1
|
König JK, Fitzgerald JM, Malic E. Magneto-Optics of Anisotropic Exciton Polaritons in Two-Dimensional Perovskites. NANO LETTERS 2025; 25:8519-8526. [PMID: 40358924 DOI: 10.1021/acs.nanolett.5c00910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Layered two-dimensional (2D) organic-inorganic perovskite semiconductors support strongly confined excitons that offer significant potential for ultrathin polaritonic devices due to their tunability and huge oscillator strength. The application of a magnetic field has proven to be an invaluable tool for investigating the exciton fine structure observed in these materials, yet the combination of an in-plane magnetic field and the strong coupling regime has remained largely unexplored. In this work, we combine microscopic theory with a rigorous solution of Maxwell's equations to model the magneto-optics of exciton polaritons in 2D perovskites. We predict that the brightened dark exciton state can enter the strong coupling regime. Furthermore, the magnetic-field-induced mixing of polarization selection rules and the breaking of in-plane symmetry lead to highly anisotropic polariton branches. This study contributes to a better understanding of the exciton fine structure in 2D perovskites and demonstrates the cavity control of anisotropic and polarization-sensitive exciton polaritons.
Collapse
Affiliation(s)
- Jonas K König
- Fachbereich Physik, Philipps-Universität, Marburg 35032, Germany
| | | | - Ermin Malic
- Fachbereich Physik, Philipps-Universität, Marburg 35032, Germany
| |
Collapse
|
2
|
George A, Carson RB, Gracias DJ, Ugras TJ, Robinson RD, Musser AJ. Near-UV Tunable Polaritons from Magic-Size Clusters. ACS NANO 2025; 19:16438-16447. [PMID: 40261917 DOI: 10.1021/acsnano.4c17355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Stronglight-matter coupling to form polaritons has gained significant attention for its applications in materials engineering, optoelectronics, and beyond. The combined properties of their underlying states allow for numerous advantages such as delocalization over long distances, room-temperature Bose-Einstein condensation, and tunability of energy states. Few exciton-polariton systems, however, reach into the UV, and identifying ideal materials that possess large oscillator strengths, large exciton binding energies, ease of processing, and that are stable for device integration has proven challenging. Here, we demonstrate that CdS magic-size clusters (MSCs) combine all these traits. Simple solution processing in metallic Fabry-Perot (FP) cavities enables the MSCs to exhibit room-temperature strong coupling, as demonstrated by the square root dependence of Rabi splitting on chromophore concentration. Rabi splitting as large as 390 meV can be achieved, with emission from polariton states spanning from 3.07 eV (403 nm) to 3.64 eV (340 nm). When Rabi splittings are normalized by the excitonic line width, this system is comparable with high-performing systems in the visible range and surpasses reported UV polariton systems. The strong UV absorption of these MSCs establishes a platform to develop stable polaritonic devices with tunability across the near-UV.
Collapse
Affiliation(s)
- Aleesha George
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14850, United States
| | - River B Carson
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Daniel J Gracias
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Thomas J Ugras
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States
| | - Richard D Robinson
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, New York 14853, United States
| | - Andrew J Musser
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14850, United States
| |
Collapse
|
3
|
Kala A, Sharp D, Choi M, Manna A, Deshmukh P, Kizhake Veetil V, Menon V, Pelton M, Waks E, Majumdar A. Opportunities and Challenges of Solid-State Quantum Nonlinear Optics. ACS NANO 2025; 19:14557-14578. [PMID: 40208262 DOI: 10.1021/acsnano.4c14992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
Nonlinear interactions between photons are fundamentally weak as the photons do not interact directly with each other, and any interaction is mediated by matter. This has motivated researchers over many decades to search for strongly nonlinear materials (by controlling electronic properties) and optical resonators with strong spatial and temporal confinement of light. An extreme form of nonlinear optics is quantum nonlinear optics, where we can realize nonlinear interaction between single photons. Such quantum nonlinear optics is at the heart of any photonic quantum information system including analog quantum simulation and fault-tolerant quantum computing. While engineering light-matter interactions can effectively create photon-photon interactions, the required photon number to observe any nonlinearity are normally very high, where any quantum-mechanical signature disappears. However, with emerging low-dimensional materials and engineered photonic resonators, the photon number can be reduced to reach the quantum nonlinear optical regime. In this review paper, we discuss different mechanisms exploited in solid-state platforms to attain quantum nonlinear optics. We review emerging materials and optical resonator architectures with different dimensionalities. We also present future research directions and open problems in this field.
Collapse
Affiliation(s)
- Abhinav Kala
- Department of Electrical and Computer Engineering, University of Washington, Seattle, Washington 98195, United States
| | - David Sharp
- Department of Physics, University of Washington, Seattle, Washington 98195, United States
| | - Minho Choi
- Department of Electrical and Computer Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Arnab Manna
- Department of Physics, University of Washington, Seattle, Washington 98195, United States
| | - Prathmesh Deshmukh
- Department of Physics, The Graduate Center, City University of New York, New York, New York 10016, United States
- Department of Physics, City College of New York, City University of New York, New York, New York 10031, United States
| | - Vijin Kizhake Veetil
- Department of Physics, UMBC (University of Maryland, Baltimore County), Baltimore, Maryland 21250, United States
| | - Vinod Menon
- Department of Physics, The Graduate Center, City University of New York, New York, New York 10016, United States
- Department of Physics, City College of New York, City University of New York, New York, New York 10031, United States
| | - Matthew Pelton
- Department of Physics, UMBC (University of Maryland, Baltimore County), Baltimore, Maryland 21250, United States
| | - Edo Waks
- Institute for Research in Electronics and Applied Physics and Joint Quantum Institute, University of Maryland, College Park, Maryland 20742, United States
- Department of Electrical and Computer Engineering, University of Maryland, College Park, Maryland 20740, United States
| | - Arka Majumdar
- Department of Electrical and Computer Engineering, University of Washington, Seattle, Washington 98195, United States
- Department of Physics, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
4
|
Glebov NV, Masharin MA, Yulin A, Mikhin A, Miah MR, Demir HV, Krizhanovskii DN, Kravtsov V, Samusev AK, Makarov SV. Room-Temperature Exciton-Polariton-Driven Self-Phase Modulation in Planar Perovskite Waveguides. ACS NANO 2025; 19:14097-14106. [PMID: 40168581 DOI: 10.1021/acsnano.4c18847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2025]
Abstract
Optical nonlinearities are crucial for advanced photonic technologies since they allow photons to be managed by photons. Exciton-polaritons resulting from strong light-matter coupling are hybrid in nature: they combine the small mass and high coherence of photons with strong nonlinearity enabled by excitons, making them ideal for ultrafast all-optical manipulations. Among the most prospective polaritonic materials are halide perovskites since they require neither cryogenic temperatures nor expensive fabrication techniques. Here, we study strikingly nonlinear self-action of ultrashort polaritonic pulses propagating in planar MAPbBr3 perovskite slab waveguides. Tuning the input pulse energy and central frequency, we experimentally observe various scenarios of its nonlinear evolution in the spectral domain, which include peak shifts, narrowing, or splitting driven by self-phase modulation, group velocity dispersion, and self-steepening. The theoretical model provides complementary temporal traces of pulse propagation and reveals the transition from the birth of a doublet of optical solitons to the formation of a shock wave, both supported by the system. Our results presented here represent an important step in ultrafast nonlinear on-chip polaritonics in perovskite-based systems.
Collapse
Affiliation(s)
- Nikita V Glebov
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Mikhail A Masharin
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Alexei Yulin
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
| | - Alexey Mikhin
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
| | - Md Rumon Miah
- Department of Electrical and Electronics Engineering, Department of Physics, UNAM - Institute of Materials Science and Nanotechnology and The National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey
| | - Hilmi Volkan Demir
- Department of Electrical and Electronics Engineering, Department of Physics, UNAM - Institute of Materials Science and Nanotechnology and The National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey
- Luminous! Center of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronic Engineering, School of Physical and Mathematical Sciences, and School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Dmitry N Krizhanovskii
- Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, United Kingdom
| | - Vasily Kravtsov
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
| | - Anton K Samusev
- Experimentelle Physik 2, Technische Universität Dortmund, 44227 Dortmund, Germany
| | - Sergey V Makarov
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao 266000, Shandong, China
| |
Collapse
|
5
|
Zhang M, Jin L, Zhang T, Jiang X, Li M, Guan Y, Fu Y. Two-dimensional organic-inorganic hybrid perovskite quantum-well nanowires enabled by directional noncovalent intermolecular interactions. Nat Commun 2025; 16:2997. [PMID: 40148364 PMCID: PMC11950231 DOI: 10.1038/s41467-025-58166-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 03/14/2025] [Indexed: 03/29/2025] Open
Abstract
Layered 2D semiconductors, when grown into 1D nanowires, can exhibit excellent optical and electronic properties, promising for nanoscale optoelectronics and photonics. However, rational strategies to grow such nanowires are lacking. Here, we present a large family of quantum-well nanowires made from 2D organic-inorganic hybrid metal halide perovskites with tunable well thickness, organic spacer cations, halide anions, and metal cations, achieved by harnessing directional nonvalent intermolecular interactions present among certain spacer cations. The unusual 1D anisotropic growth within the 2D plane is induced by preferential self-assembly of selected spacer cations along the direction of stronger intermolecular interactions and further promoted by crystal growth engineering. Owing to the intrinsic 2D quantum-well-like crystal structures and 1D photon confinement at the subwavelength scale, these nanowires exhibit robust exciton-photon coupling, with Rabi splitting energies of up to 700 meV, as well as wavelength-tunable and more efficient lasing compared to exfoliated crystals.
Collapse
Affiliation(s)
- Meng Zhang
- Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Leyang Jin
- Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Tianhao Zhang
- Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Xiaofan Jiang
- Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Mingyuan Li
- Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Yan Guan
- Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Yongping Fu
- Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
6
|
Elyamny S, Bracamonte AG. Enhanced coupling of perovskites with semiconductive properties by tuning multi-modal optically active nanostructured set-ups for photonics, photovoltaics and energy applications. RSC Adv 2025; 15:5571-5596. [PMID: 40007863 PMCID: PMC11851274 DOI: 10.1039/d5ra00458f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Accepted: 01/24/2025] [Indexed: 02/27/2025] Open
Abstract
This review describes the coupling of semiconducting materials with perovskites as main optically active elements for enhancing the performance depending on the optical set-up and coupling phenomena. The various uses of semiconductor nanoparticles and related nanomaterials for energy conduction and harvesting are discussed. Thus, it was obtained different materials highlighting the properties of perovskites incorporated within heterojunctions and hybrid nanomaterials where varied materials and sources were joined. Different multi-layered substrates are reported, and different strategies for improved electron and energy transfer and harvesting are elucidated Further, enhanced coupling of semiconductive properties for the above-mentioned processes is discussed. In this regard, various nanomaterials and their properties for improving energy applications such as solar cells are demonstrated. Moreover, the incorporation of plasmonic properties from different noble metal sources and pseudo-electromagnetic properties from graphene and carbon allotropes is discussed. Since variations in electromagnetic fields affect the semiconductive properties, it leads to varying effects and potential applications within the energy research field. Hence, this review could guide the development within energy research fields as nanophotonics, photovoltaics, and energy. This review is mainly focused on the development of solar energy cells by incorporating perovskites with varied hybrid nanomaterials, photonic materials, and metamaterials.
Collapse
Affiliation(s)
- Shaimaa Elyamny
- Electronic Materials Research Department, Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications (SRTA-City) New Borg El-Arab City, P.O. Box 21934 Alexandria Egypt
| | - A Guillermo Bracamonte
- Departamento Académico, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba X5000HUA Córdoba Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET, Instituto de Investigaciones en Fisicoquímica de Córdoba (INFIQC) X5000HUA Córdoba Argentina
| |
Collapse
|
7
|
Qin T, Zhang X, Liu H, Wei Y, Huang H, Xiang B, Zhang M, Wang Z, Tang Z, Xiong Q. Coherent Exciton Spin Relaxation Dynamics and Exciton Polaron Character in Layered Two-Dimensional Lead-Halide Perovskites. ACS NANO 2025; 19:4186-4194. [PMID: 39849818 DOI: 10.1021/acsnano.4c08591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
The quantum-well-like two-dimensional lead-halide perovskites exhibit strongly confined excitons due to the quantum confinement and reduced dielectric screening effect, which feature intriguing excitonic effects. The ionic nature of the perovskite crystal and the "softness" of the lattice induce the complex lattice dynamics. There are still open questions about how the soft lattices decorate the nature of excitons in these hybrid materials. Herein, we reveal the polaronic character of excitons and coherent exciton spin relaxation dynamics in layered hybrid perovskites by using chirality-dependent impulsive vibrational spectroscopy. We identify an intrinsic exciton spin dynamics property, giving rise to a short spin relaxation lifetime in the sub-picosecond time scale. The exciton polaron formation is confirmed by the blue-shift of the phonon frequency under resonant conditions compared to that in below-resonance excitation cases. The phonon vibrational wavepackets show a cosine- and sine-like oscillation as a function of time via on- and below-resonance excitation scenarios due to the displacive and impulsive mechanisms, respectively. Our findings provide profound insights concerning the polaronic character of excitons in two-dimensional perovskites, underpinning the prospective developments in optical and optoelectronic applications.
Collapse
Affiliation(s)
- Tingxiao Qin
- Beijing Academy of Quantum Information Sciences, Beijing 100193, P. R. China
| | - Xiu Zhang
- Beijing Academy of Quantum Information Sciences, Beijing 100193, P. R. China
| | - Haiyun Liu
- Beijing Academy of Quantum Information Sciences, Beijing 100193, P. R. China
| | - Yi Wei
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Haiyun Huang
- Beijing Academy of Quantum Information Sciences, Beijing 100193, P. R. China
| | - Baixu Xiang
- State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, P. R. China
| | - Mengdi Zhang
- Beijing Academy of Quantum Information Sciences, Beijing 100193, P. R. China
| | - Zhaohui Wang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Zhiyong Tang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Qihua Xiong
- Beijing Academy of Quantum Information Sciences, Beijing 100193, P. R. China
- State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, P. R. China
- Frontier Science Center for Quantum Information, Beijing 100084, P. R. China
- Collaborative Innovation Center of Quantum Matter, Beijing 100084, P. R. China
| |
Collapse
|
8
|
Bai P, Peng S. A general model for designing the chirality of exciton-polaritons. NANOPHOTONICS (BERLIN, GERMANY) 2025; 14:407-416. [PMID: 39967778 PMCID: PMC11831404 DOI: 10.1515/nanoph-2024-0662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 01/14/2025] [Indexed: 02/20/2025]
Abstract
Chirality of exciton-polaritons can be tuned by the chirality of photons, excitons, and their coupling strength. In this work, we propose a general analytical model based on coupled harmonic oscillators to describe the chirality of exciton-polaritons. Our model predicts the degree of circular polarization (DCP) of exciton-polaritons, which is determined by the DCPs and weight fractions of the constituent excitons and photons. At the anticrossing point, the DCP of exciton-polaritons is equally contributed from both constituents. Away from the anticrossing point, the DCP of exciton-polaritons relaxes toward the DCP of the dominant constituent, with the relaxation rate decreasing as the coupling strength increases. We validate our model through simulations of strongly coupled topological edge states and excitons, showing good agreement with model predictions. Our model provides a valuable tool for designing the chirality of strong coupling systems and offers a framework for the inverse design of exciton-polaritons with tailored chirality.
Collapse
Affiliation(s)
- Ping Bai
- School of Engineering, Westlake University, Hangzhou, Zhejiang310030, China
| | - Siying Peng
- Research Center for Industries of the Future and School of Engineering, Westlake University, Hangzhou, Zhejiang310030, China
| |
Collapse
|
9
|
Zhang L, Ge M, Zhao B, Xu K, Xie W, Zou Z, Li W, Zhao J, Wang T, Du W. Room-Temperature Exciton Polaritons in a Monolayer Molecular Crystal. NANO LETTERS 2024; 24:16072-16080. [PMID: 39641351 DOI: 10.1021/acs.nanolett.4c04562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Strong coupling between excitons and photons in optical microcavities leads to the formation of exciton polaritons, which maintain both the coherence of light and the interaction of matter. Recently, atomically thin monolayer semiconductors with a large exciton oscillator strength and high exciton binding energy have been widely used for realizing room-temperature exciton polaritons. Here, we demonstrated room-temperature exciton polaritons with a monolayer molecular crystal. The molecular monolayers behave as J-aggregates with comparable oscillator strength and narrow line width as inorganic monolayers, enabling exciton-photon strong coupling at the monolayer limit. Moreover, the coupling strength can be tuned systematically via engineering the in-plane polarization or by using a vertical stack of multiple molecular monolayers. Our research provides a new material platform for realizing strong light-matter interactions inside optical microcavities at room temperature and may motivate the development of molecular-crystal-based exciton-polaritonic devices with novel functions and new possibilities.
Collapse
Affiliation(s)
- Lan Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P. R. China
| | - Maowen Ge
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P. R. China
| | - Boxiang Zhao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P. R. China
| | - Kai Xu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P. R. China
| | - Wenhao Xie
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P. R. China
| | - Zhen Zou
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P. R. China
| | - Wenfei Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P. R. China
| | - Jiaxin Zhao
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Tao Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P. R. China
| | - Wei Du
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P. R. China
| |
Collapse
|
10
|
Eledath-Changarath M, Gualdrón-Reyes AF, Rodríguez-Romero J, Mora-Seró I, Suárez I, Canet-Albiach R, Asensio MC, P. Martínez-Pastor J, Boichuk A, Boichuk T, Sánchez-Royo JF, Krečmarová M. Origin of Persisting Photoresponse of One-Year Aged Two-Dimensional Lead Halide Perovskites Stored in Air under Dark Conditions. ACS APPLIED MATERIALS & INTERFACES 2024; 16:64123-64135. [PMID: 39500488 PMCID: PMC11583978 DOI: 10.1021/acsami.4c11096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/10/2024] [Accepted: 10/15/2024] [Indexed: 11/22/2024]
Abstract
Two-dimensional halide perovskites are promising for advanced photonic, optoelectronic, and photovoltaic applications. However, their long-term stability is still a critical factor limiting their implementation into further commercial applications. Here, we present an environmental stability analysis of BA2(MA)n-1PbnI3n+1 (BA = C4H12N+, MA = CH6N+) two-dimensional perovskites with the lowest quantum well thicknesses of n = 1 and n = 2, after 1 year of aging under ambient humidity, oxygen content, and light conditions. We observed that both crystal phases (n = 1 and 2) degraded similarly, resulting in the removal of organic components and crystal decomposition into PbI2, Pb oxides, and Pb hydroxides. However, we have found a significant difference between their aging under ambient light and dark conditions, affecting their degraded morphology and photoactivity. Both crystal phases exposed to ambient light aged into a morphology characterized by the formation of several pinholes and voids, accompanied by photoluminescence degradation. Samples stored under dark conditions surprisingly preserved their photoluminescence activity, which morphologically aged into microrod structures. We conclude that the observed loss of photoactivity of 2D perovskites aged under ambient light is attributed to photoaccelerated degradation processes causing faster crystal surface photo-oxidation accompanied by a creation of multiple I vacancies and hydration of the inner crystal. The retainment of photoactivity in 2D perovskites aged under dark conditions is attributed to slower surface oxidation processes into Pb salts, as confirmed by X-ray photoemission spectroscopy. The formed surface layer even allows for a layer-by-layer degradation and acts as a protection barrier against further additional loss of I atoms and the consequent hydration of the inner part of samples. We demonstrate that light is the most critical external factor accelerating 2D perovskite degradation processes in ambient air and thus affecting their long-term stability. We conclude in this work that perovskite material structural engineering together with their surface passivation or encapsulation strategical techniques applied is an essential step for their further application into long-term stable commercial devices.
Collapse
Affiliation(s)
| | - Andrés F. Gualdrón-Reyes
- Institute
of Advanced Materials (INAM), Universitat
Jaume I, Castellón 12006, Spain
- Facultad
de Ciencias, Instituto de Ciencias Químicas, Isla Teja, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Jesús Rodríguez-Romero
- Institute
of Advanced Materials (INAM), Universitat
Jaume I, Castellón 12006, Spain
- Facultad
de Química, Universidad Nacional
Autónoma de México, Circuito Exterior s/n, C.U., Coyoacán 04510, Mexico
| | - Iván Mora-Seró
- Institute
of Advanced Materials (INAM), Universitat
Jaume I, Castellón 12006, Spain
| | - Isaac Suárez
- Instituto
de Ciencia de Materiales, Universidad de
Valencia (ICMUV), Valencia 46071, Spain
- Departamento
de Ingeniería Electrónica, Escuela Técnica Superior
de Ingeniería, Universidad de Valencia, Burjassot 46100, Spain
| | - Rodolfo Canet-Albiach
- Instituto
de Ciencia de Materiales, Universidad de
Valencia (ICMUV), Valencia 46071, Spain
| | - Maria C. Asensio
- Instituto
de Ciencia de Materiales de Madrid (ICMM), CSIC, Madrid 28049, Spain
- MATINÉE:
CSIC Associated Unit (ICMM-ICMUV), Universidad
de Valencia, Valencia 46071, Spain
| | - Juan P. Martínez-Pastor
- Instituto
de Ciencia de Materiales, Universidad de
Valencia (ICMUV), Valencia 46071, Spain
- MATINÉE:
CSIC Associated Unit (ICMM-ICMUV), Universidad
de Valencia, Valencia 46071, Spain
| | - Andrii Boichuk
- Instituto
de Ciencia de Materiales, Universidad de
Valencia (ICMUV), Valencia 46071, Spain
- King Danylo
University, Ivano-Frankivsk 76000, Ukraine
| | - Tetiana Boichuk
- Instituto
de Ciencia de Materiales, Universidad de
Valencia (ICMUV), Valencia 46071, Spain
| | - Juan F. Sánchez-Royo
- Instituto
de Ciencia de Materiales, Universidad de
Valencia (ICMUV), Valencia 46071, Spain
- MATINÉE:
CSIC Associated Unit (ICMM-ICMUV), Universidad
de Valencia, Valencia 46071, Spain
| | - Marie Krečmarová
- Instituto
de Ciencia de Materiales, Universidad de
Valencia (ICMUV), Valencia 46071, Spain
| |
Collapse
|
11
|
Yumoto G, Harata F, Nakamura T, Wakamiya A, Kanemitsu Y. Electrically switchable chiral nonlinear optics in an achiral ferroelectric 2D van der Waals halide perovskite. SCIENCE ADVANCES 2024; 10:eadq5521. [PMID: 39536092 DOI: 10.1126/sciadv.adq5521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024]
Abstract
Two-dimensional (2D) van der Waals (vdW) semiconductors play a key role in developing nanoscale nonlinear optical devices. 2D Ruddlesden-Popper lead halide perovskites (RPPs) expand the potential of using 2D vdW semiconductors in nonlinear optical applications because they exhibit electrically switchable and chiral second-order optical nonlinearity originating from the emergence of ferroelectricity and chirality. However, electrically switchable chiral nonlinear optics has not yet been realized because of the difficulty in electrically manipulating chiral structures. Here, we demonstrate that chiral second-harmonic generation (SHG) can be electrically induced and switched in an achiral biaxial ferroelectric 2D RPP. We observe reversible and continuous electrical switching of SHG circular dichroism and large nonlinear chiroptical activity. Polarization-resolved SHG imaging reveals that electrical poling induces the ferroelectric multidomain structure arising from the biaxial nature of the material, and the planar chirality appears. Our findings show a simple electrical control of the nonlinear chiroptical responses and establish chiral nonlinear optics based on ferroelectric 2D RPPs.
Collapse
Affiliation(s)
- Go Yumoto
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Fuyuki Harata
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Tomoya Nakamura
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Atsushi Wakamiya
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Yoshihiko Kanemitsu
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
12
|
Kędziora M, Opala A, Mastria R, De Marco L, Król M, Łempicka-Mirek K, Tyszka K, Ekielski M, Guziewicz M, Bogdanowicz K, Szerling A, Sigurðsson H, Czyszanowski T, Szczytko J, Matuszewski M, Sanvitto D, Piętka B. Predesigned perovskite crystal waveguides for room-temperature exciton-polariton condensation and edge lasing. NATURE MATERIALS 2024; 23:1515-1522. [PMID: 39160353 DOI: 10.1038/s41563-024-01980-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 07/24/2024] [Indexed: 08/21/2024]
Abstract
Perovskite crystals-with their exceptional nonlinear optical properties, lasing and waveguiding capabilities-offer a promising platform for integrated photonic circuitry within the strong-coupling regime at room temperature. Here we demonstrate a versatile template-assisted method to efficiently fabricate large-scale waveguiding perovskite crystals of arbitrarily predefined geometry such as microwires, couplers and splitters. We non-resonantly stimulate a condensate of waveguided exciton-polaritons resulting in bright polariton lasing from the transverse interfaces and corners of our perovskite microstructures. Large blueshifts with excitation power and high mutual coherence between the different edge and corner lasing signals are detected in the far-field photoluminescence, implying that a spatially extended condensates of coherent polaritons has formed. The condensate polaritons are found to propagate over long distances in the wires from the excitation spot and can couple to neighbouring wires through large air gaps, making our platform promising for integrated polaritonic circuitry and on-chip optical devices with strong nonlinearities.
Collapse
Affiliation(s)
- Mateusz Kędziora
- Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
| | - Andrzej Opala
- Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
- Institute of Physics, Polish Academy of Sciences, Warsaw, Poland
| | | | | | - Mateusz Król
- Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
- ARC Centre of Excellence in Future Low-Energy Electronics Technologies and Department of Quantum Science and Technology, Research School of Physics, The Australian National University, Canberra, Australian Capital Territory, Australia
| | | | - Krzysztof Tyszka
- Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
| | - Marek Ekielski
- Łukasiewicz Research Network-Institute of Microelectronics and Photonics, Warsaw, Poland
| | - Marek Guziewicz
- Łukasiewicz Research Network-Institute of Microelectronics and Photonics, Warsaw, Poland
| | - Karolina Bogdanowicz
- Łukasiewicz Research Network-Institute of Microelectronics and Photonics, Warsaw, Poland
- Institute of Physics, Łódź University of Technology, Łódź, Poland
| | - Anna Szerling
- Łukasiewicz Research Network-Institute of Microelectronics and Photonics, Warsaw, Poland
| | - Helgi Sigurðsson
- Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
- Science Institute, University of Iceland, Reykjavik, Iceland
| | | | - Jacek Szczytko
- Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
| | - Michał Matuszewski
- Institute of Physics, Polish Academy of Sciences, Warsaw, Poland
- Center for Theoretical Physics, Polish Academy of Sciences, Warsaw, Poland
| | | | - Barbara Piętka
- Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland.
| |
Collapse
|
13
|
Black M, Asadi M, Darman P, Seçkin S, Schillmöller F, König TAF, Darbari S, Talebi N. Long-Range Self-Hybridized Exciton-Polaritons in Two-Dimensional Ruddlesden-Popper Perovskites. ACS PHOTONICS 2024; 11:4065-4075. [PMID: 39429863 PMCID: PMC11487709 DOI: 10.1021/acsphotonics.4c00824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 10/22/2024]
Abstract
Lead halide perovskites have emerged as platforms for exciton-polaritonic studies at room temperature, thanks to their excellent photoluminescence efficiency and synthetic versatility. In this work, we find proof of strong exciton-photon coupling in cavities formed by the layered crystals themselves, a phenomenon known as the self-hybridization effect. We use multilayers of high-quality Ruddlesden-Popper perovskites in their 2D crystalline form, benefiting from their quantum-well excitonic resonances and the strong Fabry-Pérot cavity modes resulting from the total internal reflection at their smooth surfaces. Optical spectroscopy reveals bending of the cavity modes typical for exciton-polariton formation, and absorption and photoluminescence spectroscopy shows splitting of the excitonic resonance and thickness-dependent peak positions. Strikingly, local optical excitation with energy below the excitonic resonance of the flakes in photoluminescence measurements unveils the coupling of light to in-plane polaritonic modes with directed propagation. These exciton-polaritons exhibit high coupling efficiencies and extremely low loss propagation mechanisms, which are confirmed by finite difference time domain simulations. Thus, we prove that mesoscopic 2D Ruddlesden-Popper perovskite flakes represent an effective but simple system to study the rich physics of exciton-polaritons at room temperature.
Collapse
Affiliation(s)
- Maximilian Black
- Institute
of Experimental and Applied Physics, Kiel
University, Kiel 24098, Germany
| | - Mehdi Asadi
- Nano-Sensors
and Detectors Lab., Faculty of Electrical and Computer Engineering, Tarbiat Modares University, Tehran 1411713116, Iran
| | - Parsa Darman
- Nano-Sensors
and Detectors Lab., Faculty of Electrical and Computer Engineering, Tarbiat Modares University, Tehran 1411713116, Iran
| | - Sezer Seçkin
- Leibniz-Institut
für Polymerforschung Dresden e.V., Dresden 01069, Germany
| | - Finja Schillmöller
- Institute
of Experimental and Applied Physics, Kiel
University, Kiel 24098, Germany
| | - Tobias A. F. König
- Leibniz-Institut
für Polymerforschung Dresden e.V., Dresden 01069, Germany
- Center
for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, Dresden 01062, Germany
- Faculty
of Chemistry and Food Chemistry, Technische
Universität Dresden, Dresden 01069, Germany
| | - Sara Darbari
- Institute
of Experimental and Applied Physics, Kiel
University, Kiel 24098, Germany
- Nano-Sensors
and Detectors Lab., Faculty of Electrical and Computer Engineering, Tarbiat Modares University, Tehran 1411713116, Iran
| | - Nahid Talebi
- Institute
of Experimental and Applied Physics, Kiel
University, Kiel 24098, Germany
- Kiel
Nano,
Surface, and Interface Science KiNSIS, Kiel
University, Kiel 24118, Germany
| |
Collapse
|
14
|
Dang NHM, Zanotti S, Drouard E, Chevalier C, Trippé-Allard G, Deleporte E, Seassal C, Gerace D, Nguyen HS. Long-Range Ballistic Propagation of 80% Excitonic Fraction Polaritons in a Perovskite Metasurface at Room Temperature. NANO LETTERS 2024; 24:11839-11846. [PMID: 39268715 DOI: 10.1021/acs.nanolett.4c02696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
Exciton-polaritons, hybrid light-matter excitations arising from the strong coupling between excitons in semiconductors and photons in photonic nanostructures, are crucial for exploring the physics of quantum fluids of light and developing all-optical devices. Achieving room temperature propagation of polaritons with a large excitonic fraction is challenging but vital, e.g., for nonlinear light transport. We report on room temperature propagation of exciton-polaritons in a metasurface made from a subwavelength lattice of perovskite pillars. The large Rabi splitting, much greater than the optical phonon energy, decouples the lower polariton band from the phonon bath of the perovskite. These cooled polaritons, in combination with the high group velocity achieved through the metasurface design, enable long-range propagation, exceeding hundreds of micrometers even with an 80% excitonic component. Furthermore, the design of the metasurface introduces an original mechanism for unidirectional propagation through polarization control, suggesting a new avenue for the development of advanced polaritonic devices.
Collapse
Affiliation(s)
- Nguyen Ha My Dang
- Université Lyon, Ecole Centrale de Lyon, CNRS, INSA Lyon, Université Claude Bernard Lyon 1, CPE Lyon, CNRS, INL, UMR5270, Ecully 69130, France
| | - Simone Zanotti
- Dipartimento di Fisica, Università di Pavia, via Bassi 6, I-27100 Pavia, Italy
| | - Emmanuel Drouard
- Université Lyon, Ecole Centrale de Lyon, CNRS, INSA Lyon, Université Claude Bernard Lyon 1, CPE Lyon, CNRS, INL, UMR5270, Ecully 69130, France
| | - Céline Chevalier
- Université Lyon, Ecole Centrale de Lyon, CNRS, INSA Lyon, Université Claude Bernard Lyon 1, CPE Lyon, CNRS, INL, UMR5270, Ecully 69130, France
| | - Gaëlle Trippé-Allard
- Université Paris-Saclay, ENS Paris-Saclay, CentraleSupélec, CNRS, Lumière, Matière et Interfaces (LuMIn) Laboratory, 91190 Gif-sur-Yvette, France
| | - Emmanuelle Deleporte
- Université Paris-Saclay, ENS Paris-Saclay, CentraleSupélec, CNRS, Lumière, Matière et Interfaces (LuMIn) Laboratory, 91190 Gif-sur-Yvette, France
| | - Christian Seassal
- Université Lyon, Ecole Centrale de Lyon, CNRS, INSA Lyon, Université Claude Bernard Lyon 1, CPE Lyon, CNRS, INL, UMR5270, Ecully 69130, France
| | - Dario Gerace
- Dipartimento di Fisica, Università di Pavia, via Bassi 6, I-27100 Pavia, Italy
| | - Hai Son Nguyen
- Université Lyon, Ecole Centrale de Lyon, CNRS, INSA Lyon, Université Claude Bernard Lyon 1, CPE Lyon, CNRS, INL, UMR5270, Ecully 69130, France
- Institut Universitaire de France (IUF), 75231 Paris, France
| |
Collapse
|
15
|
Song X, Liu X, Zhang D, Liao J, Zhu S, Zheng W. High-Contrast Thermochromism in Room-Temperature Transparent Layered Perovskite PEA 2PbBr 4 with a High Temperature-Induced Bandgap Change Rate of 0.8 meV/K. J Am Chem Soc 2024; 146:24670-24680. [PMID: 39164896 DOI: 10.1021/jacs.4c09090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Two-dimensional organic-inorganic hybrid layered perovskites have emerged as a new generation of optoelectronic materials. However, the thermochromism in organic-inorganic hybrid layered perovskites has been rarely explored in depth. A further understanding of the mechanism is necessary and favorable for the application. Here, transparent centimeter-sized single crystals of the organic-inorganic hybrid layered perovskite (C6H5C2H4NH3)2PbBr4 (PEA2PbBr4) were synthesized using an improved evaporation method. As a typical organic-inorganic hybrid layered perovskite, the PEA2PbBr4 single crystal shows high-contrast and progressive thermochromism exhibiting a change from colorlessness and transparency to lemon yellow in a wide temperature range of 200-450 K. Based on the calculation through the Varshni equation, the temperature-induced bandgap change rate directly associated with the high-contrast thermochromism of PEA2PbBr4 reaching 0.8 meV/K. This value is higher than that of many three-dimensional perovskites and traditional IV-III semiconductors. Furthermore, the temperature-dependent 193 nm photoluminescence spectra suggest that this high temperature-induced bandgap change rate of PEA2PbBr4 is a result of the competitive interaction between lattice thermal expansion and electron-phonon coupling (Fröhlich coupling coefficient ΓLO = 2.215). Based on the characteristics introduced above, PEA2PbBr4 as an organic-inorganic hybrid layered perovskite has a better performance in achieving the balance between high-contrast and high room-temperature transmittance. Therefore, PEA2PbBr4 is a material with great potential in applications like temperature-indicating labels. This work provides valuable insights into the thermochromism of layered perovskites, offering a new material system and approach for developing thermochromic materials with higher sensitivity and efficiency.
Collapse
Affiliation(s)
- Xiaoyu Song
- School of Materials, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Xinsheng Liu
- School of Materials, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Danwen Zhang
- School of Materials, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Jingyan Liao
- School of Materials, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Siqi Zhu
- School of Materials, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Wei Zheng
- School of Materials, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| |
Collapse
|
16
|
Zhao J, Fieramosca A, Bao R, Dini K, Su R, Sanvitto D, Xiong Q, Liew TCH. Room temperature polariton spin switches based on Van der Waals superlattices. Nat Commun 2024; 15:7601. [PMID: 39217138 PMCID: PMC11366025 DOI: 10.1038/s41467-024-51612-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
Transition-metal dichalcogenide monolayers possess large exciton binding energy and a robust valley degree of freedom, making them a viable platform for the development of spintronic devices capable of operating at room temperature. The development of such monolayer TMD-based spintronic devices requires strong spin-dependent interactions and effective spin transport. This can be achieved by employing exciton-polaritons. These hybrid light-matter states arising from the strong coupling of excitons and photons allow high-speed in-plane propagation and strong nonlinear interactions. Here, we demonstrate the operation of all-optical polariton spin switches by incorporating a WS2 superlattice into a planar microcavity. We demonstrate spin-anisotropic polariton nonlinear interactions in a WS2 superlattice at room temperature. As a proof-of-concept, we utilize these spin-dependent interactions to implement different spin switch geometries at ambient conditions, which show intrinsic sub-picosecond switching time and small footprint. Our findings offer new perspectives on manipulations of the polarization state in polaritonic systems and highlight the potential of atomically thin semiconductors for the development of next generation information processing devices.
Collapse
Affiliation(s)
- Jiaxin Zhao
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore
| | | | - Ruiqi Bao
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore
| | - Kevin Dini
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore
| | - Rui Su
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, Singapore
| | - Daniele Sanvitto
- CNR NANOTEC Institute of Nanotechnology, via Monteroni, Lecce, Italy
| | - Qihua Xiong
- State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, P.R. China.
- Frontier Science Center for Quantum Information, Beijing, P.R. China.
- Beijing Academy of Quantum Information Sciences, Beijing, P.R. China.
- Beijing Innovation Center for Future Chips, Tsinghua University, Beijing, P.R. China.
| | - Timothy C H Liew
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
17
|
Fieramosca A, Mastria R, Dini K, Dominici L, Polimeno L, Pugliese M, Prontera CT, De Marco L, Maiorano V, Todisco F, Ballarini D, De Giorgi M, Gigli G, Liew TCH, Sanvitto D. Origin of Exciton-Polariton Interactions and Decoupled Dark States Dynamics in 2D Hybrid Perovskite Quantum Wells. NANO LETTERS 2024; 24:8240-8247. [PMID: 38925628 PMCID: PMC11247545 DOI: 10.1021/acs.nanolett.4c00418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
The realization of efficient optical devices depends on the ability to harness strong nonlinearities, which are challenging to achieve with standard photonic systems. Exciton-polaritons formed in hybrid organic-inorganic perovskites offer a promising alternative, exhibiting strong interactions at room temperature (RT). Despite recent demonstrations showcasing a robust nonlinear response, further progress is hindered by an incomplete understanding of the microscopic mechanisms governing polariton interactions in perovskite-based strongly coupled systems. Here, we investigate the nonlinear properties of quasi-2D dodecylammonium lead iodide perovskite (n3-C12) crystals embedded in a planar microcavity. Polarization-resolved pump-probe measurements reveal the contribution of indirect exchange interactions assisted by dark states formation. Additionally, we identify a strong dependence of the unique spin-dependent interaction of polaritons on sample detuning. The results are pivotal for the advancement of polaritonics, and the tunability of the robust spin-dependent anisotropic interaction in n3-C12 perovskites makes this material a powerful choice for the realization of polaritonic circuits.
Collapse
Affiliation(s)
- Antonio Fieramosca
- CNR NANOTEC Institute of Nanotechnology, Via Monteroni, Lecce 73100, Italy
| | - Rosanna Mastria
- CNR NANOTEC Institute of Nanotechnology, Via Monteroni, Lecce 73100, Italy
| | - Kevin Dini
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Lorenzo Dominici
- CNR NANOTEC Institute of Nanotechnology, Via Monteroni, Lecce 73100, Italy
| | - Laura Polimeno
- CNR NANOTEC Institute of Nanotechnology, Via Monteroni, Lecce 73100, Italy
| | - Marco Pugliese
- CNR NANOTEC Institute of Nanotechnology, Via Monteroni, Lecce 73100, Italy
| | | | - Luisa De Marco
- CNR NANOTEC Institute of Nanotechnology, Via Monteroni, Lecce 73100, Italy
| | - Vincenzo Maiorano
- CNR NANOTEC Institute of Nanotechnology, Via Monteroni, Lecce 73100, Italy
| | - Francesco Todisco
- CNR NANOTEC Institute of Nanotechnology, Via Monteroni, Lecce 73100, Italy
| | - Dario Ballarini
- CNR NANOTEC Institute of Nanotechnology, Via Monteroni, Lecce 73100, Italy
| | - Milena De Giorgi
- CNR NANOTEC Institute of Nanotechnology, Via Monteroni, Lecce 73100, Italy
| | - Giuseppe Gigli
- CNR NANOTEC Institute of Nanotechnology, Via Monteroni, Lecce 73100, Italy
- Department of Mathematics and Physics Ennio De Giorgi, University of Salento, Via Arnesano, Lecce 73100, Italy
| | - Timothy C H Liew
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Daniele Sanvitto
- CNR NANOTEC Institute of Nanotechnology, Via Monteroni, Lecce 73100, Italy
| |
Collapse
|
18
|
Polimeno L, Coriolano A, Mastria R, Todisco F, De Giorgi M, Fieramosca A, Pugliese M, Prontera CT, Rizzo A, De Marco L, Ballarini D, Gigli G, Sanvitto D. Room Temperature Polariton Condensation from Whispering Gallery Modes in CsPbBr 3 Microplatelets. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312131. [PMID: 38632702 DOI: 10.1002/adma.202312131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/28/2024] [Indexed: 04/19/2024]
Abstract
Room temperature (RT) polariton condensate holds exceptional promise for revolutionizing various fields of science and technology, encompassing optoelectronics devices to quantum information processing. Using perovskite materials, like all-inorganic cesium lead bromide (CsPbBr3) single crystal, provides additional advantages, such as ease of synthesis, cost-effectiveness, and compatibility with existing semiconductor technologies. In this work, the formation of whispering gallery modes (WGM) in CsPbBr3 single crystals with controlled geometry is shown, synthesized using a low-cost and efficient capillary bridge method. Through the implementation of microplatelets geometry, enhanced optical properties and performance are achieved due to the presence of sharp edges and a uniform surface, effectively avoiding non-radiative scattering losses caused by defects. This allows not only to observe strong light matter coupling and formation of whispering gallery polaritons, but also to demonstrate the onset of polariton condensation at RT. This investigation not only contributes to the advancement of the knowledge concerning the exceptional optical properties of perovskite-based polariton systems, but also unveils prospects for the exploration of WGM polariton condensation within the framework of a 3D perovskite-based platform, working at RT. The unique characteristics of polariton condensate, including low excitation thresholds and ultrafast dynamics, open up unique opportunities for advancements in photonics and optoelectronics devices.
Collapse
Affiliation(s)
- Laura Polimeno
- CNR Nanotec, Institute of Nanotechnology, via Monteroni, Lecce, 73100, Italy
| | - Annalisa Coriolano
- CNR Nanotec, Institute of Nanotechnology, via Monteroni, Lecce, 73100, Italy
| | - Rosanna Mastria
- CNR Nanotec, Institute of Nanotechnology, via Monteroni, Lecce, 73100, Italy
| | - Francesco Todisco
- CNR Nanotec, Institute of Nanotechnology, via Monteroni, Lecce, 73100, Italy
| | - Milena De Giorgi
- CNR Nanotec, Institute of Nanotechnology, via Monteroni, Lecce, 73100, Italy
| | - Antonio Fieramosca
- CNR Nanotec, Institute of Nanotechnology, via Monteroni, Lecce, 73100, Italy
| | - Marco Pugliese
- CNR Nanotec, Institute of Nanotechnology, via Monteroni, Lecce, 73100, Italy
| | - Carmela T Prontera
- CNR Nanotec, Institute of Nanotechnology, via Monteroni, Lecce, 73100, Italy
| | - Aurora Rizzo
- CNR Nanotec, Institute of Nanotechnology, via Monteroni, Lecce, 73100, Italy
| | - Luisa De Marco
- CNR Nanotec, Institute of Nanotechnology, via Monteroni, Lecce, 73100, Italy
| | - Dario Ballarini
- CNR Nanotec, Institute of Nanotechnology, via Monteroni, Lecce, 73100, Italy
| | - Giuseppe Gigli
- CNR Nanotec, Institute of Nanotechnology, via Monteroni, Lecce, 73100, Italy
- Dipartimento di Matematica e Fisica "Ennio de Giorgi", Universitá del Salento, Lecce, 73100, Italy
| | - Daniele Sanvitto
- CNR Nanotec, Institute of Nanotechnology, via Monteroni, Lecce, 73100, Italy
| |
Collapse
|
19
|
Zhang Q, Zhao M, Li Y, Bian A, El-Bashar R, Abdelhamid H, Obayya SSA, Hameed MFO, Dai J. Polarization dependent exciton-plasmon coupling in PEA 2PbI 4/Al and its application to perovskite solar cell. OPTICS EXPRESS 2024; 32:25327-25342. [PMID: 39538947 DOI: 10.1364/oe.529605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 06/14/2024] [Indexed: 11/16/2024]
Abstract
This paper reports the strong coupling between Al nanostructure and two-dimensional (2D) layered perovskite PEA2PbI4 (PEPI) films. The high exciton binding energy of 118 meV and long carrier lifetime of 216 ps are characterized from the 2D PEA2PbI4 film, which indicates that the excitons in perovskite are robust and can couple to metal plasmons. The ordinary and extraordinary optical dispersions are revealed from the anisotropic 2D perovskite. The transmission spectra of PEA2PbI4/Al nanoparticle arrays are simulated under different polarization excitations, and the typical anti-crossing behaviors originating from exciton-plasmon strong coupling are demonstrated. We found that compared with transverse magnetic (TM) polarization, transverse electric (TE) polarization excitation is more conducive to the realization of exciton-plasmon coupling with a larger Rabi splitting. Furthermore, the PEA2PbI4/Al nanoparticle arrays are proposed, which present polarization-dependent local electrical field enhancement due to the exciton-local surface plasmon polariton coupling. Additionally, it is noticed that the proposed plasmonic structure increases the photo-generation rate inside the active material with improved current density. Therefore, the 2D proposed plasmonic design increases the power conversion efficiency (PCE) with an enhancement of 3.3% and 1.3% relative to the planar structures for TE and TM polarizations, respectively. This study provides a deeper understanding of polarized exciton-plasmon coupling properties, promoting the development of the field of plasmon and providing guidance for the design and preparation of efficient optoelectronic devices.
Collapse
|
20
|
Riisnaes KJ, Alshehri M, Leontis I, Mastria R, Lam HT, De Marco L, Coriolano A, Craciun MF, Russo S. 2D Hybrid Perovskite Sensors for Environmental and Healthcare Monitoring. ACS APPLIED MATERIALS & INTERFACES 2024; 16:31399-31406. [PMID: 38836799 PMCID: PMC11195008 DOI: 10.1021/acsami.4c02966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 06/06/2024]
Abstract
Layered perovskites, a novel class of two-dimensional (2D) layered materials, exhibit versatile photophysical properties of great interest in photovoltaics and optoelectronics. However, their instability to environmental factors, particularly water, has limited their utility. In this study, we introduce an innovative solution to the problem by leveraging the unique properties of natural beeswax as a protective coating of 2D-fluorinated phenylethylammonium lead iodide perovskite. These photodetectors show outstanding figures of merit, such as a responsivity of >2200 A/W and a detectivity of 2.4 × 1018 Jones. The hydrophobic nature of beeswax endows the 2D perovskite sensors with an unprecedented resilience to prolonged immersion in contaminated water, and it increases the lifespan of devices to a period longer than one year. At the same time, the biocompatibility of the beeswax and its self-cleaning properties make it possible to use the very same turbidity sensors for healthcare in photoplethysmography and monitor the human heartbeat with clear systolic and diastolic signatures. Beeswax-enabled multipurpose optoelectronics paves the way to sustainable electronics by ultimately reducing the need for multiple components.
Collapse
Affiliation(s)
- Karl Jonas Riisnaes
- Centre
for Graphene Science, College of Engineering, Mathematics and Physical
Sciences, University of Exeter, Exeter EX4 4QL, U.K.
| | - Mohammed Alshehri
- Centre
for Graphene Science, College of Engineering, Mathematics and Physical
Sciences, University of Exeter, Exeter EX4 4QL, U.K.
| | - Ioannis Leontis
- Centre
for Graphene Science, College of Engineering, Mathematics and Physical
Sciences, University of Exeter, Exeter EX4 4QL, U.K.
| | - Rosanna Mastria
- Centre
for Graphene Science, College of Engineering, Mathematics and Physical
Sciences, University of Exeter, Exeter EX4 4QL, U.K.
- Institute
of Nanotechnology, Via
Monteroni, Lecce 73100, Italy
| | - Hoi Tung Lam
- Centre
for Graphene Science, College of Engineering, Mathematics and Physical
Sciences, University of Exeter, Exeter EX4 4QL, U.K.
| | - Luisa De Marco
- Institute
of Nanotechnology, Via
Monteroni, Lecce 73100, Italy
| | | | - Monica Felicia Craciun
- Centre
for Graphene Science, College of Engineering, Mathematics and Physical
Sciences, University of Exeter, Exeter EX4 4QL, U.K.
| | - Saverio Russo
- Centre
for Graphene Science, College of Engineering, Mathematics and Physical
Sciences, University of Exeter, Exeter EX4 4QL, U.K.
| |
Collapse
|
21
|
Peng K, Li W, Berloff NG, Zhang X, Bao W. Room temperature polaritonic soft-spin XY Hamiltonian in organic-inorganic halide perovskites. NANOPHOTONICS (BERLIN, GERMANY) 2024; 13:2651-2658. [PMID: 39678663 PMCID: PMC11636516 DOI: 10.1515/nanoph-2023-0818] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/04/2024] [Indexed: 12/17/2024]
Abstract
Exciton-polariton condensates, due to their nonlinear and coherent characteristics, have been employed to construct spin Hamiltonian lattices for potentially studying spin glass, critical dephasing, and even solving optimization problems. Here, we report the room-temperature polariton condensation and polaritonic soft-spin XY Hamiltonian lattices in an organic-inorganic halide perovskite microcavity. This is achieved through the direct integration of high-quality single-crystal samples within the cavity. The ferromagnetic and antiferromagnetic couplings in both one- and two-dimensional condensate lattices have been observed clearly. Our work shows a nonlinear organic-inorganic hybrid perovskite platform for future investigations as polariton simulators.
Collapse
Affiliation(s)
- Kai Peng
- Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
- Nanoscale Science and Engineering Center, University of California, Berkeley, CA, USA
| | - Wei Li
- Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Natalia G. Berloff
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, UK
| | - Xiang Zhang
- Nanoscale Science and Engineering Center, University of California, Berkeley, CA, USA
- Faculty of Science and Faculty of Engineering, The University of Hong Kong, Hong Kong, China
| | - Wei Bao
- Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
- Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| |
Collapse
|
22
|
Betzold S, Düreth J, Dusel M, Emmerling M, Bieganowska A, Ohmer J, Fischer U, Höfling S, Klembt S. Dirac Cones and Room Temperature Polariton Lasing Evidenced in an Organic Honeycomb Lattice. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400672. [PMID: 38605674 DOI: 10.1002/advs.202400672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/24/2024] [Indexed: 04/13/2024]
Abstract
Artificial 1D and 2D lattices have emerged as a powerful platform for the emulation of lattice Hamiltonians, the fundamental study of collective many-body effects, and phenomena arising from non-trivial topology. Exciton-polaritons, bosonic part-light and part-matter quasiparticles, combine pronounced nonlinearities with the possibility of on-chip implementation. In this context, organic semiconductors embedded in microcavities have proven to be versatile candidates to study nonlinear many-body physics and bosonic condensation, and in contrast to most inorganic systems, they allow the use at ambient conditions since they host ultra-stable Frenkel excitons. A well-controlled, high-quality optical lattice is implemented that accommodates light-matter quasiparticles. The realized polariton graphene presents with excellent cavity quality factors, showing distinct signatures of Dirac cone and flatband dispersions as well as polariton lasing at room temperature. This is realized by filling coupled dielectric microcavities with the fluorescent protein mCherry. The emergence of a coherent polariton condensate at ambient conditions are demonstrated, taking advantage of coupling conditions as precise and controllable as in state-of-the-art inorganic semiconductor-based systems, without the limitations of e.g. lattice matching in epitaxial growth. This progress allows straightforward extension to more complex systems, such as the study of topological phenomena in 2D lattices including topological lasers and non-Hermitian optics.
Collapse
Affiliation(s)
- Simon Betzold
- Lehrstuhl für Technische Physik, Physikalisches Institut and Würzburg-Dresden Cluster of Excellence ct.qmat, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Johannes Düreth
- Lehrstuhl für Technische Physik, Physikalisches Institut and Würzburg-Dresden Cluster of Excellence ct.qmat, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Marco Dusel
- Lehrstuhl für Technische Physik, Physikalisches Institut and Würzburg-Dresden Cluster of Excellence ct.qmat, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Monika Emmerling
- Lehrstuhl für Technische Physik, Physikalisches Institut and Würzburg-Dresden Cluster of Excellence ct.qmat, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Antonina Bieganowska
- Department of Experimental Physics, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wyb. Wyspiańskiego 27, Wroclaw, 50-370, Poland
| | - Jürgen Ohmer
- Department of Biochemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Utz Fischer
- Department of Biochemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Sven Höfling
- Lehrstuhl für Technische Physik, Physikalisches Institut and Würzburg-Dresden Cluster of Excellence ct.qmat, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Sebastian Klembt
- Lehrstuhl für Technische Physik, Physikalisches Institut and Würzburg-Dresden Cluster of Excellence ct.qmat, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| |
Collapse
|
23
|
Łempicka-Mirek K, Król M, De Marco L, Coriolano A, Polimeno L, Viola I, Kędziora M, Muszyński M, Morawiak P, Mazur R, Kula P, Piecek W, Fita P, Sanvitto D, Szczytko J, Piętka B. Electrical polarization switching of perovskite polariton laser. NANOPHOTONICS (BERLIN, GERMANY) 2024; 13:2659-2668. [PMID: 39678658 PMCID: PMC11636435 DOI: 10.1515/nanoph-2023-0829] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/06/2024] [Indexed: 12/17/2024]
Abstract
Optoelectronic and spinoptronic technologies benefit from flexible and tunable coherent light sources combining the best properties of nano- and material-engineering to achieve favorable properties such as chiral lasing and low threshold nonlinearities. In this work we demonstrate an electrically wavelength- and polarization-tunable room temperature polariton laser due to emerging photonic spin-orbit coupling. For this purpose, we design an optical cavity filled with both birefringent nematic liquid crystal and an inorganic perovskite. Our versatile growth method of single CsPbBr3 inorganic perovskite crystals in polymer templates allows us to reach strong light-matter coupling and pump-induced condensation of exciton-polaritons resulting in coherent emission of light. The sensitivity of the liquid crystal to external voltage permits electrical tuning of the condensate energy across 7 nm; its threshold power, allowing us to electrically switch it on and off; and its state of polarization sweeping from linear to locally tilted circularly polarized emission.
Collapse
Affiliation(s)
- Karolina Łempicka-Mirek
- Faculty of Physics, Institute of Experimental Physics, University of Warsaw, ul. Pasteura 5, PL-02-093Warsaw, Poland
| | - Mateusz Król
- Faculty of Physics, Institute of Experimental Physics, University of Warsaw, ul. Pasteura 5, PL-02-093Warsaw, Poland
| | - Luisa De Marco
- CNR NANOTEC, Institute of Nanotechnology, Via Monteroni, 73100Lecce, Italy
| | - Annalisa Coriolano
- CNR NANOTEC, Institute of Nanotechnology, Via Monteroni, 73100Lecce, Italy
| | - Laura Polimeno
- CNR NANOTEC, Institute of Nanotechnology, Via Monteroni, 73100Lecce, Italy
| | - Ilenia Viola
- CNR-NANOTEC, Institute of Nanotechnology, UOS Rome, SLIM Lab c/o Dip. Fisica, Universit “La Sapienza”, Piazzale A. Moro 2, 00185, Rome, Italy
| | - Mateusz Kędziora
- Faculty of Physics, Institute of Experimental Physics, University of Warsaw, ul. Pasteura 5, PL-02-093Warsaw, Poland
| | - Marcin Muszyński
- Faculty of Physics, Institute of Experimental Physics, University of Warsaw, ul. Pasteura 5, PL-02-093Warsaw, Poland
| | - Przemysław Morawiak
- Institute of Applied Physics, Military University of Technology, PL-00-908Warsaw, Poland
| | - Rafał Mazur
- Institute of Applied Physics, Military University of Technology, PL-00-908Warsaw, Poland
| | - Przemysław Kula
- Institute of Chemistry, Military University of Technology, PL-00-908Warsaw, Poland
| | - Wiktor Piecek
- Institute of Applied Physics, Military University of Technology, PL-00-908Warsaw, Poland
| | - Piotr Fita
- Faculty of Physics, Institute of Experimental Physics, University of Warsaw, ul. Pasteura 5, PL-02-093Warsaw, Poland
| | - Daniele Sanvitto
- CNR NANOTEC, Institute of Nanotechnology, Via Monteroni, 73100Lecce, Italy
| | - Jacek Szczytko
- Faculty of Physics, Institute of Experimental Physics, University of Warsaw, ul. Pasteura 5, PL-02-093Warsaw, Poland
| | - Barbara Piętka
- Faculty of Physics, Institute of Experimental Physics, University of Warsaw, ul. Pasteura 5, PL-02-093Warsaw, Poland
| |
Collapse
|
24
|
Yang W, Wang J, He Y, Jiang S, Hou L, Zhuo L. Anapole assisted self-hybridized exciton-polaritons in perovskite metasurfaces. NANOSCALE 2024; 16:6068-6077. [PMID: 38433725 DOI: 10.1039/d4nr00042k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
The exciton-polaritons in a lead halide perovskite not only have great significance for macroscopic quantum effects but also possess vital potential for applications in ultralow-threshold polariton lasers, integrated photonics, slow-light devices, and quantum light sources. In this study, we have successfully demonstrated strong coupling with huge Rabi splitting of 553 meV between perovskite excitons and anapole modes in the perovskite metasurface at room temperature. This outcome is achieved by introducing anapole modes to suppress radiative losses, thereby confining light to the perovskite metasurface and subsequently hybridizing it with excitons in the same material. Our results indicate the formation of self-hybridized exciton-polaritons within the perovskite metasurface, which may pave the way towards achieving high coupling strengths that could potentially bring exciting phenomena to fruition, such as Bose-Einstein condensation as well as enabling applications such as efficient light-emitting diodes and lasers.
Collapse
Affiliation(s)
- Weimin Yang
- School of Electronic Information, Zhangzhou Institute of Technology, Zhangzhou 363000, China
| | - Jingyu Wang
- School of Physics and Information Engineering, Shanxi Normal University, Taiyuan 030000, China.
| | - Yonglin He
- School of Electronic Information, Zhangzhou Institute of Technology, Zhangzhou 363000, China
| | - Shengjie Jiang
- School of Electronic Information, Zhangzhou Institute of Technology, Zhangzhou 363000, China
| | - Liling Hou
- School of Electronic Information, Zhangzhou Institute of Technology, Zhangzhou 363000, China
| | - Liqiang Zhuo
- School of Electronic Information, Zhangzhou Institute of Technology, Zhangzhou 363000, China
| |
Collapse
|
25
|
Cai R, Feng M, Kanwat A, Furuhashi T, Wang B, Sum TC. Floquet Engineering of Excitons in Two-Dimensional Halide Perovskites via Biexciton States. NANO LETTERS 2024; 24:3441-3447. [PMID: 38457695 DOI: 10.1021/acs.nanolett.4c00074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
Layered two-dimensional halide perovskites (2DHPs) exhibit exciting non-equilibrium properties that allow the manipulation of energy levels through coherent light-matter interactions. Under the Floquet picture, novel quantum states manifest through the optical Stark effect (OSE) following intense subresonant photoexcitation. Nevertheless, a detailed understanding of the influence of strong many-body interactions between excitons on the OSE in 2DHPs remains unclear. Herein, we uncover the crucial role of biexcitons in photon-dressed states and demonstrate precise optical control of the excitonic states via the biexcitonic OSE in 2DHPs. With fine step tuning of the driven energy, we fully parametrize the evolution of exciton resonance modulation. The biexcitonic OSE enables Floquet engineering of the exciton resonance with either a blue-shift or a red-shift of the energy levels. Our findings shed new light on the intricate nature of coherent light-matter interactions in 2DHPs and extend the degree of freedom for ultrafast coherent optical control over excitonic states.
Collapse
Affiliation(s)
- Rui Cai
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Minjun Feng
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Anil Kanwat
- Energy Research Institute@NTU (ERI@N), Nanyang Technological University, 50 Nanyang Drive, Singapore 637553
| | - Tomoki Furuhashi
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Bo Wang
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Tze Chien Sum
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| |
Collapse
|
26
|
Wanasinghe S, Gjoni A, Burson W, Majeski C, Zaslona B, Rury AS. Motional Narrowing through Photonic Exchange: Rational Suppression of Excitonic Disorder from Molecular Cavity Polariton Formation. J Phys Chem Lett 2024; 15:2405-2418. [PMID: 38394364 PMCID: PMC10926155 DOI: 10.1021/acs.jpclett.3c03217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024]
Abstract
Maximizing the coherence between the constituents of molecular materials remains a crucial goal toward the implementation of these systems into everyday optoelectronic technologies. Here we experimentally assess the ability of strong light-matter coupling in the collective limit to reduce energetic disorder using porphyrin-based chromophores in Fabry-Pérot (FP) microresonator structures. Following characterization of cavity polaritons formed from chemically distinct porphyrin dimers, we find that the peaks corresponding to the lower polariton (LP) state in each sample do not possess widths consistent with conventional theories. We model the behavior of the polariton peak widths effectively using the results of spectroscopic theory. We correlate differences in the suppression of excitonic energetic disorder between our samples with microscopic light-matter interactions and propose that the suppression stems from photonic exchange. Our results demonstrate that cavity polariton formation can suppress disorder and show researchers how to design coherence into hybrid molecular material systems.
Collapse
Affiliation(s)
- Sachithra
T. Wanasinghe
- Department
of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
- Materials
Structural Dynamics Laboratory, Wayne State
University, Detroit, Michigan 48202, United
States
| | - Adelina Gjoni
- Department
of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
- Materials
Structural Dynamics Laboratory, Wayne State
University, Detroit, Michigan 48202, United
States
| | - Wade Burson
- Department
of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Caris Majeski
- Department
of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Bradley Zaslona
- Department
of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Aaron S. Rury
- Department
of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
- Materials
Structural Dynamics Laboratory, Wayne State
University, Detroit, Michigan 48202, United
States
| |
Collapse
|
27
|
Fei R, Hautzinger MP, Rose AH, Dong Y, Smalyukh II, Beard MC, van de Lagemaat J. Controlling Exciton/Exciton Recombination in 2-D Perovskite Using Exciton-Polariton Coupling. J Phys Chem Lett 2024; 15:1748-1754. [PMID: 38324713 PMCID: PMC10875656 DOI: 10.1021/acs.jpclett.3c03452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/17/2024] [Accepted: 01/24/2024] [Indexed: 02/09/2024]
Abstract
In this paper, we demonstrate that exciton/exciton annihilation in the 2D perovskite (PEA)2PbI4 (PEPI)─a major loss mechanism in solar cells and light-emitting diodes, can be controlled through coupling of excitons with cavity polaritons. We study the excited state dynamics using time-resolved transient absorption spectroscopy and show that the system can be tuned through a strong coupling regime by varying the cavity width through the PEPI layer thickness. Remarkably, strong coupling occurs even when the cavity quality factor remains poor, providing easy optical access. We demonstrate that the observed derivative-like transient absorption spectra can be modeled using a time-dependent Rabi splitting that occurs because of transient bleaching of the excitonic states. When PEPI is strongly coupled to the cavity, the exciton/exciton annihilation rate is suppressed by 1 order of magnitude. A model that relies on the partly photonic character of polaritons explains the results as a function of detuning.
Collapse
Affiliation(s)
- Rao Fei
- Chemistry
and Nanoscience Center, National Renewable
Energy Laboratory, Golden, Colorado 80401, United States
- Materials
Science and Engineering Program, University
of Colorado, Boulder, Colorado 80301, United States
| | - Matthew P. Hautzinger
- Chemistry
and Nanoscience Center, National Renewable
Energy Laboratory, Golden, Colorado 80401, United States
| | - Aaron H. Rose
- Chemistry
and Nanoscience Center, National Renewable
Energy Laboratory, Golden, Colorado 80401, United States
| | - Yifan Dong
- Chemistry
and Nanoscience Center, National Renewable
Energy Laboratory, Golden, Colorado 80401, United States
| | - Ivan I. Smalyukh
- Materials
Science and Engineering Program, University
of Colorado, Boulder, Colorado 80301, United States
- Department
of Physics, University of Colorado, Boulder, Colorado 80301, United States
- International
Institute for Sustainability with Knotted Chiral Meta Matter, Hiroshima University, Higashi Hiroshima, Hiroshima 730-0000, Japan
- Renewable
and Sustainable Energy Institute, National
Renewable Energy Laboratory and University of Colorado, Boulder, Colorado 80301, United States
| | - Matthew C. Beard
- Chemistry
and Nanoscience Center, National Renewable
Energy Laboratory, Golden, Colorado 80401, United States
- Renewable
and Sustainable Energy Institute, National
Renewable Energy Laboratory and University of Colorado, Boulder, Colorado 80301, United States
| | - Jao van de Lagemaat
- Chemistry
and Nanoscience Center, National Renewable
Energy Laboratory, Golden, Colorado 80401, United States
- Materials
Science and Engineering Program, University
of Colorado, Boulder, Colorado 80301, United States
- Renewable
and Sustainable Energy Institute, National
Renewable Energy Laboratory and University of Colorado, Boulder, Colorado 80301, United States
| |
Collapse
|
28
|
Makhonin M, Delphan A, Song KW, Walker P, Isoniemi T, Claronino P, Orfanakis K, Rajendran SK, Ohadi H, Heckötter J, Assmann M, Bayer M, Tartakovskii A, Skolnick M, Kyriienko O, Krizhanovskii D. Nonlinear Rydberg exciton-polaritons in Cu 2O microcavities. LIGHT, SCIENCE & APPLICATIONS 2024; 13:47. [PMID: 38320987 PMCID: PMC10847413 DOI: 10.1038/s41377-024-01382-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 02/08/2024]
Abstract
Rydberg excitons (analogues of Rydberg atoms in condensed matter systems) are highly excited bound electron-hole states with large Bohr radii. The interaction between them as well as exciton coupling to light may lead to strong optical nonlinearity, with applications in sensing and quantum information processing. Here, we achieve strong effective photon-photon interactions (Kerr-like optical nonlinearity) via the Rydberg blockade phenomenon and the hybridisation of excitons and photons forming polaritons in a Cu2O-filled microresonator. Under pulsed resonant excitation polariton resonance frequencies are renormalised due to the reduction of the photon-exciton coupling with increasing exciton density. Theoretical analysis shows that the Rydberg blockade plays a major role in the experimentally observed scaling of the polariton nonlinearity coefficient as ∝ n4.4±1.8 for principal quantum numbers up to n = 7. Such high principal quantum numbers studied in a polariton system for the first time are essential for realisation of high Rydberg optical nonlinearities, which paves the way towards quantum optical applications and fundamental studies of strongly correlated photonic (polaritonic) states in a solid state system.
Collapse
Affiliation(s)
- Maxim Makhonin
- Department of Physics and Astronomy, University of Sheffield, Sheffield, S3 7RH, UK.
| | - Anthonin Delphan
- Department of Physics and Astronomy, University of Sheffield, Sheffield, S3 7RH, UK
| | - Kok Wee Song
- Department of Physics and Astronomy, University of Exeter, Stocker Road, Exeter, EX4 4PY, UK
| | - Paul Walker
- Department of Physics and Astronomy, University of Sheffield, Sheffield, S3 7RH, UK
| | - Tommi Isoniemi
- Department of Physics and Astronomy, University of Sheffield, Sheffield, S3 7RH, UK
| | - Peter Claronino
- Department of Physics and Astronomy, University of Sheffield, Sheffield, S3 7RH, UK
| | - Konstantinos Orfanakis
- SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews, KY16 9SS, UK
| | - Sai Kiran Rajendran
- SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews, KY16 9SS, UK
| | - Hamid Ohadi
- SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews, KY16 9SS, UK
| | - Julian Heckötter
- Fakultät Physik, TU Dortmund, August-Schmidt-Straße 4, 44227, Dortmund, Germany
| | - Marc Assmann
- Fakultät Physik, TU Dortmund, August-Schmidt-Straße 4, 44227, Dortmund, Germany
| | - Manfred Bayer
- Fakultät Physik, TU Dortmund, August-Schmidt-Straße 4, 44227, Dortmund, Germany
| | | | - Maurice Skolnick
- Department of Physics and Astronomy, University of Sheffield, Sheffield, S3 7RH, UK
| | - Oleksandr Kyriienko
- Department of Physics and Astronomy, University of Exeter, Stocker Road, Exeter, EX4 4PY, UK
| | - Dmitry Krizhanovskii
- Department of Physics and Astronomy, University of Sheffield, Sheffield, S3 7RH, UK
| |
Collapse
|
29
|
Mao D, Chen L, Sun Z, Zhang M, Shi ZY, Hu Y, Zhang L, Wu J, Dong H, Xie W, Xu H. Observation of transition from superfluorescence to polariton condensation in CsPbBr 3 quantum dots film. LIGHT, SCIENCE & APPLICATIONS 2024; 13:34. [PMID: 38291038 PMCID: PMC10828401 DOI: 10.1038/s41377-024-01378-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 12/19/2023] [Accepted: 01/03/2024] [Indexed: 02/01/2024]
Abstract
The superfluorescence effect has received extensive attention due to the many-body physics of quantum correlation in dipole gas and the optical applications of ultrafast bright radiation field based on the cooperative quantum state. Here, we demonstrate not only to observe the superfluorescence effect but also to control the cooperative state of the excitons ensemble by externally applying a regulatory dimension of coupling light fields. A new quasi-particle called cooperative exciton-polariton is revealed in a light-matter hybrid structure of a perovskite quantum dot thin film spin-coated on a Distributed Bragg Reflector. Above the nonlinear threshold, polaritonic condensation occurs at a nonzero momentum state on the lower polariton branch owning to the vital role of the synchronized excitons. The phase transition from superfluorescence to polariton condensation exhibits typical signatures of a decrease of the linewidth, an increase of the macroscopic coherence as well as an accelerated radiation decay rate. These findings are promising for opening new potential applications for super-brightness and unconventional coherent light sources and could enable the exploitation of cooperative effects for quantum optics.
Collapse
Affiliation(s)
- Danqun Mao
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200241, China
| | - Linqi Chen
- Key Laboratory of Materials for High-Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, 201800, Shanghai, China
| | - Zheng Sun
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200241, China.
| | - Min Zhang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200241, China
| | - Zhe-Yu Shi
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200241, China
| | - Yongsheng Hu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200241, China
| | - Long Zhang
- Key Laboratory of Materials for High-Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, 201800, Shanghai, China
| | - Jian Wu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200241, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi, 030006, China
- Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing, 401121, China
- CAS Center for Excellence in Ultra-intense Laser Science, Shanghai, 201800, China
| | - Hongxing Dong
- Key Laboratory of Materials for High-Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, 201800, Shanghai, China.
| | - Wei Xie
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200241, China.
| | - Hongxing Xu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200241, China
- School of Physics and Technology, Center for Nanoscience and Nanotechnology, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
30
|
Anantharaman SB, Lynch J, Stevens CE, Munley C, Li C, Hou J, Zhang H, Torma A, Darlington T, Coen F, Li K, Majumdar A, Schuck PJ, Mohite A, Harutyunyan H, Hendrickson JR, Jariwala D. Dynamics of self-hybridized exciton-polaritons in 2D halide perovskites. LIGHT, SCIENCE & APPLICATIONS 2024; 13:1. [PMID: 38161209 PMCID: PMC10757995 DOI: 10.1038/s41377-023-01334-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 10/25/2023] [Accepted: 11/10/2023] [Indexed: 01/03/2024]
Abstract
Excitons, bound electron-hole pairs, in two-dimensional hybrid organic inorganic perovskites (2D HOIPs) are capable of forming hybrid light-matter states known as exciton-polaritons (E-Ps) when the excitonic medium is confined in an optical cavity. In the case of 2D HOIPs, they can self-hybridize into E-Ps at specific thicknesses of the HOIP crystals that form a resonant optical cavity with the excitons. However, the fundamental properties of these self-hybridized E-Ps in 2D HOIPs, including their role in ultrafast energy and/or charge transfer at interfaces, remain unclear. Here, we demonstrate that >0.5 µm thick 2D HOIP crystals on Au substrates are capable of supporting multiple-orders of self-hybridized E-P modes. These E-Ps have high Q factors (>100) and modulate the optical dispersion for the crystal to enhance sub-gap absorption and emission. Through varying excitation energy and ultrafast measurements, we also confirm energy transfer from higher energy E-Ps to lower energy E-Ps. Finally, we also demonstrate that E-Ps are capable of charge transport and transfer at interfaces. Our findings provide new insights into charge and energy transfer in E-Ps opening new opportunities towards their manipulation for polaritonic devices.
Collapse
Affiliation(s)
- Surendra B Anantharaman
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Jason Lynch
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Christopher E Stevens
- KBR Inc., Beavercreek, OH, 45431, USA
- Air Force Research Laboratory, Sensors Directorate, Wright-Patterson Air Force Base, OH, 45433, USA
| | - Christopher Munley
- Department of Physics, University of Washington, Seattle, WA, 98195, USA
| | - Chentao Li
- Department of Physics, Emory University, Atlanta, GA, 30322, USA
| | - Jin Hou
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, 77005, USA
- Department of Materials Science and Nanoengineering, Rice University, Houston, TX, 77005, USA
| | - Hao Zhang
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, 77005, USA
- Applied Physics Program, Smalley-Curl Institute, Rice University, Houston, TX, 77005, USA
| | - Andrew Torma
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, 77005, USA
- Applied Physics Program, Smalley-Curl Institute, Rice University, Houston, TX, 77005, USA
| | - Thomas Darlington
- Department of Mechanical Engineering, Columbia University, New York, NY, 10027, USA
| | - Francis Coen
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Kevin Li
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Arka Majumdar
- Department of Physics, University of Washington, Seattle, WA, 98195, USA
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, 98195, USA
| | - P James Schuck
- Department of Mechanical Engineering, Columbia University, New York, NY, 10027, USA
| | - Aditya Mohite
- Department of Physics, Emory University, Atlanta, GA, 30322, USA
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, 77005, USA
| | - Hayk Harutyunyan
- Department of Physics, Emory University, Atlanta, GA, 30322, USA
| | - Joshua R Hendrickson
- Air Force Research Laboratory, Sensors Directorate, Wright-Patterson Air Force Base, OH, 45433, USA
| | - Deep Jariwala
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
31
|
Cinquino M, Prontera CT, Giuri A, Pugliese M, Giannuzzi R, Maggiore A, Altamura D, Mariano F, Gigli G, Esposito Corcione C, Giannini C, Rizzo A, De Marco L, Maiorano V. Thermochromic Printable and Multicolor Polymeric Composite Based on Hybrid Organic-Inorganic Perovskite. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307564. [PMID: 37708463 DOI: 10.1002/adma.202307564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/12/2023] [Indexed: 09/16/2023]
Abstract
Hybrid organic-inorganic perovskites (PVKs) are among the most promising materials for optoelectronic applications thanks to their outstanding photophysical properties and easy synthesis. Herein, a new PVK-based thermochromic composite is demonstrated. It can reversibly switch from a transparent state (transmittance > 80%) at room temperature to a colored state (transmittance < 10%) at high temperature, with very fast kinetics, taking only a few seconds to go from the bleached to the colored state (and vice versa). X-ray diffraction, Fourier-transform infrared spectroscopy, differential scanning calometry, rheological, and optical measurements carried out during heating/cooling cycles reveal that thermochromism in the material is based on a reversible process of PVK disassembly/assembly mediated by intercalating polymeric chains, through the formation and breaking of hydrogen bonds between polymer and perovskite. Therefore, differently from other thermochromic perovskites, that generally work with the adsorption/desorption of volatile molecules, the system is able to perform several heating/cooling cycles regardless of environmental conditions. The color and transition temperature (from 70 to 120 °C) can be tuned depending on the type of perovskite. Moreover, this thermochromic material is printable and can be deposited by cheap techniques, paving the way for a new class of smart coatings with an unprecedented range of colors.
Collapse
Affiliation(s)
- Marco Cinquino
- CNR NANOTEC - Institute of Nanotechnology, Nationa Research Council, c/o Campus Ecotekne, Via Monteroni, Lecce, 73100, Italy
- Dipartimento di Matematica e Fisica E. De Giorgi, Università Del Salento, Campus Ecotekne, via Monteroni, Lecce, 73100, Italy
| | - Carmela Tania Prontera
- CNR NANOTEC - Institute of Nanotechnology, Nationa Research Council, c/o Campus Ecotekne, Via Monteroni, Lecce, 73100, Italy
| | - Antonella Giuri
- CNR NANOTEC - Institute of Nanotechnology, Nationa Research Council, c/o Campus Ecotekne, Via Monteroni, Lecce, 73100, Italy
| | - Marco Pugliese
- CNR NANOTEC - Institute of Nanotechnology, Nationa Research Council, c/o Campus Ecotekne, Via Monteroni, Lecce, 73100, Italy
| | - Roberto Giannuzzi
- CNR NANOTEC - Institute of Nanotechnology, Nationa Research Council, c/o Campus Ecotekne, Via Monteroni, Lecce, 73100, Italy
- Dipartimento di Matematica e Fisica E. De Giorgi, Università Del Salento, Campus Ecotekne, via Monteroni, Lecce, 73100, Italy
| | - Antonio Maggiore
- CNR NANOTEC - Institute of Nanotechnology, Nationa Research Council, c/o Campus Ecotekne, Via Monteroni, Lecce, 73100, Italy
| | - Davide Altamura
- Institute of Crystallography, CNR-IC, Via Amendola 122/O, Bari, 70126, Italy
| | - Fabrizio Mariano
- CNR NANOTEC - Institute of Nanotechnology, Nationa Research Council, c/o Campus Ecotekne, Via Monteroni, Lecce, 73100, Italy
| | - Giuseppe Gigli
- CNR NANOTEC - Institute of Nanotechnology, Nationa Research Council, c/o Campus Ecotekne, Via Monteroni, Lecce, 73100, Italy
- Dipartimento di Matematica e Fisica E. De Giorgi, Università Del Salento, Campus Ecotekne, via Monteroni, Lecce, 73100, Italy
| | - Carola Esposito Corcione
- Dipartimento di Ingegneria dell'Innovazione, Università Del Salento, Campus Ecotekne, via Monteroni, Lecce, 73100, Italy
| | - Cinzia Giannini
- Institute of Crystallography, CNR-IC, Via Amendola 122/O, Bari, 70126, Italy
| | - Aurora Rizzo
- CNR NANOTEC - Institute of Nanotechnology, Nationa Research Council, c/o Campus Ecotekne, Via Monteroni, Lecce, 73100, Italy
| | - Luisa De Marco
- CNR NANOTEC - Institute of Nanotechnology, Nationa Research Council, c/o Campus Ecotekne, Via Monteroni, Lecce, 73100, Italy
| | - Vincenzo Maiorano
- CNR NANOTEC - Institute of Nanotechnology, Nationa Research Council, c/o Campus Ecotekne, Via Monteroni, Lecce, 73100, Italy
| |
Collapse
|
32
|
Kang H, Ma J, Li J, Zhang X, Liu X. Exciton Polaritons in Emergent Two-Dimensional Semiconductors. ACS NANO 2023; 17:24449-24467. [PMID: 38051774 DOI: 10.1021/acsnano.3c07993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
The "marriage" of light (i.e., photon) and matter (i.e., exciton) in semiconductors leads to the formation of hybrid quasiparticles called exciton polaritons with fascinating quantum phenomena such as Bose-Einstein condensation (BEC) and photon blockade. The research of exciton polaritons has been evolving into an era with emergent two-dimensional (2D) semiconductors and photonic structures for their tremendous potential to break the current limitations of quantum fundamental study and photonic applications. In this Perspective, the basic concepts of 2D excitons, optical resonators, and the strong coupling regime are introduced. The research progress of exciton polaritons is reviewed, and important discoveries (especially the recent ones of 2D exciton polaritons) are highlighted. Subsequently, the emergent 2D exciton polaritons are discussed in detail, ranging from the realization of the strong coupling regime in various photonic systems to the discoveries of attractive phenomena with interesting physics and extensive applications. Moreover, emerging 2D semiconductors, such as 2D perovskites (2DPK) and 2D antiferromagnetic (AFM) semiconductors, are surveyed for the manipulation of exciton polaritons with distinct control degrees of freedom (DOFs). Finally, the outlook on the 2D exciton polaritons and their nonlinear interactions is presented with our initial numerical simulations. This Perspective not only aims to provide an in-depth overview of the latest fundamental findings in 2D exciton polaritons but also attempts to serve as a valuable resource to prospect explorations of quantum optics and topological photonic applications.
Collapse
Affiliation(s)
- Haifeng Kang
- Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, P. R. China
| | - Jingwen Ma
- Faculty of Science and Engineering, The University of Hong Kong, Hong Kong, SAR, P. R. China
| | - Junyu Li
- Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, P. R. China
| | - Xiang Zhang
- Faculty of Science and Engineering, The University of Hong Kong, Hong Kong, SAR, P. R. China
- Department of Physics, The University of Hong Kong, Hong Kong, SAR, P. R. China
| | - Xiaoze Liu
- Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, P. R. China
- Wuhan Institute of Quantum Technology, Wuhan, 430206, P. R. China
- Wuhan University Shenzhen Research Institute, Shenzhen, 518057, P. R. China
| |
Collapse
|
33
|
Rojas-Gatjens E, Li H, Vega-Flick A, Cortecchia D, Petrozza A, Bittner ER, Srimath Kandada AR, Silva-Acuña C. Many-Exciton Quantum Dynamics in a Ruddlesden-Popper Tin Iodide. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:21194-21203. [PMID: 37937156 PMCID: PMC10626601 DOI: 10.1021/acs.jpcc.3c04896] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/01/2023] [Indexed: 11/09/2023]
Abstract
We present a study on the many-body exciton interactions in a Ruddlesden-Popper tin halide, namely, (PEA)2SnI4 (PEA = phenylethylammonium), using coherent two-dimensional electronic spectroscopy. The optical dephasing times of the third-order polarization observed in these systems are determined by exciton many-body interactions and lattice fluctuations. We investigate the excitation-induced dephasing (EID) and observe a significant reduction of the dephasing time with increasing excitation density as compared to its lead counterpart (PEA)2PbI4, which we have previously reported in a separate publication [J. Chem. Phys.2020, 153, 164706]. Surprisingly, we find that the EID interaction parameter is four orders of magnitude higher in (PEA)2SnI4 than that in (PEA)2PbI4. This increase in the EID rate may be due to exciton localization arising from a more statically disordered lattice in the tin derivative. This is supported by the observation of multiple closely spaced exciton states and the broadening of the linewidth with increasing population time (spectral diffusion), which suggests a static disordered structure relative to the highly dynamic lead-halide. Additionally, we find that the exciton nonlinear coherent lineshape shows evidence of a biexcitonic state with low binding energy (<10 meV) not observed in the lead system. We model the lineshapes based on a stochastic scattering theory that accounts for the interaction with a nonstationary population of dark background excitations. Our study provides evidence of differences in the exciton quantum dynamics between tin- and lead-based Ruddlesden-Popper metal halides (RPMHs) and links them to the exciton-exciton interaction strength and the static disorder aspect of the crystalline structure.
Collapse
Affiliation(s)
- Esteban Rojas-Gatjens
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia, 30332, United States
- School
of Physics, Georgia Institute of Technology, Atlanta, Georgia, 30332, United
States
| | - Hao Li
- Department
of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Alejandro Vega-Flick
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia, 30332, United States
| | - Daniele Cortecchia
- Center
for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, Milan 20133, Italy
| | - Annamaria Petrozza
- Center
for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, Milan 20133, Italy
| | - Eric R. Bittner
- Department
of Chemistry, University of Houston, Houston, Texas 77204, United States
- Center
for Nonlinear Studies, Los Alamos National
Laboratory, Los Alamos, New Mexico 87544, United States
| | - Ajay Ram Srimath Kandada
- Department
of Physics, Wake Forest University, Winston–Salem, North
Carolina 27587, United States
- Center
for Functional Materials, Wake Forest University, Winston–Salem, North
Carolina 27109, United States
| | - Carlos Silva-Acuña
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia, 30332, United States
- School
of Physics, Georgia Institute of Technology, Atlanta, Georgia, 30332, United
States
- School
of Materials Science and Engineering, Georgia
Institute of Technology, Atlanta, Georgia, 30332, United States
| |
Collapse
|
34
|
Zhai X, Ma X, Gao Y, Xing C, Gao M, Dai H, Wang X, Pan A, Schumacher S, Gao T. Electrically Controlling Vortices in a Neutral Exciton-Polariton Condensate at Room Temperature. PHYSICAL REVIEW LETTERS 2023; 131:136901. [PMID: 37831991 DOI: 10.1103/physrevlett.131.136901] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 06/26/2023] [Accepted: 08/31/2023] [Indexed: 10/15/2023]
Abstract
Manipulating bosonic condensates with electric fields is very challenging as the electric fields do not directly interact with the neutral particles of the condensate. Here we demonstrate a simple electric method to tune the vorticity of exciton-polariton condensates in a strong coupling liquid crystal (LC) microcavity with CsPbBr_{3} microplates as active material at room temperature. In such a microcavity, the LC molecular director can be electrically modulated giving control over the polariton condensation in different modes. For isotropic nonresonant optical pumping we demonstrate the spontaneous formation of vortices with topological charges of +1, +2, -2, and -1. The topological vortex charge is controlled by a voltage in the range of 1 to 10 V applied to the microcavity sample. This control is achieved by the interplay of a built-in potential gradient, the anisotropy of the optically active perovskite microplates, and the electrically controllable LC molecular director in our system with intentionally broken rotational symmetry. Besides the fundamental interest in the achieved electric polariton vortex control at room temperature, our work paves the way to micron-sized emitters with electric control over the emitted light's phase profile and quantized orbital angular momentum for information processing and integration into photonic circuits.
Collapse
Affiliation(s)
- Xiaokun Zhai
- Department of Physics, School of Science, Tianjin University, Tianjin 300072, China
- Institute of Molecular Plus, Tianjin University, Tianjin 300072, China
| | - Xuekai Ma
- Department of Physics and Center for Optoelectronics and Photonics Paderborn (CeOPP), Universität Paderborn, Warburger Strasse 100, 33098 Paderborn, Germany
| | - Ying Gao
- Department of Physics, School of Science, Tianjin University, Tianjin 300072, China
- Institute of Molecular Plus, Tianjin University, Tianjin 300072, China
| | - Chunzi Xing
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Science, Tianjin University, Tianjin 300072, China
| | - Meini Gao
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Science, Tianjin University, Tianjin 300072, China
| | - Haitao Dai
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Science, Tianjin University, Tianjin 300072, China
| | - Xiao Wang
- College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| | - Anlian Pan
- College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| | - Stefan Schumacher
- Department of Physics and Center for Optoelectronics and Photonics Paderborn (CeOPP), Universität Paderborn, Warburger Strasse 100, 33098 Paderborn, Germany
- Wyant College of Optical Sciences, University of Arizona, Tucson, Arizona 85721, USA
| | - Tingge Gao
- Department of Physics, School of Science, Tianjin University, Tianjin 300072, China
- Institute of Molecular Plus, Tianjin University, Tianjin 300072, China
| |
Collapse
|
35
|
Xu D, Mandal A, Baxter JM, Cheng SW, Lee I, Su H, Liu S, Reichman DR, Delor M. Ultrafast imaging of polariton propagation and interactions. Nat Commun 2023; 14:3881. [PMID: 37391396 DOI: 10.1038/s41467-023-39550-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 06/16/2023] [Indexed: 07/02/2023] Open
Abstract
Semiconductor excitations can hybridize with cavity photons to form exciton-polaritons (EPs) with remarkable properties, including light-like energy flow combined with matter-like interactions. To fully harness these properties, EPs must retain ballistic, coherent transport despite matter-mediated interactions with lattice phonons. Here we develop a nonlinear momentum-resolved optical approach that directly images EPs in real space on femtosecond scales in a range of polaritonic architectures. We focus our analysis on EP propagation in layered halide perovskite microcavities. We reveal that EP-phonon interactions lead to a large renormalization of EP velocities at high excitonic fractions at room temperature. Despite these strong EP-phonon interactions, ballistic transport is maintained for up to half-exciton EPs, in agreement with quantum simulations of dynamic disorder shielding through light-matter hybridization. Above 50% excitonic character, rapid decoherence leads to diffusive transport. Our work provides a general framework to precisely balance EP coherence, velocity, and nonlinear interactions.
Collapse
Affiliation(s)
- Ding Xu
- Department of Chemistry, Columbia University, New York, NY, 10027, US
| | - Arkajit Mandal
- Department of Chemistry, Columbia University, New York, NY, 10027, US
| | - James M Baxter
- Department of Chemistry, Columbia University, New York, NY, 10027, US
| | - Shan-Wen Cheng
- Department of Chemistry, Columbia University, New York, NY, 10027, US
| | - Inki Lee
- Department of Chemistry, Columbia University, New York, NY, 10027, US
| | - Haowen Su
- Department of Chemistry, Columbia University, New York, NY, 10027, US
| | - Song Liu
- Department of Mechanical Engineering, Columbia University, New York, NY, 10027, US
| | - David R Reichman
- Department of Chemistry, Columbia University, New York, NY, 10027, US.
| | - Milan Delor
- Department of Chemistry, Columbia University, New York, NY, 10027, US.
| |
Collapse
|
36
|
Mandal A, Xu D, Mahajan A, Lee J, Delor M, Reichman DR. Microscopic Theory of Multimode Polariton Dispersion in Multilayered Materials. NANO LETTERS 2023; 23:4082-4089. [PMID: 37103998 DOI: 10.1021/acs.nanolett.3c01017] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
We develop a microscopic theory for the multimode polariton dispersion in materials coupled to cavity radiation modes. Starting from a microscopic light-matter Hamiltonian, we devise a general strategy for obtaining simple matrix models of polariton dispersion curves based on the structure and spatial location of multilayered 2D materials inside the optical cavity. Our theory exposes the connections between seemingly distinct models that have been employed in the literature and resolves an ambiguity that has arisen concerning the experimental description of the polaritonic band structure. We demonstrate the applicability of our theoretical formalism by fabricating various geometries of multilayered perovskite materials coupled to cavities and demonstrating that our theoretical predictions agree with the experimental results presented here.
Collapse
Affiliation(s)
- Arkajit Mandal
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| | - Ding Xu
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| | - Ankit Mahajan
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| | - Joonho Lee
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| | - Milan Delor
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| | - David R Reichman
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| |
Collapse
|
37
|
Laitz M, Kaplan AEK, Deschamps J, Barotov U, Proppe AH, García-Benito I, Osherov A, Grancini G, deQuilettes DW, Nelson KA, Bawendi MG, Bulović V. Uncovering temperature-dependent exciton-polariton relaxation mechanisms in hybrid organic-inorganic perovskites. Nat Commun 2023; 14:2426. [PMID: 37105984 PMCID: PMC10140020 DOI: 10.1038/s41467-023-37772-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 03/30/2023] [Indexed: 04/29/2023] Open
Abstract
Hybrid perovskites have emerged as a promising material candidate for exciton-polariton (polariton) optoelectronics. Thermodynamically, low-threshold Bose-Einstein condensation requires efficient scattering to the polariton energy dispersion minimum, and many applications demand precise control of polariton interactions. Thus far, the primary mechanisms by which polaritons relax in perovskites remains unclear. In this work, we perform temperature-dependent measurements of polaritons in low-dimensional perovskite wedged microcavities achieving a Rabi splitting of [Formula: see text] = 260 ± 5 meV. We change the Hopfield coefficients by moving the optical excitation along the cavity wedge and thus tune the strength of the primary polariton relaxation mechanisms in this material. We observe the polariton bottleneck regime and show that it can be overcome by harnessing the interplay between the different excitonic species whose corresponding dynamics are modified by strong coupling. This work provides an understanding of polariton relaxation in perovskites benefiting from efficient, material-specific relaxation pathways and intracavity pumping schemes from thermally brightened excitonic species.
Collapse
Affiliation(s)
- Madeleine Laitz
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alexander E K Kaplan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jude Deschamps
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ulugbek Barotov
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Andrew H Proppe
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Inés García-Benito
- Department of Organic Chemistry, Universidad Complutense de Madrid, Madrid, Spain
| | - Anna Osherov
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Giulia Grancini
- Department of Chemistry & INSTM, University of Pavia, Pavia, Italy
| | - Dane W deQuilettes
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Keith A Nelson
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Moungi G Bawendi
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Vladimir Bulović
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
38
|
Guo X, Lyu W, Chen T, Luo Y, Wu C, Yang B, Sun Z, García de Abajo FJ, Yang X, Dai Q. Polaritons in Van der Waals Heterostructures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2201856. [PMID: 36121344 DOI: 10.1002/adma.202201856] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 08/15/2022] [Indexed: 05/17/2023]
Abstract
2D monolayers supporting a wide variety of highly confined plasmons, phonon polaritons, and exciton polaritons can be vertically stacked in van der Waals heterostructures (vdWHs) with controlled constituent layers, stacking sequence, and even twist angles. vdWHs combine advantages of 2D material polaritons, rich optical structure design, and atomic scale integration, which have greatly extended the performance and functions of polaritons, such as wide frequency range, long lifetime, ultrafast all-optical modulation, and photonic crystals for nanoscale light. Here, the state of the art of 2D material polaritons in vdWHs from the perspective of design principles and potential applications is reviewed. Some fundamental properties of polaritons in vdWHs are initially discussed, followed by recent discoveries of plasmons, phonon polaritons, exciton polaritons, and their hybrid modes in vdWHs. The review concludes with a perspective discussion on potential applications of these polaritons such as nanophotonic integrated circuits, which will benefit from the intersection between nanophotonics and materials science.
Collapse
Affiliation(s)
- Xiangdong Guo
- CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Wei Lyu
- CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Tinghan Chen
- CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- School of Life Science, Peking University, Beijing, 100871, P. R. China
| | - Yang Luo
- CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- School of Life Science, Peking University, Beijing, 100871, P. R. China
| | - Chenchen Wu
- CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Bei Yang
- CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhipei Sun
- Department of Electronics and Nanoengineering and QTF Centre of Excellence, Department of Applied Physics, Aalto University, Espoo, 02150, Finland
| | - F Javier García de Abajo
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, 08860, Spain
- ICREA-Institució Catalana de Recerca i Estudis Avançats, Passeig Lluís Companys 23, Barcelona, 08010, Spain
| | - Xiaoxia Yang
- CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Qing Dai
- CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
39
|
Exciton polariton interactions in Van der Waals superlattices at room temperature. Nat Commun 2023; 14:1512. [PMID: 36932078 PMCID: PMC10023709 DOI: 10.1038/s41467-023-36912-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 02/23/2023] [Indexed: 03/19/2023] Open
Abstract
Monolayer transition-metal dichalcogenide (TMD) materials have attracted a great attention because of their unique properties and promising applications in integrated optoelectronic devices. Being layered materials, they can be stacked vertically to fabricate artificial van der Waals lattices, which offer unique opportunities to tailor the electronic and optical properties. The integration of TMD heterostructures in planar microcavities working in strong coupling regime is particularly important to control the light-matter interactions and form robust polaritons, highly sought for room temperature applications. Here, we demonstrate the systematic control of the coupling-strength by embedding multiple WS2 monolayers in a planar microcavity. The vacuum Rabi splitting is enhanced from 36 meV for one monolayer up to 72 meV for the four-monolayer microcavity. In addition, carrying out time-resolved pump-probe experiments at room temperature we demonstrate the nature of polariton interactions which are dominated by phase space filling effects. Furthermore, we also observe the presence of long-living dark excitations in the multiple monolayer superlattices. Our results pave the way for the realization of polaritonic devices based on planar microcavities embedding multiple monolayers and could potentially lead the way for future devices towards the exploitation of interaction-driven phenomena at room temperature.
Collapse
|
40
|
Han X, Cheng P, Shi R, Zheng Y, Qi S, Xu J, Bu XH. Linear optical afterglow and nonlinear optical harmonic generation from chiral tin(IV) halides: the role of lattice distortions. MATERIALS HORIZONS 2023; 10:1005-1011. [PMID: 36651561 DOI: 10.1039/d2mh01429g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The striking chemical variability of hybrid organic-inorganic metal halides (HOMHs) endows them with fascinating optoelectronic properties. The inorganic skeletons of HOMHs are often flexible and their lattice deformations could serve as an effective factor for enabling the functionalities of HOMHs. Here, the linear and nonlinear optical properties of zero-dimensional (0D) tin(IV) halides have been tuned by structural distortion facilitated by the chiral amines. Enantiopure α-methylbenzyl ammoniums (XMBA, X = Cl, F) effectively transfer their chirality to the inorganic scaffolds when forming the tin(IV) halides, which enables polar arrangements in their crystals and leads to outstanding second-order nonlinear optical performances. In contrast, the racemic mixture of R- and S-FMBA results in the formation of HOMHs with room temperature phosphorescence. The lower lattice deformation in (rac-FMBA)2SnCl6 restrains the non-radiative decay from electron-phonon coupling and facilitates the photoluminescence. Meanwhile, the marked π-π interaction stabilizes the T1 state for phosphorescent emission. These distinct linear and nonlinear optical properties denote the important role that the lattice distortion plays in tuning the optical properties of low-dimensional HOMHs, and offer a promising perspective of 0D tin(IV) halides for applications in optoelectronic materials and devices.
Collapse
Affiliation(s)
- Xiao Han
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tongyan Road 38, Tianjin 300350, P. R. China.
| | - Puxin Cheng
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tongyan Road 38, Tianjin 300350, P. R. China.
| | - Rongchao Shi
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tongyan Road 38, Tianjin 300350, P. R. China.
| | - Yongshen Zheng
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tongyan Road 38, Tianjin 300350, P. R. China.
| | - Siming Qi
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tongyan Road 38, Tianjin 300350, P. R. China.
| | - Jialiang Xu
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tongyan Road 38, Tianjin 300350, P. R. China.
| | - Xian-He Bu
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tongyan Road 38, Tianjin 300350, P. R. China.
| |
Collapse
|
41
|
Kottilil D, Gupta M, Lu S, Babusenan A, Ji W. Triple Threshold Transitions and Strong Polariton Interaction in 2D Layered Metal-Organic Framework Microplates. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209094. [PMID: 36623260 DOI: 10.1002/adma.202209094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Room-temperature interaction between light-matter hybrid particles such as exciton-polaritons under extremely low-pump plays a crucial role in future coherent quantum light sources. However, the practical and scalable realization of coherent quantum light sources operating under low-pump remains a challenge because of the insufficient polariton interaction strength. Here, at room temperature, a very large polariton interaction strength is demonstrated, g ≈ 128 ± 21 µeV µm2 realized in a 2D nanolayered metal-organic framework (MOF). As a result, a polariton lasing at an extremely low pump fluence of P1 ≈ 0.01 ± 0.0015 µJ cm-2 (first threshold) is observed. Interestingly, as pump fluence increases to P2 ≈ 0.031 ± 0.003 µJ cm-2 (second threshold), a spontaneous transition to a polariton breakdown region occurs, which has not been reported before. Finally, an ordinary photon lasing occurs at P3 ≈ 0.11 ± 0.077 µJ cm-2 (third threshold), or above. These experiments and the theoretical model reveal new insights into the transition mechanisms characterized by three distinct optical regions. This work introduces MOF as a new type of quantum material, with naturally formed polariton cavities, that is a cost-effective and scalable solution to build microscale coherent quantum light sources and polaritonic devices.
Collapse
Affiliation(s)
- Dileep Kottilil
- Department of Physics, National University of Singapore, 3, Science Drive 3, Singapore, 117542, Singapore
| | - Mayank Gupta
- Department of Physics, National University of Singapore, 3, Science Drive 3, Singapore, 117542, Singapore
| | - Shunbin Lu
- SZU-NUS Collaborative Innovation Centre for Optoelectronic Science and Technology, International Collaborative Laboratory of 2D Materials for Optoelectronic Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| | - Anu Babusenan
- Department of Physics, National University of Singapore, 3, Science Drive 3, Singapore, 117542, Singapore
| | - Wei Ji
- Department of Physics, National University of Singapore, 3, Science Drive 3, Singapore, 117542, Singapore
- SZU-NUS Collaborative Innovation Centre for Optoelectronic Science and Technology, International Collaborative Laboratory of 2D Materials for Optoelectronic Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| |
Collapse
|
42
|
Dhami BS, Iyer V, Pant A, Tripathi RPN, Taylor EJ, Lawrie BJ, Appavoo K. Angle-resolved polarimetry of hybrid perovskite emission for photonic technologies. NANOSCALE 2022; 14:17519-17527. [PMID: 36409224 DOI: 10.1039/d2nr03261a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Coupling between light and matter strongly depends on the polarization of the electromagnetic field and the nature of excitations in a material. As hybrid perovskites emerge as a promising class of materials for light-based technologies such as LEDs, LASERs, and photodetectors, it is critical to understand how their microstructure changes the intrinsic properties of the photon emission process. While the majority of optical studies have focused on the spectral content, quantum efficiency and lifetimes of emission in various hybrid perovskite thin films and nanostructures, few studies have investigated other properties of the emitted photons such as polarization and emission angle. Here, we use angle-resolved cathodoluminescence microscopy to access the full polarization state of photons emitted from large-grain hybrid perovskite films with spatial resolution well below the optical diffraction limit. Mapping these Stokes parameters as a function of the angle at which the photons are emitted from the thin film surface, we reveal the effect of a grain boundary on the degree of polarization and angle at which the photons are emitted. Such studies of angle- and polarization-resolved emission at the single grain level are necessary for future development of perovskite-based flat optics, where effects of grain boundaries and interfaces need to be mitigated.
Collapse
Affiliation(s)
- Bibek S Dhami
- Department of Physics, University of Alabama at Birmingham, AL 35294, USA.
| | - Vasudevan Iyer
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge TN, 37831, USA
| | - Aniket Pant
- Department of Physics, University of Alabama at Birmingham, AL 35294, USA.
| | - Ravi P N Tripathi
- Department of Physics, University of Alabama at Birmingham, AL 35294, USA.
| | - Ethan J Taylor
- Department of Physics, University of Alabama at Birmingham, AL 35294, USA.
| | - Benjamin J Lawrie
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge TN, 37831, USA
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge TN, 37831, USA
| | | |
Collapse
|
43
|
Peng K, Tao R, Haeberlé L, Li Q, Jin D, Fleming GR, Kéna-Cohen S, Zhang X, Bao W. Room-temperature polariton quantum fluids in halide perovskites. Nat Commun 2022; 13:7388. [PMID: 36450719 PMCID: PMC9712507 DOI: 10.1038/s41467-022-34987-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/14/2022] [Indexed: 12/02/2022] Open
Abstract
Quantum fluids exhibit quantum mechanical effects at the macroscopic level, which contrast strongly with classical fluids. Gain-dissipative solid-state exciton-polaritons systems are promising emulation platforms for complex quantum fluid studies at elevated temperatures. Recently, halide perovskite polariton systems have emerged as materials with distinctive advantages over other room-temperature systems for future studies of topological physics, non-Abelian gauge fields, and spin-orbit interactions. However, the demonstration of nonlinear quantum hydrodynamics, such as superfluidity and Čerenkov flow, which is a consequence of the renormalized elementary excitation spectrum, remains elusive in halide perovskites. Here, using homogenous halide perovskites single crystals, we report, in both one- and two-dimensional cases, the complete set of quantum fluid phase transitions from normal classical fluids to scatterless polariton superfluids and supersonic fluids-all at room temperature, clear consequences of the Landau criterion. Specifically, the supersonic Čerenkov wave pattern was observed at room temperature. The experimental results are also in quantitative agreement with theoretical predictions from the dissipative Gross-Pitaevskii equation. Our results set the stage for exploring the rich non-equilibrium quantum fluid many-body physics at room temperature and also pave the way for important polaritonic device applications.
Collapse
Affiliation(s)
- Kai Peng
- Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Renjie Tao
- Nanoscale Science and Engineering Center, University of California, Berkeley, CA, USA
| | - Louis Haeberlé
- Department of Engineering Physics, École Polytechnique de Montréal, Montréal, QC, Canada
| | - Quanwei Li
- Department of Chemistry, University of California, Berkeley, CA, USA
| | - Dafei Jin
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL, USA
| | - Graham R Fleming
- Department of Chemistry, University of California, Berkeley, CA, USA
| | - Stéphane Kéna-Cohen
- Department of Engineering Physics, École Polytechnique de Montréal, Montréal, QC, Canada
| | - Xiang Zhang
- Nanoscale Science and Engineering Center, University of California, Berkeley, CA, USA.
- Faculty of Science and Faculty of Engineering, The University of Hong Kong, Hong Kong, China.
| | - Wei Bao
- Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA.
| |
Collapse
|
44
|
Masharin MA, Shahnazaryan VA, Benimetskiy FA, Krizhanovskii DN, Shelykh IA, Iorsh IV, Makarov SV, Samusev AK. Polaron-Enhanced Polariton Nonlinearity in Lead Halide Perovskites. NANO LETTERS 2022; 22:9092-9099. [PMID: 36342753 DOI: 10.1021/acs.nanolett.2c03524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Exciton-polaritons offer a versatile platform for realization of all-optical integrated logic gates due to the strong effective optical nonlinearity resulting from the exciton-exciton interactions. In most of the current excitonic materials there exists a direct connection between the exciton robustness to thermal fluctuations and the strength of the exciton-exciton interaction, making materials with the highest levels of exciton nonlinearity applicable at cryogenic temperatures only. Here, we show that strong polaronic effects, characteristic for perovskite materials, allow overcoming this limitation. Namely, we demonstrate a record-high value of the nonlinear optical response in the nanostructured organic-inorganic halide perovskite MAPbI3, experimentally detected as a 19.7 meV blueshift of the polariton branch under femtosecond laser irradiation. This is substantially higher than characteristic values for the samples based on conventional semiconductors and monolayers of transition-metal dichalcogenides. The observed strong polaron-enhanced nonlinearity exists for both tetragonal and orthorhombic phases of MAPbI3 and remains stable at elevated temperatures.
Collapse
Affiliation(s)
- Mikhail A Masharin
- ITMO University, School of Physics and Engineering, St. Petersburg, 197101, Russia
| | - Vanik A Shahnazaryan
- ITMO University, School of Physics and Engineering, St. Petersburg, 197101, Russia
| | - Fedor A Benimetskiy
- ITMO University, School of Physics and Engineering, St. Petersburg, 197101, Russia
| | - Dmitry N Krizhanovskii
- Department of Physics and Astronomy, University of Sheffield, SheffieldS3 7RH, United Kingdom
| | - Ivan A Shelykh
- ITMO University, School of Physics and Engineering, St. Petersburg, 197101, Russia
- Science Institute, University of Iceland, Dunhagi 3, IS-107Reykjavik, Iceland
| | - Ivan V Iorsh
- ITMO University, School of Physics and Engineering, St. Petersburg, 197101, Russia
- Department of Physics, Bar-Ilan University, Ramat Gan52900, Israel
| | - Sergey V Makarov
- ITMO University, School of Physics and Engineering, St. Petersburg, 197101, Russia
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao266000, Shandong, China
| | - Anton K Samusev
- ITMO University, School of Physics and Engineering, St. Petersburg, 197101, Russia
- Experimentelle Physik 2, Technische Universität Dortmund, 44227Dortmund, Germany
| |
Collapse
|
45
|
Zhang Q, Krisnanda T, Giovanni D, Dini K, Ye S, Feng M, Liew TCH, Sum TC. Electric Field Modulation of 2D Perovskite Excitonics. J Phys Chem Lett 2022; 13:7161-7169. [PMID: 35904326 DOI: 10.1021/acs.jpclett.2c01792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Multiquantum-well (MQW) perovskite is one of the forerunners in high-efficiency perovskite LED (PeLEDs) research. Despite the rapid inroads, PeLEDs suffer from the pertinent issue of efficiency decrease with increasing brightness, commonly known as "efficiency roll-off". The underlying mechanisms are presently an open question. Herein, we explicate the E-field effects on the exciton states in the archetypal MQW perovskite (C6H5C2H4NH3)2PbI4, or PEPI, in a device-like architecture using field-assisted transient spectroscopy and theoretical modeling. The applied E-field results in a complex interplay of spectral blueshifts and enhancement/quenching of the different exciton modes. The former originates from the DC Stark shift, while the latter is attributed to the E-field modulation of the transfer rates between bright/dark exciton modes. Importantly, our findings uncover crucial insights into the photophysical processes under E-field modulation contributing to efficiency roll-off in MQW PeLEDs. Electrical modulation of exciton properties presents exciting possibilities for signal processing devices.
Collapse
Affiliation(s)
- Qiannan Zhang
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Tanjung Krisnanda
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - David Giovanni
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
- KLA-Tencor (Singapore) Pte. Ltd., 4 Serangoon North Avenue 5, Singapore 554532, Singapore
| | - Kevin Dini
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Senyun Ye
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Minjun Feng
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Timothy C H Liew
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
- MajuLab, International Joint Research Unit UMI 3654, CNRS, Universite Côte d'Azur, Sorbonne Universite, National University of Singapore, and Nanyang Technological University, Singapore 637371, Singapore
| | - Tze Chien Sum
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| |
Collapse
|
46
|
Wang T, Zang Z, Gao Y, Lyu C, Gu P, Yao Y, Peng K, Watanabe K, Taniguchi T, Liu X, Gao Y, Bao W, Ye Y. Electrically Pumped Polarized Exciton-Polaritons in a Halide Perovskite Microcavity. NANO LETTERS 2022; 22:5175-5181. [PMID: 35714056 DOI: 10.1021/acs.nanolett.2c00906] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Recently, exciton-polaritons in lead halide perovskite microcavities have been extensively investigated to address striking phenomena such as polariton condensation and quantum emulation. However, a critical step in advancing these findings into practical applications, i.e., realizing electrically pumped perovskite polariton light-emitting devices, has not yet been presented. Here, we devise a new method to combine the device with a microcavity and report the first halide perovskite polariton light-emitting device. Specifically, the device is based on a CsPbBr3 capacitive structure, which can inject the electrons and holes from the same electrode, conducive to the formation of excitons and simultaneously maintaining the high quality of the microcavity. In addition, highly polarized polariton emissions have been demonstrated due to the optical birefringence in the CsPbBr3 microplate. This work paves the way for realizing practical polaritonic devices such as high-speed light-emitting devices for information communications and inversionless electrically pumped lasers based on perovskites.
Collapse
Affiliation(s)
- Tingting Wang
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Centre for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, People's Republic of China
- Collaborative Innovation Centre of Quantum Matter, Beijing 100871, People's Republic of China
| | - Zhihao Zang
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Centre for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, People's Republic of China
- Collaborative Innovation Centre of Quantum Matter, Beijing 100871, People's Republic of China
| | - Yuchen Gao
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Centre for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, People's Republic of China
| | - Chao Lyu
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Centre for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, People's Republic of China
| | - Pingfan Gu
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Centre for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, People's Republic of China
| | - Yige Yao
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Centre for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, People's Republic of China
| | - Kai Peng
- Electrical & Computer Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Xiaoze Liu
- School of Physics and Technology, Wuhan University, Wuhan 430072, Hubei, People's Republic of China
- Wuhan Institute of Quantum Technology, Wuhan 430206, Hubei, People's Republic of China
| | - Yunan Gao
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Centre for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, People's Republic of China
| | - Wei Bao
- Electrical & Computer Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Yu Ye
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Centre for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, People's Republic of China
- Collaborative Innovation Centre of Quantum Matter, Beijing 100871, People's Republic of China
- Peking University, Yangtze Delta Institute of Optoelectronics, Nantong 226010, Jiangsu, People's Republic of China
| |
Collapse
|
47
|
Manipulating polariton condensates by Rashba-Dresselhaus coupling at room temperature. Nat Commun 2022; 13:3785. [PMID: 35778391 PMCID: PMC9249758 DOI: 10.1038/s41467-022-31529-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 06/17/2022] [Indexed: 11/17/2022] Open
Abstract
Spin-orbit coupling plays an important role in the spin Hall effect and topological insulators. Bose-Einstein condensates with spin-orbit coupling show remarkable quantum phase transition. In this work we control an exciton polariton condensate – a macroscopically coherent state of hybrid light and matter excitations – by virtue of the Rashba-Dresselhaus (RD) spin-orbit coupling. This is achieved in a liquid-crystal filled microcavity where CsPbBr3 perovskite microplates act as the gain material at room temperature. Specifically, we realize an artificial gauge field acting on the CsPbBr3 exciton polariton condensate, splitting the condensate fractions with opposite spins in both momentum and real space. Besides the ground states, higher-order discrete polariton modes can also be split by the RD effect. Our work paves the way to manipulate exciton polariton condensates with a synthetic gauge field based on the RD spin-orbit coupling at room temperature. Engineered spin-orbit coupling can induce novel quantum phases in a Bose-Einstein condensate, however such demonstrations have been limited to cold atom systems. Here the authors realize a exciton-polarion condensate with tunable spin-orbit coupling in a liquid crystal microcavity at room temperature.
Collapse
|
48
|
Tao R, Peng K, Haeberlé L, Li Q, Jin D, Fleming GR, Kéna-Cohen S, Zhang X, Bao W. Halide perovskites enable polaritonic XY spin Hamiltonian at room temperature. NATURE MATERIALS 2022; 21:761-766. [PMID: 35681064 DOI: 10.1038/s41563-022-01276-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
Exciton polaritons, the part-light and part-matter quasiparticles in semiconductor optical cavities, are promising for exploring Bose-Einstein condensation, non-equilibrium many-body physics and analogue simulation at elevated temperatures. However, a room-temperature polaritonic platform on par with the GaAs quantum wells grown by molecular beam epitaxy at low temperatures remains elusive. The operation of such a platform calls for long-lifetime, strongly interacting excitons in a stringent material system with large yet nanoscale-thin geometry and homogeneous properties. Here, we address this challenge by adopting a method based on the solution synthesis of excitonic halide perovskites grown under nanoconfinement. Such nanoconfinement growth facilitates the synthesis of smooth and homogeneous single-crystalline large crystals enabling the demonstration of XY Hamiltonian lattices with sizes up to 10 × 10. With this demonstration, we further establish perovskites as a promising platform for room temperature polaritonic physics and pave the way for the realization of robust mode-disorder-free polaritonic devices at room temperature.
Collapse
Affiliation(s)
- Renjie Tao
- Nanoscale Science and Engineering Center, University of California, Berkeley, CA, USA
| | - Kai Peng
- Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Louis Haeberlé
- Department of Engineering Physics, École Polytechnique de Montréal, Montréal, Quebec, Canada
| | - Quanwei Li
- Department of Chemistry, University of California, Berkeley, CA, USA
| | - Dafei Jin
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL, USA
| | - Graham R Fleming
- Department of Chemistry, University of California, Berkeley, CA, USA
| | - Stéphane Kéna-Cohen
- Department of Engineering Physics, École Polytechnique de Montréal, Montréal, Quebec, Canada
| | - Xiang Zhang
- Nanoscale Science and Engineering Center, University of California, Berkeley, CA, USA.
- Faculty of Science and Faculty of Engineering, The University of Hong Kong, Hong Kong, China.
| | - Wei Bao
- Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA.
| |
Collapse
|
49
|
Orfanakis K, Rajendran SK, Walther V, Volz T, Pohl T, Ohadi H. Rydberg exciton-polaritons in a Cu 2O microcavity. NATURE MATERIALS 2022; 21:767-772. [PMID: 35422507 DOI: 10.1038/s41563-022-01230-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
Giant Rydberg excitons with principal quantum numbers as high as n = 25 have been observed in cuprous oxide (Cu2O), a semiconductor in which the exciton diameter can become as large as ∼1 μm. The giant dimension of these excitons results in excitonic interaction enhancements of orders of magnitude. Rydberg exciton-polaritons, formed by the strong coupling of Rydberg excitons to cavity photons, are a promising route to exploit these interactions and achieve a scalable, strongly correlated solid-state platform. However, the strong coupling of these excitons to cavity photons has remained elusive. Here, by embedding a thin Cu2O crystal into a Fabry-Pérot microcavity, we achieve strong coupling of light to Cu2O Rydberg excitons up to n = 6 and demonstrate the formation of Cu2O Rydberg exciton-polaritons. These results pave the way towards realizing strongly interacting exciton-polaritons and exploring strongly correlated phases of matter using light on a chip.
Collapse
Affiliation(s)
| | - Sai Kiran Rajendran
- SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews, UK
| | - Valentin Walther
- ITAMP, Harvard-Smithsonian Center for Astrophysics, Cambridge, MA, USA
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - Thomas Volz
- School of Mathematical and Physical Sciences, Macquarie University, Sydney, New South Wales, Australia
- ARC Centre of Excellence for Engineered Quantum Systems, Macquarie University, Sydney, New South Wales, Australia
| | - Thomas Pohl
- Center for Complex Quantum Systems, Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark
| | - Hamid Ohadi
- SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews, UK.
| |
Collapse
|
50
|
Zhao J, Fieramosca A, Bao R, Du W, Dini K, Su R, Feng J, Luo Y, Sanvitto D, Liew TCH, Xiong Q. Nonlinear polariton parametric emission in an atomically thin semiconductor based microcavity. NATURE NANOTECHNOLOGY 2022; 17:396-402. [PMID: 35288672 DOI: 10.1038/s41565-022-01073-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 01/04/2022] [Indexed: 06/14/2023]
Abstract
Parametric nonlinear optical processes are at the heart of nonlinear optics underpinning the central role in the generation of entangled photons as well as the realization of coherent optical sources. Exciton-polaritons are capable to sustain parametric scattering at extremely low threshold, offering a readily accessible platform to study bosonic fluids. Recently, two-dimensional transition-metal dichalcogenides (TMDs) have attracted great attention in strong light-matter interactions due to robust excitonic transitions and unique spin-valley degrees of freedom. However, further progress is hindered by the lack of realizations of strong nonlinear effects in TMD polaritons. Here, we demonstrate a realization of nonlinear optical parametric polaritons in a WS2 monolayer microcavity pumped at the inflection point and triggered in the ground state. We observed the formation of a phase-matched idler state and nonlinear amplification that preserves the valley population and survives up to room temperature. Our results open a new door towards the realization of the future for all-optical valley polariton nonlinear devices.
Collapse
Affiliation(s)
- Jiaxin Zhao
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore
| | - Antonio Fieramosca
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore.
| | - Ruiqi Bao
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore
| | - Wei Du
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore
| | - Kevin Dini
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore
| | - Rui Su
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore
| | - Jiangang Feng
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore
| | - Yuan Luo
- State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, China
| | - Daniele Sanvitto
- CNR NANOTEC Institute of Nanotechnology, Lecce, Italy
- INFN National Institute of Nuclear Physics, Lecce, Italy
| | - Timothy C H Liew
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore
- MajuLab, International Joint Research Unit UMI 3654, CNRS, Université Côte d'Azur, Sorbonne Université, National University of Singapore, Nanyang Technological University, Singapore, Singapore
| | - Qihua Xiong
- State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, China.
- Frontier Science Center for Quantum Information, Beijing, China.
- Beijing Academy of Quantum Information Sciences, Beijing, China.
- Beijing Innovation Center for Future Chips, Tsinghua University, Beijing, China.
| |
Collapse
|