1
|
Sakaguchi K, Sugawara K, Hosokawa Y, Ito J, Morita Y, Mizuma H, Watanabe Y, Kimura Y, Aburaya S, Takahashi M, Izumi Y, Bamba T, Komada H, Yamada T, Hirota Y, Yoshida M, Nogami M, Murakami T, Ogawa W. Metformin-regulated glucose flux from the circulation to the intestinal lumen. COMMUNICATIONS MEDICINE 2025; 5:44. [PMID: 40033038 DOI: 10.1038/s43856-025-00755-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/28/2025] [Indexed: 03/05/2025] Open
Abstract
BACKGROUND Through a retrospective analysis of existing FDG PET-MRI images, we recently demonstrated that metformin increases the accumulation of FDG in the intestinal lumen, suggesting that metformin stimulates glucose excretion into the intestine. However, the details of this phenomenon remain unclear. We here investigate the detailed dynamics of intestinal glucose excretion, including the rate of excretion and the metabolism of excreted glucose, in both the presence and absence of metformin. METHODS We quantified intestinal glucose excretion using newly developed FDG PET-MRI-based bioimaging in individuals with type 2 diabetes, both treated and untreated with metformin. The metabolism of excreted glucose was analyzed through mass spectrometry of fecal samples from mice intravenously injected with 13C-labeled glucose. RESULTS Continuous FDG PET/MRI image taking reveals that FDG is initially observed in the jejunum, suggesting its involvement in FDG excretion. Metformin-treated individuals excrete a significant amount of glucose (~1.65 g h-1 per body) into the intestinal lumen. In individuals not receiving metformin, a certain amount of glucose (~0.41 g h-1per body) is also excreted into the intestinal lumen, indicating its physiological importance. Intravenous injection of 13C-labeled glucose in mice increases the content of 13C in short-chain fatty acids (SCFAs) extracted from feces, and metformin increased the incorporation of 13C into SCFAs. CONCLUSIONS A previously unrecognized, substantial flux of glucose from the circulation to the intestinal lumen exists, which likely contributes to the symbiosis between gut microbiota and the host. This flux represents a potential target of metformin's action in humans.
Collapse
Affiliation(s)
- Kazuhiko Sakaguchi
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
- Division of Community Medicine and Medical Education, Department of Social/Community Medicine and Health Science, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kenji Sugawara
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yusei Hosokawa
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Jun Ito
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yasuko Morita
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hiroshi Mizuma
- Laboratory for Pathophysiological and Health Science, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Yasuyoshi Watanabe
- Laboratory for Pathophysiological and Health Science, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Yuichi Kimura
- Faculty of Informatics, Cyber Informatics Research Institute, Kindai University, Osaka, Japan
| | - Shunsuke Aburaya
- Division of Metabolomics, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Masatomo Takahashi
- Division of Metabolomics, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Yoshihiro Izumi
- Division of Metabolomics, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Takeshi Bamba
- Division of Metabolomics, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Hisako Komada
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tomoko Yamada
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yushi Hirota
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Masaru Yoshida
- Department of Food Science and Nutrition, Research Institute of Food and Nutritional Sciences, Graduate School of Human Science and Environment, University of Hyogo, Hyogo, Japan
| | - Munenobu Nogami
- Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Japan
- Division of Medical Imaging, Biomedical Imaging Research Center, University of Fukui, Fukui, Japan
| | - Takamichi Murakami
- Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Wataru Ogawa
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan.
| |
Collapse
|
2
|
Isildar B, Beydogan AB, Koyuturk E, Coskun Yazici ZM, Koyuturk M, Bolkent S. Effects of ∆-9 tetrahydrocannabinol on the small intestine altered by high fructose diet: A Histopathological study. Histochem Cell Biol 2024; 162:363-372. [PMID: 39110194 PMCID: PMC11393283 DOI: 10.1007/s00418-024-02311-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2024] [Indexed: 09/13/2024]
Abstract
The consumption of fructose is increasing day by day. Understanding the impact of increasing fructose consumption on the small intestine is crucial since the small intestine processes fructose into glucose. ∆9-Tetrahydrocannabinol (THC), a key cannabinoid, interacts with CB1 and CB2 receptors in the gastrointestinal tract, potentially mitigating inflammation. Therefore, this study aimed to investigate the effects of the high-fructose diet (HFD) on the jejunum of rats and the role of THC consumption in reversing these effects. Experiments were conducted on Sprague-Dawley rats, with the experimental groups as follows: control (C), HFD, THC, and HFD + THC. The HFD group received a 10% fructose solution in drinking water for 12 weeks. THC groups were administered 1.5 mg/kg/day of THC intraperitoneally for the last four weeks. Following sacrification, the jejunum was evaluated for mucus secretion capacity. IL-6, JNK, CB2 and PCNA expressions were assessed through immunohistochemical analysis and the ultrastructural alterations via transmission electron microscopy. The results showed that fructose consumption did not cause weight gain but triggered inflammation in the jejunum, disrupted the cell proliferation balance, and increased mucus secretion in rats. Conversely, THC treatment displayed suppressed inflammation and improved cell proliferation balance caused by HFD. Ultrastructural examinations showed that the zonula occludens structures deteriorated in the HFD group, along with desmosome shrinkage. Mitochondria were found to be increased due to THC application following HFD. In conclusion, the findings of this research reveal the therapeutic potential of THC in reversing HFD-related alterations and provide valuable insights for clinical application.
Collapse
Affiliation(s)
- Basak Isildar
- Department of Histology and Embryology, Cerrahpaşa Faculty of Medicine, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Alisa Bahar Beydogan
- Department of Medical Biology, Cerrahpaşa Faculty of Medicine, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Ece Koyuturk
- Faculty of Medicine, Otto-Von-Guericke-Universität Magdeburg, Magdeburg, Germany.
| | - Zeynep Mine Coskun Yazici
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Demiroglu Bilim University, Istanbul, Turkey
| | - Meral Koyuturk
- Department of Histology and Embryology, Cerrahpaşa Faculty of Medicine, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Sema Bolkent
- Department of Medical Biology, Cerrahpaşa Faculty of Medicine, Istanbul University-Cerrahpaşa, Istanbul, Turkey.
| |
Collapse
|
3
|
Ritter MJ, Amano I, van der Spek AH, Gower AC, Undeutsch HJ, Rodrigues VAP, Daniel HE, Hollenberg AN. Nuclear Receptor Corepressors NCOR1 and SMRT Regulate Metabolism via Intestinal Regulation of Carbohydrate Transport. Endocrinology 2024; 165:bqae100. [PMID: 39106294 PMCID: PMC11337007 DOI: 10.1210/endocr/bqae100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/29/2024] [Accepted: 08/01/2024] [Indexed: 08/09/2024]
Abstract
Nuclear receptor action is mediated in part by the nuclear receptor corepressor 1 (NCOR1) and the silencing mediator of retinoic acid and thyroid hormone receptor (SMRT). NCOR1 and SMRT regulate metabolic pathways that govern body mass, insulin sensitivity, and energy expenditure, representing an understudied area in the realm of metabolic health and disease. Previously, we found that NCOR1 and SMRT are essential for maintaining metabolic homeostasis and their knockout (KO) leads to rapid weight loss and hypoglycemia, which is not survivable. Because of a potential defect in glucose absorption, we sought to determine the role of NCOR1 and SMRT specifically in intestinal epithelial cells (IECs). We used a postnatal strategy to disrupt NCOR1 and SMRT throughout IECs in adult mice. These mice were characterized metabolically and underwent metabolic phenotyping, body composition analysis, and glucose tolerance testing. Jejunal IECs were isolated and profiled by bulk RNA sequencing. We found that the postnatal KO of NCOR1 and SMRT from IECs leads to rapid weight loss and hypoglycemia with a significant reduction in survival. This was accompanied by alterations in glucose metabolism and activation of fatty acid oxidation in IECs. Metabolic phenotyping confirmed a reduction in body mass driven by a loss of body fat without altered food intake. This appeared to be mediated by a reduction of key intestinal carbohydrate transporters, including SGLT1, GLUT2, and GLUT5. Intestinal NCOR1 and SMRT act in tandem to regulate glucose levels and body weight. This in part may be mediated by regulation of intestinal carbohydrate transporters.
Collapse
Affiliation(s)
- Megan J Ritter
- Department of Medicine, Section of Endocrinology, Diabetes, Nutrition and Weight Management, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA
- Division of Endocrinology, Diabetes and Metabolism, Joan and Sanford I. Weill Department of Medicine, New York, NY 10021, USA
| | - Izuki Amano
- Department of Medicine, Section of Endocrinology, Diabetes, Nutrition and Weight Management, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA
- Division of Endocrinology, Diabetes and Metabolism, Joan and Sanford I. Weill Department of Medicine, New York, NY 10021, USA
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, Maebashi, 371-8511, Japan
| | - Anne H van der Spek
- Division of Endocrinology, Diabetes and Metabolism, Joan and Sanford I. Weill Department of Medicine, New York, NY 10021, USA
- Department of Endocrinology, Amsterdam Gastroenterology Endocrinology Metabolism, University of Amsterdam UMC, 1105 AZ Amsterdam, the Netherlands
| | - Adam C Gower
- Boston University Clinical and Translational Science Institute, Boston, MA 02118, USA
| | - Hendrik J Undeutsch
- Department of Medicine, Section of Endocrinology, Diabetes, Nutrition and Weight Management, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA
- Division of Endocrinology, Diabetes and Metabolism, Joan and Sanford I. Weill Department of Medicine, New York, NY 10021, USA
| | - Victor A P Rodrigues
- Department of Medicine, Section of Endocrinology, Diabetes, Nutrition and Weight Management, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA
| | - Hanix E Daniel
- Division of Endocrinology, Diabetes and Metabolism, Joan and Sanford I. Weill Department of Medicine, New York, NY 10021, USA
| | - Anthony N Hollenberg
- Department of Medicine, Section of Endocrinology, Diabetes, Nutrition and Weight Management, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA
- Division of Endocrinology, Diabetes and Metabolism, Joan and Sanford I. Weill Department of Medicine, New York, NY 10021, USA
| |
Collapse
|
4
|
Baugh ME, Ahrens ML, Hutelin Z, Stylianos C, Wohlers-Kariesch E, Oster ME, Dotson J, Moon J, Hanlon AL, DiFeliceantonio AG. Validity and reliability of a new whole room indirect calorimeter to assess metabolic response to small calorie loads. PLoS One 2024; 19:e0304030. [PMID: 38900814 PMCID: PMC11189231 DOI: 10.1371/journal.pone.0304030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 05/05/2024] [Indexed: 06/22/2024] Open
Abstract
We overview of our whole room indirect calorimeter (WRIC), demonstrate validity and reliability of our WRIC, and explore a novel application of Bayesian hierarchical modeling to assess responses to small carbohydrate loads. To assess WRIC validity seven gas infusion studies were performed using a gas blender and profiles designed to mimic resting and postprandial metabolic events. Sixteen participants underwent fasting and postprandial measurements, during which they consumed a 75-kcal drink containing sucrose, dextrose, or fructose in a crossover design. Linear mixed effects models were used to compare resting and postprandial metabolic rate (MR) and carbohydrate oxidation. Postprandial carbohydrate oxidation trajectories for each participant and condition were modeled using Bayesian Hierarchical Modeling. Mean total error in infusions were 1.27 ± 0.67% and 0.42 ± 0.70% for VO2 and VCO2 respectively, indicating a high level of validity. Mean resting MR was similar across conditions ([Formula: see text] = 1.05 ± 0.03 kcal/min, p = 0.82, ICC: 0.91). While MR increased similarly among all conditions (~13%, p = 0.29), postprandial carbohydrate oxidation parameters were significantly lower for dextrose compared with sucrose or fructose. We provide evidence validating our WRIC and a novel application of statistical methods useful for research using WRIC.
Collapse
Affiliation(s)
- Mary Elizabeth Baugh
- Fralin Biomedical Research Institute at VTC, Roanoke, Virginia, United States of America
- Center for Health Behaviors Research at Fralin Biomedical Research Institute at VTC, Roanoke, Virginia, United States of America
| | - Monica L. Ahrens
- Center for Biostatistics and Health Data Science, Department of Statistics, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Zach Hutelin
- Fralin Biomedical Research Institute at VTC, Roanoke, Virginia, United States of America
- Center for Health Behaviors Research at Fralin Biomedical Research Institute at VTC, Roanoke, Virginia, United States of America
- Translational Biology, Medicine, and Health, Fralin Biomedical Research Institute at VTC, Roanoke, Virginia, United States of America
| | - Charlie Stylianos
- Fralin Biomedical Research Institute at VTC, Roanoke, Virginia, United States of America
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, Virginia, United States of America
| | | | - Mary E. Oster
- Fralin Biomedical Research Institute at VTC, Roanoke, Virginia, United States of America
- Center for Health Behaviors Research at Fralin Biomedical Research Institute at VTC, Roanoke, Virginia, United States of America
| | - Jon Dotson
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Jon Moon
- MEI Research, Ltd, Edina, Minnesota, United States of America
| | - Alexandra L. Hanlon
- Center for Biostatistics and Health Data Science, Department of Statistics, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Alexandra G. DiFeliceantonio
- Fralin Biomedical Research Institute at VTC, Roanoke, Virginia, United States of America
- Center for Health Behaviors Research at Fralin Biomedical Research Institute at VTC, Roanoke, Virginia, United States of America
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, Virginia, United States of America
| |
Collapse
|
5
|
Forester BR, Zhang R, Schuhler B, Brostek A, Gonzalez-Vicente A, Garvin JL. Knocking Out Sodium Glucose-Linked Transporter 5 Prevents Fructose-Induced Renal Oxidative Stress and Salt-Sensitive Hypertension. Hypertension 2024; 81:1296-1307. [PMID: 38545789 PMCID: PMC11096007 DOI: 10.1161/hypertensionaha.123.22535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/05/2024] [Indexed: 05/18/2024]
Abstract
BACKGROUND A fructose high-salt (FHS) diet increases systolic blood pressure and Ang II (angiotensin II)-stimulated proximal tubule (PT) superoxide (O2-) production. These increases are prevented by scavenging O2- or an Ang II type 1 receptor antagonist. SGLT4 (sodium glucose-linked cotransporters 4) and SGLT5 are implicated in PT fructose reabsorption, but their roles in fructose-induced hypertension are unclear. We hypothesized that PT fructose reabsorption by SGLT5 initiates a genetic program enhancing Ang II-stimulated oxidative stress in males and females, thereby causing fructose-induced salt-sensitive hypertension. METHODS We measured systolic blood pressure in male and female Sprague-Dawley (wild type [WT]), SGLT4 knockout (-/-), and SGLT5-/- rats. Then, we measured basal and Ang II-stimulated (37 nmol/L) O2- production by PTs and conducted gene coexpression network analysis. RESULTS In male WT and female WT rats, FHS increased systolic blood pressure by 15±3 (n=7; P<0.0027) and 17±4 mm Hg (n=9; P<0.0037), respectively. Male and female SGLT4-/- had similar increases. Systolic blood pressure was unchanged by FHS in male and female SGLT5-/-. In male WT and female WT fed FHS, Ang II stimulated O2- production by 14±5 (n=6; P<0.0493) and 8±3 relative light units/µg protein/s (n=7; P<0.0218), respectively. The responses of SGTL4-/- were similar. Ang II did not stimulate O2- production in tubules from SGLT5-/-. Five gene coexpression modules were correlated with FHS. These correlations were completely blunted in SGLT5-/- and partially blunted by chronically scavenging O2- with tempol. CONCLUSIONS SGLT5-mediated PT fructose reabsorption is required for FHS to augment Ang II-stimulated proximal nephron O2- production, and increases in PT oxidative stress likely contribute to FHS-induced hypertension.
Collapse
Affiliation(s)
- Beau R. Forester
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Ronghao Zhang
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta. Georgia
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia
| | - Brett Schuhler
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Autumn Brostek
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Agustin Gonzalez-Vicente
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio
- Department of Kidney Medicine, Glickman Urological & Kidney Institute, Cleveland Clinic Cleveland, Ohio
| | - Jeffrey L. Garvin
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio
| |
Collapse
|
6
|
Fagundes RR, Belt SC, Bakker BM, Dijkstra G, Harmsen HJM, Faber KN. Beyond butyrate: microbial fiber metabolism supporting colonic epithelial homeostasis. Trends Microbiol 2024; 32:178-189. [PMID: 37596118 DOI: 10.1016/j.tim.2023.07.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/20/2023]
Abstract
Human gut bacteria produce metabolites that support energy and carbon metabolism of colonic epithelial cells. While butyrate is commonly considered the primary fuel, it alone cannot meet all the carbon requirements for cellular synthetic functions. Glucose, delivered via circulation or microbial metabolism, serves as a universal carbon source for synthetic processes like DNA, RNA, protein, and lipid production. Detailed knowledge of epithelial carbon and energy metabolism is particularly relevant for epithelial regeneration in digestive and metabolic diseases, such as inflammatory bowel disease and type 2 diabetes. Here, we review the production and role of different colonic microbial metabolites in energy and carbon metabolism of colonocytes, also critically evaluating the common perception that butyrate is the preferred fuel.
Collapse
Affiliation(s)
- Raphael R Fagundes
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Saskia C Belt
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Barbara M Bakker
- Laboratory of Pediatrics, Systems Medicine of Metabolism and Signaling, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Gerard Dijkstra
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Hermie J M Harmsen
- Department of Medical Microbiology and Infection prevention, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Klaas Nico Faber
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
7
|
Yamamoto K, Harada N, Yasuda T, Hatoko T, Wada N, Lu X, Seno Y, Kurihara T, Yamane S, Inagaki N. Intestinal Morphology and Glucose Transporter Gene Expression under a Chronic Intake of High Sucrose. Nutrients 2024; 16:196. [PMID: 38257088 PMCID: PMC10820040 DOI: 10.3390/nu16020196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 12/30/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Sucrose is a disaccharide that is degraded into fructose and glucose in the small intestine. High-sucrose and high-fructose diets have been reported, using two-dimensional imaging, to alter the intestinal morphology and the expression of genes associated with sugar transport, such as sodium glucose co-transporter 1 (SGLT1), glucose transporter 2 (GLUT2), and glucose transporter 5 (GLUT5). However, it remains unclear how high-fructose and high-sucrose diets affect the expression of sugar transporters and the intestinal morphology in the whole intestine. We investigate the influence of a chronic high-sucrose diet on the expression of the genes associated with sugar transport as well as its effects on the intestinal morphology using 3D imaging. High sucrose was found to increase GLUT2 and GLUT5 mRNA levels without significant changes in the intestinal morphology using 3D imaging. On the other hand, the delay in sucrose absorption by an α-glucosidase inhibitor significantly improved the intestinal morphology and the expression levels of SGLT1, GLUT2, and GLUT5 mRNA in the distal small intestine to levels similar to those in the proximal small intestine, thereby improving glycemic control after both glucose and sucrose loading. These results reveal the effects of chronic high-sugar exposure on glucose absorption and changes in the intestinal morphology.
Collapse
Affiliation(s)
- Kana Yamamoto
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Norio Harada
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Takuma Yasuda
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Tomonobu Hatoko
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Naoki Wada
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Xuejing Lu
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Youhei Seno
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Takashi Kurihara
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Shunsuke Yamane
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Nobuya Inagaki
- P.I.I.F. Tazuke-Kofukai Medical Research Institute, Kitano Hospital, Osaka 530-8480, Japan
| |
Collapse
|
8
|
Staltner R, Burger K, Baumann A, Bergheim I. Fructose: a modulator of intestinal barrier function and hepatic health? Eur J Nutr 2023; 62:3113-3124. [PMID: 37596353 PMCID: PMC10611622 DOI: 10.1007/s00394-023-03232-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/04/2023] [Indexed: 08/20/2023]
Abstract
PURPOSE Consumption of fructose has repeatedly been discussed to be a key factor in the development of health disturbances such as hypertension, diabetes type 2, and non-alcoholic fatty liver disease. Despite intense research efforts, the question if and how high dietary fructose intake interferes with human health has not yet been fully answered. RESULTS Studies suggest that besides its insulin-independent metabolism dietary fructose may also impact intestinal homeostasis and barrier function. Indeed, it has been suggested by the results of human and animal as well as in vitro studies that fructose enriched diets may alter intestinal microbiota composition. Furthermore, studies have also shown that both acute and chronic intake of fructose may lead to an increased formation of nitric oxide and a loss of tight junction proteins in small intestinal tissue. These alterations have been related to an increased translocation of pathogen-associated molecular patterns (PAMPs) like bacterial endotoxin and an induction of dependent signaling cascades in the liver but also other tissues. CONCLUSION In the present narrative review, results of studies assessing the effects of fructose on intestinal barrier function and their impact on the development of health disturbances with a particular focus on the liver are summarized and discussed.
Collapse
Affiliation(s)
- Raphaela Staltner
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Josef-Holaubek-Platz 2, A-1090, Vienna, Austria
| | - Katharina Burger
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Josef-Holaubek-Platz 2, A-1090, Vienna, Austria
| | - Anja Baumann
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Josef-Holaubek-Platz 2, A-1090, Vienna, Austria
| | - Ina Bergheim
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Josef-Holaubek-Platz 2, A-1090, Vienna, Austria.
| |
Collapse
|
9
|
Baugh ME, Ahrens ML, Hutelin Z, Stylianos C, Wohlers-Kariesch E, Oster ME, Dotson J, Moon J, Hanlon AL, DiFeliceantonio AG. Validity and reliability of a new whole room indirect calorimeter to assess metabolic response to small-calorie loads. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.21.558672. [PMID: 37790401 PMCID: PMC10542547 DOI: 10.1101/2023.09.21.558672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Objective To provide an overview of our whole room indirect calorimeter (WRIC), demonstrate validity and reliability of our WRIC, and explore a novel application of Bayesian hierarchical modeling to assess responses to small carbohydrate loads. Methods Seven gas infusion studies were performed using a gas blender and profiles designed to mimic resting and postprandial metabolic events to assess WRIC validity. In a crossover design, 16 participants underwent fasting and postprandial measurements, during which they consumed a 75-kcal drink containing sucrose, dextrose, or fructose. Linear mixed effects models were used to compare resting and postprandial metabolic rate (MR) and CO (CO). Bayesian Hierarchical Modeling was also used to model postprandial CO trajectories for each participant and condition. Results Mean total error in infusions were 1.27 ± 1.16% and 0.42 ± 1.21% for VO2 and VCO2 respectively, indicating a high level of validity. Mean resting MR was similar across conditions (x ¯ = 1.05 ± 0.03 kcal / min , p=0.82, ICC: 0.91). While MR increased similarly among all conditions (~13%, p=0.29), postprandial CO parameters were significantly lower for dextrose compared with sucrose or fructose. Conclusions Our WRIC validation and novel application of statistical methods presented here provide important foundations for new research directions using WRIC.
Collapse
Affiliation(s)
- Mary Elizabeth Baugh
- Fralin Biomedical Research Institute at VTC, Roanoke, VA
- Center for Health Behaviors Research at Fralin Biomedical Research Institute at VTC, Roanoke, VA
| | - Monica L. Ahrens
- Center for Biostatistics and Health Data Science, Department of Statistics, Blacksburg, VA
| | - Zach Hutelin
- Fralin Biomedical Research Institute at VTC, Roanoke, VA
- Center for Health Behaviors Research at Fralin Biomedical Research Institute at VTC, Roanoke, VA
- Translational Biology, Medicine, and Health, Fralin Biomedical Research Institute at VTC, Roanoke, VA
| | - Charlie Stylianos
- Fralin Biomedical Research Institute at VTC, Roanoke, VA
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA
| | | | - Mary E. Oster
- Fralin Biomedical Research Institute at VTC, Roanoke, VA
- Center for Health Behaviors Research at Fralin Biomedical Research Institute at VTC, Roanoke, VA
| | - Jon Dotson
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA
| | | | - Alexandra L. Hanlon
- Center for Biostatistics and Health Data Science, Department of Statistics, Blacksburg, VA
| | - Alexandra G. DiFeliceantonio
- Fralin Biomedical Research Institute at VTC, Roanoke, VA
- Center for Health Behaviors Research at Fralin Biomedical Research Institute at VTC, Roanoke, VA
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA
| |
Collapse
|
10
|
Sun B, Chen H, Xue J, Li P, Fu X. The role of GLUT2 in glucose metabolism in multiple organs and tissues. Mol Biol Rep 2023; 50:6963-6974. [PMID: 37358764 PMCID: PMC10374759 DOI: 10.1007/s11033-023-08535-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 05/17/2023] [Indexed: 06/27/2023]
Abstract
The glucose transporter family has an important role in the initial stage of glucose metabolism; Glucose transporters 2 (GLUTs, encoded by the solute carrier family 2, SLC2A genes) is the major glucose transporter in β-cells of pancreatic islets and hepatocytes but is also expressed in the small intestine, kidneys, and central nervous system; GLUT2 has a relatively low affinity to glucose. Under physiological conditions, GLUT2 transports glucose into cells and allows the glucose concentration to reach balance on the bilateral sides of the cellular membrane; Variation of GLUT2 is associated with various endocrine and metabolic disorders; In this study, we discussed the role of GLUT2 in participating in glucose metabolism and regulation in multiple organs and tissues and its effects on maintaining glucose homeostasis.
Collapse
Affiliation(s)
- Bo Sun
- Endorcrine and Metabolism Department, Lanzhou University Second Hospital, Lanzhou, 730000, China
- Department of Infantile Endocrine Genetic Metabolism, Gansu Maternal and child Health Care Hospital, Lanzhou, 730000, China
| | - Hui Chen
- Endorcrine and Metabolism Department, Lanzhou University Second Hospital, Lanzhou, 730000, China.
| | - Jisu Xue
- EndEnorcrine and Metabolism Department, Shenzhen Bao 'an People's Hospital (Group), Shenzhen, 518100, China
| | - Peiwu Li
- Key Laboratory of Emergency Medicine, Lanzhou University Second Hospital, Lanzhou, 730000, China
| | - Xu Fu
- Key Laboratory of Emergency Medicine, Lanzhou University Second Hospital, Lanzhou, 730000, China
| |
Collapse
|
11
|
Kawakami Y, Mazuka M, Yasuda A, Sato M, Hosaka T, Arai H. Acute effect of fructose, sucrose, and isomaltulose on uric acid metabolism in healthy participants. J Clin Biochem Nutr 2023; 72:61-67. [PMID: 36777082 PMCID: PMC9899922 DOI: 10.3164/jcbn.22-41] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/02/2022] [Indexed: 01/01/2023] Open
Abstract
Fructose is associated with hyperuricemia and gout development. Focusing on fructose and fructose-containing disaccharides, we investigated the effects of three different types of carbohydrates (fructose, sucrose, and isomaltulose) on uric acid metabolism and gene expression profiling in peripheral white blood cells. In a randomized crossover study, ten healthy participants ingested test drinks of fructose, sucrose, and isomaltulose, each containing 25 g of fructose. Plasma glucose, serum and urine uric acid, and xanthine/hypoxanthine concentrations were measured. Microarray analysis in peripheral white blood cells and real-time reverse transcription polymerase chain reaction were examined at 0 and 120 in after the intake of test drinks. Serum uric acid concentrations for group fructose were significantly higher than group sucrose at 30-120 min and were significantly higher than those for group isomaltulose at 30-240 min. Several genes involved in the "nuclear factor-kappa B signaling pathway" were markedly changed in group fructose. No significant differences in the mRNA expression levels of tumor necrosis factor, nuclear factor-kappa B, interleukin-1β, and interleukin-18 were noted. This study indicated that fructose intake (monosaccharide) elevated serum uric acid concentrations compared with disaccharide intake. Differences in the quality of carbohydrates might reduce the rapid increase of postprandial serum uric acid concentrations.
Collapse
Affiliation(s)
- Yuka Kawakami
- Laboratory of Clinical Nutrition and Management, Graduate Division of Nutritional and Environmental Sciences, and Graduate School of Integrated Pharmaceutical and Nutritional Sciences, The University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Megumi Mazuka
- Laboratory of Clinical Nutrition and Management, Graduate Division of Nutritional and Environmental Sciences, and Graduate School of Integrated Pharmaceutical and Nutritional Sciences, The University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Arisa Yasuda
- Laboratory of Clinical Nutrition and Management, Graduate Division of Nutritional and Environmental Sciences, and Graduate School of Integrated Pharmaceutical and Nutritional Sciences, The University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Megumi Sato
- Laboratory of Clinical Nutrition and Management, Graduate Division of Nutritional and Environmental Sciences, and Graduate School of Integrated Pharmaceutical and Nutritional Sciences, The University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Toshio Hosaka
- Laboratory of Clinical Nutrition, Graduate Division of Nutritional and Environmental Sciences, and Graduate School of Integrated Pharmaceutical and Nutritional Sciences, The University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Hidekazu Arai
- Laboratory of Clinical Nutrition and Management, Graduate Division of Nutritional and Environmental Sciences, and Graduate School of Integrated Pharmaceutical and Nutritional Sciences, The University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan,To whom correspondence should be addressed. E-mail:
| |
Collapse
|
12
|
Genetic and environmental circadian disruption induce weight gain through changes in the gut microbiome. Mol Metab 2022; 66:101628. [PMID: 36334897 PMCID: PMC9672454 DOI: 10.1016/j.molmet.2022.101628] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/29/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022] Open
Abstract
OBJECTIVE Internal clocks time behavior and physiology, including the gut microbiome, in a circadian (∼24 h) manner. Mismatch between internal and external time, e.g. during shift work, disrupts circadian system coordination promoting the development of obesity and type 2 diabetes (T2D). Conversely, body weight changes induce microbiota dysbiosis. The relationship between circadian disruption and microbiota dysbiosis in metabolic diseases, however, remains largely unknown. METHODS Core and accessory clock gene expression in different gastrointestinal (GI) tissues were determined by qPCR in two different models of circadian disruption - mice with Bmal1 deficiency in the circadian pacemaker, the suprachiasmatic nucleus (Bmal1SCNfl/-), and wild-type mice exposed to simulated shift work (SSW). Body composition and energy balance were evaluated by nuclear magnetic resonance (NMR), bomb calorimetry, food intake and running-wheel activity. Intestinal permeability was measured in an Ussing chamber. Microbiota composition and functionality were evaluated by 16S rRNA gene amplicon sequencing, PICRUST2.0 analysis and targeted metabolomics. Finally, microbiota transfer was conducted to evaluate the functional impact of SSW-associated microbiota on the host's physiology. RESULTS Both chronodisruption models show desynchronization within and between peripheral clocks in GI tissues and reduced microbial rhythmicity, in particular in taxa involved in short-chain fatty acid (SCFA) fermentation and lipid metabolism. In Bmal1SCNfl/- mice, loss of rhythmicity in microbial functioning associates with previously shown increased body weight, dysfunctional glucose homeostasis and adiposity. Similarly, we observe an increase in body weight in SSW mice. Germ-free colonization experiments with SSW-associated microbiota mechanistically link body weight gain to microbial changes. Moreover, alterations in expression of peripheral clock genes as well as clock-controlled genes (CCGs) relevant for metabolic functioning of the host were observed in recipients, indicating a bidirectional relationship between microbiota rhythmicity and peripheral clock regulation. CONCLUSIONS Collectively, our data suggest that loss of rhythmicity in bacteria taxa and their products, which likely originates in desynchronization of intestinal clocks, promotes metabolic abnormalities during shift work.
Collapse
|
13
|
Abstract
The consumption of fructose as sugar and high-fructose corn syrup has markedly increased during the past several decades. This trend coincides with the exponential rise of metabolic diseases, including obesity, nonalcoholic fatty liver disease, cardiovascular disease, and diabetes. While the biochemical pathways of fructose metabolism were elucidated in the early 1990s, organismal-level fructose metabolism and its whole-body pathophysiological impacts have been only recently investigated. In this review, we discuss the history of fructose consumption, biochemical and molecular pathways involved in fructose metabolism in different organs and gut microbiota, the role of fructose in the pathogenesis of metabolic diseases, and the remaining questions to treat such diseases.
Collapse
Affiliation(s)
- Sunhee Jung
- Department of Biological Chemistry, University of California, Irvine, California, USA
| | - Hosung Bae
- Department of Biological Chemistry, University of California, Irvine, California, USA
| | - Won-Suk Song
- Department of Biological Chemistry, University of California, Irvine, California, USA;,Institute of Bioengineering, Bio-MAX, Seoul National University, Seoul, South Korea
| | - Cholsoon Jang
- Department of Biological Chemistry, University of California, Irvine, California, USA;,Chao Family Comprehensive Cancer Center, University of California, Irvine, California, USA,Center for Complex Biological Systems, University of California, Irvine, California, USA,Center for Epigenetics and Metabolism, University of California, Irvine, California, USA
| |
Collapse
|
14
|
Peixoto JAB, Andrade N, Machado S, Costa ASG, Puga H, Oliveira MBPP, Martel F, Alves RC. Valorizing Coffee Silverskin Based on Its Phytochemicals and Antidiabetic Potential: From Lab to a Pilot Scale. Foods 2022; 11:1671. [PMID: 35741869 PMCID: PMC9222947 DOI: 10.3390/foods11121671] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/30/2022] [Accepted: 06/05/2022] [Indexed: 01/25/2023] Open
Abstract
This study investigates the possibility of valorizing coffee silverskin through the recovery of its bioactive compounds using a sustainable extraction method that could be industrially applied. For that, aqueous extracts were prepared using ultrasonic-assisted extraction (laboratorial scale) and, for comparison, a scale-up of the process was developed using the Multi-frequency Multimode Modulated technology. A concentration procedure at the pilot scale was also tested. The three types of extracts obtained were characterized regarding caffeine and chlorogenic acids contents, and the effects on intestinal glucose and fructose uptake (including sugar transporters expression) in human intestinal epithelial (Caco-2) cells were ascertained. The phytochemical contents of the extracts prepared at the laboratory and pilot scale were comparable (caffeine: 27.7 vs. 29.6 mg/g freeze-dried extract; 3-, 4-, and 5-caffeoylquinic acids: 0.19 vs. 0.31, 0.15 vs. 0.42, and 1.04 vs. 1.98 mg/g, respectively; 4- and 5- feruloylquinic acids: 0.39 vs. 0.43 and 1.05 vs. 1.32 mg/g, respectively). Slight differences were noticed according to the extracts preparation steps, but in general, all the extracts promoted significant inhibitions of [1,2-3H(N)]-deoxy-D-glucose and 14C-D-fructose uptake, which resulted mainly from a decrease on the facilitative glucose transporter 2 (GLUT2) and sodium-glucose linked transporter 1 (SGLT1) genes expression but not on the expression of the facilitative glucose transporter 5 (GLUT5) gene. Moreover, a synergistic effect of caffeine and 5-caffeoylquinic acid on sugars uptake was found. The results clearly show that the Multi-frequency Multimode Modulated technology is a viable option to be applied at an industrial level to recover bioactive components from silverskin and obtain extracts with antidiabetic potential that could be used to develop functional food products or dietary supplements.
Collapse
Affiliation(s)
- Juliana A. Barreto Peixoto
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira, 4050-313 Porto, Portugal; (J.A.B.P.); (N.A.); (S.M.); (A.S.G.C.); (M.B.P.P.O.)
| | - Nelson Andrade
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira, 4050-313 Porto, Portugal; (J.A.B.P.); (N.A.); (S.M.); (A.S.G.C.); (M.B.P.P.O.)
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine, University of Porto, Al. Prof. Hernâni Monteiro, 4200-319 Porto, Portugal;
| | - Susana Machado
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira, 4050-313 Porto, Portugal; (J.A.B.P.); (N.A.); (S.M.); (A.S.G.C.); (M.B.P.P.O.)
| | - Anabela S. G. Costa
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira, 4050-313 Porto, Portugal; (J.A.B.P.); (N.A.); (S.M.); (A.S.G.C.); (M.B.P.P.O.)
| | - Helder Puga
- CMEMS-UMinho, Department of Mechanical Engineering, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal;
| | - Maria Beatriz P. P. Oliveira
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira, 4050-313 Porto, Portugal; (J.A.B.P.); (N.A.); (S.M.); (A.S.G.C.); (M.B.P.P.O.)
| | - Fátima Martel
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine, University of Porto, Al. Prof. Hernâni Monteiro, 4200-319 Porto, Portugal;
- Instituto de Investigação e Inovação em Saúde (I3S), University of Porto, R. Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Rita C. Alves
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira, 4050-313 Porto, Portugal; (J.A.B.P.); (N.A.); (S.M.); (A.S.G.C.); (M.B.P.P.O.)
| |
Collapse
|
15
|
Ma Y, Lee E, Yoshikawa H, Noda T, Miyamoto J, Kimura I, Hatano R, Miki T. Phloretin suppresses carbohydrate-induced GLP-1 secretion via inhibiting short chain fatty acid release from gut microbiome. Biochem Biophys Res Commun 2022; 621:176-182. [DOI: 10.1016/j.bbrc.2022.06.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 06/19/2022] [Accepted: 06/21/2022] [Indexed: 11/30/2022]
|
16
|
Alam YH, Kim R, Jang C. Metabolism and Health Impacts of Dietary Sugars. J Lipid Atheroscler 2022; 11:20-38. [PMID: 35118020 PMCID: PMC8792817 DOI: 10.12997/jla.2022.11.1.20] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/07/2022] [Accepted: 01/09/2022] [Indexed: 11/23/2022] Open
Abstract
Consumption of excessive amounts of added sugars and their effects on human health has been a major concern in the last several decades. Epidemiological data suggest that the incidence of metabolic disorders, such as obesity, nonalcoholic fatty liver disease, cardiovascular disease and diabetes, has increased due to chronic surplus consumption of these sugars. While many of these sugars have been isolated and studied for centuries, their health impacts and exact underlying mechanisms are still unclear. In this review, we discuss the pathophysiological role of 6 major simple sugars present in the human diet and the biochemical and molecular pathways related to their metabolism by different organs and gut microbiota, with a focus on the most recent investigations.
Collapse
Affiliation(s)
- Yasmine Henna Alam
- Department of Biological Chemistry, University of California Irvine, Irvine, CA, USA
| | - Raymond Kim
- Department of Biological Chemistry, University of California Irvine, Irvine, CA, USA
| | - Cholsoon Jang
- Department of Biological Chemistry, University of California Irvine, Irvine, CA, USA
- Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
- Center for Complex Biological Systems, University of California Irvine, Irvine, CA, USA
- Center for Epigenetics and Metabolism, University of California Irvine, Irvine, CA, USA
| |
Collapse
|
17
|
Roberts A, Phuah P, Cheng S, Murphy KG. Targeting Enteroendocrine Cells to Treat Metabolic Disease. COMPREHENSIVE PHARMACOLOGY 2022:344-372. [DOI: 10.1016/b978-0-12-820472-6.00068-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
18
|
Afshar N, Safaei S, Nickerson DP, Hunter PJ, Suresh V. Computational Modelling of Glucose Uptake by SGLT1 and Apical GLUT2 in the Enterocyte. Front Physiol 2021; 12:699152. [PMID: 34950044 PMCID: PMC8688934 DOI: 10.3389/fphys.2021.699152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 11/04/2021] [Indexed: 11/18/2022] Open
Abstract
It has been suggested that glucose absorption in the small intestine depends on both constitutively expressed SGLT1 and translocated GLUT2 in the brush border membrane, especially in the presence of high levels of luminal glucose. Here, we present a computational model of non-isotonic glucose uptake by small intestinal epithelial cells. The model incorporates apical uptake via SGLT1 and GLUT2, basolateral efflux into the blood via GLUT2, and cellular volume changes in response to non-isotonic conditions. The dependence of glucose absorption on luminal glucose, blood flow rate, and inlet blood glucose concentration is studied. Uptake via apical GLUT2 is found to be sensitive to all these factors. Under a range of conditions, the maximum apical GLUT2 flux is about half of the SGLT1 flux and is achieved at high luminal glucose (> 50 mM), high blood flow rates, and low inlet blood concentrations. In contrast, SGLT1 flux is less sensitive to these factors. When luminal glucose concentration is less than 10 mM, apical GLUT2 serves as an efflux pathway for glucose to move from the blood to the lumen. The model results indicate that translocation of GLUT2 from the basolateral to the apical membrane increases glucose uptake into the cell; however, the reduction of efflux capacity results in a decrease in net absorption. Recruitment of GLUT2 from a cytosolic pool elicits a 10–20% increase in absorption for luminal glucose levels in the a 20–100 mM range. Increased SGLT1 activity also leads to a roughly 20% increase in absorption. A concomitant increase in blood supply results in a larger increase in absorption. Increases in apical glucose transporter activity help to minimise cell volume changes by reducing the osmotic gradient between the cell and the lumen.
Collapse
Affiliation(s)
- Nima Afshar
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Soroush Safaei
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - David P Nickerson
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Peter J Hunter
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Vinod Suresh
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand.,Department of Engineering Science, University of Auckland, Auckland, New Zealand
| |
Collapse
|
19
|
Bordier V, Teysseire F, Schlotterbeck G, Senner F, Beglinger C, Meyer-Gerspach AC, Wölnerhanssen BK. Effect of a Chronic Intake of the Natural Sweeteners Xylitol and Erythritol on Glucose Absorption in Humans with Obesity. Nutrients 2021; 13:nu13113950. [PMID: 34836205 PMCID: PMC8618859 DOI: 10.3390/nu13113950] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 02/07/2023] Open
Abstract
In patients with obesity, accelerated nutrients absorption is observed. Xylitol and erythritol are of interest as alternative sweeteners, and it has been shown in rodent models that their acute ingestion reduces intestinal glucose absorption. This study aims to investigate whether a chronic intake of xylitol and erythritol impacts glucose absorption in humans with obesity. Forty-six participants were randomized to take either 8 g of xylitol or 12 g of erythritol three times a day for five to seven weeks, or to be part of the control group (no substance). Before and after the intervention, intestinal glucose absorption was assessed during an oral glucose tolerance test with 3-Ortho-methyl-glucose (3-OMG). The effect of xylitol or erythritol intake on the area under the curve for 3-OMG concentration was not significant. Neither the time (pre or post intervention), nor the group (control, xylitol, or erythritol), nor the time-by-group interaction effects were significant (p = 0.829, p = 0.821, and p = 0.572, respectively). Therefore, our results show that a chronic intake of the natural sweeteners xylitol and erythritol does not affect intestinal glucose absorption in humans with obesity.
Collapse
Affiliation(s)
- Valentine Bordier
- St. Clara Research Ltd. at St. Claraspital, 4002 Basel, Switzerland; (V.B.); (F.T.); (C.B.)
- Faculty of Medicine, University of Basel, 4001 Basel, Switzerland
| | - Fabienne Teysseire
- St. Clara Research Ltd. at St. Claraspital, 4002 Basel, Switzerland; (V.B.); (F.T.); (C.B.)
- Faculty of Medicine, University of Basel, 4001 Basel, Switzerland
| | - Götz Schlotterbeck
- Institute for Chemistry and Bioanalytics, School of Life Science, FHNW University of Applied Sciences and Arts Northwestern Switzerland, 4132 Muttenz, Switzerland; (G.S.); (F.S.)
| | - Frank Senner
- Institute for Chemistry and Bioanalytics, School of Life Science, FHNW University of Applied Sciences and Arts Northwestern Switzerland, 4132 Muttenz, Switzerland; (G.S.); (F.S.)
| | - Christoph Beglinger
- St. Clara Research Ltd. at St. Claraspital, 4002 Basel, Switzerland; (V.B.); (F.T.); (C.B.)
- Faculty of Medicine, University of Basel, 4001 Basel, Switzerland
| | - Anne Christin Meyer-Gerspach
- St. Clara Research Ltd. at St. Claraspital, 4002 Basel, Switzerland; (V.B.); (F.T.); (C.B.)
- Faculty of Medicine, University of Basel, 4001 Basel, Switzerland
- Correspondence: (A.C.M.-G.); (B.K.W.); Tel.: +41-61-685-85-85 (A.C.M.-G. & B.K.W.)
| | - Bettina K. Wölnerhanssen
- St. Clara Research Ltd. at St. Claraspital, 4002 Basel, Switzerland; (V.B.); (F.T.); (C.B.)
- Faculty of Medicine, University of Basel, 4001 Basel, Switzerland
- Correspondence: (A.C.M.-G.); (B.K.W.); Tel.: +41-61-685-85-85 (A.C.M.-G. & B.K.W.)
| |
Collapse
|
20
|
Satsu H, Shibata R, Suzuki H, Kimura S, Shimizu M. Inhibitory Effect of Tangeretin and Cardamonin on Human Intestinal SGLT1 Activity In Vitro and Blood Glucose Levels in Mice In Vivo. Nutrients 2021; 13:3382. [PMID: 34684383 PMCID: PMC8539283 DOI: 10.3390/nu13103382] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 01/19/2023] Open
Abstract
Rapid postprandial blood glucose elevation can cause lifestyle-related diseases, such as type II diabetes. The absorption of food-derived glucose is primarily mediated by sodium/glucose cotransporter 1 (SGLT1). Moderate SGLT1 inhibition can help attenuate postprandial blood glucose elevation and prevent lifestyle-related diseases. In this study, we established a CHO cell line stably expressing human SGLT1 and examined the effects of phytochemicals on SGLT1 activity. Among the 50 phytochemicals assessed, tangeretin and cardamonin inhibited SGLT1 activity. Tangeretin and cardamonin did not affect the uptake of L-leucine, L-glutamate, and glycyl-sarcosine. Tangeretin, but not cardamonin, inhibited fructose uptake, suggesting that the inhibitory effect of tangeretin was specific to the monosaccharide transporter, whereas that of cardamonin was specific to SGLT1. Kinetic analysis suggested that the suppression of SGLT1 activity by tangeretin was associated with a reduction in Vmax and an increase in Km, whereas suppression by cardamonin was associated with a reduction in Vmax and no change in Km. Oral glucose tolerance tests in mice showed that tangeretin and cardamonin significantly suppressed the rapid increase in blood glucose levels. In conclusion, tangeretin and cardamonin were shown to inhibit SGLT1 activity in vitro and lower blood glucose level in vivo.
Collapse
Affiliation(s)
- Hideo Satsu
- Department of Biotechnology, Faculty of Engineering, Maebashi Institute of Technology, Gunma 371-0816, Japan; (H.S.); (S.K.)
| | - Ryosuke Shibata
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan;
| | - Hiroto Suzuki
- Department of Biotechnology, Faculty of Engineering, Maebashi Institute of Technology, Gunma 371-0816, Japan; (H.S.); (S.K.)
| | - Shimon Kimura
- Department of Biotechnology, Faculty of Engineering, Maebashi Institute of Technology, Gunma 371-0816, Japan; (H.S.); (S.K.)
| | - Makoto Shimizu
- Department of Nutritional Science, Tokyo University of Agriculture, Tokyo 156-8502, Japan;
| |
Collapse
|
21
|
Mechanisms of Glucose Absorption in the Small Intestine in Health and Metabolic Diseases and Their Role in Appetite Regulation. Nutrients 2021; 13:nu13072474. [PMID: 34371983 PMCID: PMC8308647 DOI: 10.3390/nu13072474] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/13/2021] [Accepted: 07/16/2021] [Indexed: 12/11/2022] Open
Abstract
The worldwide prevalence of metabolic diseases such as obesity, metabolic syndrome and type 2 diabetes shows an upward trend in recent decades. A characteristic feature of these diseases is hyperglycemia which can be associated with hyperphagia. Absorption of glucose in the small intestine physiologically contributes to the regulation of blood glucose levels, and hence, appears as a putative target for treatment of hyperglycemia. In fact, recent progress in understanding the molecular and cellular mechanisms of glucose absorption in the gut and its reabsorption in the kidney helped to develop a new strategy of diabetes treatment. Changes in blood glucose levels are also involved in regulation of appetite, suggesting that glucose absorption may be relevant to hyperphagia in metabolic diseases. In this review we discuss the mechanisms of glucose absorption in the small intestine in physiological conditions and their alterations in metabolic diseases as well as their relevance to the regulation of appetite. The key role of SGLT1 transporter in intestinal glucose absorption in both physiological conditions and in diabetes was clearly established. We conclude that although inhibition of small intestinal glucose absorption represents a valuable target for the treatment of hyperglycemia, it is not always suitable for the treatment of hyperphagia. In fact, independent regulation of glucose absorption and appetite requires a more complex approach for the treatment of metabolic diseases.
Collapse
|
22
|
Staubach P, Koch AK, Langhorst J, Schreiber S, Röcken C, Helwig U. Expression of the fructose transporter GLUT5 in patients with fructose malabsorption. ZEITSCHRIFT FUR GASTROENTEROLOGIE 2021; 59:531-539. [PMID: 34130330 DOI: 10.1055/a-1156-4386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
BACKGROUND Patients with abdominal symptoms are frequently diagnosed with fructose malabsorption (FM). Fructose is absorbed by monosaccharide transporters located in the brush border of the human small intestine. The aim of this study was to investigate the histoanatomical distribution of the main fructose transporter GLUT5. MATERIALS AND METHODS We studied 223 patients diagnosed with FM by a hydrogen breath test and grouped according to their response to a fructose-free diet. The control group were 42 healthy individuals and 29 patients with celiac disease (CD). The fructose breath test was done with 50 g fructose. The expression of Glut5 in duodenal biopsy specimens was studied by immunohistochemistry. The Kruskal-Wallis-test and Mann-Whitney U-test were used to carry out the statistical analysis. RESULTS The histoanatomical expression pattern of GLUT5 did not differ significantly between those patients with FM who responded completely to a fructose-free diet (n = 183) and healthy individuals (n = 42); nor did it correlate to H2 production measured in fructose breath testing. In patients with FM, the GLUT5 expression pattern did not differ between those individuals responding to a fructose-free diet and those who did not. However, GLUT5 expression pattern was significantly different in patients with CD (n = 29) compared to patients with FM and to healthy individuals (p = 0.009). CONCLUSION GLUT5 expression patterns are not be related to adult patients with FM. However, in secondary malabsorption, a decreased GLUT5 expression was found. Further investigation is needed to understand the essential factors in FM and the influence on functional gastrointestinal disorders.
Collapse
Affiliation(s)
- Pia Staubach
- Department of Pathology, Christian-Albrechts-University Kiel, Germany
| | - Anna Katharina Koch
- Department of Internal and Integrative Medicine, Kliniken Essen-Mitte, University of Duisburg-Essen, Germany
| | - Jost Langhorst
- Department of Internal and Integrative Medicine, Kliniken Essen-Mitte, University of Duisburg-Essen, Germany
| | - Stefan Schreiber
- Department of Internal Medicine, Christian-Albrechts-University Kiel, Germany
| | - Christoph Röcken
- Department of Pathology, Christian-Albrechts-University Kiel, Germany
| | - Ulf Helwig
- Specialist Practice for Internal Medicine, Oldenburg, Oldenburg Germany.,Department of Internal Medicine, Christian-Albrechts-University Kiel, Germany
| |
Collapse
|
23
|
Federico A, Rosato V, Masarone M, Torre P, Dallio M, Romeo M, Persico M. The Role of Fructose in Non-Alcoholic Steatohepatitis: Old Relationship and New Insights. Nutrients 2021; 13:1314. [PMID: 33923525 PMCID: PMC8074203 DOI: 10.3390/nu13041314] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 12/22/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) represents the result of hepatic fat overload not due to alcohol consumption and potentially evolving to advanced fibrosis, cirrhosis, and hepatocellular carcinoma. Fructose is a naturally occurring simple sugar widely used in food industry linked to glucose to form sucrose, largely contained in hypercaloric food and beverages. An increasing amount of evidence in scientific literature highlighted a detrimental effect of dietary fructose consumption on metabolic disorders such as insulin resistance, obesity, hepatic steatosis, and NAFLD-related fibrosis as well. An excessive fructose consumption has been associated with NAFLD development and progression to more clinically severe phenotypes by exerting various toxic effects, including increased fatty acid production, oxidative stress, and worsening insulin resistance. Furthermore, some studies in this context demonstrated even a crucial role in liver cancer progression. Despite this compelling evidence, the molecular mechanisms by which fructose elicits those effects on liver metabolism remain unclear. Emerging data suggest that dietary fructose may directly alter the expression of genes involved in lipid metabolism, including those that increase hepatic fat accumulation or reduce hepatic fat removal. This review aimed to summarize the current understanding of fructose metabolism on NAFLD pathogenesis and progression.
Collapse
Affiliation(s)
- Alessandro Federico
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (M.D.); (M.R.)
| | - Valerio Rosato
- Internal Medicine and Hepatology Division, Department of Medicine, Surgery and Odontostomatology, “Scuola Medica Salernitana”, University of Salerno, 84084 Salerno, Italy; (V.R.); (M.M.); (P.T.); (M.P.)
- Liver Unit, Ospedale Evangelico Betania, 80147 Naples, Italy
| | - Mario Masarone
- Internal Medicine and Hepatology Division, Department of Medicine, Surgery and Odontostomatology, “Scuola Medica Salernitana”, University of Salerno, 84084 Salerno, Italy; (V.R.); (M.M.); (P.T.); (M.P.)
| | - Pietro Torre
- Internal Medicine and Hepatology Division, Department of Medicine, Surgery and Odontostomatology, “Scuola Medica Salernitana”, University of Salerno, 84084 Salerno, Italy; (V.R.); (M.M.); (P.T.); (M.P.)
| | - Marcello Dallio
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (M.D.); (M.R.)
| | - Mario Romeo
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (M.D.); (M.R.)
| | - Marcello Persico
- Internal Medicine and Hepatology Division, Department of Medicine, Surgery and Odontostomatology, “Scuola Medica Salernitana”, University of Salerno, 84084 Salerno, Italy; (V.R.); (M.M.); (P.T.); (M.P.)
| |
Collapse
|
24
|
Liang RJ, Taylor S, Nahiyaan N, Song J, Murphy CJ, Dantas E, Cheng S, Hsu TW, Ramsamooj S, Grover R, Hwang SK, Ngo B, Cantley LC, Rhee KY, Goncalves MD. GLUT5 (SLC2A5) enables fructose-mediated proliferation independent of ketohexokinase. Cancer Metab 2021; 9:12. [PMID: 33762003 PMCID: PMC7992954 DOI: 10.1186/s40170-021-00246-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 02/08/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Fructose is an abundant source of carbon and energy for cells to use for metabolism, but only certain cell types use fructose to proliferate. Tumor cells that acquire the ability to metabolize fructose have a fitness advantage over their neighboring cells, but the proteins that mediate fructose metabolism in this context are unknown. Here, we investigated the determinants of fructose-mediated cell proliferation. METHODS Live cell imaging and crystal violet assays were used to characterize the ability of several cell lines (RKO, H508, HepG2, Huh7, HEK293T (293T), A172, U118-MG, U87, MCF-7, MDA-MB-468, PC3, DLD1 HCT116, and 22RV1) to proliferate in fructose (i.e., the fructolytic ability). Fructose metabolism gene expression was determined by RT-qPCR and western blot for each cell line. A positive selection approach was used to "train" non-fructolytic PC3 cells to utilize fructose for proliferation. RNA-seq was performed on parental and trained PC3 cells to find key transcripts associated with fructolytic ability. A CRISPR-cas9 plasmid containing KHK-specific sgRNA was transfected in 293T cells to generate KHK-/- cells. Lentiviral transduction was used to overexpress empty vector, KHK, or GLUT5 in cells. Metabolic profiling was done with seahorse metabolic flux analysis as well as LC/MS metabolomics. Cell Titer Glo was used to determine cell sensitivity to 2-deoxyglucose in media containing either fructose or glucose. RESULTS We found that neither the tissue of origin nor expression level of any single gene related to fructose catabolism determine the fructolytic ability. However, cells cultured chronically in fructose can develop fructolytic ability. SLC2A5, encoding the fructose transporter, GLUT5, was specifically upregulated in these cells. Overexpression of GLUT5 in non-fructolytic cells enabled growth in fructose-containing media across cells of different origins. GLUT5 permitted fructose to flux through glycolysis using hexokinase (HK) and not ketohexokinase (KHK). CONCLUSIONS We show that GLUT5 is a robust and generalizable driver of fructose-dependent cell proliferation. This indicates that fructose uptake is the limiting factor for fructose-mediated cell proliferation. We further demonstrate that cellular proliferation with fructose is independent of KHK.
Collapse
Affiliation(s)
- Roger J Liang
- Division of Endocrinology, Weill Department of Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
- Meyer Cancer Center, Department of Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Samuel Taylor
- Division of Endocrinology, Weill Department of Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
- Meyer Cancer Center, Department of Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, 10065, USA
- Weill Cornell/Rockefeller/Sloan Kettering Tri-I MD-PhD program, New York, NY, 10065, USA
| | - Navid Nahiyaan
- Division of Infectious Diseases, Weill Department of Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Junho Song
- Meyer Cancer Center, Department of Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Charles J Murphy
- Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Ezequiel Dantas
- Division of Endocrinology, Weill Department of Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Shuyuan Cheng
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Ting-Wei Hsu
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Shakti Ramsamooj
- Division of Endocrinology, Weill Department of Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
- Meyer Cancer Center, Department of Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Rahul Grover
- Weill Cornell Medical College, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Seo-Kyoung Hwang
- Division of Endocrinology, Weill Department of Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
- Meyer Cancer Center, Department of Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Bryan Ngo
- Meyer Cancer Center, Department of Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Lewis C Cantley
- Meyer Cancer Center, Department of Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Kyu Y Rhee
- Division of Infectious Diseases, Weill Department of Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Marcus D Goncalves
- Division of Endocrinology, Weill Department of Medicine, Weill Cornell Medicine, New York, NY, 10065, USA.
- Meyer Cancer Center, Department of Medicine, Weill Cornell Medicine, New York, NY, 10065, USA.
| |
Collapse
|
25
|
Altered intestinal epithelial nutrient transport: an underappreciated factor in obesity modulated by diet and microbiota. Biochem J 2021; 478:975-995. [PMID: 33661278 DOI: 10.1042/bcj20200902] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/03/2021] [Accepted: 02/05/2021] [Indexed: 12/31/2022]
Abstract
Dietary nutrients absorbed in the proximal small intestine and assimilated in different tissues have a profound effect on overall energy homeostasis, determined by a balance between body's energy intake and expenditure. In obesity, altered intestinal absorption and consequently tissue assimilation of nutrients may disturb the energy balance leading to metabolic abnormalities at the cellular level. The absorption of nutrients such as sugars, amino acids and fatty acids released from food digestion require high-capacity transporter proteins expressed in the intestinal epithelial absorptive cells. Furthermore, nutrient sensing by specific transporters/receptors expressed in the epithelial enteroendocrine cells triggers release of gut hormones involved in regulating energy homeostasis via their effects on appetite and food intake. Therefore, the intestinal epithelial cells play a pivotal role in the pathophysiology of obesity and associated complications. Over the past decade, gut microbiota has emerged as a key factor contributing to obesity via its effects on digestion and absorption of nutrients in the small intestine, and energy harvest from dietary fiber, undigested component of food, in the large intestine. Various mechanisms of microbiota effects on obesity have been implicated. However, the impact of obesity-associated microbiota on the intestinal nutrient transporters needs extensive investigation. This review marshals the limited studies addressing the altered structure and function of the gut epithelium in obesity with special emphasis on nutrient transporters and role of diet and microbiota. The review also discusses the thoughts and controversies and research gaps in this field.
Collapse
|
26
|
Primec M, Škorjanc D, Langerholc T, Mičetić-Turk D, Gorenjak M. Specific Lactobacillus probiotic strains decrease transepithelial glucose transport through GLUT2 downregulation in intestinal epithelial cell models. Nutr Res 2021; 86:10-22. [DOI: 10.1016/j.nutres.2020.11.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 10/20/2020] [Accepted: 11/15/2020] [Indexed: 12/19/2022]
|
27
|
Fagundes RR, Bourgonje AR, Saeed A, Vich Vila A, Plomp N, Blokzijl T, Sadaghian Sadabad M, von Martels JZH, van Leeuwen SS, Weersma RK, Dijkstra G, Harmsen HJM, Faber KN. Inulin-grown Faecalibacterium prausnitzii cross-feeds fructose to the human intestinal epithelium. Gut Microbes 2021; 13:1993582. [PMID: 34793284 PMCID: PMC8604389 DOI: 10.1080/19490976.2021.1993582] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/08/2021] [Accepted: 10/06/2021] [Indexed: 02/04/2023] Open
Abstract
Many chronic diseases are associated with decreased abundance of the gut commensal Faecalibacterium prausnitzii. This strict anaerobe can grow on dietary fibers, e.g., prebiotics, and produce high levels of butyrate, often associated to epithelial metabolism and health. However, little is known about other F. prausnitzii metabolites that may affect the colonic epithelium. Here, we analyzed prebiotic cross-feeding between F. prausnitzii and intestinal epithelial (Caco-2) cells in a "Human-oxygen Bacteria-anaerobic" coculture system. Inulin-grown F. prausnitzii enhanced Caco-2 viability and suppressed inflammation- and oxidative stress-marker expression. Inulin-grown F. prausnitzii produced excess butyrate and fructose, but only fructose efficiently promoted Caco-2 growth. Finally, fecal microbial taxonomy analysis (16S sequencing) from healthy volunteers (n = 255) showed the strongest positive correlation for F. prausnitzii abundance and stool fructose levels. We show that fructose, produced and accumulated in a fiber-rich colonic environment, supports colonic epithelium growth, while butyrate does not.
Collapse
Affiliation(s)
- Raphael R. Fagundes
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Arno R. Bourgonje
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Ali Saeed
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Institute of Molecular Biology & Biotechnology, Bahauddin Zakariya University, Multan, Pakistan
| | - Arnau Vich Vila
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Niels Plomp
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Tjasso Blokzijl
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Mehdi Sadaghian Sadabad
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Julius Z. H. von Martels
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Sander S. van Leeuwen
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Rinse K. Weersma
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Gerard Dijkstra
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Hermie J. M. Harmsen
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Klaas Nico Faber
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
28
|
Gonçalves AS, Andrade N, Martel F. Intestinal fructose absorption: Modulation and relation to human diseases. PHARMANUTRITION 2020. [DOI: 10.1016/j.phanu.2020.100235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
29
|
Skenderian S, Park G, Jang C. Organismal Fructose Metabolism in Health and Non-Alcoholic Fatty Liver Disease. BIOLOGY 2020; 9:E405. [PMID: 33218081 PMCID: PMC7698815 DOI: 10.3390/biology9110405] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 02/07/2023]
Abstract
NAFLD has alarmingly increased, yet FDA-approved drugs are still lacking. An excessive intake of fructose, especially in liquid form, is a dietary risk factor of NAFLD. While fructose metabolism has been studied for decades, it is still controversial how fructose intake can cause NAFLD. It has long been believed that fructose metabolism solely happens in the liver and accordingly, numerous studies have investigated liver fructose metabolism using primary hepatocytes or liver cell lines in culture. While cultured cells are useful for studying detailed signaling pathways and metabolism in a cell-autonomous manner, it is equally important to understand fructose metabolism at the whole-body level in live organisms. In this regard, recent in vivo studies using genetically modified mice and stable isotope tracing have tremendously expanded our understanding of the complex interaction between fructose-catabolizing organs and gut microbiota. Here, we discuss how the aberrant distribution of fructose metabolism between organs and gut microbiota can contribute to NAFLD. We also address potential therapeutic interventions of fructose-elicited NAFLD.
Collapse
Affiliation(s)
- Shea Skenderian
- Department of Molecular & Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA;
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA;
| | - Grace Park
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA;
| | - Cholsoon Jang
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA;
| |
Collapse
|
30
|
van der Lugt T, Opperhuizen A, Bast A, Vrolijk MF. Dietary Advanced Glycation Endproducts and the Gastrointestinal Tract. Nutrients 2020; 12:nu12092814. [PMID: 32937858 PMCID: PMC7551018 DOI: 10.3390/nu12092814] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 12/19/2022] Open
Abstract
The prevalence of inflammatory bowel diseases (IBD) is increasing in the world. The introduction of the Western diet has been suggested as a potential explanation of increased prevalence. The Western diet includes highly processed food products, and often include thermal treatment. During thermal treatment, the Maillard reaction can occur, leading to the formation of dietary advanced glycation endproducts (dAGEs). In this review, different biological effects of dAGEs are discussed, including their digestion, absorption, formation, and degradation in the gastrointestinal tract, with an emphasis on their pro-inflammatory effects. In addition, potential mechanisms in the inflammatory effects of dAGEs are discussed. This review also specifically elaborates on the involvement of the effects of dAGEs in IBD and focuses on evidence regarding the involvement of dAGEs in the symptoms of IBD. Finally, knowledge gaps that still need to be filled are identified.
Collapse
Affiliation(s)
- Timme van der Lugt
- Department of Pharmacology and Toxicology, Maastricht University, 6229 ER Maastricht, The Netherlands;
- Office for Risk Assessment and Research, Netherlands Food and Consumer Product Safety Authority (NVWA), 3540 AA Utrecht, The Netherlands
- Correspondence:
| | - Antoon Opperhuizen
- Department of Pharmacology and Toxicology, Maastricht University, 6229 ER Maastricht, The Netherlands;
- Office for Risk Assessment and Research, Netherlands Food and Consumer Product Safety Authority (NVWA), 3540 AA Utrecht, The Netherlands
| | - Aalt Bast
- Department of Pharmacology and Toxicology, Maastricht University, 6229 ER Maastricht, The Netherlands;
- Campus Venlo, Maastricht University, 5911 BV Venlo, The Netherlands; (A.B.); (M.F.V.)
| | - Misha F. Vrolijk
- Campus Venlo, Maastricht University, 5911 BV Venlo, The Netherlands; (A.B.); (M.F.V.)
| |
Collapse
|
31
|
Koepsell H. Glucose transporters in the small intestine in health and disease. Pflugers Arch 2020; 472:1207-1248. [PMID: 32829466 PMCID: PMC7462918 DOI: 10.1007/s00424-020-02439-5] [Citation(s) in RCA: 158] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 07/11/2020] [Accepted: 07/17/2020] [Indexed: 12/23/2022]
Abstract
Absorption of monosaccharides is mainly mediated by Na+-D-glucose cotransporter SGLT1 and the facititative transporters GLUT2 and GLUT5. SGLT1 and GLUT2 are relevant for absorption of D-glucose and D-galactose while GLUT5 is relevant for D-fructose absorption. SGLT1 and GLUT5 are constantly localized in the brush border membrane (BBM) of enterocytes, whereas GLUT2 is localized in the basolateral membrane (BLM) or the BBM plus BLM at low and high luminal D-glucose concentrations, respectively. At high luminal D-glucose, the abundance SGLT1 in the BBM is increased. Hence, D-glucose absorption at low luminal glucose is mediated via SGLT1 in the BBM and GLUT2 in the BLM whereas high-capacity D-glucose absorption at high luminal glucose is mediated by SGLT1 plus GLUT2 in the BBM and GLUT2 in the BLM. The review describes functions and regulations of SGLT1, GLUT2, and GLUT5 in the small intestine including diurnal variations and carbohydrate-dependent regulations. Also, the roles of SGLT1 and GLUT2 for secretion of enterohormones are discussed. Furthermore, diseases are described that are caused by malfunctions of small intestinal monosaccharide transporters, such as glucose-galactose malabsorption, Fanconi syndrome, and fructose intolerance. Moreover, it is reported how diabetes, small intestinal inflammation, parental nutrition, bariatric surgery, and metformin treatment affect expression of monosaccharide transporters in the small intestine. Finally, food components that decrease D-glucose absorption and drugs in development that inhibit or downregulate SGLT1 in the small intestine are compiled. Models for regulations and combined functions of glucose transporters, and for interplay between D-fructose transport and metabolism, are discussed.
Collapse
Affiliation(s)
- Hermann Koepsell
- Institute for Anatomy and Cell Biology, University of Würzburg, Koellikerstr 6, 97070, Würzburg, Germany.
| |
Collapse
|
32
|
Xie C, Jones KL, Rayner CK, Wu T. Enteroendocrine Hormone Secretion and Metabolic Control: Importance of the Region of the Gut Stimulation. Pharmaceutics 2020; 12:790. [PMID: 32825608 PMCID: PMC7559385 DOI: 10.3390/pharmaceutics12090790] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/19/2020] [Accepted: 08/19/2020] [Indexed: 12/11/2022] Open
Abstract
It is now widely appreciated that gastrointestinal function is central to the regulation of metabolic homeostasis. Following meal ingestion, the delivery of nutrients from the stomach into the small intestine (i.e., gastric emptying) is tightly controlled to optimise their subsequent digestion and absorption. The complex interaction of intraluminal nutrients (and other bioactive compounds, such as bile acids) with the small and large intestine induces the release of an array of gastrointestinal hormones from specialised enteroendocrine cells (EECs) distributed in various regions of the gut, which in turn to regulate gastric emptying, appetite and postprandial glucose metabolism. Stimulation of gastrointestinal hormone secretion, therefore, represents a promising strategy for the management of metabolic disorders, particularly obesity and type 2 diabetes mellitus (T2DM). That EECs are distributed distinctively between the proximal and distal gut suggests that the region of the gut exposed to intraluminal stimuli is of major relevance to the secretion profile of gastrointestinal hormones and associated metabolic responses. This review discusses the process of intestinal digestion and absorption and their impacts on the release of gastrointestinal hormones and the regulation of postprandial metabolism, with an emphasis on the differences between the proximal and distal gut, and implications for the management of obesity and T2DM.
Collapse
Affiliation(s)
- Cong Xie
- Adelaide Medical School and Centre of Research Excellence (CRE) in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide 5005, Australia; (C.X.); (K.L.J.); (C.K.R.)
| | - Karen L. Jones
- Adelaide Medical School and Centre of Research Excellence (CRE) in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide 5005, Australia; (C.X.); (K.L.J.); (C.K.R.)
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide 5005, Australia
| | - Christopher K. Rayner
- Adelaide Medical School and Centre of Research Excellence (CRE) in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide 5005, Australia; (C.X.); (K.L.J.); (C.K.R.)
- Department of Gastroenterology and Hepatology, Royal Adelaide Hospital, Adelaide 5005, Australia
| | - Tongzhi Wu
- Adelaide Medical School and Centre of Research Excellence (CRE) in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide 5005, Australia; (C.X.); (K.L.J.); (C.K.R.)
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide 5005, Australia
- Institute of Diabetes, School of Medicine, Southeast University, Nanjing 210009, China
| |
Collapse
|
33
|
Abstract
Pregastric fermentation along with production practices that are dependent on high-energy diets means ruminants rely heavily on starch and protein assimilation for a substantial portion of their nutrient needs. While the majority of dietary starch may be fermented in the rumen, significant portions can flow to the small intestine. The initial phase of small intestinal digestion requires pancreatic α-amylase. Numerous nutritional factors have been shown to influence pancreatic α-amylase secretion with starch producing negative effects and casein, certain amino acids and dietary energy having positive effects. To date, manipulation of α-amylase secretion has not resulted in substantial changes in digestibility. The second phase of digestion involves the actions of the brush border enzymes sucrase-isomaltase and maltase-glucoamylase. Genetically, ruminants appear to possess these enzymes; however, the absence of measurable sucrase activity and limited adaptation with changes in diet suggests a reduced capacity for this phase of digestion. The final phase of carbohydrate assimilation is glucose transport. Ruminants possess Na+-dependent glucose transport that has been shown to be inducible. Because of the nature of pregastric fermentation, ruminants see a near constant flow of microbial protein to the small intestine. This results in a nutrient supply, which places a high priority on protein digestion and utilization. Comparatively, little research has been conducted describing protein assimilation. Enzymes and processes appear consistent with non-ruminants and are likely not limiting for efficient digestion of most feedstuffs. The mechanisms regulating the nutritional modulation of digestive function in the small intestine are complex and coordinated via the substrate, neural and hormonal effects in the small intestine, pancreas, peripheral tissues and the pituitary-hypothalamic axis. More research is needed in ruminants to help unravel the complexities by which small intestinal digestion is regulated with the aim of developing approaches to enhance and improve the efficiency of small intestinal digestion.
Collapse
|
34
|
Le Gall M, Thenet S, Aguanno D, Jarry AC, Genser L, Ribeiro-Parenti L, Joly F, Ledoux S, Bado A, Le Beyec J. Intestinal plasticity in response to nutrition and gastrointestinal surgery. Nutr Rev 2020; 77:129-143. [PMID: 30517714 DOI: 10.1093/nutrit/nuy064] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The plasticity of a material corresponds to its capacity to change its feature under the effect of an external action. Intestinal plasticity could be defined as the ability of the intestine to modify its size or thickness and intestinal cells to modulate their absorption and secretion functions in response to external or internal cues/signals. This review will focus on intestinal adaptation mechanisms in response to diet and nutritional status. These physiological mechanisms allow a fine and rapid adaptation of the gut to promote absorption of ingested food, but they can also lead to obesity in response to overnutrition. This plasticity could thus become a therapeutic target to treat not only undernutrition but also obesity. How the intestine adapts in response to 2 types of surgical remodeling of the digestive tract-extensive bowel resection leading to intestinal failure and surgical treatment of pathological obesity (ie, bariatric surgeries)-will also be reviewed.
Collapse
Affiliation(s)
- Maude Le Gall
- Centre de Recherche sur l'Inflammation, Inserm UMRS _1149, Université Paris Diderot, AP-HP, Paris, France
| | - Sophie Thenet
- Centre de Recherche des Cordeliers, Sorbonne Université, EPHE, PSL University, Sorbonne Cités, UPD Univ Paris 05, INSERM, CNRS, Paris, France
| | - Doriane Aguanno
- Centre de Recherche des Cordeliers, Sorbonne Université, EPHE, PSL University, Sorbonne Cités, UPD Univ Paris 05, INSERM, CNRS, Paris, France
| | - Anne-Charlotte Jarry
- Centre de Recherche sur l'Inflammation, Inserm UMRS _1149, Université Paris Diderot, AP-HP, Paris, France
| | - Laurent Genser
- Sorbonne Université, INSERM, Nutriomics Team, Paris, France, and the Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Department of Hepato-Biliary and Pancreatic Surgery, Liver Transplantation, Paris, France
| | - Lara Ribeiro-Parenti
- Centre de Recherche sur l'Inflammation, Inserm UMRS _1149, Université Paris Diderot, AP-HP, Paris, France.,Department of General and Digestive Surgery, University Hospital Bichat-Claude-Bernard, Paris, France
| | - Francisca Joly
- Centre de Recherche sur l'Inflammation, Inserm UMRS _1149, Université Paris Diderot, AP-HP, Paris, France.,Department of Gastroenterology, Inflammatory Bowel Diseases, Nutritional Support and Intestinal Transplantation, Paris, France
| | - Séverine Ledoux
- Centre de Recherche sur l'Inflammation, Inserm UMRS _1149, Université Paris Diderot, AP-HP, Paris, France.,Service des Explorations Fonctionnelles, Centre de référence de prise en charge de l'obésité, GHUPNVS, Hôpital Louis Mourier, Colombes, France
| | - André Bado
- Centre de Recherche sur l'Inflammation, Inserm UMRS _1149, Université Paris Diderot, AP-HP, Paris, France
| | - Johanne Le Beyec
- Centre de Recherche sur l'Inflammation, Inserm UMRS _1149, Université Paris Diderot, AP-HP, Paris, France.,Sorbonne Université, AP-HP, Hôpital Pitié-Salpêtrière-Charles Foix, Biochimie Endocrinienne et Oncologique, Paris, France
| |
Collapse
|
35
|
Abstract
Irritable bowel syndrome (IBS) is a chronic disorder characterised by recurrent abdominal pain or discomfort and transit disturbances with heterogeneous pathophysiological mechanisms. The link between food and gastrointestinal (GI) symptoms is often reported by patients with IBS and the role of fructose has recently been highlighted. Fructose malabsorption can easily be assessed by hydrogen and/or methane breath test in response to 25 g fructose; and its prevalence is about 22 % in patients with IBS. The mechanism of fructose-related symptoms is incompletely understood. Osmotic load, fermentation and visceral hypersensitivity are likely to participate in GI symptoms in the IBS population and may be triggered or worsened by fructose. A low-fructose diet could be integrated in the overall treatment strategy, but its role and implication in the improvement of IBS symptoms should be evaluated. In the present review, we discuss fructose malabsorption in adult patients with IBS and the interest of a low-fructose diet in order to underline the important role of fructose in IBS.
Collapse
|
36
|
Merino B, Fernández-Díaz CM, Cózar-Castellano I, Perdomo G. Intestinal Fructose and Glucose Metabolism in Health and Disease. Nutrients 2019; 12:E94. [PMID: 31905727 PMCID: PMC7019254 DOI: 10.3390/nu12010094] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 12/26/2019] [Accepted: 12/26/2019] [Indexed: 02/06/2023] Open
Abstract
The worldwide epidemics of obesity and diabetes have been linked to increased sugar consumption in humans. Here, we review fructose and glucose metabolism, as well as potential molecular mechanisms by which excessive sugar consumption is associated to metabolic diseases and insulin resistance in humans. To this end, we focus on understanding molecular and cellular mechanisms of fructose and glucose transport and sensing in the intestine, the intracellular signaling effects of dietary sugar metabolism, and its impact on glucose homeostasis in health and disease. Finally, the peripheral and central effects of dietary sugars on the gut-brain axis will be reviewed.
Collapse
Affiliation(s)
- Beatriz Merino
- Instituto de Biología y Genética Molecular-IBGM (CSIC-Universidad de Valladolid), Valladolid 47003, Spain; (B.M.); (C.M.F.-D.); (G.P.)
| | - Cristina M. Fernández-Díaz
- Instituto de Biología y Genética Molecular-IBGM (CSIC-Universidad de Valladolid), Valladolid 47003, Spain; (B.M.); (C.M.F.-D.); (G.P.)
| | - Irene Cózar-Castellano
- Instituto de Biología y Genética Molecular-IBGM (CSIC-Universidad de Valladolid), Valladolid 47003, Spain; (B.M.); (C.M.F.-D.); (G.P.)
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid 28029, Spain
| | - German Perdomo
- Instituto de Biología y Genética Molecular-IBGM (CSIC-Universidad de Valladolid), Valladolid 47003, Spain; (B.M.); (C.M.F.-D.); (G.P.)
- Departamento de Ciencias de la Salud, Universidad de Burgos, Burgos 09001, Spain
| |
Collapse
|
37
|
Dengler F, Gäbel G. The Fast Lane of Hypoxic Adaptation: Glucose Transport Is Modulated via A HIF-Hydroxylase-AMPK-Axis in Jejunum Epithelium. Int J Mol Sci 2019; 20:ijms20204993. [PMID: 31601024 PMCID: PMC6834319 DOI: 10.3390/ijms20204993] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/07/2019] [Accepted: 10/08/2019] [Indexed: 12/21/2022] Open
Abstract
The intestinal epithelium is able to adapt to varying blood flow and, thus, oxygen availability. Still, the adaptation fails under pathologic situations. A better understanding of the mechanisms underlying the epithelial adaptation to hypoxia could help to improve the therapeutic approach. We hypothesized that the short-term adaptation to hypoxia is mediated via AMP-activated protein kinase (AMPK) and that it is coupled to the long-term adaptation by a common regulation mechanism, the HIF-hydroxylase enzymes. Further, we hypothesized the transepithelial transport of glucose to be part of this short-term adaptation. We conducted Ussing chamber studies using isolated lagomorph jejunum epithelium and cell culture experiments with CaCo-2 cells. The epithelia and cells were incubated under 100% and 21% O2, respectively, with the panhydroxylase inhibitor dimethyloxalylglycine (DMOG) or under 1% O2. We showed an activation of AMPK under hypoxia and after incubation with DMOG by Western blot. This could be related to functional effects like an impairment of Na+-coupled glucose transport. Inhibitor studies revealed a recruitment of glucose transporter 1 under hypoxia, but not after incubation with DMOG. Summing up, we showed an influence of hydroxylase enzymes on AMPK activity and similarities between hypoxia and the effects of hydroxylase inhibition on functional changes.
Collapse
Affiliation(s)
- Franziska Dengler
- Institute of Veterinary Physiology, University of Leipzig, 04103 Leipzig, Germany.
| | - Gotthold Gäbel
- Institute of Veterinary Physiology, University of Leipzig, 04103 Leipzig, Germany.
| |
Collapse
|
38
|
Loureiro G, Martel F. The effect of dietary polyphenols on intestinal absorption of glucose and fructose: Relation with obesity and type 2 diabetes. FOOD REVIEWS INTERNATIONAL 2019. [DOI: 10.1080/87559129.2019.1573432] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Guilherme Loureiro
- Department of Biomedicine, Unit of Biochemistry, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Fátima Martel
- Department of Biomedicine, Unit of Biochemistry, Faculty of Medicine, University of Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| |
Collapse
|
39
|
Gonzalez-Vicente A, Cabral PD, Hong NJ, Asirwatham J, Saez F, Garvin JL. Fructose reabsorption by rat proximal tubules: role of Na +-linked cotransporters and the effect of dietary fructose. Am J Physiol Renal Physiol 2018; 316:F473-F480. [PMID: 30565998 DOI: 10.1152/ajprenal.00247.2018] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Fructose consumption has increased because of widespread use of high-fructose corn syrup by the food industry. Renal proximal tubules are thought to reabsorb fructose. However, fructose reabsorption (Jfructose) by proximal tubules has not yet been directly demonstrated, nor the effects of dietary fructose on Jfructose. This segment expresses Na+- and glucose-linked transporters (SGLTs) 1, 2, 4, and 5 and glucose transporters (GLUTs) 2 and 5. SGLT4 and -5 transport fructose, but SGLT1 and -2 do not. Knocking out SGLT5 increases urinary fructose excretion. We hypothesize that Jfructose in the S2 portion of the proximal tubule is mediated by luminal entry via SGLT4/5 and basolateral exit by GLUT2 and that it is enhanced by a fructose-enriched diet. We measured Jfructose by proximal straight tubules from rats consuming either tap water (Controls) or 20% fructose (FRU). Basal Jfructose in Controls was 14.1 ± 1.5 pmol·mm-1·min-1. SGLT inhibition with phlorizin reduced Jfructose to 4.9 ± 1.4 pmol·mm-1·min-1 ( P < 0.008), whereas removal of Na+ diminished Jfructose by 86 ± 5% ( P < 0.0001). A fructose-enriched diet increased Jfructose from 12.8 ± 2.5 to 19.3 ± 0.5 pmol·mm-1·min-1, a 51% increase ( P < 0.03). Using immunofluorescence, we detected luminal SGLT4 and SGLT5 and basolateral GLUT2; GLUT5 was undetectable. The expression of apical transporters SGLT4 and SGLT5 was higher in FRU than in Controls [137 ± 10% ( P < 0.01) and 38 ± 14% ( P < 0.04), respectively]. GLUT2 was also elevated by 88 ± 27% ( P < 0.02) in FRU. We conclude that Jfructose by proximal tubules occurs primarily via Na+-linked cotransport processes, and a fructose-enriched diet enhances reabsorption. Transport across luminal and basolateral membranes is likely mediated by SGLT4/5 and GLUT2, respectively.
Collapse
Affiliation(s)
- Agustin Gonzalez-Vicente
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University , Cleveland, Ohio.,Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Pablo D Cabral
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University , Cleveland, Ohio.,Facultad de Medicina, Departamento de Ciencias Fisiológicas, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Nancy J Hong
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University , Cleveland, Ohio
| | - Jessica Asirwatham
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University , Cleveland, Ohio
| | - Fara Saez
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University , Cleveland, Ohio
| | - Jeffrey L Garvin
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University , Cleveland, Ohio
| |
Collapse
|
40
|
Pereira MT, Malik M, Nostro JA, Mahler GJ, Musselman LP. Effect of dietary additives on intestinal permeability in both Drosophila and a human cell co-culture. Dis Model Mech 2018; 11:dmm034520. [PMID: 30504122 PMCID: PMC6307910 DOI: 10.1242/dmm.034520] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 10/06/2018] [Indexed: 12/13/2022] Open
Abstract
Increased intestinal barrier permeability has been correlated with aging and disease, including type 2 diabetes, Crohn's disease, celiac disease, multiple sclerosis and irritable bowel syndrome. The prevalence of these ailments has risen together with an increase in industrial food processing and food additive consumption. Additives, including sugar, metal oxide nanoparticles, surfactants and sodium chloride, have all been suggested to increase intestinal permeability. We used two complementary model systems to examine the effects of food additives on gut barrier function: a Drosophila in vivo model and an in vitro human cell co-culture model. Of the additives tested, intestinal permeability was increased most dramatically by high sugar. High sugar also increased feeding but reduced gut and overall animal size. We also examined how food additives affected the activity of a gut mucosal defense factor, intestinal alkaline phosphatase (IAP), which fluctuates with bacterial load and affects intestinal permeability. We found that high sugar reduced IAP activity in both models. Artificial manipulation of the microbiome influenced gut permeability in both models, revealing a complex relationship between the two. This study extends previous work in flies and humans showing that diet can play a role in the health of the gut barrier. Moreover, simple models can be used to study mechanisms underlying the effects of diet on gut permeability and function.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Matthew T Pereira
- Department of Biological Sciences, Binghamton University, Binghamton, New York 13902, USA
| | - Mridu Malik
- Department of Biomedical Engineering, Binghamton University, Binghamton, New York 13902, USA
| | - Jillian A Nostro
- Department of Biological Sciences, Binghamton University, Binghamton, New York 13902, USA
| | - Gretchen J Mahler
- Department of Biomedical Engineering, Binghamton University, Binghamton, New York 13902, USA
| | | |
Collapse
|
41
|
Hansen NW, Sams A. The Microbiotic Highway to Health-New Perspective on Food Structure, Gut Microbiota, and Host Inflammation. Nutrients 2018; 10:E1590. [PMID: 30380701 PMCID: PMC6267475 DOI: 10.3390/nu10111590] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/13/2018] [Accepted: 10/23/2018] [Indexed: 12/14/2022] Open
Abstract
This review provides evidence that not only the content of nutrients but indeed the structural organization of nutrients is a major determinant of human health. The gut microbiota provides nutrients for the host by digesting food structures otherwise indigestible by human enzymes, thereby simultaneously harvesting energy and delivering nutrients and metabolites for the nutritional and biological benefit of the host. Microbiota-derived nutrients, metabolites, and antigens promote the development and function of the host immune system both directly by activating cells of the adaptive and innate immune system and indirectly by sustaining release of monosaccharides, stimulating intestinal receptors and secreting gut hormones. Multiple indirect microbiota-dependent biological responses contribute to glucose homeostasis, which prevents hyperglycemia-induced inflammatory conditions. The composition and function of the gut microbiota vary between individuals and whereas dietary habits influence the gut microbiota, the gut microbiota influences both the nutritional and biological homeostasis of the host. A healthy gut microbiota requires the presence of beneficial microbiotic species as well as vital food structures to ensure appropriate feeding of the microbiota. This review focuses on the impact of plant-based food structures, the "fiber-encapsulated nutrient formulation", and on the direct and indirect mechanisms by which the gut microbiota participate in host immune function.
Collapse
Affiliation(s)
- Nina Wærling Hansen
- Molecular Endocrinology Unit (KMEB), Department of Endocrinology, Institute of Clinical Research, University of Southern Denmark, DK-5000 Odense, Denmark.
| | - Anette Sams
- Department of Clinical Experimental Research, Glostrup Research Institute, Copenhagen University Hospital, Nordstjernevej 42, DK-2600 Glostrup, Denmark.
| |
Collapse
|
42
|
Higashida K, Terada S, Li X, Inoue S, Iida N, Kitai S, Nakai N. Low-carbohydrate high-protein diet diminishes the insulin response to glucose load via suppression of SGLT-1 in mice. Biosci Biotechnol Biochem 2018; 83:365-371. [PMID: 30355268 DOI: 10.1080/09168451.2018.1533803] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The purpose of this study was to examine the effects of a low-carbohydrate high-protein (LCHP) diet on the expression of glucose transporters and their relationships to glucose metabolism. Male C57BL/6 mice were fed a normal control or LCHP diet for 2 weeks. An oral glucose tolerance test and insulin tolerance test (ITT) were performed, and the expression of glucose transporters was determined in the gastrocnemius muscle, jejunum and pancreas. The increase in plasma insulin concentrations after glucose administration was reduced in the LCHP group. However, LCHP diet had no effects on peripheral insulin sensitivity or glucose transporters expression in the gastrocnemius and pancreas. Soluble glucose transporter (SGLT)-1 protein content in jejunum was lower in the LCHP group. Taken together, these results suggest that the blunted insulin response after glucose administration in LCHP diet-fed mice might be due to decreased SGLT-1 expression, but not to an increase in peripheral insulin sensitivity. Abbreviations: LCHP: low-carbohydrate high-protein; ITT: insulin tolerance test; GLUT: glucose transporter; SGLT: soluble glucose transporter; OGTT: oral glucose tolerance test; AUC: area under the curve.
Collapse
Affiliation(s)
- Kazuhiko Higashida
- a Laboratory of Exercise Nutrition, Department of Nutrition , The University of Shiga Prefecture , Hikone city , Japan
| | - Shin Terada
- b Department of Life Sciences, Graduate School of Arts and Sciences , The University of Tokyo , Tokyo , Japan
| | - Xi Li
- c Exercise Biology Research Center , China Institute of Sport Science , Beijing , China
| | - Sachika Inoue
- a Laboratory of Exercise Nutrition, Department of Nutrition , The University of Shiga Prefecture , Hikone city , Japan
| | - Noriko Iida
- a Laboratory of Exercise Nutrition, Department of Nutrition , The University of Shiga Prefecture , Hikone city , Japan
| | - Saki Kitai
- a Laboratory of Exercise Nutrition, Department of Nutrition , The University of Shiga Prefecture , Hikone city , Japan
| | - Naoya Nakai
- a Laboratory of Exercise Nutrition, Department of Nutrition , The University of Shiga Prefecture , Hikone city , Japan
| |
Collapse
|
43
|
Intestinal Saturated Long-Chain Fatty Acid, Glucose and Fructose Transporters and Their Inhibition by Natural Plant Extracts in Caco-2 Cells. Molecules 2018; 23:molecules23102544. [PMID: 30301205 PMCID: PMC6222386 DOI: 10.3390/molecules23102544] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 09/29/2018] [Accepted: 10/04/2018] [Indexed: 02/07/2023] Open
Abstract
The intestinal absorption of fatty acids, glucose and fructose is part of the basic requirements for the provision of energy in the body. High access of saturated long-chain fatty acids (LCFA), glucose and fructose can facilitate the development of metabolic diseases, particularly the metabolic syndrome and type-2 diabetes mellitus (T2DM). Research has been done to find substances which decelerate or inhibit intestinal resorption of these specific food components. Promising targets are the inhibition of intestinal long-chain fatty acid (FATP2, FATP4), glucose (SGLT1, GLUT2) and fructose (GLUT2, GLUT5) transporters by plant extracts and by pure substances. The largest part of active components in plant extracts belongs to the group of polyphenols. This review summarizes the knowledge about binding sites of named transporters and lists the plant extracts which were tested in Caco-2 cells regarding uptake inhibition.
Collapse
|
44
|
Coping With Hypoxia: Adaptation of Glucose Transport Mechanisms Across Equine Jejunum Epithelium. J Equine Vet Sci 2018. [DOI: 10.1016/j.jevs.2018.05.221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
45
|
Abstract
Increased understanding of fructose metabolism, which begins with uptake via the intestine, is important because fructose now constitutes a physiologically significant portion of human diets and is associated with increased incidence of certain cancers and metabolic diseases. New insights in our knowledge of intestinal fructose absorption mediated by the facilitative glucose transporter GLUT5 in the apical membrane and by GLUT2 in the basolateral membrane are reviewed. We begin with studies related to structure as well as ligand binding, then revisit the controversial proposition that apical GLUT2 is the main mediator of intestinal fructose absorption. The review then describes how dietary fructose may be sensed by intestinal cells to affect the expression and activity of transporters and fructolytic enzymes, to interact with the transport of certain minerals and electrolytes, and to regulate portal and peripheral fructosemia and glycemia. Finally, it discusses the potential contributions of dietary fructose to gastrointestinal diseases and to the gut microbiome.
Collapse
Affiliation(s)
- Ronaldo P Ferraris
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, New Jersey 07946, USA;
| | - Jun-Yong Choe
- Department of Biochemistry and Molecular Biology, Rosalind Franklin University of Medicine and Science, The Chicago Medical School, North Chicago, Illinois 60064, USA;
| | - Chirag R Patel
- Independent Drug Safety Consulting, Wilmington, Delaware 19803, USA;
| |
Collapse
|
46
|
Umino H, Hasegawa K, Minakuchi H, Muraoka H, Kawaguchi T, Kanda T, Tokuyama H, Wakino S, Itoh H. High Basolateral Glucose Increases Sodium-Glucose Cotransporter 2 and Reduces Sirtuin-1 in Renal Tubules through Glucose Transporter-2 Detection. Sci Rep 2018; 8:6791. [PMID: 29717156 PMCID: PMC5931531 DOI: 10.1038/s41598-018-25054-y] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 04/16/2018] [Indexed: 12/20/2022] Open
Abstract
Under diabetic conditions, sodium-glucose cotransporter 2 (SGLT2) for glucose uptake in proximal tubules (PTs) increases, whereas NAD+-dependent protein deacetylase silent mating type information regulation 2 homolog 1 (Sirtuin-1; SIRT1) for PT survival decreases. Therefore, we hypothesized that increased glucose influx by SGLT2 reduces SIRT1 expression. To test this hypothesis, db/db mice with diabetes and high-glucose (HG)-cultured porcine PT LLC-PK1 cells in a two-chamber system were treated with the SGLT2 inhibitor canagliflozin. We also examined SIRT1 and SGLT2 expression in human kidney biopsies. In db/db mice, SGLT2 expression increased with concomitant decreases in SIRT1, but was inhibited by canagliflozin. For determination of the polarity of SGLT2 and SIRT1 expression, LLC-PK1 cells were seeded into Transwell chambers (pore size, 0.4 µm; Becton Dickinson, Oxford, UK). HG medium was added to either or to both of the upper and lower chambers, which corresponded to the apical and basolateral sides of the cells, respectively. In this system, the lower chamber with HG showed increased SGLT2 and decreased SIRT1 expression. Canagliflozin reversed HG-induced SIRT1 downregulation. Gene silencing and inhibitors for glucose transporter 2 (GLUT2) blocked HG-induced SGLT2 expression upregulation. Gene silencing for the hepatic nuclear factor-1α (HNF-1α), whose nuclear translocation was enhanced by HG, blocked HG-induced SGLT2 expression upregulation. Similarly, gene silencing for importin-α1, a chaperone protein bound to GLUT2, blocked HG-induced HNF-1α nuclear translocation and SGLT2 expression upregulation. In human kidney, SIRT1 immunostaining was negatively correlated with SGLT2 immunostaining. Thus, under diabetic conditions, SIRT1 expression in PTs was downregulated by an increase in SGLT2 expression, which was stimulated by basolateral HG through activation of the GLUT2/importin-α1/HNF-1α pathway.
Collapse
Affiliation(s)
- Hiroyuki Umino
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, 160-8584, Japan
| | - Kazuhiro Hasegawa
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, 160-8584, Japan
| | - Hitoshi Minakuchi
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, 160-8584, Japan
| | - Hirokazu Muraoka
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, 160-8584, Japan
| | - Takahisa Kawaguchi
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, 160-8584, Japan
| | - Takeshi Kanda
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, 160-8584, Japan
| | - Hirobumi Tokuyama
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, 160-8584, Japan
| | - Shu Wakino
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, 160-8584, Japan.
| | - Hiroshi Itoh
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, 160-8584, Japan
| |
Collapse
|
47
|
Villa-Rodriguez JA, Kerimi A, Abranko L, Tumova S, Ford L, Blackburn RS, Rayner C, Williamson G. Acute metabolic actions of the major polyphenols in chamomile: an in vitro mechanistic study on their potential to attenuate postprandial hyperglycaemia. Sci Rep 2018; 8:5471. [PMID: 29615674 PMCID: PMC5882934 DOI: 10.1038/s41598-018-23736-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 03/20/2018] [Indexed: 01/19/2023] Open
Abstract
Transient hyperglycaemia is a risk factor for type 2 diabetes and endothelial dysfunction, especially in subjects with impaired glucose tolerance. Nutritional interventions and strategies for controlling postprandial overshoot of blood sugars are considered key in preventing progress to the disease state. We have identified apigenin-7-O-glucoside, apigenin, and (Z) and (E)−2-hydroxy-4-methoxycinnamic acid glucosides as the active (poly)phenols in Chamomile (Matricaria recutita) able to modulate carbohydrate digestion and absorption in vitro as assessed by inhibition of α-amylase and maltase activities. The latter two compounds previously mistakenly identified as ferulic acid hexosides were purified and characterised and studied for their contribution to the overall bioactivity of chamomile. Molecular docking studies revealed that apigenin and cinnamic acids present totally different poses in the active site of human α-amylase. In differentiated Caco-2/TC7 cell monolayers, apigenin-7-O-glucoside and apigenin strongly inhibited D-[U-14C]-glucose and D-[U-14C]-sucrose transport, and less effectively D-[U-14C]-fructose transport. Inhibition of D-[U-14C]-glucose transport by apigenin was stronger under Na+-depleted conditions, suggesting interaction with the GLUT2 transporter. Competitive binding studies with molecular probes indicate apigenin interacts primarily at the exofacial-binding site of GLUT2. Taken together, the individual components of Chamomile are promising agents for regulating carbohydrate digestion and sugar absorption at the site of the gastrointestinal tract.
Collapse
Affiliation(s)
| | - Asimina Kerimi
- School of Food Science and Nutrition, University of Leeds, Leeds, LS2 9JT, UK
| | - Laszlo Abranko
- School of Food Science and Nutrition, University of Leeds, Leeds, LS2 9JT, UK.,Szent István University, Faculty of Food Science, Department of Applied Chemistry, 29-43 Villányi, Budapest, H-1118, Hungary
| | - Sarka Tumova
- School of Food Science and Nutrition, University of Leeds, Leeds, LS2 9JT, UK
| | - Lauren Ford
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK.,School of Design, University of Leeds, Leeds, LS2 9JT, UK
| | | | | | - Gary Williamson
- School of Food Science and Nutrition, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
48
|
Merigo F, Brandolese A, Facchin S, Missaggia S, Bernardi P, Boschi F, D’Incà R, Savarino EV, Sbarbati A, Sturniolo GC. Glucose transporter expression in the human colon. World J Gastroenterol 2018; 24:775-793. [PMID: 29467549 PMCID: PMC5807937 DOI: 10.3748/wjg.v24.i7.775] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 12/13/2017] [Accepted: 12/20/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate by immunostaining glucose transporter expression in human colorectal mucosa in controls and patients with inflammatory bowel disease (IBD).
METHODS Colorectal samples were obtained from patients undergoing lower endoscopic colonoscopy or recto-sigmoidoscopy. Patients diagnosed with ulcerative colitis (n = 18) or Crohn’s disease (n = 10) and scheduled for diagnostic colonoscopy were enrolled. Patients who underwent colonoscopy for prevention screening of colorectal cancer or were followed-up after polypectomy or had a history of lower gastrointestinal symptoms were designated as the control group (CTRL, n = 16). Inflammatory status of the mucosa at the sampling site was evaluated histologically and/or endoscopically. A total of 147 biopsies of colorectal mucosa were collected and processed for immunohistochemistry analysis. The expression of GLUT2, SGLT1, and GLUT5 glucose transporters was investigated using immunoperoxidase labeling. To compare immunoreactivity of GLUT5 and LYVE-1, which is a marker for lymphatic vessel endothelium, double-labeled confocal microscopy was used.
RESULTS Immunohistochemical analysis revealed that GLUT2, SGLT1, and GLUT5 were expressed only in short epithelial portions of the large intestinal mucosa. No important differences were observed in glucose transporter expression between the samples obtained from the different portions of the colorectal tract and between the different patient groups. Unexpectedly, GLUT5 expression was also identified in vessels, mainly concentrated in specific areas where the vessels were clustered. Immunostaining with LYVE-1 and GLUT5 antibodies revealed that GLUT5-immunoreactive (-IR) clusters of vessels were concentrated in areas internal to those that were LYVE-1 positive. GLUT5 and LYVE-1 did not appear to be colocalized but rather showed a close topographical relationship on the endothelium. Based on their LYVE-1 expression, GLUT5-IR vessels were identified as lymphatic. Both inflamed and non-inflamed mucosal colorectal tissue biopsies from the IBD and CTRL patients showed GLUT5-IR clusters of lymphatic vessels.
CONCLUSION Glucose transporter immunoreactivity is present in colorectal mucosa in controls and IBD patients. GLUT5 expression is also associated with lymphatic vessels. This novel finding aids in the characterization of lymphatic vasculature in IBD patients.
Collapse
Affiliation(s)
- Flavia Merigo
- Department of Neuroscience, Biomedicine and Movement, Human Anatomy and Histology Section, University of Verona, Verona I-37134, Italy
| | - Alessandro Brandolese
- Department of Medicine, Gastroenterology Section, University of Verona, Verona I-37134, Italy
| | - Sonia Facchin
- Department of Surgery, Oncology and Gastroenterology, Gastroenterology Section, University Hospital of Padua, Padua I-35128, Italy
| | - Silvia Missaggia
- Department of Neuroscience, Biomedicine and Movement, Human Anatomy and Histology Section, University of Verona, Verona I-37134, Italy
| | - Paolo Bernardi
- Department of Neuroscience, Biomedicine and Movement, Human Anatomy and Histology Section, University of Verona, Verona I-37134, Italy
| | - Federico Boschi
- Department of Computer Science, University of Verona, Verona I-37134, Italy
| | - Renata D’Incà
- Department of Surgery, Oncology and Gastroenterology, Gastroenterology Section, University Hospital of Padua, Padua I-35128, Italy
| | - Edoardo Vincenzo Savarino
- Department of Surgery, Oncology and Gastroenterology, Gastroenterology Section, University Hospital of Padua, Padua I-35128, Italy
| | - Andrea Sbarbati
- Department of Neuroscience, Biomedicine and Movement, Human Anatomy and Histology Section, University of Verona, Verona I-37134, Italy
| | - Giacomo Carlo Sturniolo
- Department of Surgery, Oncology and Gastroenterology, Gastroenterology Section, University Hospital of Padua, Padua I-35128, Italy
| |
Collapse
|
49
|
Lyu J, Imachi H, Yoshimoto T, Fukunaga K, Sato S, Ibata T, Kobayashi T, Dong T, Yonezaki K, Yamaji N, Kikuchi F, Iwama H, Ishikawa R, Haba R, Sugiyama Y, Zhang H, Murao K. Thyroid stimulating hormone stimulates the expression of glucose transporter 2 via its receptor in pancreatic β cell line, INS-1 cells. Sci Rep 2018; 8:1986. [PMID: 29386586 PMCID: PMC5792451 DOI: 10.1038/s41598-018-20449-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 01/17/2018] [Indexed: 12/30/2022] Open
Abstract
Thyroid stimulating hormone (TSH) stimulates the secretion of thyroid hormones by binding the TSH receptor (TSHR). TSHR is well-known to be expressed in thyroid tissue, excepting it, TSHR has also been expressed in many other tissues. In this study, we have examined the expression of TSHR in rat pancreatic islets and evaluated the role of TSH in regulating pancreas-specific gene expression. TSHR was confirmed to be expressed in rodent pancreatic islets and its cell line, INS-1 cells. TSH directly affected the glucose uptake in INS cells by up-regulating the expression of GLUT2, and furthermore this process was blocked by SB203580, the specific inhibitor of the p38 MAPK signaling pathway. Similarly, TSH stimulated GLUT2 promoter activity, while both a dominant-negative p38MAPK α isoform (p38MAPK α-DN) and the specific inhibitor for p38MAPK α abolished the stimulatory effect of TSH on GLUT2 promoter activity. Finally, INS-1 cells treated with TSH showed increased protein level of glucokinase and enhanced glucose-stimulated insulin secretion. Together, these results confirm that TSHR is expressed in INS-1 cells and rat pancreatic islets, and suggest that activation of the p38MAPK α might be required for TSH-induced GLUT2 gene transcription in pancreatic β cells.
Collapse
Affiliation(s)
- Jingya Lyu
- Department of Endocrinology and Metabolism, Faculty of Medicine, Kagawa University, 1750-1, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan.,Department of Cell Biology, Medical College of Soochow University, Jiangsu Key Laboratory of Stem Cell Research, Ren Ai Road 199, Suzhou Industrial Park, Suzhou, 215123, China
| | - Hitomi Imachi
- Department of Endocrinology and Metabolism, Faculty of Medicine, Kagawa University, 1750-1, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan
| | - Takuo Yoshimoto
- Department of Endocrinology and Metabolism, Faculty of Medicine, Kagawa University, 1750-1, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan
| | - Kensaku Fukunaga
- Department of Endocrinology and Metabolism, Faculty of Medicine, Kagawa University, 1750-1, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan
| | - Seisuke Sato
- Department of Endocrinology and Metabolism, Faculty of Medicine, Kagawa University, 1750-1, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan
| | - Tomohiro Ibata
- Department of Endocrinology and Metabolism, Faculty of Medicine, Kagawa University, 1750-1, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan
| | - Toshihiro Kobayashi
- Department of Endocrinology and Metabolism, Faculty of Medicine, Kagawa University, 1750-1, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan
| | - Tao Dong
- Department of Endocrinology and Metabolism, Faculty of Medicine, Kagawa University, 1750-1, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan
| | - Kazuko Yonezaki
- Department of Endocrinology and Metabolism, Faculty of Medicine, Kagawa University, 1750-1, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan
| | - Nao Yamaji
- Department of Endocrinology and Metabolism, Faculty of Medicine, Kagawa University, 1750-1, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan
| | - Fumi Kikuchi
- Department of Endocrinology and Metabolism, Faculty of Medicine, Kagawa University, 1750-1, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan
| | - Hisakazu Iwama
- Life Science Research Center, Kagawa University, 1750-1, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan
| | - Ryou Ishikawa
- Department of Diagnostic Pathology, Kagawa University Hospital, 1750-1, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan
| | - Reiji Haba
- Department of Diagnostic Pathology, Kagawa University Hospital, 1750-1, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan
| | - Yasunori Sugiyama
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, 2393, Miki-cho, Kita-gun, Kagawa, 761-0795, Japan
| | - Huanxiang Zhang
- Department of Cell Biology, Medical College of Soochow University, Jiangsu Key Laboratory of Stem Cell Research, Ren Ai Road 199, Suzhou Industrial Park, Suzhou, 215123, China.
| | - Koji Murao
- Department of Endocrinology and Metabolism, Faculty of Medicine, Kagawa University, 1750-1, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan.
| |
Collapse
|
50
|
Struyf N, Laurent J, Verspreet J, Verstrepen KJ, Courtin CM. Saccharomyces cerevisiae and Kluyveromyces marxianus Cocultures Allow Reduction of Fermentable Oligo-, Di-, and Monosaccharides and Polyols Levels in Whole Wheat Bread. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:8704-8713. [PMID: 28869377 DOI: 10.1021/acs.jafc.7b02793] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Fermentable oligo-, di-, and monosaccharides and polyols (FODMAPs) are small molecules that are poorly absorbed in the small intestine and rapidly fermented in the large intestine. There is evidence that a diet low in FODMAPs reduces abdominal symptoms in approximately 70% of the patients suffering from irritable bowel syndrome. Wheat contains relatively high fructan levels and is therefore a major source of FODMAPs in our diet. In this study, a yeast-based strategy was developed to reduce FODMAP levels in (whole wheat) bread. Fermentation of dough with an inulinase-secreting Kluyveromyces marxianus strain allowed to reduce fructan levels in the final product by more than 90%, while only 56% reduction was achieved when a control Saccharomyces cerevisiae strain was used. To ensure sufficient CO2 production, cocultures of S. cerevisiae and K. marxianus were prepared. Bread prepared with a coculture of K. marxianus and S. cerevisiae had fructan levels ≤0.2% dm, and a loaf volume comparable with that of control bread. Therefore, this approach is suitable to effectively reduce FODMAP levels in bread.
Collapse
Affiliation(s)
- Nore Struyf
- Laboratory of Food Chemistry and Biochemistry, and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven , Kasteelpark Arenberg 20, B-3001 Leuven, Belgium
- VIB Laboratory for Systems Biology & CMPG Laboratory for Genetics and Genomics, KU Leuven, Bio-Incubator , Gaston Geenslaan 1, B-3001 Leuven, Belgium
| | - Jitka Laurent
- Laboratory of Food Chemistry and Biochemistry, and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven , Kasteelpark Arenberg 20, B-3001 Leuven, Belgium
| | - Joran Verspreet
- Laboratory of Food Chemistry and Biochemistry, and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven , Kasteelpark Arenberg 20, B-3001 Leuven, Belgium
| | - Kevin J Verstrepen
- VIB Laboratory for Systems Biology & CMPG Laboratory for Genetics and Genomics, KU Leuven, Bio-Incubator , Gaston Geenslaan 1, B-3001 Leuven, Belgium
| | - Christophe M Courtin
- Laboratory of Food Chemistry and Biochemistry, and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven , Kasteelpark Arenberg 20, B-3001 Leuven, Belgium
| |
Collapse
|