Hwan Chung
- Department of Plant Biotechnology, Korea University, Seoul, 02841, Korea
| | - Walter Gassmann
- Division of Plant Science and Technology, Christopher S. Bond Life Sciences Center and Interdisciplinary Plant Group, University of Missouri, Columbia, 65211, Missouri, USA
| | - Sang Hee Kim
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Korea
- Division of Life Science and Research Institute of Molecular Alchemy, Gyeongsang National University, Jinju, 52828, Korea
| |
Collapse
|
17
|
Kunz L, Poretti M, Praz CR, Müller MC, Wyler M, Keller B, Wicker T, Bourras S. High-Copy Transposons from a Pathogen Give Rise to a Conserved sRNA Family with a Novel Host Immunity Target. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2024; 37:545-551. [PMID: 38551853 DOI: 10.1094/mpmi-10-23-0176-sc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2024]
Abstract
Small RNAs (sRNAs) are involved in gene silencing in multiple ways, including through cross-kingdom transfers from parasites to their hosts. Little is known about the evolutionary mechanisms enabling eukaryotic microbes to evolve functional mimics of host small regulatory RNAs. Here, we describe the identification and functional characterization of SINE_sRNA1, an sRNA family derived from highly abundant short interspersed nuclear element (SINE) retrotransposons in the genome of the wheat powdery mildew pathogen. SINE_sRNA1 is encoded by a sequence motif that is conserved in multiple SINE families and corresponds to a functional plant microRNA (miRNA) mimic targeting Tae_AP1, a wheat gene encoding an aspartic protease only found in monocots. Tae_AP1 has a novel function enhancing both pattern-triggered immunity (PTI) and effector-triggered immunity (ETI), thereby contributing to the cross activation of plant defenses. We conclude that SINE_sRNA1 and Tae_AP1 are functional innovations, suggesting the contribution of transposons to the evolutionary arms race between a parasite and its host. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Lukas Kunz
- Department of Plant and Microbial Biology, University of Zürich, Zollikerstrasse 107, CH-8008 Zürich, Switzerland
| | - Manuel Poretti
- Department of Plant and Microbial Biology, University of Zürich, Zollikerstrasse 107, CH-8008 Zürich, Switzerland
- Department of Biology, University of Fribourg, Chemin du Musée 10, CH-1700 Fribourg, Switzerland
| | - Coraline R Praz
- Department of Plant and Microbial Biology, University of Zürich, Zollikerstrasse 107, CH-8008 Zürich, Switzerland
- Center of Biotechnology and Genomics of Plants, Polytechnic University of Madrid, Campus de Montegancedo, 28223 Madrid, Spain
| | - Marion C Müller
- Department of Plant and Microbial Biology, University of Zürich, Zollikerstrasse 107, CH-8008 Zürich, Switzerland
- Chair of Phytopathology, TUM School of Life Sciences, Technical University of Munich, Emil-Ramann-Str. 2, 85354 Freising-Weihenstephan, Germany
| | - Michele Wyler
- Department of Plant and Microbial Biology, University of Zürich, Zollikerstrasse 107, CH-8008 Zürich, Switzerland
- MWSchmid GmbH, Hauptstrasse 34, CH-8750 Glarus, Switzerland
| | - Beat Keller
- Department of Plant and Microbial Biology, University of Zürich, Zollikerstrasse 107, CH-8008 Zürich, Switzerland
| | - Thomas Wicker
- Department of Plant and Microbial Biology, University of Zürich, Zollikerstrasse 107, CH-8008 Zürich, Switzerland
| | - Salim Bourras
- Department of Plant and Microbial Biology, University of Zürich, Zollikerstrasse 107, CH-8008 Zürich, Switzerland
- Department of Plant Biology, Swedish University of Agricultural Sciences, Almas Allé 5, 75007 Uppsala, Sweden
| |
Collapse
|
18
|
Timilsina S, Kaur A, Sharma A, Ramamoorthy S, Vallad GE, Wang N, White FF, Potnis N, Goss EM, Jones JB. Xanthomonas as a Model System for Studying Pathogen Emergence and Evolution. PHYTOPATHOLOGY 2024; 114:1433-1446. [PMID: 38648116 DOI: 10.1094/phyto-03-24-0084-rvw] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
In this review, we highlight studies in which whole-genome sequencing, comparative genomics, and population genomics have provided unprecedented insights into past and ongoing pathogen evolution. These include new understandings of the adaptive evolution of secretion systems and their effectors. We focus on Xanthomonas pathosystems that have seen intensive study and improved our understanding of pathogen emergence and evolution, particularly in the context of host specialization: citrus canker, bacterial blight of rice, and bacterial spot of tomato and pepper. Across pathosystems, pathogens appear to follow a pattern of bursts of evolution and diversification that impact host adaptation. There remains a need for studies on the mechanisms of host range evolution and genetic exchange among closely related but differentially host-specialized species and to start moving beyond the study of specific strain and host cultivar pairwise interactions to thinking about these pathosystems in a community context.
Collapse
Affiliation(s)
- Sujan Timilsina
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611
| | - Amandeep Kaur
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611
| | - Anuj Sharma
- Department of Horticultural Sciences, Gulf Coast Research and Education Center, University of Florida, Wimauma, FL 33598
| | | | - Gary E Vallad
- Department of Plant Pathology, Gulf Coast Research and Education Center, University of Florida, Wimauma, FL 33598
| | - Nian Wang
- Department of Microbiology and Cell Science, Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850
| | - Frank F White
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611
| | - Neha Potnis
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849
| | - Erica M Goss
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32610
| | - Jeffrey B Jones
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611
| |
Collapse
|
19
|
Han M, Wang C, Zhu W, Pan Y, Huang L, Nie J. Extracellular perception of multiple novel core effectors from the broad host-range pear anthracnose pathogen Colletotrichum fructicola in the nonhost Nicotiana benthamiana. HORTICULTURE RESEARCH 2024; 11:uhae078. [PMID: 38766536 PMCID: PMC11101317 DOI: 10.1093/hr/uhae078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 03/03/2024] [Indexed: 05/22/2024]
Abstract
Colletotrichum fructicola is emerging as a devastating pathogenic fungus causing anthracnose in a wide range of horticultural crops, particularly fruits. Exploitation of nonhost resistance (NHR) represents a robust strategy for plant disease management. Perception of core effectors from phytopathogens frequently leads to hypersensitive cell death and resistance in nonhost plants; however, such core effectors in C. fructicola and their signaling components in non-hosts remain elusive. Here, we found a virulent C. fructicola strain isolated from pear exhibits non-adaptation in the model plant Nicotiana benthamiana. Perception of secreted molecules from C. fructicola appears to be a dominant factor in NHR, and four novel core effectors-CfCE4, CfCE25, CfCE61, and CfCE66-detected by N. benthamiana were, accordingly, identified. These core effectors exhibit cell death-inducing activity in N. benthamiana and accumulate in the apoplast. With a series of CRISPR/Cas9-edited mutants or gene-silenced plants, we found the coreceptor BAK1 and helper NLRs including ADR1, NRG1, and NRCs mediate perceptions of these core effectors in N. benthamiana. Concurrently, multiple N. benthamiana genes encoding cell surface immune receptors and intracellular immune receptors were greatly induced by C. fructicola. This work represents the first characterization of the repertoire of C. fructicola core effectors responsible for NHR. Significantly, the novel core effectors and their signaling components unveiled in this study offered insights into a continuum of layered immunity during NHR and will be helpful for anthracnose disease management in diverse horticultural crops.
Collapse
Affiliation(s)
- Mengqing Han
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei 230036, China
| | - Chunhao Wang
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei 230036, China
| | - Wenhui Zhu
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei 230036, China
| | - Yuemin Pan
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei 230036, China
| | - Lili Huang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jiajun Nie
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
20
|
Jones JDG, Staskawicz BJ, Dangl JL. The plant immune system: From discovery to deployment. Cell 2024; 187:2095-2116. [PMID: 38670067 DOI: 10.1016/j.cell.2024.03.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/08/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024]
Abstract
Plant diseases cause famines, drive human migration, and present challenges to agricultural sustainability as pathogen ranges shift under climate change. Plant breeders discovered Mendelian genetic loci conferring disease resistance to specific pathogen isolates over 100 years ago. Subsequent breeding for disease resistance underpins modern agriculture and, along with the emergence and focus on model plants for genetics and genomics research, has provided rich resources for molecular biological exploration over the last 50 years. These studies led to the identification of extracellular and intracellular receptors that convert recognition of extracellular microbe-encoded molecular patterns or intracellular pathogen-delivered virulence effectors into defense activation. These receptor systems, and downstream responses, define plant immune systems that have evolved since the migration of plants to land ∼500 million years ago. Our current understanding of plant immune systems provides the platform for development of rational resistance enhancement to control the many diseases that continue to plague crop production.
Collapse
Affiliation(s)
- Jonathan D G Jones
- Sainsbury Lab, University of East Anglia, Colney Lane, Norwich NR4 7UH, UK.
| | - Brian J Staskawicz
- Department of Plant and Microbial Biology and Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jeffery L Dangl
- Department of Biology, University of North Carolina at Chapel Hill and Howard Hughes Medical Institute, Chapel Hill, NC 27599, USA
| |
Collapse
|
21
|
Shen Q, Hasegawa K, Oelerich N, Prakken A, Tersch LW, Wang J, Reichhardt F, Tersch A, Choo JC, Timmers T, Hofmann K, Parker JE, Chai J, Maekawa T. Cytoplasmic calcium influx mediated by plant MLKLs confers TNL-triggered immunity. Cell Host Microbe 2024; 32:453-465.e6. [PMID: 38513655 DOI: 10.1016/j.chom.2024.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/29/2024] [Accepted: 02/28/2024] [Indexed: 03/23/2024]
Abstract
The plant homolog of vertebrate necroptosis inducer mixed-lineage kinase domain-like (MLKL) contributes to downstream steps in Toll-interleukin-1 receptor domain NLR (TNL)-receptor-triggered immunity. Here, we show that Arabidopsis MLKL1 (AtMLKL1) clusters into puncta at the plasma membrane upon TNL activation and that this sub-cellular reorganization is dependent on the TNL signal transducer, EDS1. We find that AtMLKLs confer TNL-triggered immunity in parallel with RPW8-type HeLo-domain-containing NLRs (RNLs) and that the AtMLKL N-terminal HeLo domain is indispensable for both immunity and clustering. We show that the AtMLKL HeLo domain mediates cytoplasmic Ca2+ ([Ca2+]cyt) influx in plant and human cells, and AtMLKLs are responsible for sustained [Ca2+]cyt influx during TNL-triggered, but not CNL-triggered, immunity. Our study reveals parallel immune signaling functions of plant MLKLs and RNLs as mediators of [Ca2+]cyt influx and a potentially common role of the HeLo domain fold in the Ca2+-signal relay of diverse organisms.
Collapse
Affiliation(s)
- Qiaochu Shen
- Institute for Plant Sciences, University of Cologne, 50674 Cologne, NRW, Germany
| | - Keiichi Hasegawa
- Institute for Biochemistry, University of Cologne, 50674 Cologne, NRW, Germany
| | - Nicole Oelerich
- Institute for Genetics, University of Cologne, 50674 Cologne, NRW, Germany
| | - Anna Prakken
- Institute for Plant Sciences, University of Cologne, 50674 Cologne, NRW, Germany
| | - Lea Weiler Tersch
- Institute for Plant Sciences, University of Cologne, 50674 Cologne, NRW, Germany
| | - Junli Wang
- Max Planck Institute for Plant Breeding Research, 50829 Cologne, NRW, Germany
| | - Frowin Reichhardt
- Institute for Plant Sciences, University of Cologne, 50674 Cologne, NRW, Germany
| | - Alexandra Tersch
- Institute for Plant Sciences, University of Cologne, 50674 Cologne, NRW, Germany
| | - Je Cuan Choo
- Institute for Plant Sciences, University of Cologne, 50674 Cologne, NRW, Germany
| | - Ton Timmers
- Max Planck Institute for Plant Breeding Research, 50829 Cologne, NRW, Germany
| | - Kay Hofmann
- Institute for Genetics, University of Cologne, 50674 Cologne, NRW, Germany
| | - Jane E Parker
- Max Planck Institute for Plant Breeding Research, 50829 Cologne, NRW, Germany; Cluster of Excellence on Plant Sciences (CEPLAS), Cologne, NRW, Germany
| | - Jijie Chai
- Institute for Biochemistry, University of Cologne, 50674 Cologne, NRW, Germany; Max Planck Institute for Plant Breeding Research, 50829 Cologne, NRW, Germany; Cluster of Excellence on Plant Sciences (CEPLAS), Cologne, NRW, Germany
| | - Takaki Maekawa
- Institute for Plant Sciences, University of Cologne, 50674 Cologne, NRW, Germany; Cluster of Excellence on Plant Sciences (CEPLAS), Cologne, NRW, Germany.
| |
Collapse
|
22
|
Nabi Z, Manzoor S, Nabi SU, Wani TA, Gulzar H, Farooq M, Arya VM, Baloch FS, Vlădulescu C, Popescu SM, Mansoor S. Pattern-Triggered Immunity and Effector-Triggered Immunity: crosstalk and cooperation of PRR and NLR-mediated plant defense pathways during host-pathogen interactions. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:587-604. [PMID: 38737322 PMCID: PMC11087456 DOI: 10.1007/s12298-024-01452-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/12/2024] [Accepted: 04/16/2024] [Indexed: 05/14/2024]
Abstract
The elucidation of the molecular basis underlying plant-pathogen interactions is imperative for the development of sustainable resistance strategies against pathogens. Plants employ a dual-layered immunological detection and response system wherein cell surface-localized Pattern Recognition Receptors (PRRs) and intracellular Nucleotide-Binding Leucine-Rich Repeat Receptors (NLRs) play pivotal roles in initiating downstream signalling cascades in response to pathogen-derived chemicals. Pattern-Triggered Immunity (PTI) is associated with PRRs and is activated by the recognition of conserved molecular structures, known as Pathogen-Associated Molecular Patterns. When PTI proves ineffective due to pathogenic effectors, Effector-Triggered Immunity (ETI) frequently confers resistance. In ETI, host plants utilize NLRs to detect pathogen effectors directly or indirectly, prompting a rapid and more robust defense response. Additionally epigenetic mechanisms are participating in plant immune memory. Recently developed technologies like CRISPR/Cas9 helps in exposing novel prospects in plant pathogen interactions. In this review we explore the fascinating crosstalk and cooperation between PRRs and NLRs. We discuss epigenomic processes and CRISPR/Cas9 regulating immune response in plants and recent findings that shed light on the coordination of these defense layers. Furthermore, we also have discussed the intricate interactions between the salicylic acid and jasmonic acid signalling pathways in plants, offering insights into potential synergistic interactions that would be harnessed for the development of novel and sustainable resistance strategies against diverse group of pathogens.
Collapse
Affiliation(s)
- Zarka Nabi
- Division of Plant Pathology, FOA-SKUAST-K, Wadura, 193201 India
| | - Subaya Manzoor
- Division of Plant Pathology, FOA-SKUAST-K, Wadura, 193201 India
| | - Sajad Un Nabi
- ICAR-Central Institute of Temperate Horticulture, Srinagar, 191132 India
| | | | - Humira Gulzar
- Division of Plant Pathology, FOA-SKUAST-K, Wadura, 193201 India
| | - Mehreena Farooq
- Division of Plant Pathology, FOH-SKUAST-K, Shalimar, Srinagar, 190025 India
| | - Vivak M. Arya
- Division of Soil Science and Agriculture Chemistry, Sher-e-Kashmir University of Agricultural Sciences and Technology, Jammu, India
| | - Faheem Shehzad Baloch
- Department of Biotechnology, Faculty of Science, Mersin University, 33100 Yenişehir, Mersin Turkey
| | - Carmen Vlădulescu
- Department of Biology and Environmental Engineering, University of Craiova, A. I. Cuza 13, 200585 Craiova, Romania
| | - Simona Mariana Popescu
- Department of Biology and Environmental Engineering, University of Craiova, A. I. Cuza 13, 200585 Craiova, Romania
| | - Sheikh Mansoor
- Department of Plant Resources and Environment, Jeju National University, Jeju, 63243 Republic of Korea
- Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju, 63243 Republic of Korea
| |
Collapse
|
23
|
Letanneur C, Brisson A, Bisaillon M, Devèze T, Plourde MB, Schattat M, Duplessis S, Germain H. Host-Specific and Homologous Pairs of Melampsora larici-populina Effectors Unveil Novel Nicotiana benthamiana Stromule Induction Factors. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2024; 37:277-289. [PMID: 38148279 DOI: 10.1094/mpmi-09-23-0148-fi] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
The poplar rust fungus Melampsora larici-populina is part of one of the most devastating group of fungi (Pucciniales) and causes important economic losses to the poplar industry. Because M. larici-populina is a heteroecious obligate biotroph, its spread depends on its ability to carry out its reproductive cycle through larch and then poplar parasitism. Genomic approaches have identified more than 1,000 candidate secreted effector proteins (CSEPs) from the predicted secretome of M. larici-populina that are potentially implicated in the infection process. In this study, we selected CSEP pairs (and one triplet) among CSEP gene families that share high sequence homology but display specific gene expression profiles among the two distinct hosts. We determined their subcellular localization by confocal microscopy through expression in the heterologous plant system Nicotiana benthamiana. Five out of nine showed partial or complete chloroplastic localization. We also screened for potential protein interactors from larch and poplar by yeast two-hybrid assays. One pair of CSEPs and the triplet shared common interactors, whereas the members of the two other pairs did not have common targets from either host. Finally, stromule induction quantification revealed that two pairs and the triplet of CSEPs induced stromules when transiently expressed in N. benthamiana. The use of N. benthamiana eds1 and nrg1 knockout lines showed that CSEPs can induce stromules through an eds1-independent mechanism. However, CSEP homologs shared the same impact on stromule induction and contributed to discovering a new stromule induction cascade that can be partially and/or fully independent of eds1. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Claire Letanneur
- Chemistry, Biochemistry, and Physics Department, Université du Québec à Trois-Rivières, Trois-Rivières, G8Z 4M3, Canada
| | - Alexandre Brisson
- Chemistry, Biochemistry, and Physics Department, Université du Québec à Trois-Rivières, Trois-Rivières, G8Z 4M3, Canada
| | - Mathias Bisaillon
- Chemistry, Biochemistry, and Physics Department, Université du Québec à Trois-Rivières, Trois-Rivières, G8Z 4M3, Canada
| | - Théo Devèze
- Chemistry, Biochemistry, and Physics Department, Université du Québec à Trois-Rivières, Trois-Rivières, G8Z 4M3, Canada
| | - Mélodie B Plourde
- Chemistry, Biochemistry, and Physics Department, Université du Québec à Trois-Rivières, Trois-Rivières, G8Z 4M3, Canada
| | - Martin Schattat
- Plant Physiology Department, Martin Luther University, 06120 Halle, Germany
| | | | - Hugo Germain
- Chemistry, Biochemistry, and Physics Department, Université du Québec à Trois-Rivières, Trois-Rivières, G8Z 4M3, Canada
| |
Collapse
|
24
|
Wang H, Song S, Gao S, Yu Q, Zhang H, Cui X, Fan J, Xin X, Liu Y, Staskawicz B, Qi T. The NLR immune receptor ADR1 and lipase-like proteins EDS1 and PAD4 mediate stomatal immunity in Nicotiana benthamiana and Arabidopsis. THE PLANT CELL 2024; 36:427-446. [PMID: 37851863 PMCID: PMC10827572 DOI: 10.1093/plcell/koad270] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/12/2023] [Accepted: 09/19/2023] [Indexed: 10/20/2023]
Abstract
In the presence of pathogenic bacteria, plants close their stomata to prevent pathogen entry. Intracellular nucleotide-binding leucine-rich repeat (NLR) immune receptors recognize pathogenic effectors and activate effector-triggered immune responses. However, the regulatory and molecular mechanisms of stomatal immunity involving NLR immune receptors are unknown. Here, we show that the Nicotiana benthamiana RPW8-NLR central immune receptor ACTIVATED DISEASE RESISTANCE 1 (NbADR1), together with the key immune proteins ENHANCED DISEASE SUSCEPTIBILITY 1 (NbEDS1) and PHYTOALEXIN DEFICIENT 4 (NbPAD4), plays an essential role in bacterial pathogen- and flg22-induced stomatal immunity by regulating the expression of salicylic acid (SA) and abscisic acid (ABA) biosynthesis or response-related genes. NbADR1 recruits NbEDS1 and NbPAD4 in stomata to form a stomatal immune response complex. The transcription factor NbWRKY40e, in association with NbEDS1 and NbPAD4, modulates the expression of SA and ABA biosynthesis or response-related genes to influence stomatal immunity. NbADR1, NbEDS1, and NbPAD4 are required for the pathogen infection-enhanced binding of NbWRKY40e to the ISOCHORISMATE SYNTHASE 1 promoter. Moreover, the ADR1-EDS1-PAD4 module regulates stomatal immunity in Arabidopsis (Arabidopsis thaliana). Collectively, our findings show the pivotal role of the core intracellular immune receptor module ADR1-EDS1-PAD4 in stomatal immunity, which enables plants to limit pathogen entry.
Collapse
Affiliation(s)
- Hanling Wang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Susheng Song
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Shang Gao
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qiangsheng Yu
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Haibo Zhang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiulin Cui
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jun Fan
- MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Xiufang Xin
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yule Liu
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Brian Staskawicz
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
| | - Tiancong Qi
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
25
|
Brabham HJ, Gómez De La Cruz D, Were V, Shimizu M, Saitoh H, Hernández-Pinzón I, Green P, Lorang J, Fujisaki K, Sato K, Molnár I, Šimková H, Doležel J, Russell J, Taylor J, Smoker M, Gupta YK, Wolpert T, Talbot NJ, Terauchi R, Moscou MJ. Barley MLA3 recognizes the host-specificity effector Pwl2 from Magnaporthe oryzae. THE PLANT CELL 2024; 36:447-470. [PMID: 37820736 PMCID: PMC10827324 DOI: 10.1093/plcell/koad266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/13/2023]
Abstract
Plant nucleotide-binding leucine-rich repeat (NLRs) immune receptors directly or indirectly recognize pathogen-secreted effector molecules to initiate plant defense. Recognition of multiple pathogens by a single NLR is rare and usually occurs via monitoring for changes to host proteins; few characterized NLRs have been shown to recognize multiple effectors. The barley (Hordeum vulgare) NLR gene Mildew locus a (Mla) has undergone functional diversification, and the proteins encoded by different Mla alleles recognize host-adapted isolates of barley powdery mildew (Blumeria graminis f. sp. hordei [Bgh]). Here, we show that Mla3 also confers resistance to the rice blast fungus Magnaporthe oryzae in a dosage-dependent manner. Using a forward genetic screen, we discovered that the recognized effector from M. oryzae is Pathogenicity toward Weeping Lovegrass 2 (Pwl2), a host range determinant factor that prevents M. oryzae from infecting weeping lovegrass (Eragrostis curvula). Mla3 has therefore convergently evolved the capacity to recognize effectors from diverse pathogens.
Collapse
Affiliation(s)
- Helen J Brabham
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
- 2Blades, Evanston, IL 60201, USA
| | - Diana Gómez De La Cruz
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Vincent Were
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Motoki Shimizu
- Iwate Biotechnology Research Centre, Kitakami 024-0003, Japan
| | - Hiromasa Saitoh
- Department of Molecular Microbiology, Tokyo University of Agriculture, Tokyo 156-8502, Japan
| | | | - Phon Green
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Jennifer Lorang
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | - Koki Fujisaki
- Iwate Biotechnology Research Centre, Kitakami 024-0003, Japan
| | - Kazuhiro Sato
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan
| | - István Molnár
- Institute of Experimental Botany of the Czech Academy of Sciences, 779 00 Olomouc, Czech Republic
| | - Hana Šimková
- Institute of Experimental Botany of the Czech Academy of Sciences, 779 00 Olomouc, Czech Republic
| | - Jaroslav Doležel
- Institute of Experimental Botany of the Czech Academy of Sciences, 779 00 Olomouc, Czech Republic
| | - James Russell
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Jodie Taylor
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Matthew Smoker
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Yogesh Kumar Gupta
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
- 2Blades, Evanston, IL 60201, USA
| | - Tom Wolpert
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | - Nicholas J Talbot
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Ryohei Terauchi
- Iwate Biotechnology Research Centre, Kitakami 024-0003, Japan
- Laboratory of Crop Evolution, Graduate School of Agriculture, Kyoto University, Kyoto 617-0001, Japan
| | - Matthew J Moscou
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| |
Collapse
|
26
|
Locci F, Parker JE. Plant NLR immunity activation and execution: a biochemical perspective. Open Biol 2024; 14:230387. [PMID: 38262605 PMCID: PMC10805603 DOI: 10.1098/rsob.230387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/15/2023] [Indexed: 01/25/2024] Open
Abstract
Plants deploy cell-surface and intracellular receptors to detect pathogen attack and trigger innate immune responses. Inside host cells, families of nucleotide-binding/leucine-rich repeat (NLR) proteins serve as pathogen sensors or downstream mediators of immune defence outputs and cell death, which prevent disease. Established genetic underpinnings of NLR-mediated immunity revealed various strategies plants adopt to combat rapidly evolving microbial pathogens. The molecular mechanisms of NLR activation and signal transmission to components controlling immunity execution were less clear. Here, we review recent protein structural and biochemical insights to plant NLR sensor and signalling functions. When put together, the data show how different NLR families, whether sensors or signal transducers, converge on nucleotide-based second messengers and cellular calcium to confer immunity. Although pathogen-activated NLRs in plants engage plant-specific machineries to promote defence, comparisons with mammalian NLR immune receptor counterparts highlight some shared working principles for NLR immunity across kingdoms.
Collapse
Affiliation(s)
- Federica Locci
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Jane E. Parker
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
- Cologne-Düsseldorf Cluster of Excellence on Plant Sciences (CEPLAS), 40225 Düsseldorf, Germany
| |
Collapse
|
27
|
Sueldo DJ, Godson A, Kaschani F, Krahn D, Kessenbrock T, Buscaill P, Schofield CJ, Kaiser M, van der Hoorn RAL. Activity-based proteomics uncovers suppressed hydrolases and a neo-functionalised antibacterial enzyme at the plant-pathogen interface. THE NEW PHYTOLOGIST 2024; 241:394-408. [PMID: 36866975 PMCID: PMC10952330 DOI: 10.1111/nph.18857] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
The extracellular space of plant tissues contains hundreds of hydrolases that might harm colonising microbes. Successful pathogens may suppress these hydrolases to enable disease. Here, we report the dynamics of extracellular hydrolases in Nicotiana benthamiana upon infection with Pseudomonas syringae. Using activity-based proteomics with a cocktail of biotinylated probes, we simultaneously monitored 171 active hydrolases, including 109 serine hydrolases (SHs), 49 glycosidases (GHs) and 13 cysteine proteases (CPs). The activity of 82 of these hydrolases (mostly SHs) increases during infection, while the activity of 60 hydrolases (mostly GHs and CPs) is suppressed during infection. Active β-galactosidase-1 (BGAL1) is amongst the suppressed hydrolases, consistent with production of the BGAL1 inhibitor by P. syringae. One of the other suppressed hydrolases, the pathogenesis-related NbPR3, decreases bacterial growth when transiently overexpressed. This is dependent on its active site, revealing a role for NbPR3 activity in antibacterial immunity. Despite being annotated as a chitinase, NbPR3 does not possess chitinase activity and contains an E112Q active site substitution that is essential for antibacterial activity and is present only in Nicotiana species. This study introduces a powerful approach to reveal novel components of extracellular immunity, exemplified by the discovery of the suppression of neo-functionalised Nicotiana-specific antibacterial NbPR3.
Collapse
Affiliation(s)
- Daniela J. Sueldo
- The Plant Chemetics Laboratory, Department of BiologyUniversity of OxfordOxfordOX1 3RBUK
| | - Alice Godson
- The Plant Chemetics Laboratory, Department of BiologyUniversity of OxfordOxfordOX1 3RBUK
| | - Farnusch Kaschani
- ZMB Chemical Biology, Faculty of BiologyUniversity of Duisburg‐Essen45117EssenGermany
| | - Daniel Krahn
- The Plant Chemetics Laboratory, Department of BiologyUniversity of OxfordOxfordOX1 3RBUK
- ZMB Chemical Biology, Faculty of BiologyUniversity of Duisburg‐Essen45117EssenGermany
| | - Till Kessenbrock
- ZMB Chemical Biology, Faculty of BiologyUniversity of Duisburg‐Essen45117EssenGermany
| | - Pierre Buscaill
- The Plant Chemetics Laboratory, Department of BiologyUniversity of OxfordOxfordOX1 3RBUK
| | - Christopher J. Schofield
- Chemistry Research LaboratoryDepartment of Chemistry and the Ineos Oxford Institute for Antimicrobial ResearchOxfordOX1 3TAUK
| | - Markus Kaiser
- ZMB Chemical Biology, Faculty of BiologyUniversity of Duisburg‐Essen45117EssenGermany
| | | |
Collapse
|
28
|
Sirangelo TM. NLR- and mlo-Based Resistance Mechanisms against Powdery Mildew in Cannabis sativa. PLANTS (BASEL, SWITZERLAND) 2023; 13:105. [PMID: 38202413 PMCID: PMC10780410 DOI: 10.3390/plants13010105] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/26/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024]
Abstract
Powdery mildew (PM) is one of the most common Cannabis sativa diseases. In spite of this, very few documented studies have characterized the resistance genes involved in PM defense mechanisms, or sources of natural genetic resistance in cannabis. The focus of the present work is on the two primary mechanisms for qualitative resistance against PM. The first is based on resistance (R) genes characterized by conserved nucleotide-binding site and/or leucine-rich repeat domains (NLRs). The second one involves susceptibility (S) genes, and particularly mildew resistance locus o (MLO) genes, whose loss-of-function mutations seem to be a reliable way to protect plants from PM infection. Cannabis defenses against PM are thus discussed, mainly detailing the strategies based on these two mechanisms. Emerging studies about this research topic are also reported and, based on the most significant results, a potential PM resistance model in cannabis plant-pathogen interactions is proposed. Finally, innovative approaches, based on the pyramiding of multiple R genes, as well as on genetic engineering and genome editing methods knocking out S genes, are discussed, to obtain durable PM-resistant cannabis cultivars with a broad-spectrum resistance range.
Collapse
Affiliation(s)
- Tiziana M Sirangelo
- ENEA-Italian National Agency for New Technologies, Energy and Sustainable Economic Development-Division Biotechnologies and Agroindustry, 00123 Rome, Italy
| |
Collapse
|
29
|
Kim B, Yu W, Kim H, Dong Q, Choi S, Prokchorchick M, Macho AP, Sohn KH, Segonzac C. A plasma membrane nucleotide-binding leucine-rich repeat receptor mediates the recognition of the Ralstonia pseudosolanacearum effector RipY in Nicotiana benthamiana. PLANT COMMUNICATIONS 2023; 4:100640. [PMID: 37349986 PMCID: PMC10721487 DOI: 10.1016/j.xplc.2023.100640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 06/01/2023] [Accepted: 06/18/2023] [Indexed: 06/24/2023]
Abstract
Bacterial wilt disease caused by several Ralstonia species is one of the most destructive diseases in Solanaceae crops. Only a few functional resistance genes against bacterial wilt have been cloned to date. Here, we show that the broadly conserved type III secreted effector RipY is recognized by the Nicotiana benthamiana immune system, leading to cell death induction, induction of defense-related gene expression, and restriction of bacterial pathogen growth. Using a multiplexed virus-induced gene-silencing-based N. benthamiana nucleotide-binding and leucine-rich repeat receptor (NbNLR) library, we identified a coiled-coil (CC) nucleotide-binding and leucine-rich repeat receptor (CNL) required for recognition of RipY, which we named RESISTANCE TO RALSTONIA SOLANACEARUM RIPY (RRS-Y). Genetic complementation assays in RRS-Y-silenced plants and stable rrs-y knockout mutants demonstrated that RRS-Y is sufficient to activate RipY-induced cell death and RipY-induced immunity to Ralstonia pseudosolanacearum. RRS-Y function is dependent on the phosphate-binding loop motif of the nucleotide-binding domain but independent of the characterized signaling components ENHANCED DISEASE SUSCEPTIBILITY 1, ACTIVATED DISEASE RESISTANCE 1, and N REQUIREMENT GENE 1 and the NLR helpers NB-LRR REQUIRED FOR HR-ASSOCIATED CELL DEATH-2, -3, and -4 in N. benthamiana. We further show that RRS-Y localization at the plasma membrane is mediated by two cysteine residues in the CC domain and is required for RipY recognition. RRS-Y also broadly recognizes RipY homologs across Ralstonia species. Lastly, we show that the C-terminal region of RipY is indispensable for RRS-Y activation. Together, our findings provide an additional effector/receptor pair system to deepen our understanding of CNL activation in plants.
Collapse
Affiliation(s)
- Boyoung Kim
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul 08826, Republic of Korea; Plant Immunity Research Center, Seoul National University, Seoul 08826, Republic of Korea
| | - Wenjia Yu
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China
| | - Haseong Kim
- Plant Immunity Research Center, Seoul National University, Seoul 08826, Republic of Korea; Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Qian Dong
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China
| | - Sera Choi
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Maxim Prokchorchick
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Alberto P Macho
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China
| | - Kee Hoon Sohn
- Plant Immunity Research Center, Seoul National University, Seoul 08826, Republic of Korea; Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Cécile Segonzac
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul 08826, Republic of Korea; Plant Immunity Research Center, Seoul National University, Seoul 08826, Republic of Korea; Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Republic of Korea; Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
30
|
Ogden SC, Nishimura MT, Lapin D. Functional diversity of Toll/interleukin-1 receptor domains in flowering plants and its translational potential. CURRENT OPINION IN PLANT BIOLOGY 2023; 76:102481. [PMID: 39492368 DOI: 10.1016/j.pbi.2023.102481] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/21/2023] [Accepted: 10/02/2023] [Indexed: 11/05/2024]
Abstract
Across the Tree of Life, innate immunity and cell death mechanisms protect hosts from potential pathogens. In prokaryotes, animals, and flowering plants, these functions are often mediated by Toll/interleukin-1 receptor (TIR) domain proteins. Here, we discuss recent analyses of TIR biology in flowering plants, revealing (i) TIR functions beyond pathogen recognition, e.g. in the spatial control of immunity, and (ii) the existence of at least two pathways for TIR signaling in plants. Also, we discuss TIR-based strategies for crop improvement and argue for a need to better understand TIR functions outside of commonly studied dicot pathways for future translational work. Opinions of experts on emerging topics in basic and translational plant TIR research are presented in supplementary video interviews.
Collapse
Affiliation(s)
- Sam C Ogden
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA; Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO 80523, USA
| | - Marc T Nishimura
- Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO 80523, USA.
| | - Dmitry Lapin
- Department of Biology, Translational Plant Biology, Utrecht University, 3584CH, Utrecht, the Netherlands.
| |
Collapse
|
31
|
Rufián JS, Rueda-Blanco J, Beuzón CR, Ruiz-Albert J. Suppression of NLR-mediated plant immune detection by bacterial pathogens. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6069-6088. [PMID: 37429579 PMCID: PMC10575702 DOI: 10.1093/jxb/erad246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/10/2023] [Indexed: 07/12/2023]
Abstract
The plant immune system is constituted of two functionally interdependent branches that provide the plant with an effective defense against microbial pathogens. They can be considered separate since one detects extracellular pathogen-associated molecular patterns by means of receptors on the plant surface, while the other detects pathogen-secreted virulence effectors via intracellular receptors. Plant defense depending on both branches can be effectively suppressed by host-adapted microbial pathogens. In this review we focus on bacterially driven suppression of the latter, known as effector-triggered immunity (ETI) and dependent on diverse NOD-like receptors (NLRs). We examine how some effectors secreted by pathogenic bacteria carrying type III secretion systems can be subject to specific NLR-mediated detection, which can be evaded by the action of additional co-secreted effectors (suppressors), implying that virulence depends on the coordinated action of the whole repertoire of effectors of any given bacterium and their complex epistatic interactions within the plant. We consider how ETI activation can be avoided by using suppressors to directly alter compromised co-secreted effectors, modify plant defense-associated proteins, or occasionally both. We also comment on the potential assembly within the plant cell of multi-protein complexes comprising both bacterial effectors and defense protein targets.
Collapse
Affiliation(s)
- José S Rufián
- Instituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Depto. Biología Celular, Genética y Fisiología, Málaga, Spain
| | | | - Carmen R Beuzón
- Instituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Depto. Biología Celular, Genética y Fisiología, Málaga, Spain
| | - Javier Ruiz-Albert
- Instituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Depto. Biología Celular, Genética y Fisiología, Málaga, Spain
| |
Collapse
|
32
|
Kim B, Kim I, Yu W, Li M, Kim H, Ahn YJ, Sohn KH, Macho AP, Segonzac C. The Ralstonia pseudosolanacearum effector RipE1 is recognized at the plasma membrane by NbPtr1, the Nicotiana benthamiana homologue of Pseudomonas tomato race 1. MOLECULAR PLANT PATHOLOGY 2023; 24:1312-1318. [PMID: 37310613 PMCID: PMC10502825 DOI: 10.1111/mpp.13363] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/07/2023] [Accepted: 05/22/2023] [Indexed: 06/14/2023]
Abstract
The bacterial wilt disease caused by soilborne bacteria of the Ralstonia solanacearum species complex (RSSC) threatens important crops worldwide. Only a few immune receptors conferring resistance to this devastating disease are known so far. Individual RSSC strains deliver around 70 different type III secretion system effectors into host cells to manipulate the plant physiology. RipE1 is an effector conserved across the RSSC and triggers immune responses in the model solanaceous plant Nicotiana benthamiana. Here, we used multiplexed virus-induced gene silencing of the nucleotide-binding and leucine-rich repeat receptor family to identify the genetic basis of RipE1 recognition. Specific silencing of the N. benthamiana homologue of Solanum lycopersicoides Ptr1 (confers resistance to Pseudomonas syringae pv. tomato race 1) gene (NbPtr1) completely abolished RipE1-induced hypersensitive response and immunity to Ralstonia pseudosolanacearum. The expression of the native NbPtr1 coding sequence was sufficient to restore RipE1 recognition in Nb-ptr1 knockout plants. Interestingly, RipE1 association with the host cell plasma membrane was necessary for NbPtr1-dependent recognition. Furthermore, NbPtr1-dependent recognition of RipE1 natural variants is polymorphic, providing additional evidence for the indirect mode of activation of NbPtr1. Altogether, this work supports NbPtr1 relevance for resistance to bacterial wilt disease in Solanaceae.
Collapse
Affiliation(s)
- Boyoung Kim
- Department of Agriculture, Forestry and BioresourcesSeoul National UniversitySeoulRepublic of Korea
- Plant Immunity Research CenterSeoul National UniversitySeoulRepublic of Korea
| | - Injae Kim
- Department of Agriculture, Forestry and BioresourcesSeoul National UniversitySeoulRepublic of Korea
- Plant Immunity Research CenterSeoul National UniversitySeoulRepublic of Korea
| | - Wenjia Yu
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant SciencesChinese Academy of SciencesShanghaiChina
| | - Meng Li
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant SciencesChinese Academy of SciencesShanghaiChina
| | - Haseong Kim
- Plant Immunity Research CenterSeoul National UniversitySeoulRepublic of Korea
| | - Ye Jin Ahn
- Department of Life SciencesPohang University of Science and TechnologyPohangRepublic of Korea
| | - Kee Hoon Sohn
- Plant Immunity Research CenterSeoul National UniversitySeoulRepublic of Korea
- Department of Agricultural BiotechnologySeoul National UniversitySeoulRepublic of Korea
- Research Institute of Agriculture and Life SciencesSeoul National UniversitySeoulRepublic of Korea
| | - Alberto P. Macho
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant SciencesChinese Academy of SciencesShanghaiChina
| | - Cécile Segonzac
- Department of Agriculture, Forestry and BioresourcesSeoul National UniversitySeoulRepublic of Korea
- Plant Immunity Research CenterSeoul National UniversitySeoulRepublic of Korea
- Research Institute of Agriculture and Life SciencesSeoul National UniversitySeoulRepublic of Korea
- Plant Genomics and Breeding InstituteSeoul National UniversitySeoulRepublic of Korea
| |
Collapse
|
33
|
Ivanov PA, Gasanova TV, Repina MN, Zamyatnin AA. Signaling and Resistosome Formation in Plant Innate Immunity to Viruses: Is There a Common Mechanism of Antiviral Resistance Conserved across Kingdoms? Int J Mol Sci 2023; 24:13625. [PMID: 37686431 PMCID: PMC10487714 DOI: 10.3390/ijms241713625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/16/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023] Open
Abstract
Virus-specific proteins, including coat proteins, movement proteins, replication proteins, and suppressors of RNA interference are capable of triggering the hypersensitive response (HR), which is a type of cell death in plants. The main cell death signaling pathway involves direct interaction of HR-inducing proteins with nucleotide-binding leucine-rich repeats (NLR) proteins encoded by plant resistance genes. Singleton NLR proteins act as both sensor and helper. In other cases, NLR proteins form an activation network leading to their oligomerization and formation of membrane-associated resistosomes, similar to metazoan inflammasomes and apoptosomes. In resistosomes, coiled-coil domains of NLR proteins form Ca2+ channels, while toll-like/interleukin-1 receptor-type (TIR) domains form oligomers that display NAD+ glycohydrolase (NADase) activity. This review is intended to highlight the current knowledge on plant innate antiviral defense signaling pathways in an attempt to define common features of antiviral resistance across the kingdoms of life.
Collapse
Affiliation(s)
- Peter A. Ivanov
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia; (P.A.I.); (T.V.G.); (M.N.R.)
| | - Tatiana V. Gasanova
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia; (P.A.I.); (T.V.G.); (M.N.R.)
| | - Maria N. Repina
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia; (P.A.I.); (T.V.G.); (M.N.R.)
| | - Andrey A. Zamyatnin
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow 119234, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia
- Research Center for Translational Medicine, Sirius University of Science and Technology, Sirius 354340, Krasnodar Region, Russia
- Institute of Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow 119991, Russia
| |
Collapse
|
34
|
Huang S, Jia A, Ma S, Sun Y, Chang X, Han Z, Chai J. NLR signaling in plants: from resistosomes to second messengers. Trends Biochem Sci 2023; 48:776-787. [PMID: 37394345 DOI: 10.1016/j.tibs.2023.06.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 07/04/2023]
Abstract
Nucleotide binding and leucine-rich repeat-containing receptors (NLRs) have a critical role in plant immunity through direct or indirect recognition of pathogen effectors. Recent studies have demonstrated that such recognition induces formation of large protein complexes called resistosomes to mediate NLR immune signaling. Some NLR resistosomes activate Ca2+ influx by acting as Ca2+-permeable channels, whereas others function as active NADases to catalyze the production of nucleotide-derived second messengers. In this review we summarize these studies on pathogen effector-induced assembly of NLR resistosomes and resistosome-mediated production of the second messengers of Ca2+ and nucleotide derivatives. We also discuss downstream events and regulation of resistosome signaling.
Collapse
Affiliation(s)
- Shijia Huang
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Center for Plant Biology, Tsinghua University, Beijing 100084, China
| | - Aolin Jia
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Center for Plant Biology, Tsinghua University, Beijing 100084, China
| | - Shoucai Ma
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Center for Plant Biology, Tsinghua University, Beijing 100084, China
| | - Yue Sun
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Center for Plant Biology, Tsinghua University, Beijing 100084, China
| | - Xiaoyu Chang
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Center for Plant Biology, Tsinghua University, Beijing 100084, China
| | - Zhifu Han
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Center for Plant Biology, Tsinghua University, Beijing 100084, China
| | - Jijie Chai
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Center for Plant Biology, Tsinghua University, Beijing 100084, China; Institute of Biochemistry, University of Cologne, Cologne 50674, Germany; Max Planck Institute for Plant Breeding Research, Department of Plant-Microbe Interactions, Cologne 50829, Germany; School of Life Sciences, Westlake University, Institute of Biology, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China.
| |
Collapse
|
35
|
Ahn YJ, Kim H, Choi S, Mazo-Molina C, Prokchorchik M, Zhang N, Kim B, Mang H, Koehler N, Kim J, Lee S, Yoon H, Choi D, Kim MS, Segonzac C, Martin GB, Schultink A, Sohn KH. Ptr1 and ZAR1 immune receptors confer overlapping and distinct bacterial pathogen effector specificities. THE NEW PHYTOLOGIST 2023; 239:1935-1953. [PMID: 37334551 DOI: 10.1111/nph.19073] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 05/22/2023] [Indexed: 06/20/2023]
Abstract
Some nucleotide-binding and leucine-rich repeat receptors (NLRs) indirectly detect pathogen effectors by monitoring their host targets. In Arabidopsis thaliana, RIN4 is targeted by multiple sequence-unrelated effectors and activates immune responses mediated by RPM1 and RPS2. These effectors trigger cell death in Nicotiana benthamiana, but the corresponding NLRs have yet not been identified. To identify N. benthamiana NLRs (NbNLRs) that recognize Arabidopsis RIN4-targeting effectors, we conducted a rapid reverse genetic screen using an NbNLR VIGS library. We identified that the N. benthamiana homolog of Ptr1 (Pseudomonas tomato race 1) recognizes the Pseudomonas effectors AvrRpt2, AvrRpm1, and AvrB. We demonstrated that recognition of the Xanthomonas effector AvrBsT and the Pseudomonas effector HopZ5 is conferred independently by the N. benthamiana homolog of Ptr1 and ZAR1. Interestingly, the recognition of HopZ5 and AvrBsT is contributed unequally by Ptr1 and ZAR1 in N. benthamiana and Capsicum annuum. In addition, we showed that the RLCK XII family protein JIM2 is required for the NbZAR1-dependent recognition of AvrBsT and HopZ5. The recognition of sequence-unrelated effectors by NbPtr1 and NbZAR1 provides an additional example of convergently evolved effector recognition. Identification of key components involved in Ptr1 and ZAR1-mediated immunity could reveal unique mechanisms of expanded effector recognition.
Collapse
Affiliation(s)
- Ye Jin Ahn
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Haseong Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Korea
- Plant Immunity Research Center, Seoul National University, Seoul, 08826, Korea
| | - Sera Choi
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Carolina Mazo-Molina
- Boyce Thompson Institute for Plant Research, Ithaca, NY, 14853, USA
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Maxim Prokchorchik
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Ning Zhang
- Boyce Thompson Institute for Plant Research, Ithaca, NY, 14853, USA
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Boyoung Kim
- Plant Immunity Research Center, Seoul National University, Seoul, 08826, Korea
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, 08826, Korea
| | - Hyunggon Mang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Naio Koehler
- Fortiphyte Inc., 3071 Research Drive, Richmond, CA, 94806, USA
| | - Jieun Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Soeui Lee
- Plant Immunity Research Center, Seoul National University, Seoul, 08826, Korea
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, 08826, Korea
| | - Hayeon Yoon
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Doil Choi
- Plant Immunity Research Center, Seoul National University, Seoul, 08826, Korea
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, 08826, Korea
| | - Min-Sung Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Cécile Segonzac
- Plant Immunity Research Center, Seoul National University, Seoul, 08826, Korea
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, 08826, Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826, Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea
| | - Gregory B Martin
- Boyce Thompson Institute for Plant Research, Ithaca, NY, 14853, USA
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Alex Schultink
- Fortiphyte Inc., 3071 Research Drive, Richmond, CA, 94806, USA
| | - Kee Hoon Sohn
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Korea
- Plant Immunity Research Center, Seoul National University, Seoul, 08826, Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Korea
| |
Collapse
|
36
|
Jin Y, Zhang W, Cong S, Zhuang QG, Gu YL, Ma YN, Filiatrault MJ, Li JZ, Wei HL. Pseudomonas syringae Type III Secretion Protein HrpP Manipulates Plant Immunity To Promote Infection. Microbiol Spectr 2023; 11:e0514822. [PMID: 37067445 PMCID: PMC10269811 DOI: 10.1128/spectrum.05148-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/22/2023] [Indexed: 04/18/2023] Open
Abstract
The bacterial plant pathogen Pseudomonas syringae deploys a type III secretion system (T3SS) to deliver effector proteins into plant cells to facilitate infection, for which many effectors have been characterized for their interactions. However, few T3SS Hrp (hypersensitive response and pathogenicity) proteins from the T3SS secretion apparatus have been studied for their direct interactions with plants. Here, we show that the P. syringae pv. tomato DC3000 T3SS protein HrpP induces host cell death, suppresses pattern-triggered immunity (PTI), and restores the effector translocation ability of the hrpP mutant. The hrpP-transgenic Arabidopsis lines exhibited decreased PTI responses to flg22 and elf18 and enhanced disease susceptibility to P. syringae pv. tomato DC3000. Transcriptome analysis reveals that HrpP sensing activates salicylic acid (SA) signaling while suppressing jasmonic acid (JA) signaling, which correlates with increased SA accumulation and decreased JA biosynthesis. Both yeast two-hybrid and bimolecular fluorescence complementation assays show that HrpP interacts with mitogen-activated protein kinase kinase 2 (MKK2) on the plant membrane and in the nucleus. The HrpP truncation HrpP1-119, rather than HrpP1-101, retains the ability to interact with MKK2 and suppress PTI in plants. In contrast, HrpP1-101 continues to cause cell death and electrolyte leakage. MKK2 silencing compromises SA signaling but has no effect on cell death caused by HrpP. Overall, our work highlights that the P. syringae T3SS protein HrpP facilitates effector translocation and manipulates plant immunity to facilitate bacterial infection. IMPORTANCE The T3SS is required for the virulence of many Gram-negative bacterial pathogens of plants and animals. This study focuses on the sensing and function of the T3SS protein HrpP during plant interactions. Our findings show that HrpP and its N-terminal truncation HrpP1-119 can interact with MKK2, promote effector translocation, and manipulate plant immunity to facilitate bacterial infection, highlighting the P. syringae T3SS component involved in the fine-tuning of plant immunity.
Collapse
Affiliation(s)
- Ya Jin
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wei Zhang
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York, USA
| | - Shen Cong
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qi-Guo Zhuang
- China-New Zealand Belt and Road Joint Laboratory on Kiwifruit, Kiwifruit Breeding and Utilization Key Laboratory of Sichuan Province, Sichuan Provincial Academy of Natural Resource Sciences, Chengdu, China
| | - Yi-Lin Gu
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yi-Nan Ma
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Melanie J. Filiatrault
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York, USA
- Emerging Pests and Pathogens Research Unit, Agricultural Research Service, United States Department of Agriculture, Robert W. Holley Center for Agriculture and Health, Ithaca, New York, USA
| | - Jun-Zhou Li
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hai-Lei Wei
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
37
|
Jia A, Huang S, Ma S, Chang X, Han Z, Chai J. TIR-catalyzed nucleotide signaling molecules in plant defense. CURRENT OPINION IN PLANT BIOLOGY 2023; 73:102334. [PMID: 36702016 DOI: 10.1016/j.pbi.2022.102334] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/26/2022] [Accepted: 12/26/2022] [Indexed: 06/10/2023]
Abstract
Toll and interleukin-1 receptor (TIR) domain is a conserved immune module in prokaryotes and eukaryotes. Signaling regulated by TIR-only proteins or TIR domain-containing intracellular immune receptors is critical for plant immunity. Recent studies demonstrated that TIR domains function as enzymes encoding a variety of activities, which manifest different mechanisms for regulation of plant immunity. These enzymatic activities catalyze metabolism of NAD+, ATP and other nucleic acids, generating structurally diversified nucleotide metabolites. Signaling roles have been revealed for some TIR enzymatic products that can act as second messengers to induce plant immunity. Herein, we summarize our current knowledge about catalytic production of these nucleotide metabolites and their roles in plant immune signaling. We also highlight outstanding questions that are likely to be the focus of future investigations about TIR-produced signaling molecules.
Collapse
Affiliation(s)
- Aolin Jia
- Beijing Frontier Research Center for Biological Structure, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Shijia Huang
- Beijing Frontier Research Center for Biological Structure, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Shoucai Ma
- Beijing Frontier Research Center for Biological Structure, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiaoyu Chang
- Beijing Frontier Research Center for Biological Structure, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zhifu Han
- Beijing Frontier Research Center for Biological Structure, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| | - Jijie Chai
- Beijing Frontier Research Center for Biological Structure, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Institute of Biochemistry, University of Cologne, Cologne 50674, Germany; Max Planck Institute for Plant Breeding Research, Department of Plant-Microbe Interactions, Cologne 50829, Germany.
| |
Collapse
|
38
|
Wang T, Gasciolli V, Gaston M, Medioni L, Cumener M, Buendia L, Yang B, Bono JJ, He G, Lefebvre B. LysM receptor-like kinases involved in immunity perceive lipo-chitooligosaccharides in mycotrophic plants. PLANT PHYSIOLOGY 2023; 192:1435-1448. [PMID: 36722175 PMCID: PMC10231384 DOI: 10.1093/plphys/kiad059] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 12/20/2022] [Accepted: 01/03/2023] [Indexed: 06/01/2023]
Abstract
Symbiotic microorganisms such as arbuscular mycorrhizal fungi (AMF) produce both conserved microbial molecules that activate plant defense and lipo-chitooligosaccharides (LCOs) that modulate plant defense. Beside a well-established role of LCOs in the activation of a signaling pathway required for AMF penetration in roots, LCO perception and defense modulation during arbuscular mycorrhiza is not well understood. Here we show that members of the LYRIIIA phylogenetic group from the multigenic Lysin Motif Receptor-Like Kinase family have a conserved role in dicotyledons as modulators of plant defense and regulate AMF colonization in the Solanaceae species Nicotiana benthamiana. Interestingly, these proteins have a high-affinity for LCOs in plant species able to form a symbiosis with AMF but have lost this property in species that have lost this ability. Our data support the hypothesis that LYRIIIA proteins modulate plant defense upon LCO perception to facilitate AMF colonization in mycotrophic plant species and that only their role in plant defense, but not their ability to be regulated by LCOs, has been conserved in non-mycotrophic plants.
Collapse
Affiliation(s)
- Tongming Wang
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, Academy of Agricultural Sciences, Rice Research Institute, Southwest University, Chongqing 400715, China
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan 31326, France
| | - Virginie Gasciolli
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan 31326, France
| | - Mégane Gaston
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan 31326, France
| | - Lauréna Medioni
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan 31326, France
| | - Marie Cumener
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan 31326, France
| | - Luis Buendia
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan 31326, France
| | - Bingxian Yang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Jean Jacques Bono
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan 31326, France
| | - Guanghua He
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, Academy of Agricultural Sciences, Rice Research Institute, Southwest University, Chongqing 400715, China
| | - Benoit Lefebvre
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan 31326, France
| |
Collapse
|
39
|
Ouyang X, Chen J, Sun Z, Wang R, Wu X, Li B, Song C, Liu P, Zhang M. Ubiquitin E3 ligase activity of Ralstonia solanacearum effector RipAW is not essential for induction of plant defense in Nicotiana benthamiana. Front Microbiol 2023; 14:1201444. [PMID: 37293211 PMCID: PMC10244751 DOI: 10.3389/fmicb.2023.1201444] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 05/04/2023] [Indexed: 06/10/2023] Open
Abstract
As one of the most destructive bacterial phytopathogens, Ralstonia solanacearum causes substantial annual yield losses of many important crops. Deciphering the functional mechanisms of type III effectors, the crucial factors mediating R. solanacearum-plant interactions, will provide a valuable basis for protecting crop plants from R. solanacearum. Recently, the NEL (novel E3 ligase) effector RipAW was found to induce cell death on Nicotiana benthamiana in a E3 ligase activity-dependent manner. Here, we further deciphered the role of the E3 ligase activity in RipAW-triggered plant immunity. We found that RipAWC177A, the E3 ligase mutant of RipAW, could not induce cell death but retained the ability of triggering plant immunity in N. benthamiana, indicating that the E3 ligase activity is not essential for RipAW-triggered immunity. By generating truncated mutants of RipAW, we further showed that the N-terminus, NEL domain and C-terminus are all required but not sufficient for RipAW-induced cell death. Furthermore, all truncated mutants of RipAW triggered ETI immune responses in N. benthamiana, confirming that the E3 ligase activity is not essential for RipAW-triggered plant immunity. Finally, we demonstrated that RipAW- and RipAWC177A-triggered immunity in N. benthamiana requires SGT1 (suppressor of G2 allele of skp1), but not EDS1 (enhanced disease susceptibility), NRG1 (N requirement gene 1), NRC (NLR required for cell death) proteins or SA (salicylic acid) pathway. Our findings provide a typical case in which the effector-induced cell death can be uncoupled with immune responses, shedding new light on effector-triggered plant immunity. Our data also provide clues for further in-depth study of mechanism underlying RipAW-induced plant immunity.
Collapse
Affiliation(s)
- Xue Ouyang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Jialan Chen
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Zhimao Sun
- National Engineering Laboratory for Endangered Medicinal Resource Development in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry of Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Rongbo Wang
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Xuan Wu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Benjin Li
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Congfeng Song
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Peiqing Liu
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Meixiang Zhang
- National Engineering Laboratory for Endangered Medicinal Resource Development in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry of Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi’an, China
| |
Collapse
|
40
|
Zhang Y, Zhang Y, Ge X, Yuan Y, Jin Y, Wang Y, Zhao L, Han X, Hu W, Yang L, Gao C, Wei X, Li F, Yang Z. Genome-wide association analysis reveals a novel pathway mediated by a dual-TIR domain protein for pathogen resistance in cotton. Genome Biol 2023; 24:111. [PMID: 37165460 PMCID: PMC10170703 DOI: 10.1186/s13059-023-02950-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 04/24/2023] [Indexed: 05/12/2023] Open
Abstract
BACKGROUND Verticillium wilt is one of the most devasting diseases for many plants, leading to global economic loss. Cotton is known to be vulnerable to its fungal pathogen, Verticillium dahliae, yet the related genetic mechanism remains unknown. RESULTS By genome-wide association studies of 419 accessions of the upland cotton, Gossypium hirsutum, we identify ten loci that are associated with resistance against Verticillium wilt. Among these loci, SHZDI1/SHZDP2/AYDP1 from chromosome A10 is located on a fragment introgressed from Gossypium arboreum. We characterize a large cluster of Toll/interleukin 1 (TIR) nucleotide-binding leucine-rich repeat receptors in this fragment. We then identify a dual-TIR domain gene from this cluster, GhRVD1, which triggers an effector-independent cell death and is induced by Verticillium dahliae. We confirm that GhRVD1 is one of the causal gene for SHZDI1. Allelic variation in the TIR domain attenuates GhRVD1-mediated resistance against Verticillium dahliae. Homodimerization between TIR1-TIR2 mediates rapid immune response, while disruption of its αD- and αE-helices interface eliminates the autoactivity and self-association of TIR1-TIR2. We further demonstrate that GhTIRP1 inhibits the autoactivity and self-association of TIR1-TIR2 by competing for binding to them, thereby preventing the resistance to Verticillium dahliae. CONCLUSIONS We propose the first working model for TIRP1 involved self-association and autoactivity of dual-TIR domain proteins that confer compromised pathogen resistance of dual-TIR domain proteins in plants. The findings reveal a novel mechanism on Verticillium dahliae resistance and provide genetic basis for breeding in future.
Collapse
Affiliation(s)
- Yihao Zhang
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou, 450000, China
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Yaning Zhang
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou, 450000, China
| | - Xiaoyang Ge
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Yuan Yuan
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Yuying Jin
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Ye Wang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Lihong Zhao
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Xiao Han
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Wei Hu
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou, 450000, China
| | - Lan Yang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Chenxu Gao
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou, 450000, China
| | - Xi Wei
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Fuguang Li
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou, 450000, China.
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, Xinjiang, China.
| | - Zhaoen Yang
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou, 450000, China.
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
| |
Collapse
|
41
|
Cong S, Li JZ, Xiong ZZ, Wei HL. Diverse interactions of five core type III effectors from Ralstonia solanacearum with plants. J Genet Genomics 2023; 50:341-352. [PMID: 35597445 DOI: 10.1016/j.jgg.2022.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/29/2022] [Accepted: 04/30/2022] [Indexed: 11/24/2022]
Abstract
Ralstonia solanacearum is a widespread plant bacterial pathogen that can launch a range of type III effectors (T3Es) to cause disease. In this study, we isolate a pathogenic R. solanacearum strain named P380 from tomato rhizosphere. Five out of 12 core T3Es of strain P380 are introduced into Pseudomonas syringae DC3000D36E separately to determine their functions in interacting with plants. DC3000D36E that harbors each effector suppresses FliC-triggered Pti5 and ACRE31 expression, ROS burst, and callose deposition. RipAE, RipU, and RipW elicit cell death as well as upregulate the MAPK cascades in Nicotiana benthamiana. The derivatives RipC1ΔDXDX(T/V) and RipWΔDKXXQ but not RipAEK310R fail to suppress ROS burst. Moreover, RipAEK310R and RipWΔDKXXQ retain the cell death elicitation ability. RipAE and RipW are associated with salicylic acid and jasmonic acid pathways, respectively. RipAE and RipAQ significantly promote the propagation of DC3000D36E in plants. The five core T3Es localize in diverse subcellular organelles of nucleus, plasma membrane, endoplasmic reticulum, and Golgi network. The suppressor of G2 allele of Skp1 is required for RipAE but not RipU-triggered cell death in N. benthamiana. These results indicate that the core T3Es in R. solanacearum play diverse roles in plant-pathogen interactions.
Collapse
Affiliation(s)
- Shen Cong
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jun-Zhou Li
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zheng-Zhong Xiong
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hai-Lei Wei
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
42
|
Wang Z, Shea Z, Li Q, Wang K, Mills K, Zhang B, Zhao B. Evaluate the guide RNA effectiveness via Agrobacterium-mediated transient assays in Nicotiana benthamiana. FRONTIERS IN PLANT SCIENCE 2023; 14:1111683. [PMID: 36890894 PMCID: PMC9986745 DOI: 10.3389/fpls.2023.1111683] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/25/2023] [Indexed: 05/31/2023]
Abstract
CRISPR/Cas9-based genome editing system is a powerful tool for plant genetic improvement. However, the variable efficiency of guide RNA(s) (gRNA) represents a key limiting factor that hampers the broad application of the CRISPR/Cas9 system in crop improvement. Here, we employed the Agrobacterium-mediated transient assays to evaluate the effectiveness of gRNAs for editing genes in Nicotiana benthamiana and soybean. We designed a facile screening system based on indels that can be introduced by CRISPR/Cas9-mediated gene editing. A gRNA binding sequence (23 nucleotides) was inserted into the open reading frame of yellow fluorescent protein (YFP) gene (gRNA-YFP), which disrupted the YFP reading frame and results in no fluorescent signal when it was expressed in plant cells. Transiently co-expression of Cas9 and a gRNA targeting the gRNA-YFP gene in plant cells could restore the YFP reading frame and recover the YFP signals. We evaluated five gRNAs targeting Nicotiana benthamiana and soybean genes and confirmed the reliability of the gRNA screening system. The effective gRNAs targeting NbEDS1, NbWRKY70, GmKTI1, and GmKTI3 had been used to generate transgenic plants and resulted in expected mutations on each gene. While a gRNA targeting NbNDR1 was confirmed to be ineffective in transient assays. This gRNA indeed failed to trigger target gene mutations in stable transgenic plants. Thus, this new transient assay system can be used to validate the effectiveness of gRNAs before generating stable transgenic plants.
Collapse
Affiliation(s)
| | | | | | | | | | - Bo Zhang
- *Correspondence: Bingyu Zhao, ; Bo Zhang,
| | | |
Collapse
|
43
|
Johanndrees O, Baggs EL, Uhlmann C, Locci F, Läßle HL, Melkonian K, Käufer K, Dongus JA, Nakagami H, Krasileva KV, Parker JE, Lapin D. Variation in plant Toll/Interleukin-1 receptor domain protein dependence on ENHANCED DISEASE SUSCEPTIBILITY 1. PLANT PHYSIOLOGY 2023; 191:626-642. [PMID: 36227084 PMCID: PMC9806590 DOI: 10.1093/plphys/kiac480] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 09/22/2022] [Indexed: 05/07/2023]
Abstract
Toll/Interleukin-1 receptor (TIR) domains are integral to immune systems across all kingdoms. In plants, TIRs are present in nucleotide-binding leucine-rich repeat (NLR) immune receptors, NLR-like, and TIR-only proteins. Although TIR-NLR and TIR signaling in plants require the ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1) protein family, TIRs persist in species that have no EDS1 members. To assess whether particular TIR groups evolved with EDS1, we searched for TIR-EDS1 co-occurrence patterns. Using a large-scale phylogenetic analysis of TIR domains from 39 algal and land plant species, we identified 4 TIR families that are shared by several plant orders. One group occurred in TIR-NLRs of eudicots and another in TIR-NLRs across eudicots and magnoliids. Two further groups were more widespread. A conserved TIR-only group co-occurred with EDS1 and members of this group elicit EDS1-dependent cell death. In contrast, a maize (Zea mays) representative of TIR proteins with tetratricopeptide repeats was also present in species without EDS1 and induced EDS1-independent cell death. Our data provide a phylogeny-based plant TIR classification and identify TIRs that appear to have evolved with and are dependent on EDS1, while others have EDS1-independent activity.
Collapse
Affiliation(s)
| | | | - Charles Uhlmann
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Federica Locci
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Henriette L Läßle
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Katharina Melkonian
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Kiara Käufer
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Joram A Dongus
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Hirofumi Nakagami
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | | | - Jane E Parker
- Authors for correspondence: (D.L.); (J.E.P.); (K.V.K.)
| | - Dmitry Lapin
- Authors for correspondence: (D.L.); (J.E.P.); (K.V.K.)
| |
Collapse
|
44
|
Prautsch J, Erickson JL, Özyürek S, Gormanns R, Franke L, Lu Y, Marx J, Niemeyer F, Parker JE, Stuttmann J, Schattat MH. Effector XopQ-induced stromule formation in Nicotiana benthamiana depends on ETI signaling components ADR1 and NRG1. PLANT PHYSIOLOGY 2023; 191:161-176. [PMID: 36259930 PMCID: PMC9806647 DOI: 10.1093/plphys/kiac481] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 09/22/2022] [Indexed: 05/28/2023]
Abstract
In Nicotiana benthamiana, the expression of the Xanthomonas effector XANTHOMONAS OUTER PROTEIN Q (XopQ) triggers RECOGNITION OF XOPQ1 (ROQ1)-dependent effector-triggered immunity (ETI) responses accompanied by the accumulation of plastids around the nucleus and the formation of stromules. Both plastid clustering and stromules were proposed to contribute to ETI-related hypersensitive cell death and thereby to plant immunity. Whether these reactions are directly connected to ETI signaling events has not been tested. Here, we utilized transient expression experiments to determine whether XopQ-triggered plastid reactions are a result of XopQ perception by the immune receptor ROQ1 or a consequence of XopQ virulence activity. We found that N. benthamiana mutants lacking ROQ1, ENHANCED DISEASE SUSCEPTIBILITY 1, or the helper NUCLEOTIDE-BINDING LEUCINE-RICH REPEAT IMMUNE RECEPTORS (NLRs) N-REQUIRED GENE 1 (NRG1) and ACTIVATED DISEASE RESISTANCE GENE 1 (ADR1), fail to elicit XopQ-dependent host cell death and stromule formation. Mutants lacking only NRG1 lost XopQ-dependent cell death but retained some stromule induction that was abolished in the nrg1_adr1 double mutant. This analysis aligns XopQ-triggered stromules with the ETI signaling cascade but not to host programmed cell death. Furthermore, data reveal that XopQ-triggered plastid clustering is not strictly linked to stromule formation during ETI. Our data suggest that stromule formation, in contrast to chloroplast perinuclear dynamics, is an integral part of the N. benthamiana ETI response and that both NRG1 and ADR1 hNLRs play a role in this ETI response.
Collapse
Affiliation(s)
- Jennifer Prautsch
- Biology, Plant Physiology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Jessica Lee Erickson
- Biology, Plant Genetics, Martin-Luther-University Halle-Wittenberg, Halle, Germany
- Leibniz-Institut for Plant Biochemistry, Halle, Germany
| | - Sedef Özyürek
- Biology, Plant Physiology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Rahel Gormanns
- Biology, Plant Physiology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Lars Franke
- Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Yang Lu
- Biology, Plant Physiology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Jolina Marx
- Leibniz-Institut for Plant Biochemistry, Halle, Germany
| | - Frederik Niemeyer
- Biology, Plant Physiology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Jane E Parker
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Johannes Stuttmann
- Biology, Plant Genetics, Martin-Luther-University Halle-Wittenberg, Halle, Germany
- Institute for Biosafety in Plant Biotechnology, Federal Research Centre for Cultivated Plants, Julius Kühn-Institute (JKI), Quedlinburg, Germany
| | | |
Collapse
|
45
|
Li T, Ai G, Fu X, Liu J, Zhu H, Zhai Y, Pan W, Shen D, Jing M, Xia A, Dou D. A Phytophthora capsici RXLR effector manipulates plant immunity by targeting RAB proteins and disturbing the protein trafficking pathway. MOLECULAR PLANT PATHOLOGY 2022; 23:1721-1736. [PMID: 36193624 PMCID: PMC9644280 DOI: 10.1111/mpp.13251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/02/2022] [Accepted: 07/05/2022] [Indexed: 06/16/2023]
Abstract
The oomycete pathogen Phytophthora capsici encodes hundreds of RXLR effectors that enter the plant cells and suppress host immunity. Only a few of these genes are conserved across different strains and species. Such core effectors might target hub genes and immune pathways in hosts. Here, we describe the functional characterization of the core P. capsici RXLR effector RXLR242. The expression of RXLR242 was up-regulated during infection, and its ectopic expression in Nicotiana benthamiana, an experimental plant host, further promoted Phytophthora infection. RXLR242 physically interacted with a group of RAB proteins that belong to the small GTPase family and play a role in regulating transport pathways in the intracellular membrane trafficking system. In addition, RXLR242 impeded the secretion of PATHOGENESIS-RELATED 1 (PR1) protein to the apoplast. This phenomenon resulted from the competitive binding of RXLR242 to RABE1-7. We also found that RXLR242 interfered with the association between RABA4-3 and its binding protein, thereby disrupting the trafficking of the membrane receptor FLAGELLIN-SENSING 2. Thus, RXLR242 manipulates plant immunity by targeting RAB proteins and disrupting protein trafficking in the host plants.
Collapse
Affiliation(s)
- Tianli Li
- College of Plant Protection, Academy for Advanced Interdisciplinary StudiesNanjing Agricultural UniversityNanjingChina
| | - Gan Ai
- College of Plant Protection, Academy for Advanced Interdisciplinary StudiesNanjing Agricultural UniversityNanjingChina
| | - Xiaowei Fu
- College of Plant Protection, Academy for Advanced Interdisciplinary StudiesNanjing Agricultural UniversityNanjingChina
| | - Jin Liu
- College of Plant Protection, Academy for Advanced Interdisciplinary StudiesNanjing Agricultural UniversityNanjingChina
| | - Hai Zhu
- College of Plant Protection, Academy for Advanced Interdisciplinary StudiesNanjing Agricultural UniversityNanjingChina
| | - Ying Zhai
- Department of Plant PathologyWashington State UniversityPullmanWashingtonUSA
| | - Weiye Pan
- College of Plant Protection, Academy for Advanced Interdisciplinary StudiesNanjing Agricultural UniversityNanjingChina
| | - Danyu Shen
- College of Plant Protection, Academy for Advanced Interdisciplinary StudiesNanjing Agricultural UniversityNanjingChina
| | - Maofeng Jing
- College of Plant Protection, Academy for Advanced Interdisciplinary StudiesNanjing Agricultural UniversityNanjingChina
| | - Ai Xia
- College of Plant Protection, Academy for Advanced Interdisciplinary StudiesNanjing Agricultural UniversityNanjingChina
| | - Daolong Dou
- College of Plant Protection, Academy for Advanced Interdisciplinary StudiesNanjing Agricultural UniversityNanjingChina
| |
Collapse
|
46
|
Zönnchen J, Gantner J, Lapin D, Barthel K, Eschen-Lippold L, Erickson JL, Villanueva SL, Zantop S, Kretschmer C, Joosten MHAJ, Parker JE, Guerois R, Stuttmann J. EDS1 complexes are not required for PRR responses and execute TNL-ETI from the nucleus in Nicotiana benthamiana. THE NEW PHYTOLOGIST 2022; 236:2249-2264. [PMID: 36151929 DOI: 10.1111/nph.18511] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 09/02/2022] [Indexed: 06/16/2023]
Abstract
Heterodimeric complexes incorporating the lipase-like proteins EDS1 with PAD4 or SAG101 are central hubs in plant innate immunity. EDS1 functions encompass signal relay from TIR domain-containing intracellular NLR-type immune receptors (TNLs) towards RPW8-type helper NLRs (RNLs) and, in Arabidopsis thaliana, bolstering of signaling and resistance mediated by cell-surface pattern recognition receptors (PRRs). Increasing evidence points to the activation of EDS1 complexes by small molecule binding. We used CRISPR/Cas-generated mutant lines and agroinfiltration-based complementation assays to interrogate functions of EDS1 complexes in Nicotiana benthamiana. We did not detect impaired PRR signaling in N. benthamiana lines deficient in EDS1 complexes or RNLs. Intriguingly, in assays monitoring functions of SlEDS1-NbEDS1 complexes in N. benthamiana, mutations within the SlEDS1 catalytic triad could abolish or enhance TNL immunity. Furthermore, nuclear EDS1 accumulation was sufficient for N. benthamiana TNL (Roq1) immunity. Reinforcing PRR signaling in Arabidopsis might be a derived function of the TNL/EDS1 immune sector. Although Solanaceae EDS1 functionally depends on catalytic triad residues in some contexts, our data do not support binding of a TNL-derived small molecule in the triad environment. Whether and how nuclear EDS1 activity connects to membrane pore-forming RNLs remains unknown.
Collapse
Affiliation(s)
- Josua Zönnchen
- Department of Plant Genetics, Institute for Biology, Martin Luther University Halle-Wittenberg, D-06120, Halle, Germany
| | - Johannes Gantner
- Department of Plant Genetics, Institute for Biology, Martin Luther University Halle-Wittenberg, D-06120, Halle, Germany
| | - Dmitry Lapin
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, D-50829, Cologne, Germany
- Department of Biology, Plant-Microbe Interactions, Utrecht University, 3584 CH, Utrecht, the Netherlands
| | - Karen Barthel
- Department of Plant Genetics, Institute for Biology, Martin Luther University Halle-Wittenberg, D-06120, Halle, Germany
| | - Lennart Eschen-Lippold
- Department of Crop Physiology, Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, D-06120, Halle, Germany
- Department of Biochemistry of Plant Interactions, Leibniz Institute of Plant Biochemistry, D-06120, Halle, Germany
| | - Jessica L Erickson
- Department of Biochemistry of Plant Interactions, Leibniz Institute of Plant Biochemistry, D-06120, Halle, Germany
| | - Sergio Landeo Villanueva
- Laboratory of Phytopathology, Wageningen University and Research, 6708 PB, Wageningen, the Netherlands
| | - Stefan Zantop
- Department of Plant Genetics, Institute for Biology, Martin Luther University Halle-Wittenberg, D-06120, Halle, Germany
| | - Carola Kretschmer
- Department of Plant Genetics, Institute for Biology, Martin Luther University Halle-Wittenberg, D-06120, Halle, Germany
| | - Matthieu H A J Joosten
- Laboratory of Phytopathology, Wageningen University and Research, 6708 PB, Wageningen, the Netherlands
| | - Jane E Parker
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, D-50829, Cologne, Germany
- Cologne-Düsseldorf Cluster of Excellence in Plant Sciences (CEPLAS), D-40225, Düsseldorf, Germany
| | - Raphael Guerois
- Institute for Integrative Biology of the Cell (I2BC), IBITECS, CEA, CNRS, Université Paris-Saclay, F-91198, Gif-sur-Yvette, France
| | - Johannes Stuttmann
- Department of Plant Genetics, Institute for Biology, Martin Luther University Halle-Wittenberg, D-06120, Halle, Germany
- Institute for Biosafety in Plant Biotechnology, Federal Research Centre for Cultivated Plants, Julius Kühn-Institute (JKI), 06484, Quedlinburg, Germany
| |
Collapse
|
47
|
Lovelace AH, Chen HC, Lee S, Soufi Z, Bota P, Preston GM, Kvitko BH. RpoS contributes in a host-dependent manner to Salmonella colonization of the leaf apoplast during plant disease. Front Microbiol 2022; 13:999183. [PMID: 36425046 PMCID: PMC9679226 DOI: 10.3389/fmicb.2022.999183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 10/21/2022] [Indexed: 11/04/2023] Open
Abstract
Contaminated fresh produce has been routinely linked to outbreaks of Salmonellosis. Multiple studies have identified Salmonella enterica factors associated with successful colonization of diverse plant niches and tissues. It has also been well documented that S. enterica can benefit from the conditions generated during plant disease by host-compatible plant pathogens. In this study, we compared the capacity of two common S. enterica research strains, 14028s and LT2 (strain DM10000) to opportunistically colonize the leaf apoplast of two model plant hosts Arabidopsis thaliana and Nicotiana benthamiana during disease. While S. enterica 14028s benefited from co-colonization with plant-pathogenic Pseudomonas syringae in both plant hosts, S. enterica LT2 was unable to benefit from Pto co-colonization in N. benthamiana. Counterintuitively, LT2 grew more rapidly in ex planta N. benthamiana apoplastic wash fluid with a distinctly pronounced biphasic growth curve in comparison with 14028s. Using allelic exchange, we demonstrated that both the N. benthamiana infection-depedent colonization and apoplastic wash fluid growth phenotypes of LT2 were associated with mutations in the S. enterica rpoS stress-response sigma factor gene. Mutations of S. enterica rpoS have been previously shown to decrease tolerance to oxidative stress and alter metabolic regulation. We identified rpoS-dependent alterations in the utilization of L-malic acid, an abundant carbon source in N. benthamiana apoplastic wash fluid. We also present data consistent with higher relative basal reactive oxygen species (ROS) in N. benthamiana leaves than in A. thaliana leaves. The differences in basal ROS may explain the host-dependent disease co-colonization defect of the rpoS-mutated LT2 strain. Our results indicate that the conducive environment generated by pathogen modulation of the apoplast niche can vary from hosts to host even with a common disease-compatible pathogen.
Collapse
Affiliation(s)
- Amelia H. Lovelace
- The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom
| | - Hsiao-Chun Chen
- Department of Plant Pathology, University of Georgia, Athens, GA, United States
| | - Sangwook Lee
- Department of Microbiology, University of Georgia, Athens, GA, United States
| | - Ziad Soufi
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| | - Pedro Bota
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| | - Gail M. Preston
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| | - Brian H. Kvitko
- Department of Plant Pathology, University of Georgia, Athens, GA, United States
- The Plant Center, University of Georgia, Athens, GA, United States
| |
Collapse
|
48
|
Acidovorax citrulli Effector AopV Suppresses Plant Immunity and Interacts with Aromatic Dehydratase ADT6 in Watermelon. Int J Mol Sci 2022; 23:ijms231911719. [PMID: 36233021 PMCID: PMC9570411 DOI: 10.3390/ijms231911719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/25/2022] [Accepted: 09/26/2022] [Indexed: 11/17/2022] Open
Abstract
Bacterial fruit blotch (BFB) is a disease of cucurbit plants caused by Acidovorax citrulli. Although A. citrulli has great destructive potential, the molecular mechanisms of pathogenicity of A. citrulli are not clear, particularly with regard to its type III secreted effectors. In this study, we characterized the type III secreted effector protein, AopV, from A. citrulli strain Aac5. We show that AopV significantly inhibits reactive oxygen species and the expression of PTI marker genes, and helps the growth of Pseudomonas syringae D36E in Nicotiana benthamiana. In addition, we found that the aromatic dehydratase ADT6 from watermelon was a target of AopV. AopV interacts with ADT6 in vivo and in vitro. Subcellular localization indicated ADT6 and AopV were co-located at the cell membrane. Together, our results reveal that AopV suppresses plant immunity and targets ADT6 in the cell membrane. These findings provide an new characterization of the molecular interaction of A. citrulli effector protein AopV with host cells.
Collapse
|
49
|
Martin R, Liu F, Staskawicz B. Isolation of Protein Complexes from Tobacco Leaves by a Two-Step Tandem Affinity Purification. Curr Protoc 2022; 2:e572. [PMID: 36205456 DOI: 10.1002/cpz1.572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Protein purification is an essential method for understanding protein function, as many biochemical and structural techniques require a high concentration of isolated protein for analysis. Yet, many studies of protein complexes are hampered by our inability to express them recombinantly in model systems, generally due to poor expression or aggregation. When studying a protein complex that requires its host cellular environment for proper expression and folding, endogenous purification is typically required. Depending on the protein of interest, however, endogenous purification can be challenging because of low expression levels in the host and lack of knowledge working with a non-model expression system, resulting in yields that are too low for subsequent analysis. Here, we describe a protocol for the purification of protein complexes endogenous to Nicotiana benthamiana directly from leaf tissue, with yields that enable structural and biochemical characterization. The protein complex is overexpressed in Nicotiana benthamiana leaves via agroinfiltration, and the protein-packed leaves are then mechanically ground to release the complex from the cells. The protein complex is finally purified by a simple two-step tandem affinity purification using distinct affinity tags for each complex member, to ensure purification of the assembled complex. Our method yields enough protein for various biochemical or structural studies. We have previously used this protocol to purify the complex formed by an innate immune receptor native to tobacco, ROQ1, and the Xanthomonas effector XopQ, and to solve its structure by single-particle cryo-electron microscopy-we use this example to illustrate the approach. This protocol may serve as a template for the purification of proteins from N. benthamiana that require the plant's cellular environment and are expressed at low levels. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Expression of the protein complex in leaf tissue Basic Protocol 2: Tandem affinity purification of the ROQ1-XopQ complex.
Collapse
Affiliation(s)
- Raoul Martin
- Innovative Genomics Institute, University of California, Berkeley, California, USA
| | - Furong Liu
- Innovative Genomics Institute, University of California, Berkeley, California, USA
| | - Brian Staskawicz
- Innovative Genomics Institute, University of California, Berkeley, California, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
| |
Collapse
|
50
|
Chen J, Zhang X, Rathjen JP, Dodds PN. Direct recognition of pathogen effectors by plant NLR immune receptors and downstream signalling. Essays Biochem 2022; 66:471-483. [PMID: 35731245 PMCID: PMC9528080 DOI: 10.1042/ebc20210072] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/02/2022] [Accepted: 06/09/2022] [Indexed: 11/17/2022]
Abstract
Plants deploy extracellular and intracellular immune receptors to sense and restrict pathogen attacks. Rapidly evolving pathogen effectors play crucial roles in suppressing plant immunity but are also monitored by intracellular nucleotide-binding, leucine-rich repeat immune receptors (NLRs), leading to effector-triggered immunity (ETI). Here, we review how NLRs recognize effectors with a focus on direct interactions and summarize recent research findings on the signalling functions of NLRs. Coiled-coil (CC)-type NLR proteins execute immune responses by oligomerizing to form membrane-penetrating ion channels after effector recognition. Some CC-NLRs function in sensor-helper networks with the sensor NLR triggering oligomerization of the helper NLR. Toll/interleukin-1 receptor (TIR)-type NLR proteins possess catalytic activities that are activated upon effector recognition-induced oligomerization. Small molecules produced by TIR activity are detected by additional signalling partners of the EDS1 lipase-like family (enhanced disease susceptibility 1), leading to activation of helper NLRs that trigger the defense response.
Collapse
Affiliation(s)
- Jian Chen
- Commonwealth Scientific and Industrial Research Organization, Agriculture and Food, Canberra, ACT 2601, Australia
- Plant Sciences Division, Research School of Biology, The Australian National University, Canberra, ACT 2600, Australia
| | - Xiaoxiao Zhang
- Plant Sciences Division, Research School of Biology, The Australian National University, Canberra, ACT 2600, Australia
| | - John P Rathjen
- Plant Sciences Division, Research School of Biology, The Australian National University, Canberra, ACT 2600, Australia
| | - Peter N Dodds
- Commonwealth Scientific and Industrial Research Organization, Agriculture and Food, Canberra, ACT 2601, Australia
| |
Collapse
|