1
|
Nierich A, Bihariesingh R, Bansie R. HemoClear: A Practical and Cost-Effective Alternative to Conventional Convalescent Plasma Retrieval Methods. Curr Top Microbiol Immunol 2024. [PMID: 39126485 DOI: 10.1007/82_2024_276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2024]
Abstract
Convalescent plasma has increasingly been used to treat various viral infections and confer post-exposure prophylactic protection during the last decade and has demonstrated favorable clinical outcomes in patients infected with Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) during the recent COVID-19 pandemic. The pandemic has highlighted the need for cost-effective, accessible, and easy-to-use alternatives to conventional blood plasmapheresis techniques, allowing hospitals to become more self-sufficient in harvesting and transfusing donor plasma into recipients in a single setting. To this end, the use of a membrane-based bedside plasmapheresis device (HemoClear) was evaluated in an open-label, non-randomized prospective trial in Suriname in 2021, demonstrating its practicality and efficacy in a low-to middle-income country. This paper will review the use of this method and its potential to expedite the process of obtaining convalescent plasma, especially during pandemics and in resource-constrained settings.
Collapse
Affiliation(s)
- Arno Nierich
- Department of Anesthesiology, Academic Hospital Paramaribo, Paramaribo, Suriname.
- Chief Medical Officer Hemoclear, Zwolle, The Netherlands.
| | - Rosita Bihariesingh
- Department of Anesthesiology & Intensive Care, Academic Hospital Paramaribo, Paramaribo, Suriname
| | - Rakesh Bansie
- Department of Anesthesiology & Internal Medicine, Academic Hospital Paramaribo, Paramaribo, Suriname
| |
Collapse
|
2
|
de Almeida DV, Cezar PA, Fernandes TFB, Schwarz MGA, Mendonça-Lima L, Giacoia-Gripp CBW, Côrtes FH, Lindenmeyer Guimarães M, Pilotto JH, De Sá NBR, Cazote ADS, Gomes LR, Quintana MDSB, Ribeiro-Alves M, Coelho LE, Geraldo KM, Ribeiro MPD, Cardoso SW, Grinsztejn B, Veloso VG, Morgado MG. The impact of early anti-SARS-CoV-2 antibody production on the length of hospitalization stay among COVID-19 patients. Microbiol Spectr 2023; 11:e0095923. [PMID: 37811977 PMCID: PMC10715214 DOI: 10.1128/spectrum.00959-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 08/23/2023] [Indexed: 10/10/2023] Open
Abstract
IMPORTANCE The study provides valuable insights into the sociodemographic characteristics, clinical outcomes, and humoral immune response of those affected by the virus that has devastated every field of human life since 2019; the COVID-19 patients. Firstly, the association among clinical manifestations, comorbidities, and the production of neutralizing antibodies (Nabs) against SARS-CoV-2 is explored. Secondly, varying levels of Nabs among patients are revealed, and a significant correlation between the presence of Nabs and a shorter duration of hospitalization is identified, which highlights the potential role of Nabs in predicting clinical outcomes. Lastly, a follow-up conducted 7 months later demonstrates the progression and persistence of Nabs production in recovered unvaccinated individuals. The study contributes essential knowledge regarding the characteristics of the study population, the early humoral immune response, and the dynamics of Nabs production over time. These findings have significant implications for understanding the immune response to COVID-19 and informing clinical management approaches.
Collapse
Affiliation(s)
- Dalziza Victalina de Almeida
- Laboratório de Aids e Imunologia Molecular, Instituto Oswaldo Cruz, FUNDAÇÃO OSWALDO CRUZ, Rio de Janeiro, Brazil
| | - Priscila Alves Cezar
- Laboratório de Aids e Imunologia Molecular, Instituto Oswaldo Cruz, FUNDAÇÃO OSWALDO CRUZ, Rio de Janeiro, Brazil
| | | | - Marcos Gustavo Araujo Schwarz
- Laboratório de Genômica Funcional e Bioinformática, Instituto Oswaldo Cruz, FUNDAÇÃO OSWALDO CRUZ, Rio de Janeiro, Brazil
| | - Leila Mendonça-Lima
- Laboratório de Genômica Funcional e Bioinformática, Instituto Oswaldo Cruz, FUNDAÇÃO OSWALDO CRUZ, Rio de Janeiro, Brazil
| | | | - Fernanda Heloise Côrtes
- Laboratório de Aids e Imunologia Molecular, Instituto Oswaldo Cruz, FUNDAÇÃO OSWALDO CRUZ, Rio de Janeiro, Brazil
| | - Monick Lindenmeyer Guimarães
- Laboratório de Aids e Imunologia Molecular, Instituto Oswaldo Cruz, FUNDAÇÃO OSWALDO CRUZ, Rio de Janeiro, Brazil
| | - Jose Henrique Pilotto
- Laboratório de Aids e Imunologia Molecular, Instituto Oswaldo Cruz, FUNDAÇÃO OSWALDO CRUZ, Rio de Janeiro, Brazil
| | - Nathalia Beatriz Ramos De Sá
- Laboratório de Aids e Imunologia Molecular, Instituto Oswaldo Cruz, FUNDAÇÃO OSWALDO CRUZ, Rio de Janeiro, Brazil
| | - Andressa da Silva Cazote
- Laboratório de Aids e Imunologia Molecular, Instituto Oswaldo Cruz, FUNDAÇÃO OSWALDO CRUZ, Rio de Janeiro, Brazil
| | - Larissa Rodrigues Gomes
- Centro de Desenvolvimento Tecnológico em Saúde (CDTS)/Instituto Nacional de Ciência e Tecnologia de Inovação em Doenças Negligenciadas da População (INCT-IDPN), FUNDAÇÃO OSWALDO CRUZ, Rio de Janeiro, Brazil
| | | | - Marcelo Ribeiro-Alves
- Instituto Nacional de Infectologia Evandro Chagas, FUNDAÇÃO OSWALDO CRUZ, Rio de Janeiro, Brazil
| | - Lara Esteves Coelho
- Instituto Nacional de Infectologia Evandro Chagas, FUNDAÇÃO OSWALDO CRUZ, Rio de Janeiro, Brazil
| | - Kim Mattos Geraldo
- Instituto Nacional de Infectologia Evandro Chagas, FUNDAÇÃO OSWALDO CRUZ, Rio de Janeiro, Brazil
| | - Maria Pia Diniz Ribeiro
- Instituto Nacional de Infectologia Evandro Chagas, FUNDAÇÃO OSWALDO CRUZ, Rio de Janeiro, Brazil
| | - Sandra Wagner Cardoso
- Instituto Nacional de Infectologia Evandro Chagas, FUNDAÇÃO OSWALDO CRUZ, Rio de Janeiro, Brazil
| | - Beatriz Grinsztejn
- Instituto Nacional de Infectologia Evandro Chagas, FUNDAÇÃO OSWALDO CRUZ, Rio de Janeiro, Brazil
| | - Valdiléa G Veloso
- Instituto Nacional de Infectologia Evandro Chagas, FUNDAÇÃO OSWALDO CRUZ, Rio de Janeiro, Brazil
| | - Mariza Gonçalves Morgado
- Laboratório de Aids e Imunologia Molecular, Instituto Oswaldo Cruz, FUNDAÇÃO OSWALDO CRUZ, Rio de Janeiro, Brazil
| |
Collapse
|
3
|
Van Denakker TA, Al-Riyami AZ, Feghali R, Gammon R, So-Osman C, Crowe EP, Goel R, Rai H, Tobian AAR, Bloch EM. Managing blood supplies during natural disasters, humanitarian emergencies, and pandemics: lessons learned from COVID-19. Expert Rev Hematol 2023; 16:501-514. [PMID: 37129864 PMCID: PMC10330287 DOI: 10.1080/17474086.2023.2209716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 04/28/2023] [Indexed: 05/03/2023]
Abstract
INTRODUCTION The COVID-19 pandemic has resulted in a historic public health crisis with widespread social and economic ramifications. The pandemic has also affected the blood supply, resulting in unprecedented and sustained blood shortages. AREAS COVERED This review describes the challenges of maintaining a safe and sufficient blood supply in the wake of natural disasters, humanitarian emergencies, and pandemics. The challenges, which are accentuated in low- and high-income countries, span the impact on human capacity (affecting blood donors and blood collections personnel alike), disruption to supply chains, and economic sustainability. COVID-19 imparted lessons on how to offset these challenges, which may be applied to future pandemics and public health crises. EXPERT OPINION Pandemic emergency preparedness plans should be implemented or revised by blood centers and hospitals to lessen the impact to the blood supply. Comprehensive planning should address the timely assessment of risk to the blood supply, rapid donor recruitment, and communication of need, measures to preserve safety for donors and operational staff, careful blood management, and resource sharing.
Collapse
Affiliation(s)
- Tayler A Van Denakker
- Department of Pathology, Transfusion Medicine Division, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Arwa Z Al-Riyami
- Department of Hematology, Sultan Qaboos University Hospital Sultan Qaboos University, Muscat, Oman
| | | | - Richard Gammon
- OneBlood, Scientific, Medical, Technical Direction, Orlando, FL, USA
| | - Cynthia So-Osman
- Sanquin Blood Supply Foundation, Department of Transfusion medicine, Amsterdam, The Netherlands
| | - Elizabeth P Crowe
- Department of Pathology, Transfusion Medicine Division, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ruchika Goel
- Department of Pathology, Transfusion Medicine Division, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Simmons Cancer Institute, Department of Internal Medicine, Springfield, IL, USA
| | - Herleen Rai
- Department of Pathology, Transfusion Medicine Division, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Aaron A R Tobian
- Department of Pathology, Transfusion Medicine Division, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Evan M Bloch
- Department of Pathology, Transfusion Medicine Division, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
4
|
Kandula UR, Tuji TS, Gudeta DB, Bulbula KL, Mohammad AA, Wari KD, Abbas A. Effectiveness of COVID-19 Convalescent Plasma (CCP) During the Pandemic Era: A Literature Review. J Blood Med 2023; 14:159-187. [PMID: 36855559 PMCID: PMC9968437 DOI: 10.2147/jbm.s397722] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/08/2023] [Indexed: 02/25/2023] Open
Abstract
Worldwide pandemic with coronavirus disease-2019 (COVID-19) was caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). As November 2, 2022, World Health Organization (WHO) received 628,035,553 reported incidents on COVID-19, with 6,572,800 mortalities and, with a total 12,850,970,971 vaccine doses have been delivered as of October 31, 2022. The infection can cause mild or self-limiting symptoms of pulmonary and severe infections or death may be caused by SARS-CoV-2 infection. Simultaneously, antivirals, corticosteroids, immunological treatments, antibiotics, and anticoagulants have been proposed as potential medicines to cure COVID-19 affected patients. Among these initial treatments, COVID-19 convalescent plasma (CCP), which was retrieved from COVID-19 recovered patients to be used as passive immune therapy, in which antibodies from cured patients were given to infected patients to prevent illness. Such treatment has yielded the best results in earlier with preventative or early stages of illness. Convalescent plasma (CP) is the first treatment available when infectious disease initially appears, although few randomized controlled trials (RCTs) were conducted to evaluate its effectiveness. The historical record suggests with potential benefit for other respiratory infections, as coronaviruses like Severe Acute Respiratory Syndrome-CoV-I (SARS-CoV-I) and Middle Eastern Respiratory Syndrome (MERS), though the analysis of such research is constrained by some non-randomized experiments (NREs). Rigorous studies on CP are made more demanding by the following with the immediacy of the epidemics, CP use may restrict the ability to utilize it for clinical testing, non-homogenous nature of product, highly decentralized manufacturing process; constraints with capacity to measure biologic function, ultimate availability of substitute therapies, as antivirals, purified immune globulins, or monoclonal antibodies. Though, it is still not clear how effectively CCP works among hospitalized COVID-19 patients. The current review tries to focus on its efficiency and usage in clinical scenarios and identifying existing benefits of implementation during pandemic or how it may assist with future pandemic preventions.
Collapse
Affiliation(s)
- Usha Rani Kandula
- Department of Nursing, College of Health Sciences, Arsi University, Asella, Ethiopia
| | - Techane Sisay Tuji
- Department of Nursing, College of Health Sciences, Arsi University, Asella, Ethiopia
| | | | - Kassech Leta Bulbula
- Department of Nursing, College of Health Sciences, Arsi University, Asella, Ethiopia
| | | | - Ketema Diriba Wari
- Department of Nursing, College of Health Sciences, Arsi University, Asella, Ethiopia
| | - Ahmad Abbas
- Department of Nursing, College of Health Sciences, Arsi University, Asella, Ethiopia
| |
Collapse
|
5
|
Schrezenmeier H, Hoffmann S, Hofmann H, Appl T, Jahrsdörfer B, Seifried E, Körper S. Immune Plasma for the Treatment of COVID-19: Lessons Learned so far. Hamostaseologie 2023; 43:67-74. [PMID: 36807822 DOI: 10.1055/a-1987-3682] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023] Open
Abstract
COVID-19 convalescent plasma (CCP) has been explored as one of the treatment options for COVID-19. Results of many cohort studies and clinical trials have been recently published. At first glance, the results of the CCP studies appear to be inconsistent. However, it became clear that CCP is not beneficial if CCP with low anti-SARS-CoV-2 antibody concentrations is used, if it is administered late in advanced disease stages, and to patients who already mounted an antibody response against SARS-CoV-2 at the time of CCP transfusion. On the other hand, CCP may prevent progression to severe COVID-19 when very high-titer CCP is given early in vulnerable patients. Immune escape of new variants is a challenge for passive immunotherapy. While new variants of concern developed resistance to most clinically used monoclonal antibodies very rapidly, immune plasma from individuals immunized by both a natural SARS-CoV-2 infection and SARS-CoV-2 vaccination retained neutralizing activity against variants. This review briefly summarizes the evidence on CCP treatment to date and identifies further research needs. Ongoing research on passive immunotherapy is not only relevant for improving care for vulnerable patients in the ongoing SARS-CoV-2 pandemic, but even more as a model for passive immunotherapy in case of future pandemics with a newly evolving pathogen. Compared to other drugs, which must be newly developed in a pandemic (e.g., monoclonal antibodies, antiviral drugs), convalescent plasma is rapidly available, inexpensive to produce, and can be adaptive to viral evolution by selection of contemporary convalescent donors.
Collapse
Affiliation(s)
- Hubert Schrezenmeier
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen, and, University Hospital Ulm, Ulm, Germany.,Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Simone Hoffmann
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen, and, University Hospital Ulm, Ulm, Germany.,Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Henrike Hofmann
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen, and, University Hospital Ulm, Ulm, Germany.,Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Thomas Appl
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen, and, University Hospital Ulm, Ulm, Germany.,Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Bernd Jahrsdörfer
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen, and, University Hospital Ulm, Ulm, Germany.,Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Erhard Seifried
- Institute of Transfusion Medicine and Immunohematology, German Red Cross Blood Transfusion Service Baden-Württemberg - Hessen, Frankfurt, Germany
| | - Sixten Körper
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen, and, University Hospital Ulm, Ulm, Germany.,Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| |
Collapse
|
6
|
Clinical nursing care protocol for convalescent plasma transfusion in patients with COVID-19. INTERNATIONAL JOURNAL OF AFRICA NURSING SCIENCES 2023; 18:100518. [PMID: 36530550 PMCID: PMC9745971 DOI: 10.1016/j.ijans.2022.100518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 08/10/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022] Open
Abstract
Introduction The treatment of COVID-19 is still challenge. So convalescent plasma can be an important alternative of treatment. Protocols with nursing care during infusion is very important to guide an effective and safety care. Objective to analyze the evidence in the literature on the action of convalescent plasma, of the use of protocols with nursing care to use convalescent plasma and build a nursing care protocol for transfusion in patients with COVID-19. Methods Methodological study carried out in two stages: scoping review. The search was done using the descriptors: convalescent plasma transfusion, convalescent plasma, and acute respiratory syndromes or COVID-19, to found protocols and effectiveness of convalescent plasm. Beside was done a specialist panel to build the protocol. Results Low-evidence studies have shown improvement in the clinical signs of COVID-19 using Convalescent Plasma, reduction or elimination of viral load, benefits in the production of lymphocytes, decreases C-reactive protein, increases titers of anti-SARS-CoV-2 antibodies, positive evolution in lung involvement identified by X-rays, decrease in hospitalization. No studies were found in the databases on the protocol for clinical nursing care in plasma transfusion. Therefore, a protocol was developed with the description of clinical nursing care to be performed before, during and after the transfusion by plasma: checking of vital signs and indicative signs of transfusion reaction, measurement of oxygen saturation, assessment of venous access and checking of the level of consciousness. Conclusion There are no evidence studies to support the use of plasma, nor anything related to bundles.
Collapse
|
7
|
Abullais SS, Arora S, Wahab S, Grover V, Alshahrani MY, Shamsudeen SM, Mohammed Asif S, Faragalla AI, Elagib MF. Convalescent Plasma Therapy against COVID-19: An Update on the Changing Facets of the ongoing Pandemic. Curr Pharm Biotechnol 2023; 24:1515-1523. [PMID: 36733203 DOI: 10.2174/1389201024666230202144314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 10/01/2022] [Accepted: 11/01/2022] [Indexed: 02/04/2023]
Abstract
The severe respiratory infections in the current pandemic coronavirus disease-19 (COVID-19) have influenced more or less every human life. The first person to get infected with this virus was reported in the capital of Hubei province (Wuhan), China, in late December 2019. Since the disease has been declared a pandemic, research scholars and experts have been manufacturing new vaccines or targeted therapies to curb the spread of SARS-CoV-2. However, only limited options have emerged so far, which yet require complete scientific validation by long-term data collection regarding safety and efficacy. In the wake of the recent emerging wave of the pandemic viz omicron variant, changing facets of the viral genome and dearth of preventative and therapeutic possibilities for the management of COVID-19, the usage of Convalescent Plasma Therapy (CPT) may be looked at as a potentially viable option of treatment in the existing situation. Earlier, immune plasma has been used with success in the management of H1N1 influenza virus, MERS-CoV, and SARS-CoV-1 epidemics. In the present unpredictable situation created by the COVID-19 pandemic, the CPT is used with a positive outcome amongst many infected individuals in different parts of the world with acceptable efficacy. This article aimed to present an up-to-date evaluation of existing literature on the efficacy of convalescent plasma as a potential therapy, its safety and effectiveness and the challenges in treating COVID-19.
Collapse
Affiliation(s)
- Saquib Shahabe Abullais
- Department of Periodontics and Community Dental Sciences, College of Dentistry, King Khalid University, Abha, KSA
| | - Suraj Arora
- Department of Restorative Dental Sciences, College of Dentistry, King Khalid University, Abha, KSA
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha, KSA
| | - Vishakha Grover
- Department of Periodontology, Dr. H. S. J. Institute of Dental Sciences, Punjab University, Chandigarh, India
| | - Mohammed Yahya Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, KSA
| | - Shaik Mohamed Shamsudeen
- Department of Diagnostic Science and Oral Biology, College of Dentistry, King Khalid University, Abha, KSA
| | - Shaik Mohammed Asif
- Department of Diagnostic Science and Oral Biology, College of Dentistry, King Khalid University, Abha, KSA
| | - Amel Ibrahim Faragalla
- Department of Periodontics and Community Dental Sciences, College of Dentistry, King Khalid University, Abha, KSA
| | - Mohamed Fadul Elagib
- Department of Periodontics and Community Dental Sciences, College of Dentistry, King Khalid University, Abha, KSA
| |
Collapse
|
8
|
Cognasse F, Hamzeh-Cognasse H, Rosa M, Corseaux D, Bonneaudeau B, Pierre C, Huet J, Arthaud CA, Eyraud MA, Prier A, Duchez AC, Ebermeyer T, Heestermans M, Audoux-Caire E, Philippot Q, Le Voyer T, Hequet O, Fillet AM, Chavarin P, Legrand D, Richard P, Pirenne F, Gallian P, Casanova JL, Susen S, Morel P, Lacombe K, Bastard P, Tiberghien P. Inflammatory markers and auto-Abs to type I IFNs in COVID-19 convalescent plasma cohort study. EBioMedicine 2022; 87:104414. [PMID: 36535107 PMCID: PMC9758484 DOI: 10.1016/j.ebiom.2022.104414] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 11/10/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND COVID-19 convalescent plasma (CCP) contains neutralising anti-SARS-CoV-2 antibodies that may be useful as COVID-19 passive immunotherapy in patients at risk of developing severe disease. Such plasma from convalescent patients may also have additional immune-modulatory properties when transfused to COVID-19 patients. METHODS CCP (n = 766) was compared to non-convalescent control plasma (n = 166) for soluble inflammatory markers, ex-vivo inflammatory bioactivity on endothelial cells, neutralising auto-Abs to type I IFNs and reported adverse events in the recipients. FINDINGS CCP exhibited a statistically significant increase in IL-6 and TNF-alpha levels (0.531 ± 0.04 vs 0.271 ± 0.04; (95% confidence interval [CI], 0.07371-0.4446; p = 0.0061) and 0.900 ± 0.07 vs 0.283 ± 0.07 pg/mL; (95% [CI], 0.3097-0.9202; p = 0.0000829) and lower IL-10 (0.731 ± 0.07 vs 1.22 ± 0.19 pg/mL; (95% [CI], -0.8180 to -0.1633; p = 0.0034) levels than control plasma. Neutralising auto-Abs against type I IFNs were detected in 14/766 (1.8%) CCPs and were not associated with reported adverse events when transfused. Inflammatory markers and bioactivity in CCP with or without auto-Abs, or in CCP whether or not linked to adverse events in transfused patients, did not differ to a statistically significant extent. INTERPRETATION Overall, CCP exhibited moderately increased inflammatory markers compared to the control plasma with no discernible differences in ex-vivo bioactivity. Auto-Abs to type I IFNs detected in a small fraction of CCP were not associated with reported adverse events or differences in inflammatory markers. Additional studies, including careful clinical evaluation of patients treated with CCP, are required in order to further define the clinical relevance of these findings. FUNDING French National Blood Service-EFS, the Association "Les Amis de Rémi" Savigneux, France, the "Fondation pour la Recherche Médicale (Medical Research Foundation)-REACTing 2020".
Collapse
Affiliation(s)
- Fabrice Cognasse
- Établissement Français du Sang Auvergne-Rhône-Alpes, Saint-Étienne, France,Univ Jean Monnet, Mines Saint-Étienne, INSERM, U 1059 Sainbiose, 42023, Saint-Étienne, France,Corresponding author. Etablissement Français du Sang Auvergne-Rhône-Alpes, INSERM U1059, Campus Santé Innovation - 10 rue de la Marandière, 42270, Saint-Priest-en-Jarez, France.
| | - Hind Hamzeh-Cognasse
- Univ Jean Monnet, Mines Saint-Étienne, INSERM, U 1059 Sainbiose, 42023, Saint-Étienne, France
| | - Mickael Rosa
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, CNRS, U1011- EGID, F-59000 Lille, France,Centre National de la Recherche Scientifique (National Scientific Research Centre), Surgical Critical Care, Department of Anaesthesiology and Critical Care, U1019 - Unité Mixte de Recherche 9017 (Mixed Research Unit 9017) – Lille Centre for Infection and Immunity, France
| | - Delphine Corseaux
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, CNRS, U1011- EGID, F-59000 Lille, France,Centre National de la Recherche Scientifique (National Scientific Research Centre), Surgical Critical Care, Department of Anaesthesiology and Critical Care, U1019 - Unité Mixte de Recherche 9017 (Mixed Research Unit 9017) – Lille Centre for Infection and Immunity, France
| | | | - Chloe Pierre
- Etablissement Français du Sang, La Plaine, St Denis, France
| | - Julie Huet
- Etablissement Français du Sang, La Plaine, St Denis, France
| | - Charles Antoine Arthaud
- Établissement Français du Sang Auvergne-Rhône-Alpes, Saint-Étienne, France,Univ Jean Monnet, Mines Saint-Étienne, INSERM, U 1059 Sainbiose, 42023, Saint-Étienne, France
| | - Marie Ange Eyraud
- Établissement Français du Sang Auvergne-Rhône-Alpes, Saint-Étienne, France,Univ Jean Monnet, Mines Saint-Étienne, INSERM, U 1059 Sainbiose, 42023, Saint-Étienne, France
| | - Amélie Prier
- Établissement Français du Sang Auvergne-Rhône-Alpes, Saint-Étienne, France,Univ Jean Monnet, Mines Saint-Étienne, INSERM, U 1059 Sainbiose, 42023, Saint-Étienne, France
| | - Anne Claire Duchez
- Établissement Français du Sang Auvergne-Rhône-Alpes, Saint-Étienne, France,Univ Jean Monnet, Mines Saint-Étienne, INSERM, U 1059 Sainbiose, 42023, Saint-Étienne, France
| | - Theo Ebermeyer
- Univ Jean Monnet, Mines Saint-Étienne, INSERM, U 1059 Sainbiose, 42023, Saint-Étienne, France
| | - Marco Heestermans
- Établissement Français du Sang Auvergne-Rhône-Alpes, Saint-Étienne, France,Univ Jean Monnet, Mines Saint-Étienne, INSERM, U 1059 Sainbiose, 42023, Saint-Étienne, France
| | - Estelle Audoux-Caire
- Établissement Français du Sang Auvergne-Rhône-Alpes, Saint-Étienne, France,Univ Jean Monnet, Mines Saint-Étienne, INSERM, U 1059 Sainbiose, 42023, Saint-Étienne, France
| | - Quentin Philippot
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163 (National Institute for Health and Medical Research), Necker Hospital for Sick Children, Paris, France,University of Paris, Imagine Institute, Paris, France
| | - Tom Le Voyer
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163 (National Institute for Health and Medical Research), Necker Hospital for Sick Children, Paris, France,University of Paris, Imagine Institute, Paris, France
| | - Olivier Hequet
- Établissement Français du Sang Auvergne-Rhône-Alpes, Saint-Étienne, France
| | | | - Patricia Chavarin
- Établissement Français du Sang Auvergne-Rhône-Alpes, Saint-Étienne, France
| | - Dominique Legrand
- Établissement Français du Sang Auvergne-Rhône-Alpes, Saint-Étienne, France
| | | | - France Pirenne
- Univ Paris Est Creteil, INSERM U955, Institut Mondor de Recherche Biomédicale (Mondor Biomedical Research Institute) (IMRB), Creteil, France & Laboratory of Excellence GR-Ex, Paris, France
| | - Pierre Gallian
- Etablissement Français du Sang, La Plaine, St Denis, France,UMR “Unité des Virus Emergents” (Emerging Virus Unit), Aix-Marseille University - IRD 190 - INSERM 1207 - IRBA - EFS - IHU Méditerranée Infection, Marseille, France
| | - Jean Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163 (National Institute for Health and Medical Research), Necker Hospital for Sick Children, Paris, France,University of Paris, Imagine Institute, Paris, France,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA,Howard Hughes Medical Institute, New York, NY, USA
| | - Sophie Susen
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, CNRS, U1011- EGID, F-59000 Lille, France,Centre National de la Recherche Scientifique (National Scientific Research Centre), Surgical Critical Care, Department of Anaesthesiology and Critical Care, U1019 - Unité Mixte de Recherche 9017 (Mixed Research Unit 9017) – Lille Centre for Infection and Immunity, France
| | - Pascal Morel
- Etablissement Français du Sang, La Plaine, St Denis, France
| | - Karine Lacombe
- Sorbonne University, Inserm IPLESP, Infectious Diseases Department, Saint-Antoine Hospital, APHP (University Hospital Trust), Paris, France
| | - Paul Bastard
- Etablissement Français du Sang, La Plaine, St Denis, France,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163 (National Institute for Health and Medical Research), Necker Hospital for Sick Children, Paris, France,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Pierre Tiberghien
- Etablissement Français du Sang, La Plaine, St Denis, France,UMR RIGHT U1098, INSERM, Etablissement Français du Sang, University of Franche-Comté, Besançon, France
| |
Collapse
|
9
|
Cognasse F, Hamzeh-Cognasse H, Duchez AC, Shurko N, Eyraud MA, Arthaud CA, Prier A, Heestermans M, Hequet O, Bonneaudeau B, Rochette-Eribon S, Teyssier F, Barlet-Excoffier V, Chavarin P, Legrand D, Richard P, Morel P, Mooney N, Tiberghien P. Inflammatory profile of convalescent plasma to treat COVID: Impact of amotosalen/UVA pathogen reduction technology. Front Immunol 2022; 13:1034379. [PMID: 36275757 PMCID: PMC9585295 DOI: 10.3389/fimmu.2022.1034379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Blood products in therapeutic transfusion are now commonly acknowledged to contain biologically active constituents during the processes of preparation. In the midst of a worldwide COVID-19 pandemic, preliminary evidence suggests that convalescent plasma may lessen the severity of COVID-19 if administered early in the disease, particularly in patients with profound B-cell lymphopenia and prolonged COVID-19 symptoms. This study examined the influence of photochemical Pathogen Reduction Treatment (PRT) using amotosalen‐HCl and UVA light in comparison with untreated control convalescent plasma (n= 72 – paired samples) - cFFP, regarding soluble inflammatory factors: sCD40L, IFN-alpha, IFN-beta, IFN-gamma, IL-1 beta, IL-6, IL-8, IL-10, IL-18, TNF-alpha and ex-vivo inflammatory bioactivity on endothelial cells. We didn’t observe significant modulation of the majority of inflammatory soluble factors (8 of 10 molecules tested) pre- or post-PRT. We noted that IL-8 concentrations were significantly decreased in cFFP with PRT, whereas the IL-18 concentration was increased by PRT. In contrast, endothelial cell release of IL-6 was similar whether cFFP was pre-treated with or without PRT. Expression of CD54 and CD31 in the presence of cFFP were similar to control levels, and both were significant decreased in when cFFP had been pre-treated by PRT. It will be interesting to continue investigations of IL-18 and IL-8, and the physiopathological effect of PRT- treated convalescent plasma and in clinical trials. But overall, it appears that cFFP post-PRT were not excessively pro-inflammatory. Further research, including a careful clinical evaluation of CCP-treated patients, will be required to thoroughly define the clinical relevance of these findings.
Collapse
Affiliation(s)
- Fabrice Cognasse
- Etablissement Français du Sang Auvergne-Rhône-Alpes, Saint-Etienne, France
- Université Jean Monnet, Mines Saint-Étienne, INSERM (Institut National de la Santé et de la Recherche Médicale), U 1059 Sainbiose, (SAnté INgéniérie BIOlogie St-Etienne), Saint-Étienne, France
- *Correspondence: Fabrice Cognasse,
| | - Hind Hamzeh-Cognasse
- Université Jean Monnet, Mines Saint-Étienne, INSERM (Institut National de la Santé et de la Recherche Médicale), U 1059 Sainbiose, (SAnté INgéniérie BIOlogie St-Etienne), Saint-Étienne, France
| | - Anne-Claire Duchez
- Etablissement Français du Sang Auvergne-Rhône-Alpes, Saint-Etienne, France
- Université Jean Monnet, Mines Saint-Étienne, INSERM (Institut National de la Santé et de la Recherche Médicale), U 1059 Sainbiose, (SAnté INgéniérie BIOlogie St-Etienne), Saint-Étienne, France
| | - Natalia Shurko
- Institute of Blood Pathology and Transfusion Medicine NAMS (National Academy of Medical Sciences) of Ukraine, Lviv, Ukraine
| | - Marie-Ange Eyraud
- Etablissement Français du Sang Auvergne-Rhône-Alpes, Saint-Etienne, France
- Université Jean Monnet, Mines Saint-Étienne, INSERM (Institut National de la Santé et de la Recherche Médicale), U 1059 Sainbiose, (SAnté INgéniérie BIOlogie St-Etienne), Saint-Étienne, France
| | - Charles-Antoine Arthaud
- Etablissement Français du Sang Auvergne-Rhône-Alpes, Saint-Etienne, France
- Université Jean Monnet, Mines Saint-Étienne, INSERM (Institut National de la Santé et de la Recherche Médicale), U 1059 Sainbiose, (SAnté INgéniérie BIOlogie St-Etienne), Saint-Étienne, France
| | - Amélie Prier
- Etablissement Français du Sang Auvergne-Rhône-Alpes, Saint-Etienne, France
- Université Jean Monnet, Mines Saint-Étienne, INSERM (Institut National de la Santé et de la Recherche Médicale), U 1059 Sainbiose, (SAnté INgéniérie BIOlogie St-Etienne), Saint-Étienne, France
| | - Marco Heestermans
- Etablissement Français du Sang Auvergne-Rhône-Alpes, Saint-Etienne, France
- Université Jean Monnet, Mines Saint-Étienne, INSERM (Institut National de la Santé et de la Recherche Médicale), U 1059 Sainbiose, (SAnté INgéniérie BIOlogie St-Etienne), Saint-Étienne, France
| | - Olivier Hequet
- Etablissement Français du Sang Auvergne-Rhône-Alpes, Saint-Etienne, France
- CIRI, International Center for Infectiology Research, INSERM (Institut National de la Santé et de la Recherche Médicale) U1111, Université de Lyon, Lyon, France
| | | | | | - Françoise Teyssier
- Etablissement Français du Sang Auvergne-Rhône-Alpes, Saint-Etienne, France
| | | | - Patricia Chavarin
- Etablissement Français du Sang Auvergne-Rhône-Alpes, Saint-Etienne, France
| | - Dominique Legrand
- Etablissement Français du Sang Auvergne-Rhône-Alpes, Saint-Etienne, France
| | | | - Pascal Morel
- Etablissement Français du Sang, La Plaine St Denis, France
- UMR (Unité mixte de recherche) RIGHT U1098, INSERM, Etablissement Français du Sang, Université de Franche-Comté, Besançon, France
| | - Nuala Mooney
- Human Immunology, Pathophysiology and Immunotherapy, INSERM (Institut National de la Santé et de la Recherche Médicale) U976, Paris, France
| | - Pierre Tiberghien
- Etablissement Français du Sang, La Plaine St Denis, France
- UMR (Unité mixte de recherche) RIGHT U1098, INSERM, Etablissement Français du Sang, Université de Franche-Comté, Besançon, France
| |
Collapse
|
10
|
Zare Marzouni H, Rahbar M, Seddighi N, Nabizadeh M, Meidaninikjeh S, Sabouni N. Antibody Therapy for COVID-19: Categories, Pros, and Cons. Viral Immunol 2022; 35:517-528. [PMID: 36201297 DOI: 10.1089/vim.2021.0160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
COVID-19 is a life-threatening respiratory disease triggered by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It has been considered a pandemic viral infection since December 2019. The investigation of the effective prophylaxis or therapeutic strategies for emergency management of the current condition has become a priority for medical research centers and pharmaceutical companies. This article provides a comprehensive review of antibody therapy and its different categories with their advantages and disadvantages for COVID-19 over the last few years of the current pandemic. Antibodies can be generated by active immunization, including natural infection with a pathogen and vaccination, or by the passive immunization method such as convalescent plasma therapy (CPT) and antibody synthesis in laboratories. Each of these ways has its characteristics. Arming the immune system with antibodies is the main aim of antiviral therapeutic procedures toward SARS-CoV-2. Collecting and discussing various aspects of available data in this field can give researchers a better perspective for the production of antibody-based products or selection of the most appropriate approach of antibody therapies to improve different cases of COVID-19. Moreover, it can help them control similar viral pandemics that may happen in the future appropriately.
Collapse
Affiliation(s)
- Hadi Zare Marzouni
- Qaen School of Nursing and Midwifery, Birjand University of Medical Sciences, Birjand, Iran
| | - Marjan Rahbar
- Department of Food Science and Technology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Nazanin Seddighi
- Qaen School of Nursing and Midwifery, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohsen Nabizadeh
- Department of Biology, Faculty of Basic Sciences, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Sepideh Meidaninikjeh
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran.,Cancer Biomedical Center (CBC) Research Institute, Tehran, Iran
| | - Nasim Sabouni
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
11
|
Kapil K, Muntode Gharde P. A Review on Effectiveness of Plasma Therapy in Severe COVID-19 Patients. Cureus 2022; 14:e28914. [PMID: 36237760 PMCID: PMC9547123 DOI: 10.7759/cureus.28914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 09/07/2022] [Indexed: 12/04/2022] Open
Abstract
Coronavirus 2019 has created a big threat to the modern world. Many researchers and scientists had taken the burden of finding information about this entity, its structure, its transmission, and also about the treatment that can be given to individuals infected by it. There has been use of different medicines at different times simultaneously researching about them, starting with only symptomatic and supportive treatment, then antimalarial agents like chloroquine and hydroxychloroquine, then going to favipavir, and other antivirals, then came the use of vaccines and also convalescent plasma therapy for COVID-19. The most advanced is convalescent plasma use for the treating coronavirus. Using plasma of patients who have remitted from this disease and putting it into those individuals who are dealing with the disease or are critically ill for improvement of their health status. This treatment has been used for many other diseases too and has been proven efficacious. So, this technique is being used and studied for coronavirus 2019 as well. There have been set certain criteria for those who can donate plasma and also criteria for the recipients of this technique. Also, there can be adverse reactions or even side effects with this, like transfusion-related acute lung injury (TRALI), so they should also be kept in mind during treatment with this method. So, though there are many methods to date to treat these individuals but one of the latest ones is using plasma, which is proven to be efficacious but still many studies are under process for the same.
Collapse
|
12
|
Mizrahi RA, Lin WY, Gras A, Niedecken AR, Wagner EK, Keating SM, Ikon N, Manickam VA, Asensio MA, Leong J, Medina-Cucurella AV, Benzie E, Carter KP, Chiang Y, Edgar RC, Leong R, Lim YW, Simons JF, Spindler MJ, Stadtmiller K, Wayham N, Büscher D, Terencio JV, Germanio CD, Chamow SM, Olson C, Pino PA, Park JG, Hicks A, Ye C, Garcia-Vilanova A, Martinez-Sobrido L, Torrelles JB, Johnson DS, Adler AS. GMP Manufacturing and IND-Enabling Studies of a Recombinant Hyperimmune Globulin Targeting SARS-CoV-2. Pathogens 2022; 11:806. [PMID: 35890050 PMCID: PMC9320065 DOI: 10.3390/pathogens11070806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 11/16/2022] Open
Abstract
Conventionally, hyperimmune globulin drugs manufactured from pooled immunoglobulins from vaccinated or convalescent donors have been used in treating infections where no treatment is available. This is especially important where multi-epitope neutralization is required to prevent the development of immune-evading viral mutants that can emerge upon treatment with monoclonal antibodies. Using microfluidics, flow sorting, and a targeted integration cell line, a first-in-class recombinant hyperimmune globulin therapeutic against SARS-CoV-2 (GIGA-2050) was generated. Using processes similar to conventional monoclonal antibody manufacturing, GIGA-2050, comprising 12,500 antibodies, was scaled-up for clinical manufacturing and multiple development/tox lots were assessed for consistency. Antibody sequence diversity, cell growth, productivity, and product quality were assessed across different manufacturing sites and production scales. GIGA-2050 was purified and tested for good laboratory procedures (GLP) toxicology, pharmacokinetics, and in vivo efficacy against natural SARS-CoV-2 infection in mice. The GIGA-2050 master cell bank was highly stable, producing material at consistent yield and product quality up to >70 generations. Good manufacturing practices (GMP) and development batches of GIGA-2050 showed consistent product quality, impurity clearance, potency, and protection in an in vivo efficacy model. Nonhuman primate toxicology and pharmacokinetics studies suggest that GIGA-2050 is safe and has a half-life similar to other recombinant human IgG1 antibodies. These results supported a successful investigational new drug application for GIGA-2050. This study demonstrates that a new class of drugs, recombinant hyperimmune globulins, can be manufactured consistently at the clinical scale and presents a new approach to treating infectious diseases that targets multiple epitopes of a virus.
Collapse
Affiliation(s)
- Rena A. Mizrahi
- GigaGen, Inc., South San Francisco, CA 94080, USA; (R.A.M.); (A.G.); (A.R.N.); (E.K.W.); (S.M.K.); (N.I.); (V.A.M.); (M.A.A.); (J.L.); (A.V.M.-C.); (E.B.); (K.P.C.); (Y.C.); (R.C.E.); (R.L.); (Y.W.L.); (J.F.S.); (M.J.S.); (K.S.); (N.W.); (D.S.J.)
| | - Wendy Y. Lin
- Alira Health, Inc., Framingham, MA 01702, USA; (W.Y.L.); (S.M.C.); (C.O.)
| | - Ashley Gras
- GigaGen, Inc., South San Francisco, CA 94080, USA; (R.A.M.); (A.G.); (A.R.N.); (E.K.W.); (S.M.K.); (N.I.); (V.A.M.); (M.A.A.); (J.L.); (A.V.M.-C.); (E.B.); (K.P.C.); (Y.C.); (R.C.E.); (R.L.); (Y.W.L.); (J.F.S.); (M.J.S.); (K.S.); (N.W.); (D.S.J.)
| | - Ariel R. Niedecken
- GigaGen, Inc., South San Francisco, CA 94080, USA; (R.A.M.); (A.G.); (A.R.N.); (E.K.W.); (S.M.K.); (N.I.); (V.A.M.); (M.A.A.); (J.L.); (A.V.M.-C.); (E.B.); (K.P.C.); (Y.C.); (R.C.E.); (R.L.); (Y.W.L.); (J.F.S.); (M.J.S.); (K.S.); (N.W.); (D.S.J.)
| | - Ellen K. Wagner
- GigaGen, Inc., South San Francisco, CA 94080, USA; (R.A.M.); (A.G.); (A.R.N.); (E.K.W.); (S.M.K.); (N.I.); (V.A.M.); (M.A.A.); (J.L.); (A.V.M.-C.); (E.B.); (K.P.C.); (Y.C.); (R.C.E.); (R.L.); (Y.W.L.); (J.F.S.); (M.J.S.); (K.S.); (N.W.); (D.S.J.)
| | - Sheila M. Keating
- GigaGen, Inc., South San Francisco, CA 94080, USA; (R.A.M.); (A.G.); (A.R.N.); (E.K.W.); (S.M.K.); (N.I.); (V.A.M.); (M.A.A.); (J.L.); (A.V.M.-C.); (E.B.); (K.P.C.); (Y.C.); (R.C.E.); (R.L.); (Y.W.L.); (J.F.S.); (M.J.S.); (K.S.); (N.W.); (D.S.J.)
| | - Nikita Ikon
- GigaGen, Inc., South San Francisco, CA 94080, USA; (R.A.M.); (A.G.); (A.R.N.); (E.K.W.); (S.M.K.); (N.I.); (V.A.M.); (M.A.A.); (J.L.); (A.V.M.-C.); (E.B.); (K.P.C.); (Y.C.); (R.C.E.); (R.L.); (Y.W.L.); (J.F.S.); (M.J.S.); (K.S.); (N.W.); (D.S.J.)
| | - Vishal A. Manickam
- GigaGen, Inc., South San Francisco, CA 94080, USA; (R.A.M.); (A.G.); (A.R.N.); (E.K.W.); (S.M.K.); (N.I.); (V.A.M.); (M.A.A.); (J.L.); (A.V.M.-C.); (E.B.); (K.P.C.); (Y.C.); (R.C.E.); (R.L.); (Y.W.L.); (J.F.S.); (M.J.S.); (K.S.); (N.W.); (D.S.J.)
| | - Michael A. Asensio
- GigaGen, Inc., South San Francisco, CA 94080, USA; (R.A.M.); (A.G.); (A.R.N.); (E.K.W.); (S.M.K.); (N.I.); (V.A.M.); (M.A.A.); (J.L.); (A.V.M.-C.); (E.B.); (K.P.C.); (Y.C.); (R.C.E.); (R.L.); (Y.W.L.); (J.F.S.); (M.J.S.); (K.S.); (N.W.); (D.S.J.)
| | - Jackson Leong
- GigaGen, Inc., South San Francisco, CA 94080, USA; (R.A.M.); (A.G.); (A.R.N.); (E.K.W.); (S.M.K.); (N.I.); (V.A.M.); (M.A.A.); (J.L.); (A.V.M.-C.); (E.B.); (K.P.C.); (Y.C.); (R.C.E.); (R.L.); (Y.W.L.); (J.F.S.); (M.J.S.); (K.S.); (N.W.); (D.S.J.)
| | - Angelica V. Medina-Cucurella
- GigaGen, Inc., South San Francisco, CA 94080, USA; (R.A.M.); (A.G.); (A.R.N.); (E.K.W.); (S.M.K.); (N.I.); (V.A.M.); (M.A.A.); (J.L.); (A.V.M.-C.); (E.B.); (K.P.C.); (Y.C.); (R.C.E.); (R.L.); (Y.W.L.); (J.F.S.); (M.J.S.); (K.S.); (N.W.); (D.S.J.)
| | - Emily Benzie
- GigaGen, Inc., South San Francisco, CA 94080, USA; (R.A.M.); (A.G.); (A.R.N.); (E.K.W.); (S.M.K.); (N.I.); (V.A.M.); (M.A.A.); (J.L.); (A.V.M.-C.); (E.B.); (K.P.C.); (Y.C.); (R.C.E.); (R.L.); (Y.W.L.); (J.F.S.); (M.J.S.); (K.S.); (N.W.); (D.S.J.)
| | - Kyle P. Carter
- GigaGen, Inc., South San Francisco, CA 94080, USA; (R.A.M.); (A.G.); (A.R.N.); (E.K.W.); (S.M.K.); (N.I.); (V.A.M.); (M.A.A.); (J.L.); (A.V.M.-C.); (E.B.); (K.P.C.); (Y.C.); (R.C.E.); (R.L.); (Y.W.L.); (J.F.S.); (M.J.S.); (K.S.); (N.W.); (D.S.J.)
| | - Yao Chiang
- GigaGen, Inc., South San Francisco, CA 94080, USA; (R.A.M.); (A.G.); (A.R.N.); (E.K.W.); (S.M.K.); (N.I.); (V.A.M.); (M.A.A.); (J.L.); (A.V.M.-C.); (E.B.); (K.P.C.); (Y.C.); (R.C.E.); (R.L.); (Y.W.L.); (J.F.S.); (M.J.S.); (K.S.); (N.W.); (D.S.J.)
| | - Robert C. Edgar
- GigaGen, Inc., South San Francisco, CA 94080, USA; (R.A.M.); (A.G.); (A.R.N.); (E.K.W.); (S.M.K.); (N.I.); (V.A.M.); (M.A.A.); (J.L.); (A.V.M.-C.); (E.B.); (K.P.C.); (Y.C.); (R.C.E.); (R.L.); (Y.W.L.); (J.F.S.); (M.J.S.); (K.S.); (N.W.); (D.S.J.)
| | - Renee Leong
- GigaGen, Inc., South San Francisco, CA 94080, USA; (R.A.M.); (A.G.); (A.R.N.); (E.K.W.); (S.M.K.); (N.I.); (V.A.M.); (M.A.A.); (J.L.); (A.V.M.-C.); (E.B.); (K.P.C.); (Y.C.); (R.C.E.); (R.L.); (Y.W.L.); (J.F.S.); (M.J.S.); (K.S.); (N.W.); (D.S.J.)
| | - Yoong Wearn Lim
- GigaGen, Inc., South San Francisco, CA 94080, USA; (R.A.M.); (A.G.); (A.R.N.); (E.K.W.); (S.M.K.); (N.I.); (V.A.M.); (M.A.A.); (J.L.); (A.V.M.-C.); (E.B.); (K.P.C.); (Y.C.); (R.C.E.); (R.L.); (Y.W.L.); (J.F.S.); (M.J.S.); (K.S.); (N.W.); (D.S.J.)
| | - Jan Fredrik Simons
- GigaGen, Inc., South San Francisco, CA 94080, USA; (R.A.M.); (A.G.); (A.R.N.); (E.K.W.); (S.M.K.); (N.I.); (V.A.M.); (M.A.A.); (J.L.); (A.V.M.-C.); (E.B.); (K.P.C.); (Y.C.); (R.C.E.); (R.L.); (Y.W.L.); (J.F.S.); (M.J.S.); (K.S.); (N.W.); (D.S.J.)
| | - Matthew J. Spindler
- GigaGen, Inc., South San Francisco, CA 94080, USA; (R.A.M.); (A.G.); (A.R.N.); (E.K.W.); (S.M.K.); (N.I.); (V.A.M.); (M.A.A.); (J.L.); (A.V.M.-C.); (E.B.); (K.P.C.); (Y.C.); (R.C.E.); (R.L.); (Y.W.L.); (J.F.S.); (M.J.S.); (K.S.); (N.W.); (D.S.J.)
| | - Kacy Stadtmiller
- GigaGen, Inc., South San Francisco, CA 94080, USA; (R.A.M.); (A.G.); (A.R.N.); (E.K.W.); (S.M.K.); (N.I.); (V.A.M.); (M.A.A.); (J.L.); (A.V.M.-C.); (E.B.); (K.P.C.); (Y.C.); (R.C.E.); (R.L.); (Y.W.L.); (J.F.S.); (M.J.S.); (K.S.); (N.W.); (D.S.J.)
| | - Nicholas Wayham
- GigaGen, Inc., South San Francisco, CA 94080, USA; (R.A.M.); (A.G.); (A.R.N.); (E.K.W.); (S.M.K.); (N.I.); (V.A.M.); (M.A.A.); (J.L.); (A.V.M.-C.); (E.B.); (K.P.C.); (Y.C.); (R.C.E.); (R.L.); (Y.W.L.); (J.F.S.); (M.J.S.); (K.S.); (N.W.); (D.S.J.)
| | - Dirk Büscher
- Grifols S.A., 08174 Sant Cugat del Vallès, Spain; (D.B.); (J.V.T.)
| | | | | | - Steven M. Chamow
- Alira Health, Inc., Framingham, MA 01702, USA; (W.Y.L.); (S.M.C.); (C.O.)
| | - Charles Olson
- Alira Health, Inc., Framingham, MA 01702, USA; (W.Y.L.); (S.M.C.); (C.O.)
| | - Paula A. Pino
- Population Health Program, Texas Biomedical Research Institute, San Antonio, TX 78227, USA; (P.A.P.); (A.H.); (A.G.-V.); (L.M.-S.); (J.B.T.)
| | - Jun-Gyu Park
- Disease Intervention and Prevention Program, Texas Biomedical Research Institute, San Antonio, TX 78227, USA; (J.-G.P.); (C.Y.)
| | - Amberlee Hicks
- Population Health Program, Texas Biomedical Research Institute, San Antonio, TX 78227, USA; (P.A.P.); (A.H.); (A.G.-V.); (L.M.-S.); (J.B.T.)
| | - Chengjin Ye
- Disease Intervention and Prevention Program, Texas Biomedical Research Institute, San Antonio, TX 78227, USA; (J.-G.P.); (C.Y.)
| | - Andreu Garcia-Vilanova
- Population Health Program, Texas Biomedical Research Institute, San Antonio, TX 78227, USA; (P.A.P.); (A.H.); (A.G.-V.); (L.M.-S.); (J.B.T.)
| | - Luis Martinez-Sobrido
- Population Health Program, Texas Biomedical Research Institute, San Antonio, TX 78227, USA; (P.A.P.); (A.H.); (A.G.-V.); (L.M.-S.); (J.B.T.)
- Disease Intervention and Prevention Program, Texas Biomedical Research Institute, San Antonio, TX 78227, USA; (J.-G.P.); (C.Y.)
| | - Jordi B. Torrelles
- Population Health Program, Texas Biomedical Research Institute, San Antonio, TX 78227, USA; (P.A.P.); (A.H.); (A.G.-V.); (L.M.-S.); (J.B.T.)
- Disease Intervention and Prevention Program, Texas Biomedical Research Institute, San Antonio, TX 78227, USA; (J.-G.P.); (C.Y.)
| | - David S. Johnson
- GigaGen, Inc., South San Francisco, CA 94080, USA; (R.A.M.); (A.G.); (A.R.N.); (E.K.W.); (S.M.K.); (N.I.); (V.A.M.); (M.A.A.); (J.L.); (A.V.M.-C.); (E.B.); (K.P.C.); (Y.C.); (R.C.E.); (R.L.); (Y.W.L.); (J.F.S.); (M.J.S.); (K.S.); (N.W.); (D.S.J.)
| | - Adam S. Adler
- GigaGen, Inc., South San Francisco, CA 94080, USA; (R.A.M.); (A.G.); (A.R.N.); (E.K.W.); (S.M.K.); (N.I.); (V.A.M.); (M.A.A.); (J.L.); (A.V.M.-C.); (E.B.); (K.P.C.); (Y.C.); (R.C.E.); (R.L.); (Y.W.L.); (J.F.S.); (M.J.S.); (K.S.); (N.W.); (D.S.J.)
| |
Collapse
|
13
|
Baros-Steyl SS, Al Heialy S, Semreen AH, Semreen MH, Blackburn JM, Soares NC. A review of mass spectrometry-based analyses to understand COVID-19 convalescent plasma mechanisms of action. Proteomics 2022; 22:e2200118. [PMID: 35809024 PMCID: PMC9349457 DOI: 10.1002/pmic.202200118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 01/08/2023]
Abstract
The spread of coronavirus disease 2019 (COVID‐19) viral pneumonia caused by severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) has become a worldwide pandemic claiming several thousands of lives worldwide. During this pandemic, several studies reported the use of COVID‐19 convalescent plasma (CCP) from recovered patients to treat severely or critically ill patients. Although this historical and empirical treatment holds immense potential as a first line of response against eventual future unforeseen viral epidemics, there are several concerns regarding the efficacy and safety of this approach. This critical review aims to pinpoint the possible role of mass spectrometry‐based analysis in the identification of unique molecular component proteins, peptides, and metabolites of CCP that explains the therapeutic mechanism of action against COVID‐19. Additionally, the text critically reviews the potential application of mass spectrometry approaches in the search for novel plasma biomarkers that may enable a rapid and accurate assessment of the safety and efficacy of CCP. Considering the relative low‐cost value involved in the CCP therapy, this proposed line of research represents a tangible scientific challenge that will be translated into clinical practice and help save several thousand lives around the world, specifically in low‐ and middle‐income countries.
Collapse
Affiliation(s)
- Seanantha S Baros-Steyl
- Department of Integrative Biomedical Sciences, Institute of Infectious Disease & Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Saba Al Heialy
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates.,Meakin-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Ahlam H Semreen
- College of Pharmacy-Department of Medicinal Chemistry, University of Sharjah, United Arab Emirates.,Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Mohammad H Semreen
- College of Pharmacy-Department of Medicinal Chemistry, University of Sharjah, United Arab Emirates.,Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Jonathan M Blackburn
- Department of Integrative Biomedical Sciences, Institute of Infectious Disease & Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Nelson C Soares
- College of Pharmacy-Department of Medicinal Chemistry, University of Sharjah, United Arab Emirates.,Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
14
|
Hervig TA, Flesland Ø, Nissen-Meyer LSH. COVID-19 convalescent plasma: Current status, lessons from the past and future perspectives. Transfus Apher Sci 2022; 61:103487. [PMID: 35778352 PMCID: PMC9188440 DOI: 10.1016/j.transci.2022.103487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
When the COVID-19 pandemic hit, blood transfusion services worldwide started collection of convalescent plasma as early as possible, as exemplified by the response in Norway. There were challenges related to donor selection, donor safety, testing for relevant antibodies and indications for and dosing of the convalescent plasma. As more knowledge became available, the product quality was more standardised. Multiple case reports, observational studies and some randomized studies were published during the pandemic, as well as laboratory studies reporting different approaches to antibody testing. The results were conflicting and the importance of convalescent plasma was disputed. Even though there has been strong international collaboration with involvement of many key organisations, we may better prepare for the next pandemic. An even stronger, more formalised collaboration between these organisations could provide more clear evidence of the importance of convalescent plasma, based on the principles of passive immunisation.
Collapse
Affiliation(s)
- Tor Audun Hervig
- Laboratory for Immunology and Transfusion Medicine, Haugesund Hospital, Norway.
| | | | | |
Collapse
|
15
|
Cerezoli MT, Prats JAGG, Medeiros AK, Santana DVG, da Costa FM, Torres US, Junior WNW. Clinical and radiological improvement of protracted COVID-19 and Good syndrome secondary to advanced thymoma: a case report. Pulmonology 2022; 28:472-475. [PMID: 35710712 PMCID: PMC9085461 DOI: 10.1016/j.pulmoe.2022.04.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 11/22/2022] Open
|
16
|
Scavone C, Mascolo A, Rafaniello C, Sportiello L, Trama U, Zoccoli A, Bernardi FF, Racagni G, Berrino L, Castaldo G, Coscioni E, Rossi F, Capuano A. Therapeutic strategies to fight COVID-19: Which is the status artis? Br J Pharmacol 2022; 179:2128-2148. [PMID: 33960398 PMCID: PMC8239658 DOI: 10.1111/bph.15452] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/02/2021] [Accepted: 03/05/2021] [Indexed: 02/06/2023] Open
Abstract
COVID-19 is a complex disease, and many difficulties are faced today especially in the proper choice of pharmacological treatments. The role of antiviral agents for COVID-19 is still being investigated and evidence for immunomodulatory and anti-inflammatory drugs is quite conflicting, whereas the use of corticosteroids is supported by robust evidence. The use of heparins in hospitalized critically ill patients is preferred over other anticoagulants. There are conflicting data on the use of convalescent plasma and vitamin D. According to the World Health Organization (WHO), many vaccines are in Phase III clinical trials, and some of them have already received marketing approval in European countries and in the United States. In conclusion, drug repurposing has represented the main approach recently used in the treatment of patients with COVID-19. At this moment, analysis of efficacy and safety data of drugs and vaccines used in real-life context is strongly needed. LINKED ARTICLES: This article is part of a themed issue on The second wave: are we any closer to efficacious pharmacotherapy for COVID 19? (BJP 75th Anniversary). To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.10/issuetoc.
Collapse
Affiliation(s)
- Cristina Scavone
- Department of Experimental MedicineUniversità degli studi della Campania ‘Luigi Vanvitelli’NaplesItaly
| | - Annamaria Mascolo
- Department of Experimental MedicineUniversità degli studi della Campania ‘Luigi Vanvitelli’NaplesItaly
| | - Concetta Rafaniello
- Department of Experimental MedicineUniversità degli studi della Campania ‘Luigi Vanvitelli’NaplesItaly
| | - Liberata Sportiello
- Department of Experimental MedicineUniversità degli studi della Campania ‘Luigi Vanvitelli’NaplesItaly
| | - Ugo Trama
- Regional Pharmaceutical UnitU.O.D. 06 Politica del Farmaco e DispositiviNaplesItaly
| | - Alice Zoccoli
- Clinical Innovation OfficeUniversità Campus Bio‐MedicoRomeItaly
| | - Francesca Futura Bernardi
- Department of Experimental MedicineUniversità degli studi della Campania ‘Luigi Vanvitelli’NaplesItaly
- Regional Pharmaceutical UnitU.O.D. 06 Politica del Farmaco e DispositiviNaplesItaly
| | - Giorgio Racagni
- Department of Pharmacological and Biomolecular SciencesUniversity of MilanMilanItaly
| | - Liberato Berrino
- Department of Experimental MedicineUniversità degli studi della Campania ‘Luigi Vanvitelli’NaplesItaly
| | - Giuseppe Castaldo
- Department of Molecular Medicine and Medical BiotechnologyUniversity of Napoli Federico IINaplesItaly
- CEINGE—Advanced Biotechnology ScarlNaplesItaly
| | | | - Francesco Rossi
- Department of Experimental MedicineUniversità degli studi della Campania ‘Luigi Vanvitelli’NaplesItaly
- Clinical Innovation OfficeUniversità Campus Bio‐MedicoRomeItaly
| | - Annalisa Capuano
- Department of Experimental MedicineUniversità degli studi della Campania ‘Luigi Vanvitelli’NaplesItaly
| |
Collapse
|
17
|
Cheng Q, Zhao G, Chen J, Jia Q, Fang Z. Efficacy and safety of current treatment interventions for patients with severe COVID-19 infection: A network meta-analysis of randomized controlled trials. J Med Virol 2022; 94:1617-1626. [PMID: 34882805 PMCID: PMC9015508 DOI: 10.1002/jmv.27512] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 11/10/2021] [Accepted: 12/06/2021] [Indexed: 01/05/2023]
Abstract
This study aimed to assess the efficacy and safety of different medications available at present for severe coronavirus disease 2019 (COVID-19) infection. We searched databases for randomized controlled trials (RCTs) published up to April 30, 2021, with Chinese or English language restriction, of medications recommended for patients (aged 18 years or older) with severe COVID-19 infection. We extracted data on trials and patient characteristics, and the following primary outcomes: all-cause mortality (ACM), and treatment-emergent adverse events (TEAEs). We identified 1855 abstracts and of these included 15 RCTs comprising 3073 participants through database searches and other sources. In terms of efficacy, compared with the standard of care (SOC) group, no significant decrease in ACM was found in α-lipoic acid, convalescent plasma (CP), azithromycin, tocilizumab, methylprednisolone, interferon beta, CP/SOC, high dosage sarilumab, low dosage sarilumab, remdesivir, lopinavir-ritonavir, auxora, and placebo group. Compared with placebo, we found that a significant decrease in ACM was only found in methylprednisolone (odds ratio [OR]: 0.16, 95% confidence interval [CI]: 0.03-0.75]. With respect to TEAEs, the CP group showed lower TEAEs than placebo (OR: 0.07, 95% CI: 0.01-0.58) or SOC (OR: 0.05, 95% CI: 0.01-0.42) group for the therapy of severe COVID-19 patients. This study only demonstrated that methylprednisolone was superior to placebo in treating patients with severe COVID-19 infection. Meanwhile, this further confirmed that the safety of other treatment interventions might be inferior to CP for the therapy of severe COVID-19 patients.
Collapse
Affiliation(s)
- Qinglin Cheng
- Division of Infectious DiseasesHangzhou Center for Disease Control and PreventionHangzhouZhejiangChina
- Department of Epidemiology and Health Statistics, School of MedicineHangzhou Normal UniversityHangzhouZhejiangChina
| | - Gang Zhao
- Division of Infectious DiseasesHangzhou Center for Disease Control and PreventionHangzhouZhejiangChina
| | - Junfang Chen
- Division of Infectious DiseasesHangzhou Center for Disease Control and PreventionHangzhouZhejiangChina
| | - Qingjun Jia
- Division of Infectious DiseasesHangzhou Center for Disease Control and PreventionHangzhouZhejiangChina
| | - Zijian Fang
- Division of Infectious DiseasesHangzhou Center for Disease Control and PreventionHangzhouZhejiangChina
| |
Collapse
|
18
|
Gupta D, Ahmed F, Tandel D, Parthasarathy H, Vedagiri D, Sah V, Krishna Mohan B, Khan RA, Kondiparthi C, Savari P, Jain S, Reddy S, Kumar JM, Khan N, Harshan KH. Equine immunoglobulin fragment F(ab') 2 displays high neutralizing capability against multiple SARS-CoV-2 variants. Clin Immunol 2022; 237:108981. [PMID: 35306171 PMCID: PMC8926440 DOI: 10.1016/j.clim.2022.108981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/02/2022] [Accepted: 03/12/2022] [Indexed: 01/04/2023]
Abstract
Neutralizing antibody-based passive immunotherapy could be an important therapeutic option against COVID-19. Herein, we demonstrate that equines hyper-immunized with chemically inactivated SARS-CoV-2 elicited high antibody titers with a strong virus-neutralizing potential, and F(ab')2 fragments purified from them displayed strong neutralization potential against five different SARS-CoV-2 variants. F(ab')2 fragments purified from the plasma of hyperimmunized horses showed high antigen-specific affinity. Experiments in rabbits suggested that the F(ab')2 displays a linear pharmacokinetics with approximate plasma half-life of 47 h. In vitro microneutralization assays using the purified F(ab')2 displayed high neutralization titers against five different variants of SARS-CoV-2 including the Delta variant, demonstrating its potential efficacy against the emerging viral variants. In conclusion, this study demonstrates that F(ab')2 generated against SARS-CoV-2 in equines have high neutralization titers and have broad target-range against the evolving variants, making passive immunotherapy a potential regimen against the existing and evolving SARS-CoV-2 variants in combating COVID-19.
Collapse
Affiliation(s)
- Divya Gupta
- Centre for Cellular and Molecular Biology, Hyderabad 500007, Telangana, India
| | - Farhan Ahmed
- School of Life Sciences, Department of Animal Biology, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Dixit Tandel
- Centre for Cellular and Molecular Biology, Hyderabad 500007, Telangana, India,Academy for Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | | | - Dhiviya Vedagiri
- Centre for Cellular and Molecular Biology, Hyderabad 500007, Telangana, India,Academy for Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Vishal Sah
- Centre for Cellular and Molecular Biology, Hyderabad 500007, Telangana, India,Academy for Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | | | - Rafiq Ahmad Khan
- School of Life Sciences, Department of Animal Biology, University of Hyderabad, Hyderabad 500046, Telangana, India
| | | | | | - Sandesh Jain
- VINS Bio Products Limited, Hyderabad 500034, Telangana, India
| | - Shashikala Reddy
- Department of Microbiology, Osmania Medical College, Koti, Hyderabad 500096, Telangana, India
| | - Jerald Mahesh Kumar
- Centre for Cellular and Molecular Biology, Hyderabad 500007, Telangana, India
| | - Nooruddin Khan
- School of Life Sciences, Department of Animal Biology, University of Hyderabad, Hyderabad 500046, Telangana, India,Corresponding authors
| | - Krishnan Harinivas Harshan
- Centre for Cellular and Molecular Biology, Hyderabad 500007, Telangana, India,Academy for Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India,Corresponding authors
| |
Collapse
|
19
|
Elahi R, Karami P, Heidary AH, Esmaeilzadeh A. An updated overview of recent advances, challenges, and clinical considerations of IL-6 signaling blockade in severe coronavirus disease 2019 (COVID-19). Int Immunopharmacol 2022; 105:108536. [PMID: 35074571 PMCID: PMC8747952 DOI: 10.1016/j.intimp.2022.108536] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/01/2022] [Accepted: 01/07/2022] [Indexed: 02/07/2023]
Abstract
Since 2019, COVID-19 has become the most important health dilemma around the world. The dysregulated immune response which results in ARDS and cytokine storm has an outstanding role in the progression of pulmonary damage in COVID-19. IL-6, through induction of pro-inflammatory chemokines and cytokines, is the pioneer of the hyperinflammatory condition and cytokine storm in severe COVID-19. Therefore, IL-6 pathway blockade is considered an emerging approach with high efficacy to reduce lung damage in COVID-19. This article aims to review the pleiotropic roles of the IL-6 pathway in lung damage and ARDS in severe COVID-19, and the rationale for IL-6 signaling blockade at different levels, including IL-6 soluble and membrane receptor pathways, IL-6 downstream signaling (such as JAK-STAT) inhibition, and non-specific anti-inflammatory therapeutic approaches. Recent clinical data of each method, with specific concentration on tocilizumab, along with other new drugs, such as sarilumab and siltuximab, have been discussed. Challenges of IL-6 signaling inhibition, such as the risk of superinfection and hepatic injury, and possible solutions have also been explained. Moreover, to achieve the highest efficacy, ongoing clinical trials and special clinical considerations of using different IL-6 inhibitors have been discussed in detail. Special considerations, including the appropriate timing and dosage, monotherapy or combination therapy, and proper side effect managment must be noticed regarding the clinical administration of these drugs. Future studies are still necessary to improve the productivity and unknown aspects of IL-6 signaling blockade for personalized treatment of severe COVID-19.
Collapse
Affiliation(s)
- Reza Elahi
- Zanjan University of Medical Sciences, Zanjan, Iran
| | - Parsa Karami
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | | | - Abdolreza Esmaeilzadeh
- Department of Immunology, Zanjan University of Medical Sciences, Zanjan, Iran; Cancer Gene Therapy Research Center (CGRC), Zanjan University of Medical Sciences, Zanjan, Iran.
| |
Collapse
|
20
|
Nashaat HAH, Anani M, Attia FM. Convalescent plasma in COVID-19: renewed focus on the timing and effectiveness of an old therapy. Blood Res 2022; 57:6-12. [PMID: 35197369 PMCID: PMC8958377 DOI: 10.5045/br.2021.2021151] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 12/19/2021] [Accepted: 01/06/2022] [Indexed: 11/22/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the coronavirus disease 2019 (COVID-19) pandemic that has strained health care systems worldwide and resulted in high mortality. The current COVID-19 treatment is based on supportive and symptomatic care. Therefore, convalescent plasma (CP), which provides passive immunization against many infectious diseases, has been studied for COVID-19 management. To date, a large number of randomized and non-randomized clinical trials as well as many systematic reviews have revealed conflicting results. This article summarizes the basic principles of passive immunization, particularly addressing CP in COVID-19. It also evaluates the effectiveness of CP as a therapy in patients with COVID-19, clinical trial reports and systematic reviews, regulatory considerations and different protocols that are authorized in different countries to use it safely and effectively. An advanced search was carried out in major databases (PubMed, Cochrane Library, and MEDLINE) and Google Scholar using the following key words: SARS-CoV-2, COVID-19, convalescent plasma, and the applied query was "convalescent plasma" AND "COVID-19 OR SARS-CoV-2". The results were filtered and duplicate data were removed. Collective evidence indicates that two cardinal players determine the effectiveness of CP use, time of infusion, and quality of CP. Early administration of CP with high neutralizing anti-spike IgG titer is hypothesized to be effective in improving clinical outcome, prevent progression, decrease the length of hospital stay, and reduce mortality. However, more reliable, high quality, well-controlled, double-blinded, randomized, international and multicenter collaborative trials are still needed.
Collapse
Affiliation(s)
- Hebat-Allah Hassan Nashaat
- Department of Clinical and Chemical Pathology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Maha Anani
- Department of Clinical and Chemical Pathology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Fadia M. Attia
- Department of Clinical and Chemical Pathology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
21
|
Perplexing issues for convalescent immune plasma therapy in COVID-19. North Clin Istanb 2022; 8:634-643. [PMID: 35284793 PMCID: PMC8848483 DOI: 10.14744/nci.2021.73604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/22/2021] [Indexed: 11/20/2022] Open
Abstract
Convalescent immune plasma (CIP) therapy in coronavirus disease 2019 (COVID-19) is presently a trendy choice of treatment. On March 24, 2020, the United States Food and Drug Administration approved of CIP treatment for seriously ill COVID-19 patients as an emergency investigational new drug. The precise mechanisms of action for CIP in COVID-19 have not yet been undoubtedly recognized. However, earlier research demonstrated that the main mechanism of CIP such as in other viral infections is viral neutralization. Systematic reviews and meta-analyses of the CIP transfusion in severe infectious diseases have shown that CIP has some beneficial effects and it is a harmless process to cure infectious diseases early after symptom beginning. It is suggested that SARS-CoV-2 neutralizing antibody titers in CIP should be ideally higher than 1:320, but lower thresholds could also be useful. The suggested minimum dose for one individual is one unit (200 mL) of CIP. The second unit can be given 48 h succeeding the end of the transfusion of the first unit of CIP. Moreover, CIP can be applied up to a maximum of three units (600 mL). CIP could be administered in other systemic diseases, viral infections coincidentally associated with SARS-CoV-2 infection, as well as other therapeutic approaches for COVID-19. There are generally no serious adverse events described from CIP transfusion in these recipients. CIP may have a significant role as one of the therapeutic modalities for various viral infections when enough vaccines or other specific therapeutic agents are not on hand.
Collapse
|
22
|
Monroe I, Dale M, Schwabe M, Schenkel R, Schenarts PJ. The COVID-19 Patient in the Surgical Intensive Care Unit. Surg Clin North Am 2022; 102:1-21. [PMID: 34800379 PMCID: PMC8479422 DOI: 10.1016/j.suc.2021.09.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
COVID-19 continues to rampage around the world. Noncritical care-trained physicians may be deployed into the intensive care unit to manage these complex patients. Although COVID-19 is primarily a respiratory disease, it is also associated with significant pathology in the brain, heart, vasculature, lungs, gastrointestinal tract, and kidneys. This article provides an overview of COVID-19 using an organ-based, systematic approach.
Collapse
|
23
|
Ravula U, Chunchu SR, Mooli S, Naik R, Sarangapati PRR. SARS-CoV-2 Neutralizing Capacity among Blood Donors without prior COVID-19 symptomatic history vs Blood Donors with prior COVID-19 symptomatic history: A Comparative Study. Transfus Clin Biol 2022; 29:107-111. [PMID: 35167958 PMCID: PMC8839806 DOI: 10.1016/j.tracli.2022.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/25/2022] [Accepted: 02/10/2022] [Indexed: 12/02/2022]
Abstract
Introduction Though moderate to severely ill COVID-19 patients are being treated using COVID Convalescent plasma across the world, there is a lack of standardization or information about the relative neutralizing capacity of antibodies from convalescent plasma donors. The current study aimed to compare the neutralizing antibody inhibition levels between COVID-Convalescent plasma from apheresis donors who had symptomatic COVID-19 history and asymptomatic blood donors, i.e., whole blood donors without prior any COVID-19 positive diagnosis nor symptoms/contact history related to COVID-19. Methods Observational study conducted at the Blood Centre, Tertiary Care Hospital, South India on blood donor samples during the period July–December 2020. A total of 90 samples (43 convalescent plasma donors and 47 whole blood donors) were tested for SARS-CoV-2-IgG and Neutralising antibodies. Results No significant difference in neutralization capacity was observed between these symptomatic vs. asymptomatic donors. Also, inhibition % appeared similar in the two groups with respect to age, gender, blood group, donation status, or type of donation without any statistical significance. On analyzing the correlation between the SARS-CoV-2-IgG levels and neutralizing antibodies among the WBD and CCP, both the groups showed a positive correlation, while neutralizing antibodies showed a significant correlation with SARS-CoV-2-IgG levels among the whole blood donors (Pearson correlation P = 0.000). Conclusion No significant difference in neutralizing antibody capacity was observed in asymptomatic whole blood donors and convalescent plasma donors. Therefore, donors having adequate levels of SARS-CoV-2-IgG antibody levels on screening can be considered for convalescent plasma donation irrespective of prior COVID-19 diagnosis or COVID-related symptoms.
Collapse
Affiliation(s)
- Ushasree Ravula
- Department of Transfusion Medicine, ESIC Medical College Hospital, Sanath Nagar, 500038 Hyderabad, Telangana State, India.
| | - Srinivasa Rao Chunchu
- Department of Transfusion Medicine, ESIC Medical College Hospital, Sanath Nagar, 500038 Hyderabad, Telangana State, India
| | - Srujaleswari Mooli
- Department of Transfusion Medicine, ESIC Medical College Hospital, Sanath Nagar, 500038 Hyderabad, Telangana State, India
| | - Ravi Naik
- Department of Transfusion Medicine, ESIC Medical College Hospital, Sanath Nagar, 500038 Hyderabad, Telangana State, India
| | - Pandu Ranga Rao Sarangapati
- Department of Transfusion Medicine, ESIC Medical College Hospital, Sanath Nagar, 500038 Hyderabad, Telangana State, India
| |
Collapse
|
24
|
Balzanelli MG, Distratis P, Lazzaro R, D’Ettorre E, Nico A, Inchingolo F, Dipalma G, Tomassone D, Serlenga EM, Dalagni G, Ballini A, Nguyen KCD, Isacco CG. New Translational Trends in Personalized Medicine: Autologous Peripheral Blood Stem Cells and Plasma for COVID-19 Patient. J Pers Med 2022; 12:85. [PMID: 35055400 PMCID: PMC8778886 DOI: 10.3390/jpm12010085] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/29/2021] [Accepted: 01/04/2022] [Indexed: 02/04/2023] Open
Abstract
The COVID-19 pandemic, caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), still remains a severe threat. At the time of writing this paper, the second infectious wave has caused more than 280,000 deaths all over the world. Italy was one of the first countries involved, with more than 200,000 people reported as infected and 30,000 deaths. There are no specific treatments for COVID-19 and the vaccine still remains somehow inconclusive. The world health community is trying to define and share therapeutic protocols in early and advanced clinical stages. However, numbers remain critical with a serious disease rate of 14%, ending with sepsis, acute respiratory distress syndrome (ARDS), multiple organ failure (MOF) and vascular and thromboembolic findings. The mortality rate was estimated within 2-3%, and more than double that for individuals over 65 years old; almost one patient in three dies in the Intensive Care Unit (ICU). Efforts for effective solutions are underway with multiple lines of investigations, and health authorities have reported success treating infected patients with donated plasma from survivors of the illness, the proposed benefit being protective antibodies formed by the survivors. Plasma transfusion, blood and stem cells, either autologous or allograft transplantation, are not novel therapies, and in this short paper, we propose therapeutic autologous plasma and peripheral blood stem cells as a possible treatment for fulminant COVID-19 infection.
Collapse
Affiliation(s)
- Mario Giosuè Balzanelli
- SET-118, Department of Pre-Hospital and Emergency, SG Giuseppe Moscati Hospital, 74010 Taranto, Italy; (M.G.B.); (P.D.); (R.L.)
| | - Pietro Distratis
- SET-118, Department of Pre-Hospital and Emergency, SG Giuseppe Moscati Hospital, 74010 Taranto, Italy; (M.G.B.); (P.D.); (R.L.)
| | - Rita Lazzaro
- SET-118, Department of Pre-Hospital and Emergency, SG Giuseppe Moscati Hospital, 74010 Taranto, Italy; (M.G.B.); (P.D.); (R.L.)
| | - Ernesto D’Ettorre
- Department of Pneumology, SG Giuseppe Moscati Hospital, 74010 Taranto, Italy; (E.D.); (A.N.); (G.D.)
| | - Andrea Nico
- Department of Pneumology, SG Giuseppe Moscati Hospital, 74010 Taranto, Italy; (E.D.); (A.N.); (G.D.)
| | - Francesco Inchingolo
- Department of Interdisciplinary Medicine, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (F.I.); (G.D.)
| | - Gianna Dipalma
- Department of Interdisciplinary Medicine, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (F.I.); (G.D.)
| | - Diego Tomassone
- Foundation of Physics Research Center, Celico, 87100 Cosenza, Italy;
| | | | - Giancarlo Dalagni
- Department of Pneumology, SG Giuseppe Moscati Hospital, 74010 Taranto, Italy; (E.D.); (A.N.); (G.D.)
| | - Andrea Ballini
- School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | | | - Ciro Gargiulo Isacco
- SET-118, Department of Pre-Hospital and Emergency, SG Giuseppe Moscati Hospital, 74010 Taranto, Italy; (M.G.B.); (P.D.); (R.L.)
- American Stem Cells Hospital, Ho Chi Minh 70000, Vietnam;
| |
Collapse
|
25
|
Mehraeen E, Najafi Z, Hayati B, Javaherian M, Rahimi S, Dadras O, SeyedAlinaghi S, Ghadimi M, Sabatier JM. Current Treatments and Therapeutic Options for COVID-19 Patients: A Systematic Review. Infect Disord Drug Targets 2022; 22:e260721194968. [PMID: 34313204 DOI: 10.2174/1871526521666210726150435] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/09/2021] [Accepted: 05/19/2021] [Indexed: 02/08/2023]
Abstract
INTRODUCTION COVID-19 is the third rising epidemic in the 21st century that quickly turned into a worldwide pandemic. Many clinical studies have been achieved to investigate treatments to confront COVID-19. Therefore, we conducted a systematic review to describe the recent treatment strategies to treat COVID-19 patients. METHODS A systematic search was performed in the databases of PubMed, Scopus, Embase, Science direct, Up to date, and Web of Science using the keywords of Coronavirus, COVID-19, SARS-CoV-2, Novel Coronavirus, 2019-nCoV, Treatment, Medicine, Therapy, Intervention, Drug, Medications, and Cure. All the relevant articles were collected from December 2019 to July 2020. RESULTS We included 58 studies including 38 articles (eleven reviews, ten editorial documents, three case reports, one mix method, one cohort study), and 19 published clinical trials. Review of studies showed that Lopinavir/Ritonavir (n=16), Remdesivir (n=13), Convalescent plasma (n=11), Chloroquine (n=11), Ribavirin (n=9), Hydroxychloroquine sulfate (n=8), Traditional Chinese Medicine (TCM) (n=8), and Arbidol (n=7), were the most frequently therapies used to treat COVID-19 patients. CONCLUSION In the absence of definitive treatment protocols, recently proposed approaches have appeared to be an effective therapy for accelerating the recovery of COVID-19 patients. Some of these treatments may have been in the early stages of testing. However, future preclinical and clinical trials are warranted to validate findings.
Collapse
Affiliation(s)
- Esmaeil Mehraeen
- Department of Health Information Technology, Khalkhal University of Medical Sciences, Khalkhal, Iran
| | - Zeinab Najafi
- Iranian Research Center for HIV/AIDS, Iranian Institute for Reduction of High Risk Behaviors, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Hayati
- Department of Environmental Health, Khalkhal University of Medical Sciences, Khalkhal, Iran
| | - Mohammad Javaherian
- Department of Physiotherapy, Tehran University of Medical Sciences, Tehran, Iran
| | - Sajad Rahimi
- Department of Environmental Health, Khalkhal University of Medical Sciences, Khalkhal, Iran
| | - Omid Dadras
- School of Public Health, Walailak University 222 Thaiburi Thasala, Nakhon Si Thammarat, Thailand
| | - SeyedAhmad SeyedAlinaghi
- Iranian Research Center for HIV/AIDS, Iranian Institute for Reduction of High Risk Behaviors, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Ghadimi
- Postdoctoral Fellow, Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jean-Marc Sabatier
- Institut de Neuro-physiopathologie (INP), Faculté de Pharmacie, Université Aix-Marseille, UMR 7051, 27 Bd Jean Moulin, 13385 Marseille Cedex, France
| |
Collapse
|
26
|
Aravind S, Mathew KA, Madathil BK, Mini S, John A. Current strategies and future perspectives in COVID-19 therapy. STEM CELLS AND COVID-19 2022:169-227. [DOI: 10.1016/b978-0-323-89972-7.00011-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
27
|
Shen Q, Li J, Zhang Z, Guo S, Wang Q, An X, Chang H. COVID-19: systemic pathology and its implications for therapy. Int J Biol Sci 2022; 18:386-408. [PMID: 34975340 PMCID: PMC8692150 DOI: 10.7150/ijbs.65911] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/04/2021] [Indexed: 02/06/2023] Open
Abstract
Responding to the coronavirus disease 2019 (COVID-19) pandemic has been an unexpected and unprecedented global challenge for humanity in this century. During this crisis, specialists from the laboratories and frontline clinical personnel have made great efforts to prevent and treat COVID-19 by revealing the molecular biological characteristics and epidemic characteristics of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Currently, SARS-CoV-2 has severe consequences for public health, including human respiratory system, immune system, blood circulation system, nervous system, motor system, urinary system, reproductive system and digestive system. In the review, we summarize the physiological and pathological damage of SARS-CoV-2 to these systems and its molecular mechanisms followed by clinical manifestation. Concurrently, the prevention and treatment strategies of COVID-19 will be discussed in preclinical and clinical studies. With constantly unfolding and expanding scientific understanding about COVID-19, the updated information can help applied researchers understand the disease to build potential antiviral drugs or vaccines, and formulate creative therapeutic ideas for combating COVID-19 at speed.
Collapse
Affiliation(s)
- Qi Shen
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Jie Li
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Zhan Zhang
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510120, China
| | - Shuang Guo
- Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
| | - Qiuhong Wang
- Qilu Cell Therapy Technology Co., Ltd, Jinan 250000, China
| | - Xiaorui An
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Haocai Chang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
28
|
Islam KU, A-Elgadir TME, Afaq S, Ahmad T, Iqbal J. Molecular and Clinical Aspects of COVID-19 Vaccines and Other Therapeutic Interventions Apropos Emerging Variants of Concern. Front Pharmacol 2021; 12:778219. [PMID: 35002711 PMCID: PMC8734653 DOI: 10.3389/fphar.2021.778219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/08/2021] [Indexed: 11/13/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) has overwhelmed the healthcare and economy of the world, with emerging new variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) posing an everlasting threat to humanity. While most COVID-19 vaccines provide adequate protective immunological response against the original SARS-CoV-2 variant, there is a pressing need to understand their biological and clinical responses. Recent evidence suggests that some of the new variants of SARS-CoV-2 evade the protection conferred by the existing vaccines, which may impede the ongoing efforts to expedite the vaccination programs worldwide. These concerns have also highlighted the importance of a pan-COVID-19 vaccine, which is currently in the making. Thus, it is imperative to have a better molecular and clinical understanding of the various COVID-19 vaccines and their immunological trajectory against any emerging variant of concerns (VOCs) in particular to break this vicious cycle. Furthermore, other treatment regimens based on cellular therapies and monoclonal antibodies should be explored systematically as an alternative and readily available option considering the possibility of the emergence of more virulent SARS-CoV-2 mutants. In this review, we shed light on the various molecular mechanisms and clinical responses of COVID-19 vaccines. Importantly, we review the recent findings of their long-term immune protection and efficacy against emerging VOCs. Considering that other targeted and effective treatments will complement vaccine therapy, we provide a comprehensive understanding of the role of cell-based therapies, monoclonal antibodies, and immunomodulatory agents as alternative and readily available treatment modalities against any emerging SARS-CoV-2 variant.
Collapse
Affiliation(s)
- Khursheed Ul Islam
- Multidisciplinary Centre for Advanced Research and Studies, Jamia Millia Islamia, New Delhi, India
| | | | - Sarah Afaq
- Department of Clinical Biochemistry, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Tanveer Ahmad
- Multidisciplinary Centre for Advanced Research and Studies, Jamia Millia Islamia, New Delhi, India
| | - Jawed Iqbal
- Multidisciplinary Centre for Advanced Research and Studies, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
29
|
Zou H, Yang Y, Dai H, Xiong Y, Wang JQ, Lin L, Chen ZS. Recent Updates in Experimental Research and Clinical Evaluation on Drugs for COVID-19 Treatment. Front Pharmacol 2021; 12:732403. [PMID: 34880750 PMCID: PMC8646041 DOI: 10.3389/fphar.2021.732403] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/13/2021] [Indexed: 12/17/2022] Open
Abstract
Since the outbreak of corona virus disease 2019 (COVID-19) in Wuhan (China) in December 2019, the epidemic has rapidly spread to many countries around the world, posing a huge threat to global public health. In response to the pandemic, a number of clinical studies have been initiated to evaluate the effect of various treatments against COVID-19, combining medical strategies and clinical trial data from around the globe. Herein, we summarize the clinical evaluation about the drugs mentioned in this review for COVID-19 treatment. This review discusses the recent data regarding the efficacy of various treatments in COVID-19 patients, to control and prevent the outbreak.
Collapse
Affiliation(s)
| | - Yuqi Yang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Huiqiang Dai
- Cell Research Center, Shenzhen Bolun Institute of Biotechnology, Shenzhen, China
| | - Yunchuang Xiong
- Cell Research Center, Shenzhen Bolun Institute of Biotechnology, Shenzhen, China
| | - Jing-Quan Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Lusheng Lin
- Cell Research Center, Shenzhen Bolun Institute of Biotechnology, Shenzhen, China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| |
Collapse
|
30
|
Tiwari V, Kumar M, Tiwari A, Sahoo BM, Singh S, Kumar S, Saharan R. Current trends in diagnosis and treatment strategies of COVID-19 infection. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:64987-65013. [PMID: 34601675 PMCID: PMC8487330 DOI: 10.1007/s11356-021-16715-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/21/2021] [Indexed: 04/15/2023]
Abstract
Coronaviruses are terrifically precise and adapted towards specialized respiratory epithelial cells, observed in organ culture and human volunteers both. This virus is found to possess an unpredictable anti-viral T-cell response which in turn results in T-cell activation and finally apoptosis, leading to cytokine storm and collapse of the whole immune system. The present review provides comprehensive information regarding SARS-CoV-2 infection, mutant strains, and the impact of SARS-COV-2 on vital organs, the pathophysiology of the disease, diagnostic tests available, and possible treatments. It also includes all the vaccines developed so far throughout the world to control this pandemic. Until now, 18 vaccines have been approved by the WHO and further 22 vaccines are in the third trial. This study also provides up-to-date information regarding the drugs repurposed in clinical trials and the recent status of allopathic drugs along with its result. Although vaccines are available, specific treatment is not available for the disease. Furthermore, the effect of vaccines on new variants is a new area of research at this time. Therefore, a preventive attitude is the best approach to fight against this virus.
Collapse
Affiliation(s)
- Varsha Tiwari
- Department of Pharmacy, Devsthali Vidyapeeth College of Pharmacy, Lalpur (U.S. Nagar), Uttrakhand, Rudrapur, 236148, India
| | - Manish Kumar
- M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Ambala, Haryana, 133207, India
| | - Abhishek Tiwari
- Department of Pharmacy, Devsthali Vidyapeeth College of Pharmacy, Lalpur (U.S. Nagar), Uttrakhand, Rudrapur, 236148, India.
| | - Biswa Mohan Sahoo
- Roland Institute of Pharmaceutical Sciences, Odisha, ha-760010, Berhampur, India
| | - Sunil Singh
- Department of Pharmaceutical Chemistry, Shri Sai College of Pharmacy, Handia, Prayagraj, Uttar Pradesh, 221503, India
| | - Suresh Kumar
- Bharat Institute of Pharmacy, Pehladpur, Babain, Kurukshetra, Haryana, 136156, India
| | - Renu Saharan
- M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Ambala, Haryana, 133207, India
| |
Collapse
|
31
|
Wadaa-Allah A, Emhamed MS, Sadeq MA, Ben Hadj Dahman N, Ullah I, Farrag NS, Negida A. Efficacy of the current investigational drugs for the treatment of COVID-19: a scoping review. Ann Med 2021; 53:318-334. [PMID: 33706639 PMCID: PMC7971293 DOI: 10.1080/07853890.2021.1875500] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 01/08/2021] [Indexed: 01/08/2023] Open
Abstract
To date, there is no final FDA-approved treatment for COVID-19. There are thousands of studies published on the available treatments for COVID-19 virus in the past year. Therefore, it is crucial to synthesize and summarize the evidence from published studies on the safety and efficacy of experimental treatments of COVID-19. We conducted a systematic literature search of MEDLINE, PubMed, Cochrane Library, GHL, OpenGrey, ICTRP, and ClinicalTrials.gov databases through April 2020. We obtained 2699 studies from the initial literature search. Of them, we included 28 eligible studies that met our eligibility criteria. The sample size of the included studies is 2079 individuals. We extracted and pooled the available data and conducted a quality assessment for the eligible studies. From the 28 studies, only 13 studies provide strong evidence. Our results showed that Favipiravir and Hydroxycholoroquine shorten viral clearance and clinical recovery time and promote pneumonia absorption. On the other hand, Lopinavir-ritonavir either alone or combined with arbidol or interferons has no significant difference superior to the standard care. Corticosteroids, Convalescent plasma transfusion, and anticoagulant therapies provide a better prognosis. Remedsivir, Tocilizumab, Immunoglobulin, Mesenchymal stem cell transplantation showed effective treatment results, but further confirmatory studies are needed. In conclusion, Favipiravir and Remedsivir might be promising drugs in the treatment of COVID-19 patients. .
Collapse
Affiliation(s)
- Ahmed Wadaa-Allah
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | | | | | | | - Irfan Ullah
- Kabir Medical College, Gandhara University, Peshawar, Pakistan
| | - Nesrine S. Farrag
- Community Medicine Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Ahmed Negida
- Zagazig University Hospitals, Zagazig University, El-Sharkia, Egypt
| |
Collapse
|
32
|
Saied EM, El-Maradny YA, Osman AA, Darwish AMG, Abo Nahas HH, Niedbała G, Piekutowska M, Abdel-Rahman MA, Balbool BA, Abdel-Azeem AM. A Comprehensive Review about the Molecular Structure of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2): Insights into Natural Products against COVID-19. Pharmaceutics 2021; 13:1759. [PMID: 34834174 PMCID: PMC8624722 DOI: 10.3390/pharmaceutics13111759] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/06/2021] [Accepted: 10/11/2021] [Indexed: 12/15/2022] Open
Abstract
In 2019, the world suffered from the emergence of COVID-19 infection, one of the most difficult pandemics in recent history. Millions of confirmed deaths from this pandemic have been reported worldwide. This disaster was caused by SARS-CoV-2, which is the last discovered member of the family of Coronaviridae. Various studies have shown that natural compounds have effective antiviral properties against coronaviruses by inhibiting multiple viral targets, including spike proteins and viral enzymes. This review presents the classification and a detailed explanation of the SARS-CoV-2 molecular characteristics and structure-function relationships. We present all currently available crystal structures of different SARS-CoV-2 proteins and emphasized on the crystal structure of different virus proteins and the binding modes of their ligands. This review also discusses the various therapeutic approaches for COVID-19 treatment and available vaccinations. In addition, we highlight and compare the existing data about natural compounds extracted from algae, fungi, plants, and scorpion venom that were used as antiviral agents against SARS-CoV-2 infection. Moreover, we discuss the repurposing of select approved therapeutic agents that have been used in the treatment of other viruses.
Collapse
Affiliation(s)
- Essa M. Saied
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
- Institute for Chemistry, Humboldt Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany
| | - Yousra A. El-Maradny
- Microbiology Department, High Institute of Public Health, Alexandria University, Alexandria 21526, Egypt;
| | - Alaa A. Osman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, New Giza University, Newgiza, km 22 Cairo-Alexandria Desert Road, Cairo 12256, Egypt;
| | - Amira M. G. Darwish
- Food Technology Department, Arid Lands Cultivation Research Institute (ALCRI), City of Scientific Research and Technological Applications (SRTA City), Alexandria 21934, Egypt;
| | - Hebatallah H. Abo Nahas
- Zoology Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt; (H.H.A.N.); (M.A.A.-R.)
| | - Gniewko Niedbała
- Department of Biosystems Engineering, Faculty of Environmental and Mechanical Engineering, Poznań University of Life Sciences, Wojska Polskiego 50, 60-627 Poznań, Poland;
| | - Magdalena Piekutowska
- Department of Geoecology and Geoinformation, Institute of Biology and Earth Sciences, Pomeranian University in Słupsk, Partyzantów 27, 76-200 Słupsk, Poland;
| | - Mohamed A. Abdel-Rahman
- Zoology Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt; (H.H.A.N.); (M.A.A.-R.)
| | - Bassem A. Balbool
- Faculty of Biotechnology, October University for Modern Sciences and Arts, Giza 12585, Egypt;
| | - Ahmed M. Abdel-Azeem
- Botany and Microbiology Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
33
|
Rafiee Z, Nejaddehbashi F, Nasrolahi A, Khademi Moghadam F. Stem cell-based and mesenchymal stem cell derivatives for coronavirus treatment. Biotechnol Appl Biochem 2021; 69:1942-1965. [PMID: 34555225 DOI: 10.1002/bab.2259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 09/16/2021] [Indexed: 11/09/2022]
Abstract
Coronavirus disease 2019 (COVID-19) as one of the types of pneumonia was first reported in Wuhan, China in December 2019. COVID-19 is considered the third most common coronavirus among individuals after acute respiratory syndrome (SARS-CoV) and the Middle East respiratory syndrome (MERS-CoV) in the 20th century. Many studies have shown that cell therapy and regenerative medicine approaches have an impressive effect on different dangerous diseases in a way that using a cell-based experiment could be effective for improving humans with severe acute respiratory infections caused by the 2019 novel coronavirus. Accordingly, due to the stunning effects of mesenchymal stem cells (MSCs) and derivatives on the treatment of various diseases, this review focuses on the auxiliary role of MSCs and their derivatives in reducing the inflammatory processes of acute respiratory infections resulted from the 2019 novel coronavirus. The reported MSCs treatment outcomes are significant because these cells prevent the immune system from overactivating and improve, endogenous repair by improving the lung microenvironment after the SARS-CoV-2 infection. The MSCs can be an effective, autologous, and safe treatment, and therefore, share the results. To date, the results of several studies have shown that MSCs and their derivatives can inhibit inflammation. Exosomes act as intercellular communication devices between cells for the transfer of active molecules. In this review, recent MSCs and their derivatives-based clinical trials for the cure of COVID-19 are introduced.
Collapse
Affiliation(s)
- Zeinab Rafiee
- cellular and molecular research center, Medical Basic Sciences Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Anatomical Sciences, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Fereshteh Nejaddehbashi
- cellular and molecular research center, Medical Basic Sciences Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ava Nasrolahi
- Infectious Ophthalmologic Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Pain Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | |
Collapse
|
34
|
Baral PK, Yin J, James MNG. Treatment and prevention strategies for the COVID 19 pandemic: A review of immunotherapeutic approaches for neutralizing SARS-CoV-2. Int J Biol Macromol 2021; 186:490-500. [PMID: 34237371 PMCID: PMC8256663 DOI: 10.1016/j.ijbiomac.2021.07.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/02/2021] [Accepted: 07/02/2021] [Indexed: 12/19/2022]
Abstract
Researchers from the world over are working to create prophylactic and therapeutic interventions to combat the COVID-19 global healthcare crisis. The current therapeutic options against the COVID-19 include repurposed drugs aimed at targets other than virus-specific proteins. Antibody-based therapeutics carry a lot of promise, and there are several of these candidates for COVID-19 treatment currently being investigated in the preclinical and clinical research stages around the world. The viral spike protein (S protein) appears to be the main target of antibody development candidates, with the majority being monoclonal antibodies. Several antibody candidates targeting the SARS-CoV-2 S protein include LY-CoV555, REGN-COV2, JS016, TY027, CT-P59, BRII-196, BRII-198 and SCTA01. These neutralizing antibodies will treat COVID-19 and possibly future coronavirus infections. Future studies should focus on effective immune-therapeutics and immunomodulators with the purpose of developing specific, affordable, and cost-effective prophylactic and treatment regimens to fight the COVID-19 globally.
Collapse
Affiliation(s)
- Pravas Kumar Baral
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Jiang Yin
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Michael N G James
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| |
Collapse
|
35
|
Liu D, Zeng X, Ding Z, Lv F, Mehta JL, Wang X. Adverse Cardiovascular Effects of Anti-COVID-19 Drugs. Front Pharmacol 2021; 12:699949. [PMID: 34512335 PMCID: PMC8424204 DOI: 10.3389/fphar.2021.699949] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 08/13/2021] [Indexed: 12/15/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or COVID-19 infection is the cause of the ongoing global pandemic. Mortality from COVID-19 infection is particularly high in patients with cardiovascular diseases. In addition, COVID-19 patients with preexisting cardiovascular comorbidities have a higher risk of death. Main cardiovascular complications of COVID-19 are myocardial infarction, myocarditis, acute myocardial injury, arrhythmias, heart failure, stroke, and venous thromboembolism. Therapeutic interventions in terms of drugs for COVID-19 have many cardiac adverse effects. Here, we review the relative therapeutic efficacy and adverse effects of anti-COVID-19 drugs.
Collapse
Affiliation(s)
- Dongling Liu
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China
| | - Xiang Zeng
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, China
| | - Zufeng Ding
- Division of Cardiology, University of Arkansas for Medical Sciences and Central Arkansas Veterans Healthcare System, Little Rock, AR, United States
| | - Fenghua Lv
- Department of Cardiology, Xinxiang Medical University First Affiliated Hospital, Weihui, China
| | - Jawahar L. Mehta
- Division of Cardiology, University of Arkansas for Medical Sciences and Central Arkansas Veterans Healthcare System, Little Rock, AR, United States
| | - Xianwei Wang
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China
- Department of Cardiology, Xinxiang Medical University First Affiliated Hospital, Weihui, China
| |
Collapse
|
36
|
Conan PL, Ficko C, Chueca M, Rolland C, Javaudin O, Bigaillon C, Durand GA, Leparc-Goffart I, Verret C, Aletti M, Dutasta F, Savini H, Bosson JL, Martinaud C. COVID-19 Repeated Convalescent Plasma Collection: Analysis of 149 Donations from 88 French Military Health Workers. Transfus Med Hemother 2021; 395:1-6. [PMID: 34580580 PMCID: PMC8450834 DOI: 10.1159/000515843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 02/16/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Passive therapy with convalescent plasma (CP) could be an effective and safe treatment option in COVID-19 patients. Neutralizing antibodies present in CP generated in response to SARS-CoV-2 infection and directed against the receptor-binding domain of the spike protein are considered to play a major role in the viral clearance. CP infusion may also contribute to the modulation of the immune response through its immunomodulatory effect. We describe for the first time the effectiveness of a CP collection protocol from repeated donations in young patients. MATERIALS AND METHODS We enrolled health service workers who experienced mild to moderate COVID-19 and from whom several donations have been collected. No minimal severity threshold and no biological cure criteria were required. Donors could return to a second plasma donation 14 days after the first donation. A minimal neutralizing antibody titer of 1:40 was considered for clinical use. RESULTS Eighty-eight donors were included (median age 35 [28-48] years, 41 women), and 149 plasma products were collected. COVID-19 were mainly WHO stage 2 infections (96%). Among the 88 first donations, 76% had neutralizing antibody titers higher than or equal to 1:40. Eighty-eight percent of donors who came for a second donation had a neutralizing antibody titer of 1:40. Median durations were 15 (15-19) and 38 (33-46) days from the first to the second donation and from recovery to the second donation, respectively. Sixty-nine percent of donors who came for a third donation had a neutralizing antibody titer of 1:40. Median durations were 16 (13-37) and 54 (49-61) days from the second to the third donation and from recovery to the third donation, respectively. No significant difference was observed between the IgG ratio and the age of the donors or the time between recovery and donation. The average IgG ratio did not significantly vary between donations. When focused on repeated blood donors, no significant differences were observed either. CONCLUSION The recruitment of young patients with a mild to moderate CO-VID-19 course is an efficient possibility to collect CP with a satisfactory level of neutralizing antibodies. Repeated donations are a well-tolerated and effective way of CP collection.
Collapse
Affiliation(s)
- Pierre-Louis Conan
- Service de maladies infectieuses et tropicales − Hôpital d'Instruction des Armées Bégin, Saint-Mandé, France
| | - Cécile Ficko
- Service de maladies infectieuses et tropicales − Hôpital d'Instruction des Armées Bégin, Saint-Mandé, France
| | - Marine Chueca
- Centre de transfusion des Armées - Hôpital d'Instruction des Armées Percy, Clamart, France
| | - Carole Rolland
- Laboratoire TIMC-IMAG, UMR, CNRS 5525, Université Grenoble Alpes, Grenoble, France
| | - Olivier Javaudin
- Centre de transfusion des Armées - Hôpital d'Instruction des Armées Percy, Clamart, France
| | - Christine Bigaillon
- Service de Biologie - Hôpital d'Instruction des Armées Bégin, Saint-Mandé, France
| | - Guillaume-André Durand
- French Armed Forces Biomedical Research Institute, National Reference Laboratory for Arboviruses, Marseille, France
| | - Isabelle Leparc-Goffart
- French Armed Forces Biomedical Research Institute, National Reference Laboratory for Arboviruses, Marseille, France
| | - Catherine Verret
- Direction de la Formation de la Recherche et de l'Innovation, Direction Centrale du Service de Santé des Armées, Paris, France
| | - Marc Aletti
- Service de médecine interne − Hôpital d'Instruction des Armées Percy, Clamart, France
| | - Fabien Dutasta
- Service de médecine interne et maladies infectieuses et tropicales − Hôpital d'Instruction des Armées Saint-Anne, Toulon, France
| | - Hélène Savini
- Service de maladies infectieuses et tropicales − Hôpital d'Instruction des Armées Laveran, Marseille, France
| | - Jean-Luc Bosson
- Laboratoire TIMC-IMAG, UMR, CNRS 5525, Université Grenoble Alpes, Grenoble, France
| | - Christophe Martinaud
- Centre de transfusion des Armées - Hôpital d'Instruction des Armées Percy, Clamart, France
| |
Collapse
|
37
|
Polat C, Ergunay K. Insights into the virologic and immunologic features of SARS-COV-2. World J Clin Cases 2021; 9:5007-5018. [PMID: 34307551 PMCID: PMC8283606 DOI: 10.12998/wjcc.v9.i19.5007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/03/2021] [Accepted: 05/24/2021] [Indexed: 02/06/2023] Open
Abstract
The host immunity is crucial in determining the clinical course and prognosis of coronavirus disease 2019, where some systemic and severe manifestations are associated with excessive or suboptimal responses. Several antigenic epitopes in spike, nucleocapsid and membrane proteins of severe acute respiratory syndrome coronavirus 2 are targeted by the immune system, and a robust response with innate and adaptive components develops in infected individuals. High titer neutralizing antibodies and a balanced T cell response appears to constitute the optimal immune response to severe acute respiratory syndrome coronavirus 2, where innate and mucosal defenses also contribute significantly. Following exposure, immunological memory seems to develop and be maintained for substantial periods. Here, we provide an overview of the main aspects in antiviral immunity involving innate and adaptive responses with insights into virus structure, individual variations pertaining to disease severity as well as long-term protective immunity expected to be attained by vaccination.
Collapse
Affiliation(s)
- Ceylan Polat
- Department of Medical Microbiology, Hacettepe University Faculty of Medicine, Ankara 06100, Turkey
| | - Koray Ergunay
- Department of Medical Microbiology, Hacettepe University Faculty of Medicine, Ankara 06100, Turkey
| |
Collapse
|
38
|
Keikha M, Karbalaei M. Convalescent plasma therapy as a conventional trick for treating COVID-19: a systematic review and meta-analysis study. New Microbes New Infect 2021; 42:100901. [PMID: 34026229 PMCID: PMC8129993 DOI: 10.1016/j.nmni.2021.100901] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/11/2021] [Accepted: 05/09/2021] [Indexed: 02/05/2023] Open
Abstract
Convalescent plasma therapy (CPT) is one of the well-known therapeutic protocols for treating infectious diseases that do not have special treatment or vaccine. Several documents confirm the clinical efficacy of this therapy for treating bacterial and viral infections. A comprehensive systematic search was conducted by August 2020 using global databases including PubMed, Scopus, Embase, Cochrane library, Google scholar, medRxiv and bioRxiv. The Joanna Briggs Institute critical appraisal checklist was used to evaluate the included studies. Using the Comprehensive Meta-Analysis software version 2.2 (Biostat, Englewood, NJ, USA), the pooled data analysis process was performed. A total of 15 eligible articles were enrolled in the current quantitative synthesis. The statistical analysis showed that clinical improvement in the group of patients who had received convalescent plasma was significantly increased compared with the control group (OR: 2.23; 1.12-4.45 with 95% CIs; p value: 0.022; Q-value: 6.11; I2 : 83.64; Eggers p value: 0.064; Beggs p value: 0.093). Furthermore, the rate of hospital discharge had increased in patients receiving CPT (OR: 2.92; 1.48-5.77 with 95% CIs; p value: 0.002; Q-Value: 4.32; I2 : 53.80; Eggers p value: 0.32; Beggs p value: 0.50). Because there is currently no fully effective antiviral drug against the virus and it will take time to confirm the effectiveness of new drugs, CPT can be used as an alternative treatment strategy to improve the severe clinical manifestations of COVID-19.
Collapse
Affiliation(s)
- M. Keikha
- Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - M. Karbalaei
- Department of Microbiology and Virology, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran
| |
Collapse
|
39
|
Sattarzadeh Bardsiri M, Kouhbananinejad SM, Vahidi R, Soleimany S, Moghadari M, Derakhshani A, Kashani B, Farsinejad A. Ubiquitous convalescent plasma: An artificial universal plasma for COVID-19 patients. Transfus Apher Sci 2021; 60:103188. [PMID: 34144875 PMCID: PMC8191286 DOI: 10.1016/j.transci.2021.103188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/05/2021] [Accepted: 06/08/2021] [Indexed: 12/28/2022]
Abstract
Objectives and background In December 2019, the first case of COVID-19 was reported in Wuhan, China. Its causative virus, is a novel strain of RNA viruses with high mortality rate. There is no definitive treatment, but among available approaches the use of recovered patients’ plasma containing specific antibodies can enhance the immune response against coronavirus. However, the dearth of eligible donors and also ABO incompatibility in plasma transfusion, have limited this therapeutic method. Therefore, it is highly desirable to introduce a simple procedure that allows efficient reduction or even removal of natural ABO antibodies. Accordingly, we aimed to evaluate a RBC-mediated adsorption technique that reduces the titer of the mentioned antibodies in plasma. Methods/materials This experimental study was conducted in Kerman University of Medical Sciences, Kerman, Iran. The pre- and post-incubation antibody titers of 168 plasma samples were determined. For incubation, each plasma sample was exposed (60 min) to different percentages of RBCs at room temperature or 4 °C. Results The results evidenced that both the concentration of RBCs and temperature had significant decreasing effects on antibody titer (P < 0.001) and all concentrations significantly reduced titer. Compared to RT, 4 °C further reduced the antibody titer. Overall, the best incubation condition for reducing antibody titer in all blood groups was 4 °C and 2% RBCs concentration. Conclusion The presented adsorption procedure is able to produce universal plasma (we call it Ubiquitous Convalescent Plasma) with a non-immunogenic level of ABO mismatch antibodies which can be used for COVID-19 patients with any type of blood group with desirable simplicity, feasibility, and efficacy.
Collapse
Affiliation(s)
- Mahla Sattarzadeh Bardsiri
- Student Research Committee, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran; Cell Therapy and Regenerative Medicine Comprehensive Center, Kerman University of Medical Sciences, Kerman, Iran; Department of Hematology and Laboratory Sciences, Faculty of Allied Medical Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Seyedeh Mehrnaz Kouhbananinejad
- Cell Therapy and Regenerative Medicine Comprehensive Center, Kerman University of Medical Sciences, Kerman, Iran; Department of Hematology and Laboratory Sciences, Faculty of Allied Medical Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Reza Vahidi
- Research Center for Hydatid Disease in Iran, Kerman University of Medical Sciences, Kerman, Iran
| | - Saeed Soleimany
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Masoud Moghadari
- Department of Traditional Medicine, Faculty of Traditional Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Derakhshani
- Cell Therapy and Regenerative Medicine Comprehensive Center, Kerman University of Medical Sciences, Kerman, Iran; Research Center for Hydatid Disease in Iran, Kerman University of Medical Sciences, Kerman, Iran
| | - Bahareh Kashani
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Farsinejad
- Cell Therapy and Regenerative Medicine Comprehensive Center, Kerman University of Medical Sciences, Kerman, Iran; Department of Hematology and Laboratory Sciences, Faculty of Allied Medical Sciences, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
40
|
Bayat M, Asemani Y, Mohammadi MR, Sanaei M, Namvarpour M, Eftekhari R. An overview of some potential immunotherapeutic options against COVID-19. Int Immunopharmacol 2021; 95:107516. [PMID: 33765610 PMCID: PMC7908848 DOI: 10.1016/j.intimp.2021.107516] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 02/15/2021] [Accepted: 02/15/2021] [Indexed: 02/07/2023]
Abstract
After the advent of the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) in the late 2019, the resulting severe and pernicious syndrome (COVID-19) immediately was deployed all around the world. To date, despite relentless efforts to control the disease by drug repurposing, there is no approved specific therapy for COVID-19. Given the role of innate and acquired immune components in the control and elimination of viral infections and inflammatory mutilations during SARS-CoV2 pathogenesis, immunotherapeutic strategies appear to be beneficent. Passive immunotherapies such as convalescent plasma, which has received much attention especially in severe cases, as well as suppressing inflammatory cytokines, interferon administration, inhibition of kinases and complement cascade, virus neutralization with key engineered products, cell-based therapies, immunomodulators and anti-inflammatory drugs are among the key immunotherapeutic approaches to deal with COVID-19, which is discussed in this review. Also, details of leading COVID-19 vaccine candidates as the most potent immunotherapy have been provided. However, despite salient improvements, there is still a lack of completely assured vaccines for universal application. Therefore, adopting proper immunotherapies according to the cytokine pattern and involved immune responses, alongside engineered biologics specially ACE2-Fc to curb SARS-CoV2 infection until achieving a tailored vaccine is probably the best strategy to better manage this pandemic. Therefore, gaining knowledge about the mechanism of action, potential targets, as well as the effectiveness of immune-based approaches to confront COVID-19 in the form of a well-ordered review study is highly momentous.
Collapse
Affiliation(s)
- Maryam Bayat
- Department of Immunology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Yahya Asemani
- Department of Immunology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Reza Mohammadi
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mahsa Sanaei
- Department of Environmental, Polymer and Organic Chemistry, School of Chemistry, Damghan University, Damghan, Iran
| | - Mozhdeh Namvarpour
- Department of Immunology, Shahid Sadoughi University of Medical Science and services, Yazd, Iran
| | - Reyhaneh Eftekhari
- Department of Microbiology, Faculty of Biology, Semnan University, Semnan, Iran
| |
Collapse
|
41
|
Tiberghien P, Toussirot E, Richard P, Morel P, Garraud O. Convalescent plasma to treat COVID-19: Following the Argentinian lead. Transfus Apher Sci 2021; 60:103161. [PMID: 34045121 PMCID: PMC8141263 DOI: 10.1016/j.transci.2021.103161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Pierre Tiberghien
- Etablissement Français du Sang, La Plaine St Denis, France; UMR RIGHT 1098 Inserm, Université de Franche-Comté, Etablissement Français du Sang, Besançon, France.
| | - Eric Toussirot
- UMR RIGHT 1098 Inserm, Université de Franche-Comté, Etablissement Français du Sang, Besançon, France; CHU Besançon, Inserm CIC 1431, Besançon, France
| | | | - Pascal Morel
- Etablissement Français du Sang, La Plaine St Denis, France; UMR RIGHT 1098 Inserm, Université de Franche-Comté, Etablissement Français du Sang, Besançon, France
| | - Olivier Garraud
- INSERM U1059, Faculty of Medicine of Saint-Etienne, University of Lyon-Saint-Etienne, St Etienne, France
| |
Collapse
|
42
|
Hall K, Mfone F, Shallcross M, Pathak V. Review of Pharmacotherapy Trialed for Management of the Coronavirus Disease-19. Eurasian J Med 2021; 53:137-143. [PMID: 34177298 DOI: 10.5152/eurasianjmed.2021.20384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Since the beginning of the coronavirus disease 2019 (COVID-19) pandemic, there has been substantial progress in the pharmacologic treatment and supportive care of patients hospitalized with active COVID-19 infections. To date there have been numerous medications trialed for COVID-19 management. In this review, our objective is to provide a comprehensive review of the primary literature and clinical applications surrounding some of the prominent drugs and medication classes that have been utilized in those suffering from COVID-19 infections. The medications reviewed in this article include: hydroxychloroquine, remdesivir, azithromycin, dexamethasone, melatonin, tocilizumab, ascorbic acid, and zinc. The medication classes reviewed include: anticoagulation, angiotensin converting enzyme inhibitors, angiotensin II receptor blockers, convalescent plasma, non-steroidal anti-inflammatory drugs, human recombinant soluble ACE2, and the BNT162b2 mRNA COVID-19 vaccine.
Collapse
Affiliation(s)
- Kimberly Hall
- Department of Pharmacy, Riverside Health System, Newport News, VA, USA
| | - Fuhbe Mfone
- Department of Internal Medicine, Riverside Health System, Newport News, VA, USA
| | - Michael Shallcross
- Department of Family Medicine, Riverside Health System, Newport News, VA, USA
| | - Vikas Pathak
- Department of Pulmonary and Critical Care Medicine, Riverside Health System, Newport News, VA, USA
| |
Collapse
|
43
|
Convalescent Plasma Therapy in the management of COVID-19 patients-The newer dimensions. Transfus Clin Biol 2021; 28:246-253. [PMID: 33965621 PMCID: PMC8132190 DOI: 10.1016/j.tracli.2021.04.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/11/2021] [Accepted: 04/20/2021] [Indexed: 12/28/2022]
Abstract
Background COVID 19 infection caused by novel coronavirus with no specific established treatment. Convalescent Plasma Therapy has been authorized as an off-label therapeutic procedure. We assessed the outcome of convalescent plasma (CP) units versus standard treatment on the complete recovery, improvement and 28 days’ mortality of COVID 19 patients. Materials and methods The present was multi-centric case controlled observational prospective study. The study was conducted for a period of four and half months from July 15 2020 to 30 November 2020 after taking approval from the Expert Committee, Health & Family Welfare Department, Government of Odisha. Plasma therapy was applied on two groups of 1189 serious COVID patients (959 number of pre- critical and 230 number of critical patients) not responding to oxygen therapy. It was compared with non- transfused control group of 1243 patients (996 number of pre-critical and 247 number of critical patients). Results Discharge was better in (55.5%) transfused than (43%)in non-transfused pre-critical patients and the mortality was lower (44.3%) in transfused, (48.9%) than non-transfused critical patients respectively. Complete recovery was highest in those who were transfused with CP with neutralizing titer more than 1:160 (52.5%), 18–30 years’ age group (64%), females (53%), ‘O’ Rh D positive blood group (51.5%). There was no adverse reaction due to CP transfusion. Conclusions CP is effective in improving the recovery rate with earlier discharge and decrease in the 28 days’ mortality than in the control non-transfused group. CP with neutralizing antibody titer more than 1:160 has the best outcome with complete recovery and decrease in the mortality. It is more effective in treating pre-critical patients when transfused early, in female patients, in younger age group and in blood group ‘O’ Rh D positive.
Collapse
|
44
|
De Silvestro G, Gandini G, Fiorin F, Marson P, Barbone E, Frigato A, Gessoni G, Veronesi A, Pacenti M, Castelli M, Rinaldi M, Rizzi M, Stefani F, Roveroni G. Preparedness and activities of the anti-SARS-CoV-2 convalescent plasma bank in the Veneto region (Italy): An organizational model for future emergencies. Transfus Apher Sci 2021; 60:103154. [PMID: 33994107 PMCID: PMC8103741 DOI: 10.1016/j.transci.2021.103154] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/27/2021] [Accepted: 04/30/2021] [Indexed: 02/02/2023]
Abstract
Background Convalescent plasma (CP) has been used in the past in various pandemics, in particular in H1N1, SARS and MERS infections. In Spring 2020, when ongoing the SARS-CoV-2 pandemics, the Veneto Region (V-R) has proposed setting-up an anti-SARS-CoV-2 CP (CCP) Bank, with the aim of preparing a supply of CCP immediately available in case of subsequest epidemic waves. Materials and Methods Key-points to be developed for a quick set-up of the V-R CCP Bank have been recruitment of donors recovered from COVID-19 infection, laboratory analysis for the biological qualification of the CCP units, including titre of neutralizing antibodies and reduction of pathogens, according to National Blood Centre (CNS) Directives, adaptation of the V-R Information Technology systems and cost analysis. Some activities, including diagnostic and viral inactivation processes, have been centralized in 2 or 3 sites. Laboratory analysis upon preliminary admission of the donor included all tests required by the Italian laws and the CNS directives. Results From April to August 2020, 3,298 people have contacted the V-R Blood Transfusion Services: of these, 1,632 have been evaluated and examined as first time donors and those found to be suitable have carried out 955 donations, from which 2,626 therapeutic fractions have been obtained, at a cost around 215,00 Euro. Since October 2020, the number of COVID-19 inpatients has had a surge with a heavy hospital overload. Moreover, the high request of CCP therapy by clinicians has been just as unexpected, showing a wide therapeutic use. Conclusions The organizational model here presented, which has allowed the rapid collection of a large amount of CCP, could be useful when facing new pandemic outbreaks, especially in low and middle income countries, with generally acceptable costs.
Collapse
Affiliation(s)
| | - Giorgio Gandini
- Transfusion Medicine Department of Verona, University Hospital of Verona, Italy
| | - Francesco Fiorin
- Transfusion Medicine Department of Vicenza, San Bortolo Hospital of Vicenza, Italy
| | - Piero Marson
- Transfusion Medicine Department of Padova, University Hospital of Padova, Italy
| | - Ersilia Barbone
- Transfusion Medicine Department of Belluno, San Martino Hospital of Belluno, Italy
| | - Andrea Frigato
- Transfusion Medicine Department of Rovigo, S. Maria della Misericordia Hospital of Rovigo, Italy
| | - Gianluca Gessoni
- Transfusion Medicine Department of Venezia, Dell'Angelo Hospital of Mestre (Venice), Italy
| | - Arianna Veronesi
- Transfusion Medicine Department of Treviso, Ca' Foncello Hospital of Treviso, Italy
| | - Monia Pacenti
- Institute of Microbiology and Virology, University Hospital of Padova, Italy
| | - Monica Castelli
- Transfusion Medicine Department of Vicenza, San Bortolo Hospital of Vicenza, Italy
| | - Marianna Rinaldi
- Transfusion Medicine Department of Verona, University Hospital of Verona, Italy
| | - Monica Rizzi
- Transfusion Medicine Department of Verona, University Hospital of Verona, Italy
| | - Francesca Stefani
- Transfusion Medicine Department of Vicenza, San Bortolo Hospital of Vicenza, Italy
| | | |
Collapse
|
45
|
Gavriatopoulou M, Ntanasis-Stathopoulos I, Korompoki E, Fotiou D, Migkou M, Tzanninis IG, Psaltopoulou T, Kastritis E, Terpos E, Dimopoulos MA. Emerging treatment strategies for COVID-19 infection. Clin Exp Med 2021; 21:167-179. [PMID: 33128197 PMCID: PMC7598940 DOI: 10.1007/s10238-020-00671-y] [Citation(s) in RCA: 194] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/20/2020] [Indexed: 02/07/2023]
Abstract
The new type of coronavirus (COVID-19), SARS-CoV-2 originated from Wuhan, China and has led to a worldwide pandemic. COVID-19 is a novel emerging infectious disease caused by SARS-CoV-2 characterized as atypical pneumonia. As of July 1, 2020, more than 10 million people worldwide had been infected with SARS-CoV-2. The typical manifestations of COVID-19 include fever, sore throat, fatigue, cough, and dyspnoea combined with recent exposure. Most of the patients with COVID-19 have mild or moderate disease, however up to 5-10% present with severe and even life-threatening disease course. The mortality rates are approximately 2%. Therefore, there is an urgent need for effective and specific antiviral treatment. Currently, supportive care measures such as ventilation oxygenation and fluid management remain the standard of care. Several clinical trials are currently trying to identify the most potent drug or combination against the disease, and it is strongly recommended to enroll patients into ongoing trials. Antivirals can be proven as safe and effective only in the context of randomized clinical trials. Currently several agents such as chloroquine, hydroxychloroquine, favipiravir, monoclonal antibodies, antisense RNA, corticosteroids, convalescent plasma and vaccines are being evaluated. The large numbers of therapeutic interventions aim to define the most efficacious regimen. The aim of this article is to describe the treatment strategies that have been used for COVID-19 patients and review all the available literature.
Collapse
Affiliation(s)
- Maria Gavriatopoulou
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Alexandra General Hospital, 80 Vas. Sofias Avenue, 11528, Athens, Greece.
| | - Ioannis Ntanasis-Stathopoulos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Alexandra General Hospital, 80 Vas. Sofias Avenue, 11528, Athens, Greece
| | - Eleni Korompoki
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Alexandra General Hospital, 80 Vas. Sofias Avenue, 11528, Athens, Greece
- Division of Brain Sciences, Imperial College London, London, UK
| | - Despina Fotiou
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Alexandra General Hospital, 80 Vas. Sofias Avenue, 11528, Athens, Greece
| | - Magdalini Migkou
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Alexandra General Hospital, 80 Vas. Sofias Avenue, 11528, Athens, Greece
| | | | - Theodora Psaltopoulou
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Alexandra General Hospital, 80 Vas. Sofias Avenue, 11528, Athens, Greece
| | - Efstathios Kastritis
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Alexandra General Hospital, 80 Vas. Sofias Avenue, 11528, Athens, Greece
| | - Evangelos Terpos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Alexandra General Hospital, 80 Vas. Sofias Avenue, 11528, Athens, Greece
| | - Meletios A Dimopoulos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Alexandra General Hospital, 80 Vas. Sofias Avenue, 11528, Athens, Greece
| |
Collapse
|
46
|
Jabal KA, Wiegler KB, Edelstein M. Convalescent plasma from people vaccinated after COVID-19 infection. THE LANCET. MICROBE 2021; 2:e171-e172. [PMID: 33778791 PMCID: PMC7987300 DOI: 10.1016/s2666-5247(21)00060-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Kamal Abu Jabal
- Ziv Medical Centre, Safed, Israel
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | | | - Michael Edelstein
- Ziv Medical Centre, Safed, Israel
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| |
Collapse
|
47
|
Zimmerli A, Monti M, Fenwick C, Eckerle I, Beigelman-Aubry C, Pellaton C, Jaton K, Dumas D, Stamm GM, Infanti L, Andreu-Ullrich H, Germann D, Mean M, Vollenweider P, Stadelmann R, Prella M, Comte D, Guery B, Gachoud D, Rufer N. Case Report: Stepwise Anti-Inflammatory and Anti-SARS-CoV-2 Effects Following Convalescent Plasma Therapy With Full Clinical Recovery. Front Immunol 2021; 12:613502. [PMID: 33968017 PMCID: PMC8097002 DOI: 10.3389/fimmu.2021.613502] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 04/01/2021] [Indexed: 12/24/2022] Open
Abstract
In these times of COVID-19 pandemic, concern has been raised about the potential effects of SARS-CoV-2 infection on immunocompromised patients, particularly on those receiving B-cell depleting agents and having therefore a severely depressed humoral response. Convalescent plasma can be a therapeutic option for these patients. Understanding the underlying mechanisms of convalescent plasma is crucial to optimize such therapeutic approach. Here, we describe a COVID-19 patient who was deeply immunosuppressed following rituximab (anti-CD20 monoclonal antibody) and concomitant chemotherapy for chronic lymphoid leukemia. His long-term severe T and B cell lymphopenia allowed to evaluate the treatment effects of convalescent plasma. Therapeutic outcome was monitored at the clinical, biological and radiological level. Moreover, anti-SARS-CoV-2 antibody titers (IgM, IgG and IgA) and neutralizing activity were assessed over time before and after plasma transfusions, alongside to SARS-CoV-2 RNA quantification and virus isolation from the upper respiratory tract. Already after the first cycle of plasma transfusion, the patient experienced rapid improvement of pneumonia, inflammation and blood cell counts, which may be related to the immunomodulatory properties of plasma. Subsequently, the cumulative increase in anti-SARS-CoV-2 neutralizing antibodies due to the three additional plasma transfusions was associated with progressive and finally complete viral clearance, resulting in full clinical recovery. In this case-report, administration of convalescent plasma revealed a stepwise effect with an initial and rapid anti-inflammatory activity followed by the progressive SARS-CoV-2 clearance. These data have potential implications for a more extended use of convalescent plasma and future monoclonal antibodies in the treatment of immunosuppressed COVID-19 patients.
Collapse
MESH Headings
- Aged
- Antibodies, Neutralizing/administration & dosage
- Antibodies, Neutralizing/blood
- Antibodies, Viral/administration & dosage
- Antibodies, Viral/blood
- Antineoplastic Agents, Alkylating/therapeutic use
- Antineoplastic Agents, Immunological/therapeutic use
- Bendamustine Hydrochloride/therapeutic use
- COVID-19/immunology
- COVID-19/therapy
- Diabetes Mellitus, Type 2/complications
- Humans
- Immunization, Passive/methods
- Immunoglobulin A/blood
- Immunoglobulin G/blood
- Immunoglobulin M/blood
- Immunosuppression Therapy
- Leukemia, Lymphoid/complications
- Leukemia, Lymphoid/drug therapy
- Male
- Rituximab/therapeutic use
- SARS-CoV-2/drug effects
- SARS-CoV-2/immunology
- Treatment Outcome
- COVID-19 Serotherapy
- COVID-19 Drug Treatment
Collapse
Affiliation(s)
- Aurelia Zimmerli
- Department of Internal Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Matteo Monti
- Department of Internal Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Medical Education Unit, School of Medicine, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Craig Fenwick
- Division of Immunology and Allergy, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Isabella Eckerle
- Laboratory of Virology and Geneva Centre for Emerging Viral Diseases, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Catherine Beigelman-Aubry
- Department of Radiology and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Céline Pellaton
- Division of Immunology and Allergy, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Katia Jaton
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Dominique Dumas
- Department of Internal Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Gian-Marco Stamm
- Department of Internal Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Laura Infanti
- Regional Blood Transfusion Service, Swiss Red Cross (SRC), Basel, Switzerland
| | | | - Daphné Germann
- Department of Geriatric Medicine and Geriatric Rehabilitation, Lausanne University Hospital, Lausanne, Switzerland
| | - Marie Mean
- Department of Internal Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Peter Vollenweider
- Department of Internal Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Raphael Stadelmann
- Division of Hematology, Department of Oncology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Maura Prella
- Department of Respiratory Disease, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Denis Comte
- Division of Immunology and Allergy, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Benoit Guery
- Division of Infectious Diseases, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - David Gachoud
- Department of Internal Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Medical Education Unit, School of Medicine, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Nathalie Rufer
- Interregional Blood Transfusion SRC, Epalinges, Switzerland
- Department of Oncology, Lausanne University Hospital and University of Lausanne, Epalinges, Switzerland
| |
Collapse
|
48
|
Noordin SS, Yusoff NM, Karim FA, Chong SE. Blood transfusion services amidst the COVID-19 pandemic. J Glob Health 2021; 11:03053. [PMID: 33884188 PMCID: PMC8053396 DOI: 10.7189/jogh.11.03053] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Affiliation(s)
- Siti Salmah Noordin
- Cluster of Regenerative Medicine, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Malaysia
| | - Narazah Mohd Yusoff
- Cluster of Regenerative Medicine, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Malaysia
| | - Faraizah Abdul Karim
- Hemophilia Clinic, National Blood Centre, Kuala Lumpur, Malaysia.,Hospital Ampang, Ministry of Health Malaysia, Selangor, Malaysia
| | - Soon Eu Chong
- Cluster of Regenerative Medicine, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Malaysia.,Department of Anaesthesiology and Intensive Care, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia.,Hospital USM, Health Campus, USM, Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
49
|
Peng HT, Rhind SG, Beckett A. Convalescent Plasma for the Prevention and Treatment of COVID-19: A Systematic Review and Quantitative Analysis. JMIR Public Health Surveill 2021; 7:e25500. [PMID: 33825689 PMCID: PMC8245055 DOI: 10.2196/25500] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 02/19/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The COVID-19 pandemic, caused by a novel coronavirus termed SARS-CoV-2, has spread quickly worldwide. Convalescent plasma (CP) obtained from patients following recovery from COVID-19 infection and development of antibodies against the virus is an attractive option for either prophylactic or therapeutic treatment, since antibodies may have direct or indirect antiviral activities and immunotherapy has proven effective in principle and in many clinical reports. OBJECTIVE We seek to characterize the latest advances and evidence in the use of CP for COVID-19 through a systematic review and quantitative analysis, identify knowledge gaps in this setting, and offer recommendations and directives for future research. METHODS PubMed, Web of Science, and Embase were continuously searched for studies assessing the use of CP for COVID-19, including clinical studies, commentaries, reviews, guidelines or protocols, and in vitro testing of CP antibodies. The screening process and data extraction were performed according to PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. Quality appraisal of all clinical studies was conducted using a universal tool independent of study designs. A meta-analysis of case-control and randomized controlled trials (RCTs) was conducted using a random-effects model. RESULTS Substantial literature has been published covering various aspects of CP therapy for COVID-19. Of the references included in this review, a total of 243 eligible studies including 64 clinical studies, 79 commentary articles, 46 reviews, 19 guidance and protocols, and 35 in vitro testing of CP antibodies matched the criteria. Positive results have been mostly observed so far when using CP for the treatment of COVID-19. There were remarkable heterogeneities in the CP therapy with respect to patient demographics, donor antibody titers, and time and dose of CP administration. The studies assessing the safety of CP treatment reported low incidence of adverse events. Most clinical studies, in particular case reports and case series, had poor quality. Only 1 RCT was of high quality. Randomized and nonrandomized data were found in 2 and 11 studies, respectively, and were included for meta-analysis, suggesting that CP could reduce mortality and increase viral clearance. Despite promising pilot studies, the benefits of CP treatment can only be clearly established through carefully designed RCTs. CONCLUSIONS There is developing support for CP therapy, particularly for patients who are critically ill or mechanically ventilated and resistant to antivirals and supportive care. These studies provide important lessons that should inform the planning of well-designed RCTs to generate more robust knowledge for the efficacy of CP in patients with COVID-19. Future research is necessary to fill the knowledge gap regarding prevention and treatment for patients with COVID-19 with CP while other therapeutics are being developed.
Collapse
Affiliation(s)
- Henry T Peng
- Defence Research and Development Canada, Toronto Research Centre, Toronto, ON, Canada
| | - Shawn G Rhind
- Defence Research and Development Canada, Toronto Research Centre, Toronto, ON, Canada
| | - Andrew Beckett
- St. Michael's Hospital, Toronto, ON, Canada
- Royal Canadian Medical Services, Ottawa, ON, Canada
| |
Collapse
|
50
|
Kostin AI, Lundgren MN, Bulanov AY, Ladygina EA, Chirkova KS, Gintsburg AL, Logunov DY, Dolzhikova IV, Shcheblyakov DV, Borovkova NV, Godkov MA, Bazhenov AI, Shustov VV, Bogdanova AS, Kamalova AR, Ganchin VV, Dombrovskiy EA, Volkov SE, Drozdova NE, Petrikov SS. Impact of pathogen reduction methods on immunological properties of the COVID-19 convalescent plasma. Vox Sang 2021; 116:665-672. [PMID: 33734455 PMCID: PMC8250394 DOI: 10.1111/vox.13056] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/28/2020] [Accepted: 11/29/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND AND OBJECTIVES COVID-19 convalescent plasma is an experimental treatment against SARS-CoV-2. The aim of this study is to assess the impact of different pathogen reduction methods on the levels and virus neutralizing activity of the specific antibodies against SARS-CoV2 in convalescent plasma. MATERIALS AND METHODS A total of 140 plasma doses collected by plasmapheresis from COVID-19 convalescent donors were subjected to pathogen reduction by three methods: methylene blue (M)/visible light, riboflavin (R)/UVB and amotosalen (A)/UVA. To conduct a paired comparison, individual plasma doses were divided into 2 samples that were subjected to one of these methods. The titres of SARS-CoV2 neutralizing antibodies (NtAbs) and levels of specific immunoglobulins to RBD, S- and N-proteins of SARS-CoV-2 were measured before and after pathogen reduction. RESULTS The methods reduced NtAbs titres differently: among units with the initial titre 80 or above, 81% of units remained unchanged and 19% decreased by one step after methylene blue; 60% were unchanged and 40% decreased by one step after amotosalen; after riboflavin 43% were unchanged and 50% (7%, respectively) had a one-step (two-step, respectively) decrease. Paired two-sample comparisons (M vs. A, M vs. R and A vs. R) revealed that the largest statistically significant decrease in quantity and activity of the specific antibodies resulted from the riboflavin treatment. CONCLUSION Pathogen reduction with methylene blue or with amotosalen provides the greater likelihood of preserving the immunological properties of the COVID-19 convalescent plasma compared to riboflavin.
Collapse
Affiliation(s)
- Alexander I Kostin
- Moscow Department of Healthcare, N.V. Sklifosovsky Research Institute of Emergency Medicine, Moscow, Russia
| | - Maria N Lundgren
- Department of Clinical Immunology and Transfusion Medicine, Office of Medical Services, Lund, Sweden
| | - Andrey Y Bulanov
- Moscow Department of Healthcare, N.V. Sklifosovsky Research Institute of Emergency Medicine, Moscow, Russia
| | - Elena A Ladygina
- Moscow Department of Healthcare, N.V. Sklifosovsky Research Institute of Emergency Medicine, Moscow, Russia
| | - Karina S Chirkova
- Moscow Department of Healthcare, N.V. Sklifosovsky Research Institute of Emergency Medicine, Moscow, Russia
| | - Alexander L Gintsburg
- The Federal State Budgetary Institution 'National Research Center of Epidemiology and Microbiology N.F. Gamaleya' of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Denis Y Logunov
- The Federal State Budgetary Institution 'National Research Center of Epidemiology and Microbiology N.F. Gamaleya' of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Inna V Dolzhikova
- The Federal State Budgetary Institution 'National Research Center of Epidemiology and Microbiology N.F. Gamaleya' of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Dmitry V Shcheblyakov
- The Federal State Budgetary Institution 'National Research Center of Epidemiology and Microbiology N.F. Gamaleya' of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Natalia V Borovkova
- Moscow Department of Healthcare, N.V. Sklifosovsky Research Institute of Emergency Medicine, Moscow, Russia
| | - Mikhail A Godkov
- Moscow Department of Healthcare, N.V. Sklifosovsky Research Institute of Emergency Medicine, Moscow, Russia
| | - Alexey I Bazhenov
- Moscow Department of Healthcare, N.V. Sklifosovsky Research Institute of Emergency Medicine, Moscow, Russia
| | - Valeriy V Shustov
- Moscow Department of Healthcare, N.V. Sklifosovsky Research Institute of Emergency Medicine, Moscow, Russia
| | - Alina S Bogdanova
- Moscow Department of Healthcare, N.V. Sklifosovsky Research Institute of Emergency Medicine, Moscow, Russia
| | - Alina R Kamalova
- Healthcare Ministry of Russia, N.I. Pirogov Federal Russian National Research Medical University, Moscow, Russia
| | - Vladimir V Ganchin
- Autonomous Non-Commercial Organization «Center of Analytical Development of the Social Sector», Moscow, Russia
| | - Eugene A Dombrovskiy
- Autonomous Non-Commercial Organization «Center of Analytical Development of the Social Sector», Moscow, Russia
| | | | - Nataliya E Drozdova
- Moscow Department of Healthcare, N.V. Sklifosovsky Research Institute of Emergency Medicine, Moscow, Russia
| | - Sergey S Petrikov
- Moscow Department of Healthcare, N.V. Sklifosovsky Research Institute of Emergency Medicine, Moscow, Russia
| |
Collapse
|