1
|
Horii M, Bumrungkit C, Yanaka N, Hawke TJ, Rebalka IA, Kumrungsee T. Effects of oral γ-aminobutyric acid intake on muscle regeneration in diabetic mice. Am J Physiol Cell Physiol 2025; 328:C967-C985. [PMID: 39907750 DOI: 10.1152/ajpcell.00963.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 12/25/2024] [Accepted: 01/30/2025] [Indexed: 02/06/2025]
Abstract
Though γ-aminobutyric acid (GABA) serves as the primary inhibitory neurotransmitter in the brain, its numerous biological activities in the periphery, including anti-inflammatory and antidiabetic functions, have been documented. In addition, GABA may be a mediator underlying effects of ketone bodies/ketogenic diets on muscle regeneration. Here, we investigated the effects of GABA on muscle regeneration in type 1 diabetes mouse models. Akita and wild-type (WT) mice were treated with GABA in drinking water for 6 wk, followed by cardiotoxin (CTX)-induced muscle injury. At 5 days postinjury, GABA treatment exhibited no effects on regenerating myofiber size in both WT and Akita mice. Unexpectedly, regenerating GABA-treated Akita muscles exhibited significantly increased embryonic myosin heavy chain (eMHC) expression and higher intramuscular macrophage content, suggesting delays in muscle regeneration and in elevated macrophage infiltration in diabetic muscles. Next, we determined if GABA treatment delayed the inflammatory process during muscle regeneration. Providing GABA in the drinking water during the peak inflammatory period (days 0-5 postinjury) resulted in a significantly greater amount of small regenerating myofibers and higher expressions of TNFα and eMHC in regenerating streptozotocin (STZ)-diabetic muscles, indicating delays in inflammation process and muscle regeneration in diabetes. Plasma GABA levels were found higher in GABA-treated STZ mice than in WT mice and negatively correlated with regenerating myofiber size. This delay in muscle regeneration in STZ-diabetic mice was abolished by a lower dose of GABA water that did not raise plasma GABA levels. Together, high doses of GABA intake during the early phases of muscle repair may delay regeneration.NEW & NOTEWORTHY With increasing evidence that ketogenic diets improve aspects of muscle health (e.g., insulin sensitivity and mitochondrial function), we hypothesized that supplementation with GABA-a key metabolite changed with ketogenic diets-would improve muscle recovery from injury. Unexpectedly, GABA supplementation during the early inflammatory phases of muscle regeneration delayed muscle repair in type 1 diabetes mice, possibly due to inflammation suppression. Further work is needed to ascertain the effective use of GABA supplementation, particularly following intense or damaging exercise.
Collapse
MESH Headings
- Animals
- Regeneration/drug effects
- gamma-Aminobutyric Acid/metabolism
- gamma-Aminobutyric Acid/administration & dosage
- gamma-Aminobutyric Acid/pharmacology
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Mice
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/physiopathology
- Male
- Mice, Inbred C57BL
- Administration, Oral
- Diabetes Mellitus, Type 1/drug therapy
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 1/physiopathology
- Myosin Heavy Chains/metabolism
- Myosin Heavy Chains/genetics
Collapse
Affiliation(s)
- Mayu Horii
- Program of Food and AgriLife Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Chanikan Bumrungkit
- Program of Food and AgriLife Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Noriyuki Yanaka
- Program of Food and AgriLife Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Thomas J Hawke
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Irena A Rebalka
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Thanutchaporn Kumrungsee
- Program of Food and AgriLife Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
- Smart Agriculture, Graduate School of Innovation and Practice for Smart Society, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
2
|
Bian R, Xiang L, Su Z. Harnessing the benefits of physical exercise-induced melatonin: a potential promising approach to combat Alzheimer's disease by targeting beta-amyloid (Aβ). Hormones (Athens) 2025; 24:3-13. [PMID: 39312178 DOI: 10.1007/s42000-024-00602-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 09/03/2024] [Indexed: 03/18/2025]
Abstract
Alzheimer's disease (AD) is a chronic neurogenerative disease that impairs cognition, learning, behavior, and memory. The aberrant accumulation of extracellular amyloid-β (Aβ) plaques is a characteristic of AD. It has been demonstrated that melatonin exerts a significant role in AD prevention and treatment via its antioxidant effects, reducing neuroinflammation, and Aβ. Moreover, studies have shown that physical exercise (PE) is not only a promising non-pharmacological strategy for AD prevention and treatment but can also lead to an increase in melatonin levels. Hence, we hypothesized that PE can contribute to AD prevention and treatment by increasing melatonin levels and reducing Aβ accumulation, enhancing Aβ clearance, and modulating inflammation in these patients. However, the mechanisms by which PE increases melatonin synthesis and the cellular and molecular mechanisms of actions of melatonin in AD prevention and treatment have not to date been completely understood. Therefore, in the future, further investigations are required to elucidate the underlying mechanisms, optimize intervention strategies, identify biomarkers, and validate findings through clinical trials. Understanding the potential of exercise-induced melatonin in AD holds promise for innovative therapeutic interventions and future directions in AD research.
Collapse
Affiliation(s)
- Rui Bian
- Henan Police College, Zhengzhou, Henan, 450046, China.
| | - Lijuan Xiang
- Faculty of Physical Education, Beijing Normal University, Beijing, China
| | - Zhang Su
- Faculty of Physical Education, Beijing Normal University, Beijing, China.
| |
Collapse
|
3
|
Tu D, Song Z, Ren C, Hu Y, Jin Q, Wang Y. Joint association of antioxidant intakes from diet and supplements and sedentary behavior with all-cause and cardiovascular disease mortality among US adults. BMC Public Health 2025; 25:577. [PMID: 39939851 PMCID: PMC11817984 DOI: 10.1186/s12889-025-21725-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 01/31/2025] [Indexed: 02/14/2025] Open
Abstract
BACKGROUND Imbalanced dietary patterns, sedentary behavior, and other unhealthy lifestyle behaviors are among the potentially modifiable risk factors most consistently linked to all-cause and cardiovascular disease (CVD) mortality. This study aimed to investigate the joint association of antioxidant intakes from diet and supplements and sedentary behavior with all-cause and CVD mortality. METHODS This retrospective cohort study included 16,019 adults from National Health and Nutrition Examination Survey (NHANES) 2007-2014. All-cause and CVD mortality was ascertained by linkage to National Death Index records through 31 December 2019. Participants were divided into four lifestyle patterns based on their intake of six antioxidants from dietary intakes and supplements and their self-reported sedentary behavior: low-antioxidant diet and prolonged sedentary behavior, low-antioxidant diet and nonprolonged sedentary behavior, high-antioxidant diet and prolonged sedentary behavior, high-antioxidant diet and nonprolonged sedentary behavior. Multivariable Cox proportional hazards models were utilized to evaluate the associations of antioxidant diet and sedentary behavior with regards to all-cause and CVD mortality. RESULTS Over an average follow-up of 8.5 years, a total of 1,894 overall deaths and 482 CVD deaths were reported. Compared with the low-antioxidant diet and prolonged sedentary behavior group, participants in the high-antioxidant diet and nonprolonged sedentary behavior group had a significantly lower risk of all-cause (hazard ratio [HR], 0.60; 95% confidence interval [CI], 0.50-0.72) and CVD (0.51; 0.34-0.77) mortality. Similarly, individuals following a low-antioxidant diet and engaging in nonprolonged sedentary behavior also had a reduced risk of all-cause (0.63; 0.52-0.75) and CVD (0.54; 0.38-0.76) mortality. On the other hand, there was no significant reduction in all-cause mortality among individuals in the high-antioxidant diet and prolonged sedentary behavior group (0.83; 0.68-1.03), as well as CVD mortality (0.87; 0.62-1.21). Subgroup and sensitivity analyses yielded results that were consistent with the overall analysis. CONCLUSIONS Participants with both high-antioxidant diet and nonprolonged sedentary behavior had the lowest all-cause and CVD mortality. Additionally, nonprolonged sedentary behavior can help counteract the harms of low-antioxidant diet, whereas a high-antioxidant diet fails to offset the deleterious effect of prolonged sedentary behavior.
Collapse
Affiliation(s)
- Dingyuan Tu
- Department of Cardiology, The 960th Hospital of the Joint Logistics Support Force of The Chinese People's Liberation Army, Jinan, 250000, China
- Department of Cardiology, The 961st Hospital of the Joint Logistics Support Force of The Chinese People's Liberation Army, Qiqihar, 161000, China
| | - Zhiqiang Song
- Department of Hematology, Institute of Hematology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
- Department of Hematology, Myeloma & Lymphoma Center, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, 200433, China
| | - Changzhen Ren
- Department of Cardiology, The 960th Hospital of the Joint Logistics Support Force of The Chinese People's Liberation Army, Jinan, 250000, China
| | - Yuhong Hu
- Department of Cardiology, The 960th Hospital of the Joint Logistics Support Force of The Chinese People's Liberation Army, Jinan, 250000, China.
| | - Qun Jin
- Department of Cardiology, The 960th Hospital of the Joint Logistics Support Force of The Chinese People's Liberation Army, Jinan, 250000, China.
| | - Yang Wang
- Department of Hematology, Institute of Hematology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
4
|
Ruhee RT, Ma S, Suzuki K. Effects of Sulforaphane Treatment on Skeletal Muscle from Exhaustive Exercise-Induced Inflammation and Oxidative Stress Through the Nrf2/HO-1 Signaling Pathway. Antioxidants (Basel) 2025; 14:210. [PMID: 40002396 PMCID: PMC11851896 DOI: 10.3390/antiox14020210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/31/2024] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
Skeletal muscle is primarily involved in exercise performance and health promotion. Sulforaphane (SFN) is a naturally occurring isothiocyanate that indirectly activates the transcription factor Nrf2 (nuclear factor erythroid 2-related factor 2), thus inducing the expression of Nrf2 target genes, including antioxidant enzymes. This study aimed to identify the effects of a single dose of SFN administration on exhaustive exercise-induced inflammation and oxidative stress in skeletal muscle tissue and elucidate the underlying mechanisms. Thirty-six mice were divided into four groups: control, SFN, exercise (Ex), and SFN + Ex. The SFN group and SFN + Ex group received SFN orally (50 mg/kg body weight) 2 h before the running test. Exercise significantly reduced plasma glucose levels, while the SFN-treated group exhibited a smaller reduction. Acute exhaustive exercise increased the expression of pro-inflammatory cytokines in muscle tissue, while the SFN + Ex group exhibited significantly reduced expression of pro-inflammatory cytokines. The gene expression of Nrf2 and its target enzymes, including heme oxygenase (HO)-1, superoxide dismutase (SOD)-1, catalase (CAT), and glutathione peroxidase (GPx)-1, was measured in the gastrocnemius and soleus muscle tissue. Compared with the Ex group, the SFN + Ex group showed upregulated expression of all these parameters, including Nrf2. SFN treatment reduced acute exhaustive exercise-induced oxidative stress and inflammation via activation of the Nrf2/HO-1 signaling pathway.
Collapse
Affiliation(s)
- Ruheea Taskin Ruhee
- Japan Society for the Promotion of Sciences, Chiyoda Ku 102-0083, Tokyo, Japan
| | - Sihui Ma
- Faculty of Human Sciences, Waseda University, Tokorozawa 359-1192, Japan;
| | - Katsuhiko Suzuki
- Faculty of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan
| |
Collapse
|
5
|
Takeda R, Amaike T, Nishikawa T, Watanabe K. Effect of home-based hot bathing on exercise-induced adaptations associated with short-term resistance exercise training in young men. Physiol Rep 2025; 13:e70188. [PMID: 39887948 PMCID: PMC11780495 DOI: 10.14814/phy2.70188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 12/20/2024] [Accepted: 12/21/2024] [Indexed: 02/01/2025] Open
Abstract
This study investigated whether home-based bathing intervention (HBBI) improve muscle strength gain and protect cardiovascular function by short-term resistance training (RT). Thirty-one healthy young men measured the maximum voluntary isometric contraction (MVC) of knee extensor, electrically evoked knee extension torque, and mean arterial pressure (MAP). Then, participants were divided into three groups with matching MVC: shower without bathing (control, n = 10), thermoneutral bathing (36°C-bathing, n = 10), and hot bathing (40°C-bathing, n = 11), and conducted 2 weeks of HBBI. Following familiarization for HBBI, participants completed 2 weeks of HBBI and acute RT (five sessions of three sets of 10 isometric knee extension at 60% MVC). Baseline neuromuscular and cardiovascular function was assessed again following completion of the 2 weeks of intervention. MVC was non-significantly increased after the RT period in 40°C-bathing with large effect size (partial η2 = 0.450). The electrically evoked knee extension torque (10/100-Hz ratio) was significantly increased after the RT period in control (p = 0.020). MAP did not alter due to bathing intervention and RT (all p > 0.05). HBBI improved muscle strength without RT-induced alteration of peripheral muscle condition. Shower without bathing reduced muscle strength gain but increased peripheral muscle condition. Short-term RT does not adversely affect the cardiovascular function, regardless of HBBI.
Collapse
Affiliation(s)
- Ryosuke Takeda
- Laboratory of Neuromuscular Biomechanics, School of Health and Sport ScienceChukyo UniversityToyotaJapan
| | - Tsubasa Amaike
- Laboratory of Neuromuscular Biomechanics, School of Health and Sport ScienceChukyo UniversityToyotaJapan
| | - Taichi Nishikawa
- Laboratory of Neuromuscular Biomechanics, School of Health and Sport ScienceChukyo UniversityToyotaJapan
- Graduate School of Health and Sport SciencesChukyo UniversityToyotaJapan
| | - Kohei Watanabe
- Laboratory of Neuromuscular Biomechanics, School of Health and Sport ScienceChukyo UniversityToyotaJapan
| |
Collapse
|
6
|
Vignaud J, Loiseau C, Côme M, Martin I, Rasoanarivo R, Hérault J, Mayer C, Lépine O, Ulmann L. Combined Effects of Spirulina Liquid Extract and Endurance Training on Aerobic Performance and Muscle Metabolism Adaptation in Wistar Rats. Nutrients 2025; 17:283. [PMID: 39861413 PMCID: PMC11769088 DOI: 10.3390/nu17020283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/31/2024] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND Physical activity, such as running, protects against cardiovascular disease and obesity but can induce oxidative stress. Athletes often consume antioxidants to counteract the overproduction of reactive oxygen and nitrogen species during exercise. Spirulina, particularly its phycocyanin content, activates the Nrf2 pathway, stimulating antioxidant responses. Studies show that phycocyanin enhances antioxidant defenses and reduces inflammation, potentially improving muscle adaptation and recovery. This study evaluates a Spirulina liquid extract (SLE) supplementation during endurance training, hypothesizing that phycocyanin improves oxidant status and performance in soleus and extensor digitorum longus muscles. METHODS Three-week-old male Wistar rats were divided into four groups: a sedentary control group (C), a sedentary group supplemented with SLE (SP), an endurance training group (T), and an endurance training group supplemented with SLE (SPT). After 8 weeks of treadmill training, blood and muscle were collected. Biochemical parameters and gene expression analyses were performed to assess the effects of training and supplementation. RESULTS The maximal aerobic speed improved significantly in the SPT group. Plasma lipid profiles showed a reduction in triglyceridemia, cholesterolemia, and atherogenic index in the trained groups, especially with SLE supplementation. Muscle malondialdehyde levels decreased in the SPT group compared to T. Gene expression analysis revealed upregulation of Nrf2 and mitochondrial biogenesis genes in both muscles, with differences between groups for genes related to glycogen storage and β-oxidation. CONCLUSIONS This study demonstrated that SLE supplementation enhanced exercise performance and promoted muscle molecular adaptations. These findings suggest SLE as a promising functional food supplement for athletes, optimizing recovery and performance.
Collapse
Affiliation(s)
- Jordi Vignaud
- BiOSSE, Biology of Organisms, Stress, Health, Environment, Institut Universitaire de Technologie, Département Génie Biologique, Le Mans Université, 53020 Laval, France; (J.V.); (C.L.); (M.C.); (I.M.); (R.R.); (J.H.); (C.M.)
| | - Céline Loiseau
- BiOSSE, Biology of Organisms, Stress, Health, Environment, Institut Universitaire de Technologie, Département Génie Biologique, Le Mans Université, 53020 Laval, France; (J.V.); (C.L.); (M.C.); (I.M.); (R.R.); (J.H.); (C.M.)
| | - Martine Côme
- BiOSSE, Biology of Organisms, Stress, Health, Environment, Institut Universitaire de Technologie, Département Génie Biologique, Le Mans Université, 53020 Laval, France; (J.V.); (C.L.); (M.C.); (I.M.); (R.R.); (J.H.); (C.M.)
| | - Isabelle Martin
- BiOSSE, Biology of Organisms, Stress, Health, Environment, Institut Universitaire de Technologie, Département Génie Biologique, Le Mans Université, 53020 Laval, France; (J.V.); (C.L.); (M.C.); (I.M.); (R.R.); (J.H.); (C.M.)
| | - Rova Rasoanarivo
- BiOSSE, Biology of Organisms, Stress, Health, Environment, Institut Universitaire de Technologie, Département Génie Biologique, Le Mans Université, 53020 Laval, France; (J.V.); (C.L.); (M.C.); (I.M.); (R.R.); (J.H.); (C.M.)
| | - Josiane Hérault
- BiOSSE, Biology of Organisms, Stress, Health, Environment, Institut Universitaire de Technologie, Département Génie Biologique, Le Mans Université, 53020 Laval, France; (J.V.); (C.L.); (M.C.); (I.M.); (R.R.); (J.H.); (C.M.)
| | - Claire Mayer
- BiOSSE, Biology of Organisms, Stress, Health, Environment, Institut Universitaire de Technologie, Département Génie Biologique, Le Mans Université, 53020 Laval, France; (J.V.); (C.L.); (M.C.); (I.M.); (R.R.); (J.H.); (C.M.)
| | | | - Lionel Ulmann
- BiOSSE, Biology of Organisms, Stress, Health, Environment, Institut Universitaire de Technologie, Département Génie Biologique, Le Mans Université, 53020 Laval, France; (J.V.); (C.L.); (M.C.); (I.M.); (R.R.); (J.H.); (C.M.)
| |
Collapse
|
7
|
Zhao Y, Li C, Zhou S, Xu Z, Huang X, Wen L. Hydrogen gas inhalation prior to high-intensity training reduces attenuation of nitric oxide bioavailability in male rugby players. PeerJ 2024; 12:e18503. [PMID: 39703911 PMCID: PMC11657200 DOI: 10.7717/peerj.18503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 10/18/2024] [Indexed: 12/21/2024] Open
Abstract
Background Inhalation of hydrogen gas (H2) as an antioxidant supplement may alleviate exercise-induced oxidative damage and protect post-exercise hydrogen peroxide signaling, which may help mediate beneficial exercise adaptation. The aims of this study were to determine the effects of H2 inhalation on plasma nitric oxide (NO) level and its synthesis precursor in professional athletes. Methods A randomized, placebo-controlled, double-blind, crossover trial was conducted with professional male rugby players for 3 weeks. Participants underwent 1 week of H2 supplementation and 1 week of placebo treatment prior to daily sessions of high-intensity exercise training, separated by 1 week of low-intensity training as a washout. Results Two-way (supplementation and time) repeated-measures analyses of variance showed that NO, L-arginine, and tetrahydrobiopterin levels in the H2 inhalation group were significantly higher than those in the placebo group after exercise (D6) and remained higher after 24 h of rest (D7). Levels of hydroxydeoxyguanosine and interleukin 6 were lower in the H2 inhalation week than in the placebo week on D6 and D7. In addition, total antioxidant levels were significantly higher with H2 inhalation than with placebo. Significance These results suggest that H2 inhalation helps to maintain NO signaling after exercise and to alleviate inflammation and oxidative stress induced by high-intensity exercise training in professional athletes.
Collapse
Affiliation(s)
- Yuqi Zhao
- School of Sports and Health, Nanjing Sport Institute, Nanjing, China
- School of Social Sports and Health Sciences, Tianjin University of Sport, Tianjin, China
| | - Chaoqun Li
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Shi Zhou
- Faculty of Health, Southern Cross University, Lismore, Australia
| | - Zhiguang Xu
- School of Social Sports and Health Sciences, Tianjin University of Sport, Tianjin, China
| | - Xin Huang
- School of Social Sports and Health Sciences, Tianjin University of Sport, Tianjin, China
| | - Li Wen
- School of Sports and Health, Nanjing Sport Institute, Nanjing, China
- School of Social Sports and Health Sciences, Tianjin University of Sport, Tianjin, China
| |
Collapse
|
8
|
Shi TF, Zhou Z, Jiang WJ, Huang TL, Si JQ, Li L. Hyperglycemia-induced oxidative stress exacerbates mitochondrial apoptosis damage to cochlear stria vascularis pericytes via the ROS-mediated Bcl-2/CytC/AIF pathway. Redox Rep 2024; 29:2382943. [PMID: 39092597 PMCID: PMC11299461 DOI: 10.1080/13510002.2024.2382943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024] Open
Abstract
OBJECTIVES Diabetes is closely linked to hearing loss, yet the exact mechanisms remain unclear. Cochlear stria vascularis and pericytes (PCs) are crucial for hearing. This study investigates whether high glucose induces apoptosis in the cochlear stria vascularis and pericytes via elevated ROS levels due to oxidative stress, impacting hearing loss. METHODS We established a type II diabetes model in C57BL/6J mice and used auditory brainstem response (ABR), Evans blue staining, HE staining, immunohistochemistry, and immunofluorescence to observe changes in hearing, blood-labyrinth barrier (BLB) permeability, stria vascularis morphology, and apoptosis protein expression. Primary cultured stria vascularis pericytes were subjected to high glucose, and apoptosis levels were assessed using flow cytometry, Annexin V-FITC, Hoechst 33342 staining, Western blot, Mitosox, and JC-1 probes. RESULTS Diabetic mice showed decreased hearing thresholds, reduced stria vascularis density, increased oxidative stress, cell apoptosis, and decreased antioxidant levels. High glucose exposure increased apoptosis and ROS content in pericytes, while mitochondrial membrane potential decreased, with AIF and cytochrome C (CytC) released from mitochondria to the cytoplasm. Adding oxidative scavengers reduced AIF and CytC release, decreasing pericyte apoptosis. DISCUSSION Hyperglycemia may induce mitochondrial apoptosis of cochlear stria vascularis pericytes through oxidative stress.
Collapse
Affiliation(s)
- Tian-feng Shi
- Department of Physiology, Medical College of Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
- Department of Physiology, Medical College of Shihezi University, Shihezi, Xinjiang, People's Republic of China
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University, Shihezi, Xinjiang, People's Republic of China
| | - Zan Zhou
- Department of Physiology, Medical College of Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
- Department of Physiology, Medical College of Shihezi University, Shihezi, Xinjiang, People's Republic of China
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University, Shihezi, Xinjiang, People's Republic of China
| | - Wen-jun Jiang
- Department of Physiology, Medical College of Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
- Department of Physiology, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Tian-lan Huang
- Department of Physiology, Medical College of Shihezi University, Shihezi, Xinjiang, People's Republic of China
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University, Shihezi, Xinjiang, People's Republic of China
| | - Jun-qiang Si
- Department of Physiology, Medical College of Shihezi University, Shihezi, Xinjiang, People's Republic of China
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University, Shihezi, Xinjiang, People's Republic of China
| | - Li Li
- Department of Physiology, Medical College of Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
| |
Collapse
|
9
|
Tanaka M, Kanazashi M, Kondo H, Fujino H. Methylglyoxal reduces resistance exercise-induced protein synthesis and anabolic signaling in rat tibialis anterior muscle. J Muscle Res Cell Motil 2024; 45:263-273. [PMID: 39085712 DOI: 10.1007/s10974-024-09680-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 07/15/2024] [Indexed: 08/02/2024]
Abstract
Resistance exercise provides significant benefits to skeletal muscle, including hypertrophy and metabolic enhancements, supporting overall health and disease management. However, skeletal muscle responsiveness to resistance exercise is significantly reduced in conditions such as aging and diabetes. Recent reports suggest that glycation stress contributes to muscle atrophy and impaired exercise-induced muscle adaptation; however, its role in the muscle response to resistance exercise remains unclear. Therefore, in this study, we investigated whether methylglyoxal (MGO), a key factor in glycation stress, affects the acute responsiveness of skeletal muscles to resistance exercise, focusing on protein synthesis and the key signaling molecules. This study included 12 8-week-old male Sprague-Dawley rats divided into two groups: one received 0.5% MGO-supplemented drinking water (MGO group) and the other received regular water (control group). After 10 weeks, the left tibialis anterior muscle of each rat was subjected to electrical stimulation (ES) to mimic resistance exercise, with the right muscle serving as a non-stimulated control. Muscle protein-synthesis rates were evaluated with SUnSET, and phosphorylation levels of key signaling molecules (p70S6K and S6rp) were quantified using western blotting. In the control group, stimulated muscles exhibited significantly increased muscle protein synthesis and phosphorylation levels of p70S6K and S6rp. In the MGO group, these increases were attenuated, indicating that MGO treatment suppresses the adaptive response to resistance exercise. MGO diminishes the skeletal muscle's adaptive response to ES-simulated resistance exercise, affecting both muscle protein synthesis and key signaling molecules. The potential influence of glycation stress on the effectiveness of resistance exercise or ES emphasizes the need for individualized interventions in conditions of elevated glycation stress, such as diabetes and aging.
Collapse
Affiliation(s)
- Masayuki Tanaka
- Department of Physical Therapy, Faculty of Health Sciences, Okayama Healthcare Professional University, 3-2-18 Daiku, Kita-ku, Okayama-shi, Okayama, 700-0913, Japan
- Department of Physical Therapy, Faculty of Human Sciences, Osaka University of Human Sciences, 1-4-1 Shojaku, Settsu-shi, Osaka, 566-8501, Japan
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe-shi, Hyogo, 654-0142, Japan
| | - Miho Kanazashi
- Department of Health and Welfare, Faculty of Health and Welfare, Prefectural University of Hiroshima, 1-1 Gakuen- cho, Mihara-shi, Hiroshima, 723-0053, Japan.
| | - Hiroyo Kondo
- Department of Nutrition, Faculty of Health and Nutrition, Shubun University, 6 Nikko-cho, Ichinomiya, Aichi, 491- 0938, Japan
| | - Hidemi Fujino
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe-shi, Hyogo, 654-0142, Japan
| |
Collapse
|
10
|
Clemente-Suárez VJ, Rubio-Zarapuz A, Belinchón-deMiguel P, Beltrán-Velasco AI, Martín-Rodríguez A, Tornero-Aguilera JF. Impact of Physical Activity on Cellular Metabolism Across Both Neurodegenerative and General Neurological Conditions: A Narrative Review. Cells 2024; 13:1940. [PMID: 39682689 PMCID: PMC11640500 DOI: 10.3390/cells13231940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND Regular physical activity plays a crucial role in modulating cellular metabolism and mitigating the progression of neurodegenerative diseases such as Alzheimer's, Parkinson's, and Multiple Sclerosis. OBJECTIVE The objective of this review is to evaluate the molecular mechanisms by which exercise influences cellular metabolism, with a focus on its potential as a therapeutic intervention for neurological disorders. METHODS A comprehensive literature review was conducted using peer-reviewed scientific articles, with a focus on the period between 2015 and 2024, to analyze the effects of exercise on mitochondrial function, oxidative stress, and metabolic health. RESULTS The findings indicate that exercise promotes mitochondrial biogenesis, enhances oxidative phosphorylation, and reduces reactive oxygen species, contributing to improved energy production and cellular resilience. These metabolic adaptations are associated with delayed disease progression and reduced symptoms in patients with neurodegenerative conditions. Additionally, integrating exercise with nutritional strategies may further enhance therapeutic outcomes by addressing metabolic disturbances comprehensively. CONCLUSIONS This review concludes that personalized exercise protocols should be developed to optimize metabolic benefits for patients with neurological diseases, while future research should focus on biomarker development for individualized treatment approaches. These findings highlight the importance of non-pharmacological interventions in managing neurodegenerative diseases.
Collapse
Affiliation(s)
- Vicente Javier Clemente-Suárez
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (V.J.C.-S.); (A.R.-Z.); (J.F.T.-A.)
- Grupo de Investigación en Cultura, Educación y Sociedad, Universidad de la Costa, Barranquilla 080002, Colombia
| | - Alejandro Rubio-Zarapuz
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (V.J.C.-S.); (A.R.-Z.); (J.F.T.-A.)
| | - Pedro Belinchón-deMiguel
- Department of Nursing, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Spain;
| | | | - Alexandra Martín-Rodríguez
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (V.J.C.-S.); (A.R.-Z.); (J.F.T.-A.)
- Faculty of Applied Social Sciences and Communications, Universidad Internacional de la Empresa (UNIE), 28015 Madrid, Spain
| | - José Francisco Tornero-Aguilera
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (V.J.C.-S.); (A.R.-Z.); (J.F.T.-A.)
| |
Collapse
|
11
|
Bedrač L, Deutsch L, Terzić S, Červek M, Šelb J, Ašič U, Verstraeten LMG, Kuščer E, Cvetko F. Towards Precision Sports Nutrition for Endurance Athletes: A Scoping Review of Application of Omics and Wearables Technologies. Nutrients 2024; 16:3943. [PMID: 39599728 PMCID: PMC11597302 DOI: 10.3390/nu16223943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/14/2024] [Accepted: 11/16/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Endurance athletes require tailored nutrition strategies to optimize performance, recovery, and training adaptations. While traditional sports nutrition guidelines provide a foundational framework, individual variability in metabolic responses underscores the need for precision nutrition, informed by genetic, biological, and environmental factors. This scoping review evaluates the application of systems biology-driven sports nutrition for endurance athletes, focusing on 'omics' and wearable technologies. METHODS A scoping review of the literature was conducted in PubMed, Scopus, and Web of Science in accordance with the PRISMA-ScR checklist. Research questions, search strategies, and eligibility criteria were guided by the Population-Concept-Context framework with the following inclusion criteria: original research in English, involving endurance athletes, systems biology approaches, and nutritional interventions or continuous glucose monitoring (CGM). RESULTS Fifty-two studies were included, with distance runners as the most studied cohort. Eleven studies used metagenomics, eleven CGM, ten nutrigenetics, ten metabolomics, seven multi-omics, one proteomics, one epigenomics, and one lipidomics. Over half (n = 31; 60%) were randomized controlled trials (RCTs) with generally high methodological quality. CONCLUSIONS Most studies were proof-of-concept investigations aimed at assessing biomarkers; however, the evidence linking these biomarkers to performance, recovery, and long-term health outcomes in endurance athletes remains insufficient. Future research should focus on well-powered replicated crossover RCTs, multivariate N-of-1 clinical trials, 360-degree systems-wide approaches, and the validation of genetic impacts on nutritional interventions to refine dietary guidelines.
Collapse
Affiliation(s)
- Leon Bedrač
- The NU B.V., J.H. Oortweg 21, 2333 CH Leiden, The Netherlands; (L.D.); (S.T.); (M.Č.); (J.Š.); (U.A.); (L.M.G.V.); (E.K.); (F.C.)
| | - Leon Deutsch
- The NU B.V., J.H. Oortweg 21, 2333 CH Leiden, The Netherlands; (L.D.); (S.T.); (M.Č.); (J.Š.); (U.A.); (L.M.G.V.); (E.K.); (F.C.)
| | - Sanja Terzić
- The NU B.V., J.H. Oortweg 21, 2333 CH Leiden, The Netherlands; (L.D.); (S.T.); (M.Č.); (J.Š.); (U.A.); (L.M.G.V.); (E.K.); (F.C.)
| | - Matej Červek
- The NU B.V., J.H. Oortweg 21, 2333 CH Leiden, The Netherlands; (L.D.); (S.T.); (M.Č.); (J.Š.); (U.A.); (L.M.G.V.); (E.K.); (F.C.)
| | - Julij Šelb
- The NU B.V., J.H. Oortweg 21, 2333 CH Leiden, The Netherlands; (L.D.); (S.T.); (M.Č.); (J.Š.); (U.A.); (L.M.G.V.); (E.K.); (F.C.)
- University Clinic of Respiratory and Allergic Diseases Golnik, Golnik 36, 4204 Golnik, Slovenia
| | - Urška Ašič
- The NU B.V., J.H. Oortweg 21, 2333 CH Leiden, The Netherlands; (L.D.); (S.T.); (M.Č.); (J.Š.); (U.A.); (L.M.G.V.); (E.K.); (F.C.)
| | - Laure M. G. Verstraeten
- The NU B.V., J.H. Oortweg 21, 2333 CH Leiden, The Netherlands; (L.D.); (S.T.); (M.Č.); (J.Š.); (U.A.); (L.M.G.V.); (E.K.); (F.C.)
- Department of Human Movement Sciences, @AgeAmsterdam, Faculty of Behavioural and Movement Sciences Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Enej Kuščer
- The NU B.V., J.H. Oortweg 21, 2333 CH Leiden, The Netherlands; (L.D.); (S.T.); (M.Č.); (J.Š.); (U.A.); (L.M.G.V.); (E.K.); (F.C.)
| | - Filip Cvetko
- The NU B.V., J.H. Oortweg 21, 2333 CH Leiden, The Netherlands; (L.D.); (S.T.); (M.Č.); (J.Š.); (U.A.); (L.M.G.V.); (E.K.); (F.C.)
| |
Collapse
|
12
|
Martinez-Canton M, Galvan-Alvarez V, Martin-Rincon M, Calbet JAL, Gallego-Selles A. Unlocking peak performance: The role of Nrf2 in enhancing exercise outcomes and training adaptation in humans. Free Radic Biol Med 2024; 224:168-181. [PMID: 39151836 DOI: 10.1016/j.freeradbiomed.2024.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/30/2024] [Accepted: 08/10/2024] [Indexed: 08/19/2024]
Abstract
Since the discovery of the nuclear factor erythroid-derived 2-like 2 (Nrf2) transcription factor thirty years ago, it has been shown that it regulates more than 250 genes involved in a multitude of biological processes, including redox balance, mitochondrial biogenesis, metabolism, detoxification, cytoprotection, inflammation, immunity, autophagy, cell differentiation, and xenobiotic metabolism. In skeletal muscle, Nrf2 signalling is primarily activated in response to perturbation of redox balance by reactive oxygen species or electrophiles. Initial investigations into human skeletal muscle Nrf2 responses to exercise, dating back roughly a decade, have consistently indicated that exercise-induced ROS production stimulates Nrf2 signalling. Notably, recent studies employing Nrf2 knockout mice have revealed impaired skeletal muscle contractile function characterised by reduced force output and increased fatigue susceptibility compared to wild-type counterparts. These deficiencies partially stem from diminished basal mitochondrial respiratory capacity and an impaired capacity to upregulate specific mitochondrial proteins in response to training, findings corroborated by inducible muscle-specific Nrf2 knockout models. In humans, baseline Nrf2 expression in skeletal muscle correlates with maximal oxygen uptake and high-intensity exercise performance. This manuscript delves into the mechanisms underpinning Nrf2 signalling in response to acute exercise in human skeletal muscle, highlighting the involvement of ROS, antioxidants and Keap1/Nrf2 signalling in exercise performance. Furthermore, it explores Nrf2's role in mediating adaptations to chronic exercise and its impact on overall exercise performance. Additionally, the influence of diet and certain supplements on basal Nrf2 expression and its role in modulating acute and chronic exercise responses are briefly addressed.
Collapse
Affiliation(s)
- Miriam Martinez-Canton
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe "Físico" s/n, 35017, Las Palmas de Gran Canaria, Spain
| | - Victor Galvan-Alvarez
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe "Físico" s/n, 35017, Las Palmas de Gran Canaria, Spain
| | - Marcos Martin-Rincon
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe "Físico" s/n, 35017, Las Palmas de Gran Canaria, Spain
| | - Jose A L Calbet
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe "Físico" s/n, 35017, Las Palmas de Gran Canaria, Spain; Department of Physical Performance, The Norwegian School of Sport Sciences, Postboks, 4014 Ulleval Stadion, 0806, Oslo, Norway; School of Kinesiology, Faculty of Education, The University of British Columbia, Vancouver, BC, Canada.
| | - Angel Gallego-Selles
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe "Físico" s/n, 35017, Las Palmas de Gran Canaria, Spain.
| |
Collapse
|
13
|
Larsen S. Acute antioxidant supplementation and performance - Should this be considered. Free Radic Biol Med 2024; 224:301-309. [PMID: 39147073 DOI: 10.1016/j.freeradbiomed.2024.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/02/2024] [Accepted: 08/10/2024] [Indexed: 08/17/2024]
Abstract
It is well known that a training intervention leads to mitochondrial adaptations with increased skeletal muscle mitochondrial biogenesis and function. Studies have recently indicated that skeletal muscle mitochondrial function is important for athletic performance. During exercise reactive oxygen species are released from skeletal muscle potentially leading to adaptations but maybe also to fatigue. Focus has been on how chronic antioxidant supplementation affects a training adaptation, where some studies are reporting an abolished adaptation. Whether acute antioxidant supplementation could have a positive effect on fatigue and performance is interesting and highly relevant in sports where athletes are competing over several consecutive days or on the same day, with preliminary competitions in the morning and finals in the afternoon, where it is important for the athletes to recover fast. This review provides an overview of the effects of acute antioxidant supplementation and whether it leads to improved performance and/or faster recovery in humans.
Collapse
Affiliation(s)
- Steen Larsen
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, DK-2200, Copenhagen, Denmark; Clinical Research Centre, Medical University of Bialystok, Poland; Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Denmark.
| |
Collapse
|
14
|
Kano R, Kusano T, Takeda R, Shirakawa H, Poole DC, Kano Y, Hoshino D. Eccentric contraction increases hydrogen peroxide levels and alters gene expression through Nox2 in skeletal muscle of male mice. J Appl Physiol (1985) 2024; 137:778-788. [PMID: 39052772 DOI: 10.1152/japplphysiol.00335.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/03/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024] Open
Abstract
Hydrogen peroxide (H2O2) is one of the key signaling factors regulating skeletal muscle adaptation to muscle contractions. Eccentric (ECC) and concentric (CONC) contractions drive different muscle adaptations with ECC resulting in greater changes. The present investigation tested the hypothesis that ECC produces higher cytosolic and mitochondrial H2O2 concentrations [H2O2] and alters gene expression more than CONC. Cytosolic and mitochondrial H2O2-sensitive fluorescent proteins, HyPer7 and MLS-HyPer7, were expressed in the anterior tibialis muscle of C57BL6J male mice. Before and for 60 min after either CONC or ECC (100 Hz, 50 contractions), [H2O2]cyto and [H2O2]mito were measured by in vivo fluorescence microscopy. RNA sequencing was performed in control (noncontracted), CONC, and ECC muscles to identify genes impacted by the contractions. [H2O2]cyto immediately after ECC was greater than after CONC (CONC: +6%, ECC: +11% vs. rest, P < 0.05) and remained higher for at least 60 min into recovery. In contrast, the elevation of [H2O2]mito was independent of the contraction modes (time; P < 0.0042, contraction mode; P = 0.4965). The impact of ECC on [H2O2]cyto was abolished by NADPH oxidase 2 (Nox2) inhibition (GSK2795039). Differentially expressed genes were not present after CONC or ECC + GSK but were found after ECC and were enriched for vascular development and apoptosis-related genes, among others. In conclusion, in mouse anterior tibialis, ECC, but not CONC, evokes a pronounced cytosolic H2O2 response, caused by Nox2, that is mechanistically linked to gene expression modifications.NEW & NOTEWORTHY This in vivo model successfully characterized the effects of eccentric (ECC) and concentric (CONC) contractions on cytosolic and mitochondrial [H2O2] in mouse skeletal muscle. Compared with CONC, ECC induced higher and more sustained [H2O2]cyto-an effect that was abolished by Nox2 inhibition. ECC-induced [H2O2]cyto elevations were requisite for altered gene expression.
Collapse
Affiliation(s)
- Ryotaro Kano
- Department of Engineering Science, Bioscience and Technology Program, University of Electro-Communications, Chofu, Japan
- Research Fellowship for Young Scientists, Japan Society for the Promotion of Science, Chiyoda, Japan
| | - Tatsuya Kusano
- Department of Engineering Science, Bioscience and Technology Program, University of Electro-Communications, Chofu, Japan
| | - Reo Takeda
- Department of Engineering Science, Bioscience and Technology Program, University of Electro-Communications, Chofu, Japan
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Hideki Shirakawa
- Department of Engineering Science, Bioscience and Technology Program, University of Electro-Communications, Chofu, Japan
| | - David C Poole
- Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas, United States
- Department of Kinesiology, Kansas State University, Manhattan, Kansas, United States
| | - Yutaka Kano
- Department of Engineering Science, Bioscience and Technology Program, University of Electro-Communications, Chofu, Japan
- Center for Neuroscience and Biomedical Engineering (CNBE), University of Electro-Communications, Chofu, Japan
| | - Daisuke Hoshino
- Department of Engineering Science, Bioscience and Technology Program, University of Electro-Communications, Chofu, Japan
- Center for Neuroscience and Biomedical Engineering (CNBE), University of Electro-Communications, Chofu, Japan
| |
Collapse
|
15
|
Ramos Junior OJF, Tavares IRG, Lima RC, Conte-Junior CA, Alvares TS. Jaboticaba berry ( Myrciaria jaboticaba) supplementation protects against micro- and macrovascular dysfunction induced by eccentric exercise: a randomized clinical trial. Food Funct 2024; 15:7148-7160. [PMID: 38888158 DOI: 10.1039/d4fo01907e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Physical activities that are unaccustomed and involve eccentric muscle contractions have been demonstrated to temporarily impair macrovascular and microvascular functions, which may be caused by exercise-induced oxidative stress. Jaboticaba (Myrciaria jaboticaba) is a famous Brazilian berry that has been described to exhibit high antioxidant activity. However, no human study has investigated the protective effects of jaboticaba consumption against the vascular damage induced by eccentric exercise. Therefore, the present study aimed to assess whether supplementation with jaboticaba berry juice could positively affect macro- and microvascular functions within 48 hours after eccentric exercise. This randomized, double-blind, placebo-controlled, parallel trial enrolled 24 healthy participants consuming 250 mL per day of jaboticaba berry juice (containing ∼1,300 mg of total polyphenols) or placebo for 6 days. At the baseline, pre-exercise, and 24 h and 48 h postexercise stages, blood samples were taken for analysis of reduced glutathione (GSH) levels. Also, brachial artery flow-mediated dilation (FMD), blood flow, and tissue oxygen saturation (StO2) responses to 5-minute cuff occlusion were assessed using Doppler ultrasound and near-infrared spectroscopy, respectively. Our findings revealed significant decreases in blood GSH (P < 0.001, ES = 0.76), FMD (P = 0.005, ES = 0.48), reperfusion slope of StO2 (P = 0.018, ES = 0.42) at 24 h and blood flow (P = 0.012, ES = 0.42) at 48 h following eccentric exercise in the control group as compared to the jaboticaba berry juice group. Our results demonstrated that jaboticaba berry juice prevented the exercise-induced increase in reactive oxygen species production and protected macro- and microvascular functions against the damage caused by eccentric exercise, suggesting that jaboticaba berry consumption could protect the vascular function under conditions of imbalance in redox homeostasis.
Collapse
Affiliation(s)
- Olavo João Frederico Ramos Junior
- Nutrition and Exercise Metabolism Research Group, Multidisciplinary Center UFRJ-Macaé, Federal University of Rio de Janeiro, Macaé city, Brazil.
| | - Isabela Ribeiro Grangeira Tavares
- Nutrition and Exercise Metabolism Research Group, Multidisciplinary Center UFRJ-Macaé, Federal University of Rio de Janeiro, Macaé city, Brazil.
| | - Rayssa Cruz Lima
- Department of Biochemistry, Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carlos Adam Conte-Junior
- Department of Biochemistry, Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thiago Silveira Alvares
- Nutrition and Exercise Metabolism Research Group, Multidisciplinary Center UFRJ-Macaé, Federal University of Rio de Janeiro, Macaé city, Brazil.
- Food and Nutrition Institute, Multidisciplinary Center UFRJ-Macaé, Federal University of Rio de Janeiro, Macaé city, Brazil
| |
Collapse
|
16
|
Waldman H. Astaxanthin Supplementation as a Potential Strategy for Enhancing Mitochondrial Adaptations in the Endurance Athlete: An Invited Review. Nutrients 2024; 16:1750. [PMID: 38892683 PMCID: PMC11175114 DOI: 10.3390/nu16111750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
Astaxanthin, a potent antioxidant found in marine organisms such as microalgae and krill, may offer ergogenic benefits to endurance athletes. Originally used in fish feed, astaxanthin has shown a greater ability to mitigate various reactive oxygen species and maintain the structural integrity of mitochondria compared to other exogenous antioxidants. More recent work has shown that astaxanthin may improve: (1) cycling time trial performance, (2) cardiorespiratory measures such as submaximal heart rate during running or cycling, (3) recovery from delayed-onset muscle soreness, and (4) endogenous antioxidant capacity such as whole blood glutathione within trained populations. In this review, the history of astaxanthin and its chemical structure are first outlined before briefly describing the various adaptations (e.g., mitochondrial biogenesis, enhanced endogenous antioxidant capacity, etc.) which take place specifically at the mitochondrial level as a result of chronic endurance training. The review then concludes with the potential additive effects that astaxanthin may offer in conjunction with endurance training for the endurance athlete and offers some suggested practical recommendations for athletes and coaches interested in supplementing with astaxanthin.
Collapse
Affiliation(s)
- Hunter Waldman
- Department of Kinesiology, University of North Alabama, Florence, AL 35630, USA
| |
Collapse
|
17
|
Liu Q, Wang C, Guo X, Du Q, Keshavarzi M. Curcumin and its nano-formulations combined with exercise: From molecular mechanisms to clinic. Cell Biochem Funct 2024; 42:e4061. [PMID: 38812287 DOI: 10.1002/cbf.4061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/15/2024] [Accepted: 05/12/2024] [Indexed: 05/31/2024]
Abstract
Curcumin is a strong substance derived from turmeric, a popular spice, renowned for its antioxidant and anti-inflammatory abilities. The study delved deeply into a thorough examination of various sources to evaluate the impact of both regular curcumin and nano-formulated curcumin on elements that impact physical performance, including muscular strain, discomfort, swelling, and oxidative tension. While engaging in exercise, the body experiences a rise in reactive oxygen species and inflammation. As a result, it is important to ensure a proper balance between internal and external sources of antioxidants to maintain stability in the skeletal muscle. Without this balance, there is a risk of muscle soreness, damage, and ultimately, a decline in exercise performance. Curcumin possesses the ability to enhance physical performance and reduce the symptoms of muscle fatigue and injury by virtue of its antioxidative and anti-inflammatory properties. Including curcumin supplements appears to have advantageous effects on various aspects of exercise, such as enhancing performance, assisting with recovery, lessening muscle damage and discomfort, and lowering levels of inflammation and oxidative stress. However, a thorough assessment is necessary to precisely gauge the healing advantages of curcumin in enhancing exercise ability and reducing recovery time.
Collapse
Affiliation(s)
- Qian Liu
- School of Physical Education, Hubei Normal University, Huangshi, 435002, China
| | - Chengyu Wang
- School of Physical Education, Hubei Normal University, Huangshi, 435002, China
| | - Xinyan Guo
- School of Physical Education, Hubei Normal University, Huangshi, 435002, China
| | - Qiankun Du
- School of Physical Education, Hubei Normal University, Huangshi, 435002, China
| | - Maryam Keshavarzi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
18
|
Zhou Y, Zhang X, Baker JS, Davison GW, Yan X. Redox signaling and skeletal muscle adaptation during aerobic exercise. iScience 2024; 27:109643. [PMID: 38650987 PMCID: PMC11033207 DOI: 10.1016/j.isci.2024.109643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024] Open
Abstract
Redox regulation is a fundamental physiological phenomenon related to oxygen-dependent metabolism, and skeletal muscle is mainly regarded as a primary site for oxidative phosphorylation. Several studies have revealed the importance of reactive oxygen and nitrogen species (RONS) in the signaling process relating to muscle adaptation during exercise. To date, improving knowledge of redox signaling in modulating exercise adaptation has been the subject of comprehensive work and scientific inquiry. The primary aim of this review is to elucidate the molecular and biochemical pathways aligned to RONS as activators of skeletal muscle adaptation and to further identify the interconnecting mechanisms controlling redox balance. We also discuss the RONS-mediated pathways during the muscle adaptive process, including mitochondrial biogenesis, muscle remodeling, vascular angiogenesis, neuron regeneration, and the role of exogenous antioxidants.
Collapse
Affiliation(s)
- Yingsong Zhou
- Faculty of Sports Science, Ningbo University, Ningbo, China
| | - Xuan Zhang
- School of Wealth Management, Ningbo University of Finance and Economics, Ningbo, China
| | - Julien S. Baker
- Centre for Health and Exercise Science Research, Hong Kong Baptist University, Kowloon Tong 999077, Hong Kong
| | - Gareth W. Davison
- Sport and Exercise Sciences Research Institute, Ulster University, Belfast BT15 IED, UK
| | - Xiaojun Yan
- School of Marine Sciences, Ningbo University, Ningbo, China
| |
Collapse
|
19
|
Radulescu D, Mihai FD, Trasca MET, Caluianu EI, Calafeteanu CDM, Radulescu PM, Mercut R, Ciupeanu-Calugaru ED, Marinescu GA, Siloşi CA, Nistor CCE, Danoiu S. Oxidative Stress in Military Missions-Impact and Management Strategies: A Narrative Analysis. Life (Basel) 2024; 14:567. [PMID: 38792589 PMCID: PMC11121804 DOI: 10.3390/life14050567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024] Open
Abstract
This narrative review comprehensively examines the impact of oxidative stress on military personnel, highlighting the crucial role of physical exercise and tailored diets, particularly the ketogenic diet, in minimizing this stress. Through a meticulous analysis of the recent literature, the study emphasizes how regular physical exercise not only enhances cardiovascular, cognitive, and musculoskeletal health but is also essential in neutralizing the effects of oxidative stress, thereby improving endurance and performance during long-term missions. Furthermore, the implementation of the ketogenic diet provides an efficient and consistent energy source through ketone bodies, tailored to the specific energy requirements of military activities, and significantly contributes to the reduction in reactive oxygen species production, thus protecting against cellular deterioration under extreme stress. The study also underlines the importance of integrating advanced technologies, such as wearable devices and smart sensors that allow for the precise and real-time monitoring of oxidative stress and physiological responses, thus facilitating the customization of training and nutritional regimes. Observations from this review emphasize significant variability among individuals in responses to oxidative stress, highlighting the need for a personalized approach in formulating intervention strategies. It is crucial to develop and implement well-monitored, personalized supplementation protocols to ensure that each member of the military personnel receives a regimen tailored to their specific needs, thereby maximizing the effectiveness of measures to combat oxidative stress. This analysis makes a valuable contribution to the specialized literature, proposing a detailed framework for addressing oxidative stress in the armed forces and opening new directions for future research with the aim of optimizing clinical practices and improving the health and performance of military personnel under stress and specific challenges of the military field.
Collapse
Affiliation(s)
- Dumitru Radulescu
- Department of Surgery, The Military Emergency Clinical Hospital ‘Dr. Stefan Odobleja’ Craiova, 200749 Craiova, Romania; (D.R.); (E.-I.C.); (P.-M.R.); (G.-A.M.)
| | - Florina-Diana Mihai
- Doctoral School, University of Medicine and Pharmacy of Craiova, 2 Petru Rares Street, 200349 Craiova, Romania;
| | - Major Emil-Tiberius Trasca
- Department of Surgery, The Military Emergency Clinical Hospital ‘Dr. Stefan Odobleja’ Craiova, 200749 Craiova, Romania; (D.R.); (E.-I.C.); (P.-M.R.); (G.-A.M.)
| | - Elena-Irina Caluianu
- Department of Surgery, The Military Emergency Clinical Hospital ‘Dr. Stefan Odobleja’ Craiova, 200749 Craiova, Romania; (D.R.); (E.-I.C.); (P.-M.R.); (G.-A.M.)
| | - Captain Dan Marian Calafeteanu
- Department of Ortopedics, The Military Emergency Clinical Hospital ‘Dr. Stefan Odobleja’ Craiova, 200749 Craiova, Romania;
| | - Patricia-Mihaela Radulescu
- Department of Surgery, The Military Emergency Clinical Hospital ‘Dr. Stefan Odobleja’ Craiova, 200749 Craiova, Romania; (D.R.); (E.-I.C.); (P.-M.R.); (G.-A.M.)
| | - Razvan Mercut
- Department of Plastic and Reconstructive Surgery, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | | | - Georgiana-Andreea Marinescu
- Department of Surgery, The Military Emergency Clinical Hospital ‘Dr. Stefan Odobleja’ Craiova, 200749 Craiova, Romania; (D.R.); (E.-I.C.); (P.-M.R.); (G.-A.M.)
| | - Cristian-Adrian Siloşi
- Doctoral School, University of Medicine and Pharmacy of Craiova, 2 Petru Rares Street, 200349 Craiova, Romania;
| | | | - Suzana Danoiu
- Department of Pathophysiology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| |
Collapse
|
20
|
Jin X, Chen Y, Xu B, Tian H. Exercise-Mediated Protection against Air Pollution-Induced Immune Damage: Mechanisms, Challenges, and Future Directions. BIOLOGY 2024; 13:247. [PMID: 38666859 PMCID: PMC11047937 DOI: 10.3390/biology13040247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/29/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024]
Abstract
Air pollution, a serious risk factor for human health, can lead to immune damage and various diseases. Long-term exposure to air pollutants can trigger oxidative stress and inflammatory responses (the main sources of immune impairment) in the body. Exercise has been shown to modulate anti-inflammatory and antioxidant statuses, enhance immune cell activity, as well as protect against immune damage caused by air pollution. However, the underlying mechanisms involved in the protective effects of exercise on pollutant-induced damage and the safe threshold for exercise in polluted environments remain elusive. In contrast to the extensive research on the pathogenesis of air pollution and the preventive role of exercise in enhancing fitness, investigations into exercise resistance to injury caused by air pollution are still in their infancy. In this review, we analyze evidence from humans, animals, and cell experiments on the combined effects of exercise and air pollution on immune health outcomes, with an emphasis on oxidative stress, inflammatory responses, and immune cells. We also propose possible mechanisms and directions for future research on exercise resistance to pollutant-induced damage in the body. Furthermore, we suggest strengthening epidemiological studies at different population levels and investigations on immune cells to guide how to determine the safety thresholds for exercise in polluted environments.
Collapse
Affiliation(s)
| | | | - Bingxiang Xu
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China; (X.J.); (Y.C.)
| | - Haili Tian
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China; (X.J.); (Y.C.)
| |
Collapse
|
21
|
Lee YS, Lee DR, Lee HR, Sung JY. Nutritional knowledge, eating habits, factors affecting muscle damage, and antioxidant enzyme levels of Korean wrestlers. Phys Act Nutr 2024; 28:52-58. [PMID: 38719467 PMCID: PMC11079375 DOI: 10.20463/pan.2024.0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 05/12/2024] Open
Abstract
PURPOSE The aim in this study was to investigate the diet and nutritional knowledge of elite Korean wrestlers and verify the differences in their exercise performance , muscle damage indicators, and antioxidant enzyme levels according to wrestler level. METHODS A 7-day dietary and nutrition knowledge survey was administered to 30 adult male elite wrestlers (national team: n=11; professional team: n=19). The Wingate test was conducted for 60 seconds to analyze muscle damage indicators and antioxidant levels. Blood and blood lactate concentration analyses were performed four times; the statistical significance level of all data was p<0.05. RESULTS Significant differences were found in general nutrition knowledge questionnaire (GNKQ) scores (p=0.043), diet (p=0.001), anaerobic performance (p=0.001), muscle damage indicators (p=0.026), antioxidant levels, and blood lactic acid concentrations (30 min after exercise, p=0.007; 90 min after exercise, p=0.038) between the national and the professional groups. CONCLUSION To the findings confirm the relationship between the differences in diet, nutrition, and motor function for wrestlers of different expertise levels. In a follow-up, a comprehensive study on nutrition knowledge, athlete training , and weight loss is needed that considers a wider scope of subjects and analyzes additional variables.
Collapse
Affiliation(s)
- Yun-Seok Lee
- Gyeonggu Middle School, Daegu, Republic of Korea
| | - Dong-Ryul Lee
- Korea Coach Association for Strength & Conditioning, Seoul, Republic of Korea
| | - Hyoung-Rok Lee
- Korea Coach Association for Strength & Conditioning, Seoul, Republic of Korea
| | - Jun-Young Sung
- Institute of Human Convergence Health Science, Gachon University, Incheon, Republic of Korea
| |
Collapse
|
22
|
Robberechts R, Poffé C, Ampe N, Bogaerts S, Hespel P. Partly Substituting Whey for Collagen Peptide Supplementation Improves Neither Indices of Muscle Damage Nor Recovery of Functional Capacity During Eccentric Exercise Training in Fit Males. Int J Sport Nutr Exerc Metab 2024; 34:69-78. [PMID: 37922892 DOI: 10.1123/ijsnem.2023-0070] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 08/31/2023] [Accepted: 09/18/2023] [Indexed: 11/07/2023]
Abstract
Previous studies showed that collagen peptide supplementation along with resistance exercise enhance muscular recovery and function. Yet, the efficacy of collagen peptide supplementation in addition to standard nutritional practices in athletes remains unclear. Therefore, the objective of the study was to compare the effects of combined collagen peptide (20 g) and whey protein (25 g) supplementation with a similar daily protein dose (45 g) of whey protein alone on indices of muscle damage and recovery of muscular performance during eccentric exercise training. Young fit males participated in a 3-week training period involving unilateral eccentric exercises for the knee extensors. According to a double-blind, randomized, parallel-group design, before and after training, they received either whey protein (n = 11) or whey protein + collagen peptides (n = 11). Forty-eight hours after the first training session, maximal voluntary isometric and dynamic contraction of the knee extensors were transiently impaired by ∼10% (Ptime < .001) in whey protein and whey protein + collagen peptides, while creatine kinase levels were doubled in both groups (Ptime < .01). Furthermore, the training intervention improved countermovement jump performance and maximal voluntary dynamic contraction by respectively 8% and 10% (Ptime < .01) and increased serum procollagen type 1N-terminal peptide concentration by 10% (Ptime < .01). However, no differences were found for any of the outcomes between whey and whey protein + collagen peptides. In conclusion, substituting a portion of whey protein for collagen peptide, within a similar total protein dose, improved neither indices of eccentric muscle damage nor functional outcomes during eccentric training.
Collapse
Affiliation(s)
- Ruben Robberechts
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium
| | - Chiel Poffé
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium
| | - Noémie Ampe
- Department of Physical and Rehabilitation Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Stijn Bogaerts
- Department of Physical and Rehabilitation Medicine, University Hospitals Leuven, Leuven, Belgium
- Department of Development & Regeneration, KU Leuven, Leuven, Belgium
| | - Peter Hespel
- Department of Movement Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
23
|
Paoli A, Cerullo G, Bianco A, Neri M, Gennaro F, Charrier D, Moro T. Not Only Protein: Dietary Supplements to Optimize the Skeletal Muscle Growth Response to Resistance Training: The Current State of Knowledge. J Hum Kinet 2024; 91:225-244. [PMID: 38689582 PMCID: PMC11057611 DOI: 10.5114/jhk/18666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 03/30/2024] [Indexed: 05/02/2024] Open
Abstract
Regarding skeletal muscle hypertrophy, resistance training and nutrition, the most often discussed and proposed supplements include proteins. Although, the correct amount, quality, and daily distribution of proteins is of paramount importance for skeletal muscle hypertrophy, there are many other nutritional supplements that can help and support the physiological response of skeletal muscle to resistance training in terms of muscle hypertrophy. A healthy muscle environment and a correct whole muscle metabolism response to the stress of training is a prerequisite for the increase in muscle protein synthesis and, therefore, muscle hypertrophy. In this review, we discuss the role of different nutritional supplements such as carbohydrates, vitamins, minerals, creatine, omega-3, polyphenols, and probiotics as a support and complementary factors to the main supplement i.e., protein. The different mechanisms are discussed in the light of recent evidence.
Collapse
Affiliation(s)
- Antonio Paoli
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Giuseppe Cerullo
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Antonino Bianco
- Department of Psychology, Educational Science and Human Movement, University of Palermo, Palermo, Italy
| | - Marco Neri
- Italian Fitness Federation, Ravenna, Italy
| | - Federico Gennaro
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Davide Charrier
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Tatiana Moro
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| |
Collapse
|
24
|
Campanari DD, Cipriano UG, Fraga-Silva TFDC, Ramalho LNZ, Ovidio PP, Jordão Júnior AA, Bonato VLD, Ferriolli E. Effect of Dietary Supplementation with Omega-3 Fatty Acid on the Generation of Regulatory T Lymphocytes and on Antioxidant Parameters and Markers of Oxidative Stress in the Liver Tissue of IL-10 Knockout Mice. Nutrients 2024; 16:634. [PMID: 38474762 DOI: 10.3390/nu16050634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/05/2024] [Accepted: 02/17/2024] [Indexed: 03/14/2024] Open
Abstract
INTRODUCTION chronic low-grade inflammation, or inflammaging, emerges as a crucial element in the aging process and is associated with cardiovascular and neurological diseases, sarcopenia, and malnutrition. Evidence suggests that omega-3 fatty acids present a potential therapeutic agent in the prevention and treatment of inflammatory diseases, mitigating oxidative stress, and improving muscle mass, attributes that are particularly relevant in the context of aging. The objective of the present study was to evaluate the effectiveness of supplementation with omega-3 fish oil in improving the immune response and oxidative stress in knockout mice for interleukin IL-10 (IL-10-/-). MATERIAL AND METHODS female C57BL/6 wild-type (WT) and interleukin IL-10 knockout (IL-10-/-) mice were fed during 90 days with a standard diet (control groups), or they were fed/supplemented with 10% of the omega-3 polyunsaturated fatty acid diet (omega-3 groups). Muscle, liver, intestinal, and mesenteric lymph node tissue were collected for analysis. RESULTS the IL-10-/-+O3 group showed greater weight gain compared to the WT+O3 (p = 0.001) group. The IL-10-/-+O3 group exhibited a higher frequency of regulatory T cells than the IL-10-/- group (p = 0.001). It was found that animals in the IL-10-/-+O3 group had lower levels of steatosis when compared to the IL-10-/- group (p = 0.017). There was even greater vitamin E activity in the WT group compared to the IL-10-/-+O3 group (p = 0.001) and WT+O3 compared to IL-10-/-+O3 (p = 0.002), and when analyzing the marker of oxidative stress, MDA, an increase in lipid peroxidation was found in the IL-10-/-+O3 group when compared to the IL-10-/- group (p = 0.03). Muscle tissue histology showed decreased muscle fibers in the IL-10-/-+O3, IL-10-/-, and WT+O3 groups. CONCLUSION the findings show a decrease in inflammation, an increase in oxidative stress markers, and a decrease in antioxidant markers in the IL-10-/-+O3 group, suggesting that supplementation with omega-3 fish oil might be a potential intervention for inflammaging that characterizes the aging process and age-related diseases.
Collapse
Affiliation(s)
- Daniela Dalpubel Campanari
- Postgraduate Program in Clinical Medicine, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14049-900, Sao Paulo, Brazil
| | - Ualter Guilherme Cipriano
- Basic and Applied Immunology Program, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14049-900, Sao Paulo, Brazil
| | - Thais Fernanda de Campos Fraga-Silva
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14049-900, Sao Paulo, Brazil
- Institute of Biological Sciences and Health, Federal University of Alagoas, Maceio 57072-900, Alagoas, Brazil
| | - Leandra Náira Zambelli Ramalho
- Department of Pathology and Legal Medicine, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14049-900, Sao Paulo, Brazil
| | - Paula Payão Ovidio
- Department of Health Sciences, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14049-900, Sao Paulo, Brazil
| | - Alceu Afonso Jordão Júnior
- Department of Health Sciences, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14049-900, Sao Paulo, Brazil
| | - Vânia Luiza Deperon Bonato
- Basic and Applied Immunology Program, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14049-900, Sao Paulo, Brazil
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14049-900, Sao Paulo, Brazil
| | - Eduardo Ferriolli
- Department of Internal Medicine, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14049-900, Sao Paulo, Brazil
| |
Collapse
|
25
|
Cinato M, Andersson L, Miljanovic A, Laudette M, Kunduzova O, Borén J, Levin MC. Role of Perilipins in Oxidative Stress-Implications for Cardiovascular Disease. Antioxidants (Basel) 2024; 13:209. [PMID: 38397807 PMCID: PMC10886189 DOI: 10.3390/antiox13020209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/12/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
Oxidative stress is the imbalance between the production of reactive oxygen species (ROS) and antioxidants in a cell. In the heart, oxidative stress may deteriorate calcium handling, cause arrhythmia, and enhance maladaptive cardiac remodeling by the induction of hypertrophic and apoptotic signaling pathways. Consequently, dysregulated ROS production and oxidative stress have been implicated in numerous cardiac diseases, including heart failure, cardiac ischemia-reperfusion injury, cardiac hypertrophy, and diabetic cardiomyopathy. Lipid droplets (LDs) are conserved intracellular organelles that enable the safe and stable storage of neutral lipids within the cytosol. LDs are coated with proteins, perilipins (Plins) being one of the most abundant. In this review, we will discuss the interplay between oxidative stress and Plins. Indeed, LDs and Plins are increasingly being recognized for playing a critical role beyond energy metabolism and lipid handling. Numerous reports suggest that an essential purpose of LD biogenesis is to alleviate cellular stress, such as oxidative stress. Given the yet unmet suitability of ROS as targets for the intervention of cardiovascular disease, the endogenous antioxidant capacity of Plins may be beneficial.
Collapse
Affiliation(s)
- Mathieu Cinato
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Sahlgrenska University Hospital, 41345 Gothenburg, Sweden; (M.C.); (L.A.); (A.M.); (M.L.); (J.B.)
| | - Linda Andersson
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Sahlgrenska University Hospital, 41345 Gothenburg, Sweden; (M.C.); (L.A.); (A.M.); (M.L.); (J.B.)
| | - Azra Miljanovic
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Sahlgrenska University Hospital, 41345 Gothenburg, Sweden; (M.C.); (L.A.); (A.M.); (M.L.); (J.B.)
| | - Marion Laudette
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Sahlgrenska University Hospital, 41345 Gothenburg, Sweden; (M.C.); (L.A.); (A.M.); (M.L.); (J.B.)
| | - Oksana Kunduzova
- Institute of Metabolic and Cardiovascular Diseases (I2MC), National Institute of Health and Medical Research (INSERM) 1297, Toulouse III University—Paul Sabatier, 31432 Toulouse, France;
| | - Jan Borén
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Sahlgrenska University Hospital, 41345 Gothenburg, Sweden; (M.C.); (L.A.); (A.M.); (M.L.); (J.B.)
| | - Malin C. Levin
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Sahlgrenska University Hospital, 41345 Gothenburg, Sweden; (M.C.); (L.A.); (A.M.); (M.L.); (J.B.)
| |
Collapse
|
26
|
Bourdas DI, Travlos AK, Souglis A, Stavropoulou G, Zacharakis E, Gofas DC, Bakirtzoglou P. Effects of a Singular Dose of Mangiferin-Quercetin Supplementation on Basketball Performance: A Double-Blind Crossover Study of High-Level Male Players. Nutrients 2024; 16:170. [PMID: 38201999 PMCID: PMC10781150 DOI: 10.3390/nu16010170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/26/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024] Open
Abstract
Pre-exercise mangiferin-quercetin may enhance athletic performance. This study investigated the effect of mangiferin-quercetin supplementation on high-level male basketball players during a basketball exercise simulation test (BEST) comprising 24 circuits of 30 s activities with various movement distances. The participants were divided into two groups (EXP = 19 and CON = 19) and given a placebo one hour before the BEST (PRE-condition). The following week, the EXP group received mangiferin-quercetin (84 mg/140 mg), while the CON group received a placebo (POST-condition) before the BEST in a double-blind, cross-over design. The mean heart rate (HR) and circuit and sprint times (CT and ST) during the BEST were measured, along with the capillary blood lactate levels (La-), the subjective rating of muscle soreness (RPMS), and the perceived exertion (RPE) during a resting state prior to and following the BEST. The results showed significant interactions for the mean CT (p = 0.013) and RPE (p = 0.004); a marginal interaction for La- (p = 0.054); and non-significant interactions for the mean HR, mean ST, and RPMS. Moreover, the EXP group had significantly lower values in the POST condition for the mean CT (18.17 ± 2.08 s) and RPE (12.42 ± 1.02) compared to the PRE condition (20.33 ± 1.96 s and 13.47 ± 1.22, respectively) and the POST condition of the CON group (20.31 ± 2.10 s and 13.32 ± 1.16, respectively) (p < 0.05). These findings highlight the potential of pre-game mangiferin-quercetin supplementation to enhance intermittent high-intensity efforts in sports such as basketball.
Collapse
Affiliation(s)
- Dimitrios I. Bourdas
- Section of Sport Medicine & Biology of Exercise, School of Physical Education and Sports Science, National and Kapodistrian University of Athens, 41 Ethnikis Antistasis, 17237 Daphne, Greece; (D.I.B.); (A.S.); (E.Z.)
| | - Antonios K. Travlos
- Department of Sports Organization and Management, Faculty of Human Movement and Quality of Life Sciences, University of Peloponnese, Efstathiou and Stamatikis Valioti & Plataion Avenue, 23100 Sparta, Greece;
| | - Athanasios Souglis
- Section of Sport Medicine & Biology of Exercise, School of Physical Education and Sports Science, National and Kapodistrian University of Athens, 41 Ethnikis Antistasis, 17237 Daphne, Greece; (D.I.B.); (A.S.); (E.Z.)
| | - Georgia Stavropoulou
- School of Philosophy and Education, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece;
| | - Emmanouil Zacharakis
- Section of Sport Medicine & Biology of Exercise, School of Physical Education and Sports Science, National and Kapodistrian University of Athens, 41 Ethnikis Antistasis, 17237 Daphne, Greece; (D.I.B.); (A.S.); (E.Z.)
| | - Dimitrios C. Gofas
- Arsakeia-Tositseia Schools, Philekpaideftiki Etaireia, Mitilinis 26, 11256 Athens, Greece;
| | - Panteleimon Bakirtzoglou
- Faculty of Sport Sciences & Physical Education, Metropolitan College, Eleftheriou Venizelou 14, 54624 Thessaloniki, Greece
| |
Collapse
|
27
|
Halliwell B. Understanding mechanisms of antioxidant action in health and disease. Nat Rev Mol Cell Biol 2024; 25:13-33. [PMID: 37714962 DOI: 10.1038/s41580-023-00645-4] [Citation(s) in RCA: 136] [Impact Index Per Article: 136.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2023] [Indexed: 09/17/2023]
Abstract
Several different reactive oxygen species (ROS) are generated in vivo. They have roles in the development of certain human diseases whilst also performing physiological functions. ROS are counterbalanced by an antioxidant defence network, which functions to modulate ROS levels to allow their physiological roles whilst minimizing the oxidative damage they cause that can contribute to disease development. This Review describes the mechanisms of action of antioxidants synthesized in vivo, antioxidants derived from the human diet and synthetic antioxidants developed as therapeutic agents, with a focus on the gaps in our current knowledge and the approaches needed to close them. The Review also explores the reasons behind the successes and failures of antioxidants in treating or preventing human disease. Antioxidants may have special roles in the gastrointestinal tract, and many lifestyle features known to promote health (especially diet, exercise and the control of blood glucose and cholesterol levels) may be acting, at least in part, by antioxidant mechanisms. Certain reactive sulfur species may be important antioxidants but more accurate determinations of their concentrations in vivo are needed to help assess their contributions.
Collapse
Affiliation(s)
- Barry Halliwell
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Neurobiology Research Programme, Life Sciences Institute, Centre for Life Sciences, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
28
|
Elkrief D, Matusovsky O, Cheng YS, Rassier DE. From amino-acid to disease: the effects of oxidation on actin-myosin interactions in muscle. J Muscle Res Cell Motil 2023; 44:225-254. [PMID: 37805961 DOI: 10.1007/s10974-023-09658-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/15/2023] [Indexed: 10/10/2023]
Abstract
Actin-myosin interactions form the basis of the force-producing contraction cycle within the sarcomere, serving as the primary mechanism for muscle contraction. Post-translational modifications, such as oxidation, have a considerable impact on the mechanics of these interactions. Considering their widespread occurrence, the explicit contributions of these modifications to muscle function remain an active field of research. In this review, we aim to provide a comprehensive overview of the basic mechanics of the actin-myosin complex and elucidate the extent to which oxidation influences the contractile cycle and various mechanical characteristics of this complex at the single-molecule, myofibrillar and whole-muscle levels. We place particular focus on amino acids shown to be vulnerable to oxidation in actin, myosin, and some of their binding partners. Additionally, we highlight the differences between in vitro environments, where oxidation is controlled and limited to actin and myosin and myofibrillar or whole muscle environments, to foster a better understanding of oxidative modification in muscle. Thus, this review seeks to encompass a broad range of studies, aiming to lay out the multi layered effects of oxidation in in vitro and in vivo environments, with brief mention of clinical muscular disorders associated with oxidative stress.
Collapse
Affiliation(s)
- Daren Elkrief
- Department of Physiology, McGill University, Montreal, QC, Canada
| | - Oleg Matusovsky
- Department of Kinesiology and Physical Education, McGill University, Montreal, QC, Canada
| | - Yu-Shu Cheng
- Department of Kinesiology and Physical Education, McGill University, Montreal, QC, Canada
| | - Dilson E Rassier
- Department of Physiology, McGill University, Montreal, QC, Canada.
- Department of Kinesiology and Physical Education, McGill University, Montreal, QC, Canada.
- Simon Fraser University, Burnaby, BC, Canada.
| |
Collapse
|
29
|
Flockhart M, Nilsson LC, Tillqvist EN, Vinge F, Millbert F, Lännerström J, Nilsson PH, Samyn D, Apró W, Sundqvist ML, Larsen FJ. Glucosinolate-rich broccoli sprouts protect against oxidative stress and improve adaptations to intense exercise training. Redox Biol 2023; 67:102873. [PMID: 37688976 PMCID: PMC10493800 DOI: 10.1016/j.redox.2023.102873] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/01/2023] [Accepted: 09/01/2023] [Indexed: 09/11/2023] Open
Abstract
Oxidative stress plays a vital role for the adaptive responses to physical training. However, excessive oxidative stress can precipitate cellular damage, necessitating protective mechanisms to mitigate this effect. Glucosinolates, found predominantly in cruciferous vegetables, can be converted into isothiocyanates, known for their antioxidative properties. These compounds activate crucial antioxidant defence pathways and support mitochondrial function and protein integrity under oxidative stress, in both Nrf2-dependent and independent manners. We here administered glucosinolate-rich broccoli sprouts (GRS), in a randomized double-blinded cross-over fashion to 9 healthy subjects in combination with daily intense exercise training for 7 days. We found that exercise in combination with GRS significantly decreased the levels of carbonylated proteins in skeletal muscle and the release of myeloperoxidase into blood. Moreover, it lowered lactate accumulation during submaximal exercise, and attenuated the severe nocturnal hypoglycaemic episodes seen during the placebo condition. Furthermore, GRS in combination with exercise improved physical performance, which was unchanged in the placebo condition.
Collapse
Affiliation(s)
- M Flockhart
- Department of Physiology, Nutrition and Biomechanics, Åstrand Laboratory, The Swedish School of Sport and Health Sciences, Stockholm, Sweden.
| | - L C Nilsson
- Department of Physiology, Nutrition and Biomechanics, Åstrand Laboratory, The Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - E N Tillqvist
- Department of Physiology, Nutrition and Biomechanics, Åstrand Laboratory, The Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - F Vinge
- Department of Physiology, Nutrition and Biomechanics, Åstrand Laboratory, The Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - F Millbert
- Department of Physiology, Nutrition and Biomechanics, Åstrand Laboratory, The Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - J Lännerström
- Department of Physiology, Nutrition and Biomechanics, Åstrand Laboratory, The Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - P H Nilsson
- Linnaeus Centre for Biomaterials Chemistry, Linnaeus University, Kalmar, Sweden; Department of Chemistry and Biomedicine, Linnaeus University, Kalmar, Sweden
| | - D Samyn
- Department of Laboratory Medicine, Clinical Chemistry, Örebro University Hospital, Örebro, Sweden; School of Medicine, Faculty of Medicine, Örebro University, Örebro, Sweden
| | - W Apró
- Department of Physiology, Nutrition and Biomechanics, Åstrand Laboratory, The Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - M L Sundqvist
- Department of Physiology, Nutrition and Biomechanics, Åstrand Laboratory, The Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - F J Larsen
- Department of Physiology, Nutrition and Biomechanics, Åstrand Laboratory, The Swedish School of Sport and Health Sciences, Stockholm, Sweden.
| |
Collapse
|
30
|
Franco-Obregón A. Harmonizing Magnetic Mitohormetic Regenerative Strategies: Developmental Implications of a Calcium-Mitochondrial Axis Invoked by Magnetic Field Exposure. Bioengineering (Basel) 2023; 10:1176. [PMID: 37892906 PMCID: PMC10604793 DOI: 10.3390/bioengineering10101176] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/05/2023] [Accepted: 10/08/2023] [Indexed: 10/29/2023] Open
Abstract
Mitohormesis is a process whereby mitochondrial stress responses, mediated by reactive oxygen species (ROS), act cumulatively to either instill survival adaptations (low ROS levels) or to produce cell damage (high ROS levels). The mitohormetic nature of extremely low-frequency electromagnetic field (ELF-EMF) exposure thus makes it susceptible to extraneous influences that also impinge on mitochondrial ROS production and contribute to the collective response. Consequently, magnetic stimulation paradigms are prone to experimental variability depending on diverse circumstances. The failure, or inability, to control for these factors has contributed to the existing discrepancies between published reports and in the interpretations made from the results generated therein. Confounding environmental factors include ambient magnetic fields, temperature, the mechanical environment, and the conventional use of aminoglycoside antibiotics. Biological factors include cell type and seeding density as well as the developmental, inflammatory, or senescence statuses of cells that depend on the prior handling of the experimental sample. Technological aspects include magnetic field directionality, uniformity, amplitude, and duration of exposure. All these factors will exhibit manifestations at the level of ROS production that will culminate as a unified cellular response in conjunction with magnetic exposure. Fortunately, many of these factors are under the control of the experimenter. This review will focus on delineating areas requiring technical and biological harmonization to assist in the designing of therapeutic strategies with more clearly defined and better predicted outcomes and to improve the mechanistic interpretation of the generated data, rather than on precise applications. This review will also explore the underlying mechanistic similarities between magnetic field exposure and other forms of biophysical stimuli, such as mechanical stimuli, that mutually induce elevations in intracellular calcium and ROS as a prerequisite for biological outcome. These forms of biophysical stimuli commonly invoke the activity of transient receptor potential cation channel classes, such as TRPC1.
Collapse
Affiliation(s)
- Alfredo Franco-Obregón
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore; ; Tel.: +65-6777-8427 or +65-6601-6143
- Institute of Health Technology and Innovation (iHealthtech), National University of Singapore, Singapore 117599, Singapore
- Biolonic Currents Electromagnetic Pulsing Systems Laboratory (BICEPS), National University of Singapore, Singapore 117599, Singapore
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
- Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117544, Singapore
| |
Collapse
|
31
|
Filip-Stachnik A, Krzysztofik M, Del Coso J, Pałka T, Sadowska-Krępa E. The Effect of Acute Caffeine Intake on Resistance Training Volume, Prooxidant-Antioxidant Balance and Muscle Damage Markers Following a Session of Full-Body Resistance Exercise in Resistance-Trained Men Habituated to Caffeine. J Sports Sci Med 2023; 22:436-446. [PMID: 37711718 PMCID: PMC10499132 DOI: 10.52082/jssm.2023.436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/24/2023] [Indexed: 09/16/2023]
Abstract
No previous study has analyzed the impact of caffeine intake on prooxidant-antioxidant balance and muscle damage following resistance exercise. The aim of this study was to determine the effect of 3 mg/kg of caffeine on the number of repetitions and the prooxidant-antioxidant balance and muscle damage after a session of full-body resistance exercise. Ten resistance-trained men habituated to caffeine participated in a randomized, crossover and double-blind experiment. Each participant performed two identical resistance training sessions after the intake of 3 mg/kg of caffeine or a placebo. Blood was collected before and 60 min after substance intake, just after exercise, 60 minutes after exercise, and 24 hours after testing to evaluate the activity of antioxidant enzymes (superoxide dismutase, glutathione peroxidase, catalase), non-enzymatic antioxidants (reduced glutathione, uric acid) levels of oxidative stress markers (plasma malondialdehyde) and muscle damage markers (creatine kinase, lactate dehydrogenase). There were no significant differences between placebo and caffeine conditions in the total number of repetitions (180 ± 15 vs 185 ± 14 repetitions, respectively; p = 0.276; Effect size [ES] = 0.34), the total time under tension (757 ± 71 vs 766 ± 56 s, respectively; p = 0.709; ES = 0.14) or the rating of perceived exertion (13.8 ± 2.7 vs 14.7 ± 2.7 a.u., respectively; p = 0.212; ES = 0.32). Reduced glutathione concentration obtained 1 hour after exercise was higher with caffeine than with placebo (p = 0.047), without significant difference between conditions for any other prooxidant-oxidant or muscle damage marker at any time point (p > 0.050 for all). The oral intake of 3 mg/kg of caffeine by resistance-trained men habituated to caffeine did not enhance the number of repetitions during a medium load full-body resistance training session to failure and had a minimal impact on the prooxidant-antioxidant balance and muscle damage. The study was registered prospectively at ClinicalTrials.gov with the following ID: NCT05230303.
Collapse
Affiliation(s)
| | - Michal Krzysztofik
- Institute of Sport Sciences, Jerzy Kukuczka Academy of Physical Education in Katowice, Poland
| | - Juan Del Coso
- Centre for Sport Studies, Universidad Rey Juan Carlos, Spain, Madrid
| | - Tomasz Pałka
- Department of Physiology and Biochemistry, Faculty of Physical Education and Sport, University of Physical Education in Krakow, Krakow, Poland
| | - Ewa Sadowska-Krępa
- Institute of Sport Sciences, Jerzy Kukuczka Academy of Physical Education in Katowice, Poland
| |
Collapse
|
32
|
Yoshida E, Hayashida H. Influence of Practice Periodization and Sleep Duration on Oxidative Stress in High School Judo Athletes. Sports (Basel) 2023; 11:163. [PMID: 37755840 PMCID: PMC10536924 DOI: 10.3390/sports11090163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/28/2023] Open
Abstract
Numerous research studies have investigated the relationship between exercise, oxidative stress level, and condition in athletes who engage in intense training on a daily basis. However, it is known that oxidative stress is affected by exercise, sleep, and the psychological state, but there are only a few studies that have comprehensively examined oxidative stress based on the actual practice periods and living conditions of athletes. Therefore, our study aimed to explore the influence of three distinct training periods (short training period, intensive training period, and pre-competition periods) as well as life situations (sleep and number of steps) on oxidative stress levels (diacron reactive oxygen metabolites: d-ROMs) in high school judo athletes. The results showed that, among the three periods, the level of oxidative stress increased the most during the pre-competition period, and the value was higher than during the training period, when the intensity of training was highest. The levels of the d-ROMs values during the pre-competition period were negatively correlated with the amount of sleep on the previous day. The findings suggest that, besides the exercise intensity, factors such as sleep duration and other life situations should be regarded as critical considerations for high school judo athletes.
Collapse
Affiliation(s)
| | - Harumi Hayashida
- Graduate School of Sport Sciences, Toin University of Yokohama, 1614 Kuroganecho, Aoba Ward, Yokohama 225-0025, Japan;
| |
Collapse
|
33
|
Ortega DG, Coburn JW, Galpin AJ, Costa PB. Effects of a Tart Cherry Supplement on Recovery from Exhaustive Exercise. J Funct Morphol Kinesiol 2023; 8:121. [PMID: 37606416 PMCID: PMC10443385 DOI: 10.3390/jfmk8030121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/16/2023] [Accepted: 08/16/2023] [Indexed: 08/23/2023] Open
Abstract
The aim of this study was to investigate the effects of a tart cherry supplement on recovery from exercise-induced muscle damage. Seventeen recreationally active women (mean age ± SD = 22.2 ± 3.3 years, height = 162.0 ± 6.0 cm, body mass = 65.1 ± 11.1 kg, BMI = 24.7 ± 3.5 kg·m2) supplemented with 1000 mg of concentrated tart cherry or a placebo for eight consecutive days. An overload protocol of 8 sets of 10 repetitions of maximal effort concentric and eccentric muscle actions of the leg extensors at a velocity of 60°·s-1 was performed on the fourth day of supplementation. Testing sessions consisted of a muscle function test (MFT) to examine pre- and post-testing peak torque, peak power, total work, time-to-peak torque, mean power, muscle activation of the quadriceps, and muscle soreness at baseline and post-testing at 0 h, 24 h, 48 h, and 72 h. A second trial of testing was repeated two weeks later using the opposite supplement to the one assigned for the first trial. No significant interaction for time × condition × velocity (p = 0.916) and no significant main effect for condition (p = 0.557) were demonstrated for peak torque. However, there were main effects for time and velocity for concentric quadriceps peak torque (p < 0.001). For muscle soreness, there was no two-way interaction for time x condition (p > 0.05) and no main effect for condition (p > 0.05), but there was a main effect for time (p < 0.001). In conclusion, a tart cherry supplement did not attenuate losses in isokinetic muscle peak torque, peak power, total work, time-to-peak torque, muscle soreness, or quadriceps muscle activation.
Collapse
Affiliation(s)
| | | | | | - Pablo B. Costa
- Exercise Physiology Laboratory, Department of Kinesiology, California State University, Fullerton, CA 92831, USA
| |
Collapse
|
34
|
Margaritelis NV, Nastos GG, Vasileiadou O, Chatzinikolaou PN, Theodorou AA, Paschalis V, Vrabas IS, Kyparos A, Fatouros IG, Nikolaidis MG. Inter-individual variability in redox and performance responses after antioxidant supplementation: A randomized double blind crossover study. Acta Physiol (Oxf) 2023; 238:e14017. [PMID: 37401190 DOI: 10.1111/apha.14017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/14/2023] [Accepted: 06/19/2023] [Indexed: 07/05/2023]
Abstract
AIM We aimed to investigate the inter-individual variability in redox and physiological responses of antioxidant-deficient subjects after antioxidant supplementation. METHODS Two hundred individuals were sorted by plasma vitamin C levels. A low vitamin C group (n = 22) and a control group (n = 22) were compared in terms of oxidative stress and performance. Subsequently, the low vitamin C group received for 30 days vitamin C (1 g) or placebo, in randomized, double-blind, crossover fashion, and the effects were examined through a mixed-effects model, while individual responses were calculated. RESULTS The low vitamin C group exhibited lower vitamin C (-25 μmol/L; 95%CI[-31.7, -18.3]; p < 0.001), higher F2 -isoprostanes (+17.1 pg/mL; 95%CI[6.5, 27.7]; p = 0.002), impaired VO2max (-8.2 mL/kg/min; 95%CI[-12.8, -3.6]; p < 0.001) and lower isometric peak torque (-41.5 Nm; 95%CI[-61.8, -21.2]; p < 0.001) compared to the control group. Regarding antioxidant supplementation, a significant treatment effect was found in vitamin C (+11.6 μmol/L; 95%CI[6.8, 17.1], p < 0.001), F2 -isoprostanes (-13.7 pg/mL; 95%CI[-18.9, -8.4], p < 0.001), VO2max (+5.4 mL/kg/min; 95%CI[2.7, 8.2], p = 0.001) and isometric peak torque (+18.7; 95%CI[11.8, 25.7 Nm], p < 0.001). The standard deviation for individual responses (SDir) was greater than the smallest worthwhile change (SWC) for all variables indicating meaningful inter-individual variability. When a minimal clinically important difference (MCID) was set, inter-individual variability remained for VO2max , but not for isometric peak torque. CONCLUSION The proportion of response was generally high after supplementation (82.9%-95.3%); however, a few participants did not benefit from the treatment. This underlines the potential need for personalized nutritional interventions in an exercise physiology context.
Collapse
Affiliation(s)
- Nikos V Margaritelis
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - George G Nastos
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - Olga Vasileiadou
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - Panagiotis N Chatzinikolaou
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - Anastasios A Theodorou
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus
| | - Vassilis Paschalis
- School of Physical Education and Sport Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioannis S Vrabas
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - Antonios Kyparos
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - Ioannis G Fatouros
- Department of Physical Education and Sport Sciences, University of Thessaly, Trikala, Greece
| | - Michalis G Nikolaidis
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| |
Collapse
|
35
|
Abate M, Pellegrino R, Di Iorio A, Salini V. Oxidative Stress and Performance after Training in Professional Soccer (European Football) Players. Antioxidants (Basel) 2023; 12:1470. [PMID: 37508008 PMCID: PMC10376101 DOI: 10.3390/antiox12071470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Vitamins, hormones, free radicals, and antioxidant substances significantly influence athletic performance. The aim of this study was to evaluate whether these biological mediators changed during the season and if this was associated with the rate of improvement in performance after training, assessed by means of a standardized test. Professional male soccer players took part in the study. Two evaluations were performed: the first in the pre-season period and the second at the mid-point of the official season, after about 6 months of intensive training and weekly matches. Blood levels of vitamins D, B12, and folic acid, testosterone and cortisol, free radicals, and antioxidant substances were measured. Two hours after breakfast, a Yo-Yo test was performed. The relationships between the biological mediators and the rate of improvement after training (i.e., the increase in meters run in the Yo-Yo test between the pre-season and mid-season periods) were evaluated by means of a linear mixed models analysis. Results: Eighty-two paired tests were performed. The athletes showed better performance after training, with an increase in the meters run of about 20%. No significant relationships between the vitamin and hormone values and the gain in the performance test were observed. Plasmatic levels of free radicals increased significantly, as did the blood antioxidant potential. An indirect relationship between oxidative stress and the improvement in performance was observed (free radicals β ± SE: = -0.33 ± 0.10; p-value = 0.001), with lower levels of oxidative stress being associated with higher levels of performance in the Yo-Yo test. Monitoring the measures of oxidative stress could be a useful additional tool for coaches in training and/or recovery programs tailored to each player.
Collapse
Affiliation(s)
- Michele Abate
- Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Raffaello Pellegrino
- Department of Scientific Research, Campus Ludes, Off-Campus Semmelweis University, Pazzallo, 6912 Lugano, Switzerland
| | - Angelo Di Iorio
- Department of Innovative Technologies in Medicine & Dentistry, Gabriele D'Annunzio University, 66100 Chieti, Italy
| | | |
Collapse
|
36
|
Asupatri UR. Effects of Zinc Supplementation in Mitigating the Harmful Effects of Chronic Cadmium Exposure in a Zebrafish Model. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023:104158. [PMID: 37236493 DOI: 10.1016/j.etap.2023.104158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 05/07/2023] [Accepted: 05/23/2023] [Indexed: 05/28/2023]
Abstract
Cadmium (Cd) is a heavy metal that is highly toxic to living organisms, including humans. But the dietary zinc (Zn) supplements play critical role in minimizing or preventing Cd poisoning, without any side effects. The underlying mechanisms, however, have not been thoroughly investigated. Therefore, in this study, we investigated the use of Zn as a protection against Cd toxicity in zebrafish models. The obtained results confirmed the levels of antioxidant enzymes and supported the synergistic effects of Zn in reducing Cd toxicity. The lipid, carbohydrate, and protein concentrations in the liver tissue have also been negatively impacted by Cd; however, treatment with Zn has lessened these adverse effects. Furthermore, the level of 8-hydroxy-2' -deoxyguanosine (8-OHdG), caspase-3 also confirms the protective effects of Zn in reducing DNA damage caused by Cd. The results of this study demonstrate that a Zn supplement can lessen the harmful effects of Cd in zebrafish model.
Collapse
Affiliation(s)
- Usha Rani Asupatri
- Department of Zoology, Sri Venkateswara University, Tirupati, Andhra Pradesh 517 502, India.
| |
Collapse
|
37
|
Clemente-Suárez VJ, Bustamante-Sanchez Á, Mielgo-Ayuso J, Martínez-Guardado I, Martín-Rodríguez A, Tornero-Aguilera JF. Antioxidants and Sports Performance. Nutrients 2023; 15:nu15102371. [PMID: 37242253 DOI: 10.3390/nu15102371] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
The role of reactive oxygen species and antioxidant response in training adaptations and sports performance has been a large issue investigated in the last few years. The present review aims to analyze the role of reactive oxygen species and antioxidant response in sports performance. For this aim, the production of reactive oxygen species in physical activities, the effect of reactive oxygen species on sports performance, the relationship between reactive oxygen species and training adaptations, inflammation, and the microbiota, the effect of antioxidants on recovery and sports performance, and strategies to use antioxidants supplementations will be discussed. Finally, practical applications derived from this information are discussed. The reactive oxygen species (ROS) production during physical activity greatly influences sports performance. This review concludes that ROS play a critical role in the processes of training adaptation induced by resistance training through a reduction in inflammatory mediators and oxidative stress, as well as appropriate molecular signaling. Additionally, it has been established that micronutrients play an important role in counteracting free radicals, such as reactive oxygen species, which cause oxidative stress, and the effects of antioxidants on recovery, sports performance, and strategies for using antioxidant supplements, such as vitamin C, vitamin E, resveratrol, coenzyme Q10, selenium, and curcumin to enhance physical and mental well-being.
Collapse
Affiliation(s)
| | | | - Juan Mielgo-Ayuso
- Department of Health Sciences, Faculty of Health Sciences, University of Burgos, 09001 Burgos, Spain
| | - Ismael Martínez-Guardado
- BRABE Group, Department of Psychology, Faculty of Life and Natural Sciences, University of Nebrija, C/del Hostal, 28248 Madrid, Spain
| | | | | |
Collapse
|
38
|
Vignaud J, Loiseau C, Hérault J, Mayer C, Côme M, Martin I, Ulmann L. Microalgae Produce Antioxidant Molecules with Potential Preventive Effects on Mitochondrial Functions and Skeletal Muscular Oxidative Stress. Antioxidants (Basel) 2023; 12:antiox12051050. [PMID: 37237915 DOI: 10.3390/antiox12051050] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/25/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
In recent years, microalgae have become a source of molecules for a healthy life. Their composition of carbohydrates, peptides, lipids, vitamins and carotenoids makes them a promising new source of antioxidant molecules. Skeletal muscle is a tissue that requires constant remodeling via protein turnover, and its regular functioning consumes energy in the form of adenosine triphosphate (ATP), which is produced by mitochondria. Under conditions of traumatic exercise or muscular diseases, a high production of reactive oxygen species (ROS) at the origin of oxidative stress (OS) will lead to inflammation and muscle atrophy, with life-long consequences. In this review, we describe the potential antioxidant effects of microalgae and their biomolecules on mitochondrial functions and skeletal muscular oxidative stress during exercises or in musculoskeletal diseases, as in sarcopenia, chronic obstructive pulmonary disease (COPD) and Duchenne muscular dystrophy (DMD), through the increase in and regulation of antioxidant pathways and protein synthesis.
Collapse
Affiliation(s)
- Jordi Vignaud
- BiOSSE (Biology of Organisms, Stress, Health, Environment), Institut Universitaire de Technologie, Département Génie Biologique, Le Mans Université, F-53020 Laval, France
| | - Céline Loiseau
- BiOSSE (Biology of Organisms, Stress, Health, Environment), Institut Universitaire de Technologie, Département Génie Biologique, Le Mans Université, F-53020 Laval, France
| | - Josiane Hérault
- BiOSSE (Biology of Organisms, Stress, Health, Environment), Institut Universitaire de Technologie, Département Génie Biologique, Le Mans Université, F-53020 Laval, France
| | - Claire Mayer
- BiOSSE (Biology of Organisms, Stress, Health, Environment), Institut Universitaire de Technologie, Département Génie Biologique, Le Mans Université, F-53020 Laval, France
| | - Martine Côme
- BiOSSE (Biology of Organisms, Stress, Health, Environment), Institut Universitaire de Technologie, Département Génie Biologique, Le Mans Université, F-53020 Laval, France
| | - Isabelle Martin
- BiOSSE (Biology of Organisms, Stress, Health, Environment), Institut Universitaire de Technologie, Département Génie Biologique, Le Mans Université, F-53020 Laval, France
| | - Lionel Ulmann
- BiOSSE (Biology of Organisms, Stress, Health, Environment), Institut Universitaire de Technologie, Département Génie Biologique, Le Mans Université, F-53020 Laval, France
| |
Collapse
|
39
|
Lorenzo K, Santocildes G, Torrella JR, Magalhães J, Pagès T, Viscor G, Torres JL, Ramos-Romero S. Bioactivity of Macronutrients from Chlorella in Physical Exercise. Nutrients 2023; 15:2168. [PMID: 37432326 DOI: 10.3390/nu15092168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 07/12/2023] Open
Abstract
Chlorella is a marine microalga rich in proteins and containing all the essential amino acids. Chlorella also contains fiber and other polysaccharides, as well as polyunsaturated fatty acids such as linoleic acid and alpha-linolenic acid. The proportion of the different macronutrients in Chlorella can be modulated by altering the conditions in which it is cultured. The bioactivities of these macronutrients make Chlorella a good candidate food to include in regular diets or as the basis of dietary supplements in exercise-related nutrition both for recreational exercisers and professional athletes. This paper reviews current knowledge of the effects of the macronutrients in Chlorella on physical exercise, specifically their impact on performance and recovery. In general, consuming Chlorella improves both anaerobic and aerobic exercise performance as well as physical stamina and reduces fatigue. These effects seem to be related to the antioxidant, anti-inflammatory, and metabolic activity of all its macronutrients, while each component of Chlorella contributes its bioactivity via a specific action. Chlorella is an excellent dietary source of high-quality protein in the context of physical exercise, as dietary proteins increase satiety, activation of the anabolic mTOR (mammalian Target of Rapamycin) pathway in skeletal muscle, and the thermic effects of meals. Chlorella proteins also increase intramuscular free amino acid levels and enhance the ability of the muscles to utilize them during exercise. Fiber from Chlorella increases the diversity of the gut microbiota, which helps control body weight and maintain intestinal barrier integrity, and the production of short-chain fatty acids (SCFAs), which improve physical performance. Polyunsaturated fatty acids (PUFAs) from Chlorella contribute to endothelial protection and modulate the fluidity and rigidity of cell membranes, which may improve performance. Ultimately, in contrast to several other nutritional sources, the use of Chlorella to provide high-quality protein, dietary fiber, and bioactive fatty acids may also significantly contribute to a sustainable world through the fixation of carbon dioxide and a reduction of the amount of land used to produce animal feed.
Collapse
Affiliation(s)
- Karenia Lorenzo
- Physiology Section, Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
| | - Garoa Santocildes
- Physiology Section, Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
- Department of Biological Chemistry, Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), 08034 Barcelona, Spain
| | - Joan Ramon Torrella
- Physiology Section, Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
| | - José Magalhães
- Laboratory of Metabolism and Exercise (LaMetEx), Research Centre in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sport, University of Porto, 4200-450 Porto, Portugal
| | - Teresa Pagès
- Physiology Section, Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
| | - Ginés Viscor
- Physiology Section, Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
| | - Josep Lluís Torres
- Department of Biological Chemistry, Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), 08034 Barcelona, Spain
| | - Sara Ramos-Romero
- Physiology Section, Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
40
|
Nichols QZ, Ramadoss R, Stanzione JR, Volpe SL. Micronutrient supplement intakes among collegiate and masters athletes: A cross-sectional study. Front Sports Act Living 2023; 5:854442. [PMID: 37090821 PMCID: PMC10117840 DOI: 10.3389/fspor.2023.854442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/16/2023] [Indexed: 04/08/2023] Open
Abstract
ObjectiveIn our cross-sectional study, we evaluated micronutrient supplementation intake among Collegiate and Masters Athletes.MethodsWe conducted a cross-sectional study to assess micronutrient supplementation consumption in Collegiate and Masters Athletes, comparing sex and sport classification within each respective group. Micronutrient supplement consumption data were measured using a Food Frequency Questionnaire. A two-way analysis of variance was used to explore the differences among Collegiate and Masters Athletes' supplement intakes of the following vitamins and minerals: vitamins A, B6, B12, C, E, D, and calcium, folate, iron, magnesium niacin, riboflavin, selenium, thiamine, and zinc. When significant differences were found, a Bonferroni post hoc test was performed to identify specific group differences. The significance level was set a priori at p < 0.05.ResultsA total of 198 athletes (105 females and 93 males) were included in the study. Participants were 36.16 ± 12.33 years of age. Collegiate male athletes had significantly greater vitamin A [1,090.51 ± 154.72 vs. 473.93 ± 233.18 mg retinol activity equivalents (RAE)/day] (p < 0.036), folate [337.14 ± 44.79 vs. 148.67 ± 67.50 mcg dietary folate equivalents (DFE)/day] (p < 0.027), and magnesium (65.35 ± 8.28 vs. 31.28 ± 12.48 mg/day) (p < 0.031) intakes compared to Collegiate female athletes. Collegiate CrossFit Athletes (940.71 ± 157.54 mg/day) had a significantly greater vitamin C intake compared to Collegiate General Athletes (156.34 ± 67.79 mg/day) (p < 0.005), Collegiate Triathletes (88.57 ± 148.53 mg/day) (p < 0.027), Collegiate Resistance Training Athletes (74.28 ± 143.81 mg/day) (p < 0.020), and Collegiate Powerlifters (175.71 ± 128.63 mg/day) (p < 0.044). Masters females had significantly greater calcium intakes compared to Masters males (494.09 ± 65.73 vs.187.89 ± 77.23 mg/day, respectively) (p < 0.002). Collegiate Runners (41.35 ± 6.53 mg/day) had a significantly greater iron intake compared to Collegiate Powerlifters (4.50 ± 6.53 mg/day) (p < 0.024). Masters Swimmers (61.43 ± 12.10 mg/day) had significantly greater iron intakes compared to Masters General Athletes (13.97 ± 3.56 mg/day) (p < 0.014), Masters Runners (17.74 ± 2.32 mg/day) (p < 0.03), Masters Triathletes (11.95 ± 3.73 mg/day) (p < 0.008), Masters CrossFit Athletes (15.93 ± 5.36 mg/day) (p < 0.043), Masters Rowers (9.10 ± 3.36 mg/day) (p < 0.003), and Masters Cyclists (1.71 ± 9.88 mg/day) (p < 0.011). Masters Powerlifters (47.14 ± 9.65 mg/day) had significantly greater zinc intakes compared to Masters General Athletes (9.57 ± 2.84 mg/day) (p < 0.015), Masters Runners (10.67 ± 1.85 mg/day) (p < 0.017), Masters Triathletes (10.24 ± 2.98 mg/day) (p < 0.020), Masters Rowers (9.33 ± 2.68 mg/day) (p < 0.013), and Masters Cyclists (1.43 ± 7.88 mg/day) (p < 0.019). There were no other significant differences among the other micronutrient supplement intakes between the sexes or among the sport classification.ConclusionWe reported significant differences among female and male Collegiate and Masters Athletes. Additionally, we reported significant differences among Collegiate and Masters Athletes sport classifications. Further research should examine both dietary and micronutrient supplement intake among Collegiate and Masters Athletes to examine the extent that athletes exceed the Recommended Dietary Allowances (RDA), and the potential effects on health and performance.
Collapse
Affiliation(s)
- Quentin Z. Nichols
- Department of Human Nutrition, Foods, and Exercise, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, United States
| | - Rohit Ramadoss
- Department of Human Nutrition, Foods, and Exercise, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, United States
| | - Joseph R. Stanzione
- Nutrition & Scientific Affairs, Worldwide Sport Nutritional Supplements, Bohemia, NY, United States
| | - Stella L. Volpe
- Department of Human Nutrition, Foods, and Exercise, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, United States
- Correspondence: Stella L. Volpe
| |
Collapse
|
41
|
Yang S, He Q, Shi L, Wu Y. Impact of Antarctic krill oil supplementation on skeletal muscle injury recovery after resistance exercise. Eur J Nutr 2023; 62:1345-1356. [PMID: 36566465 DOI: 10.1007/s00394-022-03077-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 12/16/2022] [Indexed: 12/26/2022]
Abstract
BACKGROUND Antarctic krill oil (KO) is a natural source of n-3 polyunsaturated fatty acids (n-3 PUFAs), and is rich in phospholipids, Eicosapentaenoic acid (EPA), Docosahexaenoic acid (DHA), astaxanthin, flavonoids, vitamins, trace elements, and other bioactive substances. KO has been confirmed to have anti-inflammatory and immunomodulatory effects. n-3 PUFAs also have been purported to improve the recovery of muscular performance. Moreover, the phospholipids present in KO can enhance n-3 PUFA bioavailability because of its higher absorption rate in plasma compared to fish oil. Astaxanthin, found in Antarctic KO, is a red carotenoid and powerful antioxidant that inhibits oxidative stress after intense exercise. Hence, we examined the effect of KO supplementation on the recovery of exercise by measuring muscular performance, oxidant/antioxidant and anti-inflammatory activity, and the markers of muscle damage following a rigorous bout of resistance exercise. METHODS 30 college-aged resistance-trained males (20.4 ± 0.92 years, 74.09 ± 7.23 kg, 180.13 ± 4.72 cm) were randomly supplemented with 3 g/d KO or placebo (PL) for 3 days and continued to consume after resistance exercise for 3 days until the experiment finished. Before supplementation, pre-exercise performance assessments of knee isokinetic strength, 20 m sprint, hexagon test, and blood serum creatine kinase (CK), lactate dehydrogenase (LDH), superoxide dismutase (SOD), total antioxidant capacity (T-AOC), reactive oxygen species (ROS), malondialdehyde (MDA), interleukin-2 (IL-2), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) were completed. Then after 3 days of supplementation, participants completed a bout of muscle-damaging exercise, and subsequently, they performed and repeated the exercise performance assessments and blood-related indicators tests immediately (0 h), as well as at 6, 24, 48, and 72 h post-muscle-damaging exercise. RESULTS Compared to the PL group, the serum CK of KO group was significantly lower at 24 h and 48 h post-exercise; the hexagon test time of the KO group was significantly lower than that of the PL group at 6 h and 24 h post-exercise; the KO group's isokinetic muscle strength showed different degrees of recovery than that of the PL group at 24 h and 48 h, and even over-recovery at 72 h post-exercise; the SOD level of the KO group was significantly higher than that of the PL group at 0, 6, and 24 h after exercise; the T-AOC level of the KO group was significantly higher than that of the PL group at 0, 6, and 72 h after exercise; the MDA level of the KO group was significantly lower than that of the PL group at 6 h; and there was no significant difference in serum IL-2, IL-6, and TNF-α between the two groups. CONCLUSION Our results demonstrated that 3 g/d KO supplementation and continued supplementation after exercise can alleviate exercise-induced muscle damage (EIMD) and promote post-exercise recovery.
Collapse
Affiliation(s)
- Simeng Yang
- Beijing Sport University, Beijing, 100084, China
| | - Qing He
- Aland Health Holding Ltd, Shanghai, 200120, China
| | - Lijun Shi
- Beijing Sport University, Beijing, 100084, China
| | - Ying Wu
- Beijing Sport University, Beijing, 100084, China.
| |
Collapse
|
42
|
A cross-talk between sestrins, chronic inflammation and cellular senescence governs the development of age-associated sarcopenia and obesity. Ageing Res Rev 2023; 86:101852. [PMID: 36642190 DOI: 10.1016/j.arr.2023.101852] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/20/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023]
Abstract
The rapid increase in both the lifespan and proportion of older adults is accompanied by the unprecedented rise in age-associated chronic diseases, including sarcopenia and obesity. Aging is also manifested by increased susceptibility to multiple endogenous and exogenous stresses enabling such chronic conditions to develop. Among the main physiological regulators of cellular adaption to various stress stimuli, such as DNA damage, hypoxia, and oxidative stress, are sestrins (Sesns), a family of three evolutionarily conserved proteins, Sesn1, 2, and 3. Age-associated sarcopenia and obesity are characterized by two key processes: (i) accumulation of senescent cells in the skeletal muscle and adipose tissue and (ii) creation of a systemic, chronic, low-grade inflammation (SCLGI). Presumably, failed SCLGI resolution governs the development of these chronic conditions. Noteworthy, Sesns activate senolytics, which are agents that selectively eliminate senescent cells, as well as specialized pro-resolving mediators, which are factors that physiologically provide inflammation resolution. Sesns reveal clear beneficial effects in pre-clinical models of sarcopenia and obesity. Based on these observations, we propose a novel treatment strategy for age-associated sarcopenia and obesity, complementary to the conventional therapeutic modalities: Sesn activation, SCLGI resolution, and senescent cell elimination.
Collapse
|
43
|
Wang Y, Chen X, Baker JS, Davison GW, Xu S, Zhou Y, Bao X. Astaxanthin promotes mitochondrial biogenesis and antioxidant capacity in chronic high-intensity interval training. Eur J Nutr 2023; 62:1453-1466. [PMID: 36650315 DOI: 10.1007/s00394-023-03083-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 01/03/2023] [Indexed: 01/18/2023]
Abstract
PURPOSE Reactive oxygen and nitrogen species are required for exercise-induced molecular adaptations; however, excessive exercise may cause cellular oxidative distress. We postulate that astaxanthin (ASX) can neutralize oxidative distress and stimulate mitochondrial biogenesis in high-intensity exercise-trained mice. METHODS Six-week-old mice (n = 8/group) were treated with ASX (10 mg/kg BW) or placebo. Training groups participated in 30 min/day high-intensity interval training (HIIT) for 6 weeks. Gastrocnemius muscle was collected and assayed following the exercise training period. RESULTS Compared to the HIIT control mice, the ASX-treated HIIT mice reduced malonaldehyde levels and upregulated the expression of Nrf2 and FOXO3a. Meanwhile, the genes NQO1 and GCLC, modulated by Nrf2, and SOD2, regulated by FOXO3a, and GPx4, were transcriptionally upregulated in the ASX-treated HIIT group. Meanwhile, the expression of energy sensors, AMPK, SIRT1, and SIRT3, increased in the ASX-treated HIIT group compared to the HIIT control group. Additionally, PGC-1α, regulated by AMPK and SIRT1, was upregulated in the ASX-treated HIIT group. Further, the increased PGC-1α stimulated the transcript of NRF1 and Tfam and mitochondrial proteins IDH2 and ATP50. Finally, the ASX-treated HIIT mice had upregulations in the transcript level of mitochondrial fusion factors, including Mfn1, Mfn2, and OPA1. However, the protein level of AMPK, SIRT1, and FOXO3a, and the transcript level of Nrf2, NQO1, PGC-1α, NRF1, Mfn1, Mfn2, and OPA1 decreased in the HIIT control group compared to the sedentary control group. CONCLUSION Supplementation with ASX can reduce oxidative stress and promote antioxidant capacity and mitochondrial biogenesis during strenuous HIIT exercise in mice.
Collapse
Affiliation(s)
- Yang Wang
- Faculty of Sports Science, Ningbo University, Ningbo, Zhejiang, People's Republic of China
| | - Xiaoping Chen
- Faculty of Sports Science, Ningbo University, Ningbo, Zhejiang, People's Republic of China
| | - Julien S Baker
- Centre for Health and Exercise Science Research, Hong Kong Baptist University, Kowloon Tong, 999077, HK, People's Republic of China
| | - Gareth W Davison
- Sport and Exercise Sciences Research Institute, Ulster University, Newtownabbey, BT37 0QB, UK
| | - Shujun Xu
- School of Medicine, Ningbo University, Ningbo, Zhejiang, People's Republic of China
| | - Yingsong Zhou
- Faculty of Sports Science, Ningbo University, Ningbo, Zhejiang, People's Republic of China.
| | - Xiaoming Bao
- Department of Cardiology, Ningbo No.2 Hospital, Ningbo, Zhejiang, People's Republic of China.
- Department of Global Health, Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, Zhejiang, People's Republic of China.
| |
Collapse
|
44
|
Hu M, Han M, Zhang H, Li Z, Xu K, Kang H, Zong J, Zhao F, Liu Y, Liu W. Curcumin (CUMINUP60®) mitigates exercise fatigue through regulating PI3K/Akt/AMPK/mTOR pathway in mice. Aging (Albany NY) 2023; 15:2308-2320. [PMID: 36988546 PMCID: PMC10085593 DOI: 10.18632/aging.204614] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 03/17/2023] [Indexed: 03/30/2023]
Abstract
Curcumin is a chemical constituent extracted from Curcuma longa L. Several clinical and preclinical studies have demonstrated that it can mitigate exercise fatigue, but the exact mechanism is still unknown. Therefore, we applied a mouse model of exercise fatigue to investigate the possible molecular mechanisms of curcumin's anti-fatigue effect. Depending on body mass, Kunming mice were randomly divided into control, caffeine (positive drug), and curcumin groups, and were given 28 days intragastric administration. Both the caffeine group and curcumin group showed significant improvement in exercise fatigue compared to the control group, as evidenced by the increase in time to exhaustion, as well as the higher quadriceps coefficient, muscle glycogen (MG) content, and increase in the expression of Akt, AMPK, PI3K, and mTOR proteins. While the curcumin group also significantly improved the exercise fatigue of the mice, demonstrating a lower AMP/ATP ratio and lactic acid (LA) content, and increased glycogen synthase (GS), and myonectin content compared to the caffeine group. Therefore, in the present study, we found that curcumin can exert a similar anti-fatigue effect to caffeine and may act by regulating energy metabolism through modulating the expression of the proteins in the PI3K/Akt/AMPK/mTOR pathway.
Collapse
Affiliation(s)
- Minghui Hu
- Experimental Center, Shandong University of Traditional Chinese Medicine, Ji’nan, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Ji’nan, China
| | - Muxuan Han
- College of Health Sciences, Shandong University of Traditional Chinese Medicine, Ji’nan, China
| | - Hao Zhang
- Experimental Center, Shandong University of Traditional Chinese Medicine, Ji’nan, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Ji’nan, China
| | - Zifa Li
- Experimental Center, Shandong University of Traditional Chinese Medicine, Ji’nan, China
| | - Kaiyong Xu
- Experimental Center, Shandong University of Traditional Chinese Medicine, Ji’nan, China
| | - Huaixing Kang
- Experimental Center, Shandong University of Traditional Chinese Medicine, Ji’nan, China
| | | | - Feng Zhao
- Experimental Center, Shandong University of Traditional Chinese Medicine, Ji’nan, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Ji’nan, China
| | - Yuanxiang Liu
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Ji’nan, China
| | - Wei Liu
- Department of Encephalopathy, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Ji’nan, China
| |
Collapse
|
45
|
The physical exercise-induced oxidative/inflammatory response in peripheral blood mononuclear cells: Signaling cellular energetic stress situations. Life Sci 2023; 321:121440. [PMID: 36921686 DOI: 10.1016/j.lfs.2023.121440] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/14/2023] [Accepted: 01/22/2023] [Indexed: 03/14/2023]
Abstract
Peripheral blood mononuclear cells (PBMCs) are a variety of specialized immune cells produced in the bone marrow from hematopoietic stem cells (HSCs) that work together to protect our bodies from harmful pathogens. From a metabolic point of view, these cells can serve as sentinel tissue source for distinguishing multiple types of whole-body physiological perturbations. The significant interaction of PBMCs with systemic physiology makes these cells an attractive target for several interventions such as physical exercise. Analyses of oxidative/inflammatory and metabolic markers of PBMCs obtained from unhealthy and healthy humans have been used in monitoring immune response in different exercise conditions. It is already a common consensus that regular practice of physical exercise, that is planned, structured, and repetitive, influences personal health by altering the metabolic state and the immune system. However, the role of distinct metabolic processes responsible for maintaining metabolic balance during physical exercise in PBMCs is not fully understood. Furthermore, a complete dose-response analysis between different exercise protocols and biomarkers capable of predicting physical performance needs to be better elucidated. The absence of published reviews on this topic compromises the understanding of the crosstalk between the metabolic adaptations of PBMCs and exercise-induced changes in the immune system. Given the above, this review highlights the main findings in the literature involving the responses of PBMCs in the inflammatory/oxidative stress induced by physical exercise. The present review also highlights how distinct phenotypes and functional diversity of PBMCs make these cells an accessible alternative for assessing exercise-induced metabolic adaptations.
Collapse
|
46
|
Viscor G, Corominas J, Carceller A. Nutrition and Hydration for High-Altitude Alpinism: A Narrative Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3186. [PMID: 36833880 PMCID: PMC9965509 DOI: 10.3390/ijerph20043186] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/03/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
This report aims to summarise the scientific knowledge around hydration, nutrition, and metabolism at high altitudes and to transfer it into the practical context of extreme altitude alpinism, which, as far as we know, has never been considered before in the literature. Maintaining energy balance during alpine expeditions is difficult for several reasons and requires a deep understanding of human physiology and the biological basis for altitude acclimation. However, in these harsh conditions it is difficult to reconcile our current scientific knowledge in sports nutrition or even for mountaineering to high-altitude alpinism: extreme hypoxia, cold, and the logistical difficulties intrinsic to these kinds of expeditions are not considered in the current literature. Requirements for the different stages of an expedition vary dramatically with increasing altitude, so recommendations must differentiate whether the alpinist is at base camp, at high-altitude camps, or attempting the summit. This paper highlights nutritional recommendations regarding prioritising carbohydrates as a source of energy and trying to maintain a protein balance with a practical contextualisation in the extreme altitude environment in the different stages of an alpine expedition. More research is needed regarding specific macro and micronutrient requirements as well as the adequacy of nutritional supplementations at high altitudes.
Collapse
Affiliation(s)
- Ginés Viscor
- Secció de Fisiologia, Departament de Biologia Cel·Lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Jordi Corominas
- International Federation of Mountain Guide Associations (UIAGM/IFMGA), CH-1920 Bern, Switzerland
| | - Anna Carceller
- Secció de Fisiologia, Departament de Biologia Cel·Lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
47
|
Kanazashi M, Tanaka M. Acute effect of electrical stimulation on muscle protein synthesis and break-down in the soleus muscle of hindlimb unloaded rats. Biomed Res 2023; 44:209-218. [PMID: 37779033 DOI: 10.2220/biomedres.44.209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Electrical stimulation (ES) is effective for disuse-induced muscle atrophy. However, the acute effect of ES on muscle protein synthesis (MPS) and muscle protein breakdown (MPB) remains unclear. We investigated the effect of a single-session ES treatment on mTORC1 signaling, MPS, and MPB in the soleus muscle of 2-week hindlimb unloaded rats. Sprague Dawley rats (n = 12 male) were randomly divided into control (CON) and hindlimb unloaded (HU) groups. After 2 weeks, the right soleus muscle was percutaneously stimulated and underwent supramaximal isometric contractions. The left soleus muscle served as an internal control. We collected soleus muscle samples 6 h after ES. Two weeks of HU decreased p70S6K and S6rp activation, downstream factors for mTORC1 signaling, and SUnSET method-assessed MPS, but increased the LC3-II/I ratio, an indicator of autophagy. ES on disused muscle successfully activated mTORC1 signaling but did not affect MPS. Contrary, ES decreased ubiquitinated proteins expression and LC3B-II/I ratio. HU might affect mTORC1 activation and MPS differently in response to acute ES possibly due to excessive ROS production caused by ES. Our findings suggest that ES applied to disused skeletal muscles may suppress MPB, but its effect on MPS appears to be attenuated.
Collapse
Affiliation(s)
- Miho Kanazashi
- Department of Physical Therapy, Faculty of Health and Welfare, Prefectural University of Hiroshima, 1-1 Gakuen-cho, Mihara-shi, Hiroshima 723-0053, Japan
| | - Masayuki Tanaka
- Department of Physical Therapy, Faculty of Health Sciences, Okayama Healthcare Professional Uni- versity, 3-2-18 Daiku, Kita-ku, Okayama-shi, Okayama 700-0913, Japan
| |
Collapse
|
48
|
Song J, Qu R, Sun B, Wang Y, Chen R, Kan H, An Z, Wu H, Li J, Jiang J, Zhang Y, Wu W. Acute effects of ambient nitrogen dioxide exposure on serum biomarkers of nervous system damage in healthy older adults. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114423. [PMID: 36525948 DOI: 10.1016/j.ecoenv.2022.114423] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 12/09/2022] [Accepted: 12/10/2022] [Indexed: 06/17/2023]
Abstract
Ambient nitrogen dioxide (NO2)-induced adverse health effects have been studied, but documented evidence on neural systems is limited. This study aimed to determine the acute effect of NO2 exposure on nervous system damage biomarker levels in healthy older adults. Five rounds of follow-up among 34 healthy retired people were scheduled from December 2018 to April 2019 in Xinxiang, China. The real-time NO2 concentrations were measured using a fixed site monitor. Serum samples were acquired during each round to measure nervous system damage biomarker levels: brain-derived neurotrophic factor (BDNF), neurofilament light chain (NfL), neuron-specific enolase (NSE), protein gene product 9.5 (PGP9.5), and S100 calcium-binding protein B (S100B). A linear mixed-effect model was incorporated to analyze the association between short-term NO2 exposure and serum concentrations of the above-mentioned biomarkers. Stratification analysis based on sex, educational attainment, glutathione S-transferase theta 1 gene (GSTT1) polymorphism, and physical activity intensity was conducted to explore their potential modification effect. The NO2 concentration ranged from 34.7 to 59.0 µg/m3 during the study period. Acute exposure to ambient NO2 was significantly associated with elevated serum levels of NfL, PGP9.5, and BDNF. In response to a 10 µg/m3 increase in NO2 concentration, NfL and PGP9.5 levels increased by 76 % (95 % confidence interval [CI]: 12-140 %) and 54 % (95 % CI: 1-107 %) on the lag0 day, respectively, while BDNF levels increased by 49 % (95 % CI: 2-96 %) at lag4 day. The estimated effect of NO2 on NSE levels in GSTT1-sufficient participants was significantly higher than that in GSTT1-null participants. Intriguingly, the estimation of NO2 on PGP9.5 levels in females was significantly higher than that in males. Most two-pollutant models showed robust results, except for O3, which might have had confounding effects on NO2-induced BDNF stimulation. In summary, acute exposure to NO2 was associated with increased levels of serum nervous system damage biomarker levels including NFL, PGP9.5, and BDNF. The present study provided insights into NO2 exposure-induced adverse neural effects.
Collapse
Affiliation(s)
- Jie Song
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Rongrong Qu
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Beibei Sun
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Yinbiao Wang
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Renjie Chen
- School of Public Health, Fudan University, Shanghai, China
| | - Haidong Kan
- School of Public Health, Fudan University, Shanghai, China
| | - Zhen An
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Hui Wu
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Juan Li
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Jing Jiang
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Yange Zhang
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Weidong Wu
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China.
| |
Collapse
|
49
|
Ahmed A, Afzaal M, Ali SW, Muzammil HS, Masood A, Saleem MA, Saeed F, Hussain M, Rasheed A, Al Jbawi E. Effect of vegan diet (VD) on sports performance: a mechanistic review of metabolic cascades. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2022. [DOI: 10.1080/10942912.2022.2120495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Aftab Ahmed
- Department of Nutritional Sciences, Government College University, Faisalabad, Pakistan
| | - Muhammad Afzaal
- Department of Food Sciences, Government College University, Faisalabad, Pakistan
| | - Shinawar Waseem Ali
- Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Hafiz Shehzad Muzammil
- National Institute of Food Science and Technology, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Ammar Masood
- Department of Nutritional Sciences, Government College University, Faisalabad, Pakistan
| | - Muhammad Awais Saleem
- Department of Nutritional Sciences, Government College University, Faisalabad, Pakistan
| | - Farhan Saeed
- Department of Food Sciences, Government College University, Faisalabad, Pakistan
| | - Muzzamal Hussain
- Department of Food Sciences, Government College University, Faisalabad, Pakistan
| | - Amara Rasheed
- Department of Food Sciences, Government College University, Faisalabad, Pakistan
| | | |
Collapse
|
50
|
Zakic T, Stojanovic S, Jankovic A, Korac A, Pekovic-Vaughan V, Korac B. Redox-metabolic reprogramming of skin in mice lacking functional Nrf2 under basal conditions and cold acclimation. Biofactors 2022. [PMID: 36585756 DOI: 10.1002/biof.1931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/14/2022] [Indexed: 01/01/2023]
Abstract
Adaptive responses to environmental and physiological challenges, including exposure to low environmental temperature, require extensive structural, redox, and metabolic reprogramming. Detailed molecular mechanisms of such processes in the skin are lacking, especially the role of nuclear factor erythroid 2-related factor 2 (Nrf2) and other closely related redox-sensitive transcription factors Nrf1, Nrf3, and nuclear respiratory factor (NRF1). To investigate the role of Nrf2, we examined redox and metabolic responses in the skin of wild-type (WT) mice and mice lacking functional Nrf2 (Nrf2 KO) at room (RT, 24 ± 1°C) and cold (4 ± 1°C) temperature. Our results demonstrate distinct expression profiles of major enzymes involved in antioxidant defense and key metabolic and mitochondrial pathways in the skin, depending on the functional Nrf2 and/or cold stimulus. Nrf2 KO mice at RT displayed profound alterations in redox, mitochondrial and metabolic responses, generally akin to cold-induced skin responses in WT mice. Immunohistochemical analyses of skin cell compartments (keratinocytes, fibroblasts, hair follicle, and sebaceous gland) and spatial locations (nucleus and cytoplasm) revealed synergistic interactions between members of the Nrf transcription factor family as part of redox-metabolic reprogramming in WT mice upon cold acclimation. In contrast, Nrf2 KO mice at RT showed loss of NRF1 expression and a compensatory activation of Nrf1/Nrf3, which was abolished upon cold, concomitant with blunted redox-metabolic responses. These data show for the first time a novel role for Nrf2 in skin physiology in response to low environmental temperature, with important implications in human connective tissue diseases with altered thermogenic responses.
Collapse
Affiliation(s)
- Tamara Zakic
- Institute for Biological Research "Sinisa Stankovic"-National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Sara Stojanovic
- Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Aleksandra Jankovic
- Institute for Biological Research "Sinisa Stankovic"-National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | | | - Vanja Pekovic-Vaughan
- Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK
| | - Bato Korac
- Institute for Biological Research "Sinisa Stankovic"-National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
- Faculty of Biology, University of Belgrade, Belgrade, Serbia
| |
Collapse
|