1
|
French S, Da Silva R, Storm J, Wastika CE, Cullen I, Have MT, Hughes GL, Modahl CM. Exploiting venom toxins in paratransgenesis to prevent mosquito-borne disease. Parasit Vectors 2025; 18:32. [PMID: 39881388 PMCID: PMC11776213 DOI: 10.1186/s13071-025-06663-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 01/07/2025] [Indexed: 01/31/2025] Open
Abstract
Mosquitoes are responsible for the transmission of numerous pathogens, including Plasmodium parasites, arboviruses and filarial worms. They pose a significant risk to public health with over 200 million cases of malaria per annum and approximately 4 billion people at risk of arthropod-borne viruses (arboviruses). Mosquito populations are geographically expanding into temperate regions and their distribution is predicted to continue increasing. Mosquito symbionts, including fungi, bacteria and viruses, have desirable traits for mosquito disease control including spreading horizontally and vertically through mosquito populations and potentially colonising multiple important vector species. Paratransgenesis, genetic modification of mosquito symbionts with effectors to target the pathogen rather than the vector, is a promising strategy to prevent the spread of mosquito-borne diseases. A variety of effectors can be expressed but venom toxins are excellent effector candidates because they are target specific, potent and stable. However, the only toxins to be explored in mosquito paratransgenesis to date are scorpine and mutated phospholipase A2. To enhance the scope, effectiveness and durability of paratransgenesis, an expanded arsenal of effectors is required. This review discusses other potential toxin effectors for future paratransgenesis studies based on prior in vitro and in vivo antiparasitic and antiviral studies and highlights the need for further research and investment in this area. In terms of mosquito-borne diseases, paratransgenesis strategies have been developed to target Plasmodium. We postulate the potential to apply this principle to target arboviruses using antiviral toxin effectors.
Collapse
Affiliation(s)
- Stephanie French
- Centre for Snakebite Research and Interventions, Liverpool School of Tropical Medicine, Liverpool, UK.
| | - Rachael Da Silva
- Centre for Snakebite Research and Interventions, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Janet Storm
- Centre for Snakebite Research and Interventions, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Christida E Wastika
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Disease, Liverpool School of Tropical Medicine, Liverpool, UK
| | - India Cullen
- Centre for Snakebite Research and Interventions, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Martijn Ten Have
- Centre for Snakebite Research and Interventions, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Grant L Hughes
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Disease, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Cassandra M Modahl
- Centre for Snakebite Research and Interventions, Liverpool School of Tropical Medicine, Liverpool, UK
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Disease, Liverpool School of Tropical Medicine, Liverpool, UK
| |
Collapse
|
2
|
Lee MF, Long CM, Poh CL. Current status of the development of dengue vaccines. Vaccine X 2025; 22:100604. [PMID: 39830640 PMCID: PMC11741033 DOI: 10.1016/j.jvacx.2024.100604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 11/01/2024] [Accepted: 12/15/2024] [Indexed: 01/22/2025] Open
Abstract
Dengue fever is caused by the mosquito-borne dengue virus (DENV), which is endemic in more than 100 countries. Annually, there are approximately 390 million dengue cases, with a small subset manifesting into severe illnesses, such as dengue haemorrhagic fever or dengue shock syndrome. Current treatment options for dengue infections remain supportive management due to the lack of an effective vaccine and clinically approved antiviral. Although the CYD-TDV (Dengvaxia®) vaccine with an overall vaccine efficacy of 60 % has been licensed for clinical use since 2015, it poses an elevated risk of severe dengue infections especially in dengue-naïve children below 9 years of age. The newly approved Qdenga vaccine was able to achieve an overall vaccine efficacy of 80 % after 12 months, but it was not able to provide a protective effect against DENV-3 in dengue naïve individuals. The Butantan-DV vaccine candidate is still undergoing phase 3 clinical trials for safety and efficacy evaluations in humans. Apart from live-attenuated vaccines, various other vaccine types are also currently being studied in preclinical and clinical studies. This review discusses the current status of dengue vaccine development.
Collapse
Affiliation(s)
- Michelle Felicia Lee
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Selangor 47500, Malaysia
| | - Chiau Ming Long
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Selangor 47500, Malaysia
| | - Chit Laa Poh
- ALPS Global Holding Berhad, The ICON, East Wing Tower, No. 1, Jalan 1/68F, Off Jalan Tun Razak, Kuala Lumpur 50400, Malaysia
| |
Collapse
|
3
|
Zhou F, Xu Y, Liu X, Xu Y, Wang Y, Jiang D, Du P. Zika and Dengue Virus Autoimmunity: An Overview of Related Disorders and Their Potential Mechanisms. Rev Med Virol 2025; 35:e70014. [PMID: 39779915 DOI: 10.1002/rmv.70014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/10/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025]
Abstract
Zika virus (ZIKV) and dengue virus (DENV) are two major mosquito-borne flaviviruses that pose a significant threat to the global public health system, particularly in tropical regions. The clinical outcomes related to these viral pathogens can vary from self-limiting asymptomatic infections to various forms of life-threatening pathological conditions such as haemorrhagic disorders. In addition to the direct effects of the viral pathogens, immune processes play also a significant function in the development of diseases mediated by ZIKV and DENV. Studing these processes is important for developing safer vaccines and targeted therapeutic strategies. These viruses have been reported to trigger various autoimmune disorders affecting different parts of human organ systems. It also has been shown that preexisting immunity to ZIKV or DENV can impact the outcome of subsequent infections caused by another virus. ZIKV and DENV infection can promote the development of autoimmune disorders by different mechanisms, such as molecular mimicry and autoantibody formation. The present review provides an overview of various autoimmune disorders associated with ZIKV and DENV infection and their potential underlying mechanisms.
Collapse
Affiliation(s)
- Feifan Zhou
- Department of Critical Care Medicine, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Yuanze Xu
- The Second Clinical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xing Liu
- Department of Critical Care Medicine, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Yan Xu
- Department of Stomach Enterochirurgia, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Yan Wang
- Department of Critical Care Medicine, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Donghui Jiang
- Department of Critical Care Medicine, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Pengfei Du
- Department of Critical Care Medicine, Affiliated Hospital of Jiangnan University, Wuxi, China
| |
Collapse
|
4
|
Doets K, Pijlman GP. Subgenomic flavivirus RNA as key target for live-attenuated vaccine development. J Virol 2024; 98:e0010023. [PMID: 38808973 PMCID: PMC11265276 DOI: 10.1128/jvi.00100-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024] Open
Abstract
Live-attenuated flavivirus vaccines confer long-term protection against disease, but the design of attenuated flaviviruses does not follow a general approach. The non-coding, subgenomic flavivirus RNA (sfRNA) is produced by all flaviviruses and is an essential factor in viral pathogenesis and transmission. We argue that modulating sfRNA expression is a promising, universal strategy to finetune flavivirus attenuation for developing effective flavivirus vaccines of the future.
Collapse
Affiliation(s)
- Kristel Doets
- Wageningen University and Research, Laboratory of Virology, Wageningen, the Netherlands
| | - Gorben P. Pijlman
- Wageningen University and Research, Laboratory of Virology, Wageningen, the Netherlands
| |
Collapse
|
5
|
Posadas-Mondragón A, Santiago-Cruz JA, Pérez-Juárez A, Herrera-González NE, Sosa-Delgado SM, Wong-Arámbula CE, Rodríguez-Maldonado AP, Vázquez-Pichardo M, Duran-Ayala D, Aguilar-Faisal JL. Cross-Neutralizing Anti-Chikungunya and Anti-Dengue 2 IgG Antibodies from Patients and BALB/c Mice against Dengue and Chikungunya Viruses. Viruses 2024; 16:1098. [PMID: 39066260 PMCID: PMC11281444 DOI: 10.3390/v16071098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/14/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
Dengue (DENV) and Chikungunya (CHIKV) viruses can be transmitted simultaneously by Aedes mosquitoes, and there may be co-infections in humans. However, how the adaptive immune response is modified in the host has yet to be known entirely. In this study, we analyzed the cross-reactivity and neutralizing activity of IgG antibodies against DENV and CHIKV in sera of patients from the Mexican Institute of Social Security in Veracruz, Mexico, collected in 2013 and 2015 and using IgG antibodies of BALB/c mice inoculated with DENV and/or CHIKV. Mice first inoculated with DENV and then with CHIKV produced IgG antibodies that neutralized both viruses. Mice were inoculated with CHIKV, and then with DENV; they had IgG antibodies with more significant anti-CHIKV IgG antibody neutralizing activity. However, the inoculation only with CHIKV resulted in better neutralization of DENV2. In sera obtained from patients in 2013, significant cross-reactivity and low anti-CHIKV IgG antibody neutralizing activity were observed. In CHIKV-positive 2015 sera, the anti-DENV IgG antibody neutralizing activity was high. These results suggest that CHIKV stimulates DENV2-induced memory responses and vice versa. Furthermore, cross-reactivity between the two viruses generated neutralizing antibodies, but exchanging CHIKV for DENV2 generated a better anti-CHIKV neutralizing response.
Collapse
Affiliation(s)
- Araceli Posadas-Mondragón
- Laboratorio de Medicina de Conservación de la Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (A.P.-M.); (J.A.S.-C.); (A.P.-J.); (N.E.H.-G.); (S.M.S.-D.)
| | - José Angel Santiago-Cruz
- Laboratorio de Medicina de Conservación de la Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (A.P.-M.); (J.A.S.-C.); (A.P.-J.); (N.E.H.-G.); (S.M.S.-D.)
- Laboratorio de Ecología Microbiana, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Angélica Pérez-Juárez
- Laboratorio de Medicina de Conservación de la Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (A.P.-M.); (J.A.S.-C.); (A.P.-J.); (N.E.H.-G.); (S.M.S.-D.)
| | - Norma Estela Herrera-González
- Laboratorio de Medicina de Conservación de la Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (A.P.-M.); (J.A.S.-C.); (A.P.-J.); (N.E.H.-G.); (S.M.S.-D.)
| | - Sara M. Sosa-Delgado
- Laboratorio de Medicina de Conservación de la Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (A.P.-M.); (J.A.S.-C.); (A.P.-J.); (N.E.H.-G.); (S.M.S.-D.)
| | - Claudia Elena Wong-Arámbula
- Laboratorio de Genoma de Patógenos, Instituto de Diagnóstico y Referencia Epidemiológicos (InDRE) “Dr. Manuel Martínez Báez”, Secretaría de Salud, Mexico City 01480, Mexico; (C.E.W.-A.); (A.P.R.-M.)
| | - Abril Paulina Rodríguez-Maldonado
- Laboratorio de Genoma de Patógenos, Instituto de Diagnóstico y Referencia Epidemiológicos (InDRE) “Dr. Manuel Martínez Báez”, Secretaría de Salud, Mexico City 01480, Mexico; (C.E.W.-A.); (A.P.R.-M.)
| | - Mauricio Vázquez-Pichardo
- Laboratorio de Arbovirus, Instituto de Diagnóstico y Referencia Epidemiológicos (InDRE) “Dr. Manuel Martínez Báez”, Secretaría de Salud, Mexico City 01480, Mexico; (M.V.-P.); (D.D.-A.)
| | - Daniel Duran-Ayala
- Laboratorio de Arbovirus, Instituto de Diagnóstico y Referencia Epidemiológicos (InDRE) “Dr. Manuel Martínez Báez”, Secretaría de Salud, Mexico City 01480, Mexico; (M.V.-P.); (D.D.-A.)
| | - José Leopoldo Aguilar-Faisal
- Laboratorio de Medicina de Conservación de la Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (A.P.-M.); (J.A.S.-C.); (A.P.-J.); (N.E.H.-G.); (S.M.S.-D.)
| |
Collapse
|
6
|
Metzler AD, Tang H. Zika Virus Neuropathogenesis-Research and Understanding. Pathogens 2024; 13:555. [PMID: 39057782 PMCID: PMC11279898 DOI: 10.3390/pathogens13070555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/19/2024] [Accepted: 06/22/2024] [Indexed: 07/28/2024] Open
Abstract
Zika virus (ZIKV), a mosquito-borne flavivirus, is prominently associated with microcephaly in babies born to infected mothers as well as Guillain-Barré Syndrome in adults. Each cell type infected by ZIKV-neuronal cells (radial glial cells, neuronal progenitor cells, astrocytes, microglia cells, and glioblastoma stem cells) and non-neuronal cells (primary fibroblasts, epidermal keratinocytes, dendritic cells, monocytes, macrophages, and Sertoli cells)-displays its own characteristic changes to their cell physiology and has various impacts on disease. Here, we provide an in-depth review of the ZIKV life cycle and its cellular targets, and discuss the current knowledge of how infections cause neuropathologies, as well as what approaches researchers are currently taking to further advance such knowledge. A key aspect of ZIKV neuropathogenesis is virus-induced neuronal apoptosis via numerous mechanisms including cell cycle dysregulation, mitochondrial fragmentation, ER stress, and the unfolded protein response. These, in turn, result in the activation of p53-mediated intrinsic cell death pathways. A full spectrum of infection models including stem cells and co-cultures, transwells to simulate blood-tissue barriers, brain-region-specific organoids, and animal models have been developed for ZIKV research.
Collapse
Affiliation(s)
| | - Hengli Tang
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
7
|
Sann S, Heng B, Vo HTM, Arroyo Hornero R, Lay S, Sorn S, Ken S, Ou TP, Laurent D, Yay C, Ly S, Dussart P, Duong V, Sakuntabhai A, Kleinewietfeld M, Cantaert T. Increased frequencies of highly activated regulatory T cells skewed to a T helper 1-like phenotype with reduced suppressive capacity in dengue patients. mBio 2024; 15:e0006324. [PMID: 38752787 PMCID: PMC11237415 DOI: 10.1128/mbio.00063-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/08/2024] [Indexed: 06/13/2024] Open
Abstract
The pathogenesis of dengue involves a complex interplay between the viral factor and the host immune response. A mismatch between the infecting serotype and the adaptive memory response is hypothesized to lead to exacerbated immune responses resulting in severe dengue. Here, we aim to define in detail the phenotype and function of different regulatory T cell (Treg) subsets and their association with disease severity in a cohort of acute dengue virus (DENV)-infected Cambodian children. Treg frequencies and proliferation of Tregs are increased in dengue patients compared to age-matched controls. Tregs from dengue patients are skewed to a Th1-type Treg phenotype. Interestingly, Tregs from severe dengue patients produce more interleukin-10 after in vitro stimulation compared to Tregs from classical dengue fever patients. Functionally, Tregs from dengue patients have reduced suppressive capacity, irrespective of disease severity. Taken together, these data suggest that even though Treg frequencies are increased in the blood of acute DENV-infected patients, Tregs fail to resolve inflammation and thereby could contribute to the immunopathology of dengue. IMPORTANCE According to the World Health Organization, dengue is the fastest-spreading, epidemic-prone infectious disease. The extent of dengue virus infections increased over the years, mainly driven by globalization-including travel and trade-and environmental changes. Dengue is an immunopathology caused by an imbalanced immune response to a secondary heterotypic infection. As regulatory T cells (Tregs) are essential in maintaining immune homeostasis and dampening excessive immune activation, this study addressed the role of Tregs in dengue immunopathology. We show that Tregs from dengue patients are highly activated, skewed to a Th1-like Treg phenotype and less suppressive compared to healthy donor Tregs. Our data suggest that Tregs fail to resolve ongoing inflammation during dengue infection and hence contribute to the immunopathology of severe dengue disease. These data clarify the role of Tregs in dengue immunopathogenesis, emphasizing the need to develop T cell-based vaccines for dengue.
Collapse
Affiliation(s)
- Sotheary Sann
- Immunology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
- VIB Laboratory of Translational Immunomodulation, Hasselt University, Diepenbeek, Belgium
- Department of Immunology, Hasselt University, Diepenbeek, Belgium
- University Multiple Sclerosis Center, Hasselt University, Diepenbeek, Belgium
| | - Borita Heng
- Immunology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Hoa Thi My Vo
- Immunology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Rebeca Arroyo Hornero
- VIB Laboratory of Translational Immunomodulation, Hasselt University, Diepenbeek, Belgium
- Department of Immunology, Hasselt University, Diepenbeek, Belgium
- University Multiple Sclerosis Center, Hasselt University, Diepenbeek, Belgium
| | - Sokchea Lay
- Immunology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Sopheak Sorn
- Epidemiology and Public Health Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Sreymom Ken
- Virology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Tey Putita Ou
- Virology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Denis Laurent
- Kantha Bopha Children's Hospital, Phnom Penh, Cambodia
| | | | - Sowath Ly
- Epidemiology and Public Health Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Philippe Dussart
- Virology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Veasna Duong
- Virology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Anavaj Sakuntabhai
- Department of Global Health, Ecology and Emergence of Arthropod-borne Pathogens, Institut Pasteur, Université de Paris, Paris, France
- Université de Paris-Cité, CNRS UMR 2000, Paris, France
- Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE) USC 1510, Paris, France
| | - Markus Kleinewietfeld
- VIB Laboratory of Translational Immunomodulation, Hasselt University, Diepenbeek, Belgium
- Department of Immunology, Hasselt University, Diepenbeek, Belgium
- University Multiple Sclerosis Center, Hasselt University, Diepenbeek, Belgium
| | - Tineke Cantaert
- Immunology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| |
Collapse
|
8
|
Arora JK, Matangkasombut P, Charoensawan V, Opasawatchai A. Single-cell RNA sequencing reveals the expansion of circulating tissue-homing B cell subsets in secondary acute dengue viral infection. Heliyon 2024; 10:e30314. [PMID: 38818157 PMCID: PMC11137366 DOI: 10.1016/j.heliyon.2024.e30314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 06/01/2024] Open
Abstract
The roles of antibodies secreted by subsets of B cells in dengue virus (DENV) infection have been extensively studied, yet, the contribution of tissue-homing B cells to antiviral immunity remains unclear. In this study, we performed a comprehensive analysis of B cell subpopulations in peripheral blood samples from DENV-infected patients using single-cell RNA-sequencing (scRNA-seq) datasets and flow cytometry. We showed that plasma cells (PCs) and plasmablasts (PBs) were the predominant B cell populations during the acute phase of secondary natural DENV infection, but not in convalescent phase nor in healthy controls. Interestingly, these cells expressed proliferation, adhesion, and tissue-homing genes, including SELPLG, a homing marker of the skin, the initial infected site of DENV. Flow cytometry analysis confirmed a significant upregulation of cell surface expression of a cutaneous lymphocyte-associated antigen (CLA) encoded by SELPLG in PCs and PBs, compared to naive and memory B cells from the same patients. The analysis of an independent single-cell B-cell receptor sequencing (scBCR-seq) dataset of DENV-infected patients revealed that the peripheral blood PCs and PBs exhibited the highest clonal expansion in secondary DENV infection compared to other B cell subsets. These clonally expanded cells also expressed the highest levels of tissue-homing genes, including SELPLG. In addition, by utilizing a public scRNA-seq dataset of SARS-CoV2 infection, we demonstrated the upregulation of several tissue-homing genes in PCs and PBs. Our study provides evidence for the potential roles of tissue-homing B cell subsets in the context of immune responses against viral infections in humans.
Collapse
Affiliation(s)
- Jantarika Kumar Arora
- Doctor of Philosophy Program in Biochemistry (International Program), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Ponpan Matangkasombut
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
- Single-cell Omics and Systems Biology of Diseases Research Unit, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Varodom Charoensawan
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
- Single-cell Omics and Systems Biology of Diseases Research Unit, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
- Integrative Computational BioScience (ICBS) Center, Mahidol University, Nakhon Pathom, 73170, Thailand
- Division of Medical Bioinformatics, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
- Siriraj Genomics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Anunya Opasawatchai
- Single-cell Omics and Systems Biology of Diseases Research Unit, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
- Integrative Computational BioScience (ICBS) Center, Mahidol University, Nakhon Pathom, 73170, Thailand
- Department of Oral Microbiology, Faculty of Dentistry, Mahidol University, Bangkok, 10400, Thailand
| |
Collapse
|
9
|
Sung J, Cheong Y, Kim YS, Ahn J, Sohn MH, Byun S, Seong BL. Harnessing Pentameric Scaffold of Cholera Toxin B (CTB) for Design of Subvirion Recombinant Dengue Virus Vaccine. Vaccines (Basel) 2024; 12:92. [PMID: 38250905 PMCID: PMC10819241 DOI: 10.3390/vaccines12010092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/09/2024] [Accepted: 01/16/2024] [Indexed: 01/23/2024] Open
Abstract
Dengue virus is an enveloped virus with an icosahedral assembly of envelope proteins (E). The E proteins are arranged as a head-to-tail homodimer, and domain III (EDIII) is placed at the edge of the dimer, converging to a pentamer interface. For a structure-based approach, cholera toxin B (CTB) was harnessed as a structural scaffold for the five-fold symmetry of EDIII. Pivoted by an RNA-mediated chaperone for the protein folding and assembly, CTB-EDIII of dengue serotype 1 (DV1) was successfully produced as soluble pentamers in an E. coli host with a high yield of about 28 mg/L. Immunization of mice with CTB-DV1EDIII elicited increased levels of neutralizing antibodies against infectious viruses compared to the control group immunized with DV1EDIII without CTB fusion. IgG isotype switching into a balanced Th1/Th2 response was also observed, probably triggered by the intrinsic adjuvant activity of CTB. Confirming the immune-enhancing potential of CTB in stabilizing the pentamer assembly of EDIII, this study introduces a low-cost bacterial production platform designed to augment the soluble production of subunit vaccine candidates, particularly those targeting flaviviruses.
Collapse
Affiliation(s)
- Jemin Sung
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea; (J.S.); (Y.-S.K.)
| | - Yucheol Cheong
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea; (J.S.); (Y.-S.K.)
| | - Young-Seok Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea; (J.S.); (Y.-S.K.)
| | - Jina Ahn
- The Interdisciplinary Graduate Program in Integrative Biotechnology & Translational Medicine, Yonsei University, Incheon 21983, Republic of Korea;
| | - Myung Hyun Sohn
- Department of Pediatrics, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea;
| | - Sanguine Byun
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea; (J.S.); (Y.-S.K.)
- POSTECH Biotech Center, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Baik-Lin Seong
- Department of Microbiology and Immunology, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea
- Vaccine Innovative Technology ALliance (VITAL)-Korea, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
10
|
Sunari IGAAEP, Aryati A, Hakim FKN, Tanzilia MF, Zuroidah N, Wrahatnala BJ, Rohman A, Wardhani P, Husada D, Miftahussurur M. Non-structural protein 1 and hematology parameters as predictors of dengue virus infection severity in Indonesia. J Med Life 2023; 16:1546-1551. [PMID: 38313186 PMCID: PMC10835564 DOI: 10.25122/jml-2022-0300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 02/14/2023] [Indexed: 02/06/2024] Open
Abstract
Dengue virus infection (DVI) remains a significant health challenge, and diagnosis must still be considered. Non-structural protein 1 (NS1) is a potential marker of the dengue virus that can help diagnose DVI. The study aimed to assess the role of NS1 as a predictor of the severity of DVI. We utilized Dengue PCR-confirmed samples and employed semi-quantitative NS1Ag ELISA for NS1 examination, adhering to the World Health Organization South-East Asia Region (WHO-SEARO) 2011 criteria for DVI. We included DVI patients from Indonesia aged 1-65 years. Secondary infections had more severe clinical conditions than primary infections. Leukocyte and platelet levels had a more significant effect on NS1 positivity (6.19 (1.9-30.2); p<0.001; 190 (11-417); p=0.015; respectively). Multivariate analysis revealed leukocytes as a more significant predictor of NS1 values than platelets, with an odds ratio of 5.38 contributing to 30.5% of the NS1 value variation. The NS1 value could distinguish undifferentiated fever and dengue fever in the children group with a sensitivity of 76.0% and specificity of 87.5% (p=0.015). The number of NS1(-) in the severe dengue hemorrhagic fever (DHF) group was higher than NS1(+). DENV-4 type and primary infection were dominant in this study, although they did not significantly differ from the NS1 value. NS1 value can be used as a predictor to determine the severity of DVI in children but not in the adult group. The levels of leukocytes and platelets influenced the NS1 value.
Collapse
Affiliation(s)
| | - Aryati Aryati
- Department of Clinical Pathology, Faculty of Medicine, Dr. Soetomo Teaching Hospital, Universitas Airlangga, Surabaya, Indonesia
| | | | - May Fanny Tanzilia
- Department of Clinical Pathology, Faculty of Medicine, Dr. Soetomo Teaching Hospital, Universitas Airlangga, Surabaya, Indonesia
| | - Nelly Zuroidah
- Department of Clinical Pathology, Faculty of Medicine, Dr. Soetomo Teaching Hospital, Universitas Airlangga, Surabaya, Indonesia
| | | | - Ali Rohman
- Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, Surabaya, Indonesia
| | - Puspa Wardhani
- Department of Clinical Pathology, Faculty of Medicine, Dr. Soetomo Teaching Hospital, Universitas Airlangga, Surabaya, Indonesia
| | - Dominicus Husada
- Department of Child Health, Faculty of Medicine, Dr. Soetomo Teaching Hospital, Universitas Airlangga, Surabaya, Indonesia
| | - Muhammad Miftahussurur
- Department of Internal Medicine, Division of Gastroentero-Hepatology, Faculty of Medicine, Dr. Soetomo Teaching Hospital, Universitas Airlangga, Surabaya, Indonesia
- Helicobacter pylori and Microbiota Study Group Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
11
|
Sarker A, Dhama N, Gupta RD. Dengue virus neutralizing antibody: a review of targets, cross-reactivity, and antibody-dependent enhancement. Front Immunol 2023; 14:1200195. [PMID: 37334355 PMCID: PMC10272415 DOI: 10.3389/fimmu.2023.1200195] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/19/2023] [Indexed: 06/20/2023] Open
Abstract
Dengue is the most common viral infection spread by mosquitoes, prevalent in tropical countries. The acute dengue virus (DENV) infection is a benign and primarily febrile illness. However, secondary infection with alternative serotypes can worsen the condition, leading to severe and potentially fatal dengue. The antibody raised by the vaccine or the primary infections are frequently cross-reactive; however, weakly neutralizing, and during subsequent infection, they may increase the odds of antibody-dependent enhancement (ADE). Despite that, many neutralizing antibodies have been identified against the DENV, which are thought to be useful in reducing dengue severity. Indeed, an antibody must be free from ADE for therapeutic application, as it is pretty common in dengue infection and escalates disease severity. Therefore, this review has described the critical characteristics of DENV and the potential immune targets in general. The primary emphasis is given to the envelope protein of DENV, where potential epitopes targeted for generating serotype-specific and cross-reactive antibodies have critically been described. In addition, a novel class of highly neutralizing antibodies targeted to the quaternary structure, similar to viral particles, has also been described. Lastly, we have discussed different aspects of the pathogenesis and ADE, which would provide significant insights into developing safe and effective antibody therapeutics and equivalent protein subunit vaccines.
Collapse
|
12
|
Zhou H, Ren R, Yau SST. Utilizing the codon adaptation index to evaluate the susceptibility to HIV-1 and SARS-CoV-2 related coronaviruses in possible target cells in humans. Front Cell Infect Microbiol 2023; 12:1085397. [PMID: 36760235 PMCID: PMC9905242 DOI: 10.3389/fcimb.2022.1085397] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/30/2022] [Indexed: 01/27/2023] Open
Abstract
Comprehensive identification of possible target cells for viruses is crucial for understanding the pathological mechanism of virosis. The susceptibility of cells to viruses depends on many factors. Besides the existence of receptors at the cell surface, effective expression of viral genes is also pivotal for viral infection. The regulation of viral gene expression is a multilevel process including transcription, translational initiation and translational elongation. At the translational elongation level, the translational efficiency of viral mRNAs mainly depends on the match between their codon composition and cellular translational machinery (usually referred to as codon adaptation). Thus, codon adaptation for viral ORFs in different cell types may be related to their susceptibility to viruses. In this study, we selected the codon adaptation index (CAI) which is a common codon adaptation-based indicator for assessing the translational efficiency at the translational elongation level to evaluate the susceptibility to two-pandemic viruses (HIV-1 and SARS-CoV-2) of different human cell types. Compared with previous studies that evaluated the infectivity of viruses based on codon adaptation, the main advantage of our study is that our analysis is refined to the cell-type level. At first, we verified the positive correlation between CAI and translational efficiency and strengthened the rationality of our research method. Then we calculated CAI for ORFs of two viruses in various human cell types. We found that compared to high-expression endogenous genes, the CAIs of viral ORFs are relatively low. This phenomenon implied that two kinds of viruses have not been well adapted to translational regulatory machinery in human cells. Also, we indicated that presumptive susceptibility to viruses according to CAI is usually consistent with the results of experimental research. However, there are still some exceptions. Finally, we found that two viruses have different effects on cellular translational mechanisms. HIV-1 decouples CAI and translational efficiency of endogenous genes in host cells and SARS-CoV-2 exhibits increased CAI for its ORFs in infected cells. Our results implied that at least in cases of HIV-1 and SARS-CoV-2, CAI can be regarded as an auxiliary index to assess cells' susceptibility to viruses but cannot be used as the only evidence to identify viral target cells.
Collapse
Affiliation(s)
- Haoyu Zhou
- Yanqi Lake Beijing Institute of Mathematical Sciences and Applications (BIMSA), Beijing, China,School of Life Sciences, Tsinghua University, Beijing, China
| | - Ruohan Ren
- Yanqi Lake Beijing Institute of Mathematical Sciences and Applications (BIMSA), Beijing, China,Zhili College, Tsinghua University, Beijing, China
| | - Stephen Shing-Toung Yau
- Yanqi Lake Beijing Institute of Mathematical Sciences and Applications (BIMSA), Beijing, China,Department of Mathematical Sciences, Tsinghua University, Beijing, China,*Correspondence: Stephen Shing-Toung Yau,
| |
Collapse
|
13
|
Comparative Analysis of In Vitro Models to Study Antibody-Dependent Enhancement of Zika Virus Infection. Viruses 2022; 14:v14122776. [PMID: 36560779 PMCID: PMC9781448 DOI: 10.3390/v14122776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/02/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022] Open
Abstract
During the 2015-2016 outbreak of Zika virus (ZIKV) in the Americas, a previously unknown severe complication of ZIKV infection during pregnancy resulting in birth defects was reported. Since the ZIKV outbreak occurred in regions that were highly endemic for the related dengue virus (DENV), it was speculated that antibody-dependent enhancement (ADE) of a ZIKV infection, caused by the presence of cross-reactive DENV antibodies, could contribute to ZIKV disease severity. Emerging evidence indicates that, while in vitro models can show ADE of ZIKV infection, ADE does not seem to contribute to congenital ZIKV disease severity in humans. However, the role of ADE of ZIKV infection during pregnancy and in vertical ZIKV transmission is not well studied. In this study, we hypothesized that pregnancy may affect the ability of myeloid cells to become infected with ZIKV, potentially through ADE. We first systematically assessed which cell lines and primary cells can be used to study ZIKV ADE in vitro, and we compared the difference in outcomes of (ADE) infection experiments between these cells. Subsequently, we tested the hypothesis that pregnancy may affect the ability of myeloid cells to become infected through ADE, by performing ZIKV ADE assays with primary cells isolated from blood of pregnant women from different trimesters and from age-matched non-pregnant women. We found that ADE of ZIKV infection can be induced in myeloid cell lines U937, THP-1, and K562 as well as in monocyte-derived macrophages from healthy donors. There was no difference in permissiveness for ZIKV infection or ADE potential of ZIKV infection in primary cells of pregnant women compared to non-pregnant women. In conclusion, no increased permissiveness for ZIKV infection and ADE of ZIKV infection was found using in vitro models of primary myeloid cells from pregnant women compared to age-matched non-pregnant women.
Collapse
|
14
|
Shen TJ, Chen CL, Tsai TT, Jhan MK, Bai CH, Yen YC, Tsai CW, Tseng PC, Yu CY, Lin CF. Hyperglycemia exacerbates dengue virus infection by facilitating poly(A)-binding protein-mediated viral translation. JCI Insight 2022; 7:e142805. [PMID: 36125898 PMCID: PMC9675471 DOI: 10.1172/jci.insight.142805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 09/14/2022] [Indexed: 12/15/2022] Open
Abstract
Diabetes mellitus (DM) is highly comorbid with severe dengue diseases; however, the underlying mechanisms are unclear. Patients with DM have a 1.61-fold increased risk of developing dengue hemorrhagic fever. In search of host factors involved in dengue virus (DENV) infection, we used high-glucose (HG) treatment and showed that HG increased viral protein expression and virion release but had no effects on the early stages of viral infection. After HG stimulation, DENV-firefly luciferase-transfected assay and cellular replicon-based assay indicated increased viral translation, whereas using the glucose uptake inhibitor phloretin blocked this effect. HG treatment increased the translational factor poly(A)-binding protein (PABP) in a glucose transporter-associated, PI3K/AKT-regulated manner. Silencing PABP significantly decreased HG-prompted virion production. HG enhanced the formation of the PABP-eukaryotic translation initiation factor 4G complex, which is regulated by protein-disulfide isomerase. Hyperglycemia increased PABP expression, mortality rate, viral protein expression, and viral loads in streptozotocin-induced DM mice. Overall, hyperglycemic stress facilitates DENV infection by strengthening PABP-mediated viral translation.
Collapse
Affiliation(s)
- Ting-Jing Shen
- Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan
- Department of Microbiology and Immunology, School of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chia-Ling Chen
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Tsung-Ting Tsai
- Department of Microbiology and Immunology, School of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ming-Kai Jhan
- Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan
- Department of Microbiology and Immunology, School of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chyi-Huey Bai
- Research Center of Biostatistics, College of Management, Taipei Medical University, Taipei, Taiwan
| | - Yu-Chun Yen
- Research Center of Biostatistics, College of Management, Taipei Medical University, Taipei, Taiwan
| | - Ching-Wen Tsai
- Research Center of Biostatistics, College of Management, Taipei Medical University, Taipei, Taiwan
| | - Po-Chun Tseng
- Department of Microbiology and Immunology, School of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chia-Yi Yu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Chiou-Feng Lin
- Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan
- Department of Microbiology and Immunology, School of Medicine, Taipei Medical University, Taipei, Taiwan
- Center of Infectious Diseases and Signaling Research, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
15
|
Cheong HC, Cheok YY, Chan YT, Sulaiman S, Looi CY, Alshanon AF, Hassan J, Abubakar S, Wong WF. Zika Virus Vaccine: The Current State of Affairs and Challenges Posed by Antibody-Dependent Enhancement Reaction. Viral Immunol 2022; 35:586-596. [PMID: 36301533 DOI: 10.1089/vim.2022.0082] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Affiliation(s)
- Heng Choon Cheong
- Department of Medical Microbiology and Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Yi Ying Cheok
- Department of Medical Microbiology and Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Yee Teng Chan
- Department of Medical Microbiology and Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Sofiah Sulaiman
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Chung Yeng Looi
- School of Biosciences, Faculty of Health & Medical Sciences, Taylor's University, Subang Jaya, Malaysia
| | - Ahmed F. Alshanon
- Center of Biotechnology Researches, University of Al-Nahrain, Baghdad, Iraq
| | - Jamiyah Hassan
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Sazaly Abubakar
- Department of Medical Microbiology and Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- Tropical Infectious Diseases Research and Educational Center (TIDREC), University of Malaya, Kuala Lumpur, Malaysia
| | - Won Fen Wong
- Department of Medical Microbiology and Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
16
|
Yang X, Zhang X, Zhao X, Yuan M, Zhang K, Dai J, Guan X, Qiu HJ, Li Y. Antibody-Dependent Enhancement: ″Evil″ Antibodies Favorable for Viral Infections. Viruses 2022; 14:v14081739. [PMID: 36016361 PMCID: PMC9412366 DOI: 10.3390/v14081739] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/03/2022] [Accepted: 08/05/2022] [Indexed: 12/16/2022] Open
Abstract
The pandemics caused by emerging viruses such as severe acute respiratory syndrome coronavirus 2 result in severe disruptions to public health. Vaccines and antibody drugs play essential roles in the control and prevention of emerging infectious diseases. However, in contrast with the neutralizing antibodies (NAbs), sub- or non-NAbs may facilitate the virus to enter the cells and enhance viral infection, which is termed antibody-dependent enhancement (ADE). The ADE of most virus infections is mediated by the Fc receptors (FcRs) expressed on the myeloid cells, while others are developed by other mechanisms, such as complement receptor-mediated ADE. In this review, we comprehensively analyzed the characteristics of the viruses inducing FcRs-mediated ADE and the new molecular mechanisms of ADE involved in the virus entry, immune response, and transcription modulation, which will provide insights into viral pathogenicity and the development of safer vaccines and effective antibody drugs against the emerging viruses inducing ADE.
Collapse
Affiliation(s)
- Xiaoke Yang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Xin Zhang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Xiaotian Zhao
- College of Animal Science and Animal Medicine, Tianjin Agricultural University, Tianjin 300384, China
| | - Mengqi Yuan
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Kehui Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Jingwen Dai
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Xiangyu Guan
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Hua-Ji Qiu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
- College of Animal Science and Animal Medicine, Tianjin Agricultural University, Tianjin 300384, China
- Correspondence: (H.-J.Q.); (Y.L.)
| | - Yongfeng Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
- Correspondence: (H.-J.Q.); (Y.L.)
| |
Collapse
|
17
|
Miller NL, Raman R, Clark T, Sasisekharan R. Complexity of Viral Epitope Surfaces as Evasive Targets for Vaccines and Therapeutic Antibodies. Front Immunol 2022; 13:904609. [PMID: 35784339 PMCID: PMC9247215 DOI: 10.3389/fimmu.2022.904609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/16/2022] [Indexed: 11/29/2022] Open
Abstract
The dynamic interplay between virus and host plays out across many interacting surfaces as virus and host evolve continually in response to one another. In particular, epitope-paratope interactions (EPIs) between viral antigen and host antibodies drive much of this evolutionary race. In this review, we describe a series of recent studies examining aspects of epitope complexity that go beyond two interacting protein surfaces as EPIs are typically understood. To structure our discussion, we present a framework for understanding epitope complexity as a spectrum along a series of axes, focusing primarily on 1) epitope biochemical complexity (e.g., epitopes involving N-glycans) and 2) antigen conformational/dynamic complexity (e.g., epitopes with differential properties depending on antigen state or fold-axis). We highlight additional epitope complexity factors including epitope tertiary/quaternary structure, which contribute to epistatic relationships between epitope residues within- or adjacent-to a given epitope, as well as epitope overlap resulting from polyclonal antibody responses, which is relevant when assessing antigenic pressure against a given epitope. Finally, we discuss how these different forms of epitope complexity can limit EPI analyses and therapeutic antibody development, as well as recent efforts to overcome these limitations.
Collapse
Affiliation(s)
- Nathaniel L. Miller
- Harvard Massachusetts Institute of Technology (MIT) Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, United States
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Rahul Raman
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Thomas Clark
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Ram Sasisekharan
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
18
|
Aisenberg LK, Rousseau KE, Cascino K, Massaccesi G, Aisenberg WH, Luo W, Muthumani K, Weiner DB, Whitehead SS, Chattergoon MA, Durbin AP, Cox AL. Cross-reactive antibodies facilitate innate sensing of dengue and Zika viruses. JCI Insight 2022; 7:151782. [PMID: 35588060 DOI: 10.1172/jci.insight.151782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 05/13/2022] [Indexed: 11/17/2022] Open
Abstract
The Aedes aegypti mosquito transmits both dengue (DENV) and Zika (ZIKV) viruses. Individuals in endemic areas are at risk for infection with both viruses as well as repeated DENV infection. In the presence of anti-DENV antibodies, outcomes of secondary DENV infection range from mild to life-threatening. Further, the role of cross-reactive antibodies on the course of ZIKV infection remains unclear.We assessed the ability of cross-reactive DENV monoclonal antibodies or polyclonal immunoglobulin isolated after DENV vaccination to upregulate type I interferon (IFN) production by plasmacytoid dendritic cells (pDCs) in response to both heterotypic DENV- and ZIKV- infected cells. We found a range in the ability of antibodies to increase pDC IFN production and a positive correlation between IFN production and the ability of an antibody to bind to the infected cell surface. Engagement of Fc receptors on the pDC and Fab binding of an epitope on infected cells was required to mediate increased IFN production by providing specificity to and promoting pDC sensing of DENV or ZIKV. This represents a mechanism independent of neutralization by which pre-existing cross-reactive DENV antibodies could protect a subset of individuals from severe outcomes during secondary heterotypic DENV or ZIKV infection.
Collapse
Affiliation(s)
- Laura K Aisenberg
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, United States of America
| | - Kimberly E Rousseau
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, United States of America
| | - Katherine Cascino
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, United States of America
| | - Guido Massaccesi
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, United States of America
| | - William H Aisenberg
- Department of Medicine, Division of Neurology, Johns Hopkins University School of Medicine, Baltimore, United States of America
| | - Wensheng Luo
- International Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, United States of America
| | - Kar Muthumani
- Vaccine & Immunotherapy Center, The Wistar Institute Cancer Center, Philadelphia, United States of America
| | - David B Weiner
- Vaccine & Immunotherapy Center, The Wistar Institute Cancer Center, Philadelphia, United States of America
| | - Stephen S Whitehead
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, United States of America
| | - Michael A Chattergoon
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, United States of America
| | - Anna P Durbin
- International Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, United States of America
| | - Andrea L Cox
- Johns Hopkins University School of Medicine, Baltimore, United States of America
| |
Collapse
|
19
|
Hou J, Ye W, Chen J. Current Development and Challenges of Tetravalent Live-Attenuated Dengue Vaccines. Front Immunol 2022; 13:840104. [PMID: 35281026 PMCID: PMC8907379 DOI: 10.3389/fimmu.2022.840104] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/03/2022] [Indexed: 01/26/2023] Open
Abstract
Dengue is the most common arboviral disease caused by one of four distinct but closely related dengue viruses (DENV) and places significant economic and public health burdens in the endemic areas. A dengue vaccine will be important in advancing disease control. However, the effort has been challenged by the requirement to induce effective protection against all four DENV serotypes and the potential adverse effect due to the phenomenon that partial immunity to DENV may worsen the symptoms upon subsequent heterotypic infection. Currently, the most advanced dengue vaccines are all tetravalent and based on recombinant live attenuated viruses. CYD-TDV, developed by Sanofi Pasteur, has been approved but is limited for use in individuals with prior dengue infection. Two other tetravalent live attenuated vaccine candidates: TAK-003 by Takeda and TV003 by National Institute of Allergy and Infectious Diseases, have completed phase 3 and phase 2 clinical trials, respectively. This review focuses on the designs and evaluation of TAK-003 and TV003 vaccine candidates in humans in comparison to the licensed CYD-TDV vaccine. We highlight specific lessons from existing studies and challenges that must be overcome in order to develop a dengue vaccine that confers effective and balanced protection against all four DENV serotypes but with minimal adverse effects.
Collapse
Affiliation(s)
- Jue Hou
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology (SMART), Singapore, Singapore
| | - Weijian Ye
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology (SMART), Singapore, Singapore
| | - Jianzhu Chen
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology (SMART), Singapore, Singapore.,Department of Biology, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
20
|
Nasar S, Nasar Z, Iftikhar S. A novel strategy for developing a tetravalent vaccine (dvac) against dengue utilizing conserved regions from all DENV proteins. Microb Pathog 2022; 164:105447. [PMID: 35181476 DOI: 10.1016/j.micpath.2022.105447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/28/2022] [Accepted: 02/14/2022] [Indexed: 10/19/2022]
Abstract
Dengue fever is a global health issue which is infecting millions of people each year and number of reported infections are constantly increasing. Though the only commercialized vaccine i.e. dengvaxia has banned in several countries due to its potential health risk, overall vaccine holds promising potential against viruses. In this study, we have developed a novel formulation of multi-epitope peptide vaccine (dvac), which utilizes peptides from each dengue protein with >80% sequence conservancy within each serotype and their respective genotypes. Simultaneous utilization of all dengue proteins and their conservancy among dengue virus genome is targeted to evoke balanced immunity against dengue serotypes without eliciting antibody-dependent enhancement and antigenic sin like response, which are primarily responsible for severe dengue fever. Immunoinformatic approaches are used to identify the potential of dvac in inducing cytotoxic T-lymphocytes, helper T-lymphocytes, Interleukin-4, Interferon-gamma and B-cell immune responses without inducing allergic responses. Cross-reactivity of dvac with human cellular machinery is also taken into consideration to avoid any cross-reactive pathogenicity. Furthermore, interaction of dvac with immune receptors i.e. toll-like receptors (TLR3 and TLR4) using molecular docking studies revealed favorable interaction between synthetic peptide and immune receptors. Our findings suggest that designed multi-epitope peptide holds great potential to evoke balanced immunity against all dengue serotypes without eliciting any significant harmful side-effects.
Collapse
Affiliation(s)
- Sitara Nasar
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | - Zara Nasar
- Punjab University College of Information and Technology, University of the Punjab, Lahore, Pakistan
| | - Saima Iftikhar
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan.
| |
Collapse
|
21
|
Nanaware N, Banerjee A, Mullick Bagchi S, Bagchi P, Mukherjee A. Dengue Virus Infection: A Tale of Viral Exploitations and Host Responses. Viruses 2021; 13:v13101967. [PMID: 34696397 PMCID: PMC8541669 DOI: 10.3390/v13101967] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/17/2021] [Accepted: 09/27/2021] [Indexed: 12/20/2022] Open
Abstract
Dengue is a mosquito-borne viral disease (arboviral) caused by the Dengue virus. It is one of the prominent public health problems in tropical and subtropical regions with no effective vaccines. Every year around 400 million people get infected by the Dengue virus, with a mortality rate of about 20% among the patients with severe dengue. The Dengue virus belongs to the Flaviviridae family, and it is an enveloped virus with positive-sense single-stranded RNA as the genetic material. Studies of the infection cycle of this virus revealed potential host targets important for the virus replication cycle. Here in this review article, we will be discussing different stages of the Dengue virus infection cycle inside mammalian host cells and how host proteins are exploited by the virus in the course of infection as well as how the host counteracts the virus by eliciting different antiviral responses.
Collapse
Affiliation(s)
- Nikita Nanaware
- Division of Virology, ICMR-National AIDS Research Institute, Pune 411026, MH, India; (N.N.); (A.B.)
| | - Anwesha Banerjee
- Division of Virology, ICMR-National AIDS Research Institute, Pune 411026, MH, India; (N.N.); (A.B.)
| | | | - Parikshit Bagchi
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Correspondence: or (P.B.); or (A.M.)
| | - Anupam Mukherjee
- Division of Virology, ICMR-National AIDS Research Institute, Pune 411026, MH, India; (N.N.); (A.B.)
- Correspondence: or (P.B.); or (A.M.)
| |
Collapse
|
22
|
Naseri M, Ziora ZM, Simon GP, Batchelor W. ASSURED‐compliant point‐of‐care diagnostics for the detection of human viral infections. Rev Med Virol 2021. [DOI: 10.1002/rmv.2263] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Mahdi Naseri
- Department of Chemical Engineering Bioresource Processing Research Institute of Australia (BioPRIA) Monash University Clayton VIC Australia
| | - Zyta M Ziora
- Institute for Molecular Bioscience The University of Queensland St Lucia QLD Australia
| | - George P Simon
- Department of Materials Science and Engineering Monash University Clayton VIC Australia
| | - Warren Batchelor
- Department of Chemical Engineering Bioresource Processing Research Institute of Australia (BioPRIA) Monash University Clayton VIC Australia
| |
Collapse
|
23
|
Divithotawela C, Pham A, Bell PT, Ledger EL, Tan M, Yerkovich S, Grant M, Hopkins PM, Wells TJ, Chambers DC. Inferior outcomes in lung transplant recipients with serum Pseudomonas aeruginosa specific cloaking antibodies. J Heart Lung Transplant 2021; 40:951-959. [PMID: 34226118 DOI: 10.1016/j.healun.2021.05.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 04/21/2021] [Accepted: 05/24/2021] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Chronic Lung Allograft Dysfunction (CLAD) limits long-term survival following lung transplantation. Colonization of the allograft by Pseudomonas aeruginosa is associated with an increased risk of CLAD and inferior overall survival. Recent experimental data suggests that 'cloaking' antibodies targeting the O-antigen of the P. aeruginosa lipopolysaccharide cell wall (cAbs) attenuate complement-mediated bacteriolysis in suppurative lung disease. METHODS In this retrospective cohort analysis of 123 lung transplant recipients, we evaluated the prevalence, risk factors and clinical impact of serum cAbs following transplantation. RESULTS cAbs were detected in the sera of 40.7% of lung transplant recipients. Cystic fibrosis and younger age were associated with increased risk of serum cAbs (CF diagnosis, OR 6.62, 95% CI 2.83-15.46, p < .001; age at transplant, OR 0.69, 95% CI 0.59-0.81, p < .001). Serum cAbs and CMV mismatch were both independently associated with increased risk of CLAD (cAb, HR 4.34, 95% CI 1.91-9.83, p < .001; CMV mismatch (D+/R-), HR 5.40, 95% CI 2.36-12.32, p < .001) and all-cause mortality (cAb, HR 2.75, 95% CI 1.27-5.95, p = .010, CMV mismatch, HR 3.53, 95% CI 1.62-7.70, p = .002) in multivariable regression analyses. CONCLUSIONS Taken together, these findings suggest a potential role for 'cloaking' antibodies targeting P. aeruginosa LPS O-antigen in the immunopathogenesis of CLAD.
Collapse
Affiliation(s)
| | - Amy Pham
- The University of Queensland, Diamantina Institute, The University of Queensland, Wooloongabba, Australia
| | - Peter T Bell
- Queensland Lung Transplant Service, The Prince Charles Hospital, Brisbane, Australia; School of Medicine, The University of Queensland, Brisbane, Australia
| | - Emma L Ledger
- The University of Queensland, Diamantina Institute, The University of Queensland, Wooloongabba, Australia
| | - Maxine Tan
- Queensland Lung Transplant Service, The Prince Charles Hospital, Brisbane, Australia
| | | | - Michelle Grant
- Queensland Lung Transplant Service, The Prince Charles Hospital, Brisbane, Australia
| | - Peter M Hopkins
- Queensland Lung Transplant Service, The Prince Charles Hospital, Brisbane, Australia; School of Medicine, The University of Queensland, Brisbane, Australia
| | - Timothy J Wells
- The University of Queensland, Diamantina Institute, The University of Queensland, Wooloongabba, Australia; Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Australia
| | - Daniel C Chambers
- Queensland Lung Transplant Service, The Prince Charles Hospital, Brisbane, Australia; School of Medicine, The University of Queensland, Brisbane, Australia.
| |
Collapse
|
24
|
Munoz FM, Cramer JP, Dekker CL, Dudley MZ, Graham BS, Gurwith M, Law B, Perlman S, Polack FP, Spergel JM, Van Braeckel E, Ward BJ, Didierlaurent AM, Lambert PH. Vaccine-associated enhanced disease: Case definition and guidelines for data collection, analysis, and presentation of immunization safety data. Vaccine 2021; 39:3053-3066. [PMID: 33637387 PMCID: PMC7901381 DOI: 10.1016/j.vaccine.2021.01.055] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 12/25/2022]
Abstract
This is a Brighton Collaboration Case Definition of the term "Vaccine Associated Enhanced Disease" to be utilized in the evaluation of adverse events following immunization. The Case Definition was developed by a group of experts convened by the Coalition for Epidemic Preparedness Innovations (CEPI) in the context of active development of vaccines for SARS-CoV-2 vaccines and other emerging pathogens. The case definition format of the Brighton Collaboration was followed to develop a consensus definition and defined levels of certainty, after an exhaustive review of the literature and expert consultation. The document underwent peer review by the Brighton Collaboration Network and by selected Expert Reviewers prior to submission.
Collapse
Affiliation(s)
- Flor M Munoz
- Departments of Pediatrics, Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA.
| | - Jakob P Cramer
- Coalition for Epidemic Preparedness Innovations, CEPI, London, UK
| | - Cornelia L Dekker
- Department of Pediatrics, Stanford University School of Medicine, CA, USA
| | - Matthew Z Dudley
- Institute for Vaccine Safety, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, USA
| | - Marc Gurwith
- Safety Platform for Emergency Vaccines, Los Altos Hills, CA, USA
| | - Barbara Law
- Safety Platform for Emergency Vaccines, Manta, Ecuador
| | - Stanley Perlman
- Department of Microbiology and Immunology, Department of Pediatrics, University of Iowa, USA
| | | | - Jonathan M Spergel
- Division of Allergy and Immunology, Children's Hospital of Philadelphia, Department of Pediatrics, Perelman School of Medicine at University of Pennsylvania, PA, USA
| | - Eva Van Braeckel
- Department of Respiratory Medicine, Ghent University Hospital, and Department of Internal Medicine and Paediatrics, Ghent University, Ghent, Belgium
| | - Brian J Ward
- Research Institute of the McGill University Health Center, Montreal, Quebec, Canada
| | | | | |
Collapse
|
25
|
Castro M, Lythe G, Smit J, Molina-París C. Fusion and fission events regulate endosome maturation and viral escape. Sci Rep 2021; 11:7845. [PMID: 33846408 PMCID: PMC8041880 DOI: 10.1038/s41598-021-86877-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 03/15/2021] [Indexed: 02/08/2023] Open
Abstract
Endosomes are intracellular vesicles that mediate the communication of the cell with its extracellular environment. They are an essential part of the cell’s machinery regulating intracellular trafficking via the endocytic pathway. Many viruses, which in order to replicate require a host cell, attach themselves to the cellular membrane; an event which usually initiates uptake of a viral particle through the endocytic pathway. In this way viruses hijack endosomes for their journey towards intracellular sites of replication and avoid degradation without host detection by escaping the endosomal compartment. Recent experimental techniques have defined the role of endosomal maturation in the ability of enveloped viruses to release their genetic material into the cytoplasm. Endosome maturation depends on a family of small hydrolase enzymes (or GTPases) called Rab proteins, arranged on the cytoplasmic surface of its membrane. Here, we model endosomes as intracellular compartments described by two variables (its levels of active Rab5 and Rab7 proteins) and which can undergo coagulation (or fusion) and fragmentation (or fission). The key element in our approach is the “per-cell endosomal distribution” and its dynamical (Boltzmann) equation. The Boltzmann equation allows us to derive the dynamics of the total number of endosomes in a cell, as well as the mean and the standard deviation of its active Rab5 and Rab7 levels. We compare our mathematical results with experiments of Dengue viral escape from endosomes. The relationship between endosomal active Rab levels and pH suggests a mechanism that can account for the observed variability in viral escape times, which in turn regulate the viability of a viral intracellular infection.
Collapse
Affiliation(s)
- Mario Castro
- Grupo Interdisciplinar de Sistemas Complejos (GISC) and Instituto de Investigación Tecnológica (IIT), Universidad Pontificia Comillas, Madrid, Spain.
| | - Grant Lythe
- Department of Applied Mathematics, School of Mathematics, University of Leeds, Leeds, UK
| | - Jolanda Smit
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, Groningen, The Netherlands
| | - Carmen Molina-París
- Department of Applied Mathematics, School of Mathematics, University of Leeds, Leeds, UK. .,Theoretical Biology and Biophysics, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.
| |
Collapse
|
26
|
The Influence of Immune Immaturity on Outcome After Virus Infections. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2021; 9:641-650. [PMID: 33551039 PMCID: PMC8042246 DOI: 10.1016/j.jaip.2020.11.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 12/15/2022]
Abstract
Maturation of the adaptive immune response is typically thought to improve outcome to virus infections. However, long-standing observations of natural infections with old viruses such as Epstein-Barr virus and newer observations of emerging viruses such as severe acute respiratory syndrome coronavirus 2 responsible for COVID-19 suggest that immune immaturity may be beneficial for outcome. Mechanistic studies and studies of patients with inborn errors of immunity have revealed that immune dysregulation reflecting inappropriate antibody and T-cell responses plays a crucial role in causing bystander inflammation and more severe disease. Further evidence supports a role for innate immunity in normally regulating adaptive immune responses. Thus, changes in immune responses that normally occur with age may help explain an apparent protective role of immune immaturity during virus infections.
Collapse
|
27
|
Analysis of Tembusu virus infection of human cell lines and human induced pluripotent stem cell derived hepatocytes. Virus Res 2020; 292:198252. [PMID: 33290792 DOI: 10.1016/j.virusres.2020.198252] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/21/2020] [Accepted: 11/25/2020] [Indexed: 11/23/2022]
Abstract
Tembusu virus (TMUV) causes disease in poultry, especially in ducks, resulting in abnormality in egg production and with high morbidity and mortality, resulting in great loss in duck farming industry in China and Southeast Asia. Previous studies on the pathogenesis of TMUV infection have been mostly conducted in poultry, with a few studies being undertaken in mice. While TMUV does not cause disease in humans, it has been reported that antibodies against TMUV have been found in serum samples from duck farmers, and thus data on TMUV infection in humans is limited, and the pathogenesis is unclear. In this study we investigated the cell tropism and potential susceptibility of humans to TMUV using several human cell lines. The results showed that human nerve and liver cell lines were both highly susceptible and permissive, while human kidney cells were susceptible and permissive, albeit to a lower degree. In addition, human muscle cells, lung epithelial cells, B-cells, T-cells and monocytic cells were largely refractory to TMUV infection. This data suggests that liver, neuron and kidney are potential target organs during TMUV infection in humans, consistent with what has been found in animal studies.
Collapse
|
28
|
Antibody-independent and dependent infection of human myeloid cells with dengue virus is inhibited by carrageenan. Virus Res 2020; 290:198150. [DOI: 10.1016/j.virusres.2020.198150] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 07/13/2020] [Accepted: 08/25/2020] [Indexed: 11/18/2022]
|
29
|
Cloutier M, Nandi M, Ihsan AU, Chamard HA, Ilangumaran S, Ramanathan S. ADE and hyperinflammation in SARS-CoV2 infection- comparison with dengue hemorrhagic fever and feline infectious peritonitis. Cytokine 2020; 136:155256. [PMID: 32866898 PMCID: PMC7439999 DOI: 10.1016/j.cyto.2020.155256] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/05/2020] [Accepted: 08/12/2020] [Indexed: 12/13/2022]
Abstract
The COVID-19 pandemic has rapidly spread around the world with significant morbidity and mortality in a subset of patients including the elderly. The poorer outcomes are associated with 'cytokine storm-like' immune responses, otherwise referred to as 'hyperinflammation'. While most of the infected individuals show minimal or no symptoms and recover spontaneously, a small proportion of the patients exhibit severe symptoms characterized by extreme dyspnea and low tissue oxygen levels, with extensive damage to the lungs referred to as acute respiratory distress symptom (ARDS). The consensus is that the hyperinflammatory response of the host is akin to the cytokine storm observed during sepsis and is the major cause of death. Uncertainties remain on the factors that lead to hyperinflammatory response in some but not all individuals. Hyperinflammation is a common feature in different viral infections such as dengue where existing low-titer antibodies to the virus enhances the infection in immune cells through a process called antibody-dependent enhancement or ADE. ADE has been reported following vaccination or secondary infections with other corona, Ebola and dengue virus. Detailed analysis has shown that antibodies to any viral epitope can induce ADE when present in sub-optimal titers or is of low affinity. In this review we will discuss ADE in the context of dengue and coronavirus infections including Covid-19.
Collapse
Affiliation(s)
- Maryse Cloutier
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Madhuparna Nandi
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Awais Ullah Ihsan
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Hugues Allard Chamard
- Division of Rheumatology, Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada; Centre de Recherche Clinique, Centre Hospitalier d'Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Subburaj Ilangumaran
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada; Centre de Recherche Clinique, Centre Hospitalier d'Université de Sherbrooke, Sherbrooke, QC, Canada.
| | - Sheela Ramanathan
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada; Centre de Recherche Clinique, Centre Hospitalier d'Université de Sherbrooke, Sherbrooke, QC, Canada.
| |
Collapse
|
30
|
Dengue Virus Targets Nrf2 for NS2B3-Mediated Degradation Leading to Enhanced Oxidative Stress and Viral Replication. J Virol 2020; 94:JVI.01551-20. [PMID: 32999020 DOI: 10.1128/jvi.01551-20] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 09/23/2020] [Indexed: 12/16/2022] Open
Abstract
Dengue virus (DENV) is a mosquito-borne virus that infects upward of 300 million people annually and has the potential to cause fatal hemorrhagic fever and shock. While the parameters contributing to dengue immunopathogenesis remain unclear, the collapse of redox homeostasis and the damage induced by oxidative stress have been correlated with the development of inflammation and progression toward the more severe forms of disease. In the present study, we demonstrate that the accumulation of reactive oxygen species (ROS) late after DENV infection (>24 hpi) resulted from a disruption in the balance between oxidative stress and the nuclear factor erythroid 2-related factor 2 (Nrf2)-dependent antioxidant response. The DENV NS2B3 protease complex strategically targeted Nrf2 for degradation in a proteolysis-independent manner; NS2B3 licensed Nrf2 for lysosomal degradation. Impairment of the Nrf2 regulator by the NS2B3 complex inhibited the antioxidant gene network and contributed to the progressive increase in ROS levels, along with increased virus replication and inflammatory or apoptotic gene expression. By 24 hpi, when increased levels of ROS and antiviral proteins were observed, it appeared that the proviral effect of ROS overcame the antiviral effects of the interferon (IFN) response. Overall, these studies demonstrate that DENV infection disrupts the regulatory interplay between DENV-induced stress responses, Nrf2 antioxidant signaling, and the host antiviral immune response, thus exacerbating oxidative stress and inflammation in DENV infection.IMPORTANCE Dengue virus (DENV) is a mosquito-borne pathogen that threatens 2.5 billion people in more than 100 countries annually. Dengue infection induces a spectrum of clinical symptoms, ranging from classical dengue fever to severe dengue hemorrhagic fever or dengue shock syndrome; however, the complexities of DENV immunopathogenesis remain controversial. Previous studies have reported the importance of the transcription factor Nrf2 in the control of redox homeostasis and antiviral/inflammatory or death responses to DENV. Importantly, the production of reactive oxygen species and the subsequent stress response have been linked to the development of inflammation and progression toward the more severe forms of the disease. Here, we demonstrate that DENV uses the NS2B3 protease complex to strategically target Nrf2 for degradation, leading to a progressive increase in oxidative stress, inflammation, and cell death in infected cells. This study underlines the pivotal role of the Nrf2 regulatory network in the context of DENV infection.
Collapse
|
31
|
Dubey A, Dahiya S, Rouse BT, Sehrawat S. Perspective: Reducing SARS-CoV2 Infectivity and Its Associated Immunopathology. Front Immunol 2020; 11:581076. [PMID: 33193385 PMCID: PMC7642257 DOI: 10.3389/fimmu.2020.581076] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/02/2020] [Indexed: 12/15/2022] Open
Abstract
COVID-19 has become difficult to contain in our interconnected world. In this article, we discuss some approaches that could reduce the consequences of COVID-19. We elaborate upon the utility of camelid single-domain antibodies (sdAbs), also referred to as nanobodies, which are naturally poised to neutralize viruses without enhancing its infectivity. Smaller sized sdAbs can be easily selected using microbes or the subcellular organelle display methods and can neutralize SARS-CoV2 infectivity. We also discuss issues related to their production using scalable platforms. The favorable outcome of the infection is evident in patients when the inflammatory response is adequately curtailed. Therefore, we discuss approaches to mitigate hyperinflammatory reactions initiated by SARS-CoV2 but orchestrated by immune mediators.
Collapse
Affiliation(s)
- Abhishek Dubey
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, India
| | - Surbhi Dahiya
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, India
| | - Barry T. Rouse
- Biomedical and Diagnostic Sciences, College of Veterinary Medicine, The University of Tennessee, Knoxville, TN, United States
| | - Sharvan Sehrawat
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, India
| |
Collapse
|
32
|
Narayan R, Tripathi S. Intrinsic ADE: The Dark Side of Antibody Dependent Enhancement During Dengue Infection. Front Cell Infect Microbiol 2020; 10:580096. [PMID: 33123500 PMCID: PMC7573563 DOI: 10.3389/fcimb.2020.580096] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 08/31/2020] [Indexed: 01/14/2023] Open
Abstract
Dengue fever is an Aedes mosquito-borne illness caused by any one of the four different dengue virus (DENV) serotypes (1–4) and manifests in the form of symptoms ranging from mild or asymptomatic to severe disease with vascular leakage, leading to shock, and viral hemorrhagic syndrome. Increased risk of severe disease occurs during secondary infection with a virus serotype distinct from that of prior dengue infection. This occurs by antibody dependent enhancement (ADE) of infection, wherein sub-neutralizing antibodies against the virus particles opsonize dengue virus entry via formation of immune complexes that interact with fragment crystallizable gamma receptors (FcγR) on monocytes, dendritic cells, and macrophages. The ADE phenomenon has two components: Extrinsic and Intrinsic ADE. While extrinsic ADE contributes to enhanced virus entry, intrinsic ADE results in heightened virus production by inhibition of type1 interferon and activation of interleukin-10 biosynthesis, thereby favoring a Th2 type immune response. Intrinsic ADE has greater contribution in enhancing Dengue replication as compared to extrinsic ADE. Detailed elucidation of intrinsic ADE during secondary dengue infection can increase our understanding of DENV-pathogenesis and aid in the development of host-targeting antivirals. Here we review literature focusing on intrinsic factors contributing to severe dengue pathology and suggest possible avenues for further research.
Collapse
Affiliation(s)
- Rohan Narayan
- Department of Microbiology & Cell Biology, Indian Institute of Science, Bengaluru, India.,Centre for Infectious Disease Research, Indian Institute of Science, Bengaluru, India
| | - Shashank Tripathi
- Department of Microbiology & Cell Biology, Indian Institute of Science, Bengaluru, India.,Centre for Infectious Disease Research, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
33
|
Phosphoproteomic analysis of dengue virus infected U937 cells and identification of pyruvate kinase M2 as a differentially phosphorylated phosphoprotein. Sci Rep 2020; 10:14493. [PMID: 32879337 PMCID: PMC7467932 DOI: 10.1038/s41598-020-71407-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 08/17/2020] [Indexed: 12/28/2022] Open
Abstract
Dengue virus (DENV) is an arthropod-borne Flavivirus that can cause a range of symptomatic disease in humans. There are four dengue viruses (DENV 1 to 4) and infection with one DENV only provides transient protection against a heterotypic virus. Second infections are often more severe as the disease is potentiated by antibodies from the first infection through a process known as antibody dependent enhancement (ADE) of infection. Phosphorylation is a major post-translational modification that can have marked effects on a number of processes. To date there has been little information on the phosphorylation changes induced by DENV infection. This study aimed to determine global phosphoproteome changes induced by DENV 2 in U937 cells infected under an ADE protocol. A 2-dimensional electrophoretic approach coupled with a phosphoprotein-specific dye and mass spectroscopic analysis identified 15 statistically significant differentially phosphorylated proteins upon DENV 2 infection. One protein identified as significantly differentially phosphorylated, pyruvate kinase M2 (PKM2) was validated. Treatment with a PKM2 inhibitor modestly reduced levels of infection and viral output, but no change was seen in cellular viral protein levels, suggesting that PKM2 acts on exocytic virus release. While the effect of inhibition of PKM2 was relatively modest, the results highlight the need for a greater understanding of the role of phosphoproteins in DENV infection.
Collapse
|
34
|
Harapan H, Michie A, Sasmono RT, Imrie A. Dengue: A Minireview. Viruses 2020; 12:v12080829. [PMID: 32751561 PMCID: PMC7472303 DOI: 10.3390/v12080829] [Citation(s) in RCA: 168] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 06/14/2020] [Accepted: 06/23/2020] [Indexed: 12/24/2022] Open
Abstract
Dengue, caused by infection of any of four dengue virus serotypes (DENV-1 to DENV-4), is a mosquito-borne disease of major public health concern associated with significant morbidity, mortality, and economic cost, particularly in developing countries. Dengue incidence has increased 30-fold in the last 50 years and over 50% of the world’s population, in more than 100 countries, live in areas at risk of DENV infection. We reviews DENV biology, epidemiology, transmission dynamics including circulating serotypes and genotypes, the immune response, the pathogenesis of the disease as well as updated diagnostic methods, treatments, vector control and vaccine developments.
Collapse
Affiliation(s)
- Harapan Harapan
- Medical Research Unit, School of Medicine, Universitas Syiah Kuala, Banda Aceh, Aceh 23111, Indonesia
- Department of Microbiology, School of Medicine, Universitas Syiah Kuala, Banda Aceh, Aceh 23111, Indonesia
- Tropical Disease Centre, School of Medicine, Universitas Syiah Kuala, Banda Aceh, Aceh 23111, Indonesia
- School of Biomedical Sciences, University of Western Australia, Nedlands, WA 6009, Australia;
- Correspondence: (H.H.); (A.I.); Tel.: +62-(0)-651-7551843 (H.H.)
| | - Alice Michie
- School of Biomedical Sciences, University of Western Australia, Nedlands, WA 6009, Australia;
| | - R. Tedjo Sasmono
- Eijkman Institute for Molecular Biology, Jakarta 10430, Indonesia;
| | - Allison Imrie
- School of Biomedical Sciences, University of Western Australia, Nedlands, WA 6009, Australia;
- Correspondence: (H.H.); (A.I.); Tel.: +62-(0)-651-7551843 (H.H.)
| |
Collapse
|
35
|
Darcy AW, Kanda S, Dalipanda T, Joshua C, Shimono T, Lamaningao P, Mishima N, Nishiyama T. Multiple arboviral infections during a DENV-2 outbreak in Solomon Islands. Trop Med Health 2020; 48:33. [PMID: 32435149 PMCID: PMC7225641 DOI: 10.1186/s41182-020-00217-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 04/23/2020] [Indexed: 11/15/2022] Open
Abstract
Background Solomon Islands, a country made up of tropical islands, has suffered cyclic dengue fever (DF) outbreaks in the past three decades. An outbreak of dengue-like illness (DLI) that occurred in April 2016 prompted this study, which aimed to determine the population’s immunity status and identify the arboviruses circulating in the country. Methods A household survey, involving 188 participants in two urban areas (Honiara and Gizo), and a parallel hospital-based clinical survey were conducted in April 2016. The latter was repeated in December after a surge in DLI cases. Arbovirus IgG ELISA were performed on the household blood samples to determine the prevalence of arboviruses in the community, while qPCR testing of the clinical samples was used to identify the circulating arboviruses. Dengue virus (DENV)-positive samples were further characterized by amplifying and sequencing the envelope gene. Results The overall prevalence rates of DENV, Zika virus, and chikungunya virus were 83.4%, 7.6%, and 0.9%, respectively. The qPCR positivity rates of the clinical samples collected in April 2016 were as follows: DENV 39.6%, Zika virus 16.7%, and chikungunya virus 6.3%, which increased to 74%, 48%, and 20% respectively in December 2016. The displacement of the circulating serotype-3, genotype-1, with DENV serotype 2, genotype cosmopolitan was responsible for the outbreak in 2016. Conclusions A DENV outbreak in Solomon Islands was caused by the introduction of a single serotype. The high prevalence of DENV provided transient cross-protection, which prevented the introduction of a new serotype from the hyperendemic region for at least 3 years. The severe outcomes seen in the recent outbreak probably resulted from changes in the causative viruses and the effects of population immunity and changes in the outbreak pattern. Solomon Islands needs to step up surveillance to include molecular tools, increase regional communication, and perform timely interventions.
Collapse
|
36
|
Rao GK, Prell RA, Laing ST, Burleson SCM, Nguyen A, McBride JM, Zhang C, Sheinson D, Halpern WG. In Vivo Assessment of Antibody-Dependent Enhancement of Influenza B Infection. Toxicol Sci 2020; 169:409-421. [PMID: 30796434 DOI: 10.1093/toxsci/kfz053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
A theoretical safety concern proposed in the influenza literature is that therapeutic antiviral antibodies could have the potential for antibody-dependent enhancement (ADE) of infection and disease. ADE may occur when virus-specific antibodies at subtherapeutic, nonneutralizing concentrations facilitate virus uptake and, in some cases, enhance replication, which can lead to an exacerbation of virus-mediated disease. Alternatively, ADE may occur due to antibody-dependent complement activation exacerbating virus-mediated disease in the absence of increased replication. As a result of this theoretical safety concern, safety assessment of anti-influenza antibodies may include an in vivo evaluation of ADE of infection and/or disease. These studies were conducted to investigate the potential of MHAB5553A, a broadly specific, neutralizing therapeutic anti-influenza B antibody, to elicit ADE of infection and disease in mouse models of influenza B infection. In parallel studies, female DBA/2J mice were infected with either influenza B/Victoria/504/2000 or influenza B/Brisbane/60/2008 representing distinct lineages. Assessment of ADE was based on an integration of results from multiple endpoints, including infectious lung viral titers and genomes, body weight, mortality, lung weight, and histopathology. In these studies, the high dose of 15 mg/kg MHAB5553A resulted in substantial attenuation of influenza pneumonia, with more modest effects at 1.5 mg/kg; whereas MHAB5553A treatment at 0.15 or 0.015 mg/kg was generally comparable to vehicle-treated controls. Our results demonstrate that MHAB5553A across a broad range of doses did not enhance primary influenza B infection or disease in this model, and represent a nonclinical de-risking of the ADE potential with this antibody.
Collapse
Affiliation(s)
- Gautham K Rao
- Department of Safety Assessment, Genentech, Inc., South San Francisco, California 94080
| | - Rodney A Prell
- Department of Safety Assessment, Genentech, Inc., South San Francisco, California 94080
| | - Steven T Laing
- Department of Safety Assessment, Genentech, Inc., South San Francisco, California 94080
| | | | | | | | | | - Daniel Sheinson
- Biostatistics, Genentech, Inc., South San Francisco, California 94080
| | - Wendy G Halpern
- Department of Safety Assessment, Genentech, Inc., South San Francisco, California 94080
| |
Collapse
|
37
|
Tsai CL, Sun DS, Su MT, Lien TS, Chen YH, Lin CY, Huang CH, King CC, Li CR, Chen TH, Chiu YH, Lu CC, Chang HH. Suppressed humoral immunity is associated with dengue nonstructural protein NS1-elicited anti-death receptor antibody fractions in mice. Sci Rep 2020; 10:6294. [PMID: 32286343 PMCID: PMC7156414 DOI: 10.1038/s41598-020-62958-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 03/12/2020] [Indexed: 02/08/2023] Open
Abstract
Dengue virus (DENV) infections may cause life-threatening dengue hemorrhagic fever (DHF). Suppressed protective immunity was shown in these patients. Although several hypotheses have been formulated, the mechanism of DENV-induced immunosuppression remains unclear. Previously, we found that cross-reactive antibodies against tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) receptor 1 (death receptor 4 [DR4]) were elicited in DHF patients, and that anti-DR4 autoantibody fractions were elicited by nonstructural protein 1 (NS1) immunizations in experimental mice. In this study, we found that anti-DR4 antibodies could suppress B lymphocyte function in vitro and in vivo. Treatment with the anti-DR4 immunoglobulin (Ig) induced caspase-dependent cell death in immortalized B lymphocyte Raji cells in vitro. Anti-DR4 Igs elicited by NS1 and DR4 immunizations markedly suppressed mouse spleen transitional T2 B (IgM+IgD+), bone marrow pre-pro-B (B220+CD43+), pre-B (B220+CD43-), and mature B cell (B220+IgD+) subsets in mice. Furthermore, functional analysis revealed that the pre-elicitation of anti-NS1 and anti-DR4 Ig titers suppressed subsequently neutralizing antibody production by immunization with DENV envelop protein. Our data suggest that the elicitation of anti-DR4 titers through DENV NS1 immunization plays a suppressive role in humoral immunity in mice.
Collapse
Affiliation(s)
- Chung-Lin Tsai
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien, Taiwan
| | - Der-Shan Sun
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien, Taiwan
| | - Mei-Tzu Su
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien, Taiwan
- Department of Experimental Immunology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Te-Sheng Lien
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien, Taiwan
| | - Yen-Hsu Chen
- Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan
- School of Medicine, Graduate Institute of Medicine, Sepsis Research Center, Center of Tropical Medicine and Infectious diseases, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Biological Science and Technology, College of Biological Science and Technology, National Chiao Tung University, HsinChu, Taiwan
| | - Chun-Yu Lin
- School of Medicine, Graduate Institute of Medicine, Sepsis Research Center, Center of Tropical Medicine and Infectious diseases, Kaohsiung Medical University, Kaohsiung, Taiwan
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chung-Hao Huang
- School of Medicine, Graduate Institute of Medicine, Sepsis Research Center, Center of Tropical Medicine and Infectious diseases, Kaohsiung Medical University, Kaohsiung, Taiwan
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chwan-Chuen King
- Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei, Taiwan
| | - Chen-Ru Li
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien, Taiwan
| | - Tai-Hung Chen
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien, Taiwan
| | - Yu-Hsiang Chiu
- Division of Rheumatology/Immunology and Allergy, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chun-Chi Lu
- Division of Rheumatology/Immunology and Allergy, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Hsin-Hou Chang
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien, Taiwan.
| |
Collapse
|
38
|
Production and immunogenicity of Fubc subunit protein redesigned from DENV envelope protein. Appl Microbiol Biotechnol 2020; 104:4333-4344. [PMID: 32232529 PMCID: PMC7223326 DOI: 10.1007/s00253-020-10541-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 02/25/2020] [Accepted: 03/11/2020] [Indexed: 12/11/2022]
Abstract
Dengue virus (DENV) is a vector-borne human pathogen that usually causes dengue fever; however, sometime it leads to deadly complications such as dengue with warning signs (DWS+) and severe dengue (SD). Several studies have shown that fusion (Fu) and bc loop of DENV envelope domain II are highly conserved and consist some of the most dominant antigenic epitopes. Therefore, in this study, Fu and bc loops were joined together to develop a short recombinant protein as an alternative of whole DENV envelope protein, and its immunogenic potential as fusion peptide was estimated. For de novo designing of the antigen, Fu and bc peptides were linked with an optimised linker so that the three dimensional conformation was maintained as it is in DENV envelope protein. The redesigned Fubc protein was expressed in E. coli and purified. Subsequently, structural integrity of the purified protein was verified by CD spectroscopy. To characterise immune responses against recombinant Fubc protein, BALB/c mice were subcutaneously injected with emulsified antigen preparation. It was observed by ELISA that Fubc fusion protein elicited higher serum IgG antibody response either in the presence or in absence of Freund’s adjuvant in comparison to the immune response of Fu and bc peptides separately. Furthermore, the binding of Fubc protein with mice antisera was validated by SPR analysis. These results suggest that Fu and bc epitope-based recombinant fusion protein could be a potential candidate towards the development of the effective subunit vaccine against DENV.
Collapse
|
39
|
Rana VS, Popli S, Saurav GK, Yadav K, Kumar A, Sunil S, Kumar N, Singh OP, Natarajan K, Rajagopal R. Aedes aegypti lachesin protein binds to the domain III of envelop protein of Dengue virus-2 and inhibits viral replication. Cell Microbiol 2020; 22:e13200. [PMID: 32141690 DOI: 10.1111/cmi.13200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 01/31/2020] [Accepted: 02/16/2020] [Indexed: 12/21/2022]
Abstract
Dengue virus (DENV) comprises of four serotypes (DENV-1 to -4) and is medically one of the most important arboviruses (arthropod-borne virus). DENV infection is a major human health burden and is transmitted between humans by the insect vector, Aedes aegypti. Ae. aegypti ingests DENV while feeding on infected humans, which traverses through its gut, haemolymph and salivary glands of the mosquito before being injected into a healthy human. During this process of transmission, DENV must interact with many proteins of the insect vector, which are important for its successful transmission. Our study focused on the identification and characterisation of interacting protein partners in Ae. aegypti to DENV. Since domain III (DIII) of envelope protein (E) is exposed on the virion surface and is involved in virus entry into various cells, we performed phage display library screening against domain III of the envelope protein (EDIII) of DENV-2. A peptide sequence showing similarity to lachesin protein was found interacting with EDIII. The lachesin protein was cloned, heterologously expressed, purified and used for in vitro interaction studies. Lachesin protein interacted with EDIII and also with DENV. Further, lachesin protein was localised in neuronal cells of different organs of Ae. aegypti by confocal microscopy. Blocking of lachesin protein in Ae. aegypti with anti-lachesin antibody resulted in a significant reduction in DENV replication.
Collapse
Affiliation(s)
- Vipin S Rana
- Gut Biology Laboratory, Department of Zoology, University of Delhi, Delhi, India.,Department of Veterinary Medicine, University of Maryland, College Park, Maryland, USA
| | - Sonam Popli
- Gut Biology Laboratory, Department of Zoology, University of Delhi, Delhi, India.,Department of Medical Microbiology and Immunology, College of Medicine, University of Toledo, Toledo, Ohio, USA
| | - Gunjan K Saurav
- Gut Biology Laboratory, Department of Zoology, University of Delhi, Delhi, India.,Department of Zoology, Munshi Lal Arya College, Purnea University, Purnia, Bihar, India
| | - Karuna Yadav
- Gut Biology Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | - Ankit Kumar
- Vector Borne Diseases Group, International Centre for Genetic Engineering and Biotechnology, Delhi, India
| | - Sujatha Sunil
- Vector Borne Diseases Group, International Centre for Genetic Engineering and Biotechnology, Delhi, India
| | - Narendra Kumar
- Department of Zoology, Shaheed Mangal Pandey Government Girls Post Graduate College, Meerut, Uttar Pradesh, India
| | - Om P Singh
- National Institute of Malaria Research, Delhi, India
| | | | - Raman Rajagopal
- Gut Biology Laboratory, Department of Zoology, University of Delhi, Delhi, India
| |
Collapse
|
40
|
Abstract
Evolution of an individual within another individual is known as within-host dynamics (WHD). The most common modeling technique to study WHD involves ordinary differential equations (ODEs). In the field of biology, models of this kind assume, for example, that both the number of viruses and the number of mouse cells susceptible to being infected change according to their interaction as stated in the ODE model. However, viruses can undergo mutations and, consequently, evolve inside the mouse, whereas the mouse, in turn, displays evolutionary mechanisms through its immune system (e.g., clonal selection), defending against the invading virus. In this work, as the main novelty, we propose an evolutionary WHD model simulating the coexistence of an evolving invader within a host. In addition, instead of using ODEs we developed an alternative methodology consisting of the hybridization of a genetic algorithm with an artificial immune system. Aside from the model, interest in biology, and its potential clinical use, the proposed WHD model may be useful in those cases where the invader exhibits evolutionary changes, for instance, in the design of anti-virus software, intrusion detection algorithms in a corporation’s computer systems, etc. The model successfully simulates two intruder detection paradigms (i.e., humoral detection, danger detection) in which the intruder represents an evolving invader or guest (e.g., virus, computer program,) that infects a host (e.g., mouse, computer memory). The obtained results open up the possibility of simulating environments in which two entities (guest versus host) compete evolutionarily with each other when occupying the same space (e.g., organ cells, computer memory, network).
Collapse
|
41
|
Lv J, Yang L, Qu S, Meng R, Li Q, Liu H, Wang X, Zhang D. Detection of Neutralizing Antibodies to Tembusu Virus: Implications for Infection and Immunity. Front Vet Sci 2019; 6:442. [PMID: 31921903 PMCID: PMC6914806 DOI: 10.3389/fvets.2019.00442] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 11/26/2019] [Indexed: 11/14/2022] Open
Abstract
Neutralizing antibodies are the key mediators of protective immune response to flaviviruses after both infection and vaccination. Plaque reduction neutralization test (PRNT) is considered the “gold standard” for measurement of the immunity. To date, little is known regarding neutralizing antibody response to Tembusu virus (TMUV), a novel flavivirus emerging in ducks in 2010. Here, we developed a PRNT for detection of TMUV neutralizing antibodies. Following optimization and validation, the PRNT was applied to test serum samples from different flocks of ducks. Using sera prepared in experimental conditions, the levels of 50% end point titer (neutralizing dose, ND50) generated from positive sera (5,012–79,433) were significantly higher than those from mock-infected sera (10 to 126), indicating that the test can be used in the detection of TMUV-specific neutralizing antibodies. Dose-dependent efficacy test of a cell-derived 180th passage of a plaque-purified virus of the PS TMUV isolate (PS180) in combined with immunization-challenge experiments revealed that ND50 titer of ~1,258 is the minimum capable of providing adequate protection against challenge with virulent TMUV. In the investigation of serum samples collected from three flocks infected by TMUV and four flocks vaccinated with a licensed attenuated vaccine (the 120th passage virus), ND50 titers peaked at 1 week after both disease onset (7,943–125,893) and vaccination (3,612–79,432), and high levels of ND50 titer were detected in sera collected at 15 weeks after disease onset (5,012–63,095) and 17 weeks after vaccination (3,981–25,119). Together these findings demonstrated that spontaneous and experimental infections by TMUV and vaccination with the licensed TMUV attenuated vaccine elicit high, long-lasting neutralizing antibodies. The highest ND50 titer of neutralizing antibodies elicited by PS180 was determined to be 3,162, suggesting that attenuation of TMUV by more passages has a dramatic impact on the neutralizing antibody response of the virus.
Collapse
Affiliation(s)
- Junfeng Lv
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Lixin Yang
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Shenghua Qu
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Runze Meng
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Qingxiangzi Li
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Huicong Liu
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiaoyan Wang
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Dabing Zhang
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
42
|
Abstract
Arthropod-borne viral diseases caused by dengue virus (DENV) are major re-emerging public health problem worldwide. In spite of intense research, DENV pathogenesis is not fully understood and remains enigmatic; however, current evidence suggests that dengue progression is associated with an inflammatory response, mainly in patients suffering from a second DENV infection. Monocytes are one of the main target cells of DENV infection and play an important role in pathogenesis since they are known to produce several inflammatory cytokines that can lead to endothelial dysfunction and therefore vascular leak. In addition, monocytes play an important role in antibody dependent enhancement, infection with consequences in viral load and immune response. Despite the physiological functions of monocytes in immune response, their life span in the bloodstream is very short, and activation of monocytes by DENV infection can trigger different types of cell death. For example, DENV can induce apoptosis in monocytes related with the production of Tumor necrosis factor alpha (TNF-α). Additionally, recent studies have shown that DENV-infected monocytes also exhibit a cell death process mediated by caspase-1 activation together with IL-1 production, referred to as pyroptosis. Taken together, the aforementioned studies strongly depict that multiple cell death pathways may be occurring in monocytes upon DENV-2 infection. This review provides insight into mechanisms of DENV-induced death of both monocytes and other cell types for a better understanding of this process. Further knowledge in cell death induced by DENV will help in the developing novel strategies to prevent disease progression.
Collapse
|
43
|
Abstract
Dengue is caused by infection with any one of four dengue viruses (DENV); the risk of severe disease appears to be enhanced by the cross-reactive or subneutralizing levels of antibody from a prior DENV infection. These antibodies opsonize DENV entry through the activating Fc gamma receptors (FcγR), instead of infection through canonical receptor-mediated endocytosis, to result in higher levels of DENV replication. However, whether the enhanced replication is solely due to more efficient FcγR-mediated DENV entry or is also through FcγR-mediated alteration of the host transcriptome response to favor DENV infection remains unclear. Indeed, more efficient viral entry through activation of the FcγR can result in an increased viral antigenic load within target cells and confound direct comparisons of the host transcriptome response under antibody-dependent and antibody-independent conditions. Herein, we show that, despite controlling for the viral antigenic load in primary monocytes, the antibody-dependent and non-antibody-dependent routes of DENV entry induce transcriptome responses that are remarkably different. Notably, antibody-dependent DENV entry upregulated DENV host dependency factors associated with RNA splicing, mitochondrial respiratory chain complexes, and vesicle trafficking. Additionally, supporting findings from other studies, antibody-dependent DENV entry impeded the downregulation of ribosomal genes caused by canonical receptor-mediated endocytosis to increase viral translation. Collectively, our findings support the notion that antibody-dependent DENV entry alters host responses that support the viral life cycle and that host responses to DENV need to be defined in the context of its entry pathway.IMPORTANCE Dengue virus is the most prevalent mosquito-borne viral infection globally, resulting in variable manifestations ranging from asymptomatic viremia to life-threatening shock and multiorgan failure. Previous studies have indicated that the risk of severe dengue in humans can be increased by a specific range of preexisting anti-dengue virus antibody titers, a phenomenon termed antibody-dependent enhancement. There is hence a need to understand how antibodies augment dengue virus infection compared to the alternative canonical receptor-mediated viral entry route. Herein, we show that, besides facilitating viral uptake, antibody-mediated entry increases the expression of early host dependency factors to promote viral infection; these factors include RNA splicing, mitochondrial respiratory chain complexes, vesicle trafficking, and ribosomal genes. These findings will enhance our understanding of how differences in entry pathways can affect host responses and offer opportunities to design therapeutics that can specifically inhibit antibody-dependent enhancement of dengue virus infection.
Collapse
|
44
|
Cáceres Munar BA, Castellanos Parra JE, Rodríguez Panduro MH. Amplificación de la infección dependiente de anticuerpos en la inmunopatogénesis del dengue grave, implicaciones para el desarrollo y uso de las vacunas. ACTA BIOLÓGICA COLOMBIANA 2019. [DOI: 10.15446/abc.v24n3.79410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Actualmente, la infección por el virus de dengue (DENV) es uno de los problemas más importantes de salud pública en países tropicales y endémicos como Colombia, pues en tanto puede ser producida por cuatro diferentes serotipos virales, durante las infecciones secundarias se presentan frecuentemente cuadros más severos que incluso pueden llevar a desenlaces fatales. El centro de la fisiopatología del dengue grave es el daño producido al endotelio, que se traduce en un aumento en la permeabilidad vascular que se evidencia como fuga plasmática, descontrol en la coagulación y daño de órganos. Aunque hay varias teorías que explican la enfermedad severa, el fenómeno denominado amplificación de la infección dependiente de anticuerpos (antibody dependent enhancement, ADE) es el más conocido. En este, se postula que el virus causante de una infección secundaria es reconocido, pero no neutralizado, por anticuerpos generados en la infección previa e internalizado en las células susceptibles usando receptores Fc-gamma, lo cual aumenta la replicación viral e induce modificaciones en la respuesta inmune celular que contribuyen al desarrollo de dengue grave. En este escrito, se realiza una revisión de los hallazgos sobre los mecanismos involucrados en el fenómeno de ADE y cómo pueden contribuir a la progresión hacia dengue grave, describiendo los conceptos de ADE extrínseco e intrínseco, además de como este fenómeno debe ser tenido en cuenta para el diseño, desarrollo e implementación de una vacuna para dengue, en tanto es capaz de afectar su eficacia y seguridad.
Collapse
|
45
|
Ahammad F, Tengku Abd Rashid TR, Mohamed M, Tanbin S, Ahmad Fuad FA. Contemporary Strategies and Current Trends in Designing Antiviral Drugs against Dengue Fever via Targeting Host-Based Approaches. Microorganisms 2019; 7:E296. [PMID: 31466307 PMCID: PMC6780377 DOI: 10.3390/microorganisms7090296] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/07/2019] [Accepted: 08/07/2019] [Indexed: 02/06/2023] Open
Abstract
Dengue virus (DENV) is an arboviral human pathogen transmitted through mosquito bite that infects an estimated ~400 million humans (~5% of the global population) annually. To date, no specific therapeutics have been developed that can prevent or treat infections resulting from this pathogen. DENV utilizes numerous host molecules and factors for transcribing the single-stranded ~11 kb positive-sense RNA genome. For example, the glycosylation machinery of the host is required for viral particles to assemble in the endoplasmic reticulum. Since a variety of host factors seem to be utilized by the pathogens, targeting these factors may result in DENV inhibitors, and will play an important role in attenuating the rapid emergence of other flaviviruses. Many experimental studies have yielded findings indicating that host factors facilitate infection, indicating that the focus should be given to targeting the processes contributing to pathogenesis along with many other immune responses. Here, we provide an extensive literature review in order to elucidate the progress made in the development of host-based approaches for DENV viral infections, focusing on host cellular mechanisms and factors responsible for viral replication, aiming to aid the potential development of host-dependent antiviral therapeutics.
Collapse
Affiliation(s)
- Foysal Ahammad
- Department of Biotechnology Engineering, International Islamic University Malaysia, Kuala Lumpur 50728, Malaysia
| | | | - Maizan Mohamed
- Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Locked Bag 36, Pengkalan Chepa, Kota Bharu 16100, Kelantan, Malaysia
| | - Suriyea Tanbin
- Department of Biotechnology Engineering, International Islamic University Malaysia, Kuala Lumpur 50728, Malaysia
| | - Fazia Adyani Ahmad Fuad
- Department of Biotechnology Engineering, International Islamic University Malaysia, Kuala Lumpur 50728, Malaysia.
| |
Collapse
|
46
|
Japanese encephalitis virus prM-E antigen immunization conferred protection against challenge by four different serotypes of Dengue viruses in mice. Appl Microbiol Biotechnol 2019; 103:4977-4986. [DOI: 10.1007/s00253-019-09798-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/19/2019] [Accepted: 03/25/2019] [Indexed: 10/26/2022]
|
47
|
Abstract
Effective vaccination is based on three critical aspects of the B-cell response towards infectious agents: (i) that B-cells can generate specific antibodies towards a vast molecular diversity of antigens; proteins, sugars, DNA and lipids. There seems to be no limit to the ability to raise antibodies to everything. (ii) once stimulated, B-cells can perfect their antibodies through affinity maturation to complement every nook and cranny of the epitope and (iii) that the pathogen remains genetically stable and does not change to any great extent. Thus, antibodies produced against the vaccine and subsequent boosts recognize the viral virulent field isolates in future encounters and effectively knock them out. However, some vaccine targets, such as flu virus and HIV, are extremely genetically dynamic. The rapid genetic drift of these viruses renders them moving targets which assist in their ability to evade immune surveillance. Here we postulate that in the case of hyper-variable pathogens the B-cell response actually might be “too good”. We propose that restricting B-cell activities may prove effective in counteracting the genetic diversity of variant viruses such as flu and HIV. We suggest two levels of “B-cell restriction”: (i) to focus the B-cell response exclusively towards neutralizing epitopes by creating epitope-based immunogens; (ii) to restrict affinity maturation of B-cells to prevent the production of overly optimized exquisitely specific antibodies. Together, these “B-cell restrictions” provide a new modality for vaccine design.
Collapse
Affiliation(s)
- Jonathan M Gershoni
- School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University , Ramat Aviv , Tel Aviv , Israel
| |
Collapse
|
48
|
Khomkhum N, Leetachewa S, Pawestri AR, Moonsom S. Host-antibody inductivity of virulent Entamoeba histolytica and non-virulent Entamoeba moshkovskii in a mouse model. Parasit Vectors 2019; 12:101. [PMID: 30867040 PMCID: PMC6416977 DOI: 10.1186/s13071-019-3363-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 02/26/2019] [Indexed: 12/04/2022] Open
Abstract
Background Despite similarities in morphology, gene and protein profiles, Entamoeba histolytica and E. moshkovskii show profound differences in pathogenicity. Entamoeba histolytica infection might result in amoebic dysentery and liver abscess, while E. moshkovskii causes only mild diarrhea. Extensive studies focus on roles of host immune responses to the pathogenic E. histolytica; however, evidence for E. moshkovskii remains scarce. Methods To study differences in host-antibody response profiles between E. histolytica and E. moshkovskii, mice were immunized intraperitoneally with different sets of Entamoeba trophozoites as single species, mixed species and combinations. Results Mice prime-immunized with E. histolytica and E. moshkovskii combination, followed by individual species, exhibited higher IgG level than the single species immunization. Mice immunized with E. moshkovskii induced significantly higher levels and long-lasting antibody responses than those challenged with E. histolytica alone. Interestingly, E. histolytica-specific anti-sera promoted the cytopathic ability of E. histolytica toward Chinese hamster ovarian (CHO) cells, but showed no effect on cell adhesion. There was no significant effect of immunized sera on cytopathic activity and adhesion of E. moshkovskii toward both CHO and human epithelial human colonic (Caco-2) cell lines. Monoclonal-antibody (mAb) characterization demonstrated that 89% of E. histolytica-specific mAbs produced from mice targeted cytoplasmic and cytoskeletal proteins, whereas 73% of E. moshkovskii-specific mAbs targeted plasma membrane proteins. Conclusions The present findings suggest that infection with mixed Entamoeba species or E. moshkovskii effectively induces an antibody response in mice. It also sheds light on roles of host antibody response in the pathogenic difference of E. histolytica and E. moshkovskii trophozoites, and cell surface protein modifications of the amoebic parasites to escape from host immune system.
Collapse
Affiliation(s)
- Narumol Khomkhum
- Department of Protozoology, Faculty of Tropical Medicine, Mahidol University, Ratchawithi, Bangkok, 10400, Thailand
| | - Somphob Leetachewa
- Center for Vaccine Development, Institute of Molecular Biosciences, Mahidol University, Nakhorn-Pathom, 73170, Thailand
| | - Aulia Rahmi Pawestri
- Department of Protozoology, Faculty of Tropical Medicine, Mahidol University, Ratchawithi, Bangkok, 10400, Thailand
| | - Saengduen Moonsom
- Department of Protozoology, Faculty of Tropical Medicine, Mahidol University, Ratchawithi, Bangkok, 10400, Thailand.
| |
Collapse
|
49
|
Smatti MK, Al Thani AA, Yassine HM. Viral-Induced Enhanced Disease Illness. Front Microbiol 2018; 9:2991. [PMID: 30568643 PMCID: PMC6290032 DOI: 10.3389/fmicb.2018.02991] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 11/19/2018] [Indexed: 12/24/2022] Open
Abstract
Understanding immune responses to viral infections is crucial to progress in the quest for effective infection prevention and control. The host immunity involves various mechanisms to combat viral infections. Under certain circumstances, a viral infection or vaccination may result in a subverted immune system, which may lead to an exacerbated illness. Clinical evidence of enhanced illness by preexisting antibodies from vaccination, infection or maternal passive immunity is available for several viruses and is presumptively proposed for other viruses. Multiple mechanisms have been proposed to explain this phenomenon. It has been confirmed that certain infection- and/or vaccine-induced immunity could exacerbate viral infectivity in Fc receptor- or complement bearing cells- mediated mechanisms. Considering that antibody dependent enhancement (ADE) is a major obstacle in vaccine development, there are continues efforts to understand the underlying mechanisms through identification of the epitopes and antibodies responsible for disease enhancement or protection. This review discusses the recent findings on virally induced ADE, and highlights the potential mechanisms leading to this condition.
Collapse
Affiliation(s)
- Maria K Smatti
- Biomedical Research Center, Qatar University, Doha, Qatar
| | | | - Hadi M Yassine
- Biomedical Research Center, Qatar University, Doha, Qatar
| |
Collapse
|
50
|
Pattanapanyasat K, Khowawisetsut L, Chuansumrit A, Chokephaibulkit K, Tangnararatchakit K, Apiwattanakul N, Techasaensiri C, Thitilertdecha P, Sae-Ung T, Onlamoon N. B cell subset alteration and the expression of tissue homing molecules in dengue infected patients. J Biomed Sci 2018; 25:64. [PMID: 30149800 PMCID: PMC6112127 DOI: 10.1186/s12929-018-0467-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 08/21/2018] [Indexed: 12/14/2022] Open
Abstract
Background B cells play an essential role during dengue viral infection. While a major expansion of antibody secreting cells (ASCs) was observed, the importance of these increased frequencies of ASCs remains unclear. The alteration of B cell subsets may result from the expression of tissue specific homing molecules leading to their mobilization and distribution to different target organs during acute dengue viral infection. Methods In this study, whole blood samples were obtained from thirty pediatric dengue-infected patients and ten healthy children and then stained with fluorochrome-conjugated monoclonal antibodies against CD3, CD14, CD19, CD20, CD21, CD27, CD38, CD45, CD138 and homing molecules of interest before analyzed by polychromatic flow cytometry. B cell subsets were characterized throughout acute infection period. Results Data shows that there were no detectable differences in frequencies of resting, activated and tissue memory cells, whereas the frequency of ASCs was significantly increased and associated with the lower frequency of naïve cells. These results were found from patients with both dengue fever and dengue hemorrhagic fever, suggesting that such change or alteration of B cells was not associated with disease severity. Moreover, several homing molecules (e.g., CXCR3 and CCR2) were found in ASCs, indicating that ASCs may distribute to inflamed tissues and various organs. Conclusions Findings from this study provide insight into B cell subset distribution. Furthermore, organ mobilization according to homing molecule expression on different B cell subsets during the course of dengue viral infection also suggests they are distributed to inflamed tissues and various organs.
Collapse
Affiliation(s)
- Kovit Pattanapanyasat
- Biomedical Research Incubator Unit, Research Group and Research Network Division, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Ladawan Khowawisetsut
- Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Ampaiwan Chuansumrit
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Kulkanya Chokephaibulkit
- Department of Pediatrics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Kanchana Tangnararatchakit
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Nopporn Apiwattanakul
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Chonnamet Techasaensiri
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Premrutai Thitilertdecha
- Biomedical Research Incubator Unit, Research Group and Research Network Division, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.,Research group in Immunobiology and Therapeutic Sciences, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand
| | - Tipaporn Sae-Ung
- Master of Science program in Immunology, Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Nattawat Onlamoon
- Biomedical Research Incubator Unit, Research Group and Research Network Division, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand. .,Research group in Immunobiology and Therapeutic Sciences, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand.
| |
Collapse
|