1
|
Nádasy GL, Balla A, Dörnyei G, Hunyady L, Szekeres M. Direct Vascular Effects of Angiotensin II (A Systematic Short Review). Int J Mol Sci 2024; 26:113. [PMID: 39795971 PMCID: PMC11719566 DOI: 10.3390/ijms26010113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/19/2024] [Accepted: 12/22/2024] [Indexed: 01/13/2025] Open
Abstract
The octapeptide angiotensin II (Ang II) is a circulating hormone as well as a locally formed agonist synthesized by the angiotensin-converting enzyme (ACE) of endothelial cells. It forms a powerful mechanism to control the amount and pressure of body fluids. All main effects are directed to save body salt and water and ensure blood pressure under basic conditions and in emergencies. All blood vessels respond to stimulation by Ang II; the immediate response is smooth muscle contraction, increasing vascular resistance, and elevating blood pressure. Such effects are conveyed by type 1 angiotensin receptors (AT1Rs) located in the plasma membrane of both endothelial and vascular smooth muscle cells. AT1Rs are heterotrimeric G protein-coupled receptors (GPCRs), but their signal pathways are much more complicated than other GPCRs. In addition to Gq/11, the G12/13, JAK/STAT, Jnk, MAPK, and ERK 1/2, and arrestin-dependent and -independent pathways are activated because of the promiscuous attachment of different signal proteins to the intracellular G protein binding site and to the intracellular C terminal loop. Substantial changes in protein expression follow, including the intracellular inflammation signal protein NF-κB, endothelial contact proteins, cytokines, matrix metalloproteinases (MMPs), and type I protocollagen, eliciting the inflammatory transformation of endothelial and vascular smooth muscle cells and fibrosis. Ang II is an important contributor to vascular pathologies in hypertensive, atherosclerotic, and aneurysmal vascular wall remodeling. Such direct vascular effects are reviewed. In addition to reducing blood pressure, AT1R antagonists and ACE inhibitors have a beneficial effect on the vascular wall by inhibiting pathological wall remodeling.
Collapse
Affiliation(s)
- György L. Nádasy
- Department of Physiology, Faculty of Medicine, Semmelweis University, 37-47 Tűzoltó Street, 1094 Budapest, Hungary; (G.L.N.); (A.B.); (L.H.)
| | - András Balla
- Department of Physiology, Faculty of Medicine, Semmelweis University, 37-47 Tűzoltó Street, 1094 Budapest, Hungary; (G.L.N.); (A.B.); (L.H.)
- HUN-REN-SU Molecular Physiology Research Group, Hungarian Research Network, Semmelweis University, 1094 Budapest, Hungary
| | - Gabriella Dörnyei
- Department of Morphology and Physiology, Faculty of Health Sciences, Semmelweis University, 17 Vas Street, 1088 Budapest, Hungary;
| | - László Hunyady
- Department of Physiology, Faculty of Medicine, Semmelweis University, 37-47 Tűzoltó Street, 1094 Budapest, Hungary; (G.L.N.); (A.B.); (L.H.)
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, 2 Magyar Tudósok Körútja, 1117 Budapest, Hungary
| | - Mária Szekeres
- Department of Physiology, Faculty of Medicine, Semmelweis University, 37-47 Tűzoltó Street, 1094 Budapest, Hungary; (G.L.N.); (A.B.); (L.H.)
- Department of Morphology and Physiology, Faculty of Health Sciences, Semmelweis University, 17 Vas Street, 1088 Budapest, Hungary;
| |
Collapse
|
2
|
Ben Boubaker R, Henrion D, Chabbert M. Mechanical stress and anionic lipids synergistically stabilize an atypical structure of the angiotensin II type 1 receptor (AT1). PLoS Comput Biol 2024; 20:e1012559. [PMID: 39536064 PMCID: PMC11560033 DOI: 10.1371/journal.pcbi.1012559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024] Open
Abstract
Environmental factors, including mechanical stress and surrounding lipids, can influence the response of GPCRs, such as the mechanosensitive angiotensin II type 1 receptor (AT1). To investigate the impact of these factors on AT1 activation, we developed a steered molecular dynamics simulations protocol based on quaternion formalism. In this protocol, a pulling force was applied to the N-terminus of transmembrane helix 6 (TM6) to induce the TM6 opening characteristic of activation. Subsequently, the simulations were continued without constraints to allow the receptor to relax around the novel TM6 conformation under different conditions. We analyzed the responses of AT1 to membrane stretching, modeled by applying surface tension, in different bilayers. In phosphocholine bilayers without surface tension, we could observe a transient atypical structure of AT1, with an outward TM7 conformation, at the beginning of the activation process. This atypical structure then evolved toward a pre-active structure with outward TM6 and inward TM7. Strikingly, the presence of anionic phosphoglycerol lipids and application of surface tension synergistically favored the atypical structure, which led to an increase in the cross-section area of the receptor intracellular domain. Lipid internalization and H-bonds between lipid heads and the receptor C-terminus increased in phosphoglycerol vs phosphocholine bilayers, but did not depend on surface tension. The difference in the cross-section area of the atypical and pre-active conformations makes the conformational transition sensitive to lateral pressure, and favors the atypical conformation upon surface tension. Anionic lipids act as allosteric modulators of the conformational transition, by stabilizing the atypical conformation. These findings contribute to decipher the mechanisms underlying AT1 activation, highlighting the influence of environmental factors on GPCR responses. Moreover, our results reveal the existence of intermediary conformations that depend on receptor environment and could be targeted in drug design efforts.
Collapse
Affiliation(s)
- Rym Ben Boubaker
- UMR CNRS 6015 –INSERM 1083, Laboratoire MITOVASC, Université d’Angers, Angers, France
| | - Daniel Henrion
- UMR CNRS 6015 –INSERM 1083, Laboratoire MITOVASC, Université d’Angers, Angers, France
| | - Marie Chabbert
- UMR CNRS 6015 –INSERM 1083, Laboratoire MITOVASC, Université d’Angers, Angers, France
| |
Collapse
|
3
|
Turner SR, Al‐Ghabkari A, Carlson DA, Chappellaz M, Sutherland C, Haystead TAJ, Cole WC, MacDonald JA. Death-associated protein kinase 3 regulates the myogenic reactivity of cerebral arteries. Exp Physiol 2023; 108:986-997. [PMID: 37084168 PMCID: PMC10988501 DOI: 10.1113/ep090631] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 03/28/2023] [Indexed: 04/22/2023]
Abstract
NEW FINDINGS What is the central question of this study? DAPK3 contributes to the Ca2+ -sensitization of vascular smooth muscle contraction: does this protein kinase participate in the myogenic response of cerebral arteries? What is the main finding and its importance? Small molecule inhibitors of DAPK3 effectively block the myogenic responses of cerebral arteries. HS38-dependent changes to vessel constriction occur independent of LC20 phosphorylation, and therefore DAPK3 appears to operate via the actin cytoskeleton. A role for DAPK3 in the myogenic response was not previously reported, and the results support a potential new therapeutic target in the cerebrovascular system. ABSTRACT The vascular smooth muscle (VSM) of resistance blood vessels is a target of intrinsic autoregulatory responses to increased intraluminal pressure, the myogenic response. In the brain, the myogenic reactivity of cerebral arteries is critical to homeostatic blood flow regulation. Here we provide the first evidence to link the death-associated protein kinase 3 (DAPK3) to the myogenic response of rat and human cerebral arteries. DAPK3 is a Ser/Thr kinase involved in Ca2+ -sensitization mechanisms of smooth muscle contraction. Ex vivo administration of a specific DAPK3 inhibitor (i.e., HS38) could attenuate vessel constrictions invoked by serotonin as well as intraluminal pressure elevation. The HS38-dependent dilatation was not associated with any change in myosin light chain (LC20) phosphorylation. The results suggest that DAPK3 does not regulate Ca2+ sensitization pathways during the myogenic response of cerebral vessels but rather operates to control the actin cytoskeleton. A slow return of myogenic tone was observed during the sustained ex vivo exposure of cerebral arteries to HS38. Recovery of tone was associated with greater LC20 phosphorylation that suggests intrinsic signalling compensation in response to attenuation of DAPK3 activity. Additional experiments with VSM cells revealed HS38- and siDAPK-dependent effects on the actin cytoskeleton and focal adhesion kinase phosphorylation status. The translational importance of DAPK3 to the human cerebral vasculature was noted, with robust expression of the protein kinase and significant HS38-dependent attenuation of myogenic reactivity found for human pial vessels.
Collapse
Affiliation(s)
- Sara R. Turner
- Department of Biochemistry & Molecular Biology, Cumming School of MedicineUniversity of CalgaryCalgaryABCanada
| | - Abdulhameed Al‐Ghabkari
- Department of Biochemistry & Molecular Biology, Cumming School of MedicineUniversity of CalgaryCalgaryABCanada
| | - David A. Carlson
- Department of Pharmacology & Cancer BiologyDuke University School of MedicineDurhamNCUSA
| | - Mona Chappellaz
- Department of Biochemistry & Molecular Biology, Cumming School of MedicineUniversity of CalgaryCalgaryABCanada
| | - Cindy Sutherland
- Department of Biochemistry & Molecular Biology, Cumming School of MedicineUniversity of CalgaryCalgaryABCanada
- Department of Physiology and Pharmacology, Cumming School of MedicineUniversity of CalgaryCalgaryABCanada
| | - Timothy A. J. Haystead
- Department of Pharmacology & Cancer BiologyDuke University School of MedicineDurhamNCUSA
| | - William C. Cole
- Department of Physiology and Pharmacology, Cumming School of MedicineUniversity of CalgaryCalgaryABCanada
| | - Justin A. MacDonald
- Department of Biochemistry & Molecular Biology, Cumming School of MedicineUniversity of CalgaryCalgaryABCanada
| |
Collapse
|
4
|
Lilley RJ, Taylor KD, Wildman SSP, Peppiatt-Wildman CM. Inflammatory mediators act at renal pericytes to elicit contraction of vasa recta and reduce pericyte density along the kidney medullary vascular network. Front Physiol 2023; 14:1194803. [PMID: 37362447 PMCID: PMC10288992 DOI: 10.3389/fphys.2023.1194803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/01/2023] [Indexed: 06/28/2023] Open
Abstract
Introduction: Regardless of initiating cause, renal injury promotes a potent pro-inflammatory environment in the outer medulla and a concomitant sustained decrease in medullary blood flow (MBF). This decline in MBF is believed to be one of the critical events in the pathogenesis of acute kidney injury (AKI), yet the precise cellular mechanism underlying this are still to be fully elucidated. MBF is regulated by contractile pericyte cells that reside on the descending vasa recta (DVR) capillaries, which are the primary source of blood flow to the medulla. Methods: Using the rat and murine live kidney slice models, we investigated the acute effects of key medullary inflammatory mediators TNF-α, IL-1β, IL-33, IL-18, C3a and C5a on vasa recta pericytes, the effect of AT1-R blocker Losartan on pro-inflammatory mediator activity at vasa recta pericytes, and the effect of 4-hour sustained exposure on immunolabelled NG2+ pericytes. Results and discussion: Exposure of rat and mouse kidney slices to TNF-α, IL-18, IL-33, and C5a demonstrated a real-time pericyte-mediated constriction of DVR. When pro-inflammatory mediators were applied in the presence of Losartan the inflammatory mediator-mediated constriction that had previously been observed was significantly attenuated. When live kidney slices were exposed to inflammatory mediators for 4-h, we noted a significant reduction in the number of NG2+ positive pericytes along vasa recta capillaries in both rat and murine kidney slices. Data collected in this study demonstrate that inflammatory mediators can dysregulate pericytes to constrict DVR diameter and reduce the density of pericytes along vasa recta vessels, further diminishing the regulatory capacity of the capillary network. We postulate that preliminary findings here suggest pericytes play a role in AKI.
Collapse
Affiliation(s)
- Rebecca J. Lilley
- Division of Natural Sciences, University of Kent, Kent, United Kingdom
| | - Kirsti D. Taylor
- Division of Natural Sciences, University of Kent, Kent, United Kingdom
| | | | | |
Collapse
|
5
|
Zhao SS, Lyu H, Zeng C, Lei G, Wei J, Mackie SL. Angiotensin receptor blockade is associated with increased risk of giant cell arteritis. Rheumatology (Oxford) 2023; 62:2203-2210. [PMID: 36255257 PMCID: PMC10234186 DOI: 10.1093/rheumatology/keac599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/29/2022] [Accepted: 10/08/2022] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES Angiotensin II is implicated in GCA pathology. We examined whether the use of angiotensin receptor blockers (ARBs) is associated with GCA risk compared with angiotensin-converting enzyme inhibitors (ACEis) or other antihypertensives. METHODS We performed a matched cohort study including adults who were initiators of antihypertensives in UK primary care data between 1995 and 2019. Treatment-naïve individuals without prior GCA or PMR were categorized into three groups-ARB initiators, ACEi initiators, or other antihypertensive initiators (beta-blockers, calcium channel blockers, diuretics or alpha-adrenoceptor blockers)-and followed for up to 5 years. Incident GCA was defined using validated Read codes, with age of onset ≥50 years and two or more glucocorticoid prescriptions. Inverse probability-weighted Cox models were used to model outcome risk, adjusting for lifestyle parameters, comorbidities and comedications. RESULTS Among >1 million new starters of antihypertensives (81 780 ARBs, 422 940 ACEis and 873 066 other antihypertensives), the incidence rate of GCA per 10 000 patient-years was 2.73 (95% CI 2.12, 3.50) in the ARB group, 1.76 (95% CI 1.25, 2.39) in the ACEi group and 1.90 (95% CI 1.37, 2.56) in the other antihypertensives group. The hazard of GCA was higher in ARB initiators [hazard ratio (HR) 1.55; 95% CI 1.16, 2.06] than initiators of ACEis, but similar between initiators of other antihypertensives and ACEis (HR 1.08; 95% CI 0.87, 1.35). CONCLUSIONS Initiation of ARBs is associated with a higher risk of GCA compared with ACEis or other antihypertensives. Mechanistic studies of angiotensin receptor biology will provide further clarity for our findings.
Collapse
Affiliation(s)
- Sizheng Steven Zhao
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Centre for Epidemiology Versus Arthritis, Division of Musculoskeletal and Dermatological Science, School of Biological Sciences, Faculty of Biological Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
| | - Houchen Lyu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Methodology, National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, General Hospital of Chinese PLA, Beijing, China
- Department of Orthopedics, General Hospital of Chinese PLA, Beijing, China
| | - Chao Zeng
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Joint Degeneration and Injury, Changsha, China
| | - Guanghua Lei
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Joint Degeneration and Injury, Changsha, China
| | - Jie Wei
- Hunan Key Laboratory of Joint Degeneration and Injury, Changsha, China
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
- Health Management Center, Xiangya Hospital, Central South University, Changsha, China
| | - Sarah L Mackie
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
- National Institute for Health Research Leeds Biomedical Research Centre, Leeds Teaching Hospitals, University of Leeds, Leeds, UK
| |
Collapse
|
6
|
Phan TX, Sahibzada N, Ahern GP. Arteries are finely tuned thermosensors regulating myogenic tone and blood flow. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.22.532099. [PMID: 36993664 PMCID: PMC10055355 DOI: 10.1101/2023.03.22.532099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
In response to changing blood pressure, arteries adjust their caliber to control perfusion. This vital autoregulatory property, termed vascular myogenic tone, stabilizes downstream capillary pressure. We discovered that tissue temperature critically determines myogenic tone. Heating steeply activates tone in skeletal muscle, gut, brain and skin arteries with temperature coefficients ( Q 10 ) of ∼11-20. Further, arterial thermosensitivity is tuned to resting tissue temperatures, making myogenic tone sensitive to small thermal fluctuations. Interestingly, temperature and intraluminal pressure are sensed largely independently and integrated to trigger myogenic tone. We show that TRPV1 and TRPM4 mediate heat-induced tone in skeletal muscle arteries. Variations in tissue temperature are known to alter vascular conductance; remarkably, thermosensitive tone counterbalances this effect, thus protecting capillary integrity and fluid balance. In conclusion, thermosensitive myogenic tone is a fundamental homeostatic mechanism regulating tissue perfusion. One-Sentence Summary Arterial blood pressure and temperature are integrated via thermosensitve ion channels to produce myogenic tone.
Collapse
|
7
|
Davis MJ, Earley S, Li YS, Chien S. Vascular mechanotransduction. Physiol Rev 2023; 103:1247-1421. [PMID: 36603156 PMCID: PMC9942936 DOI: 10.1152/physrev.00053.2021] [Citation(s) in RCA: 85] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 09/26/2022] [Accepted: 10/04/2022] [Indexed: 01/07/2023] Open
Abstract
This review aims to survey the current state of mechanotransduction in vascular smooth muscle cells (VSMCs) and endothelial cells (ECs), including their sensing of mechanical stimuli and transduction of mechanical signals that result in the acute functional modulation and longer-term transcriptomic and epigenetic regulation of blood vessels. The mechanosensors discussed include ion channels, plasma membrane-associated structures and receptors, and junction proteins. The mechanosignaling pathways presented include the cytoskeleton, integrins, extracellular matrix, and intracellular signaling molecules. These are followed by discussions on mechanical regulation of transcriptome and epigenetics, relevance of mechanotransduction to health and disease, and interactions between VSMCs and ECs. Throughout this review, we offer suggestions for specific topics that require further understanding. In the closing section on conclusions and perspectives, we summarize what is known and point out the need to treat the vasculature as a system, including not only VSMCs and ECs but also the extracellular matrix and other types of cells such as resident macrophages and pericytes, so that we can fully understand the physiology and pathophysiology of the blood vessel as a whole, thus enhancing the comprehension, diagnosis, treatment, and prevention of vascular diseases.
Collapse
Affiliation(s)
- Michael J Davis
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Scott Earley
- Department of Pharmacology, University of Nevada, Reno, Nevada
| | - Yi-Shuan Li
- Department of Bioengineering, University of California, San Diego, California
- Institute of Engineering in Medicine, University of California, San Diego, California
| | - Shu Chien
- Department of Bioengineering, University of California, San Diego, California
- Institute of Engineering in Medicine, University of California, San Diego, California
- Department of Medicine, University of California, San Diego, California
| |
Collapse
|
8
|
Biwer LA, Lu Q, Ibarrola J, Stepanian A, Man JJ, Carvajal BV, Camarda ND, Zsengeller Z, Skurnik G, Seely EW, Karumanchi SA, Jaffe IZ. Smooth Muscle Mineralocorticoid Receptor Promotes Hypertension After Preeclampsia. Circ Res 2023; 132:674-689. [PMID: 36815487 PMCID: PMC10119809 DOI: 10.1161/circresaha.122.321228] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 02/16/2023] [Indexed: 02/24/2023]
Abstract
BACKGROUND Preeclampsia is a syndrome of high blood pressure (BP) with end organ damage in late pregnancy that is associated with high circulating soluble VEGF receptor (sFlt1 [soluble Fms-like tyrosine kinase 1]). Women exposed to preeclampsia have a substantially increased risk of hypertension after pregnancy, but the mechanism remains unknown, leaving a missed interventional opportunity. After preeclampsia, women have enhanced sensitivity to hypertensive stress. Since smooth muscle cell mineralocorticoid receptors (SMC-MR) are activated by hypertensive stimuli, we hypothesized that high sFlt1 exposure in pregnancy induces a postpartum state of enhanced SMC-MR responsiveness. METHODS Postpartum BP response to high salt intake was studied in women with prior preeclampsia. MR transcriptional activity was assessed in vitro in sFlt1-treated SMC by reporter assays and PCR. Preeclampsia was modeled by transient sFlt1 expression in pregnant mice. Two months post-partum, mice were exposed to high salt and then to AngII (angiotensin II) and BP and vasoconstriction were measured. RESULTS Women exposed to preeclampsia had significantly enhanced salt sensitivity of BP verses those with a normotensive pregnancy. sFlt1 overexpression during pregnancy in mice induced elevated BP and glomerular endotheliosis, which resolved post-partum. The sFlt1 exposed post-partum mice had significantly increased BP response to 4% salt diet and to AngII infusion. In vitro, SMC-MR transcriptional activity in response to aldosterone or AngII was significantly increased after transient exposure to sFlt1 as was aldosterone-induced expression of AngII type 1 receptor. Post-partum, SMC-MR-KO mice were protected from the enhanced response to hypertensive stimuli after preeclampsia. Mechanistically, preeclampsia mice exposed to postpartum hypertensive stimuli develop enhanced aortic stiffness, microvascular myogenic tone, AngII constriction, and AngII type 1 receptor expression, all of which were prevented in SMC-MR-KO littermates. CONCLUSIONS These data support that sFlt1-induced vascular injury during preeclampsia produces a persistent state of enhanced sensitivity of SMC-MR to activation. This contributes to postpartum hypertension in response to common stresses and supports testing of MR antagonism to mitigate the increased cardiovascular risk in women after PE.
Collapse
Affiliation(s)
- Lauren A. Biwer
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston MA
| | - Qing Lu
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston MA
| | - Jaime Ibarrola
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston MA
| | - Alec Stepanian
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston MA
- Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston MA
| | - Joshua J. Man
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston MA
- Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston MA
| | - Brigett V. Carvajal
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston MA
- Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston MA
| | - Nicholas D. Camarda
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston MA
- Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston MA
| | | | | | - Ellen W. Seely
- Division of Endocrinology, Brigham and Women’s Hospital, Boston MA
| | - S. Ananth Karumanchi
- Department of Medicine, Beth Israel Deaconess Hospital, Boston MA
- Department of Medicine, Cedars Sinai Medical Center, Los Angeles CA
| | - Iris Z. Jaffe
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston MA
- Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston MA
| |
Collapse
|
9
|
Myosin light chain phosphorylation exhibits a gradient across the wall of cerebellar arteries under sustained ex vivo vascular tone. Sci Rep 2023; 13:909. [PMID: 36650375 PMCID: PMC9845333 DOI: 10.1038/s41598-023-28092-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Small blood vessel diseases are often associated with impaired regulation of vascular tone. The current understanding of resistance arteries often focuses on how a level of vascular tone is achieved in the acute phase, while less emphasis is placed on mechanisms that maintain vascular tone. In this study, cannulated rat superior cerebellar arteries (SCA) developed spontaneous myogenic tone and showed a marked and sustained constriction in the presence of diluted serum (10%), a stimulus relevant to cerebrovascular disease. Both phosphorylated myosin light chain (MLC-p) and smooth muscle alpha actin (SM-α-actin) aligned with phalloidin-stained actin filaments in the vessel wall, while exhibiting a 'high to low' gradient across the layers of vascular smooth muscle cells (VSMC), peaking in the outer layer. The MLC-p distribution profile shifted towards the adventitia in serum treated vessels, while removal of the serum reversed it. Furthermore, a positive correlation between the MLC-p signal and vessel wall tension was also evident. The gradients of phosphorylated MLC and SM-α-actin are consistent with a spatial regulation of the myosin-actin apparatus in the vessel wall during the maintenance of vascular tone. Further, the changing profiles of MLC-p and SM-α-actin are consistent with SCA vasoconstriction being accompanied by VSMC cytoskeletal reorganization.
Collapse
|
10
|
Doan TNA, Bianco-Miotto T, Parry L, Winter M. The role of angiotensin II and relaxin in vascular adaptation to pregnancy. Reproduction 2022; 164:R87-R99. [PMID: 36018774 DOI: 10.1530/rep-21-0428] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/26/2022] [Indexed: 11/08/2022]
Abstract
In brief There is a pregnancy-induced vasodilation of blood vessels, which is known to have a protective effect on cardiovascular function and can be maintained postpartum. This review outlines the cardiovascular changes that occur in a healthy human and rodent pregnancy, as well as different pathways that are activated by angiotensin II and relaxin that result in blood vessel dilation. Abstract During pregnancy, systemic and uteroplacental blood flow increase to ensure an adequate blood supply that carries oxygen and nutrients from the mother to the fetus. This results in changes to the function of the maternal cardiovascular system. There is also a pregnancy-induced vasodilation of blood vessels, which is known to have a protective effect on cardiovascular health/function. Additionally, there is evidence that the effects of maternal vascular vasodilation are maintained post-partum, which may reduce the risk of developing high blood pressure in the next pregnancy and reduce cardiovascular risk later in life. At both non-pregnant and pregnant stages, vascular endothelial cells produce a number of vasodilators and vasoconstrictors, which transduce signals to the contractile vascular smooth muscle cells to control the dilation and constriction of blood vessels. These vascular cells are also targets of other vasoactive factors, including angiotensin II (Ang II) and relaxin. The binding of Ang II to its receptors activates different pathways to regulate the blood vessel vasoconstriction/vasodilation, and relaxin can interact with some of these pathways to induce vasodilation. Based on the available literature, this review outlines the cardiovascular changes that occur in a healthy human pregnancy, supplemented by studies in rodents. A specific focus is placed on vasodilation of blood vessels during pregnancy; the role of endothelial cells and endothelium-derived vasodilators will also be discussed. Additionally, different pathways that are activated by Ang II and relaxin that result in blood vessel dilation will also be reviewed.
Collapse
Affiliation(s)
- Thu Ngoc Anh Doan
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Adelaide, South Australia, Australia.,Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Tina Bianco-Miotto
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Adelaide, South Australia, Australia.,Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Laura Parry
- Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia.,School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Marnie Winter
- Future Industries Institute, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
11
|
Cui Y, Kassmann M, Nickel S, Zhang C, Alenina N, Anistan YM, Schleifenbaum J, Bader M, Welsh DG, Huang Y, Gollasch M. Myogenic Vasoconstriction Requires Canonical G q/11 Signaling of the Angiotensin II Type 1 Receptor. J Am Heart Assoc 2022; 11:e022070. [PMID: 35132870 PMCID: PMC9245832 DOI: 10.1161/jaha.121.022070] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Background Blood pressure and tissue perfusion are controlled in part by the level of intrinsic (myogenic) arterial tone. However, many of the molecular determinants of this response are unknown. We previously found that mice with targeted disruption of the gene encoding the angiotensin II type 1a receptor (AT1AR) (Agtr1a), the major murine angiotensin II type 1 receptor (AT1R) isoform, showed reduced myogenic tone; however, uncontrolled genetic events (in this case, gene ablation) can lead to phenotypes that are difficult or impossible to interpret. Methods and Results We tested the mechanosensitive function of AT1R using tamoxifen-inducible smooth muscle-specific AT1aR knockout (smooth muscle-Agtr1a-/-) mice and studied downstream signaling cascades mediated by Gq/11 and/or β-arrestins. FR900359, Sar1Ile4Ile8-angiotensin II (SII), TRV120027 and TRV120055 were used as selective Gq/11 inhibitor and biased agonists to activate noncanonical β-arrestin and canonical Gq/11 signaling of the AT1R, respectively. Myogenic and Ang II-induced constrictions were diminished in the perfused renal vasculature, mesenteric and cerebral arteries of smooth muscle-Agtr1a-/- mice. Similar effects were observed in arteries of global mutant Agtr1a-/- but not Agtr1b-/- mice. FR900359 decreased myogenic tone and angiotensin II-induced constrictions whereas selective biased targeting of AT1R-β-arrestin signaling pathways had no effects. Conclusions This study demonstrates that myogenic arterial constriction requires Gq/11-dependent signaling pathways of mechanoactivated AT1R but not G protein-independent, noncanonical pathways in smooth muscle cells.
Collapse
Affiliation(s)
- Yingqiu Cui
- Experimental and Clinical Research Center (ECRC) a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine (MDC) Charité - Universitätsmedizin Berlin Berlin Germany
| | - Mario Kassmann
- Experimental and Clinical Research Center (ECRC) a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine (MDC) Charité - Universitätsmedizin Berlin Berlin Germany.,Department of Internal Medicine and Geriatrics University Medicine Greifswald Germany
| | - Sophie Nickel
- Experimental and Clinical Research Center (ECRC) a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine (MDC) Charité - Universitätsmedizin Berlin Berlin Germany
| | - Chenglin Zhang
- Heart and Vascular Institute and School of Biomedical Sciences Chinese University of Hong Kong China
| | - Natalia Alenina
- Max Delbrück Center for Molecular Medicine Berlin Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Berlin Berlin Germany
| | - Yoland Marie Anistan
- Experimental and Clinical Research Center (ECRC) a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine (MDC) Charité - Universitätsmedizin Berlin Berlin Germany.,Department of Internal Medicine and Geriatrics University Medicine Greifswald Germany
| | - Johanna Schleifenbaum
- Experimental and Clinical Research Center (ECRC) a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine (MDC) Charité - Universitätsmedizin Berlin Berlin Germany
| | - Michael Bader
- Max Delbrück Center for Molecular Medicine Berlin Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Berlin Berlin Germany.,Charité - Universitätsmedizin Berlin Berlin Germany.,Institute for Biology University of Lübeck Germany
| | - Donald G Welsh
- Department of Physiology and Pharmacology Robarts, Research Institute Western University London Ontario Canada
| | - Yu Huang
- Heart and Vascular Institute and School of Biomedical Sciences Chinese University of Hong Kong China.,Department of Biomedical Sciences Campus VirchowCity University of Hong Kong China
| | - Maik Gollasch
- Experimental and Clinical Research Center (ECRC) a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine (MDC) Charité - Universitätsmedizin Berlin Berlin Germany.,Department of Internal Medicine and Geriatrics University Medicine Greifswald Germany.,Medical Clinic for Nephrology and Internal Intensive Care Campus VirchowCharité - Universitätsmedizin Berlin Berlin Germany
| |
Collapse
|
12
|
Phan TX, Ton HT, Gulyás H, Pórszász R, Tóth A, Russo R, Kay MW, Sahibzada N, Ahern GP. TRPV1 in arteries enables a rapid myogenic tone. J Physiol 2022; 600:1651-1666. [PMID: 35020949 PMCID: PMC8976781 DOI: 10.1113/jp281873] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 01/11/2022] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS We explored the physiological role of TRPV1 in vascular smooth muscle. TRPV1 antagonists dilated skeletal muscle arterioles both ex vivo and in vivo, increased coronary perfusion and decreased systemic blood pressure. Stretch of arteriolar myocytes and increases in intraluminal pressure in arteries triggered rapid Ca2+ signaling and vasoconstriction respectively. Pharmacologic and/or genetic disruption of TRPV1 significantly inhibited the magnitude and rate of these responses. Furthermore, disrupting TRPV1 blunted the rapid vasodilation evoked by arterial constriction. Pharmacological experiments identified key roles for phospholipase C and protein kinase C, combined with temperature, in TRPV1-dependent arterial tone. These results show that TRPV1 in arteriolar myocytes dynamically regulates myogenic tone and blood flow in the heart and skeletal muscle. ABSTRACT Arterioles maintain blow flow by adjusting their diameter in response to changes in local blood pressure. In this process called the myogenic response, a vascular smooth muscle mechanosensor controls tone predominantly through altering the membrane potential. In general, myogenic responses occur slowly (minutes). In the heart and skeletal muscle, however, tone is activated rapidly (tens of seconds) and terminated by brief (100 ms) arterial constrictions. Previously, we identified extensive expression of TRPV1 in the smooth muscle of arterioles supplying skeletal muscle, heart and fat. Here we reveal a critical role for TRPV1 in the rapid myogenic tone of these tissues. TRPV1 antagonists dilated skeletal muscle arterioles in vitro and in vivo, increased coronary flow in isolated hearts, and transiently decreased blood pressure. All of these pharmacologic effects were abolished by genetic disruption of TRPV1. Stretch of isolated vascular smooth muscle cells or raised intravascular pressure in arteries triggered Ca2+ signaling and vasoconstriction. The majority of these stretch-responses were TRPV1-mediated, with the remaining tone being inhibited by the TRPM4 antagonist, 9-phenantrol. Notably, tone developed more quickly in arteries from wild-type compared with TRPV1-null mice. Furthermore, the immediate vasodilation following brief constriction of arterioles depended on TRPV1, consistent with a rapid deactivation of TRPV1. Pharmacologic experiments revealed that membrane stretch activates phospholipase C/protein kinase C signaling combined with heat to activate TRPV1, and in turn, L-type Ca2+ channels. These results suggest a critical role, for TRPV1 in the dynamic regulation of myogenic tone and blood flow in the heart and skeletal muscle. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Thieu X Phan
- Department of Pharmacology and Physiology, Georgetown University, Washington, DC, USA.,Department of Biology, Vinh University, Vinh City, Vietnam
| | - Hoai T Ton
- Department of Pharmacology and Physiology, Georgetown University, Washington, DC, USA.,Department of Biology, Vinh University, Vinh City, Vietnam
| | - Hajnalka Gulyás
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Doctoral School of Pharmaceutical Sciences, Debrecen, Hungary
| | - Róbert Pórszász
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Doctoral School of Pharmaceutical Sciences, Debrecen, Hungary
| | - Attila Tóth
- Division of Clinical Physiology, Institute of Cardiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Rebekah Russo
- Department of Biomedical Engineering, George Washington University, Washington, DC, USA
| | - Matthew W Kay
- Department of Biomedical Engineering, George Washington University, Washington, DC, USA
| | - Niaz Sahibzada
- Department of Pharmacology and Physiology, Georgetown University, Washington, DC, USA
| | - Gerard P Ahern
- Department of Pharmacology and Physiology, Georgetown University, Washington, DC, USA
| |
Collapse
|
13
|
Hall S, Ward ND, Patel R, Amin-Javaheri A, Lanford H, Grespin RT, Couch C, Xiong Y, Mukherjee R, Jones JA, Ruddy JM. Mechanical activation of the angiotensin II type 1 receptor contributes to abdominal aortic aneurysm formation. JVS Vasc Sci 2021; 2:194-206. [PMID: 34761239 PMCID: PMC8567200 DOI: 10.1016/j.jvssci.2021.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 07/14/2021] [Indexed: 12/22/2022] Open
Abstract
Objective The angiotensin II type 1 receptor (AT1R) can be activated under conditions of mechanical stretch in some cellular systems. Whether this activity influences signaling within the abdominal aorta to promote to abdominal aortic aneurysm (AAA) development remains unknown. We evaluated the hypothesis that mechanical AT1R activation can occur under conditions of hypertension (HTN) and contribute to AAA formation. Methods BPH/2 mice, which demonstrate spontaneous neurogenic, low-renin HTN, and normotensive BPN/3 mice underwent AAA induction via the calcium chloride model, with or without an osmotic minipump delivering 30 mg/kg/d of the AT1R blocker Losartan. Systolic blood pressure (SBP) was measured at baseline and weekly via a tail cuff. The aortic diameter (AoD) was measured at baseline and terminal surgery at 21 days by digital microscopy. Aortic tissue was harvested for immunoblotting (phosphorylated extracellular signal-regulated kinase-1 and -2 [pERK1/2] to ERK1/2 ratio) and expressed as the fold-change from the BPN/3 control mice. Aortic vascular smooth muscle cells (VSMCs) underwent stretch with or without Losartan (1 μM) treatment to assess the mechanical stimulation of ERK1/2 activity. Statistical analysis of the blood pressure, AoD, and VSMC ERK1/2 activity was performed using analysis of variance. However, the data distribution was determined to be log-normal (Shapiro-Wilk test) for ERK1/2 activity. Therefore, it was logarithmically transformed before analysis of variance. Results At baseline, the SBP was elevated in the BPH/2 mice relative to the BPN/3 mice (P < .05). Losartan treatment significantly reduced the SBP in both mouse strains (P < .05). AAA induction did not affect the SBP. At 21 days after induction, the percentage of increase in the AoD from baseline was significantly greater in the BPH/2 mice than in the BPN/3 mice (101.28% ± 4.19% vs 75.59% ± 1.67% above baseline; P < .05). Losartan treatment significantly attenuated AAA growth in both BPH/2 and BPN/3 mice (33.88% ± 2.97% and 43.96% ± 3.05% above baseline, respectively; P < .05). ERK1/2 activity was increased approximately fivefold in the BPH/2 control mice relative to the BPN/3 control mice (P < .05). In the BPH/2 and BPN/3 mice with AAA, ERK1/2 activity was significantly increased relative to the respective baseline control (P < .05) and effectively reduced by concomitant Losartan therapy (P < .05). Biaxial stretch of the VSMCs in the absence of angiotensin II demonstrated increased ERK1/2 activation (P < .05 vs static control), which was significantly inhibited by Losartan. Conclusions In BPH/2 mice with spontaneous neurogenic, low-renin HTN, AAA growth was amplified compared with the normotensive control and was effectively attenuated using Losartan. ERK1/2 activity was significantly elevated in the BPH/2 mice and after AAA induction in the normotensive and hypertensive mice but was attenuated by Losartan treatment. These data suggest that AT1R activation contributes to AAA development. Therefore, further investigation into this signaling pathway could establish targets for pharmacotherapeutic engineering to slow AAA growth. (JVS-Vascular Science 2021;2:194-206.). Clinical Relevance Hypertension (HTN) and abdominal aortic aneurysm (AAA) have been epidemiologically linked for decades; however, a biomechanical link has not yet been identified. Using a murine model of spontaneous neurogenic HTN experimentally demonstrated to have low circulating renin, mechanical activation of the angiotensin II type 1 receptor (AT1R) was identified with elevated blood pressure and AAA induction. HTN amplified AAA growth. However, more importantly, blocking the activation of AT1R with the angiotensin receptor blocker Losartan effectively abrogated AAA development. Although inhibiting the production of angiotensin II has previously been unsuccessful in altering AAA growth, the results from the present study suggest that blocking the activation of AT1R through direct ligand binding or mechanical stimulation might alter aortic wall signaling and warrants further investigation.
Collapse
Affiliation(s)
- SarahRose Hall
- Division of Vascular Surgery, Medical University of South Carolina, Charleston, SC
| | - Nicholas D Ward
- Division of Vascular Surgery, Medical University of South Carolina, Charleston, SC
| | - Raj Patel
- Division of Vascular Surgery, Medical University of South Carolina, Charleston, SC
| | - Armaan Amin-Javaheri
- Division of Cardiothoracic Surgery, Medical University of South Carolina, Charleston, SC
| | - Hayes Lanford
- Division of Vascular Surgery, Medical University of South Carolina, Charleston, SC
| | - R Tyler Grespin
- Division of Vascular Surgery, Medical University of South Carolina, Charleston, SC
| | - Christine Couch
- Division of Cardiothoracic Surgery, Medical University of South Carolina, Charleston, SC
| | - Ying Xiong
- Division of Cardiothoracic Surgery, Medical University of South Carolina, Charleston, SC
| | - Rupak Mukherjee
- Division of Cardiothoracic Surgery, Medical University of South Carolina, Charleston, SC.,Ralph H. Johnson VA Medical Center, Charleston, SC
| | - Jeffrey A Jones
- Division of Cardiothoracic Surgery, Medical University of South Carolina, Charleston, SC.,Ralph H. Johnson VA Medical Center, Charleston, SC
| | - Jean Marie Ruddy
- Division of Vascular Surgery, Medical University of South Carolina, Charleston, SC.,Ralph H. Johnson VA Medical Center, Charleston, SC
| |
Collapse
|
14
|
Luo Y, Li J, Li B, Xia Y, Wang H, Fu C. Physical Cues of Matrices Reeducate Nerve Cells. Front Cell Dev Biol 2021; 9:731170. [PMID: 34646825 PMCID: PMC8502847 DOI: 10.3389/fcell.2021.731170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 08/20/2021] [Indexed: 11/15/2022] Open
Abstract
The behavior of nerve cells plays a crucial role in nerve regeneration. The mechanical, topographical, and electrical microenvironment surrounding nerve cells can activate cellular signaling pathways of mechanical transduction to affect the behavior of nerve cells. Recently, biological scaffolds with various physical properties have been developed as extracellular matrix to regulate the behavior conversion of nerve cell, such as neuronal neurite growth and directional differentiation of neural stem cells, providing a robust driving force for nerve regeneration. This review mainly focused on the biological basis of nerve cells in mechanical transduction. In addition, we also highlighted the effect of the physical cues, including stiffness, mechanical tension, two-dimensional terrain, and electrical conductivity, on neurite outgrowth and differentiation of neural stem cells and predicted their potential application in clinical nerve tissue engineering.
Collapse
Affiliation(s)
- Yiqian Luo
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Jie Li
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Baoqin Li
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Yuanliang Xia
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Hengyi Wang
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Changfeng Fu
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
15
|
Jackson WF. Myogenic Tone in Peripheral Resistance Arteries and Arterioles: The Pressure Is On! Front Physiol 2021; 12:699517. [PMID: 34366889 PMCID: PMC8339585 DOI: 10.3389/fphys.2021.699517] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/21/2021] [Indexed: 01/11/2023] Open
Abstract
Resistance arteries and downstream arterioles in the peripheral microcirculation contribute substantially to peripheral vascular resistance, control of blood pressure, the distribution of blood flow to and within tissues, capillary pressure, and microvascular fluid exchange. A hall-mark feature of these vessels is myogenic tone. This pressure-induced, steady-state level of vascular smooth muscle activity maintains arteriolar and resistance artery internal diameter at 50–80% of their maximum passive diameter providing these vessels with the ability to dilate, reducing vascular resistance, and increasing blood flow, or constrict to produce the opposite effect. Despite the central importance of resistance artery and arteriolar myogenic tone in cardiovascular physiology and pathophysiology, our understanding of signaling pathways underlying this key microvascular property remains incomplete. This brief review will present our current understanding of the multiple mechanisms that appear to underlie myogenic tone, including the roles played by G-protein-coupled receptors, a variety of ion channels, and several kinases that have been linked to pressure-induced, steady-state activity of vascular smooth muscle cells (VSMCs) in the wall of resistance arteries and arterioles. Emphasis will be placed on the portions of the signaling pathways underlying myogenic tone for which there is lack of consensus in the literature and areas where our understanding is clearly incomplete.
Collapse
Affiliation(s)
- William F Jackson
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
16
|
Wenceslau CF, McCarthy CG, Earley S, England SK, Filosa JA, Goulopoulou S, Gutterman DD, Isakson BE, Kanagy NL, Martinez-Lemus LA, Sonkusare SK, Thakore P, Trask AJ, Watts SW, Webb RC. Guidelines for the measurement of vascular function and structure in isolated arteries and veins. Am J Physiol Heart Circ Physiol 2021; 321:H77-H111. [PMID: 33989082 PMCID: PMC8321813 DOI: 10.1152/ajpheart.01021.2020] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 04/26/2021] [Accepted: 05/11/2021] [Indexed: 12/11/2022]
Abstract
The measurement of vascular function in isolated vessels has revealed important insights into the structural, functional, and biomechanical features of the normal and diseased cardiovascular system and has provided a molecular understanding of the cells that constitutes arteries and veins and their interaction. Further, this approach has allowed the discovery of vital pharmacological treatments for cardiovascular diseases. However, the expansion of the vascular physiology field has also brought new concerns over scientific rigor and reproducibility. Therefore, it is appropriate to set guidelines for the best practices of evaluating vascular function in isolated vessels. These guidelines are a comprehensive document detailing the best practices and pitfalls for the assessment of function in large and small arteries and veins. Herein, we bring together experts in the field of vascular physiology with the purpose of developing guidelines for evaluating ex vivo vascular function. By using this document, vascular physiologists will have consistency among methodological approaches, producing more reliable and reproducible results.
Collapse
Grants
- R01HL139585 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- P20 GM130459 NIGMS NIH HHS
- R01HL121871 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- DK115255 HHS | NIH | National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
- R61 NS115132 NINDS NIH HHS
- K99HL151889 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01HL151413 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R00HL116769 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01HL091905 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01HL088554 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL139585 NHLBI NIH HHS
- P20GM130459 HHS | NIH | National Institute of General Medical Sciences (NIGMS)
- R01 HL135901 NHLBI NIH HHS
- RF1 NS110044 NINDS NIH HHS
- R01ES014639 HHS | NIH | National Institute of Environmental Health Sciences (NIEHS)
- U24 DK076169 NIDDK NIH HHS
- S10OD023438 HHS | NIH | NIH Office of the Director (OD)
- R01HL137112 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01HL135901 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01HL146914 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R00 HL116769 NHLBI NIH HHS
- K99 HL151889 NHLBI NIH HHS
- U24 DK115255 NIDDK NIH HHS
- R21 EB026518 NIBIB NIH HHS
- R01 HL149762 NHLBI NIH HHS
- DK076169 HHS | NIH | National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
- R01NS082521 HHS | NIH | National Institute of Neurological Disorders and Stroke (NINDS)
- R01 HL146054 NHLBI NIH HHS
- R21EB026518 HHS | NIH | National Institute of Biomedical Imaging and Bioengineering (NIBIB)
- R01 HL123301 NHLBI NIH HHS
- P01 HL134604 NHLBI NIH HHS
- R00GM118885 HHS | NIH | National Institute of General Medical Sciences (NIGMS)
- R01 HL091905 NHLBI NIH HHS
- RF1NS110044 HHS | NIH | National Institute of Neurological Disorders and Stroke (NINDS)
- R01HL142808 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R61NS115132 HHS | NIH | National Institute of Neurological Disorders and Stroke (NINDS)
- R01HL146562 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL088105 NHLBI NIH HHS
- SB1 HL121871 NHLBI NIH HHS
- R01 HD037831 NICHD NIH HHS
- R01 HL137852 NHLBI NIH HHS
- R35 HL155008 NHLBI NIH HHS
- R01 HL137112 NHLBI NIH HHS
- R01HL149762 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01HL123301 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL146914 NHLBI NIH HHS
- R01 HL142808 NHLBI NIH HHS
- R01 HL088554 NHLBI NIH HHS
- R01HD037831 HHS | NIH | Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD)
- R01HL146054 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL146562 NHLBI NIH HHS
- R44 HL121871 NHLBI NIH HHS
- R01HL088105 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 ES014639 NIEHS NIH HHS
- P01HL134604 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01HL137852 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- S10 OD023438 NIH HHS
- R01 HL151413 NHLBI NIH HHS
- R41 HL121871 NHLBI NIH HHS
- R00 GM118885 NIGMS NIH HHS
Collapse
Affiliation(s)
- Camilla F Wenceslau
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Cameron G McCarthy
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Scott Earley
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System, Reno School of Medicine, University of Nevada, Reno, Nevada
| | - Sarah K England
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, Missouri
| | - Jessica A Filosa
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Styliani Goulopoulou
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
| | - David D Gutterman
- Department of Medicine, Medical College of Wisconsin Cardiovascular Center, Milwaukee, Wisconsin
| | - Brant E Isakson
- Department of Molecular Physiology and Biophysics, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Nancy L Kanagy
- Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, New Mexico
| | - Luis A Martinez-Lemus
- Department of Medical Pharmacology and Physiology, Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Swapnil K Sonkusare
- Department of Molecular Physiology and Biophysics, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Pratish Thakore
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System, Reno School of Medicine, University of Nevada, Reno, Nevada
| | - Aaron J Trask
- Center for Cardiovascular Research, The Heart Center, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio
| | - Stephanie W Watts
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| | - R Clinton Webb
- Cardiovascular Translational Research Center, Department of Cell Biology and Anatomy, University of South Carolina, Columbia, South Carolina
| |
Collapse
|
17
|
Lino CA, de Bortoli Teixeira L, Capelupe Simões S, de Oliveira Silva T, Diniz GP, da Costa-Neto CM, Barreto-Chaves MLM. Beta-arrestin 2 mediates cardiac hypertrophy induced by thyroid hormones via AT1R. J Cell Physiol 2021; 236:4640-4654. [PMID: 33345322 DOI: 10.1002/jcp.30187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 12/30/2022]
Abstract
We have previously reported that angiotensin II receptor type 1 (AT1R) contributes to the hypertrophic effects of thyroid hormones (TH) in cardiac cells. Even though evidence indicates crosstalks between TH and AT1R, the underlying mechanisms are poorly understood. Beta-arrestin (ARRB) signaling has been described as noncanonical signal transduction pathway that exerts important effects in the cardiovascular system through G-protein-coupled receptors, as AT1R. Herein, we investigated the contribution of ARRB signaling in TH-induced cardiomyocyte hypertrophy. Primary cardiomyocyte cultures were treated with Triiodothyronine (T3) to induce cell hypertrophy. T3 rapidly activates extracellular signal-regulated kinase 1/2 (ERK1/2) signaling, which was partially inhibited by AT1R blockade. Also, ERK1/2 inhibition attenuated the hypertrophic effects of T3. ARRB2 was upregulated by T3, and small interfering RNA assays revealed the role of ARRB2-but not ARRB1-on ERK1/2 activation and cardiomyocyte hypertrophy. Corroborating these findings, the ARRB2-overexpressed cells showed increased expression of hypertrophic markers, which were attenuated by ERK1/2 inhibition. Immunocytochemistry and immunoprecipitation assays revealed the increased expression of nuclear AT1R after T3 stimulation and the increased interaction of AT1R/ARRB2. The inhibition of endocytosis also attenuated the T3 effects on cardiac cells. Our results evidence the contribution of ARRB2 on ERK1/2 activation and cardiomyocyte hypertrophy induced by T3 via AT1R.
Collapse
Affiliation(s)
- Caroline Antunes Lino
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Larissa de Bortoli Teixeira
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil
| | - Sarah Capelupe Simões
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil
| | | | - Gabriela Placoná Diniz
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Claudio Miguel da Costa-Neto
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil
| | | |
Collapse
|
18
|
Awad AS, Nour El-Din M, Kamel R. CoQ10 augments candesartan protective effect against tourniquet-induced hind limb ischemia-reperfusion: Involvement of non-classical RAS and ROS pathways. Saudi Pharm J 2021; 29:724-733. [PMID: 34400868 PMCID: PMC8347674 DOI: 10.1016/j.jsps.2021.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/11/2021] [Indexed: 11/21/2022] Open
Abstract
Tourniquet is a well-established model of hind limb ischemia–reperfusion (HLI/R) in rats. Nevertheless, measures should be taken to alleviate the expected injury from ischemia/ reperfusion (I/R). In the present study, 30 adult male Sprague-Dawley rats were randomly divided into 5 groups (n = 6): control, HLI/R, HLI/R given candesartan (1 mg/kg, P.O); HLI/R given Coenzyme Q10 (CoQ10) (10 mg/kg, P.O); HLI/R given candesartan (0.5 mg/kg) and CoQ10 (5 mg/kg). The drugs were administered for 7 days starting one hour after reperfusion. Candesartan and CoQ10 as well as their combination suppressed gastrocnemius content of angiotensin II while they raised angiotensin-converting enzyme 2 (ACE2) activity, angiotensin (1–7) expression, and Mas receptor mRNA level. Consequently, candesartan and/or CoQ10 reversed the oxidative stress and inflammatory changes that occurred following HLI/R as demonstrated by the rise of SOD activity and the decline of MDA, TNF-α, and IL-6 skeletal muscle content. Additionally, candesartan and/or CoQ10 diminished gastrocnemius active caspase-3 level and phospho-p38 MAPK protein expression. Our study proved that CoQ10 enhanced the beneficial effect of candesartan in a model of tourniquet-induced HLI/R by affecting classical and non-classical renin-angiotensin system (RAS) pathway. To our knowledge, this is the first study showing the impact of CoQ10 on skeletal muscle RAS in rats.
Collapse
Affiliation(s)
- Azza S Awad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University (Girls), Nasr City, Egypt.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt
| | - Mahmoud Nour El-Din
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Sadat City (USC), Menoufia, Egypt.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt
| | - Rehab Kamel
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Helwan University, Cairo, Egypt.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt
| |
Collapse
|
19
|
Physiological cyclic stretch up-regulates angiotensin-converting enzyme 2 expression to reduce proliferation and migration of vascular smooth muscle cells. Biosci Rep 2021; 40:225043. [PMID: 32463098 PMCID: PMC7295630 DOI: 10.1042/bsr20192012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 04/29/2020] [Accepted: 05/13/2020] [Indexed: 12/24/2022] Open
Abstract
Angiotensin-converting enzyme 2 (ACE2) is considered as an endogenous negative regulator of renin–angiotensin system (RAS), exerting multiple cardiovascular protective roles. Whether mechanical stretch modulates ACE2 expression remains unknown. The present study aimed at investigating whether ACE2 is involved in physiological stretch (10% elongation, 1 Hz) mediated cellular functions and the underlying mechanism. Cultured human aortic smooth muscle cells (HASMCs) were exposed to 10% stretch for indicated time, and real-time PCR and Western blot analysis showed 10% stretch increased ACE2 expression and activity significantly compared with static conditions and increased Ang-(1-7) level, but decreased Ang II level; Brdu incorporation assay and Scratch test showed that ACE2 was involved in the inhibition of HASMCs proliferation and migration by 10% stretch; the Dual-Luciferase Reporter Assay demonstrated that 10% increased ACE2 promoter activity, but had no effect on ACE2 mRNA stability; kinase inhibition study and Electrophoretic mobility shift assay (EMSA) showed that JNK1/2 and PKCβII pathway, as well as their downstream transcription factors, AP-1 and NF-κB, were involved in 10% stretch induced ACE2 expression. In conclusion, our study indicates ACE2 is a mechanosensitive gene, and may represent a potential therapeutic target for mechanical forces related vascular diseases.
Collapse
|
20
|
Manokawinchoke J, Pavasant P, Limjeerajarus CN, Limjeerajarus N, Osathanon T, Egusa H. Mechanical loading and the control of stem cell behavior. Arch Oral Biol 2021; 125:105092. [PMID: 33652301 DOI: 10.1016/j.archoralbio.2021.105092] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 01/08/2021] [Accepted: 02/21/2021] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Mechanical stimulation regulates many cell responses. The present study describes the effects of different in vitro mechanical stimulation approaches on stem cell behavior. DESIGN The narrative review approach was performed. The articles published in English language that addressed the effects of mechanical force on stem cells were searched on Pubmed and Scopus database. The effects of extrinsic mechanical force on stem cell response was reviewed and discussed. RESULTS Cells sense mechanical stimuli by the function of mechanoreceptors and further transduce force stimulation into intracellular signaling. Cell responses to mechanical stimuli depend on several factors including type, magnitude, and duration. Further, similar mechanical stimuli exhibit distinct cell responses based on numerous factors including cell type and differentiation stage. Various mechanical applications modulate stemness maintenance and cell differentiation toward specific lineages. CONCLUSIONS Mechanical force application modulates stemness maintenance and differentiation. Modification of force regimens could be utilized to precisely control appropriate stem cell behavior toward specific applications.
Collapse
Affiliation(s)
- Jeeranan Manokawinchoke
- Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand; Dental Stem Cell Biology Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand; Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, 980-8575, Japan.
| | - Prasit Pavasant
- Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Chalida Nakalekha Limjeerajarus
- Dental Stem Cell Biology Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand; Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Nuttapol Limjeerajarus
- Research Center for Advanced Energy Technology, Faculty of Engineering, Thai-Nichi Institute of Technology, Bangkok, 10250, Thailand.
| | - Thanaphum Osathanon
- Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand; Dental Stem Cell Biology Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Hiroshi Egusa
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, 980-8575, Japan.
| |
Collapse
|
21
|
Kim K, Hong KS. Transient receptor potential channel-dependent myogenic responsiveness in small-sized resistance arteries. J Exerc Rehabil 2021; 17:4-10. [PMID: 33728282 PMCID: PMC7939990 DOI: 10.12965/jer.2040836.418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 12/19/2020] [Indexed: 11/22/2022] Open
Abstract
It is well documented that the inherent ability of small arteries and arterioles to regulate intraluminal diameter in response to alterations in intravascular pressure determines peripheral vascular resistance and blood flow (termed myogenic response or pressure-induced vasoconstriction/dilation). This autoregulatory property of resistance arteries is primarily originated from mechanosensitive vascular smooth muscle cells (VSMCs). There are diverse biological apparatuses in the plasma membrane of VSMCs that sense mechanical stimuli and generate intracellular signals for the contractility of VSMCs. Although the roles of transient receptor potential (TRP) channels in pressure-induced vasoconstriction are not fully understood to date, TRP channels that are directly activated by mechanical stimuli (e.g., stretch of VSMCs) or indirectly evoked by intracellular molecules (e.g., inositol trisphosphate) provide the major sources of Ca2+ (e.g., Ca2+ influx or release from the sarcoplasmic reticulum) and in turn, evoke vascular reactivity. This review sought to summarize mounting evidence over several decades that the activation of TRP canonical, TRP melastatin, TRP vanilloid, and TRP polycystin channels contributes to myogenic vasoconstriction.
Collapse
Affiliation(s)
- Kijeong Kim
- School of Exercise & Sport Science, College of Natural Sciences, University of Ulsan, Ulsan, Korea
| | - Kwang-Seok Hong
- Department of Physical Education, College of Education, Chung-Ang University, Seoul, Korea
| |
Collapse
|
22
|
Hord JM, Garcia MM, Farris KR, Guzzoni V, Lee Y, Lawler MS, Lawler JM. Nox2 signaling and muscle fiber remodeling are attenuated by losartan administration during skeletal muscle unloading. Physiol Rep 2021; 9:e14606. [PMID: 33400850 PMCID: PMC7785102 DOI: 10.14814/phy2.14606] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 09/20/2020] [Indexed: 12/21/2022] Open
Abstract
Reduced mechanical loading results in atrophy of skeletal muscle fibers. Increased reactive oxygen species (ROS) are causal in sarcolemmal dislocation of nNOS and FoxO3a activation. The Nox2 isoform of NADPH oxidase and mitochondria release ROS during disuse in skeletal muscle. Activation of the angiotensin II type 1 receptor (AT1R) can elicit Nox2 complex formation. The AT1R blocker losartan was used to test the hypothesis that AT1R activation drives Nox2 assembly, nNOS dislocation, FoxO3a activation, and thus alterations in morphology in the unloaded rat soleus. Male Fischer 344 rats were divided into four groups: ambulatory control (CON), ambulatory + losartan (40 mg kg-1 day-1 ) (CONL), 7 days of tail-traction hindlimb unloading (HU), and HU + losartan (HUL). Losartan attenuated unloading-induced loss of muscle fiber cross-sectional area (CSA) and fiber-type shift. Losartan mitigated unloading-induced elevation of ROS levels and upregulation of Nox2. Furthermore, AT1R blockade abrogated nNOS dislocation away from the sarcolemma and elevation of nuclear FoxO3a. We conclude that AT1R blockade attenuates disuse remodeling by inhibiting Nox2, thereby lessening nNOS dislocation and activation of FoxO3a.
Collapse
Affiliation(s)
- Jeffrey M Hord
- Redox Biology & Cell Signaling Laboratory, Department of Health and Kinesiology, Graduate Faculty of Nutrition, Texas A&M University, College Station, TX, USA
| | - Marcela M Garcia
- Redox Biology & Cell Signaling Laboratory, Department of Health and Kinesiology, Graduate Faculty of Nutrition, Texas A&M University, College Station, TX, USA
| | - Katherine R Farris
- Redox Biology & Cell Signaling Laboratory, Department of Health and Kinesiology, Graduate Faculty of Nutrition, Texas A&M University, College Station, TX, USA
| | - Vinicius Guzzoni
- Department of Cellular and Molecular Biology, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Yang Lee
- Department of Systems Biology and Translational Medicine, Texas A&M Health Science Center College of Medicine, College Station/Temple, TX, USA
| | - Matthew S Lawler
- Redox Biology & Cell Signaling Laboratory, Department of Health and Kinesiology, Graduate Faculty of Nutrition, Texas A&M University, College Station, TX, USA.,Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - John M Lawler
- Redox Biology & Cell Signaling Laboratory, Department of Health and Kinesiology, Graduate Faculty of Nutrition, Texas A&M University, College Station, TX, USA
| |
Collapse
|
23
|
Sanyour HJ, Rickel AP, Hong Z. The interplay of membrane cholesterol and substrate on vascular smooth muscle biomechanics. CURRENT TOPICS IN MEMBRANES 2020; 86:279-299. [PMID: 33837696 PMCID: PMC8041049 DOI: 10.1016/bs.ctm.2020.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/01/2024]
Abstract
Cardiovascular disease (CVD) remains the primary cause of death worldwide. Specifically, atherosclerosis is a CVD characterized as a slow progressing chronic inflammatory disease. During atherosclerosis, vascular walls accumulate cholesterol and cause fatty streak formation. The progressive changes in vascular wall stiffness exert alternating mechanical cues on vascular smooth muscle cells (VSMCs). The detachment of VSMCs in the media layer of the vessel and migration toward the intima is a critical step in atherosclerosis. VSMC phenotypic switching is a complicated process that modifies VSMC structure and biomechanical function. These changes affect the expression and function of cell adhesion molecules, thus impacting VSMC migration. Accumulating evidence has shown cholesterol is capable of regulating cellular migration, proliferation, and spreading. However, the interaction and coordinated effects of both cellular cholesterol and the extracellular matrix (ECM) stiffness/composition on VSMC biomechanics remains to be elucidated.
Collapse
Affiliation(s)
- Hanna J Sanyour
- Department of Biomedical Engineering, University of South Dakota, Vermillion, SD, United States
| | - Alex P Rickel
- Department of Biomedical Engineering, University of South Dakota, Vermillion, SD, United States
| | - Zhongkui Hong
- Department of Biomedical Engineering, University of South Dakota, Vermillion, SD, United States.
| |
Collapse
|
24
|
Hong KS, Kim K, Hill MA. Regulation of blood flow in small arteries: mechanosensory events underlying myogenic vasoconstriction. J Exerc Rehabil 2020; 16:207-215. [PMID: 32724777 PMCID: PMC7365734 DOI: 10.12965/jer.2040432.216] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 06/10/2020] [Indexed: 01/10/2023] Open
Abstract
As blood flow is proportional to the fourth power of the vascular radius small changes in the diameter of resistance arteries/arterioles following an increase in intraluminal pressure would be expected to substantially increase blood flow. However, arteriolar myocytes display an intrinsic ability to locally regulate blood flow according to metabolic demands by tuning the diameter of small arteries in response to local changes in he-modynamics. Critical to this, observations were made more than 100 years ago that mechanosensitive small arteries exhibit the "myogenic response" or pressure-induced vasoconstriction or vasodilation in re-sponse to increased or decreased intravascular pressure, respectively. Although cellular mechanisms underlying the myogenic response have now been studied extensively, the precise cellular mechanisms under-lying this intriguing phenomenon still remain uncertain. In particular, the biological machinery that senses changes in intravascular pressure in vascular smooth muscle cells have not been unquestionably identified and remain a significant issue in vascular biology to be fully elucidated. As such, this brief review focuses on putative mechanosensors that have been proposed to contribute to myogenic vasoreactivity. Specific attention is paid to the roles of integrins, G protein-coupled receptors, and cadherins.
Collapse
Affiliation(s)
- Kwang-Seok Hong
- Department of Physical Education, College of Education, Chung-Ang University, Seoul, Korea
| | - Kijeong Kim
- School of Exercise & Sport Science, College of Natural Sciences, University of Ulsan, Ulsan, Korea
| | - Michael A Hill
- Dalton Cardiovascular Research Center, University of Missouri-School of Medicine, Columbia, MO, USA.,Department of Medical Pharmacology and Physiology, University of Missouri-School of Medicine, Columbia, MO, USA
| |
Collapse
|
25
|
Physiological and Biochemical Vascular Reactivity Parameters of Angiotensin II and the Action of Biased Agonist TRV023. Adv Pharmacol Pharm Sci 2020; 2020:3092721. [PMID: 32259102 PMCID: PMC7094174 DOI: 10.1155/2020/3092721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 12/24/2019] [Accepted: 01/18/2020] [Indexed: 11/17/2022] Open
Abstract
Vascular reactivity experiments using isolated aortic rings have been widely used as a model for physiological and pharmacological studies since the early sixties. Here, we suggest several parameters that the researcher should pay attention to when investigating angiotensin II in their experimental models. Angiotensin II is one of the active peptides of the renin-angiotensin system and exerts its effect through the AT1 and AT2 receptors. Some studies seek to understand the effects of angiotensin II receptors at the vascular level by using vascular reactivity experiments. However, because of the large number of variations, there are only a handful of reactivity studies that seek to use this method. Thus, the objective of this study was to standardize experimental methods with angiotensin II, through vascular reactivity protocols. For this, variables such as basal tension, concentration interval, single concentration, curve concentration response, and multiple experiments using the same aortic ring were developed using the technique of vascular reactivity in an organ bath. This is the first study that has standardized the vascular reactivity protocol. In addition, we demonstrated the effects of TRV023-biased ligand of the AT1R at vascular sites.
Collapse
|
26
|
Sanyour HJ, Li N, Rickel AP, Torres HM, Anderson RH, Miles MR, Childs JD, Francis KR, Tao J, Hong Z. Statin-mediated cholesterol depletion exerts coordinated effects on the alterations in rat vascular smooth muscle cell biomechanics and migration. J Physiol 2020; 598:1505-1522. [PMID: 32083311 DOI: 10.1113/jp279528] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 02/18/2020] [Indexed: 12/28/2022] Open
Abstract
KEY POINTS This study demonstrates and evaluates the changes in rat vascular smooth muscle cell biomechanics following statin-mediated cholesterol depletion. Evidence is presented to show correlated changes in migration and adhesion of vascular smooth muscle cells to extracellular matrix proteins fibronectin and collagen. Concurrently, integrin α5 expression was enhanced but not integrin α2. Atomic force microscopy analysis provides compelling evidence of coordinated reduction in vascular smooth muscle cell stiffness and actin cytoskeletal orientation in response to statin-mediated cholesterol depletion. Proof is provided that statin-mediated cholesterol depletion remodels total vascular smooth muscle cell cytoskeletal orientation that may additionally participate in altering ex vivo aortic vessel function. It is concluded that statin-mediated cholesterol depletion may coordinate vascular smooth muscle cell migration and adhesion to different extracellular matrix proteins and regulate cellular stiffness and cytoskeletal orientation, thus impacting the biomechanics of the cell. ABSTRACT Not only does cholesterol induce an inflammatory response and deposits in foam cells at the atherosclerotic plaque, it also regulates cellular mechanics, proliferation and migration in atherosclerosis progression. Statins are HMG-CoA reductase inhibitors that are known to inhibit cellular cholesterol biosynthesis and are clinically prescribed to patients with hypercholesterolemia or related cardiovascular conditions. Nonetheless, the effect of statin-mediated cholesterol management on cellular biomechanics is not fully understood. In this study, we aimed to assess the effect of fluvastatin-mediated cholesterol management on primary rat vascular smooth muscle cell (VSMC) biomechanics. Real-time measurement of cell adhesion, stiffness, and imaging were performed using atomic force microscopy (AFM). Cellular migration on extra cellular matrix (ECM) protein surfaces was studied by time-lapse imaging. The effect of changes in VSMC biomechanics on aortic function was assessed using an ex vivo myograph system. Fluvastatin-mediated cholesterol depletion (-27.8%) lowered VSMC migration distance on a fibronectin (FN)-coated surface (-14.8%) but not on a type 1 collagen (COL1)-coated surface. VSMC adhesion force to FN (+33%) and integrin α5 expression were enhanced but COL1 adhesion and integrin α2 expression were unchanged upon cholesterol depletion. In addition, VSMC stiffness (-46.6%) and ex vivo aortic ring contraction force (-40.1%) were lowered and VSMC actin cytoskeletal orientation was reduced (-24.5%) following statin-mediated cholesterol depletion. Altogether, it is concluded that statin-mediated cholesterol depletion may coordinate VSMC migration and adhesion to different ECM proteins and regulate cellular stiffness and cytoskeletal orientation, thus impacting the biomechanics of the cell and aortic function.
Collapse
Affiliation(s)
- Hanna J Sanyour
- Department of Biomedical Engineering, University of South Dakota, Sioux Falls, SD, 57107, USA.,BioSNTR, Sioux Falls, SD, 57107, USA
| | - Na Li
- Department of Biomedical Engineering, University of South Dakota, Sioux Falls, SD, 57107, USA.,BioSNTR, Sioux Falls, SD, 57107, USA
| | - Alex P Rickel
- Department of Biomedical Engineering, University of South Dakota, Sioux Falls, SD, 57107, USA.,BioSNTR, Sioux Falls, SD, 57107, USA
| | - Haydee M Torres
- Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, SD, 57104, USA.,Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD, 57007, USA
| | - Ruthellen H Anderson
- Cellular Therapies and Stem Cell Biology Group, Sanford Research, Sioux Falls, SD, 57104, USA.,Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Vermillion, SD, 57069, USA
| | - Miranda R Miles
- BioSNTR, Sioux Falls, SD, 57107, USA.,Mechanical Engineering Department, South Dakota State University, Brookings, SD, 57007, USA
| | - Josh D Childs
- Department of Biomedical Engineering, University of South Dakota, Sioux Falls, SD, 57107, USA.,BioSNTR, Sioux Falls, SD, 57107, USA
| | - Kevin R Francis
- Department of Biomedical Engineering, University of South Dakota, Sioux Falls, SD, 57107, USA.,Cellular Therapies and Stem Cell Biology Group, Sanford Research, Sioux Falls, SD, 57104, USA.,Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Vermillion, SD, 57069, USA
| | - Jianning Tao
- Department of Biomedical Engineering, University of South Dakota, Sioux Falls, SD, 57107, USA.,Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, SD, 57104, USA.,Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Vermillion, SD, 57069, USA.,Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD, 57007, USA
| | - Zhongkui Hong
- Department of Biomedical Engineering, University of South Dakota, Sioux Falls, SD, 57107, USA.,BioSNTR, Sioux Falls, SD, 57107, USA
| |
Collapse
|
27
|
Ion channels and the regulation of myogenic tone in peripheral arterioles. CURRENT TOPICS IN MEMBRANES 2020; 85:19-58. [DOI: 10.1016/bs.ctm.2020.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
28
|
Pang C, Yang H, Hu B, Wang S, Chen M, Cohen DS, Chen HS, Jarrell JT, Carpenter KA, Rosin ER, Huang X. Identification and Analysis of Alzheimer's Candidate Genes by an Amplitude Deviation Algorithm. ACTA ACUST UNITED AC 2019; 9. [PMID: 31080696 PMCID: PMC6505709 DOI: 10.4172/2161-0460.1000460] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Background: Alzheimer’s disease (AD) is the most common form of senile dementia. However, its pathological mechanisms are not fully understood. In order to comprehend AD pathological mechanisms, researchers employed AD-related DNA microarray data and diverse computational algorithms. More efficient computational algorithms are needed to process DNA microarray data for identifying AD-related candidate genes. Methods: In this paper, we propose a specific algorithm that is based on the following observation: When an acrobat walks along a steel-wire, his/her body must have some swing; if the swing can be controlled, then the acrobat can maintain the body balance. Otherwise, the acrobat will fall. Based on this simple idea, we have designed a simple, yet practical, algorithm termed as the Amplitude Deviation Algorithm (ADA). Deviation, overall deviation, deviation amplitude, and 3δ are introduced to characterize ADA. Results: 52 candidate genes for AD have been identified via ADA. The implications for some of the AD candidate genes in AD pathogenesis have been discussed. Conclusions: Through the analysis of these AD candidate genes, we believe that AD pathogenesis may be related to the abnormality of signal transduction (AGTR1 and PTAFR), the decrease in protein transport capacity (COL5A2 (221729_at), COL5A2 (221730_at), COL4A1), the impairment of axon repair (CNR1), and the intracellular calcium dyshomeostasis (CACNB2, CACNA1E). However, their potential implication for AD pathology should be further validated by wet lab experiments as they were only identified by computation using ADA.
Collapse
Affiliation(s)
- Chaoyang Pang
- College of Computer Science, Sichuan Normal University, Chengdu, China
| | - Hualan Yang
- College of Mathematics and Software Science, Sichuan Normal University, Chengdu, China
| | - Benqiong Hu
- College of Management Science, Chengdu University of Technology, Chengdu, China
| | - Shipeng Wang
- College of Mathematics and Software Science, Sichuan Normal University, Chengdu, China
| | - Meixia Chen
- College of Mathematics and Software Science, Sichuan Normal University, Chengdu, China
| | - David S Cohen
- Neurochemistry Laboratory, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Hannah S Chen
- Neurochemistry Laboratory, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Juliet T Jarrell
- Neurochemistry Laboratory, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Kristy A Carpenter
- Neurochemistry Laboratory, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Eric R Rosin
- Neurochemistry Laboratory, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Xudong Huang
- Neurochemistry Laboratory, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
29
|
Turu G, Balla A, Hunyady L. The Role of β-Arrestin Proteins in Organization of Signaling and Regulation of the AT1 Angiotensin Receptor. Front Endocrinol (Lausanne) 2019; 10:519. [PMID: 31447777 PMCID: PMC6691095 DOI: 10.3389/fendo.2019.00519] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/15/2019] [Indexed: 12/30/2022] Open
Abstract
AT1 angiotensin receptor plays important physiological and pathophysiological roles in the cardiovascular system. Renin-angiotensin system represents a target system for drugs acting at different levels. The main effects of ATR1 stimulation involve activation of Gq proteins and subsequent IP3, DAG, and calcium signaling. It has become evident in recent years that besides the well-known G protein pathways, AT1R also activates a parallel signaling pathway through β-arrestins. β-arrestins were originally described as proteins that desensitize G protein-coupled receptors, but they can also mediate receptor internalization and G protein-independent signaling. AT1R is one of the most studied receptors, which was used to unravel the newly recognized β-arrestin-mediated pathways. β-arrestin-mediated signaling has become one of the most studied topics in recent years in molecular pharmacology and the modulation of these pathways of the AT1R might offer new therapeutic opportunities in the near future. In this paper, we review the recent advances in the field of β-arrestin signaling of the AT1R, emphasizing its role in cardiovascular regulation and heart failure.
Collapse
Affiliation(s)
- Gábor Turu
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- MTA-SE Laboratory of Molecular Physiology, Semmelweis University, Hungarian Academy of Sciences, Budapest, Hungary
| | - András Balla
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- MTA-SE Laboratory of Molecular Physiology, Semmelweis University, Hungarian Academy of Sciences, Budapest, Hungary
| | - László Hunyady
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- MTA-SE Laboratory of Molecular Physiology, Semmelweis University, Hungarian Academy of Sciences, Budapest, Hungary
- *Correspondence: László Hunyady
| |
Collapse
|
30
|
The Milk Thistle ( Silybum marianum) Compound Silibinin Inhibits Cardiomyogenesis of Embryonic Stem Cells by Interfering with Angiotensin II Signaling. Stem Cells Int 2018; 2018:9215792. [PMID: 30651739 PMCID: PMC6311720 DOI: 10.1155/2018/9215792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 06/29/2018] [Accepted: 09/06/2018] [Indexed: 11/23/2022] Open
Abstract
The milk thistle (Silybum marianum (L.) Gaertn.) compound silibinin may be an inhibitor of the angiotensin II type 1 (AT1) receptor which is expressed in differentiating embryonic stem (ES) cells and is involved in the regulation of cardiomyogenesis. In the present study, it was demonstrated that silibinin treatment decreased the number of spontaneously contracting cardiac foci and cardiac cell areas differentiated from ES cells as well as contraction frequency and frequency of calcium (Ca2+) spiking. In contrast, angiotensin II (Ang II) treatment stimulated cardiomyogenesis as well as contraction and Ca2+ spiking frequency, which were abolished in the presence of silibinin. Intracellular Ca2+ transients elicited by Ang II in rat smooth muscle cells were not impaired upon silibinin treatment, excluding the possibility that the compound acted on the AT1 receptor. Ang II treatment activated extracellular signal-regulated kinase 1/2 (ERK1/2), c-Jun NH2-terminal kinase (JNK), and p38 mitogen-activated protein kinase (MAPK) pathways in embryoid bodies which were abolished upon silibinin pretreatment. In summary, our data suggest that silibinin inhibits cardiomyogenesis of ES cells by interfering with Ang II signaling downstream of the AT1 receptor.
Collapse
|
31
|
Carnevale D, Facchinello N, Iodice D, Bizzotto D, Perrotta M, De Stefani D, Pallante F, Carnevale L, Ricciardi F, Cifelli G, Da Ros F, Casaburo M, Fardella S, Bonaldo P, Innocenzi G, Rizzuto R, Braghetta P, Lembo G, Bressan GM. Loss of EMILIN-1 Enhances Arteriolar Myogenic Tone Through TGF-β (Transforming Growth Factor-β)–Dependent Transactivation of EGFR (Epidermal Growth Factor Receptor) and Is Relevant for Hypertension in Mice and Humans. Arterioscler Thromb Vasc Biol 2018; 38:2484-2497. [DOI: 10.1161/atvbaha.118.311115] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Daniela Carnevale
- From the Department of Molecular Medicine, Sapienza University of Rome, Italy (D.C., M.P., G.L.)
- Department of Angiocardioneurology and Translational Medicine (D.C., D.I., F.P., L.C., G.C., M.C., S.F., G.L.), IRCCS Neuromed, Pozzilli, Italy
| | - Nicola Facchinello
- Department of Molecular Medicine (N.F., D.B., F.D.R., P. Bonaldo, P. Braghetta, G.M.B.), University of Padova, Italy
| | - Daniele Iodice
- Department of Angiocardioneurology and Translational Medicine (D.C., D.I., F.P., L.C., G.C., M.C., S.F., G.L.), IRCCS Neuromed, Pozzilli, Italy
| | - Dario Bizzotto
- Department of Molecular Medicine (N.F., D.B., F.D.R., P. Bonaldo, P. Braghetta, G.M.B.), University of Padova, Italy
| | - Marialuisa Perrotta
- From the Department of Molecular Medicine, Sapienza University of Rome, Italy (D.C., M.P., G.L.)
| | - Diego De Stefani
- Department of Biomedical Sciences (D.D.S., R.R.), University of Padova, Italy
| | - Fabio Pallante
- Department of Angiocardioneurology and Translational Medicine (D.C., D.I., F.P., L.C., G.C., M.C., S.F., G.L.), IRCCS Neuromed, Pozzilli, Italy
| | - Lorenzo Carnevale
- Department of Angiocardioneurology and Translational Medicine (D.C., D.I., F.P., L.C., G.C., M.C., S.F., G.L.), IRCCS Neuromed, Pozzilli, Italy
| | - Franco Ricciardi
- Department of Neurosurgery (F.R., G.I.), IRCCS Neuromed, Pozzilli, Italy
| | - Giuseppe Cifelli
- Department of Angiocardioneurology and Translational Medicine (D.C., D.I., F.P., L.C., G.C., M.C., S.F., G.L.), IRCCS Neuromed, Pozzilli, Italy
| | - Francesco Da Ros
- Department of Molecular Medicine (N.F., D.B., F.D.R., P. Bonaldo, P. Braghetta, G.M.B.), University of Padova, Italy
| | - Manuel Casaburo
- Department of Angiocardioneurology and Translational Medicine (D.C., D.I., F.P., L.C., G.C., M.C., S.F., G.L.), IRCCS Neuromed, Pozzilli, Italy
| | - Stefania Fardella
- Department of Angiocardioneurology and Translational Medicine (D.C., D.I., F.P., L.C., G.C., M.C., S.F., G.L.), IRCCS Neuromed, Pozzilli, Italy
| | - Paolo Bonaldo
- Department of Molecular Medicine (N.F., D.B., F.D.R., P. Bonaldo, P. Braghetta, G.M.B.), University of Padova, Italy
| | | | - Rosario Rizzuto
- Department of Biomedical Sciences (D.D.S., R.R.), University of Padova, Italy
| | - Paola Braghetta
- Department of Molecular Medicine (N.F., D.B., F.D.R., P. Bonaldo, P. Braghetta, G.M.B.), University of Padova, Italy
| | - Giuseppe Lembo
- From the Department of Molecular Medicine, Sapienza University of Rome, Italy (D.C., M.P., G.L.)
- Department of Angiocardioneurology and Translational Medicine (D.C., D.I., F.P., L.C., G.C., M.C., S.F., G.L.), IRCCS Neuromed, Pozzilli, Italy
| | - Giorgio M. Bressan
- Department of Molecular Medicine (N.F., D.B., F.D.R., P. Bonaldo, P. Braghetta, G.M.B.), University of Padova, Italy
| |
Collapse
|
32
|
Björling K, Joseph PD, Egebjerg K, Salomonsson M, Hansen JL, Ludvigsen TP, Jensen LJ. Role of age, Rho-kinase 2 expression, and G protein-mediated signaling in the myogenic response in mouse small mesenteric arteries. Physiol Rep 2018; 6:e13863. [PMID: 30198176 PMCID: PMC6129776 DOI: 10.14814/phy2.13863] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 08/21/2018] [Indexed: 12/16/2022] Open
Abstract
The myogenic response (MR) and myogenic tone (MT) in resistance vessels is crucial for maintaining peripheral vascular resistance and blood flow autoregulation. Development of MT involves G protein-coupled receptors, and may be affected by aging. AIMS (1) to estimate the mesenteric blood flow in myogenically active small mesenteric arteries; (2) to investigate the signaling from Gαq/11 and/or Gα12 activation to MT development; (3) to investigate the role of Rho-kinase 2 and aging on MT in mesenteric resistance arteries. METHODS we used pressure myography, quantitative real-time PCR, and immunolocalization to study small (<200 μm) mesenteric arteries (SMA) from young, mature adult, and middle aged mice. RESULTS Poiseuille flow calculations indicated autoregulation of blood flow at 60-120 mm Hg arterial pressure. Gαq/11 and Gα12 were abundantly expressed at the mRNA and protein levels in SMA. The Gαq/11 inhibitor YM-254890 suppressed MT development, and the Phosholipase C inhibitors U73122 and ET-18-OCH3 robustly inhibited it. We found an age-dependent increase in ROCK2 mRNA expression, and in basal MT. The specific ROCK2 inhibitor KD025 robustly inhibited MT in SMAs in all mice with an age-dependent variation in KD025 sensitivity. The inhibitory effect of KD025 was not prevented by the L-type Ca2+ channel activator BayK 8644. KD025 reversibly inhibited MT and endothelin-1 vasoconstriction in small pial arteries from Göttingen minipigs. CONCLUSIONS MT development in SMAs occurs through a Gαq/11 /PLC/Ca2+ -dependent pathway, and is maintained via ROCK2-mediated Ca2+ sensitization. Increased MT at mature adulthood can be explained by increased ROCK2 expression/activity.
Collapse
Affiliation(s)
- Karl Björling
- Department of Veterinary and Animal SciencesFaculty of Health and Medical SciencesUniversity of CopenhagenFrederiksberg CCopenhagenDenmark
| | - Philomeena D. Joseph
- Department of Veterinary and Animal SciencesFaculty of Health and Medical SciencesUniversity of CopenhagenFrederiksberg CCopenhagenDenmark
| | - Kristian Egebjerg
- Department of Veterinary and Animal SciencesFaculty of Health and Medical SciencesUniversity of CopenhagenFrederiksberg CCopenhagenDenmark
| | - Max Salomonsson
- Department of Biomedical SciencesFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagen NDenmark
- Department of Internal MedicineTrelleborg HospitalTrelleborgSweden
| | | | | | - Lars J. Jensen
- Department of Veterinary and Animal SciencesFaculty of Health and Medical SciencesUniversity of CopenhagenFrederiksberg CCopenhagenDenmark
| |
Collapse
|
33
|
Jia G, Aroor AR, Hill MA, Sowers JR. Role of Renin-Angiotensin-Aldosterone System Activation in Promoting Cardiovascular Fibrosis and Stiffness. Hypertension 2018; 72:537-548. [PMID: 29987104 PMCID: PMC6202147 DOI: 10.1161/hypertensionaha.118.11065] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Guanghong Jia
- Diabetes and Cardiovascular Research Center, University of Missouri School of Medicine, Columbia, MO, 65212, USA
- Research Service, Truman Memorial Veterans Hospital, Columbia, MO, 65201, USA
| | - Annayya R. Aroor
- Diabetes and Cardiovascular Research Center, University of Missouri School of Medicine, Columbia, MO, 65212, USA
- Research Service, Truman Memorial Veterans Hospital, Columbia, MO, 65201, USA
| | - Michael A. Hill
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO, 65212, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, 65211, USA
| | - James R. Sowers
- Diabetes and Cardiovascular Research Center, University of Missouri School of Medicine, Columbia, MO, 65212, USA
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO, 65212, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, 65211, USA
- Research Service, Truman Memorial Veterans Hospital, Columbia, MO, 65201, USA
| |
Collapse
|
34
|
Zhang W, Bhetwal BP, Gunst SJ. Rho kinase collaborates with p21-activated kinase to regulate actin polymerization and contraction in airway smooth muscle. J Physiol 2018; 596:3617-3635. [PMID: 29746010 DOI: 10.1113/jp275751] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 05/04/2018] [Indexed: 12/16/2022] Open
Abstract
KEY POINTS The mechanisms by which Rho kinase (ROCK) regulates airway smooth muscle contraction were determined in tracheal smooth muscle tissues. ROCK may mediate smooth muscle contraction by inhibiting myosin regulatory light chain (RLC) phosphatase. ROCK can also regulate F-actin dynamics during cell migration, and actin polymerization is critical for airway smooth muscle contraction. Our results show that ROCK does not regulate airway smooth muscle contraction by inhibiting myosin RLC phosphatase or by stimulating myosin RLC phosphorylation. We find that ROCK regulates airway smooth muscle contraction by activating the serine-threonine kinase Pak, which mediates the activation of Cdc42 and neuronal Wiskott-Aldrich syndrome protein (N-WASp). N-WASP transmits signals from Cdc42 to the Arp2/3 complex for the nucleation of actin filaments. These results demonstrate a novel molecular function for ROCK in the regulation of Pak and Cdc42 activation that is critical for the processes of actin polymerization and contractility in airway smooth muscle. ABSTRACT Rho kinase (ROCK), a RhoA GTPase effector, can regulate the contraction of airway and other smooth muscle tissues. In some tissues, ROCK can inhibit myosin regulatory light chain (RLC) phosphatase, which increases the phosphorylation of myosin RLC and promotes smooth muscle contraction. ROCK can also regulate cell motility and migration by affecting F-actin dynamics. Actin polymerization is stimulated by contractile agonists in airway smooth muscle tissues and is required for contractile tension development in addition to myosin RLC phosphorylation. We investigated the mechanisms by which ROCK regulates the contractility of tracheal smooth muscle tissues by expressing a kinase-inactive mutant of ROCK, ROCK-K121G, in the tissues or by treating them with the ROCK inhibitor H-1152P. Our results show no role for ROCK in the regulation of non-muscle or smooth muscle myosin RLC phosphorylation during contractile stimulation in this tissue. We found that ROCK regulates airway smooth muscle contraction by mediating activation of p21-activated kinase (Pak), a serine-threonine kinase, to promote actin polymerization. Pak catalyses paxillin phosphorylation on Ser273 and coupling of the GIT1-βPIX-Pak signalling module to paxillin, which activates the guanine nucleotide exchange factor (GEF) activity of βPIX towards Cdc42. Cdc42 is required for the activation of neuronal Wiskott-Aldrich syndrome protein (N-WASp), which transmits signals from Cdc42 to the Arp2/3 complex for the nucleation of actin filaments. Our results demonstrate a novel molecular function for ROCK in the regulation of Pak and Cdc42 activation that is critical for the processes of actin polymerization and contractility in airway smooth muscle.
Collapse
Affiliation(s)
- Wenwu Zhang
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Bhupal P Bhetwal
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Susan J Gunst
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
35
|
Sherman SB, Sarsour N, Salehi M, Schroering A, Mell B, Joe B, Hill JW. Prenatal androgen exposure causes hypertension and gut microbiota dysbiosis. Gut Microbes 2018; 9:400-421. [PMID: 29469650 PMCID: PMC6219642 DOI: 10.1080/19490976.2018.1441664] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 11/24/2017] [Accepted: 02/08/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Conditions of excess androgen in women, such as polycystic ovary syndrome (PCOS), often exhibit intergenerational transmission. One way in which the risk for PCOS may be increased in daughters of affected women is through exposure to elevated androgens in utero. Hyperandrogenemic conditions have serious health consequences, including increased risk for hypertension and cardiovascular disease. Recently, gut dysbiosis has been found to induce hypertension in rats, such that blood pressure can be normalized through fecal microbial transplant. Therefore, we hypothesized that the hypertension seen in PCOS has early origins in gut dysbiosis caused by in utero exposure to excess androgen. We investigated this hypothesis with a model of prenatal androgen (PNA) exposure and maternal hyperandrogenemia by single-injection of testosterone cypionate or sesame oil vehicle (VEH) to pregnant dams in late gestation. We then completed a gut microbiota and cardiometabolic profile of the adult female offspring. RESULTS The metabolic assessment revealed that adult PNA rats had increased body weight and increased mRNA expression of adipokines: adipocyte binding protein 2, adiponectin, and leptin in inguinal white adipose tissue. Radiotelemetry analysis revealed hypertension with decreased heart rate in PNA animals. The fecal microbiota profile of PNA animals contained higher relative abundance of bacteria associated with steroid hormone synthesis, Nocardiaceae and Clostridiaceae, and lower abundance of Akkermansia, Bacteroides, Lactobacillus, Clostridium. The PNA animals also had an increased relative abundance of bacteria associated with biosynthesis and elongation of unsaturated short chain fatty acids (SCFAs). CONCLUSIONS We found that prenatal exposure to excess androgen negatively impacted cardiovascular function by increasing systolic and diastolic blood pressure and decreasing heart rate. Prenatal androgen was also associated with gut microbial dysbiosis and altered abundance of bacteria involved in metabolite production of short chain fatty acids. These results suggest that early-life exposure to hyperandrogenemia in daughters of women with PCOS may lead to long-term alterations in gut microbiota and cardiometabolic function.
Collapse
Affiliation(s)
- Shermel B. Sherman
- Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Toledo, OH
| | - Nadeen Sarsour
- Department of Biological Sciences, University of Toledo, Toledo, OH
| | - Marziyeh Salehi
- Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Toledo, OH
| | - Allen Schroering
- Department of Neurosciences and Neurological Disorders, The University of Toledo College of Medicine and Life Sciences, Toledo, OH
| | - Blair Mell
- Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Toledo, OH
- Center for Hypertension and Personalized Medicine, The University of Toledo College of Medicine and Life Sciences, Toledo, OH
| | - Bina Joe
- Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Toledo, OH
- Center for Hypertension and Personalized Medicine, The University of Toledo College of Medicine and Life Sciences, Toledo, OH
| | - Jennifer W. Hill
- Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Toledo, OH
- Center for Diabetes and Endocrine Research, The University of Toledo College of Medicine and Life Sciences, Toledo, OH
| |
Collapse
|
36
|
Cheng YR, Jiang BY, Chen CC. Acid-sensing ion channels: dual function proteins for chemo-sensing and mechano-sensing. J Biomed Sci 2018; 25:46. [PMID: 29793480 PMCID: PMC5966886 DOI: 10.1186/s12929-018-0448-y] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 05/15/2018] [Indexed: 12/22/2022] Open
Abstract
Background Acid-sensing ion channels (ASICs) are a group of amiloride-sensitive ligand-gated ion channels belonging to the family of degenerin/epithelial sodium channels. ASICs are predominantly expressed in both the peripheral and central nervous system and have been characterized as potent proton sensors to detect extracellular acidification in the periphery and brain. Main body Here we review the recent studies focusing on the physiological roles of ASICs in the nervous system. As the major acid-sensing membrane proteins in the nervous system, ASICs detect tissue acidosis occurring at tissue injury, inflammation, ischemia, stroke, and tumors as well as fatiguing muscle to activate pain-sensing nerves in the periphery and transmit pain signals to the brain. Arachidonic acid and lysophosphocholine have been identified as endogenous non-proton ligands activating ASICs in a neutral pH environment. On the other hand, ASICs are found involved in the tether model mechanotransduction, in which the extracellular matrix and cytoplasmic cytoskeletons act like a gating-spring to tether the mechanically activated ion channels and thus transmit the stimulus force to the channels. Accordingly, accumulating evidence has shown ASICs play important roles in mechanotransduction of proprioceptors, mechanoreceptors and nociceptors to monitor the homoeostatic status of muscle contraction, blood volume, and blood pressure as well as pain stimuli. Conclusion Together, ASICs are dual-function proteins for both chemosensation and mechanosensation involved in monitoring physiological homoeostasis and pathological signals.
Collapse
Affiliation(s)
- Yuan-Ren Cheng
- Department of Life Science, National Taiwan University, Taipei, 106, Taiwan.,Institute of Biomedical Sciences, Academia Sinica, 128, Academia Rd. Sec. 2, Taipei, 115, Taiwan
| | - Bo-Yang Jiang
- Department of Life Science, National Taiwan University, Taipei, 106, Taiwan.,Institute of Biomedical Sciences, Academia Sinica, 128, Academia Rd. Sec. 2, Taipei, 115, Taiwan
| | - Chih-Cheng Chen
- Department of Life Science, National Taiwan University, Taipei, 106, Taiwan. .,Institute of Biomedical Sciences, Academia Sinica, 128, Academia Rd. Sec. 2, Taipei, 115, Taiwan. .,Taiwan Mouse Clinic - National Comprehensive Mouse Phenotyping and Drug Testing Center, Academia Sinica, Taipei, 115, Taiwan.
| |
Collapse
|
37
|
Li W, Xu J, Kou X, Zhao R, Zhou W, Fang X. Single-molecule force spectroscopy study of interactions between angiotensin II type 1 receptor and different biased ligands in living cells. Anal Bioanal Chem 2018; 410:3275-3284. [PMID: 29492619 DOI: 10.1007/s00216-018-0956-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/12/2018] [Accepted: 02/09/2018] [Indexed: 01/14/2023]
Abstract
Angiotensin II type 1 receptor (AT1R), a typical G protein-coupled receptor, plays a key role in regulating many cardiovascular functions. Different ligands can bind with AT1R to selectively activate either G protein (Gq) or β-arrestin (β-arr) pathway, or both pathways, but the molecular mechanism is not clear yet. In this work, we used, for the first time, atomic force microscopy-based single molecule force spectroscopy (SMFS) to study the interactions of AT1R with three types of ligands, balanced ligand, Gq-biased ligand, and β-arr-biased ligand, in living cells. The results revealed their difference in binding force and binding stability. The complex of the Gq-biased ligand-AT1R overcame two energy barriers with an intermediate state during dissociation, whereas that of β-arr-biased ligand-AT1R complex overcame one energy barrier. This indicated that AT1R had different ligand-binding conformational substates and underwent different structural changes to activate downstream signaling pathways with variable agonist efficacies. Quantitative analysis of AT1R-ligand binding in living cells at the single-molecule level offers a new tool to study the molecular mechanism of AT1R biased activation. Graphical Abstract Single-molecule force measurement on the living cell expressing AT1R-eGFP with a ligand modified AFM tip (left), the dynamic force spectra of β-arrestin biased ligands-AT1R (middle), and Gq-biased ligands-AT1R (right). The complexes of β-arr-biased ligand-AT1R overcame one energy barrier, with one linear region in the spectra, whereas the Gq-biased ligand-AT1R complexes overcame two energy barriers with two linear regions.
Collapse
Affiliation(s)
- Wenhui Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, 2 North First Street, Zhongguancun, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiachao Xu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, 2 North First Street, Zhongguancun, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaolong Kou
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, 2 North First Street, Zhongguancun, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rong Zhao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, 2 North First Street, Zhongguancun, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Zhou
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, 2 North First Street, Zhongguancun, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaohong Fang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, 2 North First Street, Zhongguancun, Beijing, 100190, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
38
|
Holmberg J, Bhattachariya A, Alajbegovic A, Rippe C, Ekman M, Dahan D, Hien TT, Boettger T, Braun T, Swärd K, Hellstrand P, Albinsson S. Loss of Vascular Myogenic Tone in miR-143/145 Knockout Mice Is Associated With Hypertension-Induced Vascular Lesions in Small Mesenteric Arteries. Arterioscler Thromb Vasc Biol 2018; 38:414-424. [PMID: 29217510 DOI: 10.1161/atvbaha.117.310499] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 11/21/2017] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Pressure-induced myogenic tone is involved in autoregulation of local blood flow and confers protection against excessive pressure levels in small arteries and capillaries. Myogenic tone is dependent on smooth muscle microRNAs (miRNAs), but the identity of these miRNAs is unclear. Furthermore, the consequences of altered myogenic tone for hypertension-induced damage to small arteries are not well understood. APPROACH AND RESULTS The importance of smooth muscle-enriched microRNAs, miR-143/145, for myogenic tone was evaluated in miR-143/145 knockout mice. Furthermore, hypertension-induced vascular injury was evaluated in mesenteric arteries in vivo after angiotensin II infusion. Myogenic tone was abolished in miR-143/145 knockout mesenteric arteries, whereas contraction in response to calyculin A and potassium chloride was reduced by ≈30%. Furthermore, myogenic responsiveness was potentiated by angiotensin II in wild-type but not in knockout mice. Angiotensin II administration in vivo elevated systemic blood pressure in both genotypes. Hypertensive knockout mice developed severe vascular lesions characterized by vascular inflammation, adventitial fibrosis, and neointimal hyperplasia in small mesenteric arteries. This was associated with depolymerization of actin filaments and fragmentation of the elastic laminae at the sites of vascular lesions. CONCLUSIONS This study demonstrates that miR-143/145 expression is essential for myogenic responsiveness. During hypertension, loss of myogenic tone results in potentially damaging levels of mechanical stress and detrimental effects on small arteries. The results presented herein provide novel insights into the pathogenesis of vascular disease and emphasize the importance of controlling mechanical factors to maintain structural integrity of the vascular wall.
Collapse
Affiliation(s)
- Johan Holmberg
- From the Department of Experimental Medical Science, Lund University, Sweden (J.H., A.B., A.A., C.R., M.E., D.D., T.T.H., K.S., P.H., S.A.); and Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (T. Boettger, T. Braun)
| | - Anirban Bhattachariya
- From the Department of Experimental Medical Science, Lund University, Sweden (J.H., A.B., A.A., C.R., M.E., D.D., T.T.H., K.S., P.H., S.A.); and Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (T. Boettger, T. Braun)
| | - Azra Alajbegovic
- From the Department of Experimental Medical Science, Lund University, Sweden (J.H., A.B., A.A., C.R., M.E., D.D., T.T.H., K.S., P.H., S.A.); and Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (T. Boettger, T. Braun)
| | - Catarina Rippe
- From the Department of Experimental Medical Science, Lund University, Sweden (J.H., A.B., A.A., C.R., M.E., D.D., T.T.H., K.S., P.H., S.A.); and Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (T. Boettger, T. Braun)
| | - Mari Ekman
- From the Department of Experimental Medical Science, Lund University, Sweden (J.H., A.B., A.A., C.R., M.E., D.D., T.T.H., K.S., P.H., S.A.); and Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (T. Boettger, T. Braun)
| | - Diana Dahan
- From the Department of Experimental Medical Science, Lund University, Sweden (J.H., A.B., A.A., C.R., M.E., D.D., T.T.H., K.S., P.H., S.A.); and Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (T. Boettger, T. Braun)
| | - Tran Thi Hien
- From the Department of Experimental Medical Science, Lund University, Sweden (J.H., A.B., A.A., C.R., M.E., D.D., T.T.H., K.S., P.H., S.A.); and Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (T. Boettger, T. Braun)
| | - Thomas Boettger
- From the Department of Experimental Medical Science, Lund University, Sweden (J.H., A.B., A.A., C.R., M.E., D.D., T.T.H., K.S., P.H., S.A.); and Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (T. Boettger, T. Braun)
| | - Thomas Braun
- From the Department of Experimental Medical Science, Lund University, Sweden (J.H., A.B., A.A., C.R., M.E., D.D., T.T.H., K.S., P.H., S.A.); and Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (T. Boettger, T. Braun)
| | - Karl Swärd
- From the Department of Experimental Medical Science, Lund University, Sweden (J.H., A.B., A.A., C.R., M.E., D.D., T.T.H., K.S., P.H., S.A.); and Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (T. Boettger, T. Braun)
| | - Per Hellstrand
- From the Department of Experimental Medical Science, Lund University, Sweden (J.H., A.B., A.A., C.R., M.E., D.D., T.T.H., K.S., P.H., S.A.); and Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (T. Boettger, T. Braun)
| | - Sebastian Albinsson
- From the Department of Experimental Medical Science, Lund University, Sweden (J.H., A.B., A.A., C.R., M.E., D.D., T.T.H., K.S., P.H., S.A.); and Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (T. Boettger, T. Braun).
| |
Collapse
|
39
|
Hong K, Cope EL, DeLalio LJ, Marziano C, Isakson BE, Sonkusare SK. TRPV4 (Transient Receptor Potential Vanilloid 4) Channel-Dependent Negative Feedback Mechanism Regulates G q Protein-Coupled Receptor-Induced Vasoconstriction. Arterioscler Thromb Vasc Biol 2018; 38:542-554. [PMID: 29301784 DOI: 10.1161/atvbaha.117.310038] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 12/18/2017] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Several physiological stimuli activate smooth muscle cell (SMC) GqPCRs (Gq protein-coupled receptors) to cause vasoconstriction. As a protective mechanism against excessive vasoconstriction, SMC GqPCR stimulation invokes endothelial cell vasodilatory signaling. Whether Ca2+ influx in endothelial cells contributes to the regulation of GqPCR-induced vasoconstriction remains unknown. Ca2+ influx through TRPV4 (transient receptor potential vanilloid 4) channels is a key regulator of endothelium-dependent vasodilation. We hypothesized that SMC GqPCR stimulation engages endothelial TRPV4 channels to limit vasoconstriction. APPROACH AND RESULTS Using high-speed confocal microscopy to record unitary Ca2+ influx events through TRPV4 channels (TRPV4 sparklets), we report that activation of SMC α1ARs (alpha1-adrenergic receptors) with phenylephrine or thromboxane A2 receptors with U46619 stimulated TRPV4 sparklets in the native endothelium from mesenteric arteries. Activation of endothelial TRPV4 channels did not require an increase in Ca2+ as indicated by the lack of effect of L-type Ca2+ channel activator or chelator of intracellular Ca2+ EGTA-AM. However, gap junction communication between SMCs and endothelial cells was required for phenylephrine activation or U46619 activation of endothelial TRPV4 channels. Lowering inositol 1,4,5-trisphosphate levels with phospholipase C inhibitor or lithium chloride suppressed phenylephrine activation of endothelial TRPV4 sparklets. Moreover, uncaging inositol 1,4,5-trisphosphate profoundly increased TRPV4 sparklet activity. In pressurized arteries, phenylephrine-induced vasoconstriction was followed by a slow, TRPV4-dependent vasodilation, reflecting activation of negative regulatory mechanism. Consistent with these data, phenylephrine induced a significantly higher increase in blood pressure in TRPV4-/- mice. CONCLUSIONS These results demonstrate that SMC GqPCR stimulation triggers inositol 1,4,5-trisphosphate-dependent activation of endothelial TRPV4 channels to limit vasoconstriction.
Collapse
Affiliation(s)
- Kwangseok Hong
- From the Robert M. Berne Cardiovascular Research Center (K.H., E.L.C., L.J.D., C.M., B.E.I., S.K.S.), Department of Molecular Physiology and Biological Physics (C.M., B.E.I., S.K.S.), and Department of Pharmacology (L.J.D., S.K.S), University of Virginia-School of Medicine, Charlottesville
| | - Eric L Cope
- From the Robert M. Berne Cardiovascular Research Center (K.H., E.L.C., L.J.D., C.M., B.E.I., S.K.S.), Department of Molecular Physiology and Biological Physics (C.M., B.E.I., S.K.S.), and Department of Pharmacology (L.J.D., S.K.S), University of Virginia-School of Medicine, Charlottesville
| | - Leon J DeLalio
- From the Robert M. Berne Cardiovascular Research Center (K.H., E.L.C., L.J.D., C.M., B.E.I., S.K.S.), Department of Molecular Physiology and Biological Physics (C.M., B.E.I., S.K.S.), and Department of Pharmacology (L.J.D., S.K.S), University of Virginia-School of Medicine, Charlottesville
| | - Corina Marziano
- From the Robert M. Berne Cardiovascular Research Center (K.H., E.L.C., L.J.D., C.M., B.E.I., S.K.S.), Department of Molecular Physiology and Biological Physics (C.M., B.E.I., S.K.S.), and Department of Pharmacology (L.J.D., S.K.S), University of Virginia-School of Medicine, Charlottesville
| | - Brant E Isakson
- From the Robert M. Berne Cardiovascular Research Center (K.H., E.L.C., L.J.D., C.M., B.E.I., S.K.S.), Department of Molecular Physiology and Biological Physics (C.M., B.E.I., S.K.S.), and Department of Pharmacology (L.J.D., S.K.S), University of Virginia-School of Medicine, Charlottesville
| | - Swapnil K Sonkusare
- From the Robert M. Berne Cardiovascular Research Center (K.H., E.L.C., L.J.D., C.M., B.E.I., S.K.S.), Department of Molecular Physiology and Biological Physics (C.M., B.E.I., S.K.S.), and Department of Pharmacology (L.J.D., S.K.S), University of Virginia-School of Medicine, Charlottesville.
| |
Collapse
|
40
|
Ronconi KDS, Stefanon I, Ribeiro Junior RF. Tributyltin and Vascular Dysfunction: The Role of Oxidative Stress. Front Endocrinol (Lausanne) 2018; 9:354. [PMID: 30050498 PMCID: PMC6052083 DOI: 10.3389/fendo.2018.00354] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 06/13/2018] [Indexed: 01/18/2023] Open
Abstract
The organotin compounds (OT) are used as fungicides, stabilizers in plastics, miticides, manufacturing and agricultural biocides, wood preservatives and antifouling agents. Tributyltin (TBT) is an OT that was first used for antifouling because it was the most effective agent to prevent undesirable accumulation of marine organisms on solid surfaces, such as ships' hulls or mechanical components, immersed in saltwater. TBT can be easily absorbed by mammals through ingestion, and its cytotoxic effects have become a major concern since their discovery in the 1970s. Recently, it has been demonstrated that TBT exposure is detrimental to the cardiovascular system. TBT is a membrane active substance and its action seems to depend on the OT lipophilicity. As a result, TBT crosses the cell membrane and damages the endothelium and the smooth muscle cells. TBT exposure induces vascular dysfunction, most likely due to endothelial dysfunction and morphological changes in the vascular wall. In an experimental rodent model, small doses of TBT (100 and 500 ng/kg/bw/day for 15 days) modified the vascular reactivity in aorta, mesenteric and coronary arteries followed by smooth muscle cell atrophy, increased collagen deposition and fibrin accumulation. TBT exposure increases oxidative stress by inducing vascular superoxide anion production derived from NADPH oxidase and decreases nitric oxide (NO) production as well as eNOS protein expression. The goal of this review is to summarize the current state of the art regarding the mechanisms involved in the vascular and endothelial dysfunction induced by TBT.
Collapse
Affiliation(s)
| | - Ivanita Stefanon
- Department of Physiological Sciences, Federal University of Espírito Santo, Vitória, Brazil
| | - Rogerio F. Ribeiro Junior
- Department of Physiological Sciences, Federal University of Espírito Santo, Vitória, Brazil
- Department of Pharmacology, University of California, Davis, Davis, CA, United States
- *Correspondence: Rogerio F. Ribeiro Junior
| |
Collapse
|
41
|
Hong K, Li M, Nourian Z, Meininger GA, Hill MA. Angiotensin II Type 1 Receptor Mechanoactivation Involves RGS5 (Regulator of G Protein Signaling 5) in Skeletal Muscle Arteries: Impaired Trafficking of RGS5 in Hypertension. Hypertension 2017; 70:1264-1272. [PMID: 29061726 DOI: 10.1161/hypertensionaha.117.09757] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 06/11/2017] [Accepted: 09/20/2017] [Indexed: 01/07/2023]
Abstract
Studies suggest that arteriolar pressure-induced vasoconstriction can be initiated by GPCRs (G protein-coupled receptors), including the AT1R (angiotensin II type 1 receptor). This raises the question, are such mechanisms regulated by negative feedback? The present studies examined whether RGS (regulators of G protein signaling) proteins in vascular smooth muscle cells are colocalized with the AT1R when activated by mechanical stress or angiotensin II and whether this modulates AT1R-mediated vasoconstriction. To determine whether activation of the AT1R recruits RGS5, an in situ proximity ligation assay was performed in primary cultures of cremaster muscle arteriolar vascular smooth muscle cells treated with angiotensin II or hypotonic solution in the absence or presence of candesartan (an AT1R blocker). Proximity ligation assay results revealed a concentration-dependent increase in trafficking/translocation of RGS5 toward the activated AT1R, which was attenuated by candesartan. In intact arterioles, knockdown of RGS5 enhanced constriction to angiotensin II and augmented myogenic responses to increased intraluminal pressure. Myogenic constriction was attenuated to a higher degree by candesartan in RGS5 siRNA-transfected arterioles, consistent with RGS5 contributing to downregulation of AT1R-mediated signaling. Further, translocation of RGS5 was impaired in vascular smooth muscle cells of spontaneously hypertensive rats. This is consistent with dysregulated (RGS5-mediated) AT1R signaling that could contribute to excessive vasoconstriction in hypertension. In intact vessels, candesartan reduced myogenic vasoconstriction to a greater extent in spontaneously hypertensive rats compared with controls. Collectively, these findings suggest that AT1R activation results in translocation of RGS5 toward the plasma membrane, limiting AT1R-mediated vasoconstriction through its role in Gq/11 protein-dependent signaling.
Collapse
Affiliation(s)
- Kwangseok Hong
- From the Department of Medical Pharmacology and Physiology (K.H., M.L., G.A.M., M.A.H.) and Dalton Cardiovascular Research Center (K.H., Z.N., G.A.M., M.A.H.), University of Missouri, Columbia; and Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville (K.H.)
| | - Min Li
- From the Department of Medical Pharmacology and Physiology (K.H., M.L., G.A.M., M.A.H.) and Dalton Cardiovascular Research Center (K.H., Z.N., G.A.M., M.A.H.), University of Missouri, Columbia; and Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville (K.H.)
| | - Zahra Nourian
- From the Department of Medical Pharmacology and Physiology (K.H., M.L., G.A.M., M.A.H.) and Dalton Cardiovascular Research Center (K.H., Z.N., G.A.M., M.A.H.), University of Missouri, Columbia; and Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville (K.H.)
| | - Gerald A Meininger
- From the Department of Medical Pharmacology and Physiology (K.H., M.L., G.A.M., M.A.H.) and Dalton Cardiovascular Research Center (K.H., Z.N., G.A.M., M.A.H.), University of Missouri, Columbia; and Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville (K.H.)
| | - Michael A Hill
- From the Department of Medical Pharmacology and Physiology (K.H., M.L., G.A.M., M.A.H.) and Dalton Cardiovascular Research Center (K.H., Z.N., G.A.M., M.A.H.), University of Missouri, Columbia; and Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville (K.H.).
| |
Collapse
|
42
|
Xie L, He S, Wen Y, Bo X, Zhang Z. Discovery of novel therapeutic properties of drugs from transcriptional responses based on multi-label classification. Sci Rep 2017; 7:7136. [PMID: 28769090 PMCID: PMC5541064 DOI: 10.1038/s41598-017-07705-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 07/03/2017] [Indexed: 11/09/2022] Open
Abstract
Drug repositioning strategies have improved substantially in recent years. At present, two advances are poised to facilitate new strategies. First, the LINCS project can provide rich transcriptome data that reflect the responses of cells upon exposure to various drugs. Second, machine learning algorithms have been applied successfully in biomedical research. In this paper, we developed a systematic method to discover novel indications for existing drugs by approaching drug repositioning as a multi-label classification task and used a Softmax regression model to predict previously unrecognized therapeutic properties of drugs based on LINCS transcriptome data. This approach to complete the said task has not been achieved in previous studies. By performing in silico comparison, we demonstrated that the proposed Softmax method showed markedly superior performance over those of other methods. Once fully trained, the method showed a training accuracy exceeding 80% and a validation accuracy of approximately 70%. We generated a highly credible set of 98 drugs with high potential to be repositioned for novel therapeutic purposes. Our case studies included zonisamide and brinzolamide, which were originally developed to treat indications of the nervous system and sensory organs, respectively. Both drugs were repurposed to the cardiovascular category.
Collapse
Affiliation(s)
- Lingwei Xie
- Software School, Xiamen University, Xiamen Fujian, 361005, P.R. China
| | - Song He
- Beijing Institute of Radiation Medicine, Beijing, 100850, P.R. China
| | - Yuqi Wen
- Beijing Institute of Radiation Medicine, Beijing, 100850, P.R. China
| | - Xiaochen Bo
- Beijing Institute of Radiation Medicine, Beijing, 100850, P.R. China.
| | - Zhongnan Zhang
- Software School, Xiamen University, Xiamen Fujian, 361005, P.R. China.
| |
Collapse
|
43
|
Li Y, Pagano PJ. Microvascular NADPH oxidase in health and disease. Free Radic Biol Med 2017; 109:33-47. [PMID: 28274817 PMCID: PMC5482368 DOI: 10.1016/j.freeradbiomed.2017.02.049] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 02/24/2017] [Accepted: 02/28/2017] [Indexed: 02/07/2023]
Abstract
The systemic and cerebral microcirculation contribute critically to regulation of local and global blood flow and perfusion pressure. Microvascular dysfunction, commonly seen in numerous cardiovascular pathologies, is associated with alterations in the oxidative environment including potentiated production of reactive oxygen species (ROS) and subsequent activation of redox signaling pathways. NADPH oxidases (Noxs) are a primary source of ROS in the vascular system and play a central role in cardiovascular health and disease. In this review, we focus on the roles of Noxs in ROS generation in resistance arterioles and capillaries, and summarize their contributions to microvascular physiology and pathophysiology in both systemic and cerebral microcirculation. In light of the accumulating evidence that Noxs are pivotal players in vascular dysfunction of resistance arterioles, selectively targeting Nox isozymes could emerge as a novel and effective therapeutic strategy for preventing and treating microvascular diseases.
Collapse
Affiliation(s)
- Yao Li
- Department of Pharmacology & Chemical Biology, Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Patrick J Pagano
- Department of Pharmacology & Chemical Biology, Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| |
Collapse
|
44
|
Jackson WF, Boerman EM. Regional heterogeneity in the mechanisms of myogenic tone in hamster arterioles. Am J Physiol Heart Circ Physiol 2017; 313:H667-H675. [PMID: 28667050 DOI: 10.1152/ajpheart.00183.2017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 06/07/2017] [Accepted: 06/26/2017] [Indexed: 01/30/2023]
Abstract
Myogenic tone is an important feature of arterioles and resistance arteries, but the mechanisms responsible for this hallmark characteristic remain unclear. We used pharmacological inhibitors to compare the roles played by phospholipase C (PLC; 10 μM U73122), inositol 1,4,5-trisphosphate receptors (IP3Rs; 100 μM 2-aminoethoxydiphenylborane), protein kinase C (10 μM bisindolylmaleimide I), angiotensin II type 1 receptors (1 μM losartan), Rho kinase (10 nM-30 μM Y27632 or 300 nM H1152), stretch-activated ion channels (10 nM-1 μM Gd3+ or 5 μM spider venom toxin GsMTx-4) and L-type voltage-gated Ca2+ channels (0.3-100 μM diltiazem) in myogenic tone of cannulated, pressurized (80 cmH2O), second-order hamster cremaster or cheek pouch arterioles. Effective inhibition of either PLC or IP3Rs dilated cremaster arterioles, inhibited Ca2+ waves, and reduced global Ca2+ levels. In contrast, cheek pouch arterioles did not display Ca2+ waves and inhibition of PLC or IP3Rs had no effect on myogenic tone or intracellular Ca2+ levels. Inhibition of Rho kinase dilated both cheek pouch and cremaster arterioles with equal efficacy and potency but also reduced intracellular Ca2+ signals in both arterioles. Similarly, inhibition of mechanosensitive ion channels with Gd2+ or GsMTx-4 produced comparable dilation in both arterioles. Inhibition of L-type Ca2+ channels with diltiazem was more effective in dilating cremaster (86 ± 5% dilation, n = 4) than cheek pouch arterioles (54 ± 4% dilation, n = 6, P < 0.05). Thus, there are substantial differences in the mechanisms underlying myogenic tone in hamster cremaster and cheek pouch arterioles. Regional heterogeneity in myogenic mechanisms could provide new targets for drug development to improve regional blood flow in a tissue-specific manner.NEW & NOTEWORTHY Regional heterogeneity in the mechanisms of pressure-induced myogenic tone implies that resistance vessels may be able to alter myogenic signaling pathways to adapt to their environment. A better understanding of the spectrum of myogenic mechanisms could provide new targets to treat diseases that affect resistance artery and arteriolar function.
Collapse
Affiliation(s)
- William F Jackson
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| | - Erika M Boerman
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| |
Collapse
|
45
|
Kroetsch JT, Levy AS, Zhang H, Aschar-Sobbi R, Lidington D, Offermanns S, Nedospasov SA, Backx PH, Heximer SP, Bolz SS. Constitutive smooth muscle tumour necrosis factor regulates microvascular myogenic responsiveness and systemic blood pressure. Nat Commun 2017; 8:14805. [PMID: 28378814 PMCID: PMC5382284 DOI: 10.1038/ncomms14805] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 02/01/2017] [Indexed: 01/04/2023] Open
Abstract
Tumour necrosis factor (TNF) is a ubiquitously expressed cytokine with functions beyond the immune system. In several diseases, the induction of TNF expression in resistance artery smooth muscle cells enhances microvascular myogenic vasoconstriction and perturbs blood flow. This pathological role prompted our hypothesis that constitutively expressed TNF regulates myogenic signalling and systemic haemodynamics under non-pathological settings. Here we show that acutely deleting the TNF gene in smooth muscle cells or pharmacologically scavenging TNF with etanercept (ETN) reduces blood pressure and resistance artery myogenic responsiveness; the latter effect is conserved across five species, including humans. Changes in transmural pressure are transduced into intracellular signals by membrane-bound TNF (mTNF) that connect to a canonical myogenic signalling pathway. Our data positions mTNF 'reverse signalling' as an integral element of a microvascular mechanosensor; pathologic or therapeutic perturbations of TNF signalling, therefore, necessarily affect microvascular tone and systemic haemodynamics.
Collapse
Affiliation(s)
- Jeffrey T Kroetsch
- Department of Physiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Medical Sciences Building, Toronto, Ontario, Canada M5S 1A8.,Toronto Centre for Microvascular Medicine at TBEP, University of Toronto, 661 University Avenue, 14th floor, Toronto, Ontario, Canada M5G 1M1
| | - Andrew S Levy
- Department of Physiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Medical Sciences Building, Toronto, Ontario, Canada M5S 1A8.,Toronto Centre for Microvascular Medicine at TBEP, University of Toronto, 661 University Avenue, 14th floor, Toronto, Ontario, Canada M5G 1M1.,Keenan Research Centre at St. Michael's Hospital, 30 Bond Street, Toronto, Ontario, Canada M5B 1W8
| | - Hangjun Zhang
- Department of Physiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Medical Sciences Building, Toronto, Ontario, Canada M5S 1A8
| | - Roozbeh Aschar-Sobbi
- Division of Cardiology, University Health Network, R. Fraser Elliott Building, 1st Floor, 190 Elizabeth Street, Toronto, Ontario, Canada M5G 2C4
| | - Darcy Lidington
- Department of Physiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Medical Sciences Building, Toronto, Ontario, Canada M5S 1A8.,Toronto Centre for Microvascular Medicine at TBEP, University of Toronto, 661 University Avenue, 14th floor, Toronto, Ontario, Canada M5G 1M1
| | - Stefan Offermanns
- Max-Planck-Institute for Heart and Lung Research, Ludwigstrasse 43, 61231 Bad Nauheim, Germany.,Centre for Molecular Medicine, University of Frankfurt, Theodor-Stern-Kai 7, Frankfurt am Main 60590, Germany
| | - Sergei A Nedospasov
- Engelhardt Institute of Molecular Biology and Lemonosov Moscow State University, 32 Vavilov Street, Moscow 119991, Russia.,German Rheumatism Research Center, a Leibniz Institute, Chariteplatz 1, Berlin 10117, Germany
| | - Peter H Backx
- Division of Cardiology, University Health Network, R. Fraser Elliott Building, 1st Floor, 190 Elizabeth Street, Toronto, Ontario, Canada M5G 2C4.,Heart &Stroke/Richard Lewar Centre of Excellence for Cardiovascular Research, University of Toronto, C. David Naylor Building, 6 Queens Park Cresc. West, Toronto, Ontario, Canada M5S 3H2.,Department of Biology, York University, Farquharson Building, 110 Campus Walk, Toronto, Ontario, Canada M3J 2S5
| | - Scott P Heximer
- Department of Physiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Medical Sciences Building, Toronto, Ontario, Canada M5S 1A8.,Heart &Stroke/Richard Lewar Centre of Excellence for Cardiovascular Research, University of Toronto, C. David Naylor Building, 6 Queens Park Cresc. West, Toronto, Ontario, Canada M5S 3H2
| | - Steffen-Sebastian Bolz
- Department of Physiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Medical Sciences Building, Toronto, Ontario, Canada M5S 1A8.,Toronto Centre for Microvascular Medicine at TBEP, University of Toronto, 661 University Avenue, 14th floor, Toronto, Ontario, Canada M5G 1M1.,Keenan Research Centre at St. Michael's Hospital, 30 Bond Street, Toronto, Ontario, Canada M5B 1W8.,Heart &Stroke/Richard Lewar Centre of Excellence for Cardiovascular Research, University of Toronto, C. David Naylor Building, 6 Queens Park Cresc. West, Toronto, Ontario, Canada M5S 3H2
| |
Collapse
|
46
|
El-Yazbi AF, Abd-Elrahman KS. ROK and Arteriolar Myogenic Tone Generation: Molecular Evidence in Health and Disease. Front Pharmacol 2017; 8:87. [PMID: 28280468 PMCID: PMC5322222 DOI: 10.3389/fphar.2017.00087] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 02/10/2017] [Indexed: 12/13/2022] Open
Abstract
The myogenic response is an inherent property of resistance arteries that warrants a relatively constant blood flow in response to changes in perfusion pressure and protect delicate organs from vascular insufficiencies and excessive blood flow. This fundamental phenomenon has been extensively studied aiming to elucidate the underlying mechanisms triggering smooth muscle contraction in response to intraluminal pressure elevation, particularly, Rho-associated kinase (ROK)-mediated Ca2+-independent mechanisms. The size of the resistance arteries limits the capacity to examine changes in protein phosphorylation/expression levels associated with ROK signaling. A highly sensitive biochemical detection approach was beneficial in examining the role of ROK in different force generation mechanisms along the course of myogenic constriction. In this mini review, we summarize recent results showing direct evidence for the contribution of ROK in development of myogenic response at the level of mechanotransduction, myosin light chain phosphatase inhibition and dynamic actin cytoskeleton reorganization. We will also present evidence that alterations in ROK signaling could underlie the progressive loss in myogenic response in a rat model of type 2 diabetes.
Collapse
Affiliation(s)
- Ahmed F. El-Yazbi
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of BeirutBeirut, Lebanon
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria UniversityAlexandria, Egypt
| | - Khaled S. Abd-Elrahman
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria UniversityAlexandria, Egypt
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of OttawaOttawa, ON, Canada
| |
Collapse
|