1
|
Yip KL, Udoh M, Sharman LA, Harman T, Bedoya-Pérez M, Anderson LL, Banister SD, Arnold JC. Cannabinoid-like compounds found in non-cannabis plants exhibit antiseizure activity in genetic mouse models of drug-resistant epilepsy. Epilepsia 2025; 66:303-314. [PMID: 39530840 DOI: 10.1111/epi.18177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 10/23/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
OBJECTIVE The cannabinoid cannabidiol has established antiseizure effects in drug-resistant epilepsies such as Dravet syndrome and Lennox-Gastaut syndrome. Amorfrutin 2, honokiol, and magnolol are structurally similar to cannabinoids (cannabis-like drugs) but derive from non-cannabis plants. We aimed to study the antiseizure potential of these compounds in various mouse seizure models. In addition, we aimed to characterize their molecular pharmacology at cannabinoid CB1 and CB2 receptors and at T-type calcium channels, which are known targets of the cannabinoids. METHODS Brain and plasma pharmacokinetic profiles were determined. Antiseizure activity was assessed against hyperthermia-induced seizures in a Scn1a+/- mouse model of Dravet syndrome. We then elaborated on the most promising compounds in the maximal electroshock (MES) test in mice and the Gabrb3+/D120N mouse model of Lennox-Gastaut syndrome. Fluorescence-based assays were used to examine modulatory activity at cannabinoid CB1 and CB2 receptors and T-type calcium channel subtypes CaV3.1, CaV3.2, and CaV3.3 overexpressed in mammalian cells. Automated patch-clamp electrophysiology was then used to confirm inhibitory activity on CaV3.1, CaV3.2, and CaV3.3 channels. RESULTS Magnolol and honokiol had high brain-to-plasma ratios (3.55 and 7.56, respectively), unlike amorfrutin 2 (0.06). Amorfrutin 2 and magnolol but not honokiol significantly increased the body temperature threshold at which Scn1a+/- mice had a generalized tonic-clonic seizure. Both amorfrutin 2 and magnolol significantly decreased the proportion of mice exhibiting hindlimb extension in the MES test. Furthermore, magnolol reduced the number and duration of atypical absence seizures in Gabrb3+/D120N mice. The three compounds inhibited all T-type calcium channel subtypes but were without specific activity at cannabinoid receptors. SIGNIFICANCE We show for the first time that amorfrutin 2 and magnolol display novel antiseizure activity in mouse drug-resistant epilepsy models. Our results justify future drug discovery campaigns around these structural scaffolds that aim to develop novel antiseizure drugs for intractable epilepsies.
Collapse
Affiliation(s)
- Ka Lai Yip
- Discipline of Pharmacology, Sydney Pharmacy School, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
- Lambert Initiative for Cannabinoid Therapeutics, University of Sydney, Sydney, New South Wales, Australia
- Brain and Mind Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Michael Udoh
- Discipline of Pharmacology, Sydney Pharmacy School, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
- Lambert Initiative for Cannabinoid Therapeutics, University of Sydney, Sydney, New South Wales, Australia
- Brain and Mind Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Laura A Sharman
- Discipline of Pharmacology, Sydney Pharmacy School, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
- Lambert Initiative for Cannabinoid Therapeutics, University of Sydney, Sydney, New South Wales, Australia
- Brain and Mind Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Thomas Harman
- Discipline of Pharmacology, Sydney Pharmacy School, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
- Lambert Initiative for Cannabinoid Therapeutics, University of Sydney, Sydney, New South Wales, Australia
- Brain and Mind Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Miguel Bedoya-Pérez
- Lambert Initiative for Cannabinoid Therapeutics, University of Sydney, Sydney, New South Wales, Australia
- Brain and Mind Centre, University of Sydney, Sydney, New South Wales, Australia
- School of Psychology, Faculty of Science, University of Sydney, Sydney, New South Wales, Australia
| | - Lyndsey L Anderson
- Discipline of Pharmacology, Sydney Pharmacy School, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
- Lambert Initiative for Cannabinoid Therapeutics, University of Sydney, Sydney, New South Wales, Australia
- Brain and Mind Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Samuel D Banister
- Lambert Initiative for Cannabinoid Therapeutics, University of Sydney, Sydney, New South Wales, Australia
- Brain and Mind Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Jonathon C Arnold
- Discipline of Pharmacology, Sydney Pharmacy School, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
- Lambert Initiative for Cannabinoid Therapeutics, University of Sydney, Sydney, New South Wales, Australia
- Brain and Mind Centre, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
2
|
Chu Y, Gui S, Zheng Y, Zhao J, Zhao Y, Li Y, Chen X. The natural compounds, Magnolol or Honokiol, promote adipose tissue browning and resist obesity through modulating PPARα/γ activity. Eur J Pharmacol 2024; 969:176438. [PMID: 38402928 DOI: 10.1016/j.ejphar.2024.176438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/11/2024] [Accepted: 02/16/2024] [Indexed: 02/27/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is closely associated with the body's energy metabolism. A potential strategy to regulate energy metabolism, combat obesity, and reduce NAFLD is by enhancing adipocyte thermogenesis and increasing energy expenditure. In this study, our objective was to examine the effects of phenolic extracts derived from Magnolia officinalis on the regulation of NAFLD. Specifically, we investigated the impact of Magnolol or Honokiol treatment on high-fat diet (HFD)-induced obese C57BL6/J male mice. Firstly, we monitored energy metabolism, dissected tissues, and analyzed tissue sections. Additionally, we conducted experiments on HepG2 and primary adipocytes to gain insights into the roles of Magnolol or Honokiol. To further understand the effects of these compounds on related signaling pathways and marker genes, we performed molecular docking, dual-luciferase assays, and interfered with target genes. Our findings revealed that Magnolol or Honokiol activate the peroxisome proliferator activated receptor alpha (PPARα) signaling pathway, leading to the alleviation of NAFLD. This activation promotes fatty acid oxidation, reduces lipogenesis, and enhances the expression and secretion of FGF21. Notably, Fibroblast growth factor 21 (FGF21), secreted by the liver, plays a crucial role in improving communication between the liver and adipocytes while also promoting the browning of adipose tissue. Additionally, Magnolol or Honokiol activate the peroxisome proliferator activated receptor gamma (PPARγ) signaling pathway, resulting in increased uncoupling protein 1 (UCP1) expression, heightened heat production in adipose tissue, and anti-obesity. Therefore, Magnolol or Honokiol alleviate NAFLD, promote adipose tissue browning and resist obesity through dual activation of PPARα/γ.
Collapse
Affiliation(s)
- Yi Chu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology &College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Sisi Gui
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology &College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yazhen Zheng
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology &College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jingwu Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology &College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yaxiang Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology &College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yingying Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology &College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaodong Chen
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology &College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
3
|
Chu Y, Zheng Y, Li Y, Gui S, Zhao J, Zhao Y, Chen X. Dietary supplementation of magnolol alleviates fatty liver hemorrhage syndrome in postpeak Xinhua laying hens via regulation of liver lipid metabolism. Poult Sci 2024; 103:103378. [PMID: 38228060 PMCID: PMC10823128 DOI: 10.1016/j.psj.2023.103378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 01/18/2024] Open
Abstract
As a metabolic disease, fatty liver hemorrhagic syndrome (FLHS) has emerged as a major cause of noninfectious mortality in laying hens, resulting in substantial economic losses to the poultry industry. This study aimed to investigate the therapeutic effects of magnolol on FLHS in postpeak laying hen model, focusing on lipid metabolism, antioxidative capacity, and potential molecular mechanisms of action. We selected 150 Xinhua laying hens aged 50 wk and divided them into normal diet group (ND), high-fat diet group (HFD), 100 mg/kg magnolol group (MG100), 300 mg/kg magnolol group (MG300), 500 mg/kg magnolol group (MG500) on average. The experiment lasted for 6 wk, and liver samples were collected from the hens at the end of the experiment. The results demonstrated that the inclusion of magnolol in the diet had a significant impact on various factors. It led to a reduction in weight, an increase in egg production rate, a decrease in blood lipid levels, and an improvement in abnormal liver function, liver steatosis, and oxidative stress. These effects were particularly prominent in the MG500 group. The RNA-Seq analysis demonstrated that in the MG500 group, there was a down-regulation of genes associated with fatty acid synthesis (Acc, Fasn, Scd, Srebf1, Elovl6) compared to the HFD group. Moreover, genes related to fatty acid oxidation (CPT1A and PGC1α) were found to be up-regulated. The Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of these differentially expressed genes indicated their enrichment in the PPAR signaling pathway. These findings demonstrate that magnolol can mitigate FLHS by inhibiting fatty acid synthesis and promoting fatty acid oxidation. This discovery offers a novel approach for treating FLHS in laying hens, reducing the economic losses associate with FLHS.
Collapse
Affiliation(s)
- Yi Chu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology & College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Yidanyuan Agricultural and Animal Husbandry Technology Co. LTD, Yingcheng, 432400, China
| | - Yazhen Zheng
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology & College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yingying Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology & College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Sisi Gui
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology & College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jingwu Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology & College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yaxiang Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology & College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaodong Chen
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology & College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
4
|
Ahmad K, Shaikh S, Lim JH, Ahmad SS, Chun HJ, Lee EJ, Choi I. Therapeutic application of natural compounds for skeletal muscle-associated metabolic disorders: A review on diabetes perspective. Biomed Pharmacother 2023; 168:115642. [PMID: 37812896 DOI: 10.1016/j.biopha.2023.115642] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/19/2023] [Accepted: 10/03/2023] [Indexed: 10/11/2023] Open
Abstract
Skeletal muscle (SM) plays a vital role in energy and glucose metabolism by regulating insulin sensitivity, glucose uptake, and blood glucose homeostasis. Impaired SM metabolism is strongly linked to several diseases, particularly type 2 diabetes (T2D). Insulin resistance in SM may result from the impaired activities of insulin receptor tyrosine kinase, insulin receptor substrate 1, phosphoinositide 3-kinase, and AKT pathways. This review briefly discusses SM myogenesis and the critical roles that SM plays in insulin resistance and T2D. The pharmacological targets of T2D which are associated with SM metabolism, such as DPP4, PTB1B, SGLT, PPARγ, and GLP-1R, and their potential modulators/inhibitors, especially natural compounds, are discussed in detail. This review highlights the significance of SM in metabolic disorders and the therapeutic potential of natural compounds in targeting SM-associated T2D targets. It may provide novel insights for the future development of anti-diabetic drug therapies. We believe that scientists working on T2D therapies will benefit from this review by enhancing their knowledge and updating their understanding of the subject.
Collapse
Affiliation(s)
- Khurshid Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, South Korea; Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, South Korea
| | - Sibhghatulla Shaikh
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, South Korea; Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, South Korea
| | - Jeong Ho Lim
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, South Korea; Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, South Korea
| | - Syed Sayeed Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, South Korea; Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, South Korea
| | - Hee Jin Chun
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, South Korea
| | - Eun Ju Lee
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, South Korea; Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, South Korea
| | - Inho Choi
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, South Korea; Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, South Korea.
| |
Collapse
|
5
|
Suganya T, Packiavathy IASV, Aseervatham GSB, Carmona A, Rashmi V, Mariappan S, Devi NR, Ananth DA. Tackling Multiple-Drug-Resistant Bacteria With Conventional and Complex Phytochemicals. Front Cell Infect Microbiol 2022; 12:883839. [PMID: 35846771 PMCID: PMC9280687 DOI: 10.3389/fcimb.2022.883839] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/02/2022] [Indexed: 12/22/2022] Open
Abstract
Emerging antibiotic resistance in bacteria endorses the failure of existing drugs with chronic illness, complicated treatment, and ever-increasing expenditures. Bacteria acquire the nature to adapt to starving conditions, abiotic stress, antibiotics, and our immune defense mechanism due to its swift evolution. The intense and inappropriate use of antibiotics has led to the development of multidrug-resistant (MDR) strains of bacteria. Phytochemicals can be used as an alternative for complementing antibiotics due to their variation in metabolic, genetic, and physiological fronts as well as the rapid evolution of resistant microbes and lack of tactile management. Several phytochemicals from diverse groups, including alkaloids, phenols, coumarins, and terpenes, have effectively proved their inhibitory potential against MDR pathogens through their counter-action towards bacterial membrane proteins, efflux pumps, biofilms, and bacterial cell-to-cell communications, which are important factors in promoting the emergence of drug resistance. Plant extracts consist of a complex assortment of phytochemical elements, against which the development of bacterial resistance is quite deliberate. This review emphasizes the antibiotic resistance mechanisms of bacteria, the reversal mechanism of antibiotic resistance by phytochemicals, the bioactive potential of phytochemicals against MDR, and the scientific evidence on molecular, biochemical, and clinical aspects to treat bacterial pathogenesis in humans. Moreover, clinical efficacy, trial, safety, toxicity, and affordability investigations, current status and developments, related demands, and future prospects are also highlighted.
Collapse
Affiliation(s)
- Thangaiyan Suganya
- Department of Microbiology, Karpagam Academy of Higher Education, Coimbatore, India
| | | | - G. Smilin Bell Aseervatham
- Post Graduate Research Department of Biotechnology and Bioinformatics, Holy Cross College (Autonomous), Tiruchirappalli, India
| | - Areanna Carmona
- Francis Graduate School of Biomedical Sciences, Texas Tech University Health Science Center of El Paso, Texas, TX, United States
| | - Vijayaragavan Rashmi
- National Repository for Microalgae and Cyanobacteria (NRMC)- Marine, National Facility for Marine Cyanobacteria, (Sponsored by Department of Biotechnology (DBT), Government of India), Bharathidasan University, Tiruchirappalli, India
| | | | | | - Devanesan Arul Ananth
- Department of Biotechnology, Karpagam Academy of Higher Education, Coimbatore, India
| |
Collapse
|
6
|
Anjum NF, Shanmugarajan D, Shivaraju VK, Faizan S, Naishima NL, Prashantha Kumar BR, Javid S, Purohit MN. Novel derivatives of eugenol as potent anti-inflammatory agents via PPARγ agonism: rational design, synthesis, analysis, PPARγ protein binding assay and computational studies. RSC Adv 2022; 12:16966-16978. [PMID: 35754905 PMCID: PMC9172550 DOI: 10.1039/d2ra02116a] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/27/2022] [Indexed: 11/21/2022] Open
Abstract
Eugenol is a natural product abundantly found in clove buds known for its pharmacological activities such as anti-inflammatory, antidiabetic, antioxidant, and anticancer activities. It is well known from the literature that peroxisome proliferator-activated receptors (PPARγ) have been reported to regulate inflammatory responses. In this backdrop, we rationally designed semi-synthetic derivatives of eugenol with the aid of computational studies, and synthesized, purified, and analyzed four eugenol derivatives as PPARγ agonists. Compounds were screened for PPARγ protein binding by time-resolved fluorescence (TR-FRET) assay. The biochemical assay results were favorable for 1C which exhibited significant binding affinity with an IC50 value of 10.65 μM as compared to the standard pioglitazone with an IC50 value of 1.052 μM. In addition to the protein binding studies, as a functional assay, the synthesized eugenol derivatives were screened for in vitro anti-inflammatory activity at concentrations ranging from 6.25 μM to 400 μM. Among the four compounds tested 1C shows reasonably good anti-inflammatory activity with an IC50 value of 133.8 μM compared to a standard diclofenac sodium IC50 value of 54.32 μM. Structure-activity relationships are derived based on computational studies. Additionally, molecular dynamics simulations were performed to examine the stability of the protein-ligand complex, the dynamic behavior, and the binding affinity of newly synthesized molecules. Altogether, we identified novel eugenol derivatives as potential anti-inflammatory agents via PPARγ agonism.
Collapse
Affiliation(s)
- Noor Fathima Anjum
- Department of Pharmaceutical Chemistry, Farooqia College of Pharmacy Mysuru 570 015 India
| | - Dhivya Shanmugarajan
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy Mysuru 570 015 India +91-821-2548359 +91-821-2548353
- JSS Academy of Higher Education & Research Mysuru 570 015 India
| | | | - Syed Faizan
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy Mysuru 570 015 India +91-821-2548359 +91-821-2548353
- JSS Academy of Higher Education & Research Mysuru 570 015 India
| | - Namburu Lalitha Naishima
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy Mysuru 570 015 India +91-821-2548359 +91-821-2548353
- JSS Academy of Higher Education & Research Mysuru 570 015 India
| | - B R Prashantha Kumar
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy Mysuru 570 015 India +91-821-2548359 +91-821-2548353
- JSS Academy of Higher Education & Research Mysuru 570 015 India
| | - Saleem Javid
- Department of Pharmaceutical Chemistry, Farooqia College of Pharmacy Mysuru 570 015 India
- JSS Academy of Higher Education & Research Mysuru 570 015 India
| | - Madhusudan N Purohit
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy Mysuru 570 015 India +91-821-2548359 +91-821-2548353
- JSS Academy of Higher Education & Research Mysuru 570 015 India
| |
Collapse
|
7
|
PPARγ transcription effect on naturally occurring O-prenyl cinnamaldehydes and cinnamyl alcohol derivatives. Future Med Chem 2021; 13:1175-1183. [PMID: 34013764 DOI: 10.4155/fmc-2021-0054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Background: PPARγ is known to be a key regulator of metabolism and storage of lipids and glucose and to be implicated in the pathology of severe syndromes like obesity, diabetes, atherosclerosis and cancer. Methods: As a continuation of the authors' studies on oxyprenylated secondary metabolites as effective PPARγ agonists, the authors describe herein the chemical synthesis of natural O-prenyl cinnamaldehydes and cinnamyl alcohols and preliminary data on their in vitro effects on PPARγ transcription. Results: Among the panel of eight compounds tested, three - namely, (2E)-3-(4-((E)3,7-dimethylocta-2,6-dienyloxy)-3-methoxyphenyl)acrylaldehyde, (2E)-3-(4-((E)3,7-dimethylocta-2,6-dienyloxy)-3-methoxyphenyl)prop-2-en-1-ol and boropinal A - exerted activity in a dose-dependent manner. Conclusion: O-prenyl cinnamaldehydes and cinnamyl alcohols have the potential to effectively interact with PPARγ receptor.
Collapse
|
8
|
Natural products and analogs as preventive agents for metabolic syndrome via peroxisome proliferator-activated receptors: An overview. Eur J Med Chem 2021; 221:113535. [PMID: 33992930 DOI: 10.1016/j.ejmech.2021.113535] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/19/2021] [Accepted: 05/01/2021] [Indexed: 12/20/2022]
Abstract
Natural products and synthetic analogs have drawn much attention as potential therapeutical drugs to treat metabolic syndrome. We reviewed the underlying mechanisms of 32 natural products and analogs with potential pharmacological effects in vitro, and especially in rodent models and/or patients, that usually act on the PPAR pathway, along with other molecular targets. Recent outstanding total syntheses or semisyntheses of these lead compounds are stated. In general, they can activate the transcriptional activity of PPARα, PPARγ, PPARα/γ, PPARβ/δ, PPARα/δ, PPARγ/δ and panPPAR as weak, partial agonists or selective PPARγ modulators (SPPARγM), which may be useful for managing obesity, type 2 diabetes (T2D), dyslipidemia and non-fatty liver disease (NAFLD). Terpenoids is the largest group of compounds that act as potential modulators on PPARs and are comprised from small lipophilic cannabinoids to lipophilic pentacyclic triterpenes and polar saponins. Shikimates-phenylpropanoids include polar heterocyclic flavonoids and phenolic compounds containing at least one C3-C6 unit and usually a double bond on the propyl chain. Quercetin (19), resveratrol (24) and curcumin (27), stand out from this group for exhibiting beneficial effects on patients. Alkaloids, the minor group of potential modulators on PPARs, include berberine (30), which has been widely explored in preclinical and clinical studies for its potential beneficial effects on T2D and dyslipidemia. However, large-scale clinical trials may be warranted for the promising compounds.
Collapse
|
9
|
Lago-Fernandez A, Zarzo-Arias S, Jagerovic N, Morales P. Relevance of Peroxisome Proliferator Activated Receptors in Multitarget Paradigm Associated with the Endocannabinoid System. Int J Mol Sci 2021; 22:1001. [PMID: 33498245 PMCID: PMC7863932 DOI: 10.3390/ijms22031001] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 02/06/2023] Open
Abstract
Cannabinoids have shown to exert their therapeutic actions through a variety of targets. These include not only the canonical cannabinoid receptors CB1R and CB2R but also related orphan G protein-coupled receptors (GPCRs), ligand-gated ion channels, transient receptor potential (TRP) channels, metabolic enzymes, and nuclear receptors. In this review, we aim to summarize reported compounds exhibiting their therapeutic effects upon the modulation of CB1R and/or CB2R and the nuclear peroxisome proliferator-activated receptors (PPARs). Concomitant actions at CBRs and PPARα or PPARγ subtypes have shown to mediate antiobesity, analgesic, antitumoral, or neuroprotective properties of a variety of phytogenic, endogenous, and synthetic cannabinoids. The relevance of this multitargeting mechanism of action has been analyzed in the context of diverse pathologies. Synergistic effects triggered by combinatorial treatment with ligands that modulate the aforementioned targets have also been considered. This literature overview provides structural and pharmacological insights for the further development of dual cannabinoids for specific disorders.
Collapse
Affiliation(s)
| | | | - Nadine Jagerovic
- Medicinal Chemistry Institute, Spanish Research Council, Juan de la Cierva 3, 28006 Madrid, Spain; (A.L.-F.); (S.Z.-A.)
| | - Paula Morales
- Medicinal Chemistry Institute, Spanish Research Council, Juan de la Cierva 3, 28006 Madrid, Spain; (A.L.-F.); (S.Z.-A.)
| |
Collapse
|
10
|
AlSheikh HMA, Sultan I, Kumar V, Rather IA, Al-Sheikh H, Tasleem Jan A, Haq QMR. Plant-Based Phytochemicals as Possible Alternative to Antibiotics in Combating Bacterial Drug Resistance. Antibiotics (Basel) 2020; 9:E480. [PMID: 32759771 PMCID: PMC7460449 DOI: 10.3390/antibiotics9080480] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/26/2020] [Accepted: 08/01/2020] [Indexed: 12/30/2022] Open
Abstract
The unprecedented use of antibiotics that led to development of resistance affect human health worldwide. Prescription of antibiotics imprudently and irrationally in different diseases progressed with the acquisition and as such development of antibiotic resistant microbes that led to the resurgence of pathogenic strains harboring enhanced armors against existing therapeutics. Compromised the treatment regime of a broad range of antibiotics, rise in resistance has threatened human health and increased the treatment cost of diseases. Diverse on metabolic, genetic and physiological fronts, rapid progression of resistant microbes and the lack of a strategic management plan have led researchers to consider plant-derived substances (PDS) as alternative or in complementing antibiotics against the diseases. Considering the quantitative characteristics of plant constituents that attribute health beneficial effects, analytical procedures for their isolation, characterization and phytochemical testing for elucidating ethnopharmacological effects has being worked out for employment in the treatment of different diseases. With an immense potential to combat bacterial infections, PDSs such as polyphenols, alkaloids and tannins, present a great potential for use, either as antimicrobials or as antibiotic resistance modifiers. The present study focuses on the mechanisms by which PDSs help overcome the surge in resistance, approaches for screening different phytochemicals, methods employed in the identification of bioactive components and their testing and strategies that could be adopted for counteracting the lethal consequences of multidrug resistance.
Collapse
Affiliation(s)
- Hana Mohammed Al AlSheikh
- Department of Prosthetic Dental Sciences, College of Dentistry, Kind Saud University, Riyadh P.O. BOX 145111, Saudi Arabia;
| | - Insha Sultan
- Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India;
| | - Vijay Kumar
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Korea;
| | - Irfan A. Rather
- Department of Biological Sciences, Faculty of Science, King Abdul Aziz University, Jeddah P.O. BOX 80200, Saudi Arabia;
| | - Hashem Al-Sheikh
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| | - Arif Tasleem Jan
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, India
| | | |
Collapse
|
11
|
Finn PW. Cheminformatics in the Identification of Drug Classes for the Treatment of Type 2 Diabetes. Methods Mol Biol 2020; 2076:71-84. [PMID: 31586322 DOI: 10.1007/978-1-4939-9882-1_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Computer-Aided Drug Design has developed into a powerful suite of methods that complement experimental approaches to the identification of new pharmacologically active compounds. In particular, virtual screening has become a standard tool for lead identification. Diverse examples of the application of virtual screening applied to T2DM target proteins have been reported. While several of these indicate successful identification of new lead compounds from synthetic chemical and natural product databases, many of them have been performed on a small scale and with limited validation. Careful study design and collaboration with cheminformaticians and computational chemists will enable these approaches to fulfil their potential for T2DM.
Collapse
Affiliation(s)
- Paul W Finn
- School of Computing, University of Buckingham, Buckingham, UK.
| |
Collapse
|
12
|
Wang D, Yang Y, Lei Y, Tzvetkov NT, Liu X, Yeung AWK, Xu S, Atanasov AG. Targeting Foam Cell Formation in Atherosclerosis: Therapeutic Potential of Natural Products. Pharmacol Rev 2019; 71:596-670. [PMID: 31554644 DOI: 10.1124/pr.118.017178] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Foam cell formation and further accumulation in the subendothelial space of the vascular wall is a hallmark of atherosclerotic lesions. Targeting foam cell formation in the atherosclerotic lesions can be a promising approach to treat and prevent atherosclerosis. The formation of foam cells is determined by the balanced effects of three major interrelated biologic processes, including lipid uptake, cholesterol esterification, and cholesterol efflux. Natural products are a promising source for new lead structures. Multiple natural products and pharmaceutical agents can inhibit foam cell formation and thus exhibit antiatherosclerotic capacity by suppressing lipid uptake, cholesterol esterification, and/or promoting cholesterol ester hydrolysis and cholesterol efflux. This review summarizes recent findings on these three biologic processes and natural products with demonstrated potential to target such processes. Discussed also are potential future directions for studying the mechanisms of foam cell formation and the development of foam cell-targeted therapeutic strategies.
Collapse
Affiliation(s)
- Dongdong Wang
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| | - Yang Yang
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| | - Yingnan Lei
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| | - Nikolay T Tzvetkov
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| | - Xingde Liu
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| | - Andy Wai Kan Yeung
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| | - Suowen Xu
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| | - Atanas G Atanasov
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| |
Collapse
|
13
|
Gerstmeier J, Seegers J, Witt F, Waltenberger B, Temml V, Rollinger JM, Stuppner H, Koeberle A, Schuster D, Werz O. Ginkgolic Acid is a Multi-Target Inhibitor of Key Enzymes in Pro-Inflammatory Lipid Mediator Biosynthesis. Front Pharmacol 2019; 10:797. [PMID: 31379572 PMCID: PMC6650749 DOI: 10.3389/fphar.2019.00797] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 06/20/2019] [Indexed: 12/19/2022] Open
Abstract
Introduction: Lipid mediators (LMs) comprise bioactive metabolites of polyunsaturated fatty acids, including pro-inflammatory prostaglandins (PGs), thromboxanes (TXs), and leukotrienes (LTs), as well as specialized pro-resolving mediators (SPMs). They are essentially biosynthesized via cyclooxygenase (COX) and lipoxygenase (LO) pathways in complex networks and regulate the progression as well as the resolution of inflammatory disorders including inflammation-triggered cancer. Ginkgolic acid (GA) is a phenolic acid contained in Ginkgo biloba L. with neuroprotective, antimicrobial, and antitumoral properties. Although LMs regulate microbial infections and tumor progression, whether GA affects LM biosynthesis is unknown and was investigated here in detail. Methods: Pharmacophore-based virtual screening was performed along with docking simulations. Activity assays were conducted for isolated human recombinant 5-LO, cytosolic phospholipase (PLA)2α, COX-2, and ovine COX-1. The activity of human mPGES-1 and thromboxane A2 synthase (TXAS) was determined in crude cellular fractions. Cellular LM formation was studied using human monocytes, neutrophils, platelets, and M1- and M2-like macrophages. LMs were identified after (ultra)high-performance liquid chromatography by UV detection or ESI-tandem mass spectrometry. Results: GA was identified as virtual hit in an mPGES-1 pharmacophore-based virtual screening. Cell-free assays revealed potent suppression of mPGES-1 activity (IC50 = 0.7 µM) that is fully reversible and essentially independent of the substrate concentration. Moreover, cell-free assays revealed COX-1 and TXAS as additional targets of GA with lower affinity (IC50 = 8.1 and 5.2 µM). Notably, 5-LO, the key enzyme in LT biosynthesis, was potently inhibited by GA (IC50 = 0.2 µM) in a reversible and substrate-independent manner. Docking simulations support the molecular interaction of GA with mPGES-1 and 5-LO and suggest concrete binding sites. Interestingly, interference of GA with mPGES-1, COX-1, TXAS, and 5-LO was evident also in intact cells with IC50 values of 2.1-3.8 µM; no radical scavenging or cytotoxic properties were obvious. Analysis of LM profiles from bacteria-stimulated human M1- and M2-like macrophages confirmed the multi-target features of GA and revealed LM redirection towards the formation of 12-/15-LO products including SPM. Conclusions: We reveal GA as potent multi-target inhibitor of key enzymes in the biosynthesis of pro-inflammatory LMs that contribute to the complex pharmacological and toxicological properties of GA.
Collapse
Affiliation(s)
- Jana Gerstmeier
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Jena, Germany
| | - Julia Seegers
- Department of Pharmaceutical Analytics, Pharmaceutical Institute, Eberhard-Karls-University Tuebingen, Tuebingen, Germany
| | - Finja Witt
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Jena, Germany
| | - Birgit Waltenberger
- Institute of Pharmacy/Pharmacognosy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Veronika Temml
- Institute of Pharmacy/Pharmacognosy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Judith M. Rollinger
- Department of Pharmacognosy, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Hermann Stuppner
- Institute of Pharmacy/Pharmacognosy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Andreas Koeberle
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Jena, Germany
| | - Daniela Schuster
- Institute of Pharmacy, Department of Pharmaceutical and Medicinal Chemistry, Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Oliver Werz
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Jena, Germany
| |
Collapse
|
14
|
Jancsó A, Kovács E, Cseri L, Rózsa BJ, Galbács G, Csizmadia IG, Mucsi Z. Synthesis and spectroscopic characterization of novel GFP chromophore analogues based on aminoimidazolone derivatives. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 218:161-170. [PMID: 30986708 DOI: 10.1016/j.saa.2019.03.111] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 03/28/2019] [Indexed: 06/09/2023]
Abstract
In order to improve the fluorescence properties of the green fluorescent protein chromophore, p‑HOBDI ((5‑(4‑hydroxybenzylidene)‑2,3‑dimethyl‑3,5‑dihydro‑4H‑imidazol‑4‑one), sixteen dihydroimidazolone derivates were synthesized from thiohydantoin and arylaldehydes. The synthesis developed is an efficient, novel, one-pot procedure. The study provides a detailed description of the spectroscopic characteristics of the newly synthesized compounds, using p‑HOBDI as a reference. The new compounds all exhibited significantly stronger fluorescence than p‑HOBDI, up to 28 times higher quantum yields. An experimental and theoretical investigation of the relationship of the fluorescence properties with the molecular structure was also carried out. A good correlation was found between the emission wavenumber and the Hammett constant of the functional group, which suggests the intermolecular charge transfer (ICT) mechanism between the aromatic groups.
Collapse
Affiliation(s)
- Attila Jancsó
- Department of Inorganic and Analytical Chemistry, University of Szeged, Szeged H-6720, Hungary
| | - Ervin Kovács
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, H-1117 Budapest, Hungary; Department of Chemistry, Femtonics Inc., H-1094 Budapest, Hungary
| | - Levente Cseri
- Department of Chemistry, Femtonics Inc., H-1094 Budapest, Hungary; School of Chemical Engineering & Analytical Science, The University of Manchester, Manchester, United Kingdom
| | - Balázs J Rózsa
- Two-Photon Measurement Technology Research Group, The Faculty of Information Technology, Pázmány Péter Catholic University, Budapest H-1083, Hungary; Laboratory of 3D Functional Imaging of Neuronal Networks and Dendritic Integration, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest H-1083, Hungary
| | - Gábor Galbács
- Department of Inorganic and Analytical Chemistry, University of Szeged, Szeged H-6720, Hungary
| | - Imre G Csizmadia
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - Zoltán Mucsi
- Department of Chemistry, Femtonics Inc., H-1094 Budapest, Hungary; Two-Photon Measurement Technology Research Group, The Faculty of Information Technology, Pázmány Péter Catholic University, Budapest H-1083, Hungary.
| |
Collapse
|
15
|
Insights on the Multifunctional Activities of Magnolol. BIOMED RESEARCH INTERNATIONAL 2019; 2019:1847130. [PMID: 31240205 PMCID: PMC6556366 DOI: 10.1155/2019/1847130] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/03/2019] [Accepted: 05/15/2019] [Indexed: 12/31/2022]
Abstract
Over years, various biological constituents are isolated from Traditional Chinese Medicine and confirmed to show multifunctional activities. Magnolol, a hydroxylated biphenyl natural compound isolated from Magnolia officinalis, has been extensively documented and shows a range of biological activities. Many signaling pathways include, but are not limited to, NF-κB/MAPK, Nrf2/HO-1, and PI3K/Akt pathways, which are implicated in the biological functions mediated by magnolol. Thus, magnolol is considered as a promising therapeutic agent for clinic research. However, the low water solubility, the low bioavailability, and the rapid metabolism of magnolol dramatically limit its clinical application. In this review, we will comprehensively discuss the last five-year progress of the biological activities of magnolol, including anti-inflammatory, antimicroorganism, antioxidative, anticancer, neuroprotective, cardiovascular protection, metabolism regulation, and ion-mediating activity.
Collapse
|
16
|
Dreier D, Resetar M, Temml V, Rycek L, Kratena N, Schnürch M, Schuster D, Dirsch VM, Mihovilovic MD. Magnolol dimer-derived fragments as PPARγ-selective probes. Org Biomol Chem 2019; 16:7019-7028. [PMID: 30232493 PMCID: PMC6180429 DOI: 10.1039/c8ob01745j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sesqui magnolol A & B have been found to be selective partial PPARγ agonists while truncated magnolol dimer acts as an antagonist.
Partial agonists of the transcription factor PPARγ (peroxisome proliferator-activated receptor γ) have shown potential for the treatment of metabolic and inflammatory conditions and novel activators serve as valuable tool and lead compounds. Based on the natural product magnolol (I) and recent structural information of the ligand–target interaction we have previously developed magnolol dimer (II) which has been shown to have enhanced affinity towards PPARγ and improved selectivity over RXRα (retinoid X receptor α), PPARγ's heterodimerization partner. In this contribution we report the synthesis and evaluation of three fragments of the dimeric lead compound by structural simplifications. Sesqui magnolol A and B (III and IV) were found to exhibit comparable activities to magnolol dimer (II) and selectivity over RXRα persisted. Computational studies suggest a common pharmacophore of the distinctive biphenyl motifs. Truncated magnolol dimer (V) on the other hand does not share this feature and was found to act as an antagonist.
Collapse
Affiliation(s)
- Dominik Dreier
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163, A-1060 Vienna, Austria.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
A Strength-Weaknesses-Opportunities-Threats (SWOT) Analysis of Cheminformatics in Natural Product Research. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2019; 110:239-271. [PMID: 31621015 DOI: 10.1007/978-3-030-14632-0_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cheminformatics-based techniques, such as molecular modeling, docking, virtual screening, and machine learning, are well accepted for their usefulness in drug discovery and development of therapeutically relevant small molecules. Although delayed by several decades, their application in natural product research has led to outstanding findings. Combining information obtained from different sources, i.e., virtual predictions, traditional medicine, structural, biochemical, and biological data, and handling big data effectively will open up new possibilities, but also challenges in the future. Strategies and examples will be presented on how to integrate cheminformatics in pharmacognostic workflows to benefit from these two highly complementary disciplines toward streamlining experimental efforts. While considering their limits and pitfalls and by exploiting their potential, computer-aided strategies should successfully guide future studies and thereby augment our knowledge of bioactive natural lead structures.
Collapse
|
18
|
A Toolbox for the Identification of Modes of Action of Natural Products. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 110 2019; 110:73-97. [DOI: 10.1007/978-3-030-14632-0_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
19
|
Abstract
Abstract
The biological pre-validation of natural products (NPs) and their underlying frameworks ensures an unrivaled source of inspiration for chemical probe and drug design. However, the poor knowledge of their drug target counterparts critically hinders the broader exploration of NPs in chemical biology and molecular medicine. Cutting-edge algorithms now provide powerful means for the target deconvolution of phenotypic screen hits and generate motivated research hypotheses. Herein, we present recent progress in artificial intelligence applied to target identification that may accelerate future NP-inspired molecular medicine.
Collapse
|
20
|
Chen HH, Chang PC, Wey SP, Chen PM, Chen C, Chan MH. Therapeutic effects of honokiol on motor impairment in hemiparkinsonian mice are associated with reversing neurodegeneration and targeting PPARγ regulation. Biomed Pharmacother 2018; 108:254-262. [DOI: 10.1016/j.biopha.2018.07.095] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/16/2018] [Accepted: 07/18/2018] [Indexed: 02/07/2023] Open
|
21
|
Hiebl V, Ladurner A, Latkolik S, Dirsch VM. Natural products as modulators of the nuclear receptors and metabolic sensors LXR, FXR and RXR. Biotechnol Adv 2018; 36:1657-1698. [PMID: 29548878 DOI: 10.1016/j.biotechadv.2018.03.003] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 03/02/2018] [Accepted: 03/08/2018] [Indexed: 01/25/2023]
Abstract
Nuclear receptors (NRs) represent attractive targets for the treatment of metabolic syndrome-related diseases. In addition, natural products are an interesting pool of potential ligands since they have been refined under evolutionary pressure to interact with proteins or other biological targets. This review aims to briefly summarize current basic knowledge regarding the liver X (LXR) and farnesoid X receptors (FXR) that form permissive heterodimers with retinoid X receptors (RXR). Natural product-based ligands for these receptors are summarized and the potential of LXR, FXR and RXR as targets in precision medicine is discussed.
Collapse
Affiliation(s)
- Verena Hiebl
- University of Vienna, Department of Pharmacognosy, Althanstrasse 14, 1090 Vienna, Austria
| | - Angela Ladurner
- University of Vienna, Department of Pharmacognosy, Althanstrasse 14, 1090 Vienna, Austria.
| | - Simone Latkolik
- University of Vienna, Department of Pharmacognosy, Althanstrasse 14, 1090 Vienna, Austria
| | - Verena M Dirsch
- University of Vienna, Department of Pharmacognosy, Althanstrasse 14, 1090 Vienna, Austria
| |
Collapse
|
22
|
Chang CK, Lin XR, Lin YL, Fang WH, Lin SW, Chang SY, Kao JT. Magnolol-mediated regulation of plasma triglyceride through affecting lipoprotein lipase activity in apolipoprotein A5 knock-in mice. PLoS One 2018; 13:e0192740. [PMID: 29425239 PMCID: PMC5806881 DOI: 10.1371/journal.pone.0192740] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 01/30/2018] [Indexed: 01/24/2023] Open
Abstract
Hyperlipidemia is a risk factor of arteriosclerosis, stroke, and other coronary heart disease, which has been shown to correlate with single nucleotide polymorphisms of genes essential for lipid metabolism, such as lipoprotein lipase (LPL) and apolipoprotein A5 (APOA5). In this study, the effect of magnolol, the main active component extracted from Magnolia officinalis, on LPL activity was investigated. A dose-dependent up-regulation of LPL activity, possibly through increasing LPL mRNA transcription, was observed in mouse 3T3-L1 pre-adipocytes cultured in the presence of magnolol for 6 days. Subsequently, a transgenic knock-in mice carrying APOA5 c.553G>T variant was established and then fed with corn oil with or without magnolol for four days. The baseline plasma triglyceride levels in transgenic knock-in mice were higher than those in wild-type mice, with the highest increase occurred in homozygous transgenic mice (106 mg/dL vs 51 mg/dL, p<0.01). After the induction of hyperglyceridemia along with the administration of magnolol, the plasma triglyceride level in heterozygous transgenic mice was significantly reduced by half. In summary, magnolol could effectively lower the plasma triglyceride levels in APOA5 c.553G>T variant carrier mice and facilitate the triglyceride metabolism in postprandial hypertriglyceridemia.
Collapse
Affiliation(s)
- Chun-Kai Chang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Xiu-Ru Lin
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Laboratory Medicine, National Yang-Ming University Hospital, Yilan, Taiwan
| | - Yen-Lin Lin
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Woei-Horng Fang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Shu-Wha Lin
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Sui-Yuan Chang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
- * E-mail: (JK); (SC)
| | - Jau-Tsuen Kao
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
- * E-mail: (JK); (SC)
| |
Collapse
|
23
|
Zhong X, Liu H. Honokiol attenuates diet-induced non-alcoholic steatohepatitis by regulating macrophage polarization through activating peroxisome proliferator-activated receptor γ. J Gastroenterol Hepatol 2018; 33:524-532. [PMID: 28670854 DOI: 10.1111/jgh.13853] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 05/17/2017] [Accepted: 06/25/2017] [Indexed: 12/29/2022]
Abstract
BACKGROUND AND AIM Non-alcoholic steatohepatitis (NASH) may develop into hepatic cirrhosis. This study aimed to investigate whether honokiol could prevent NASH induced by high-cholesterol and high-fat (CL) diet in mice and the possible mechanism involved. METHODS Mice were fed with CL diet for 12 weeks to establish a NASH model; honokiol (0.02% w/w in diet) was added to evaluate its effect on NASH. Murine peritoneal macrophages, RAW264.7 and ANA-1 cells, were used to explore the possible mechanisms of honokiol on macrophage polarization. RESULTS Mice developed NASH after fed with CL diet for 12 weeks. Honokiol supplementation alleviated insulin resistance, hepatic steatosis, inflammation, and fibrosis induced by CL diet. Immunohistochemistry showed that honokiol induced more M2 macrophages in livers compared with CL diet alone. Honokiol decreased M1 marker genes (TNFα and MCP-1) and increased M2 marker gene (YM-1, IL-10, IL-4R and IL-13) expression in mice liver compared with CL diet. Moreover, treatment with honokiol lowered alanine aminotransferase and aspartate aminotransferase in serum and preserved liver from lipid peroxidation, evidenced by lowered hepatic malondialdehyde level. Honokiol has antioxidant function, as honokiol upregulated hepatic glutathione and superoxide dismutase level and downregulated hepatic CYP2E1 protein level. Hepatic peroxisome proliferator-activated receptor γ (PPARγ) and its target genes were upregulated by honokiol. Furthermore, honokiol (10 μM) treatment in mouse peritoneal cells, RAW264.7 cells and ANA-1 cells, led to M2 macrophage polarization, whereas a PPARγ antagonist, GW9662, abolished this effect of honokiol. CONCLUSIONS Honokiol can attenuate CL diet-induced NASH and the mechanism in which possibly is polarizing macrophages to M2 phenotype via PPARγ activation.
Collapse
Affiliation(s)
- Xueqing Zhong
- Department of Gastroenterology, The Ninth People's Hospital Affiliated to School of Medicine, Shanghai Jiao Tong University, Shanghai City, 200011, China
| | - Hailin Liu
- Department of Gastroenterology, The Ninth People's Hospital Affiliated to School of Medicine, Shanghai Jiao Tong University, Shanghai City, 200011, China
| |
Collapse
|
24
|
Al Sharif M, Alov P, Diukendjieva A, Vitcheva V, Simeonova R, Krasteva I, Shkondrov A, Tsakovska I, Pajeva I. Molecular determinants of PPARγ partial agonism and related in silico/in vivo studies of natural saponins as potential type 2 diabetes modulators. Food Chem Toxicol 2017; 112:47-59. [PMID: 29247773 DOI: 10.1016/j.fct.2017.12.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 12/04/2017] [Accepted: 12/07/2017] [Indexed: 12/29/2022]
Abstract
The metabolic syndrome, which includes hypertension, type 2 diabetes (T2D) and obesity, has reached an epidemic-like scale. Saponins and sapogenins are considered as valuable natural products for ameliorating this pathology, possibly through the nuclear receptor PPARγ activation. The aims of this study were: to look for in vivo antidiabetic effects of a purified saponins' mixture (PSM) from Astragalus corniculatus Bieb; to reveal by in silico methods the molecular determinants of PPARγ partial agonism, and to investigate the potential PPARγ participation in the PSM effects. In the in vivo experiments spontaneously hypertensive rats (SHRs) with induced T2D were treated with PSM or pioglitazone as a referent PPARγ full agonist, and pathology-relevant biochemical markers were analysed. The results provided details on the PSM modulation of the glucose homeostasis and its potential mechanism. The in silico studies focused on analysis of the protein-ligand interactions in crystal structures of human PPARγ-partial agonist complexes, pharmacophore modelling and molecular docking. They outlined key pharmacophoric features, typical for the PPARγ partial agonists, which were used for pharmacophore-based docking of the main PSM sapogenin. The in silico studies, strongly suggest possible involvement of PPARγ-mediated mechanisms in the in vivo antidiabetic and antioxidant effects of PSM from A. corniculatus.
Collapse
Affiliation(s)
- Merilin Al Sharif
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 105, 1113 Sofia, Bulgaria.
| | - Petko Alov
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 105, 1113 Sofia, Bulgaria.
| | - Antonia Diukendjieva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 105, 1113 Sofia, Bulgaria.
| | - Vessela Vitcheva
- Faculty of Pharmacy, Medical University of Sofia, Dunav 2 Str., 1000 Sofia, Bulgaria.
| | - Rumyana Simeonova
- Faculty of Pharmacy, Medical University of Sofia, Dunav 2 Str., 1000 Sofia, Bulgaria.
| | - Ilina Krasteva
- Faculty of Pharmacy, Medical University of Sofia, Dunav 2 Str., 1000 Sofia, Bulgaria.
| | - Aleksandar Shkondrov
- Faculty of Pharmacy, Medical University of Sofia, Dunav 2 Str., 1000 Sofia, Bulgaria.
| | - Ivanka Tsakovska
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 105, 1113 Sofia, Bulgaria.
| | - Ilza Pajeva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 105, 1113 Sofia, Bulgaria.
| |
Collapse
|
25
|
Dreier D, Latkolik S, Rycek L, Schnürch M, Dymáková A, Atanasov AG, Ladurner A, Heiss EH, Stuppner H, Schuster D, Mihovilovic MD, Dirsch VM. Linked magnolol dimer as a selective PPARγ agonist - Structure-based rational design, synthesis, and bioactivity evaluation. Sci Rep 2017; 7:13002. [PMID: 29057944 PMCID: PMC5651862 DOI: 10.1038/s41598-017-12628-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 09/13/2017] [Indexed: 02/06/2023] Open
Abstract
The nuclear receptors peroxisome proliferator-activated receptor γ (PPARγ) and its hetero-dimerization partner retinoid X receptor α (RXRα) are considered as drug targets in the treatment of diseases like the metabolic syndrome and diabetes mellitus type 2. Effort has been made to develop new agonists for PPARγ to obtain ligands with more favorable properties than currently used drugs. Magnolol was previously described as dual agonist of PPARγ and RXRα. Here we show the structure-based rational design of a linked magnolol dimer within the ligand binding domain of PPARγ and its synthesis. Furthermore, we evaluated its binding properties and functionality as a PPARγ agonist in vitro with the purified PPARγ ligand binding domain (LBD) and in a cell-based nuclear receptor transactivation model in HEK293 cells. We determined the synthesized magnolol dimer to bind with much higher affinity to the purified PPARγ ligand binding domain than magnolol (K i values of 5.03 and 64.42 nM, respectively). Regarding their potency to transactivate a PPARγ-dependent luciferase gene both compounds were equally effective. This is likely due to the PPARγ specificity of the newly designed magnolol dimer and lack of RXRα-driven transactivation activity by this dimeric compound.
Collapse
Affiliation(s)
- Dominik Dreier
- Institute of Applied Synthetic Chemistry, TU Wien, Vienna, Austria
| | - Simone Latkolik
- Department of Pharmacognosy, University of Vienna, Vienna, Austria
| | - Lukas Rycek
- Institute of Applied Synthetic Chemistry, TU Wien, Vienna, Austria
| | - Michael Schnürch
- Institute of Applied Synthetic Chemistry, TU Wien, Vienna, Austria
| | - Andrea Dymáková
- Department of Pharmacognosy, University of Vienna, Vienna, Austria
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Atanas G Atanasov
- Department of Pharmacognosy, University of Vienna, Vienna, Austria
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzebiec, Poland
| | - Angela Ladurner
- Department of Pharmacognosy, University of Vienna, Vienna, Austria
| | - Elke H Heiss
- Department of Pharmacognosy, University of Vienna, Vienna, Austria
| | - Hermann Stuppner
- Institute of Pharmacy/Pharmacognosy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Daniela Schuster
- Institute of Pharmacy/Pharmaceutical Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria.
| | | | - Verena M Dirsch
- Department of Pharmacognosy, University of Vienna, Vienna, Austria.
| |
Collapse
|
26
|
Vuorinen A, Engeli RT, Leugger S, Bachmann F, Akram M, Atanasov AG, Waltenberger B, Temml V, Stuppner H, Krenn L, Ateba SB, Njamen D, Davis RA, Odermatt A, Schuster D. Potential Antiosteoporotic Natural Product Lead Compounds That Inhibit 17β-Hydroxysteroid Dehydrogenase Type 2. JOURNAL OF NATURAL PRODUCTS 2017; 80:965-974. [PMID: 28319389 PMCID: PMC5411959 DOI: 10.1021/acs.jnatprod.6b00950] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Indexed: 05/16/2023]
Abstract
17β-Hydroxysteroid dehydrogenase type 2 (17β-HSD2) converts the active steroid hormones estradiol, testosterone, and 5α-dihydrotestosterone into their weakly active forms estrone, Δ4-androstene-3,17-dione, and 5α-androstane-3,17-dione, respectively, thereby regulating cell- and tissue-specific steroid action. As reduced levels of active steroids are associated with compromised bone health and onset of osteoporosis, 17β-HSD2 is considered a target for antiosteoporotic treatment. In this study, a pharmacophore model based on 17β-HSD2 inhibitors was applied to a virtual screening of various databases containing natural products in order to discover new lead structures from nature. In total, 36 hit molecules were selected for biological evaluation. Of these compounds, 12 inhibited 17β-HSD2 with nanomolar to low micromolar IC50 values. The most potent compounds, nordihydroguaiaretic acid (1), IC50 0.38 ± 0.04 μM, (-)-dihydroguaiaretic acid (4), IC50 0.94 ± 0.02 μM, isoliquiritigenin (6), IC50 0.36 ± 0.08 μM, and ethyl vanillate (12), IC50 1.28 ± 0.26 μM, showed 8-fold or higher selectivity over 17β-HSD1. As some of the identified compounds belong to the same structural class, structure-activity relationships were derived for these molecules. Thus, this study describes new 17β-HSD2 inhibitors from nature and provides insights into the binding pocket of 17β-HSD2, offering a promising starting point for further research in this area.
Collapse
Affiliation(s)
- Anna Vuorinen
- Division
of Molecular & Systems Toxicology, University
of Basel, Klingelbergstraße 50, 4056 Basel, Switzerland
| | - Roger T. Engeli
- Division
of Molecular & Systems Toxicology, University
of Basel, Klingelbergstraße 50, 4056 Basel, Switzerland
| | - Susanne Leugger
- Division
of Molecular & Systems Toxicology, University
of Basel, Klingelbergstraße 50, 4056 Basel, Switzerland
| | - Fabio Bachmann
- Division
of Molecular & Systems Toxicology, University
of Basel, Klingelbergstraße 50, 4056 Basel, Switzerland
| | - Muhammad Akram
- Computer-Aided
Molecular Design Group, Institute of Pharmacy/Pharmaceutical
Chemistry and Center for Molecular Biosciences Innsbruck, and Institute of
Pharmacy/Pharmacognosy and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Atanas G. Atanasov
- Department
of Pharmacognosy, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
- Institute
of Genetics and Animal Breeding of the Polish Academy of Sciences, Postępu 36A Street, 05-552, Jastrzebiec, Poland
| | - Birgit Waltenberger
- Computer-Aided
Molecular Design Group, Institute of Pharmacy/Pharmaceutical
Chemistry and Center for Molecular Biosciences Innsbruck, and Institute of
Pharmacy/Pharmacognosy and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Veronika Temml
- Computer-Aided
Molecular Design Group, Institute of Pharmacy/Pharmaceutical
Chemistry and Center for Molecular Biosciences Innsbruck, and Institute of
Pharmacy/Pharmacognosy and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Hermann Stuppner
- Computer-Aided
Molecular Design Group, Institute of Pharmacy/Pharmaceutical
Chemistry and Center for Molecular Biosciences Innsbruck, and Institute of
Pharmacy/Pharmacognosy and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Liselotte Krenn
- Department
of Pharmacognosy, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| | - Sylvin B. Ateba
- Laboratory
of Animal Physiology, Department of Animal Biology and Physiology,
Faculty of Science, University of Yaounde
I, P.O. Box 812, Yaounde, Cameroon
| | - Dieudonné Njamen
- Laboratory
of Animal Physiology, Department of Animal Biology and Physiology,
Faculty of Science, University of Yaounde
I, P.O. Box 812, Yaounde, Cameroon
| | - Rohan A. Davis
- Griffith
Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111, Australia
| | - Alex Odermatt
- Division
of Molecular & Systems Toxicology, University
of Basel, Klingelbergstraße 50, 4056 Basel, Switzerland
| | - Daniela Schuster
- Computer-Aided
Molecular Design Group, Institute of Pharmacy/Pharmaceutical
Chemistry and Center for Molecular Biosciences Innsbruck, and Institute of
Pharmacy/Pharmacognosy and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| |
Collapse
|
27
|
Zhu J, Yi X, Liu W, Xu Y, Chen S, Wu Y. Immobilized fusion protein affinity chromatography combined with HPLC–ESI-Q-TOF-MS/MS for rapid screening of PPARγ ligands from natural products. Talanta 2017; 165:508-515. [DOI: 10.1016/j.talanta.2016.12.089] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 12/27/2016] [Accepted: 12/30/2016] [Indexed: 10/20/2022]
|
28
|
Fakhrudin N, Dwi Astuti E, Sulistyawati R, Santosa D, Susandarini R, Nurrochmad A, Wahyuono S. n-Hexane Insoluble Fraction of Plantago lanceolata Exerts Anti-Inflammatory Activity in Mice by Inhibiting Cyclooxygenase-2 and Reducing Chemokines Levels. Sci Pharm 2017; 85:scipharm85010012. [PMID: 28335408 PMCID: PMC5388149 DOI: 10.3390/scipharm85010012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 03/05/2017] [Accepted: 03/08/2017] [Indexed: 12/12/2022] Open
Abstract
Inflammation is involved in the progression of many disorders, such as tumors, arthritis, gastritis, and atherosclerosis. Thus, the development of new agents targeting inflammation is still challenging. Medicinal plants have been used traditionally to treat various diseases including inflammation. A previous study has indicated that dichloromethane extract of P. lanceolata leaves exerts anti-inflammatory activity in an in vitro model. Here, we examined the in vivo anti-inflammatory activities of a n-hexane insoluble fraction of P. lanceolata leaves dichloromethane extract (HIFPL). We first evaluated its potency to reduce paw edema induced by carrageenan, and the expression of the proinflammatory enzyme, cyclooxygenase (COX)-2, in mice. The efficacy of HIFPL to inhibit COX-2 was also evaluated in an in vitro enzymatic assay. We further studied the effect of HIFPL on leukocytes migration in mice induced by thioglycollate. The level of chemokines facilitating the migration of leukocytes was also measured. We found that HIFPL (40, 80, 160 mg/kg) demonstrated anti-inflammatory activities in mice. The HIFPL reduced the volume of paw edema and COX-2 expression. However, HIFPL acts as an unselective COX-2 inhibitor as it inhibited COX-1 with a slightly higher potency. Interestingly, HIFPL strongly inhibited leukocyte migration by reducing the level of chemokines, Interleukine-8 (IL-8) and Monocyte chemoattractant protein-1 (MCP-1).
Collapse
Affiliation(s)
- Nanang Fakhrudin
- Faculty of Pharmacy, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia.
- Center for Natural Antiinfective Research, Faculty of Pharmacy, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia.
| | - Eny Dwi Astuti
- Faculty of Pharmacy, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia.
| | - Rini Sulistyawati
- Faculty of Pharmacy, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia.
- Akademi Analis Farmasi Al Islam Yogyakarta, Gedongkiwo, Mantrijeron, Yogyakarta 55142, Indonesia.
| | - Djoko Santosa
- Faculty of Pharmacy, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia.
- Center for Natural Antiinfective Research, Faculty of Pharmacy, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia.
| | - Ratna Susandarini
- Faculty of Biology, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia.
| | - Arief Nurrochmad
- Faculty of Pharmacy, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia.
| | - Subagus Wahyuono
- Faculty of Pharmacy, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia.
- Center for Natural Antiinfective Research, Faculty of Pharmacy, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia.
| |
Collapse
|
29
|
Evaluation of selected 3D virtual screening tools for the prospective identification of peroxisome proliferator-activated receptor (PPAR) γ partial agonists. Eur J Med Chem 2016; 124:49-62. [DOI: 10.1016/j.ejmech.2016.07.072] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 07/14/2016] [Accepted: 07/28/2016] [Indexed: 11/20/2022]
|
30
|
Waltenberger B, Mocan A, Šmejkal K, Heiss EH, Atanasov AG. Natural Products to Counteract the Epidemic of Cardiovascular and Metabolic Disorders. Molecules 2016; 21:807. [PMID: 27338339 PMCID: PMC4928700 DOI: 10.3390/molecules21060807] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 06/09/2016] [Accepted: 06/13/2016] [Indexed: 12/18/2022] Open
Abstract
Natural products have always been exploited to promote health and served as a valuable source for the discovery of new drugs. In this review, the great potential of natural compounds and medicinal plants for the treatment or prevention of cardiovascular and metabolic disorders, global health problems with rising prevalence, is addressed. Special emphasis is laid on natural products for which efficacy and safety have already been proven and which are in clinical trials, as well as on plants used in traditional medicine. Potential benefits from certain dietary habits and dietary constituents, as well as common molecular targets of natural products, are also briefly discussed. A glimpse at the history of statins and biguanides, two prominent representatives of natural products (or their derivatives) in the fight against metabolic disease, is also included. The present review aims to serve as an "opening" of this special issue of Molecules, presenting key historical developments, recent advances, and future perspectives outlining the potential of natural products for prevention or therapy of cardiovascular and metabolic disease.
Collapse
Affiliation(s)
- Birgit Waltenberger
- Institute of Pharmacy/Pharmacognosy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria;
| | - Andrei Mocan
- Department of Pharmaceutical Botany, Iuliu Haţieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Karel Šmejkal
- Department of Natural Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, 612 42 Brno, Czech Republic;
| | - Elke H Heiss
- Department of Pharmacognosy, University of Vienna, 1090 Vienna, Austria;
| | - Atanas G Atanasov
- Department of Pharmacognosy, University of Vienna, 1090 Vienna, Austria;
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, 05-552 Jastrzebiec, Poland
| |
Collapse
|
31
|
Rodrigues T, Reker D, Schneider P, Schneider G. Counting on natural products for drug design. Nat Chem 2016; 8:531-41. [PMID: 27219696 DOI: 10.1038/nchem.2479] [Citation(s) in RCA: 812] [Impact Index Per Article: 90.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Accepted: 02/12/2016] [Indexed: 02/08/2023]
Abstract
Natural products and their molecular frameworks have a long tradition as valuable starting points for medicinal chemistry and drug discovery. Recently, there has been a revitalization of interest in the inclusion of these chemotypes in compound collections for screening and achieving selective target modulation. Here we discuss natural-product-inspired drug discovery with a focus on recent advances in the design of synthetically tractable small molecules that mimic nature's chemistry. We highlight the potential of innovative computational tools in processing structurally complex natural products to predict their macromolecular targets and attempt to forecast the role that natural-product-derived fragments and fragment-like natural products will play in next-generation drug discovery.
Collapse
Affiliation(s)
- Tiago Rodrigues
- Swiss Federal Institute of Technology (ETH), Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Vladimir-Prelog-Weg 4, 8093 Zürich, Switzerland
| | - Daniel Reker
- Swiss Federal Institute of Technology (ETH), Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Vladimir-Prelog-Weg 4, 8093 Zürich, Switzerland
| | - Petra Schneider
- Swiss Federal Institute of Technology (ETH), Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Vladimir-Prelog-Weg 4, 8093 Zürich, Switzerland.,inSili.com LLC, Segantinisteig 3, 8049 Zürich, Switzerland
| | - Gisbert Schneider
- Swiss Federal Institute of Technology (ETH), Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Vladimir-Prelog-Weg 4, 8093 Zürich, Switzerland
| |
Collapse
|
32
|
Rocca R, Costa G, Artese A, Parrotta L, Ortuso F, Maccioni E, Pinato O, Greco ML, Sissi C, Alcaro S, Distinto S, Moraca F. Hit Identification of a Novel Dual Binder for h-telo/c-myc G-Quadruplex by a Combination of Pharmacophore Structure-Based Virtual Screening and Docking Refinement. ChemMedChem 2016; 11:1721-33. [PMID: 27008476 DOI: 10.1002/cmdc.201600053] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 02/29/2016] [Indexed: 12/28/2022]
Abstract
It is well known that G-quadruplexes are targets of great interest for their roles in crucial biological processes, such as aging and cancer. Hence, a promising strategy for anticancer drug therapy is the stabilization of these structures by small molecules. We report a high-throughput in silico screening of commercial libraries from several different vendors by means of a combined structure-based pharmacophore model approach followed by docking simulations. The compounds selected by the virtual screening procedure were then tested for their ability to interact with human telomeric G-quadruplex folding by circular dichroism, fluorescence spectroscopy, and fluorescence intercalator displacement. Our approach resulted in the identification of a 13-[(dimethylamino)methyl]-12-hydroxy-8H-benzo[c]indolo[3,2,1-ij][1,5]naphthyridin-8-one derivative as a novel promising stabilizer of G-quadruplex structures within the human telomeric and the c-myc promoter sequences.
Collapse
Affiliation(s)
- Roberta Rocca
- Dipartimento di Scienze della Salute, Università degli Studi "Magna Graecia" di Catanzaro, Campus "Salvatore Venuta", Viale Europa, 88100, Catanzaro, Italy
| | - Giosuè Costa
- Dipartimento di Scienze della Salute, Università degli Studi "Magna Graecia" di Catanzaro, Campus "Salvatore Venuta", Viale Europa, 88100, Catanzaro, Italy.
| | - Anna Artese
- Dipartimento di Scienze della Salute, Università degli Studi "Magna Graecia" di Catanzaro, Campus "Salvatore Venuta", Viale Europa, 88100, Catanzaro, Italy
| | - Lucia Parrotta
- Dipartimento di Scienze della Salute, Università degli Studi "Magna Graecia" di Catanzaro, Campus "Salvatore Venuta", Viale Europa, 88100, Catanzaro, Italy
| | - Francesco Ortuso
- Dipartimento di Scienze della Salute, Università degli Studi "Magna Graecia" di Catanzaro, Campus "Salvatore Venuta", Viale Europa, 88100, Catanzaro, Italy
| | - Elias Maccioni
- Department of Life and Environment Sciences, University of Cagliari, Via Ospedale 72, 09124, Cagliari, Italy
| | - Odra Pinato
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131, Padova, Italy
| | - Maria Laura Greco
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131, Padova, Italy
| | - Claudia Sissi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131, Padova, Italy
| | - Stefano Alcaro
- Dipartimento di Scienze della Salute, Università degli Studi "Magna Graecia" di Catanzaro, Campus "Salvatore Venuta", Viale Europa, 88100, Catanzaro, Italy
| | - Simona Distinto
- Department of Life and Environment Sciences, University of Cagliari, Via Ospedale 72, 09124, Cagliari, Italy
| | - Federica Moraca
- Dipartimento di Scienze della Salute, Università degli Studi "Magna Graecia" di Catanzaro, Campus "Salvatore Venuta", Viale Europa, 88100, Catanzaro, Italy
| |
Collapse
|
33
|
Waltenberger B, Atanasov AG, Heiss EH, Bernhard D, Rollinger JM, Breuss JM, Schuster D, Bauer R, Kopp B, Franz C, Bochkov V, Mihovilovic MD, Dirsch VM, Stuppner H. Drugs from nature targeting inflammation (DNTI): a successful Austrian interdisciplinary network project. MONATSHEFTE FUR CHEMIE 2016; 147:479-491. [PMID: 27069281 PMCID: PMC4785209 DOI: 10.1007/s00706-015-1653-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 12/29/2015] [Indexed: 12/14/2022]
Abstract
ABSTRACT Inflammation is part of numerous pathological conditions, which are lacking satisfying treatment and effective concepts of prevention. A national research network project, DNTI, involving scientists from six Austrian universities as well as several external partners aimed to identify and characterize natural products capable of combating inflammatory processes specifically in the cardiovascular system. The combined use of computational techniques with traditional knowledge, high-tech chemical analysis and synthesis, and a broad range of in vitro, cell-based, and in vivo pharmacological models led to the identification of a series of promising anti-inflammatory drug lead candidates. Mechanistic studies contributed to a better understanding of their mechanism of action and delivered new knowledge on the molecular level of inflammatory processes. Herein, the used approaches and selected highlights of the results of this interdisciplinary project are presented. GRAPHICAL ABSTRACT
Collapse
Affiliation(s)
- Birgit Waltenberger
- Institute of Pharmacy/Pharmacognosy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | | | - Elke H Heiss
- Department of Pharmacognosy, University of Vienna, Vienna, Austria
| | - David Bernhard
- Cardiac Surgery Research Laboratory, Department of Cardiac Surgery, Innsbruck Medical University, Innsbruck, Austria
| | | | - Johannes M Breuss
- Department of Vascular Biology and Thrombosis Research, Center of Physiology and Pharmacology, Medical University Vienna, Vienna, Austria
| | - Daniela Schuster
- Institute of Pharmacy/Pharmaceutical Chemistry and CMBI, University of Innsbruck, Innsbruck, Austria
| | - Rudolf Bauer
- Institute of Pharmaceutical Sciences, Department of Pharmacognosy, University of Graz, Graz, Austria
| | - Brigitte Kopp
- Department of Pharmacognosy, University of Vienna, Vienna, Austria
| | - Chlodwig Franz
- Institute for Applied Botany and Pharmacognosy, University of Veterinary Medicine, Vienna, Austria
| | - Valery Bochkov
- Institute of Pharmaceutical Sciences/Pharmaceutical Chemistry, University of Graz, Graz, Austria
| | | | - Verena M Dirsch
- Department of Pharmacognosy, University of Vienna, Vienna, Austria
| | - Hermann Stuppner
- Institute of Pharmacy/Pharmacognosy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
34
|
Atanasov AG, Waltenberger B, Pferschy-Wenzig EM, Linder T, Wawrosch C, Uhrin P, Temml V, Wang L, Schwaiger S, Heiss EH, Rollinger JM, Schuster D, Breuss JM, Bochkov V, Mihovilovic MD, Kopp B, Bauer R, Dirsch VM, Stuppner H. Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnol Adv 2015; 33:1582-1614. [PMID: 26281720 PMCID: PMC4748402 DOI: 10.1016/j.biotechadv.2015.08.001] [Citation(s) in RCA: 1444] [Impact Index Per Article: 144.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 07/16/2015] [Accepted: 08/07/2015] [Indexed: 01/01/2023]
Abstract
Medicinal plants have historically proven their value as a source of molecules with therapeutic potential, and nowadays still represent an important pool for the identification of novel drug leads. In the past decades, pharmaceutical industry focused mainly on libraries of synthetic compounds as drug discovery source. They are comparably easy to produce and resupply, and demonstrate good compatibility with established high throughput screening (HTS) platforms. However, at the same time there has been a declining trend in the number of new drugs reaching the market, raising renewed scientific interest in drug discovery from natural sources, despite of its known challenges. In this survey, a brief outline of historical development is provided together with a comprehensive overview of used approaches and recent developments relevant to plant-derived natural product drug discovery. Associated challenges and major strengths of natural product-based drug discovery are critically discussed. A snapshot of the advanced plant-derived natural products that are currently in actively recruiting clinical trials is also presented. Importantly, the transition of a natural compound from a "screening hit" through a "drug lead" to a "marketed drug" is associated with increasingly challenging demands for compound amount, which often cannot be met by re-isolation from the respective plant sources. In this regard, existing alternatives for resupply are also discussed, including different biotechnology approaches and total organic synthesis. While the intrinsic complexity of natural product-based drug discovery necessitates highly integrated interdisciplinary approaches, the reviewed scientific developments, recent technological advances, and research trends clearly indicate that natural products will be among the most important sources of new drugs also in the future.
Collapse
Affiliation(s)
- Atanas G. Atanasov
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Birgit Waltenberger
- Institute of Pharmacy/Pharmacognosy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Eva-Maria Pferschy-Wenzig
- Institute of Pharmaceutical Sciences, Department of Pharmacognosy, University of Graz, Universitätsplatz 4/I, 8010 Graz, Austria
| | - Thomas Linder
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9/163-OC, 1060 Vienna, Austria
| | - Christoph Wawrosch
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Pavel Uhrin
- Institute of Vascular Biology and Thrombosis Research, Center of Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Veronika Temml
- Institute of Pharmacy/Pharmaceutical Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Limei Wang
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Stefan Schwaiger
- Institute of Pharmacy/Pharmacognosy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Elke H. Heiss
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Judith M. Rollinger
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
- Institute of Pharmacy/Pharmacognosy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Daniela Schuster
- Institute of Pharmacy/Pharmaceutical Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Johannes M. Breuss
- Institute of Vascular Biology and Thrombosis Research, Center of Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Valery Bochkov
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Chemistry, University of Graz, Humboldtstrasse 46/III, 8010 Graz, Austria
| | - Marko D. Mihovilovic
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9/163-OC, 1060 Vienna, Austria
| | - Brigitte Kopp
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Rudolf Bauer
- Institute of Pharmaceutical Sciences, Department of Pharmacognosy, University of Graz, Universitätsplatz 4/I, 8010 Graz, Austria
| | - Verena M. Dirsch
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Hermann Stuppner
- Institute of Pharmacy/Pharmacognosy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| |
Collapse
|
35
|
Grienke U, Kaserer T, Pfluger F, Mair CE, Langer T, Schuster D, Rollinger JM. Accessing biological actions of Ganoderma secondary metabolites by in silico profiling. PHYTOCHEMISTRY 2015; 114:114-24. [PMID: 25457486 PMCID: PMC4948669 DOI: 10.1016/j.phytochem.2014.10.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Revised: 07/30/2014] [Accepted: 08/01/2014] [Indexed: 05/14/2023]
Abstract
The species complex around the medicinal fungus Ganoderma lucidum Karst. (Ganodermataceae) is widely known in traditional medicines, as well as in modern applications such as functional food or nutraceuticals. A considerable number of publications reflects its abundance and variety in biological actions either provoked by primary metabolites, such as polysaccharides, or secondary metabolites, such as lanostane-type triterpenes. However, due to this remarkable amount of information, a rationalization of the individual Ganoderma constituents to biological actions on a molecular level is quite challenging. To overcome this issue, a database was generated containing meta-information, i.e., chemical structures and biological actions of hitherto identified Ganoderma constituents (279). This was followed by a computational approach subjecting this 3D multi-conformational molecular dataset to in silico parallel screening against an in-house collection of validated structure- and ligand-based 3D pharmacophore models. The predictive power of the evaluated in silico tools and hints from traditional application fields served as criteria for the model selection. Thus, the focus was laid on representative druggable targets in the field of viral infections (5) and diseases related to the metabolic syndrome (22). The results obtained from this in silico approach were compared to bioactivity data available from the literature. 89 and 197 Ganoderma compounds were predicted as ligands of at least one of the selected pharmacological targets in the antiviral and the metabolic syndrome screening, respectively. Among them only a minority of individual compounds (around 10%) has ever been investigated on these targets or for the associated biological activity. Accordingly, this study discloses putative ligand target interactions for a plethora of Ganoderma constituents in the empirically manifested field of viral diseases and metabolic syndrome which serve as a basis for future applications to access yet undiscovered biological actions of Ganoderma secondary metabolites on a molecular level.
Collapse
Affiliation(s)
- Ulrike Grienke
- Institute of Pharmacy/Pharmacognosy and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria.
| | - Teresa Kaserer
- Institute of Pharmacy/Pharmaceutical Chemistry, Computer-Aided Molecular Design Group, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Florian Pfluger
- Institute of Pharmacy/Pharmaceutical Chemistry, Computer-Aided Molecular Design Group, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Christina E Mair
- Institute of Pharmacy/Pharmacognosy and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Thierry Langer
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| | - Daniela Schuster
- Institute of Pharmacy/Pharmaceutical Chemistry, Computer-Aided Molecular Design Group, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Judith M Rollinger
- Institute of Pharmacy/Pharmacognosy and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria; Department of Pharmacognosy, Faculty of Life Sciences, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| |
Collapse
|
36
|
Liang X, Xing W, He J, Fu F, Zhang W, Su F, Liu F, Ji L, Gao F, Su H, Sun X, Zhang H. Magnolol administration in normotensive young spontaneously hypertensive rats postpones the development of hypertension: role of increased PPAR gamma, reduced TRB3 and resultant alleviative vascular insulin resistance. PLoS One 2015; 10:e0120366. [PMID: 25793876 PMCID: PMC4367990 DOI: 10.1371/journal.pone.0120366] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 01/20/2015] [Indexed: 01/04/2023] Open
Abstract
Patients with prehypertension are more likely to progress to manifest hypertension than those with optimal or normal blood pressure. However, the mechanisms underlying the development from prehypertension to hypertension still remain largely elusive and the drugs for antihypertensive treatment in prehypertension are absent. Here we determined the effects of magnolol (MAG) on blood pressure and aortic vasodilatation to insulin, and investigated the underlying mechanisms. Four-week-old male spontaneous hypertensive rats (SHR) and age-matched normotensive Wistar-Kyoto (WKY) control rats were used. Our results shown that treatment of young SHRs with MAG (100 mg/kg/day, o.g.) for 3 weeks decreased blood pressure, improved insulin-induced aorta vasodilation, restored Akt and eNOS activation stimulated by insulin, and increased PPARγ and decreased TRB3 expressions. In cultured human umbilical vein endothelial cells (HUVECs), MAG incubation increased PPARγ, decreased TRB3 expressions, and restored insulin-induced phosphorylated Akt and eNOS levels and NO production, which was blocked by both PPARγ antagonist and siRNA targeting PPARγ. Improved insulin signaling in HUVECs by MAG was abolished by upregulating TRB3 expression. In conclusion, treatment of young SHRs with MAG beginning at the prehypertensive stage decreases blood pressure via improving vascular insulin resistance that is at least partly attributable to upregulated PPARγ, downregulated TRB3 and consequently increased Akt and eNOS activations in blood vessels in SHRs.
Collapse
Affiliation(s)
- Xiangyan Liang
- Experiment Teaching Center, Fourth Military Medical University, Xi'an, China
| | - Wenjuan Xing
- Department of Physiology, Fourth Military Medical University, Xi'an, China
| | - Jinxiao He
- Department of Pediatrics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Feng Fu
- Department of Physiology, Fourth Military Medical University, Xi'an, China
| | - Wei Zhang
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Feifei Su
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Fange Liu
- Experiment Teaching Center, Fourth Military Medical University, Xi'an, China
| | - Lele Ji
- Experiment Teaching Center, Fourth Military Medical University, Xi'an, China
| | - Feng Gao
- Department of Physiology, Fourth Military Medical University, Xi'an, China
| | - Hui Su
- Department of Geratology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
- * E-mail: (HZ); (XS); (HS)
| | - Xin Sun
- Department of Pediatrics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
- * E-mail: (HZ); (XS); (HS)
| | - Haifeng Zhang
- Experiment Teaching Center, Fourth Military Medical University, Xi'an, China
- * E-mail: (HZ); (XS); (HS)
| |
Collapse
|
37
|
Heiss EH, Kramer MP, Atanasov AG, Beres H, Schachner D, Dirsch VM. Glycolytic switch in response to betulinic acid in non-cancer cells. PLoS One 2014; 9:e115683. [PMID: 25531780 PMCID: PMC4274109 DOI: 10.1371/journal.pone.0115683] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 12/01/2014] [Indexed: 12/21/2022] Open
Abstract
The naturally occurring triterpenoid betulinic acid (BA) shows pronounced polypharmacology ranging from anti-inflammatory to anti-lipogenic activities. Recent evidence suggests that rather diverse cellular signaling events may be attributed to the same common upstream switch in cellular metabolism. In this study we therefore examined the metabolic changes induced by BA (10 µM) administration, with focus on cellular glucose metabolism. We demonstrate that BA elevates the rates of cellular glucose uptake and aerobic glycolysis in mouse embryonic fibroblasts with concomitant reduction of glucose oxidation. Without eliciting signs of obvious cell death BA leads to compromised mitochondrial function, increased expression of mitochondrial uncoupling proteins (UCP) 1 and 2, and liver kinase B1 (LKB1)-dependent activation AMP-activated protein kinase. AMPK activation accounts for the increased glucose uptake and glycolysis which in turn are indispensable for cell viability upon BA treatment. Overall, we show for the first time a significant impact of BA on cellular bioenergetics which may be a central mediator of the pleiotropic actions of BA.
Collapse
Affiliation(s)
- Elke H. Heiss
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Matthias P. Kramer
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Atanas G. Atanasov
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Hortenzia Beres
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Daniel Schachner
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Verena M. Dirsch
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| |
Collapse
|
38
|
Rycek L, Puthenkalam R, Schnürch M, Ernst M, Mihovilovic MD. Metal-assisted synthesis of unsymmetrical magnolol and honokiol analogs and their biological assessment as GABAA receptor ligands. Bioorg Med Chem Lett 2014; 25:400-3. [PMID: 25510374 PMCID: PMC4297288 DOI: 10.1016/j.bmcl.2014.10.091] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 10/27/2014] [Accepted: 10/28/2014] [Indexed: 12/14/2022]
Abstract
We present the synthesis of new derivatives of natural products magnolol (1) and honokiol (2) and their evaluation as allosteric ligands for modulation of GABAA receptor activity. New derivatives were prepared via metal assisted cross-coupling reactions in two consecutive steps. Compounds were tested by means of two-electrode voltage clamp electrophysiology at the α1β2γ2 receptor subtype at low GABA concentrations. We have identified several compounds enhancing GABA induced current (IGABA) in the range similar or even higher than the lead structures. At 3 μM, compound 8g enhanced IGABA by factor of 443, compared to 162 and 338 of honokiol and magnolol, respectively. Furthermore, 8g at EC10–20 features a much bigger window of separation between the α1β2γ2 and the α1β1γ2 subtypes compared to honokiol, and thus improved subtype selectivity.
Collapse
Affiliation(s)
- Lukas Rycek
- Vienna University of Technology, Institute of Applied Synthetic Chemistry, Getreidemarkt 9/163-OC, 1060 Vienna, Austria
| | - Roshan Puthenkalam
- Medical University of Vienna, Department of Molecular Neurosciences, Spitalgasse 4, 1090 Vienna, Austria
| | - Michael Schnürch
- Vienna University of Technology, Institute of Applied Synthetic Chemistry, Getreidemarkt 9/163-OC, 1060 Vienna, Austria
| | - Margot Ernst
- Medical University of Vienna, Department of Molecular Neurosciences, Spitalgasse 4, 1090 Vienna, Austria
| | - Marko D Mihovilovic
- Vienna University of Technology, Institute of Applied Synthetic Chemistry, Getreidemarkt 9/163-OC, 1060 Vienna, Austria.
| |
Collapse
|
39
|
Wang L, Waltenberger B, Pferschy-Wenzig EM, Blunder M, Liu X, Malainer C, Blazevic T, Schwaiger S, Rollinger JM, Heiss EH, Schuster D, Kopp B, Bauer R, Stuppner H, Dirsch VM, Atanasov AG. Natural product agonists of peroxisome proliferator-activated receptor gamma (PPARγ): a review. Biochem Pharmacol 2014; 92:73-89. [PMID: 25083916 PMCID: PMC4212005 DOI: 10.1016/j.bcp.2014.07.018] [Citation(s) in RCA: 432] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 07/18/2014] [Accepted: 07/21/2014] [Indexed: 12/13/2022]
Abstract
Agonists of the nuclear receptor PPARγ are therapeutically used to combat hyperglycaemia associated with the metabolic syndrome and type 2 diabetes. In spite of being effective in normalization of blood glucose levels, the currently used PPARγ agonists from the thiazolidinedione type have serious side effects, making the discovery of novel ligands highly relevant. Natural products have proven historically to be a promising pool of structures for drug discovery, and a significant research effort has recently been undertaken to explore the PPARγ-activating potential of a wide range of natural products originating from traditionally used medicinal plants or dietary sources. The majority of identified compounds are selective PPARγ modulators (SPPARMs), transactivating the expression of PPARγ-dependent reporter genes as partial agonists. Those natural PPARγ ligands have different binding modes to the receptor in comparison to the full thiazolidinedione agonists, and on some occasions activate in addition PPARα (e.g. genistein, biochanin A, sargaquinoic acid, sargahydroquinoic acid, resveratrol, amorphastilbol) or the PPARγ-dimer partner retinoid X receptor (RXR; e.g. the neolignans magnolol and honokiol). A number of in vivo studies suggest that some of the natural product activators of PPARγ (e.g. honokiol, amorfrutin 1, amorfrutin B, amorphastilbol) improve metabolic parameters in diabetic animal models, partly with reduced side effects in comparison to full thiazolidinedione agonists. The bioactivity pattern as well as the dietary use of several of the identified active compounds and plant extracts warrants future research regarding their therapeutic potential and the possibility to modulate PPARγ activation by dietary interventions or food supplements.
Collapse
Affiliation(s)
- Limei Wang
- Department of Pharmacognosy, University of Vienna, Austria
| | - Birgit Waltenberger
- Institute of Pharmacy/Pharmacognosy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Austria
| | | | - Martina Blunder
- Institute of Pharmaceutical Sciences, Department of Pharmacognosy, University of Graz, Austria
| | - Xin Liu
- Institute of Pharmaceutical Sciences, Department of Pharmacognosy, University of Graz, Austria
| | | | - Tina Blazevic
- Department of Pharmacognosy, University of Vienna, Austria
| | - Stefan Schwaiger
- Institute of Pharmacy/Pharmacognosy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Austria
| | - Judith M Rollinger
- Institute of Pharmacy/Pharmacognosy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Austria
| | - Elke H Heiss
- Department of Pharmacognosy, University of Vienna, Austria
| | - Daniela Schuster
- Institute of Pharmacy/Pharmaceutical Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Austria
| | - Brigitte Kopp
- Department of Pharmacognosy, University of Vienna, Austria
| | - Rudolf Bauer
- Institute of Pharmaceutical Sciences, Department of Pharmacognosy, University of Graz, Austria
| | - Hermann Stuppner
- Institute of Pharmacy/Pharmacognosy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Austria
| | | | | |
Collapse
|
40
|
Pferschy-Wenzig EM, Atanasov AG, Malainer C, Noha S, Kunert O, Schuster D, Heiss EH, Oberlies NH, Wagner H, Bauer R, Dirsch VM. Identification of isosilybin a from milk thistle seeds as an agonist of peroxisome proliferator-activated receptor gamma. JOURNAL OF NATURAL PRODUCTS 2014; 77:842-7. [PMID: 24597776 PMCID: PMC4003856 DOI: 10.1021/np400943b] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Indexed: 06/02/2023]
Abstract
Peroxisome proliferator-activated receptor gamma (PPARγ) is a key regulator of glucose and lipid metabolism. Agonists of this nuclear receptor are used in the treatment of type 2 diabetes and are also studied as a potential treatment of other metabolic diseases, including nonalcoholic fatty liver disease. Silymarin, a concentrated phenolic mixture from milk thistle (Silybum marianum) seeds, is used widely as a supportive agent in the treatment of a variety of liver diseases. In this study, the PPARγ activation potential of silymarin and its main constituents was investigated. Isosilybin A (3) caused transactivation of a PPARγ-dependent luciferase reporter in a concentration-dependent manner. This effect could be reversed upon co-treatment with the PPARγ antagonist T0070907. In silico docking studies suggested a binding mode for 3 distinct from that of the inactive silymarin constituents, with one additional hydrogen bond to Ser342 in the entrance region of the ligand-binding domain of the receptor. Hence, isosilybin A (3) has been identified as the first flavonolignan PPARγ agonist, suggesting its further investigation as a modulator of this nuclear receptor.
Collapse
Affiliation(s)
| | | | | | - Stefan
M. Noha
- Institute
of Pharmacy/Pharmaceutical Chemistry and Center for Molecular Biosciences
Innsbruck (CMBI), University of Innsbruck, Austria
| | - Olaf Kunert
- Institute
of Pharmaceutical Sciences, Department of Pharmaceutical Chemistry, University Graz, Austria
| | - Daniela Schuster
- Institute
of Pharmacy/Pharmaceutical Chemistry and Center for Molecular Biosciences
Innsbruck (CMBI), University of Innsbruck, Austria
| | - Elke H. Heiss
- Department
of Pharmacognosy, University of Vienna, Austria
| | - Nicholas H. Oberlies
- Department
of Chemistry & Biochemistry, University
of North Carolina at Greensboro, Greensboro, North Carolina, United States
| | - Hildebert Wagner
- Department
für Pharmazie, Zentrum für Pharmazieforschung, Ludwig Maximilians Universität München, Germany
| | - Rudolf Bauer
- Institute
of Pharmaceutical Sciences, Department of Pharmacognosy, University Graz, Austria
| | | |
Collapse
|
41
|
Nehrenheim K, Meyer I, Brenden H, Vielhaber G, Krutmann J, Grether-Beck S. Dihydrodehydrodiisoeugenol enhances adipocyte differentiation and decreases lipolysis in murine and human cells. Exp Dermatol 2013; 22:638-43. [DOI: 10.1111/exd.12218] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2013] [Indexed: 12/17/2022]
Affiliation(s)
- Katja Nehrenheim
- IUF - Leibniz Research Institute for Environmental Medicine; Düsseldorf; Germany
| | | | - Heidi Brenden
- IUF - Leibniz Research Institute for Environmental Medicine; Düsseldorf; Germany
| | | | - Jean Krutmann
- IUF - Leibniz Research Institute for Environmental Medicine; Düsseldorf; Germany
| | - Susanne Grether-Beck
- IUF - Leibniz Research Institute for Environmental Medicine; Düsseldorf; Germany
| |
Collapse
|
42
|
Atanasov AG, Wang JN, Gu SP, Bu J, Kramer MP, Baumgartner L, Fakhrudin N, Ladurner A, Malainer C, Vuorinen A, Noha SM, Schwaiger S, Rollinger JM, Schuster D, Stuppner H, Dirsch VM, Heiss EH. Honokiol: a non-adipogenic PPARγ agonist from nature. Biochim Biophys Acta Gen Subj 2013; 1830:4813-9. [PMID: 23811337 PMCID: PMC3790966 DOI: 10.1016/j.bbagen.2013.06.021] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 06/03/2013] [Accepted: 06/17/2013] [Indexed: 12/12/2022]
Abstract
Background Peroxisome proliferator-activated receptor gamma (PPARγ) agonists are clinically used to counteract hyperglycemia. However, so far experienced unwanted side effects, such as weight gain, promote the search for new PPARγ activators. Methods We used a combination of in silico, in vitro, cell-based and in vivo models to identify and validate natural products as promising leads for partial novel PPARγ agonists. Results The natural product honokiol from the traditional Chinese herbal drug Magnolia bark was in silico predicted to bind into the PPARγ ligand binding pocket as dimer. Honokiol indeed directly bound to purified PPARγ ligand-binding domain (LBD) and acted as partial agonist in a PPARγ-mediated luciferase reporter assay. Honokiol was then directly compared to the clinically used full agonist pioglitazone with regard to stimulation of glucose uptake in adipocytes as well as adipogenic differentiation in 3T3-L1 pre-adipocytes and mouse embryonic fibroblasts. While honokiol stimulated basal glucose uptake to a similar extent as pioglitazone, it did not induce adipogenesis in contrast to pioglitazone. In diabetic KKAy mice oral application of honokiol prevented hyperglycemia and suppressed weight gain. Conclusion We identified honokiol as a partial non-adipogenic PPARγ agonist in vitro which prevented hyperglycemia and weight gain in vivo. General significance This observed activity profile suggests honokiol as promising new pharmaceutical lead or dietary supplement to combat metabolic disease, and provides a molecular explanation for the use of Magnolia in traditional medicine. Honokiol is identified and characterized as novel partial PPARγ agonist from nature. In cell models honokiol increases glucose uptake but is not adipogenic. In KKAy diabetic mice it decreases blood glucose and suppresses weight gain. PPARγ agonism of honokiol may explain the use of Magnolia bark in traditional medicine.
Collapse
Affiliation(s)
- Atanas G. Atanasov
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Jian N. Wang
- Xi Yuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100093, China
| | - Shi P. Gu
- Xi Yuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100093, China
| | - Jing Bu
- Xi Yuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100093, China
| | - Matthias P. Kramer
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Lisa Baumgartner
- Institute of Pharmacy/Pharmacognosy, Center of Molecular Biosciences, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Nanang Fakhrudin
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Angela Ladurner
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Clemens Malainer
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Anna Vuorinen
- Institute of Pharmacy/Pharmaceutical Chemistry, Center of Molecular Biosciences, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Stefan M. Noha
- Institute of Pharmacy/Pharmaceutical Chemistry, Center of Molecular Biosciences, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Stefan Schwaiger
- Institute of Pharmacy/Pharmacognosy, Center of Molecular Biosciences, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Judith M. Rollinger
- Institute of Pharmacy/Pharmacognosy, Center of Molecular Biosciences, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Daniela Schuster
- Institute of Pharmacy/Pharmaceutical Chemistry, Center of Molecular Biosciences, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Hermann Stuppner
- Institute of Pharmacy/Pharmacognosy, Center of Molecular Biosciences, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Verena M. Dirsch
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Elke H. Heiss
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
- Corresponding author. Tel.: + 43 1 4277 55993; fax: + 43 1 4277 55969.
| |
Collapse
|
43
|
Polyacetylenes from Notopterygium incisum--new selective partial agonists of peroxisome proliferator-activated receptor-gamma. PLoS One 2013; 8:e61755. [PMID: 23630612 PMCID: PMC3632601 DOI: 10.1371/journal.pone.0061755] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 03/12/2013] [Indexed: 12/22/2022] Open
Abstract
Peroxisome proliferator-activated receptor gamma (PPARγ) is a key regulator of glucose and lipid metabolism and therefore an important pharmacological target to combat metabolic diseases. Since the currently used full PPARγ agonists display serious side effects, identification of novel ligands, particularly partial agonists, is highly relevant. Searching for new active compounds, we investigated extracts of the underground parts of Notopterygium incisum, a medicinal plant used in traditional Chinese medicine, and observed significant PPARγ activation using a PPARγ-driven luciferase reporter model. Activity-guided fractionation of the dichloromethane extract led to the isolation of six polyacetylenes, which displayed properties of selective partial PPARγ agonists in the luciferase reporter model. Since PPARγ activation by this class of compounds has so far not been reported, we have chosen the prototypical polyacetylene falcarindiol for further investigation. The effect of falcarindiol (10 µM) in the luciferase reporter model was blocked upon co-treatment with the PPARγ antagonist T0070907 (1 µM). Falcarindiol bound to the purified human PPARγ receptor with a Ki of 3.07 µM. In silico docking studies suggested a binding mode within the ligand binding site, where hydrogen bonds to Cys285 and Glu295 are predicted to be formed in addition to extensive hydrophobic interactions. Furthermore, falcarindiol further induced 3T3-L1 preadipocyte differentiation and enhanced the insulin-induced glucose uptake in differentiated 3T3-L1 adipocytes confirming effectiveness in cell models with endogenous PPARγ expression. In conclusion, we identified falcarindiol-type polyacetylenes as a novel class of natural partial PPARγ agonists, having potential to be further explored as pharmaceutical leads or dietary supplements.
Collapse
|
44
|
Identification of PPARgamma partial agonists of natural origin (II): in silico prediction in natural extracts with known antidiabetic activity. PLoS One 2013; 8:e55889. [PMID: 23405231 PMCID: PMC3566095 DOI: 10.1371/journal.pone.0055889] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 01/07/2013] [Indexed: 12/11/2022] Open
Abstract
Background Natural extracts have played an important role in the prevention and treatment of diseases and are important sources for drug discovery. However, to be effectively used in these processes, natural extracts must be characterized through the identification of their active compounds and their modes of action. Methodology/Principal Findings From an initial set of 29,779 natural products that are annotated with their natural source and using a previously developed virtual screening procedure (carefully validated experimentally), we have predicted as potential peroxisome proliferators-activated receptor gamma (PPARγ) partial agonists 12 molecules from 11 extracts known to have antidiabetic activity. Six of these molecules are similar to molecules with described antidiabetic activity but whose mechanism of action is unknown. Therefore, it is plausible that these 12 molecules could be the bioactive molecules responsible, at least in part, for the antidiabetic activity of the extracts containing them. In addition, we have also identified as potential PPARγ partial agonists 10 molecules from 16 plants with undescribed antidiabetic activity but that are related (i.e., they are from the same genus) to plants with known antidiabetic properties. None of the 22 molecules that we predict as PPARγ partial agonists show chemical similarity with a group of 211 known PPARγ partial agonists obtained from the literature. Conclusions/Significance Our results provide a new hypothesis about the active molecules of natural extracts with antidiabetic properties and their mode of action. We also suggest plants with undescribed antidiabetic activity that may contain PPARγ partial agonists. These plants represent a new source of potential antidiabetic extracts. Consequently, our work opens the door to the discovery of new antidiabetic extracts and molecules that can be of use, for instance, in the design of new antidiabetic drugs or functional foods focused towards the prevention/treatment of type 2 Diabetes Mellitus.
Collapse
|
45
|
Identification of PPARgamma partial agonists of natural origin (I): development of a virtual screening procedure and in vitro validation. PLoS One 2012; 7:e50816. [PMID: 23226391 PMCID: PMC3511273 DOI: 10.1371/journal.pone.0050816] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 10/29/2012] [Indexed: 11/19/2022] Open
Abstract
Background Although there are successful examples of the discovery of new PPARγ agonists, it has recently been of great interest to identify new PPARγ partial agonists that do not present the adverse side effects caused by PPARγ full agonists. Consequently, the goal of this work was to design, apply and validate a virtual screening workflow to identify novel PPARγ partial agonists among natural products. Methodology/Principal Findings We have developed a virtual screening procedure based on structure-based pharmacophore construction, protein-ligand docking and electrostatic/shape similarity to discover novel scaffolds of PPARγ partial agonists. From an initial set of 89,165 natural products and natural product derivatives, 135 compounds were identified as potential PPARγ partial agonists with good ADME properties. Ten compounds that represent ten new chemical scaffolds for PPARγ partial agonists were selected for in vitro biological testing, but two of them were not assayed due to solubility problems. Five out of the remaining eight compounds were confirmed as PPARγ partial agonists: they bind to PPARγ, do not or only moderately stimulate the transactivation activity of PPARγ, do not induce adipogenesis of preadipocyte cells and stimulate the insulin-induced glucose uptake of adipocytes. Conclusions/Significance We have demonstrated that our virtual screening protocol was successful in identifying novel scaffolds for PPARγ partial agonists.
Collapse
|
46
|
Ortuño Sahagún D, Márquez-Aguirre AL, Quintero-Fabián S, López-Roa RI, Rojas-Mayorquín AE. Modulation of PPAR-γ by Nutraceutics as Complementary Treatment for Obesity-Related Disorders and Inflammatory Diseases. PPAR Res 2012; 2012:318613. [PMID: 23251142 PMCID: PMC3515933 DOI: 10.1155/2012/318613] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 10/03/2012] [Accepted: 10/23/2012] [Indexed: 12/16/2022] Open
Abstract
A direct correlation between adequate nutrition and health is a universally accepted truth. The Western lifestyle, with a high intake of simple sugars, saturated fat, and physical inactivity, promotes pathologic conditions. The main adverse consequences range from cardiovascular disease, type 2 diabetes, and metabolic syndrome to several cancers. Dietary components influence tissue homeostasis in multiple ways and many different functional foods have been associated with various health benefits when consumed. Natural products are an important and promising source for drug discovery. Many anti-inflammatory natural products activate peroxisome proliferator-activated receptors (PPAR); therefore, compounds that activate or modulate PPAR-gamma (PPAR-γ) may help to fight all of these pathological conditions. Consequently, the discovery and optimization of novel PPAR-γ agonists and modulators that would display reduced side effects is of great interest. In this paper, we present some of the main naturally derived products studied that exert an influence on metabolism through the activation or modulation of PPAR-γ, and we also present PPAR-γ-related diseases that can be complementarily treated with nutraceutics from functional foods.
Collapse
Affiliation(s)
- D. Ortuño Sahagún
- Laboratorio de Desarrollo y Regeneración Neural, Instituto de Neurobiología, Departamento de Biología Celular y Molecular, CUCBA, Universidad de Guadalajara, camino Ing. R. Padilla Sánchez 2100, Las Agujas, 44600 Zapopan JAL, Mexico
| | - A. L. Márquez-Aguirre
- Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C., 44270 Guadalajara, JAL, Mexico
| | - S. Quintero-Fabián
- Laboratorio de Desarrollo y Regeneración Neural, Instituto de Neurobiología, Departamento de Biología Celular y Molecular, CUCBA, Universidad de Guadalajara, camino Ing. R. Padilla Sánchez 2100, Las Agujas, 44600 Zapopan JAL, Mexico
- Departamento de Farmacobiología, CUCEI, Universidad de Guadalajara, Boulevard Marcelino García Barragán, 44430 Tlaquepaque, JAL, Mexico
| | - R. I. López-Roa
- Departamento de Farmacobiología, CUCEI, Universidad de Guadalajara, Boulevard Marcelino García Barragán, 44430 Tlaquepaque, JAL, Mexico
| | - A. E. Rojas-Mayorquín
- Departamento de Ciencias Ambientales, Instituto de Neurociencias, CUCBA, Universidad de Guadalajara, 45100, JAL, Mexico
- Departamento de Investigación Básica, Instituto Nacional de Geriatría (INGER), Periférico Sur No. 2767, Col, San Jerónimo Lídice, Delegación Magdalena Contreras 10200, México DF, Mexico
| |
Collapse
|
47
|
Bauer J, Waltenberger B, Noha SM, Schuster D, Rollinger JM, Boustie J, Chollet M, Stuppner H, Werz O. Discovery of depsides and depsidones from lichen as potent inhibitors of microsomal prostaglandin E2 synthase-1 using pharmacophore models. ChemMedChem 2012; 7:2077-81. [PMID: 23109349 DOI: 10.1002/cmdc.201200345] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2012] [Indexed: 12/13/2022]
Abstract
Nature in silico: Virtual screening using validated pharmacophore models identified lichen depsides and depsidones as potential inhibitors of mPGES-1, an emerging target for NSAIDs. Evaluation of the virtual hits in a cell-free assay revealed physodic acid and perlatolic acid as potent inhibitors of mPGES-1 (IC(50) = 0.4 and 0.43 μM, respectively), indicating that these natural products have potential as novel anti-inflammatory agents.
Collapse
Affiliation(s)
- Julia Bauer
- Department of Pharmaceutical Analytics, Pharmaceutical Institute, University of Tuebingen, Auf der Morgenstelle 8, 72076 Tuebingen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
Despite the known benefits of a healthy lifestyle, many individuals find it hard to maintain such a lifestyle in our modern world, which facilitates sedentary behavior and overeating. As a consequence, the prevalence of type 2 diabetes mellitus is predicted to increase dramatically over the coming years. Will developments in treatments be able to counteract the resulting impact on morbidity and mortality? The various lines of research can be grouped into three main categories: technological, biological, and pharmacological. Technological solutions are focused on the delivery of insulin and glucagon via an artificial pancreas, and components of the system are already in use, suggesting this option may well be available within the next 10 years. Of the biological solutions, pancreas transplants seem unlikely to be used widely, and islet cell transplants have also been hampered by a lack of appropriate donor tissue and graft survival after transplant. However, significant progress has been made in these areas, and additional research suggests manipulating other cell types to replace beta cells may be a viable option in the longer term. The last category, pharmacological research, appears the most promising for significantly reducing the burden of type 2 diabetes mellitus. In recent years, research has concentrated on reducing blood glucose, and the increasing pace of research has been reflected in a growing number of antidiabetic agents. In the past few years, studies of the complementary approach of protecting cells from the damaging effects of high blood glucose have also been reported, as has research into the control of energy intake and energy expenditure. Evidence from studies of dietary restriction and bariatric surgery suggests it may be possible to reset metabolism to effectively cure diabetes, and research into pharmacological agents that could selectively restore energy balance is currently the most exciting prospect for future treatments for people with type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Mansur Shomali
- The Diabetes and Endocrine Center, MedStar Union Memorial Hospital, 201 East University Parkway, 33rd Street Professional Building, Suite 501, Baltimore, MD 21218, USA
| |
Collapse
|
49
|
Choi SS, Cha BY, Lee YS, Yonezawa T, Teruya T, Nagai K, Woo JT. Honokiol and magnolol stimulate glucose uptake by activating PI3K-dependent Akt in L6 myotubes. Biofactors 2012; 38:372-7. [PMID: 22674833 DOI: 10.1002/biof.1029] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Accepted: 04/27/2012] [Indexed: 01/09/2023]
Abstract
Honokiol and magnolol, ingredients of Magnolia officinalis, which is used in traditional Chinese and Japanese medicines, have been reported to have antioxidant, anticancer, and antiangiogenic effects. Effects of these compounds on glucose metabolism in adipocytes have also been reported. However, their effects on skeletal muscle glucose uptake and the underlying molecular mechanisms are still unknown. Here, we investigated the direct effects and signaling pathways activated by honokiol and magnolol in skeletal muscle cells using L6 myotubes. We found that honokiol and magnolol dose-dependently acutely stimulated glucose uptake without synergistic effects of combined administration in L6 myotubes. Treatment with honokiol and magnolol also stimulated glucose transporter-4 translocation to the cell surface. Honokiol- and magnolol-stimulated glucose uptake was blocked by the phosphatidylinositol-3 kinase inhibitor, wortmannin. Both honokiol and magnolol stimulated Akt phosphorylation, a key element in the insulin signaling pathway, which was completely inhibited by wortmannin. These results suggest that honokiol and magnolol might have beneficial effects on glucose metabolism by activating the insulin signaling pathway.
Collapse
Affiliation(s)
- Sun-Sil Choi
- Research Institute for Biological Functions, Chubu University, Kasugai, Aichi, Japan
| | | | | | | | | | | | | |
Collapse
|
50
|
Paola Mascia M, Fabbri D, Antonietta Dettori M, Ledda G, Delogu G, Biggio G. Hydroxylated biphenyl derivatives are positive modulators of human GABA(A) receptors. Eur J Pharmacol 2012; 693:45-50. [PMID: 22959356 DOI: 10.1016/j.ejphar.2012.07.048] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 07/19/2012] [Accepted: 07/30/2012] [Indexed: 11/17/2022]
Abstract
A series of 7 hydroxylated biphenyl derivatives (1-7) were prepared to evaluate their ability to modulate the function of several ligand gated ion channel (LGIC) recombinant receptors expressed in Xenopus laevis oocytes. Compounds 1, 3, 4, 6 and 7 are natural occurring compounds whereas the synthesis of compounds 2 and 5 was previously reported (Delogu et al., 2004; Fabbri et al., 2007). None of the compounds tested were able to modify, the activity of the strychnine-sensitive glycine receptor, or the activity of nicotinic receptor. The function of the 5HT(3A) receptor was partially inhibited by all compounds tested, however this inhibition occurred at relatively high concentrations (100 μM). All compounds, with the exception of compound 6, potentiate the action of gamma-aminobutyric acid (GABA)-evoked Cl(-) currents in Xenopus laevis oocytes expressing recombinant human α(1)β(2)γ(2L) GABA(A) receptors. Compounds 1, 2, 5 and 7 enhance the function of the GABA(A) receptor at concentrations higher than 3-10 μM. Compound 4 was the most efficacious. However, compound 3 was the most potent (EC(50) 0.8 μM). The potency of compound 3 in modulating the function of the GABA(A) receptor was comparable to that of diazepam, propofol or allopregnanolone. The enhancement of the GABA evoked Cl(-) currents by compound 3 was not affected by flumazenil. Compound 3 did not induce loss of the righting reflex in rats suggesting that it is not an anesthetic agent, however, its ability in protecting the animals from seizures induced by picrotoxin confirm that its action occurs through the GABA(A) receptor.
Collapse
Affiliation(s)
- Maria Paola Mascia
- CNR-Institute of Neuroscience, Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy.
| | | | | | | | | | | |
Collapse
|